
www.it-ebooks.info

http://www.it-ebooks.info/


Chris Dawson and Ben Straub

Boston

The GitHub Book

www.it-ebooks.info

http://www.it-ebooks.info/


The GitHub Book
by Chris Dawson and Ben Straub

Copyright © 2010 Chris Dawson, Ben Straub. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: FIX ME!
Copyeditor: FIX ME!
Proofreader: FIX ME!

Indexer: FIX ME!
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

January -4712: First Edition

Revision History for the First Edition:

2015-07-28: Early Release Revision 1

See http://oreilly.com/catalog/errata.csp?isbn=0636920043027 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. !!FILL THIS IN!! and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 063-6-920-04302-7

[?]

www.it-ebooks.info

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=0636920043027
http://www.it-ebooks.info/


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
cURL: a starting point for API exploration                                                                    4
Breadcrumbs to Successive API Paths                                                                            5
The JavaScript Object Notation (JSON) Format                                                           5

Parsing JSON from the Command Line                                                                     6
Debugging Switches for cURL                                                                                      8

All The Headers and Data                                                                                                 9
Authentication                                                                                                                  11

Username and Password Authentication                                                                  11
oAuth                                                                                                                             12

Status Codes                                                                                                                      14
Success (200 or 201)                                                                                                     15
Naughty JSON (400)                                                                                                    15
Improper JSON (422)                                                                                                  15
Successful Creation (201)                                                                                            16
Nothing Has Changed (304)                                                                                       17

Conditional Requests to Avoid Rate Limitations                                                        17
GitHub API Rate Limits                                                                                              19
Reading Your Rate Limits                                                                                           19

Accessing Content from the Web                                                                                  20
JSON-P                                                                                                                          21
CORS Support                                                                                                              22
Specifying Response Content Format                                                                       23

GitHub Has Amazing API Documentation                                                                 24
Summary                                                                                                                           24

iii

www.it-ebooks.info

http://www.it-ebooks.info/


2. Gists and the Gist API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
Gists are repositories                                                                                                       25

Embedding Gists Inside HTML                                                                                 26
Embedding Inside Jekyll blogs                                                                                   26

Gist from the command line                                                                                          27
Gists as fully functioning apps                                                                                       28
Gists that render Gists                                                                                                     30

Going deeper into the Gist API                                                                                  31
Summary                                                                                                                           33

3. Gollum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
“The Story of Smeagol…”                                                                                               35

Repository Linked Wikis                                                                                             36
Markup and Structure                                                                                                 37

Moving Gollum to Your Laptop                                                                                    40
Alternative Editing Options                                                                                        40
Editing with the Command Line                                                                               41
Adding Authentication                                                                                                41

Building a Gollum Editor                                                                                               42
Hacking Gollum                                                                                                           43
Wireframe Review Tool                                                                                               44
Programmatically Handling Images                                                                          45
Leveraging the Rugged Library                                                                                  47
Optimizing for Image Storage                                                                                    49
Reviewing on GitHub                                                                                                  52
Improving Revision Navigation                                                                                 54

Summary                                                                                                                           56

4. Python and the Search API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
General Principles                                                                                                            57

Authentication                                                                                                              58
Result Format                                                                                                                58
Search Operators and Qualifiers                                                                                59
Sorting                                                                                                                            60

Search APIs in Detail                                                                                                       60
Repository Search                                                                                                         60
Code Search                                                                                                                   61
Issue Search                                                                                                                   62
User Search                                                                                                                    63

Our example application                                                                                                 64
User flow                                                                                                                        65

Python                                                                                                                               66

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/


AGitHub                                                                                                                        67
WxPython                                                                                                                     67
PyInstaller                                                                                                                      67

The Code                                                                                                                           68
Git credential helper                                                                                                    68
Windowing and interface                                                                                            70
GitHub login                                                                                                                 73
GitHub search                                                                                                               75
Displaying results                                                                                                         77

Packaging                                                                                                                          79
Summary                                                                                                                           79

5. DotNet and the Commit Status API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
The API                                                                                                                             82

Raw statuses                                                                                                                  83
Combined status                                                                                                           83
Creating a status                                                                                                           84

Let’s write an app                                                                                                              85
Libraries                                                                                                                         85
Following along                                                                                                            86
First steps                                                                                                                       89
OAuth flow                                                                                                                    90
Status handler                                                                                                               93

Summary                                                                                                                           95

6. Ruby and Jekyll. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
The Harmless Brew that Spawned Jekyll                                                                      98

(Less Than) Evil Scientist Parents                                                                              99
Operating Jekyll Locally                                                                                              99

A Jekyll Blog in 15 Minutes                                                                                          100
YFM: YAML Front Matter                                                                                        103
Jekyll markup                                                                                                              105
Using the jekyll command                                                                                        105
Privacy Levels with Jekyll                                                                                          106
Themes                                                                                                                        106
Publishing on GitHub                                                                                               106
Hosting On Your Own Domain                                                                               107

Importing from other blogs                                                                                         109
From Wordpress                                                                                                         109
Exporting from Wordpress alternatives                                                                  111

Scraping Sites into Jekyll                                                                                               111
Jekyll Scraping Tactics                                                                                               112

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/


Writing our Parser                                                                                                      115
Publishing our blog to GitHub                                                                                 135

Summary                                                                                                                         135

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

In the 1930s, The Eagle and Child, a pub in Oxford simmered with creativity as JRR
Tolkien and CS Lewis philosophized and created their fantasy worlds. Heian court life
in 11th century Kyoto cradled Murasaki Shibu and produced The Tale of Genji, Japan’s
greatest novel. In the 7th century during the Umayyad Caliphate of modern day Dam‐
ascus, glittering Arabic palaces provided fertile ground for the creation of a new form
of poetry, the ghazal (“love poems”) the influence of which still courses through modern
Arabic poetry.

Each era of major creative innovation has been backdropped by a unique and plumb
space where collaboration and creativity flourished. Today, the collaborative gathering
space for some of the world’s greatest artists (artists who work as software developers)
is a virtual town square, a site called GitHub.

Who You Are
This book should be an interesting source of information for people who have used Git
or GitHub and want to “level-up” their skills related to these technologies. People
without any experience using GitHub or Git should start with an introductory book on
these technologies.

You should have a good familiarity with at least one imperative modern programming
language. You don’t need to be an expert programmer to read this book, but having
some programming experience and familiarity with at least one language is essential.

You should understand the basics of the HTTP protocol. The GitHub team uses a very
standard RESTful approach for its API. You should understand the difference between
a GET request and POST request and what HTTP status codes mean at the very least.

Familiariy with web APIs is helpful, although this book simultaneously aspires to pro‐
vide a guide showing how a well thought out, well designed, and well tested web API

vii

www.it-ebooks.info

http://www.it-ebooks.info/


creates a foundation for building fun and powerful tools. If you have not used web APIs
extensively, but have experience using other types of APIs, this is good company.

What You Will Learn
Much of the book focuses on the technical capabilities exposed by GitHub and the
powerful GitHub API. Perhaps you feel constrained by using Git only from within a
certain toolset; for example, if you are an Android developer accidentally using Git to
manage your app source code and want to unlock Git in other places in your life as a
developer, this book provides a wider vista to learn about the power of Git and GitHub.
If you have fallen into using Git for your own projects and are now interested in using
Git within a larger community, this book can teach you all about the “social coding”
style pioneered and dogfooded by the GitHub team. This book provides a stepping stone
for software developers who have used other distributed version control systems and
are looking for a bridge to using their skills with Git and within a web service like GitHub.

Like any seasoned developer, automation of your tools is important to you, and this
book provides examples of mundane tasks that we then convert them into automated
and repeatable processes, and we show how to do this using a variety of languages talking
to the GitHub API.

If you are unfamiliar with the “command line” this book will give you a firm under‐
standing of how to use it, and we bet you will find great power there. To make this book
accessible to everyone, regardless of their editor or operating system, many of the pro‐
gramming samples work within the command line. If you have hated the command line
since your father forced you to use it when you were five, this is the perfect book to
rekindle a loving relationship with the bash shell.

If you absorb not only the technical facets of using GitHub but also pay attention to the
cultural and ideological changes offered behind the tools, you’ll very likely see a new
way of working in the modern age. We focus on these “meta” viewpoints as we discuss
the tools themselves to help you see these extra opportunities.

Almost every chapter has an associated repository hosted on GitHub where you can
review the code discussed. Fork away and take these samples into your own projects
and tools!

Finally, we help you write testable API backed code. Even the most experienced devel‐
opers often find that writing tests for their code is a challenge, despite the massive body
of literature connecting quality code with tests. Testing can be especially challenging
when you are testing something backed by an API; it requires a different level of thinking
than is found in strict unit testing. To help you get past this roadblock, whenever pos‐
sible, this book shows you how to write code which interacts with the GitHub API and
is testable.

viii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/


First Class Languages You Need to Know
There are two languages which are so fundamentally linked to GitHub that you do need
to install and use them in order to get the most out of this book.

• Ruby: a simple, readable programming language used heavily by the founders of
GitHub.

• JavaScript: the only ubiquitous browser side programming language, its importance
has grown to new heights with the introduction of NodeJS, rivaling even the pop‐
ularity of Ruby on Rails as a server side toolkit for web applications, especially for
independent developers.

Your time will not be wasted if you install and play with these two tools. Between them
you will have a solid toolset to begin exploration of the GitHub API. Several chapters
in this book use Ruby or JavaScript, so putting in some time to learn at least a little bit
will make the journey through this book richer for you.

Undoubtedly, many of you picking up this book already have familiarity with Ruby or
JavaScript/NodeJS. So, the basics and installation of them are in appendices in the back
of the book. The appendices don’t cover syntax of these languages; we expect you have
experience with other languages as a prerequisite and can read code from any imperative
language regardless of the syntax. Later chapters which do discuss a facet of the API go
into language details at times, and the code is readable regardless of your familiarity
with that particular language. These explanatory appendices discuss the history of these
tools within the GitHub story as well as important usage notes like special files and
installation options.

Who This Book is Not For
If you are looking for a discussion of the GitHub API that focuses on a single language,
you will be disappointed to find that we look at the API through many different lan‐
guages. We do this to describe the API from not only the way the GitHub team designed
it to work, but the aspirational way that client library authors made it work within diverse
programming languages and communities. We think there is a lot to learn from this
approach, but if you are interested in only a specific language and how it works with
the GitHub API, this is not the book for you.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | ix

www.it-ebooks.info

http://www.it-ebooks.info/


Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/title_title.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Book Title by Some Author (O’Reilly).
Copyright 2012 Some Copyright Holder, 978-0-596-xxxx-x.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

x | Preface

www.it-ebooks.info

https://github.com/oreillymedia/title_title
mailto:permissions@oreilly.com
http://www.it-ebooks.info/


Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/<catalog page>.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://www.oreilly.com/catalog/<catalog page>
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/


Acknowledgments
Chris wants to thank his lovely wife, Nicole. I hope that I have added to this book even
a tiny bit of the wit and wisdom you provide to me and our family every day. My son
Roosevelt’s energy continues to inspire me and keep me going even when I am at my
limits. To my daughter Charlotte, you are my little smiling Buddha. To my mother, who
showed me how to write and, most importantly, why to write, which is something we
need more of in the technology world. To Tim O’Brien who invited me into this project,
thank you, and I hope we can collaborate again.

Ben would like to thank his wife, Becky, for her ongoing support and (when needed)
push from behind. None of this would have happened without you.

xii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 1

Introduction

The GitHub API is extremely comprehensive, permitting access and modification of
almost all data and metadata stored or associated with a Git repository. Here is a sum‐
mary of those sections ordered alphabetically as they are on the GitHub API documen‐
tation site (https://developer.github.com/v3/):

• Activity: notifications of interesting events in your developer life
• Gists: programmatically create and share code snippets
• Git Data: raw access to Git data over a remote API
• Issues: add and modify issues
• Miscellaneous: whatever does not fit into the general API categorization
• Organizations: access and retrieve organizational membership data
• Pull Requests: a powerful API layer on the popular merge process
• Repositories: modify everything and anything related to repositories
• Search: code driven search within the entire GitHub database
• Users: access user data
• Enterprise: specifics about using the API when using the private corporate GitHub

In addition, though not a part of the API, there are other important technologies you
should know about when using GitHub which are not covered in the API documenta‐
tion:

• Jekyll: hosting blogs and static documentation
• Gollum: wikis tied to a repository
• Hubot: a programmable chat robot used extensively at GitHub

1

www.it-ebooks.info

https://developer.github.com/v3/
http://www.it-ebooks.info/


With just one or two exceptions, Each of these sections of the GitHub technology stack
are covered in various chapters. The GitHub API documentation is a stellar reference
which you will use constantly when writing any application that talks to the API, but
the chapters in this book serve a different purpose: these chapters are stories about
building applications on top of the technologies provided by GitHub. Within these
stories you will learn the tradeoffs and considerations you will face when you use the
GitHub API. Chapters in this book often cover multiple pieces of the API when appro‐
priate for the story we are telling. We’ve generally tried to focus on a major API section
and limit exposure to other pieces as much as possible, but most chapters do need to
bring in small pieces of more than one section.

• The “cURL” chapter: the chapter you are reading now covers a first look at the API
through the command line HTTP client called cURL. We talk a bit about the re‐
sponse format and how to parse it within the command line, and also document
authentication.

• The “Gist” chapter: covers the Gist API, as well as command line tools and the Ruby
language “Octokit” API client.

• The “Gollum” chapter: explains usage of the Gollum command line tool and asso‐
ciated Ruby library (gem) which is backed by Grit, the C-language bindings for
accessing Git repositories. We also document some details of the Git storage format
and how it applies to storing large files inside of a Git repository, and show how to
use the git command line tools to play with this information.

• The “Search” chapter: we build a GUI search app using Python.
• The “Commit Status” chapter: our final chapter documents a relatively new part of

the API which documents the interactions between third party tools and your code.
This chapter builds an application using C# and the Nancy .NET GitHub API li‐
braries.

• The “Jekyll” chapter: if you push a specifically organized repository into GitHub,
GitHub will host a fully featured blog, equivalent in most ways to a Wordpress site
(well, except for the complexity part). This chapter documents how to format your
repository, how to use Markdown within Jekyll, how to use programmatic looping
constructs provided by Liquid Templates, and then shows how to import an entire
web site from the Internet Archive into the Jekyll format using Ruby. We show how
to respectfully spider a site using caching, a valuable technique when using APIs or
third party public information.

• The “Android” chapter: in this chapter we create a mobile application targeting the
Android OS. Our application reads and writes information into a Jekyll repository
from the Git Data section of the API. We show how to create user interface tests for
Android which verify GitHub API responses using the Calabash UI testing tool.

2 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


• The “JavaScript” chapter: did you know you can host an entire “single page appli‐
cation” on GitHub? We show how you can build an application backed by a database
called GitHub using the JavaScript language. Importanly, we show how you can
write a testable JavaScript application that mocks out the GitHub API when needed.

• The “Hubot” chapter: Hubot is a JavaScript (NodeJS) chat robot enabling technol‐
ogists to go beyond developer operations (“DevOps”) to a new frontier called “Cha‐
tOps.” The Hubot chapter illustrates using the Activities and Pull Requests section
of the API. In addition we show how you can simulate GitHub notifications and
how to write testable Hubot extensions (which is often a challenge when writing
JavaScript code).

We don’t cover the organization API: this is a small facet of the API with only the ability
to list organizations and modify metadata about your organization; once you have used
other parts of the API this nook of the API will be very intuitive.

We also don’t cover the users section of the API. While you might expect it to be an
important part of the API, the users API is really nothing more than an endpoint to list
information about users, add or remove SSH keys, adjust email addresses and modify
your list of followers.

There is not a specific chapter on issues. Historically GitHub used to group issues and
pull requests into the same API section, but with the growing importance of pull requests
they have separated them in the API documentation. In fact, they are still internally
stored in the same database and pull requests are, at least for now, just another type of
issue. The Hubot chapter documents using pull requests and is a good reference for
issues in that way.

The enterprise API works almost exactly the same as the GitHub.com site API. We don’t
have a chapter telling a story about the enterprise API, but we do provide an appendix
which provides a few notes about how to use it with a few API client libraries.

With these chapters we cover the entire API and hope to give you an inside look into
the inner workings of the brain of a developer building on top of the GitHub API.

As you might have noticed, this book will take you on an exploration of several different
language clients for the GitHub API. Along the way, we’ll point out the different idioms
and methodologies inherent to those client libraries and shed light on the darker corners
of the GitHub API. Don’t be alarmed if you thumb through the chapters and see a
language which you don’t know at all: each chapter is designed so that you can follow
along without intimacy to the language or toolkit. You will get the most value if you
install the language and associated tools, but the story behind the projects we will build
will be interesting even if you don’t actually type a line of code from the chapter.

Enough of the theoretical: let’s jump into using the API with the powerful cURL tool.

Introduction | 3

www.it-ebooks.info

http://www.it-ebooks.info/


cURL: a starting point for API exploration
There will be times when you want to quickly access information from the API without
writing a formal program. Or, when you want to quickly get access to the raw HTTP
request headers and content. Or, where you might even question the implementation
of a client library and need confirmation it is doing the right thing from another vantage
point. In these situations, cURL, a simple command line HTTP tool, is the perfect fit.
cURL, like the best unix tools, is a small program with a very specific and purposefully
limited set of features for accessing HTTP servers.

cURL gives you the most naked vantage point you will find for the GitHub API (barring
using a network traffic analysis tool). cURL, like the HTTP protocol which it speaks
intimately, is stateless, meaning it is challenging to use cURL to hit a service and then
use the results with a secondary request. We will use cURL in a later chapter within a
shell script that explores solutions to this problem, but note that cURL works best with
one-off requests.

If you are running these examples on a Linux box, you should be able
use your native package management tool to install cURL - either a
“sudo yum install curl*” on a RedHat variant or “sudo apt-get install
curl” on an Ubuntu (or Debian) system. If you are on any recent
version of OSX, you already have cURL installed, but it you can’t find
it, take a look at the HomeBrew project (http://brew.sh/) or Mac‐
Ports project (http://www.macports.org/). If you are running on Win‐
dows or another operating system, you best bet is to download cURL
from the cURL web site here: http://curl.haxx.se/download.html

Let’s make a request. We’ll start with the most basic GitHub API endpoint found at
https://api.github.com.

$ curl https://api.github.com
{
  "current_user_url": "https://api.github.com/user",
  "current_user_authorizations_html_url":
  "https://github.com/settings/connections/applications{/client_id}",
  "authorizations_url": "https://api.github.com/authorizations",
  "code_search_url":
  "https://api.github.com/search/code?q={query}{&page,per_page,sort,order}",
  "emails_url": "https://api.github.com/user/emails",
  "emojis_url": "https://api.github.com/emojis",
  ...
}

We’ve abbreviated the response to make it more readable. A few salient things to notice:
there are a lot of URLs pointing to secondary information, parameters are included in
the URLs, and the response format is JSON.

4 | Chapter 1: Introduction

www.it-ebooks.info

http://brew.sh/
http://www.macports.org/
http://curl.haxx.se/download.html
https://api.github.com
http://www.it-ebooks.info/


What can we learn from this API response?

Breadcrumbs to Successive API Paths
The GitHub API is a Hypermedia API. Though a discussion on what constitutes hy‐
permedia deserves an entire book of its own (Check out O’Reilly’s “Hypermedia APIs
with HTML5 and Node”), you can absorb much of what makes hypermedia interesting
by just looking at a response. First, you can see from the API response above that by
making a request to the API, you actually get back a map of how you should make
additional responses. Not all clients use this information, of course, but one goal behind
Hypermedia APIs is that clients can dynamically adjust their endpoints without recod‐
ing the client code. In other words, the API should be able to adjust its map, and then
clients will adjust themselves, but you as the application developer using the client li‐
braries will not need to understand or even be aware of the changes. If the thought of
GitHub changing an API because clients should be written to handle new endpoints
automatically sounds worriesome, don’t fret too much: GitHub is very dilligent about
maintaining and supporting their API in a way that most companies would do well to
emulate. But, you should know that you can rely on having a API reference inside the
API itself, rather than hosted externally in documentation which very easily could turn
out to be out of date with the API itself.

This map includes not just URLs, but also information about how to provide parameters
to the URLs. For example, the code_search_url key references a URL which obviously
allows you to search within code on GitHub, but also tells you how to structure the
parameters passed to this URL. If you have an intelligent client who can follow this
simple format, you could dynamically generate the query without involving a developer
who can read API documentation. At least that is the dream that Hypermedia points us
to; if you are skeptical, at least know that APIs such as GitHub encode documentation
into themselves, and you can bet GitHub has test coverage to prove that this documen‐
tation matches the information delivered by the API endpoints. That’s a strong guar‐
antee that is sadly missing from many other APIs.

Now let’s briefly discuss the format of all GitHub API responses: JSON.

The JavaScript Object Notation (JSON) Format
Every response you get back from the GitHub API will be in the JSON format. JSON is
a “lightweight data interchange format” (read more on the JSON.org website). There
are other competing and effective formats, such as XML or YAML, but JSON is quickly
becoming the defacto standard for web services.

A few of the reasons why JSON is so popular:

Breadcrumbs to Successive API Paths | 5

www.it-ebooks.info

http://www.it-ebooks.info/


• JSON is readable: JSON has a nice balance of human readability when compared
to serialization formats like XML.

• JSON can be used within JavaScript with very little modification (and cognitive
processing on the part of the programmer). A data format which works equally well
on both the client and server side was bound to be victorious, as JSON has been.

You might expect that a site like GitHub, originally built on the Ruby on Rails stack (and
some of that code is still live), would support specifying an alternative format like XML,
but XML is no longer supported. Long live JSON.

JSON is very straightforward if you have used any other text based interchange format.
One note about JSON that is not always obvious or expected to people new to JSON:
the format only supports using double-quotes, not single-quotes.

We are using a command line tool, cURL, to retrieve data from the API. It would be
handy to have a simple command line tool that also processes that JSON. Let’s talk about
one such tool next.

Parsing JSON from the Command Line
JSON is a text format, so you could use any command line text processing tool, such as
the venerable AWK, to process JSON responses. There is one fantastic JSON specific
parsing tool which complements cURL that is worth knowing: “jq”. If you pipe JSON
content (using the | character for most shells) into jq, you can then easily extract pieces
of the JSON using “filters.”

jq can be installed from source, using package managers like brew or
apt-get, and there are binaries on the downloads page for OSX,
Linux, Windows and Solaris.

Going deeper, in the prior example, let’s pull out something interesting from the API
map that we receive when we access api.github.com.

$ curl https://api.github.com | jq '.current_user_url'
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2004  100  2004    0     0   4496      0 --:--:-- --:--:-- --:--:--  4493
"https://api.github.com/user"

What just happened? The jq tool parsed the JSON, and using the .cur

rent_user_url filter, it retrieved content from the JSON response. If you look at the
response again, you’ll notice it has key/value pairs inside an associative array. It uses the
current_user_url as a key into that associative array and prints out the value there.

6 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


You also will notice that curl printed out transfer time information (to standard error,
so jq did not see it). If we want to restrict that information and clean up the request we
should use the -s switch, which runs cURL in “silent” mode.

It should be easy to understand how the jq filter is applied to the response JSON. For a
more complicated request (for example, we might want to obtain a list of public repo‐
sitories for a user), we can see the pattern for the jq pattern parameter emerging. Let’s
get a more complicated set of information, a user’s list of repositories and see how we
can extract information from the response using jq.

$ curl -s https://api.github.com/users/xrd/repos
[
  {
    "id": 19551182,
    "name": "a-gollum-test",
    "full_name": "xrd/a-gollum-test",
    "owner": {
      "login": "xrd",
      "id": 17064,
      "avatar_url":
      "https://avatars.githubusercontent.com/u/17064?v=3",
     ...
  }
]
$ curl -s https://api.github.com/users/xrd/repos | jq '.[0].owner.id'
17064

This response is different structurally: instead of an associative array, we now have an
array (multiple items). To get the first one, we specify a numeric index, and then key
into the successive associative arrays inside of it to reach the desired content: the owner
id.

Jq is a great tool for checking the validity of JSON. As mentioned before, JSON key/
values are stored only with double-quotes, not single quotes. You can verify that JSON
is valid and satisfies this requirement using jq.

$ echo '{ "a" : "b" }' | jq '.'
{
  "a": "b"
}
$ echo "{ 'no' : 'bueno' }" | jq "."
parse error: Invalid numeric literal at line 1, column 7

The first JSON we pass into jq works, while the second, because it uses invalid single
quote characters, fails with an error. Jq filters are strings passed as arguments, and the
shell which provides the string to jq does not care, however, if you use single quotes or
double quotes, as you see above. The echo command, if you didn’t already know, prints
out whatever string you provide to it; when we combine this with the pipe character we
can easily provide that string to jq through standard input.

The JavaScript Object Notation (JSON) Format | 7

www.it-ebooks.info

http://www.it-ebooks.info/


Jq is a powerful tool for quickly retrieving content from an arbitray JSON request. Jq
has many other powerful features, documented at stedolan.github.io/jq.

We now know how to retrieve some interesting information from the GitHub API and
parse out bits of information from that response, all in a single line. But, there will be
times when you incorrectly specify parameters to cURL or the API, and the data is not
what you expect. Now we’ll learn about how to debug the cURL tool and the API service
itself to provide more context when things go wrong.

Debugging Switches for cURL
As mentioned, cURL is a great tool when you are verifying that a response is what you
expect it to be. The response body is important, but often you’ll want access to the
headers as well. cURL makes getting these easy with the -i and -v switches. The -i
switch prints out request headers, and the -v switch prints out both request and response
headers (the > character indicates request data, and the < character indicates response
data).

$ curl -i https://api.github.com
HTTP/1.1 200 OK
Server: GitHub.com
Date: Wed, 03 Jun 2015 19:39:03 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 2004
Status: 200 OK
X-RateLimit-Limit: 60
...
{
  "current_user_url": "https://api.github.com/user",
  ...
}
$ curl -v https://api.github.com
* Rebuilt URL to: https://api.github.com/
* Hostname was NOT found in DNS cache
*   Trying 192.30.252.137...
* Connected to api.github.com (192.30.252.137) port 443 (#0)
* successfully set certificate verify locations:
*   CAfile: none
  CApath: /etc/ssl/certs
* SSLv3, TLS handshake, Client hello (1):
* SSLv3, TLS handshake, Server hello (2):
...
* CN=DigiCert SHA2 High Assurance Server CA
*        SSL certificate verify ok.
> GET / HTTP/1.1
> User-Agent: curl/7.35.0
> Host: api.github.com
> Accept: */*
>
< HTTP/1.1 200 OK

8 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


* Server GitHub.com is not blacklisted
...

With the -v switch you get everything: DNS lookups, information on the SSL chain,
and the full request and response information.

Be aware that if you print out headers, a tool like jq will get con‐
fused because you are no longer providing it with pure JSON.

This section shows us that there is interesting information not only in the body (the
JSON data) but also in the headers. It is important to understand what headers are here
and which ones are important. There are a lot of them which the HTTP specification
requires, and we can often ignore those, but there are a few that are vital when you start
making more than just a few isolated request.

All The Headers and Data
Three headers are present in every GitHub API response which tell you about the Git‐
Hub API rate limits. They are X-RateLimit-Limit, X-RateLimit-Remaining, and X-
RateLimit-Reset. These limits are explained in detail in “GitHub API Rate Limits” on
page 19.

The X-GitHub-Media-Type header contains information that will come in handy when
you are starting to retrieve text or blob content from the API. when you make a request
to the GitHub API you can specify the format you want to work with by sending an
Accept header with your request.

Let’s look at the full response from the original request.

$ curl -i https://api.github.com/
HTTP/1.1 200 OK
Server: GitHub.com
Date: Sat, 25 Apr 2015 05:36:16 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 2004
Status: 200 OK
X-RateLimit-Limit: 60
X-RateLimit-Remaining: 58
X-RateLimit-Reset: 1429943754
Cache-Control: public, max-age=60, s-maxage=60
ETag: "a5c656a9399ccd6b44e2f9a4291c8289"
Vary: Accept
X-GitHub-Media-Type: github.v3
X-XSS-Protection: 1; mode=block
X-Frame-Options: deny

All The Headers and Data | 9

www.it-ebooks.info

http://www.it-ebooks.info/


Content-Security-Policy: default-src 'none'
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: ETag, Link, X-GitHub-OTP, X-RateLimit-Limit, X-RateLimit-Remaining, X-RateLimit-Reset, X-OAuth-Scopes, X-Accepted-OAuth-Scopes, X-Poll-Interval
Access-Control-Allow-Origin: *
X-GitHub-Request-Id: C0F1CF9E:567A:9610FCB:553B27D0
Strict-Transport-Security: max-age=31536000; includeSubdomains; preload
X-Content-Type-Options: nosniff
Vary: Accept-Encoding
X-Served-By: 13d09b732ebe76f892093130dc088652
{
  "current_user_url": "https://api.github.com/user",
  "current_user_authorizations_html_url":
"https://github.com/settings/connections/applications{/client_id}",
  "authorizations_url": "https://api.github.com/authorizations",
  "code_search_url":
"https://api.github.com/search/code?q={query}{&page,per_page,sort,order}",
  ...
  "notifications_url": "https://api.github.com/notifications",
  "organization_repositories_url":
"https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}",
  "organization_url": "https://api.github.com/orgs/{org}",
  "public_gists_url": "https://api.github.com/gists/public",
  "rate_limit_url": "https://api.github.com/rate_limit",
  "repository_url": "https://api.github.com/repos/{owner}/{repo}",
  ...
}

Using this map, is there anything interesting we can retrieve, perhaps information about
GitHub itself? We can use the organizational URL and substitute “github” in the place‐
holder.

$ curl https://api.github.com/orgs/github
{
  "login": "github",
  "id": 9919,
  "url": "https://api.github.com/orgs/github",
  "repos_url": "https://api.github.com/orgs/github/repos",
  "events_url": "https://api.github.com/orgs/github/events",
  "members_url":
"https://api.github.com/orgs/github/members{/member}",
  "public_members_url":
"https://api.github.com/orgs/github/public_members{/member}",
  "avatar_url": "https://avatars.githubusercontent.com/u/9919?v=3",
  "description": "GitHub, the company.",
  "name": "GitHub",
  "company": null,
  "blog": "https://github.com/about",
  "location": "San Francisco, CA",
  "email": "support@github.com",
  "public_repos": 106,
  "public_gists": 0,
  "followers": 0,

10 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


  "following": 0,
  "html_url": "https://github.com/github",
  "created_at": "2008-05-11T04:37:31Z",
  "updated_at": "2015-04-25T05:17:01Z",
  "type": "Organization"
}

You can see this tells us the company blog (https://github.com/about), that the company
is located in San Francisco, and the creation date (which strangely does not match their
blog post which states April 10th was their official launch date: https://github.com/blog/
40-we-launched).

So far all of our requests have been to publicly available information. But, the GitHub
APi starts getting really interesting when we authenticate and access private information
and publicly inaccessible services, like writing data to GitHub. We’ll discuss how and
why you want to use authentication next.

Authentication
There are two ways to authenticate when making a request to the GitHub API: username
and passwords (HTTP Basic), and oAuth tokens.

Username and Password Authentication
You can access protected content inside GitHub using a username and password com‐
bination. Username authentication works by using the HTTP Basic authentication sup‐
ported by the -u flag in curl. HTTP Basic Authentication is synonymous with username
and password authentication.

$ curl -u xrd https://api.github.com/rate_limit
Enter host password for user 'xrd': xxxxxxxx
{
  "rate": {
    "limit": 5000,
    "remaining": 4995,
    "reset": 1376251941
  }
}

This cURL command, authenticates into the GitHub API and then retrieves information
about our own specific rate limits for our user account, protected information only
available as a logged in user.

Benefits of Username Authentication
Almost any client library you use will support HTTP Basic authentication. All the Git‐
Hub API clients we looked at support username and passwords. And, writing your own
specific client is easy as this is a core feature of the HTTP standard, so if you use any

Authentication | 11

www.it-ebooks.info

https://github.com/about
https://github.com/blog/40-we-launched
https://github.com/blog/40-we-launched
http://www.it-ebooks.info/


standard HTTP library when building your own client, you will be able to access content
inside the GitHub API.

Downsides to Username Authentication
There are many reasons why username and password authentication is the wrong way
to manage your GitHub API access.

• HTTP Basic is an old protocol which never anticipated the granularity of web serv‐
ices. It is not possible to specify only certain features of a web service if you ask
users to authenticate with username/passwords.

• If you use a username and password to access GitHub API content from your cell
phone, and then access API content from your laptop, you have no way to block
access to one without blocking the other.

• HTTP Basic authentication does not support extensions to the authentication flow.
Many modern services now support two-factor authentication and there is no way
to inject this into the process without changing the HTTP clients (web browsers,
for example) or at least the flow they expect (making the browser repeat the request).

All of these problems are solved (or at least supported) with oAuth flows. For these
reasons, there are very few reasons to use username and passwords. If you do need
simple and quick access to the GitHub API (and you don’t use two factor authentication)
then HTTP basic authentication can help you in a small subset of use cases.

oAuth
oAuth is an authentication mechanism where tokens are tied to functionality or clients.
In other words, you can specify what features of a service you want to permit an oAuth
token to carry with it, and you can issue multiple tokens and tie those to specific clients:
a cell phone app, a laptop, a smart watch, or even an Internet of Things toaster. And,
importantly, you can revoke tokens without impacting other tokens.

The main downside to oAuth tokens is that they introduce a level of complexity that
you may not be familiar with if you have only used HTTP Basic which generally only
requires an extra header to the HTTP request, or an extra flag to a client tool like cURL.

oAuth solves the problems described above by linking tokens to scopes (specified sub‐
sets of functionality inside a webs service) and issuing as many tokens as you need to
multiple clients.

Scopes: specified actions tied to authentication tokens
When you generate an oAuth token, you specify the access rights you require. Don’t be
confused because we start with HTTP Basic to generate the oAuth token: once you have
the token, you no longer need to use HTTP Basic in successive requests. If this token is

12 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


properly issued, the oAuth token will have permissions to read and write to public
repositories owned by that user.

$ curl -u username -d '{"scopes":["public_repo"]}' https://api.github.com/authorizations
{
  "id": 1234567,
  "url": "https://api.github.com/authorizations/1234567",
  "app": {
    "name": "My app",
    "url": "https://developer.github.com/v3/oauth_authorizations/",
    "client_id": "00000000000000000000"
  },
  "token": "abcdef87654321
  ...
}

The JSON response, upon success, has a token you can extract and use for applications
that need access to the GitHub API.

If you are using two factor authentication, this flow requires additional steps, all of which
are documented within the [Link to Come].

To use this token, you specify the token inside an authorization header. It is a little bit
early to talk about exactly how to interact with the API, but the syntax in cURL looks
like the following. For a full flow, check out the Hubot chapter which shows how to use
cURL with an oAuth token.

$ curl -H "Authorization: token abcdef87654321" ...

Scopes clarify how a service or application will use data inside the GitHub API. This
makes it easy to audit how you are using the information if this was a token issued for
your own personal use. But, most importantly, this provides valuable clarity and pro‐
tection for those times when a third party application wants to access your information:
you can be assured the application is limited in what data it can access, and you can
revoke access easily.

Scope Limitations
There is one major limitation of scopes to be aware of: you cannot do fine-grained access
to certain repositories only. If you provide access to any of your private repositories,
you are providing access to all repositories.

It is likely that GitHub will change the way scopes work and address some of these issues.
The great thing about the way oAuth works is that to support these changes you will
simply need to request a new token with the scope modified, but otherwise, the appli‐
cation authentication flow will be unchaged.

Authentication | 13

www.it-ebooks.info

http://www.it-ebooks.info/


Be very careful about the scopes you request when building a ser‐
vice or application. Users are (rightly) paranoid about the data they
are handing over to you, and will evaluate your application based on
the scopes requested. If they don’t think you need that scope, be sure
to remove it from the list you provide to GitHub when authorizing
and consider escalation to a higher scope after you have developed
some trust with your users.

Scope Escalation
You can ask for scope at one point which is very limited, and then later ask for a greater
scope. For example, when a user first accesses your application, you could only get the
user scope to create a user object inside your service, and only when your application
needs repository information for a user, then request to escalate privileges. At this point
the user will need to approve or disapprove your request, but asking for everything up
front (before you have a relationship with the user) often results in a user abandoning
the login.

Simplified oAuth Flow
oAuth has many variants, but GitHub uses oAuth2. oAuth2 specifies a flow where:

• the application requests access
• the service provider (GitHub) requests authentication: username and password

usually.
• if two-factor authentication is enabled, ask for the OTP (one time password) code.
• GitHub responds with a token inside a JSON payload
• the application uses the oAuth token to make requests of the API.

A real world flow is described in full in the [Link to Come].

Now let’s review an important fundamental when using web services, the importance
of the HTTP status code.

Status Codes
The GitHub API uses HTTP status codes to tell you definitive information about how
your request was processed. If you are using a basic client like cURL, it will be important
to validate the status code before you look at any of the data retrieved. If you are writing
your own API client, pay close attention to the status code before anything else.

14 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


Success (200 or 201)
If you have worked with any HTTP clients whatsoever, you know what the HTTP status
code “200” means success. GitHub will respond with a 200 status code when your request
destination URL and associated parameters are correct. If your request creates content
on the server, then you will get a 201 status code, indicating a successful creation on the
server.

$ curl -s -i https://api.github.com | grep Status
Status: 200 OK

Naughty JSON (400)
If your payload (the JSON you send to a request) is invalid, the GitHub API will respond
with a 400 error, as shown below.

$ curl -i -u xrd -d 'yaml: true' -X POST https://api.github.com/gists
Enter host password for user 'xrd':
HTTP/1.1 400 Bad Request
Server: GitHub.com
Date: Thu, 04 Jun 2015 20:33:49 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 148
Status: 400 Bad Request
...

{
  "message": "Problems parsing JSON",
  "documentation_url":
  "https://developer.github.com/v3/oauth_authorizations/#create-a-new-authorization"
}

Here we attempt to generate a new gist by using the endpoint described at the Gist API
documentation: https://developer.github.com/v3/gists/#create-a-gist. We’ll detail Gists
in more detail in a later chapter. This issue fails because we are not using JSON (this
looks it could be YAML, which we will discuss in the Jekyll chapter). The payload is sent
using the -d switch. GitHub responds with advice on where to find the documentation
for the correct format at the documentation_url key inside the JSON response. Notice
that we use the -X POST switch and value to tell cURL to make a POST request to GitHub.

Improper JSON (422)
If any of the fields in your request are invalid, GitHub will respond with a 422 error.
Let’s attempt to fix the previous request. The documentation indicates the JSON payload
should look like this:

{
  "description": "the description for this gist",
  "public": true,

Status Codes | 15

www.it-ebooks.info

https://developer.github.com/v3/gists/#create-a-gist
http://www.it-ebooks.info/


  "files": {
    "file1.txt": {
      "content": "String file contents"
    }
  }
}

What happens if the JSON is valid, but the fields are incorrect?

curl -i -u chris@burningon.com -d '{ "a" : "b" }' -X POST
https://api.github.com/gists
Enter host password for user 'chris@burningon.com':
HTTP/1.1 422 Unprocessable Entity
...

{
  "message": "Invalid request.\n\n\"files\" wasn't supplied.",
  "documentation_url": "https://developer.github.com/v3"
}

There are two important things to note: first, we get a 422 error, which indicates the
JSON was valid, but the fields were incorrect. We also get a response which indicates
why: we are missing the files key inside the request payload.

Successful Creation (201)
Now, let’s use valid JSON and see what happens:

$ curl -i -u xrd \
-d '{"description":"A","public":true,"files":{"a.txt":{"content":"B"}}} \
https://api.github.com/gists
Enter host password for user 'xrd':
HTTP/1.1 201 Created
...

{
  "url": "https://api.github.com/gists/4a86ed1ca6f289d0f6a4",
  "forks_url":
  "https://api.github.com/gists/4a86ed1ca6f289d0f6a4/forks",
  "commits_url":
  "https://api.github.com/gists/4a86ed1ca6f289d0f6a4/commits",
  "id": "4a86ed1ca6f289d0f6a4",
  "git_pull_url": "https://gist.github.com/4a86ed1ca6f289d0f6a4.git",
  ...
}

Success! We created a gist and got a 201 status code indicating things worked properly.
To make our command more readable we used the backslash character to allow pa‐
rameters to span across lines. Also, notice the JSON does not require whitespace which
we have completely removed from the string passed to the -d switch (in order to save
space and make this command a little bit more readable).

16 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


Nothing Has Changed (304)
304s are like 200s in that they say to the client: yes, your request succeeded. They give
a little bit of extra information, however, in that they tell the client that the data has not
changed since the last time the same request was made. This is valuable information if
you are concerned about your usage limits (and in most cases you will be). You need to
trigger 304s manually by adding conditional headers to your request.

Conditional Requests to Avoid Rate Limitations
If you are querying the GitHub APIs to obtain activity data for a user or a repository,
there’s a good chance that many of your requests won’t return much activity. If you check
for new activity once every few minutes, there will be time periods over which no activity
has occurred. These requests, these constant polls still use up requests in your rate limit
even though there’s no new activity to be delivered.

In these cases, you can send conditional HTTP headers If-Modified-Since and If-None-
Match to tell GitHub to return an HTTP 304 response code telling you that nothing has
been modified. When you send a request with a conditional header and the GitHub API
responds with a HTTP 304 response code, this request is not deducted from your rate
limit.

The following command listing is an example of passing in the If-Modified-Since HTTP
header to the GitHub API. Here we’ve specified that we’re only interested in receiving
content if the Twitter Boostrap repositories has been altered after 7:49 PM GMT on
Sunday, August 11, 2013. The GitHub API responds with a HTTP 304 response code
which also tells us that the last time this repository changed was a minute earlier than
our cutoff date.

$ curl -i https://api.github.com/repos/twbs/bootstrap \
          -H "If-Modified-Since: Sun, 11 Aug 2013 19:48:59 GMT"
HTTP/1.1 304 Not Modified
Server: GitHub.com
Date: Sun, 11 Aug 2013 20:11:26 GMT
Status: 304 Not Modified
X-RateLimit-Limit: 60
X-RateLimit-Remaining: 46
X-RateLimit-Reset: 1376255215
Cache-Control: public, max-age=60, s-maxage=60
Last-Modified: Sun, 11 Aug 2013 19:48:39 GMT

The GitHub API also understands HTTP caching tags. An ETag, or Entity Tag, is an
HTTP header that is used to control whether or not content that you have previously
cached is the most recent version. Here’s how your systems would use ETag:

• Your server requests information from an HTTP server.
• Server returns an ETag header for a version of a content item.

Conditional Requests to Avoid Rate Limitations | 17

www.it-ebooks.info

http://www.it-ebooks.info/


• Your server includes this ETag in all subsequent requests.
— If the server has a newer version it returns new content + a new ETag
— If the server doesn’t have a newer version it returns an HTTP 304

The following command listing demonstrates to commands. The first curl call to the
GitHub API generates an ETag value, and the second value passes this ETag value as an
If-None-Match header. You’ll note that the second response is an HTTP 304 which tells
the caller that there is no new content available.

$ curl -i https://api.github.com/repos/twbs/bootstrap
HTTP/1.1 200 OK
Cache-Control: public, max-age=60, s-maxage=60
Last-Modified: Sun, 11 Aug 2013 20:25:37 GMT
ETag: "462c74009317cf64560b8e395b9d0cdd"

{
  "id": 2126244,
  "name": "bootstrap",
  "full_name": "twbs/bootstrap",
  ....
}

$ curl -i https://api.github.com/repos/twbs/bootstrap \
          -H 'If-None-Match: "462c74009317cf64560b8e395b9d0cdd"'

HTTP/1.1 304 Not Modified
Status: 304 Not Modified
Cache-Control: public, max-age=60, s-maxage=60
Last-Modified: Sun, 11 Aug 2013 20:25:37 GMT
ETag: "462c74009317cf64560b8e395b9d0cdd"

If you are developing an application that needs to make a significant number of requests
to the GitHub API over a long period of time, you can use a caching HTTP proxy like
Squid to take care of automatically caching content, storing content alongside ETags,
and injecting the “If-None-Match” header into GitHub API requests. If you do this,
you’ll be automating the injection of conditional headers and helping to reduce the
overall load on the GitHub API.

Use of conditional request headers is encouraged to conserve resources and make sure
that the infrastructure that supports GitHub’s API isn’t asked to generated content un‐
necessarily.

You might now be wondering: what are my rate limits and when should I care about
them?

18 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


GitHub API Rate Limits
GitHub tries to limit the rate at which users can make requests to the API. Anonymous
requests, requests that haven’t authenticated with either a username/password or OAuth
information, are limited to 60 requests an hour. If you are developing a system to inte‐
grate with the GitHub API on behalf of users, clearly 60 requests per hour isn’t going to
be sufficient.

This rate limit is increased to 5000 requests per hour if you are making an authenticated
request to the GitHub API, and while this rate is two orders of magnitude larger than
the anonymous rate limit, it still presents problems if you intend to use your own GitHub
credentials when making requests on behalf of many users.

For this reason, if your web site or service uses the GitHub API to request information
from the GitHub API, you should consider using OAuth and make requests to the
GitHub API using your user’s shared authentication information.

There are actually two rate limits. The “core” rate limit and the
“search” rate limit. The rate limits explained in the previous para‐
graphs were for the core rate limit. For search, requests are limited at
20 requests per minute for authenticated user requests and 5 re‐
quest per minute for anonymous requests. The assumption here is
that search is a more infrastructure intensive request to satisfy and
that tighter limits are placed on its usage.

Note that GitHub tracks anonymous requests by IP address. This means that if you are
behind a firewall with other users making anonymous requests, all those requests will
be grouped together.

Reading Your Rate Limits
Reading your rate limit is straightforward, just make a GET request to /rate_limit. This
will return a JSON document which tells you the limit you are subject to, the number
of requests you have remaining, and the timestamp (in seconds since 1970). Note that
this timestamp has a timezone in Coordinated Universal Time (UTC).

The following command listing uses curl to retrieve the rate limit for an anonymous
request. This response is abbreviated to save space in this book, but you’ll notice that
the quota information is supplied twice: once in the HTTP response headers and again
in the JSON response. The rate limit headers are returned with every request to the
GitHub API, so there is little need to make a direct call to the /rate_limit API.

$ curl https://api.github.com/rate_limit
{
  "resources": {
    "core": {

Conditional Requests to Avoid Rate Limitations | 19

www.it-ebooks.info

http://www.it-ebooks.info/


      "limit": 60,
      "remaining": 48,
      "reset": 1433398160
    },
    "search": {
      "limit": 10,
      "remaining": 10,
      "reset": 1433395543
    }
  },
  "rate": {
    "limit": 60,
    "remaining": 48,
    "reset": 1433398160
  }
}

60 requests over the course of an hour isn’t very much, and if you plan on doing anything
interesting, you will likely exceed this limit quickly. If you are hitting up against the 60
requests per minute limit, you will likely want to investigate making authenticated re‐
quests to the GitHub API. We’ll show that when we discuss authenticated requests.

Calls to the Rate Limit API are not deducted from your Rate Limit.
Isn’t that nice of them?

At this point we have been accessing the GitHub API from a cURL client, and as long
as our network permits it, we can do whatever we want. The GitHub API is accessible
in other situations as well, like from within a browser context, and certain restrictions
apply there, so let’s discuss that next.

Accessing Content from the Web
If you are using the GitHub API from a server side program or the command line then
you are free to issue any network calls as long as your network permits it. If you are
attempting to access the GitHub API from within a browser using JavaScript and the
XHR (XmlHttpRequest) object, then you should be aware of limitations imposed by the
browser’s same-origin policy. In a nutshell, you are not able to access domains from
JavaScript using standard XHR requests outside of the domain from which you retrieved
the original page. There are two options for getting around this restriction, one clever
(JSON-P) and one fully supported but slightly more onerous (CORS).

20 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


JSON-P
JSON-P is a browser hack, more or less, that allows retrieval of information from servers
outside of the same-origin policy. JSON-P works because <script> tags are not checked
against the same-origin policy; in other words, you can specify your page should load
scripts from any domain and the browser will permit it. With JSON-P, you load a Java‐
Script file which resolves to a specially encoded data payload wrapped in a callback
function you implement. The GitHub API supports this syntax: you request a script
with a parameter on the URL indicating what callback you want the script to execute
once loaded.

We can simulate this request in cURL:

$ curl https://api.github.com/?callback=myCallback
/**/myCallback({
  "meta": {
    "X-RateLimit-Limit": "60",
    "X-RateLimit-Remaining": "52",
    "X-RateLimit-Reset": "1433461950",
    "Cache-Control": "public, max-age=60, s-maxage=60",
    "Vary": "Accept",
    "ETag": "\"a5c656a9399ccd6b44e2f9a4291c8289\"",
    "X-GitHub-Media-Type": "github.v3",
    "status": 200
  },
  "data": {
    "current_user_url": "https://api.github.com/user",
    "current_user_authorizations_html_url":
    "https://github.com/settings/connections/applications{/client_id}",
    "authorizations_url": "https://api.github.com/authorizations",
    ...
  }
 })

If you used the same URL we used above inside a script tag on a web page (<script
src="https://api.github.com/?callback=myCallback" type="text/java

script"></script>), your browser would load the content displayed above, and then
a JavaScript function you defined called myCallback would be executed with the data
shown. This function could be implemented like this inside your web page.

<script>
function myCallback( payload ) {
  if( 200 == payload.status ) {
    document.getElementById("success").innerHTML = payload.data.current_user_url;
  } else {
    document.getElementById("error").innerHTML = "An error occurred";
  }
}
</script>

Accessing Content from the Web | 21

www.it-ebooks.info

http://www.it-ebooks.info/


This example demonstrates taking the current_user_url from the data inside the pay‐
load and putting it into a DIV, one that might look like <div id="success"></div>.

Because JSON-P works via <script> tags, only GET requests to the API are supported.
If you only need read-only access to the API, JSON-P can fulfill that need in many cases,
and it is easy to configure.

If JSON-P seems too limiting or hackish, CORS is a more complicated but official way
to access external services from within a web page.

CORS Support
CORS is the “correct” way to access GitHub content from within a browser context.
CORS requires that the server be properly configured in advance; the server must be
indicate when queried that it allows cross domain requests. If the server effectively says
“yes, you can access my content from a different domain” then CORS requests are per‐
mitted. The HTML5Rocks website has a great tutorial explaining many details of CORS:
http://www.html5rocks.com/en/tutorials/cors/.

Because XHR using CORS allows the same type of XHR requests as you get from the
same domain origin, you can make requests beyond GET to the GitHub API: POST,
DELETE and UPDATE. Between JSON-P and CORS there are options to retrieve con‐
tent from the GitHub API. The choice is between the simplicity of JSON-P and the
power and extra configuration of CORS.

We can prove using cURL that the GitHub API server is responding correctly for CORS
request. In this case we only care about the headers, so we use the -I switch which tells
cURL to make a HEAD request, telling the server not to respond with body content.

curl -I https://api.github.com
HTTP/1.1 200 OK
Server: GitHub.com
...
X-Frame-Options: deny
Content-Security-Policy: default-src 'none'
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: ETag, Link, X-GitHub-OTP,
X-RateLimit-Limit, X-RateLimit-Remaining, X-RateLimit-Reset,
X-OAuth-Scopes, X-Accepted-OAuth-Scopes, X-Poll-Interval
Access-Control-Allow-Origin: *
X-GitHub-Request-Id: C0F1CF9E:07AD:3C493B:557107C7
Strict-Transport-Security: max-age=31536000; includeSubdomains;
preload

We can see the “Access-Control-Allow-Credentials” header is set to true. It depends on
the browser implementation, but some JavaScript host browsers will automatically make
a “preflight” request to verify this header is set to true (and that other headers, like the
“Access-Control-Allow-Origin” are set correctly and permit requests from that origin

22 | Chapter 1: Introduction

www.it-ebooks.info

http://www.html5rocks.com/en/tutorials/cors/
http://www.it-ebooks.info/


to proceed). Other JavaScript host browsers will need you to make that request. Once
the browser has used the headers to confirm that CORS is permitted, you can make
XHR requests to the GitHub API domain as you would any other XHR request going
into the same domain.

We’ve covered much of the details of connecting and dissecting the GitHub API, but
there are a few other options to know about when using it. One of them is that you can
use the GitHub API service to provide rendered content when you need it.

Specifying Response Content Format
When you send a request to the GitHub API, you have some ability to specify the format
of the response you expect. For example, if you are requesting content that contains text
from a commit’s comment thread, you can use the Accept header to ask for the raw
markdown or for the HTML this markdown generates. You also have the ability to
specify this version of the GitHub API you are using. At this point, you can specify either
version 3 or beta of the API.

Retrieving Formatted Content
The Accept header you send with a request can affect the format of text returned by the
GitHub API. As an example, let’s assume you wanted to read the body of a GitHub Issue.
An issue’s body is stored in markdown and will be sent back in the request by default.
If we wanted to render the response as HTML instead of markdown, we could do this
by sending a different accept header, as the following cURL commands demonstrate.

$ URL='https://api.github.com/repos/rails/rails/issues/11819'
$ curl -s $URL | jq '.body'
"Hi, \r\n\r\nI have a problem with strong...." # 
$ curl -s $URL | jq '.body_html'
null # 
$ curl -s $URL \
-H "Accept: application/vnd.github.html+json" | jq '.body_html'
"<p>Hi, </p>\n\n<p>I have a problem with..." # 

Without specifying an extra header, we get the internal representation of the
data, sent as markdown.
Note that if we don’t request the HTML representation, we don’t see it in the
JSON by default.
If we use a customized accept header like in the third instance, then our JSON
is populated with a rendered version of the body in HTML.

Besides “raw” and “html” there are two other format options that influence how Mark‐
down content is delivered via the GitHub API. If you specify “text” as a format, the issue
body would have been returned as plaintext. If you specify “full” then the content will

Accessing Content from the Web | 23

www.it-ebooks.info

http://www.it-ebooks.info/


be rendered multiple times including the raw Markdown, rendered HTML, and ren‐
dered plaintext.

In addition to controlling the format of text content, you can also retrieve GitHub blobs
either as raw binary or as a BASE64 encoded text. When retrieving commits, you can
also specify that the content be returned either as a diff or as a patch. For more infor‐
mation about these fine-grained controls for formatting, see the GitHub API docu‐
mentation.

Before you start building a system atop another service’s API, it is always wise to un‐
derstand what, if any, limitations are placed on that API’s usage. Aside from the limi‐
tations on bandwidth, GitHub’s API is also covered by the overall GitHub Terms of
Service. You can read these terms of service here: https://help.github.com/articles/
github-terms-of-service

GitHub Has Amazing API Documentation
The GitHub team has already provided very thorough documentation on their API with
examples using cURL. Bookmark this URL: https://developer.github.com/v3/. You’ll use
it often. Do note that this URL is tied, obviously, to the current API “Version 3”, so this
URL will change when a new version is released.

Summary
In this chapter we learned how to access the GitHub API from the simplest client avail‐
able: the command line cURL HTTP tool. We also explored the API by looking at the
JSON and played with a command line tool (jq) that when paired with cURL gives us
the ability to quickly find information in the often large body of data the GitHub API
provides. We learned about the different authentication schemes supported by GitHub,
and also learned about the possibilities and tradeoffs when accessing the GitHub API
from within a browser context.

In the next chapter we will look at Gists and the Gist API. We’ll use Ruby to build a Gist
display program, and host all source files for the application as a Gist itself.

24 | Chapter 1: Introduction

www.it-ebooks.info

https://help.github.com/articles/github-terms-of-service
https://help.github.com/articles/github-terms-of-service
https://developer.github.com/v3/
http://www.it-ebooks.info/


CHAPTER 2

Gists and the Gist API

GitHub revolutionized software development by responding to a deep desire to share
information. But calling it just “sharing” does a disservice to the tools GitHub provides:
these tools remove barriers to communication and streamline workflows and these tools
also arose at exactly the moment when more and more companies permitted and more
and more complementary technologies appeared to allow an emerging remote work‐
force. Gists service part of this need: they permit intimate code sharing and reuse, re‐
factoring and play in a way not served by heavyweight tools predating it.

Gists are easy to create and the interface is stripped down to the barest level. You add a
snippet of code and then share the URL. Gists autodetect the language in most cases
and format it correctly. Gists can be used in more powerful ways than might appear at
first glance and this chapter will explore other ways to share code and amplify your
team.

To create a gist, go to gist.github.com and enter in any textual data. You then choose
public or secret access and create the gist. After creating the gist, you receive a shareable
URL with the code. If the type of textual data is specified, usually the coding language
type, then the code will be formatted in a pretty way for better readability. If you need
to share a small bit of code, or write something and discuss it, gists are a great tool.

There are other services that do this: pastebin was the first, and there are many others
that offer variances on code sharing. But gists by GitHub are not simply a pasting service.
Gists are first class repositories, forkable, editable and expansive. We’ll go over the basics
of what gists are, and how to create them, and then show how they allow you to share
code that is also a live application.

Gists are repositories
Every gist created is a tiny repository. You can update gists and see the history using
git log. You can download gists, hack on the repository, and git push them back into

25

www.it-ebooks.info

http://www.it-ebooks.info/


the repository on gist.github.com (which will republish them onto the publicly facing
web page). And, you can “fork” gists, just like any other repository.

You are allowed to branch within gist repositories; however, branches are not displayed
inside of gist.github.com. But, if you need the benefits of branching when using GitHub
gists you can branch normally inside a repository and keep the branch information on
the upstream repository after you push it up.

You can have an unlimited number of public and secret gists. Instead of creating a new
private repository from your limited amount in a paid GitHub account, you can take a
tiny bit of code and make a secret gist, sharing this with others through a URL instead
of the more onerous process of adding collaborators to a regular repository. Or, you can
make a gist public, and share that URL to mailing lists or anywhere you need public
feedback.

As there are two types of gists (public and secret), it is important the
understand the differences between them. Public gists are searcha‐
ble. Secret gists are not searchable, but they are accessible to anyone
who knows the URL. Don’t post any code to gist which you need to
keep secret as once you put it there, it is only as safe as the URL is
secret.

Most people share gists through the URL. But, you can embed gists inside of other
contexts (like blogs) and get a simple and pretty snippet of code.

Embedding Gists Inside HTML
To embed inside of an HTML page look for the “Embed this gist” box to the left of a
gist. Copy the code listed there (which will look something like <script src="https://
gist.github.com/xrd/8923697.js"></script> and paste it into your HTML.

If you wish to include only a particular file from the Gist (if it contains multiple files),
then add ?file=hi.rb to the end of the URL specified in the src attribute.

Embedding Inside Jekyll blogs
Though we have not yet explained how Jekyll works (the GitHub blogging tool), it seems
valid to point out the ease in which you can publish gists into a blog if that blog happens
to be Jekyll hosted on GitHub.

Jekyll supports a fast shortcut code to embed a public gist inside of your Jekyll blog
hosted on GitHub, or on any site built on the “github-pages” branch mechanism (de‐
scribed in the Chapter 6 chapter). The shortcut {% gist 8138797 %} will embed a
private gist which would be found at http://gist.github.com/8138797.

26 | Chapter 2: Gists and the Gist API

www.it-ebooks.info

http://www.it-ebooks.info/


If you want to use a specific file within the gist, add a filename to the gist code like {%
gist 8138797 hi.rb %}.

Secret gists can also be embedded. If you use a secret gist, prefix the username of the
account holder in the gist like so: {% gist xrd/8138797 hi.rb %}.

Gist from the command line
gem install gist will install a command line tool which assists in creating gists. You
can use it simply by typing the command, and then entering the data you want to post
as a gist.

$ gist
(type a gist. <ctrl-c> to cancel, <ctrl-d> when done)
{ "foo" : "bar" }
https://gist.github.com/9106765

The gist command will return the link to the gist just created. Gists are created anony‐
mously by default. You can login using the --login switch. Once you do this, your gists
will be linked to your account.

$ gist --login
Obtaining OAuth2 access_token from github.
GitHub username: xrd
GitHub password:
2-factor auth code: 787878

Success! https://github.com/settings/applications

You can pipe text to the gist command to use the contents of that file.

$ echo '{ "foo" : "bar" }' | gist
https://gist.github.com/9106799

You can also cat a file to gist.

$ cat MyJavaFile.java | gist
https://gist.github.com/9345609

Gists are often used to show interesting or troublesome code and there are times when
you don’t want to display the entirety of a file. In this case the command line grep tool
can be a useful; grep searches for a specific piece of code and with the right switches
can include several lines of context around that code inside a gist. This command looks
for the function myFunction inside the MyJavaFile.java file and then prints the next
20 lines of context and stores it as a gist.

$ grep -A 20 myFunction MyJavaFile.java | gist
https://gist.github.com/9453069

Gist from the command line | 27

www.it-ebooks.info

http://www.it-ebooks.info/


Adding the -o switch automatically opens the gist inside your default web browser. You
can also copy the gist URL to the clipboard using the -c switch. Or, you can copy the
contents of your clipboard into a gist using the -P switch.

There are many other fun features of the gist command. To learn more run the gist
command with the --help switch.

As gists are themselves repositories, you can use them for dual purposes: for hosting
code samples, code samples which are themselves fully working and packaged applica‐
tions inside a Git repository.

Gists as fully functioning apps
To demonstrate this ability, let’s build a simple Sinatra application. Sinatra is a ruby
library for creating dead-simple web servers. A Sinatra program looks as simple as this:

require 'sinatra'

get '/hi' do
  "Hello World!"
end

Create a gist for this by visiting gist.github.com. Enter in the text exactly as above and
then choose public gist.

You now have a shareable gist of code, which anyone can use to review. More impor‐
tantly, this is an executable piece of code. To use it, click into the “Clone this gist” box
to the left of the body of content. You’ll get a URL which looks something like this:

https://gist.github.com/8138797.git

Copy this and then enter a terminal program and enter this command:

$ git clone https://gist.github.com/8138797.git
$ cd 8138797

Now, you are inside the gist repository. If you look inside the repository you’ll see a list
of files, a list which right now numbers only one file.

$ ls
hi.rb

To run this code, enter ruby hi.rb

If you had not used Sinatra with ruby before, this will cause an error. This program
requires a library called “sinatra” and you have not yet installed it. We could write a
README, or add documentation into this file itself. Another way to guarantee the user
has the proper files installed is to use a “Gemfile” which is a file that tells which libraries
are installed and from where. That sounds like the best way:

$ printf "source 'https://rubygems.org'\ngem 'sinatra'" > Gemfile

28 | Chapter 2: Gists and the Gist API

www.it-ebooks.info

https://gist.github.com/8138797.git
http://www.it-ebooks.info/


The bundle command (from the bundler gem) will install Sinatra and the associated
dependencies.

$ bundle
Using rack (1.5.2)
Using rack-protection (1.5.1)
Using tilt (1.4.1)
Using sinatra (1.4.4)
Using bundler (1.3.5)
Your bundle is complete!
Use `bundle show [gemname]` to see where a bundled gem is installed.

Why did we do things this way? Because now we can add the Gemfile to our repository
locally, and then publish into our gist for sharing on the web. Our repository now not
only has the code, but a well know manifest file which explains the necessary compo‐
nents when running the code.

To publish our changes back into our gist from the command line, we need to update
the “remote” repository reference. When we first cloned the repository we used the https
link. If we are using SSH keys (and you should be; read the section “When should I use
SSH vs HTTPS?”) then we need to switch to use the SSH URL format (git protocol).
Run this command:

$ git remote -v
origin       https://gist.github.com/8138797.git (fetch)
origin       https://gist.github.com/8138797.git (push)

Your results will be slightly different, but this output displays our remote repository; in
other words, where we pull and push our code changes. If you are familiar with the way
that remotes work on GitHub you can see that this is a read-only URL. We need to adjust
these URLs in our remote so that it points to the read-write remote URL. To do that,
remove the https:// part and add a git@. Then, change the first / character after the
gist.github.com URL to a : character. If your remote was the same as above you would
have this git@gist.github.com:8138797.git. Then, in a terminal window run these
commands:

$ git remote rm origin
$ git remote add origin git@gist.github.com:8138797.git

Now you can push new content in via the command line as well as edit files inside of
GitHub.com. As you develop your app you have flexibility in whichever way fits you
best.

Now let’s take it further: what if we modified our application to use the GitHub API,
specifically to access information about gists for a user?

Gists as fully functioning apps | 29

www.it-ebooks.info

http://www.it-ebooks.info/


1. Explained best by Ben Zimmer http://www.bostonglobe.com/ideas/2012/05/05/dude-this-headline-meta-
dude-this-headline-meta/it75G5CSqi82NtoQHIucEP/story.html?camp=pm

Gists that render Gists
Let’s add to our application and use the octokit gem to pull all public gists for any user
we specify. Why would we want to make a gist that displays other gists? Self-referential
meta code is all the rage, the modern day response to René Magritte’s famous work:
“Ceci n’est pas une pipe.”.1

Add a view index.erb at the root of our directory.

<html>
<body>

User has <%= count %> public gists

</body>
</html>

Add the octokit gem to our Gemfile:

gem "octokit"

Run bundle to install octokit. Then, modify our hi.rb app to look like this:

require 'sinatra'
require 'octokit'

set :views, "."

get '/:username' do |username|
  user = Octokit.user username
  count = user.public_gists
  erb :index, locals: { :count => count }
end

Our filesystem should look like this, with three files.

$ ls -1
Gemfile
hi.rb
index.erb

Run bundle to install octokit and restart Sinatra by running ctrl-c, and then ruby
hi.rb. If you visit http://localhost:4567/xrd in your browser, you will see the count
of public gists for user xrd; modify the username in the URL to any specify any GitHub
username and you will see their last five gists displayed.

30 | Chapter 2: Gists and the Gist API

www.it-ebooks.info

http://www.bostonglobe.com/ideas/2012/05/05/dude-this-headline-meta-dude-this-headline-meta/it75G5CSqi82NtoQHIucEP/story.html?camp=pm
http://www.bostonglobe.com/ideas/2012/05/05/dude-this-headline-meta-dude-this-headline-meta/it75G5CSqi82NtoQHIucEP/story.html?camp=pm
http://www.it-ebooks.info/


Going deeper into the Gist API
The GitHub API uses hypermedia instead of basic resource driven APIs. If you use a
client like Octokit, the hypermedia details are hidden behind an elegant ruby client. But,
there is a benefit to understanding how hypermedia works when you need to retrieve
deeper information from the GitHub API.

Most RESTful APIs come with a “sitemap”, generally a API reference document which
tells a user which endpoints to use. You view the resources available from that API and
then apply some HTTP verb to do something to them. Hypermedia thinks of an API
differently. Hypermedia APIs describe themselves inside their responses using “affor‐
dances.” What this means is that the API might respond like this:

{
    "_links": {
        "self": {
            "href": "http://shop.oreilly.com/product/0636920030300.do"
        }
    }
    "id": "xrd",
    "name": "Chris Dawson"
}

In this payload, you can see that there is an id (“xrd”) and a name (“Chris Dawson”).
Most APIs offer JSON responses, and this one does too. This particular payload was
forked from the HAL explanation at the HAL Primer document and you can find a more
detailed explanation of these concepts there.

The important thing to note about Hypermedia APIs is that payloads contain metadata
about data itself and metadata about the possible options of operating on the data.
RESTful APIs typically provide a mapping outside of the payload. You have to join the
API sitemap with the data in an ad-hoc way when using RESTful APIs; with Hypermedia
APIs your client can react to the payload itself correctly and intelligently without know‐
ing anything about a sitemap stored in human readable documentation.

This loose coupling makes APIs and their clients flexible. In theory, a Hypermedia API
works intuitively with a Hypermedia aware client. If you change the API, the client, as

Gists that render Gists | 31

www.it-ebooks.info

https://phlyrestfully.readthedocs.org/en/latest/halprimer.html:
http://www.it-ebooks.info/


it understands Hypermedia, can react and still work as expected. Using a RESTful API
means that clients must be updated (either a newer version of the client must be in‐
stalled) or the client code must be upgraded. Hypermedia APIs can alter their backend
and the client, as long as it is hypermedia-aware, can automatically and dynamically
determine the right way to access information from the response itself. In other words,
with a hypermedia client the API backend can change and your client code should not
need to.

This is explained in great detail in the book Building Hypermedia APIs with HTML5
and Node.

In the case of Octokit, navigating hypermedia looks like this:

• Start at a resource, with code like user = Octokit.user "xrd". This begins the
initialization of the client.

• user now is an object filled with the actual data of the resource. In this case, you
could call a method like user.followers to see a meager follower count.

• user also has hypermedia references. You can see these by calling user.rels. This
retrieves the relationships described in the hypermedia links. In this case, call‐
ing .rels shows a map of relationships, displayed in ruby code like: #<Sawyer::Re
lation::Map: [:avatar, :self, :html, :followers, :follow

ing, :gists, :starred, :subscriptions, :organizations, :re

pos, :events, :received_events]>

• Using one of these relationships starts by keying into the relationship hash and then
using the get and data methods to request that information from the GitHub API:
followers = user.rels[:followers].get.data.

• Once you call .get.data you will have a new followers object populated with an
array of the followers (paged if it exceeds 100 items).

Let’s extend our Sinatra app to retrieve actual data about the user’s gists by using hy‐
permedia references.

require 'sinatra'
require 'octokit'

set :views, "."

helpers do
  def h(text)
    Rack::Utils.escape_html(text)
  end
end

get '/:username' do |username|
  gists = Octokit.gists username, :per_page => 5

32 | Chapter 2: Gists and the Gist API

www.it-ebooks.info

http://www.amazon.com/o/ASIN/1449306578?tag=adapas02-20:
http://www.amazon.com/o/ASIN/1449306578?tag=adapas02-20:
http://www.it-ebooks.info/


  erb :index, locals: { :gists => gists, username: username }
end

The index.erb file contains code to iterate over each gist and pull the content. You can
see that our response object is an array of gists, each which has an attribute called
fields. This fields attribute specifies the filenames available in each gist. If you reference
that filename against the files, the response includes a hypermedia ref attribute. You
can use this retreive the raw content using the Octokit method .get.data.

<html>
<body>

<h2>User <%= username %>'s last five gists</h2>

<% gists.each do |g| %>
<% g[:files].fields.each do |f| %>
<b><%= f %></b>:

<%= h g[:files][f.to_sym].rels[:raw].get.data %>

<br/>
<br/>

<% end %>
<% end %>

</body>
</html>

Now we see the gists and the contents.

Summary
In this chapter we looked at gists and learned how they can be used to share code
snippets. We built a simple application and stored it as a gist. This application retrieves
data from the GitHub API using our first higher level language client library (the Octokit

Summary | 33

www.it-ebooks.info

http://www.it-ebooks.info/


library for Ruby). We also went deeper into how Hypermedia works and how a client
library implements using Hypermedia metadata.

In the next chapter we will look at Gollum, the GitHub wiki. This chapter provides an
introduction to the Rugged Ruby library for accessing Git repositories and the Ruby
library for accessing GitHub.

34 | Chapter 2: Gists and the Gist API

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 3

Gollum

Wikis have revolutionized the way we create and digest information. It turns out they
are a great complement to technical projects (code repositories) because they allow non-
technical users to contribute information without disturbing developers. Gollum is
GitHub’s open source version of a wiki. Just as Git has revolutionized collaborative
editing of code, Gollum wikis layer the benefits of Git onto a proven publishing work‐
flow. The true power of Gollum wikis reveal themselves when you see how tightly in‐
tegrated with GitHub they are. You can quickly build and associate a wiki with any
repository, and create a collaborative documentation system around any repository
hosted on GitHub. And, you can pull in information from git repositories with ease,
linking documentation with live code.

In this chapter we’ll explore the basics of using Gollum, creating a wiki on GitHub and
then understanding how to edit it on GitHub, and as a repostory on our local machine.
We will then create a Gollum wiki by hand from the command line, and show the bare
minimum set of files to call something a Gollum repository. Finally, we will build a
simple image organization tool which allows us to edit a Gollum wiki in an entirely
different way, but still publishes information into GitHub as a regular Gollum wiki,
exploring a little bit of the internals of Git along the way.

“The Story of Smeagol…”
Gollum wikis are simply an agreed upon file structure. At its most basic form, a Gollum
wiki is a git repository with a single file, Home.ext (ext would be any of the supported
wiki markup formats, which we will talk about later).

First, let’s learn how to create a gollum wiki from the GitHub interface, and then later
we’ll move into creating one from scratch as a git repository.

35

www.it-ebooks.info

http://www.it-ebooks.info/


Repository Linked Wikis
Any repository, public or private, can have an associated Gollum wiki. To create a wiki
linked to a GitHub repository, visit the repository page and then look in the rightmost
colum. You’ll see an icon which looks like a book, next to which will be the word “Wiki.”

Clicking on this link will bring you to a page where you are asked to create a wiki for
the first time. GitHub will ask you to create the “Home” page, which is the starting point
in a Gollum wiki. GitHub will automatically create a page template with the project
name; you can customize this information to suit your own needs. Clicking on the “Save
Page” will save your first page and create the wiki for you.

36 | Chapter 3: Gollum

www.it-ebooks.info

http://www.it-ebooks.info/


Your wiki is now as public as your repository is public. Public repositories have public
wikis, accessible to anyone. Private repositories have private wikis, accessible only to
those users or organizations which have rights to edit the repository data.

Wikis are powerful collaboration tools because they use a special language which com‐
piles into HTML. Let’s review the options for Gollum wikis.

Markup and Structure
Gollum files can be written in any of the supported “Github Markup” formats, which
includes ASCIIdoc, Creole, Markdown, Org Mode, Pod, RDoc, ReStructuredText, Tex‐
tile, and MediaWiki. The variety of markup languages brings flexibility but it can be
confusing to know which one to use. Markdown (and its variant cousins) is the most
popular markup language on GitHub, and is well liked on other popular sites like Stack
Overflow. If you are unsure which language to use, Markdown is a safe bet because it is
ubiquitous across GitHub. The Chapter 6 chapter has a much deeper overview of Mark‐
down.

If you do choose Markdown, In addition to the standard vanilla Markdown language
tags, Gollum adds its own set wiki specific tags. There are often subtle (or conflicting)

“The Story of Smeagol…” | 37

www.it-ebooks.info

http://www.it-ebooks.info/


differences from other Wiki markup so it is worth reviewing the Gollum repository
documentation page. We’ll go over the most important ones here.

Links
Let’s summarize a bit of Gollum syntax. Links are a good place to start.

• Links use the syntax [[Link]].
• You can add a link title using the bar character: [[http://foobar.com|A link to
foobar]].

• Links can be either external or internal links.
• A link like [[Review Images]] will be converted to a relative link to the page
review-images.ext (where ext is the preferred extension you are using with your
wiki, most likely Markdown).

Wikis are generally a collection of pages linked together in myriad ways, and this as‐
sumption about the structure of links makes writing pages easier.

As we mentioned, there are differences between Gollum wiki tags and other wikis de‐
spite having similar syntax. One such example is MediaWiki, where links with titles use
the opposite ordering [[A link to foobar|http://foobar.com]], so caveat emptor.

Inserting Images

Images are inserting into your document using the same tag format [[ceo.png]].
Overloading this syntax makes it simple to remember the basics of adding relationships
inside your wiki, whether they be images or page links. There are many options you can
provide when generating image tags. For example, to add a frame and an alt tag, you
could use syntax like [[ceo.png|frame|alt=Our CEO relaxing on the beach]]. Re‐
view the documentation on the Gollum repository for more details about the breadth
of the image options.

Code Snippets
Gollum (the wiki) was invented at GitHub, a company dedicated to improving the lives
of software developers, so it stands to reason Gollum wikis would support code snippets.
To include a snippet of code, use three backticks, followed by the language name, and
close the block of code using three more backticks.

```ruby
def hello
  puts "hello"
end
```

38 | Chapter 3: Gollum

www.it-ebooks.info

https://github.com/gollum/gollum/wiki:
https://github.com/gollum/gollum/wiki:
http://www.it-ebooks.info/


A more interesting way of embedding code inside a Gollum repository is to use the file
include syntax. Again, use a triple backtick, followed by the file type and then a reference
to the code snippet inside a GitHub repository. You’ll need to include the branch as well.

```html:github:xrd/TeddyHyde/blob/master/Gemfile```

This will pull the file on GitHub located inside the “TeddyHyde” repository for user
“xrd” on the master branch named “Gemfile” and publish it with syntax hilighted into
your wiki as if you had used this markup.

```ruby
source 'https://rubygems.org'

gem "nokogiri"
gem "rspec"
gem 'calabash-android', :git => 'git://github.com/calabash/calabash-android.git'
```

Unfortunately, you cannot specify a specific SHA commit to retrieve moments in history
within the git repository, but this is still a powerful way to expose a file inside a Gollum
wiki. If you need to do that, the best way might be to create a branch from a specific
SHA commit, and then reference that branch when including the file.

$ git checkout 0be3e4475db2697b8
$ git checkout -b at_sha_0be3e4475db2697b8
$ echo "gem 'rails' # Adding rails to Gemfile" >> Gemfile
$ git commit -m "Added rails to Gemfile" -a
$ git push origin at_sha_0be3e4475db2697b8

This would generate a new branch based on an older commit, and push up the branch.
Then, you could reference this inside your wiki with the following include

```html:github:xrd/TeddyHyde/blob/at_sha_0be3e4475db2697b8/Gemfile```

Note that we’ve referenced the branch named after the specific SHA hash we want.

Gollum Structural Components
Gollum includes capabilities to add sidebars, headers, and footers. If you include a file
called _Sidebar.ext inside your repository, you’ll see it as a sidebar for every file ren‐
dered. Sidebars are automatically added to any file and any file from subdirectories that
do not have their own sidebar files. If you wanted to add sidebars specific to a subdir‐
ectory, add another file in the subdirectory and this file will override the top level sidebar
file.

No Styling or JavaScript
Finally, for security reasons, Gollum strips out all CSS and JavaScript from raw markup
files. You can include your own JavaScript or CSS file when running Gollum locally

“The Story of Smeagol…” | 39

www.it-ebooks.info

http://www.it-ebooks.info/


using the --custom-css or --custom-js switches, but there is no way to include these
files on a Wiki when your Gollum wiki is hosted on GitHub.

Now that we have investigated the structure and format of using Gollum wikis, we can
dig into the power tools that come with Gollum.

Moving Gollum to Your Laptop
Though many people edit Gollum wikis exclusively from within the GitHub online
editor, there is a real flexibility and power when hosting your wiki locally and editing it
from your laptop. To do this you need to install the command line tools for Gollum.

$ gem install gollum

You will then see the gollum command in your path.

There is a difference between the gollum command (what you run
from the command line) and the suite of technologies that make up
Gollum as a project. To differentiate between them, remember that
we are talking about the suite when the word is capitalized (“Gol‐
lum”), and the command line tool when the word is lowercased and
fixed width font (gollum).

What additional options are opened up when running locally? Let’s take a deeper look.

Alternative Editing Options
When you run your Gollum wiki from your laptop instead of viewing and editing on
GitHub exclusively, you then get a few additional options for editing.

• Gollum wikis are editable locally within a web browser: run the gollum command
locally on your laptop (which spawns a mini web server hosting your wiki) and
then browse to http://localhost:4567.

• Gollum wikis can be edited at the file system level using your favorite editor, al‐
lowing you the flexibility of staying within the same workflow you use to edit any
other file within a local repository.

You might use a hybrid approach to editing your Gollum wiki, switching back and forth
between editing within the web browser interface and jumping into the command line
and using your editor to create or modify files when you need to use “power commands.”
And, it is nice to know you can use any simple text processing language to make pro‐
grammatic changes to your wiki once you have it locally on your laptop as a Git repos‐
itory.

40 | Chapter 3: Gollum

www.it-ebooks.info

http://localhost:4567
http://www.it-ebooks.info/


Editing with the Command Line
Gollum wiki content reflects only the files inside the repository; another way to say this
is that files in your working directory but not yet committed are not used by Gollum.
To illustrate this, let’s go through the steps to add a sidebar to our wiki. Adding a sidebar
means you need to create a file called _Sidebar.md. This is a special file which Gollum
recognizes and generates a sidebar for you; the first part of the name is fixed, but you
can change the extension to whatever extension you prefer for your wiki files. If we use
the “open” command (available on Mac or Linux) to open the Wiki in our default
browser, you will see that only once we have committed the change to our repository
do we actually see the sidebar.

$ gollum & # Start gollum, will run on port 4567.
$ printf "## Warning\nPlease note this is subject to change" > _Sidebar.md
$ open http://localhost:4567/ # We won't see our sidebar yet...
$ git add _Sidebar.md
$ open http://localhost:4567/ # We still don't see our sidebar...
$ git commit -m "Add sidebar"
$ open http://localhost:4567/ # Eureka, now we will see our sidebar!

If you edit within the web browser interface, the underlying Grit libraries do all the work
to commit new files into the repository. If you use the command line, you’ll need to
remember to commit files manually to see them inside your wiki.

We now can display and allow editing from our locally running Gollum server. This
Gollum server actually can be made to be accessible to anyone who can access your
laptop’s IP address. So, we could permit editing by others in our office. But, what if we
want to disallow editing unless the user has permission to do so? We need an authen‐
tication mechanism.

Adding Authentication
As Gollum is built on top of Sinatra (a ruby library which we will discuss in more detail
shortly) you can utilize authentication gems like omnigollum or write your own au‐
thentication handler and run gollum inside that. This thread on StackOverflow explains
how to install your own handler:

# authentication.rb
module Precious
  class App < Sinatra::Base
    use Rack::Auth::Basic, "Restricted Area" do |username, password|
      [username, password] == ['admin', 'admin']
    end
  end
end

And, then run it using this command:

gollum --config authentication.rb

Moving Gollum to Your Laptop | 41

www.it-ebooks.info

http://stackoverflow.com/questions/9634703/strong-access-control-for-gollum/13357591#13357591:
http://www.it-ebooks.info/


You’ll then be prompted for the username and password, and can use “admin” and
“admin”.

Why “Precious” as the module name? If you peek into the Gollum code itself, you’ll see
that the Gollum libraries use a namespace called “Precious” (the word used to refer to
the ring by the character Gollum in the Lord of the Rings books) as the base class for
the Gollum wrapper around Sinatra. This code extends the instance of Sinatra running
your Gollum wiki and adds an authentication layer.

A word of caution when using the gollum command in server mode
to edit files locally inside a web browser. If you start the gollum server
from the command line you do have the capability to edit the files
from any computer within the same network. In other words, you
could find your IP address and use that address from your Chro‐
mebook or your tablet to view and edit your wiki. However, remem‐
ber that the gollum server command does not have an authentica‐
tion system built into it, which means that gollum thinks anyone
accessing the wiki is the same user that started the gollum com‐
mand. This is fine if you are in the other room editing on your tablet
while gollum runs on your work laptop. However, the gollum serv‐
er is not a good solution for offering a wiki up to many people within
a subnet. If multiple people edit files, there is no way that gollum can
track the different user contributions in the change log. This is not
a problem when editing your Gollum wiki inside GitHub.com: the
GitHub site knows who you are and properly assigns your changes
to your username inside the change log.

We’ve played a bit with the gollum command line tools. Let’s put these skills to use and
make our own special gollum tool.

Building a Gollum Editor
Once you understand Git repositories, you can see the power of Gollum as a wiki format:
as everything is built on Git, you can manage your wiki using all the great tools that
come with Git. We’ve explored how easy it is to edit Gollum wikis: from within the
command line, from the web browser, or from within GitHub. However, there might
be times when you need to provide an entirely customized editing modality. As long as
you write files into the repository in the way the gollum libraries understand, you can
write your own editing interface to suit your own needs. Let’s experiment with this idea
and build a new editing interface for Gollum wikis.

42 | Chapter 3: Gollum

www.it-ebooks.info

http://www.it-ebooks.info/


Gollum is a tool that provides flexibility by allowing local usage: this
can be very handy when you are on a plane and don’t want to pay
for Wi-Fi. However, at the time of this writing there is a bug where
images are not displayed, so although you can fully edit files using
the local gollum command, you will not be be able to view them
when viewing your wiki on you local machine. To view image files
correctly, publish them into GitHub.

Hacking Gollum
Team software development often revolves around this idealized scenario: a business
person develops the structure of the application with higher-up stakeholders, these ideas
are passed down to a UI/UX designer who then creates wireframes and mockups of the
interactions, and then a software developer takes these wireframes and builds the soft‐
ware. Put another way, program managers figure out what features provide the most
value to users, which then trickles down into the wireframes as real interactions. Many
hidden blocking paths are fleshed out here, places where the application would confuse
the user, and time is saved because the software developer does not have to waste time
building something that would not work anyway. By the time it reaches the developer,
the UI interaction is streamlined and the costly and inflexible stage of building software
has all the inefficiencies optimized away. The developer can simply work on a piece of
software and know there are no changes, changes which would be extremely costly to
implement.

In practice, this process is almost never so smooth. What typically happens is the busi‐
ness people don’t completely understand all the requirements when they document the
structure they want, so after they have committed to a structure they later ask for
changes, which trickle down into the designs. The “final and approved” mockups have
to be changed and this then needs to be communicated to the developer, who has already
started building something that was “set in stone.” Or, the developer, as she is building
the software, realizes there are missing steps to get to places inside the application, and
needs to communicate this back to the designer. If you have multiple people doing
software development on a project, this information then needs to fan out to them if
their areas are affected by these changes. This information must traverse many different
people, with many different methods of communication.

Wikis are a great way to store this kind of information. Information which changes.
Information which must be retrieved by many people and edited by many people. What
better than to manage these informational transitions than a change tracking system
like Git, and what better way to absorb this information than a Wiki built on top of Git,
hosted on GitHub.

Building a Gollum Editor | 43

www.it-ebooks.info

http://www.it-ebooks.info/


Wireframe Review Tool
Let’s build a simple tool which stores these types of changes. We’ll build an image editor
that hosts changes to UI mockups. This will give our executives a place where they can
see changes and updates. This will allow our UI designer a place to store their images
and annotate them with vital information. And, we’ll have a place where developers can
retrieve information without reviewing their email and wondering “Do I have the most
up-to-date mockups?” We’ll buid a special interface which allows quickly editing and
reviewing these files locally. And all of it can be published into GitHub for review
(though we won’t allow editing of the information there, since GitHub has its own
editing modality.)

Gollum is built on Ruby and uses the Grit library underneath. Using Ruby makes sense
because we can leverage the existing Grit and Gollum libraries. We’ll also use Sinatra,
the same web application library we used in the last chapter.

The gollum command is, in fact, a customized wrapper around Si‐
natra.

This will be a dual purpose repository. We can use the repository with gollum as a
standard wiki. And, we can use it with our application to enter data in a more powerful
way than gollum permits from its default interface. The data will still be compatible with
gollum and will be hosted on GitHub.

To begin, initialize our repository.

$ mkdir images
$ cd images
$ git init .
$ printf "### Our home" > Home.md
$ git add Home.md
$ git commit -m "Initial checking"

We’ve just created a wiki compatible with gollum. Let’s see what it looks like inside
gollum. run the gollum command then open http://localhost:4567/ in your brows‐
er.

44 | Chapter 3: Gollum

www.it-ebooks.info

http://www.it-ebooks.info/


As you can see, this tiny set of commands was enough to create the basics of the gollum
wiki structure.

Create our sinatra script called image.rb, and then we can install the necessary gems
and run our server application.

require 'sinatra'
require 'gollum-lib'
wiki = Gollum::Wiki.new(".")
get '/pages' do
  "All pages: \n" + wiki.pages.collect { |p| p.path }.join( "\n" )
end

$ printf "source 'https://rubygems.org'\n\ngem 'sinatra'\ngem 'gollum-lib'" >> Gemfile
$ bundle install
$ ruby image.rb
$ open http://localhost:4567 # or whatever URL is reported from Sinatra

Once you open this in your browser, you’ll see a report of the files that exist in our
Gollum wiki right now. We’ve only added one file, the Home.md file.

Programmatically Handling Images
Let’s add to our server. We want to support uploading ZIP files into our system that we
will then unpack and add to our repository, as well as adding a list of these files to our
wiki. Modify our image.rb script to look like this:

require 'sinatra'
require 'gollum-lib'
require 'tempfile'
require 'zip/zip'

def index( message=nil )
  response = File.read(File.join('.', 'index.html'))
  response.gsub!( "<!-- message -->\n", "<h2>Received and unpacked #{message}</h2>" ) if message
  response

Building a Gollum Editor | 45

www.it-ebooks.info

http://www.it-ebooks.info/


end

wiki = Gollum::Wiki.new(".")
get '/' do
  index()
end

post '/unpack' do
  @repo = Rugged::Repository.new('.')
  @index = Rugged::Index.new

  zip = params[:zip][:tempfile]
  Zip::ZipFile.open( zip ) { |zipfile|
    zipfile.each do |f|
      contents = zipfile.read( f.name )
      filename = f.name.split( File::SEPARATOR ).pop
      if contents and filename and filename =~ /(png|jp?g|gif)$/i
        puts "Writing out: #{filename}"
      end
    end
  }
  index( params[:zip][:filename] )
end

We’ll need an index.html file as well, so add that.

<html>
<body>
<!-- message -->
<form method='POST' enctype='multipart/form-data' action='/unpack'>
Choose a zip file:
<input type='file' name='zip'/>
<input type='submit' name='submit'>
</form>
</body>
</html>

This server script receives a POST request at the /unpack mount point and retrieves a
ZIP file from the parameters passed into the script. It then opens the ZIP file (stored as
a temp file on the server side), iterates over each file in the ZIP, strips the full path from
the filename, and then prints out that filename (if it looks like an image) to our console.
Regardless of whether we are accessing the root of our server, or have just posted to
the /unpack mount point, we always need to render our index page. When we do render
it after unzipping, we replace a comment stored in the index file with a status message
indicating the script received the correct file we posted.

We need to add an additional ruby library to enable this application, so update the
required gems using the following commands, and then re-run our Sinatra server script.

$ printf "gem 'rubyzip'\n" >> Gemfile
$ bundle install
$ ruby image.rb

46 | Chapter 3: Gollum

www.it-ebooks.info

http://www.it-ebooks.info/


Then, we can open http://localhost:4567/ and test uploading a file full of images.
You’ll see output similar to this in your console after uploading a file.

...
[2014-05-07 10:08:49] INFO  WEBrick 1.3.1
[2014-05-07 10:08:49] INFO  ruby 2.0.0 (2013-05-14)
[x86_64-darwin13.0.0]
== Sinatra/1.4.5 has taken the stage on 4567 for development with
backup from WEBrick
[2014-05-07 10:08:49] INFO  WEBrick::HTTPServer#start: pid=46370
port=4567
Writing out: IMG1234.png
Writing out: IMG5678.png
Writing out: IMG5678.png
...

Leveraging the Rugged Library
Our end goal for this script is to add files to our Gollum wiki, which means adding files
to the repository which backs our Gollum wiki. The Rugged library handles the grunt
work of this type of task easily. Rugged is the successor to the original Ruby library for
Git (called Grit). Gollum, at the time of this writing uses the Grit libraries, which also
provide a binding to the libgit2 library, a “portable, pure C implementation of the Git
core methods.” Grit has been abandoned (though there are unofficial maintainers) and
the Gollum team intends to use Rugged as the long term library backing Gollum. Rugged
is written in Ruby and, if you like Ruby, is a more elegant way to interface with a Git
repository than raw git commands. As you might expect, Rugged is maintained by
several employees of GitHub.

To change our script to modify our Git repository, modify the puts statement inside
the zip loop to call a new method called write_file_to_repo. And, at the end of the
zip block, add a method called build_commit which builds the commit from our new
files. Our new file (omitting the unchanged code at the head of the file) looks like this.

post '/unpack' do
  @repo = Rugged::Repository.new('.')
  @index = Rugged::Index.new

  zip = params[:zip][:tempfile]
  Zip::ZipFile.open( zip ) { |zipfile|
    zipfile.each do |f|
      contents = zipfile.read( f.name )
      filename = f.name.split( File::SEPARATOR ).pop
      if contents and filename and filename =~ /(png|jp?g|gif)$/i
        write_file_to_repo contents, filename # Write the file
      end
    end
    build_commit() # Build a commit from the new files
  }

Building a Gollum Editor | 47

www.it-ebooks.info

http://www.it-ebooks.info/


  index( params[:zip][:filename] )
end

def get_credentials
  contents = File.read File.join( ENV['HOME'], ".gitconfig" )
  @email = $1 if contents =~ /email = (.+)$/
  @name = $1 if contents =~ /name = (.+)$/
end

def build_commit
  get_credentials()
  options = {}
  options[:tree] = @index.write_tree(@repo)
  options[:author] = { :email => @email, :name => @name, :time => Time.now }
  options[:committer] = { :email => @email, :name => @name, :time => Time.now }
  options[:message] ||= "Adding new images"
  options[:parents] = @repo.empty? ? [] : [ @repo.head.target ].compact
  options[:update_ref] = 'HEAD'

  Rugged::Commit.create(@repo, options)

end

def write_file_to_repo( contents, filename )
  oid = @repo.write( contents, :blob )
  @index.add(:path => filename, :oid => oid, :mode => 0100644)
end

As you can see from the code above, Rugged handles a lot of the grunt work required
when creating a commit inside a Git repository. Rugged has a simple interface to creating
a blob inside your Git repository (write), adding files to the index (the add method),
and then has a simple and clean interface to build the tree object (write_tree) and then
build the commit (Rugged::Commit.create).

The astute observers among you will notice a method called get_credentials which
loads up your credentials from a file located in your home directory called .gitcon
fig. You probably have this if you have used Git for anything at all on your machine,
but if this file is missing, this method will fail. On my machine this file looks like the
following code snippet. The get_credentials method simply loads up this file and
parses it for the name and email address. If you wanted to load the credentials using
another method, or even hard code them, you can just modify this method to suit your
needs. The instance variables @email and @name are then used in the build_commit()
method.

[user]
        name = Chris Dawson
        email = xrdawson@gmail.com
[credential]
        helper = cache --timeout=3600
...

48 | Chapter 3: Gollum

www.it-ebooks.info

http://www.it-ebooks.info/


Just to double check that everything worked properly, let’s verify that things are working
correctly after uploading a ZIP file. Jumping into a terminal window after uploading a
new file, imagine running these commands:

$ git status

To our surprise, we will see something like this:

$ git status
On branch master
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

  deleted:    images/3190a7759f7f6688b5e08526301e14d115292a6e/IMG_20120825_164703.jpg
  deleted:    images/3190a7759f7f6688b5e08526301e14d115292a6e/IMG_20130704_151522.jpg
  deleted:    images/3190a7759f7f6688b5e08526301e14d115292a6e/IMG_20130704_174217.jpg

We just added those files; why is Git reporting them as deleted?

To understand why this happens, remember that in Git there are three places where files
can reside: the working directory, the staging area or index, and the repository itself.
Your working directory is the set of local files which you are working on. The git
status command describes itself as “show the working tree status.” Rugged operates on
the repository itself, and our Rugged calls above operated on the index and then built
a commit. This is important to note because our files will not exist in our working
directory if we only write them using the Rugged calls, and if we do this, we cannot
reference them inside our wiki page when we are running Gollum locally. We’ll fix this
in the next section.

We’ve now added the files to our repository, but we have not exposed these files inside
our wiki. Let’s modify our server script to write out each file to a wiki page for review.
As we mentioned in the previous section, we need to make sure that we write the files
to both the working index and the repository (using the Rugged library write call).
Then we can generate a Review file which details all the images uploaded.

Optimizing for Image Storage
Often while a designer is receiving feedback from stakeholders, they will incorporate
that feedback into the UI comps, and then resend the set of comps, with only a tiny
change in one file, where the remaining dozens or even hundreds of files have been left
unchanged. We might assume that our code, as it writes these files to a different path
on disk inside the repository (the path is the parent SHA hash to make it unique) and
we could therefore be adding the same file multiple times, and creating a big wasteful
repository. However, the nature of git permits us to add the same file multiple times
without incurring any additional storage cost beyond the first addition. When a file is

Building a Gollum Editor | 49

www.it-ebooks.info

http://www.it-ebooks.info/


1. This is explained beautifully in the blog http://alblue.bandlem.com/2011/08/git-tip-of-week-objects.html.

added to git repository, a SHA hash is generated from the file contents. For example,
generating the SHA hash from an empty file will always return the same SHA hash.1

$ echo -en "blob 0\0" | shasum
e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
$ printf '' | git hash-object -w --stdin
e69de29bb2d1d6434b8b29ae775ad8c2e48c5391

Adding a zip file with a bunch of files where only one or two differs from the prior zip
file means that Git will properly reference the same file multiple times. Unfortunately,
GitHub does not provide an interface for reviewing statistics of Wikis in the same way
that they do for regular repositories. We can, however, review our repository size from
within the local repository by running the count-objects Git subcommand. As an ex‐
ample, I uploaded a ZIP file with two images inside of it. I then use the count-objects
command and see this:

$ git gc
...
$ git count-objects -v
count: 0
size: 0
in-pack: 11
packs: 1
size-pack: 2029
prune-packable: 0
garbage: 0
size-garbage: 0

Inspecting the first ZIP file, I see these statistics about it.

$ unzip -l ~/Downloads/Photos\ \(4\).zip
Archive:  /Users/xrdawson/Downloads/Photos (4).zip
  Length     Date   Time    Name
 --------    ----   ----    ----
  1189130  01-01-12 00:00   IMG_20130704_151522.jpg
   889061  01-01-12 00:00   IMG_20130704_174217.jpg
 --------                   -------
  2078191                   2 files

I then use another ZIP file which has one additional file, with the other two included
files exactly identical.

unzip -l ~/Downloads/Photos\ \(5\).zip
Archive:  /Users/xrdawson/Downloads/Photos (5).zip
  Length     Date   Time    Name
 --------    ----   ----    ----
  1189130  01-01-12 00:00   IMG_20130704_151522.jpg
   566713  01-01-12 00:00   IMG_20120825_164703.jpg
   889061  01-01-12 00:00   IMG_20130704_174217.jpg

50 | Chapter 3: Gollum

www.it-ebooks.info

http://alblue.bandlem.com/2011/08/git-tip-of-week-objects.html
http://www.it-ebooks.info/


 --------                   -------
  2644904                   3 files

Then, I upload the second ZIP file. If I re-run the count-object command (after running
git gc, a command which packs files efficiently and makes our output more human
readable), I see this:

$ git gc
...
$ git count-objects -v
count: 0
size: 0
in-pack: 17
packs: 1
size-pack: 2578
prune-packable: 0
garbage: 0
size-garbage: 0

Notice that our packed size has only changed by about half a MB, which is the com‐
pressed size of the additional third file, but more importantly, there was no impact from
the other two files on our repository size, even though they were added at different
paths.

If we upload the secondary file yet again, we will regenerate and commit a new version
of the Review.md file, but no new files will need to be created inside our Git repository
object store from the images directory (even though their paths have changed), so our
impact on the repository will be minimal.

$ git gc
...
$ git count-objects -v
count: 0
size: 0
in-pack: 21
packs: 1
size-pack: 2578
prune-packable: 0
garbage: 0
size-garbage: 0

As you can see, our packed-size has barely changed, an indication that the only changes
were a new Git tree object and commit object. We still do have the files located in our
repository at a variety of paths so our review pages will work no matter what revision
we are accessing.

$ find images
images
images/7507409915d00ad33d03c78af0a4004797eec4b4
images/7507409915d00ad33d03c78af0a4004797eec4b4/IMG_20120825_164703.jpg
images/7507409915d00ad33d03c78af0a4004797eec4b4/IMG_20130704_151522.jpg
images/7507409915d00ad33d03c78af0a4004797eec4b4/IMG_20130704_174217.jpg

Building a Gollum Editor | 51

www.it-ebooks.info

http://www.it-ebooks.info/


images/7f9505a4bafe8c8f654e22ea3fd4dab8b4075f75
images/7f9505a4bafe8c8f654e22ea3fd4dab8b4075f75/IMG_20120825_164703.jpg
images/7f9505a4bafe8c8f654e22ea3fd4dab8b4075f75/IMG_20130704_151522.jpg
images/7f9505a4bafe8c8f654e22ea3fd4dab8b4075f75/IMG_20130704_174217.jpg
images/b4be28e5b24bfa46c4942d756a3a07efd24bc234
images/b4be28e5b24bfa46c4942d756a3a07efd24bc234/IMG_20130704_151522.jpg
images/b4be28e5b24bfa46c4942d756a3a07efd24bc234/IMG_20130704_174217.jpg

Git and Gollum can efficiently store the same file at different paths without overloading
the repository.

Reviewing on GitHub
The raison d’etre for this wiki is to annotate a development project. If you follow the
instructions above and create a new wiki for a repository, you’ll then be able to push up
the changes we’ve made using our image.rb script. Once you have created a new wiki,
look for a box on the right which says “Clone this wiki locally”.

Copy that link, and then enter a terminal window where we can then add a remote URL
to our local repository which allows us to synchronize our repositories and publish our
images into GitHub. Gollum wikis have a simple URL structure based on the original
clone URL: just add the word .wiki to the end of the clone URL (but before the fi‐

52 | Chapter 3: Gollum

www.it-ebooks.info

http://www.it-ebooks.info/


nal .git extension). So, if our original clone URL of the repository is git@git
hub.com:xrd/webiphany.com.git our clone URL for the associated wiki will be
git@github.com:xrd/webiphany.com.wiki.git. Once we have the URL, we can add
it as a remote to our local repository using the following commands.

$ git remote add origin git@github.com:xrd/webiphany.com.wiki.git
$ git pull # This will require us to merge the changes...
$ git push

When we pull, we will be asked to merge our changes since GitHub created a Home.md
file which did not exist in our local repository. We can just accept the merge as-is. The
git push publishes our changes. If we then visit the wiki, we’ll see an additional file
listed under the pages sidebar to the right. Clicking on the review page, we can see the
images we’ve added most recently.

Not sure why our designer is providing us with an image of a couch, but I am sure he
has his reasons.

Once have published the file, we can click on the “Review” link in the sidebar to see the
most current version of the “Review” page. We also can review the revisions of this file
by clicking on the “3 Commits” (or whatever number of commits have occurred with
this file). link right underneath the page title. Jumping onto that page shows us the full
history of this file.

Building a Gollum Editor | 53

www.it-ebooks.info

http://www.it-ebooks.info/


Clicking on any of the SHA hashes will display the page at that revision in our history
and show us the state of the document at any given moment in history. Unfortunately,
jumping back and forth between revisions requires two clicks, one from the review page
to the list of revisions, and then another click to jump into the revision we want, but
this permits us to review changes between the comps provided from our designer.

It would be nice if GitHub provided a simple way to jump from a revision to the parent
(older) revision, but they don’t expose this in their site as of this writing. We can fix this,
however, by generating our own special link inside the review page itself which will
magically know about how to navigate to a previous version of the page.

Improving Revision Navigation
In our example, we only have three revisions right now, and all share the same commit
message (“Adding new images”). This is not very descriptive and makes it challenging
to understand the differences between revisions, critical when we are trying to under‐
stand how things have changed between comps. We can improve this easily.

First, let’s add a commit message field to our upload form.

<html>
<body>
<!-- message -->
<form method='POST' enctype='multipart/form-data' action='/unpack'>
Choose a zip file:
<input type='file' name='zip'/>
<input type='text' name='message' placeholder='Enter commit message'/>
<input type='submit' name='submit'>
</form>
</body>
</html>

Then, let’s adjust the commit message inside our image.rb script, which is a one line
change to the options hash, setting the value of it to the parameter we are now passing
in for “commit”.

54 | Chapter 3: Gollum

www.it-ebooks.info

http://www.it-ebooks.info/


  ...
options[:committer] = { :email => @email, :name => @name, :time => Time.now }
options[:message] = params[:message]
options[:parents] = @repo.empty? ? [] : [ @repo.head.target ].compact
  ...

Now, if our designer posts a new version of the UI comps, they can specify what changes
were made, and we have a record of that in our change log, exposed on the revisions
section of our wiki hosted on GitHub.

## Fixing Linking Between Comp Pages

We noted that there is no quick way to jump between comps once we are inside a review
revision. However, if you recall we used the parent SHA hash to build out our image
links. We can use this to build out a navigation inside our comp page when we are on a
revision page while viewing the history.

Again, it is a simple change: one line within the write_review_file method. After the
block which creates each link to the image files, add a line which builds a link to the
parent document via its SHA hash using the parent SHA found in our Rugged object
under @repo.head.target. This link will allow us to navigate to prior revisions in our
history.

  ...
files.each do |f|
  contents += "### #{f} \n[[#{dir}/#{f}]]\n\n"
end
contents += "[Prior revision (only when viewing history)](#{@repo.head.target})\n\n"

File.write review_filename, contents
oid = @repo.write( contents, :blob )
  ...

Now, when we view the Review file history, we see a file with a link at the bottom to the
link to each prior version. Is it possible to provide a link to the next version in our
history? Unfortunately, we have no way to predict the SHA hash of the next commit
made to the repository, so we cannot build this link inside our Review.md file with our
ruby script. However, we do get something just as good for free because we can simply
use the back button to jump back to the prior page in the history stack of our browser.
It would be nice if we could generate this link alongside the link we placed into the wiki
markup, and we could do this using a link that runs an onclick handler delegating to a
JavaScript command like window.history.back(), but Gollum foils us again by strip‐
ping JavaScript from our markup files as we noted before. This is a good thing generally,
as we don’t want to permit rogue markup inside our wiki pages, but it does limit our
options in this situation.

Unfortunately, these links do not work when you are viewing the review file itself (click‐
ing on them brings you to a page which asks you to create this as a new page). Gollum,

Building a Gollum Editor | 55

www.it-ebooks.info

http://www.it-ebooks.info/


unlike Jekyll, does not support Liquid tags which would permit building a link using
the username and repository. Right now we don’t have access to these variables, so our
link needs to be relative, which works when we are in history review, but not in the
normal review. It does not affect viewing the files so this would require educating your
stakeholders on the limitations of this link.

Summary
In this chapter we learned how to create a Gollum wiki from scratch, both on GitHub
and as a fresh repository from the comman line. We then looked at the different ways
to use the gollum command line tool and learned why this is a nice option when we
want to run our own Gollum server. Finally, we built a customized Gollum image-centric
editor using the Rugged library for Ruby.

Our next chapter explores the GitHub API from what might be an unexpected vantage
point: JavaScript. In this chapter we will show you how to host an entire application on
GitHub, no server required, that still allows modification of data inside of GitHub by
its users.

56 | Chapter 3: Gollum

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4

Python and the Search API

Once you have enough data, no amount of organization will make everything easy to
find. As Google has taught us, the only system that works at this scale is a search box.
When you use GitHub, you’re exposed to both sides of this phenomenon: the reposi‐
tories you have direct access to — which are relatively small in number — are given a
single level of hierarchy, so you can keep them straight in your head. For the rest, the
uncountable millions of public repositories that belong to other people, there’s a search
box, with powerful features to help you find what you’re looking for.

Helpfully, GitHub also exposes this capability as an API you can consume from your
own applications. GitHub’s search API gives you access to the full power of the built-in
search function. This includes the use of logical and scoping operators, like or and
user. By integrating this feature with your application, you can provide your users a
very powerful way of finding what they’re looking for.

In this chapter we’ll take a close look at this API, and try building something with it.
We’ll see how the search API is structured, what kind of results come back, and how it
can help us create a feature for someone on our team.

General Principles
The search API is split into four separate parts:

• Repositories
• Code
• Issues
• Users

These APIs all have separate subject matter, and have different formats for their results,
but they all behave the same in a few key ways. We’re covering these first, because they’ll

57

www.it-ebooks.info

http://www.it-ebooks.info/


help you understand the results coming back from the specific API calls that we cover
further down. There are four major areas of commonality.

Authentication
Your identity as a user can determine the result set from a search query, so it’s important
to know about authentication. We cover GitHub authentication fully in “Authentica‐
tion” on page 11, but this API is also available without logging in. However, there are a
few limitations to this approach.

First, you’ll only be able to search public repositories. This is probably fine if you’re
primarily working with open-source software, but users of your application will prob‐
ably expect to have access to their private code, as well as that of any organizations they
belong to. Also, since all Enterprise repositories are private, anonymous search is com‐
pletely useless there.

Secondly, authenticating opens up your rate limit. The limits on search are stricter than
other APIs anyways, because search is computationally expensive, but anonymous
searches are stricter still. As of this writing, and according to the documentation,
anonymous searches are limited to 5 per minute, and you can do 20 authenticated
queries per minute. Take a look at “GitHub API Rate Limits” on page 19 for more on
how to work with rate limits.

Result Format
No matter what you’re searching for, the return value from the API follows a certain
format. Here’s a sample result from a query, which has been heavily edited to focus only
on the parts you’ll always see:

{
  "total_count": 824,
  "incomplete_results": false,
  "items": [
    {
      …
      "score": 3.357718
    }
  ]
}

Starting from the top: the total_count field represents the total number of search results
that turned up from this query. It’s not uncommon for a fairly specific search to turn
up thousands of results – remember, there are millions of repositories on GitHub. By
default, only the first 30 are returned, but you can customize this with page and per_page
query parameters in the url. For example, a GET request to search/repositories?
q=foobar&page=2&page_size=45 will return 45 items, starting with the 46th result. Page
sizes are generally limited to 100.

58 | Chapter 4: Python and the Search API

www.it-ebooks.info

http://www.it-ebooks.info/


The incomplete_results field refers to a computational limit placed on the search API.
If your search takes too long, the GitHub API will stop it partway through executing,
return the results that did complete, and set this flag to true. For most queries this won’t
be a problem, and the total_count will represent all the results from the search, but if
your query is complicated, you might only get a partial result set.

Search results are returned in the items array, and each item always has a score field.
This field is numeric, but it’s only a relative measure of how well a result matches the
query, and is used for the default sort order – highest score first. If you do pay attention
to it, remember it only has meaning when compared to other results from the same
query.

Search Operators and Qualifiers
Of course, it’s always better if you can avoid pagination altogether, or at least get the best
results in the first page. Qualifiers and operators can help narrow your search results to
fewer pages, hopefully allowing the right result to float to the top.

All searches are done through a search query, which is encoded and passed in the URL
as the q parameter. Most of the query will be free text, but the API also supports some
powerful syntax, such as these forms:

• x AND y, as well as OR and NOT
• user:<name>, where name is a user or organization
• repo:<name>

• language:<name>

• created:<date(s)>

• extension:<pattern> matches file extensions (like “py” or “ini”)

Numerical values and dates can have ranges:

• 2015-02-01 will match only the given date
• <2015-02-01 will match any date previous to the one given
• 2015-02-01..2015-03-01 will match dates within the given range, including the

end points

There are many other options besides. Check out https://github.com/search/advanced
for a UI that can help you construct a query.

General Principles | 59

www.it-ebooks.info

https://github.com/search/advanced
http://www.it-ebooks.info/


Sorting
If search query operators can’t narrow down a result set to just the most important items,
perhaps sorting them can. Search results are returned in a definite order, never at ran‐
dom. The default order is “best match,” which sorts your results based on their search
score, best score first. If you want to override this, you can pass stars, forks, or upda
ted in the sort query parameter, as in search/repositories?q=foobar&sort=stars.

You can also reverse the sort order using the order parameter, like search/reposito
ries?q=foobar&sort=stars&order=desc. The default is desc (“descending”), but asc
is also accepted, and will reverse the order.

Search APIs in Detail
Now that we’ve covered how all these APIs behave the same, let’s discuss their specifics.
The search API is compartmentalized into four categories: repositories, code, issues,
and users. The basic mechanism is the same for all four: send a GET request to the
endpoint, and provide a URL-encoded search term as the q parameter. We’ll show an
abridged response from each of the four, along with some discussion of what to expect.

Repository Search
The search/repositories endpoint looks in the repository metadata to match your
query. This includes the project’s name and description by default, though you can also
search the README file by specifying in:readme in the query. Other qualifiers are
documented at https://developer.github.com/v3/search/#search-repositories.

Its response looks something like this:

{
  "total_count": 824,
  "incomplete_results": false,
  "items": [
    {
      "id": 10869370,
      "name": "foobar",
      "full_name": "iwhitcomb/foobar",
      "owner": {
        "login": "iwhitcomb",
        "id": 887528,
        "avatar_url": "https://avatars.githubusercontent.com/u/887528?v=3",
        …
      },
      "private": false,
      "html_url": "https://github.com/iwhitcomb/foobar",
      "description": "Drupal 8 Module Example",
      "fork": false,
      …

60 | Chapter 4: Python and the Search API

www.it-ebooks.info

https://developer.github.com/v3/search/#search-repositories
http://www.it-ebooks.info/


      "score": 59.32314
    },
    …
  ]
}

Each item in items looks a lot like the result of a query to the repositories API. All sorts
of useful information is included, such as a URL to the UI for this repository (html_url),
the owner’s avatar (owner.avatar_url), and a URL suitable for cloning the repository
using Git (git_url).

Code Search
The search/code endpoint is for searching the contents of a repository. You can try
matching the contents of the files themselves, or their paths (using in:path). (For com‐
plete documentation on the other available qualifiers, check out https://develop
er.github.com/v3/search/#search-code.)

This API is subject to several limits that don’t affect the other search endpoints, because
of the sheer amount of data the server must sort through to find matches. First, it requires
that you provide a free-text search term; specifying a query with only operators (like
language:python) is valid with other APIs, but not here. Second, any wildcard char‐
acters in the query will be ignored. Third, files above a certain size will not be searched.
Fourth, it only searches the default branch of any given project, which is usually mas
ter. Fifth, and possibly most importantly, you must specify a repository owner using
the user:<name> qualifier; you cannot search all repositories with one query.

The JSON returned looks something like this:

{
  "total_count": 9246,
  "incomplete_results": false,
  "items": [
    {
      "name": "migrated_0000.js",
      "path": "test/fixtures/ES6/class/migrated_0000.js",
      "sha": "37bdd2221a71b58576da9d3c2dc0ef0998263652",
      "url": "…",
      "git_url": "…",
      "html_url": "…",
      "repository": {
        "id": 2833537,
        "name": "esprima",
        "full_name": "jquery/esprima",
        "owner": {
          "login": "jquery",
          "id": 70142,
          "avatar_url": "https://avatars.githubusercontent.com/u/70142?v=3",
          …

Search APIs in Detail | 61

www.it-ebooks.info

https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
http://www.it-ebooks.info/


        },
        "private": false,
        …
      },
      "score": 2.3529532
    },
    …
  ]
}

Each item has some data about the file that turned up, including its name and URLs for
a couple of representations of it. Then there’s the blob of data about its repository,
followed by a score, which is used for the default “best match” sorting.

Issue Search
Repositories contain more than just code. The search/issues endpoint looks for
matches in the issues and pull requests attached to a project. This endpoint responds to
a wide variety of search qualifiers, such as:

• type – either “pr” for pull requests, or “issue” for issues (the default is both)
• team - match issues whose discussions mention a specific team (only works for

organizations you belong to)
• no - match issues that are missing a piece of data (as in “no:label”)

There are many more; see https://developer.github.com/v3/search/#search-issues for
complete documentation.

The result of a call to this endpoint looks like this:

{
  "total_count": 1278397,
  "incomplete_results": false,
  "items": [
    {
      "url": "…",
      "labels_url": "…",
      "comments_url": "…",
      "events_url": "…",
      "html_url": "…",
      "id": 69671218,
      "number": 1,
      "title": "Classes",
      "user": {
        "login": "reubeningber",
        "id": 2552792,
        "avatar_url": "…",
        …
      },

62 | Chapter 4: Python and the Search API

www.it-ebooks.info

https://developer.github.com/v3/search/#search-issues
http://www.it-ebooks.info/


      "labels": [
        …
      ],
      "state": "open",
      "locked": false,
      "assignee": null,
      "milestone": null,
      "comments": 0,
      "created_at": "2015-04-20T20:18:56Z",
      "updated_at": "2015-04-20T20:18:56Z",
      "closed_at": null,
      "body": "There should be an option to add classes to the ul and li being generated. ",
      "score": 22.575937
    },
  ]
}

Again, each item in the list looks like the result of a call to the issues API. There are a
lot of useful bits of data here, such as the issue’s title (title), labels (labels), and links
to information about the pull-request data (pull_request.url), which won’t be present
if the result isn’t a pull request.

User Search
All the other search APIs are centered around repositories, but this endpoint searches
a different namespace: GitHub users. By default, only a user’s login name and public
email address are searched; the in qualifier can extend this to include the user’s full
name as well, with in:fullname,login,email. There are several other useful qualifiers
available; see https://developer.github.com/v3/search/#search-users for complete docu‐
mentation.

Querying the search/users endpoint gives you this kind of response:

{
  "total_count": 26873,
  "incomplete_results": false,
  "items": [
    {
      "login": "ben",
      "id": 39902,
      "avatar_url": "…",
      "gravatar_id": "",
      "url": "…",
      "html_url": "…",
      …
      "score": 98.24275
    },
    {
      "login": "bengottlieb",
      "id": 53162,

Search APIs in Detail | 63

www.it-ebooks.info

https://developer.github.com/v3/search/#search-users
http://www.it-ebooks.info/


      "avatar_url": "…",
      "gravatar_id": "",
      "url": "…",
      "html_url": "…",
      …
      "score": 35.834213
    },
  ]
}

The list of items in this case look like the results from a query of the users/<name>
endpoint. Useful items here are the user’s avatar (avatar_url), several links to other
API endpoints (repos_url, url), and the type of result (user or organization, in type).

Our example application
Now that we know a bit about how this API behaves, let’s do something useful with it.

Imagine your development team uses GitHub to store their Git repositories, and that
there are lots of little repositories for parts of the application that work together at
runtime. This kind of situation ends up being fairly difficult to work with for your non-
technical colleagues; if they want to report an issue, they don’t know where to go, and
they don’t know how to find issues that already exist.

Search can make this possible, but doing a search across an entire organization’s repo‐
sitories involves using the user:<organization> operator, which is obtusely named,
and kind of scary for non-programmers.

The Search API can make this a bit easier. Let’s make a GUI application with just a single
search box, which makes it dead simple for a non-technical user to search all the issues
in all the repositories in a single organization. It’ll end up looking a bit like Figure 4-1.

64 | Chapter 4: Python and the Search API

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 4-1. GitHub search application

User flow
That’s the overall goal, but let’s dig in to more detail about how the user experiences the
application.

The first thing we’ll do is require the user to log in with GitHub credentials. Why? Partly
because the search API is throttled pretty aggressively, and the rate limits are higher
with authenticated access. But also because our user is going to need the ability to search
issues in private repositories. To make this easier, our program will try to get GitHub
credentials from Git’s credential store, but it’ll fall back to a login form, which looks like
Figure 4-2.

Our example application | 65

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 4-2. Login UI

Once the user logs in, they’ll be shown a search box. Typing in a search query and hitting
enter will result in a scrollable list of search results, with titles and the first line of the
description. Clicking on a search result opens the issue in the user’s browser.

That’s about it. This application only has two main screens from the user’s point of view.
It’s a simple, focused tool to solve a very tightly-defined problem, so the code shouldn’t
be too hard.

Python
Now that we know how the program should act, let’s decide how it should work.

We’ll use Python for our implementation language, for several reasons. First, because
we haven’t yet seen it in this book, and we like to expose you to a wide variety of lan‐
guages. One of our goals is to help the reader explore technologies they might not have
seen before.

Secondly, there’s a library for building GUI applications that run without modification
on Mac OS X, Linux, and Windows. Surprisingly, this is fairly unique feature among
modern high-level programming languages. If you want this capability elsewhere, you
usually have to use a high-complexity framework, a lower-level language like C++, or
both.

Thirdly, this will help make it easy to distribute. Python has a package available which
There exists a Python package which bundles an entire Python program and all of its
dependencies into a single file (or .app bundle on OS X). So giving this program to a
colleague is as easy as emailing her a ZIP file.

66 | Chapter 4: Python and the Search API

www.it-ebooks.info

http://www.it-ebooks.info/


Let’s take a quick look at the libraries we’ll be using in our application’s code. We’ll see
them in action later on, but a quick overview will help you understand what each one
is trying to do. As is unfortunately typical with Python development, installation meth‐
ods vary from package to package, so we’ll also tell you how to get each one onto your
machine.

AGitHub
The first thing we should mention is the library we’ll use to talk to the GitHub API,
which is called agithub. agithub implements is a very thin layer that converts GitHub’s
REST API into method calls on objects, resulting in delightfully readable code.

agithub can be found at https://github.com/jpaugh/agithub, and the “installation” is
simply to download a copy of the agithub.py source file and place it alongside your
project files.

WxPython
WxPython is how we’ll create the graphical interface for our application. It’s an object-
oriented Python layer over the top of a toolkit called WxWidgets, which is itself a
common-code adapter for native UI toolkits. WxWidgets supports Linux, Mac, and
Windows operating systems with native controls, so you can access all of those platforms
with the same Python code.

Information about the WxPython project can be found at http://www.wxpython.org,
and you’ll find a download link for your platform on the left-hand side of the page. The
next version of WxPython (code-named “Phoenix”), will be installable via PIP, but as
of this writing Phoenix is still pre-release software, so it’s probably safer to use the stable
version.

WxPython is the reason we use Python 2.7 for this example. Sup‐
port for Python 3 is planned for the upcoming Phoenix release, but
as of this writing, the stable versions are Python 2 only. Most of the
code below is written in a “polyglot” fashion, so you shouldn’t run
into any trouble running it under Python 3 if Phoenix has arrived by
the time you read this.

PyInstaller
PyInstaller will be our distribution tool. Its main function is to read your Python code,
analyze it to discover all its dependencies, then collect all these files (including the
Python interpreter) and put them in one directory. It can even wrap all of that up in a
single package that, when double-clicked, runs your program. It does all this without

Python | 67

www.it-ebooks.info

https://github.com/jpaugh/agithub
http://www.wxpython.org
http://www.it-ebooks.info/


needing much input from you, and there are only a few configuration options. If you’ve
written GUI applications before, you’ll know how hard each of these problems are.

For information on this project, you can visit http://pythonhosted.org/PyInstaller. You
can install it using Python’s package manager, by running pip install pyinstaller.

The Code
Alright, now you have an idea of which parts of the Python ecosystem will be helping
us on our journey. Let’s get started looking at the code that brings them all together.
We’ll start with this skeleton file:

#!/usr/bin/env python # 

import os, subprocess
import wx
from agithub import Github # 

class SearchFrame(wx.Frame): # 
    pass

if __name__ == '__main__': # 
    app = wx.App() 
    SearchFrame(None)
    app.MainLoop()

If you run this program, you should get an empty window, which is always a hopeful
start to any project. Let’s take a look at a few key things:

The “shebang” specifies that this is a Python 2.7 program
Here we import our handy libraries. We import WxPython (wx) whole cloth, but
with agithub we only need the Github (note the capitalization) class. os and
subprocess come from the Python standard library.
This is the class for our main window. We’ll walk through the particulars later
on when we discuss the real implementation.
In Python, you create the main entry point of an application using this syntax.
And this is how you write a “main” function in WxPython. We instantiate an
App instance, create an instance of our top-level frame, and run the app’s main
loop.

Git credential helper
That’s how most of the UI code is going to be structured, but before we go any further,
we should define a function to help us get the user’s GitHub credentials. We’ll be cheating
a bit, by asking Git if it has the user’s login and password.

68 | Chapter 4: Python and the Search API

www.it-ebooks.info

http://pythonhosted.org/PyInstaller
http://www.it-ebooks.info/


We’ll leverage the git credential fill command. This is used internally by Git to
avoid having to ask the user for their GitHub password every time they interact with a
GitHub remote. The way it works is by accepting all the known facts about a connection
through stdin, as text lines in the format “<key>=<value>”. Once the caller has supplied
all the facts it knows, it can close the stdin stream (or supply an empty line), and Git
will respond with all the facts it knows about this connection. With any luck, this will
include the user’s login and password. The whole interaction looks a bit like this:

$ echo "host=github.com" | git credential fill 
host=github.com
username=ben 
password=(redacted)

This passes a single line to git credential and closes stdin, which Git will
recognize as the end of input.
Git responds with all the facts it knows about the connection. This includes the
input values, as well as the username and password if Git knows them.

One other thing that you should know about git-credential is that by default, if it
doesn’t know anything about the host, it’ll ask the user at the terminal. That’s bad for a
GUI app, so we’re going to be disabling that feature through the use of the GIT_ASK
PASS environment variable.

Here’s what our helper looks like:

GITHUB_HOST = 'github.com'
def git_credentials():
    os.environ['GIT_ASKPASS'] = 'true' 
    p = subprocess.Popen(['git', 'credential', 'fill'],
                         stdout=subprocess.PIPE,
                         stdin=subprocess.PIPE) 
    stdout,_ = p.communicate('host={}\n\n'.format(GITHUB_HOST)) 

    creds = {}
    for line in stdout.split('\n')[:-1]: 
        k,v = line.split('=')
        creds[k] = v
    return creds 

Here we set GIT_ASKPASS to the string 'true', which is a UNIX program that
always returns 0, which will cause git-credential to stop trying to get
credentials when it gets to the “as the user” stage.
subprocess.Popen is the way you use a program with stdin and stdout in
Python. The first argument is the argv of the new program, and we also specify
that we want stdin and stdout to be captured.

The Code | 69

www.it-ebooks.info

http://www.it-ebooks.info/


p.communicate does the work of writing to stdin and returning the contents of
stdout. It also returns the contents of stderr, which we ignore in this program.
Here we process the stdout contents by splitting each line at the = character, and
slurping it into a dictionary.

So the return value from this call should be a dictionary with 'username' and 'pass
word' values. Handy!

Windowing and interface
Okay, so now we have something that can help us skip a login screen, but we don’t have
a way of showing that login screen to the user. Let’s get closer to that goal by filling in
the main frame’s implementation:

class SearchFrame(wx.Frame):
    def __init__(self, *args, **kwargs):
        kwargs.setdefault('size', (600,500))
        wx.Frame.__init__(self, *args, **kwargs)

        self.credentials = {}
        self.orgs = []

        self.create_controls()
        self.do_layout()

        # Try to pre-load credentials from Git's cache
        self.credentials = git_credentials()
        if self.test_credentials():
            self.switch_to_search_panel()

        self.SetTitle('GitHub Issue Search')
        self.Show()

The __init__ method is the constructor, so this is where we start when the main func‐
tion calls SearchFrame(). Here’s what’s happening at a high level – we’ll dig into the
details in a bit:

1. Set up some layout dimensions and pass to the parent class’s constructor
2. Create the UI controls
3. Retrieve the credentials from the user using the credential helper we described

earlier
4. Change the title and display the application to the user

Before we get to how all those things are done, let’s step back a bit and talk about this
class’s job. It’s responsible for maintaining the top-level “frame” (a window with a title
bar, a menu, and so on), and deciding what’s displayed in that frame. In this case, we

70 | Chapter 4: Python and the Search API

www.it-ebooks.info

http://www.it-ebooks.info/


want to show a login UI first, and when we get valid credentials (either from Git or the
user), we’ll switch to a searching UI.

Alright, enough background. Let’s walk through the code for getting and checking cre‐
dentials.

    def login_accepted(self, username, password):
        self.credentials['username'] = username
        self.credentials['password'] = password
        if self.test_credentials():
            self.switch_to_search_panel()

    def test_credentials(self):
        if any(k not in self.credentials for k in ['username', 'password']):
            return False
        g = Github(self.credentials['username'], self.credentials['password'])
        status,data = g.user.orgs.get()
        if status != 200:
            print('bad credentials in store')
            return False
        self.orgs = [o['login'] for o in data]
        return True

    def switch_to_search_panel(self):
        self.login_panel.Destroy()
        self.search_panel = SearchPanel(self,
                                        orgs=self.orgs,
                                        credentials=self.credentials)
        self.sizer.Add(self.search_panel, 1, flag=wx.EXPAND | wx.ALL, border=10)
        self.sizer.Layout()

Each of these three methods comes in at a different point during our program’s execu‐
tion. If our credentials are coming from Git, we proceed straight to test_creden
tials; if they’re coming from the login panel (see below), they go through the log
in_accepted callback first, which then calls test_credentials.

Either way, what we do is try to fetch a list of the user’s organizations, to see if they work.
Here you can see the usage pattern for agithub – the URL path is mapped to object-
property notation on an instance of the Github class, and the HTTP verb is mapped to
a method call. The return values are a status code and the data, which has been decoded
into a dictionary object. If it fails — meaning the returned status is not 200 — we send
the user to the login panel. If it succeeds, we call switch_to_search_panel.

We’re doing a synchronous network call on the UI thread. This is
usually a bad idea, because the UI will become unresponsive until the
network call completes. Ideally we’d move this out onto another
thread, and get the return value with a message, but for this simple
example (and use case), it’ll do.

The Code | 71

www.it-ebooks.info

http://www.it-ebooks.info/


The last method handles the UI switch. The login panel is referenced by two things: the
SearchFrame instance (the parent window), and the sizer that’s controlling its layout.
Fortunately, calling the Destroy() method cleans both of those up, so we can then create
the SearchPanel instance and add it to our sizer. Doing this requires a specific call to
the sizer’s Layout() method; otherwise the sizer won’t know that it needs to adjust the
position and size of the new panel.

    def create_controls(self):
        # Set up a menu. This is mainly for "Cmd-Q" behavior on OSX
        filemenu = wx.Menu()
        filemenu.Append(wx.ID_EXIT, '&Exit')
        menuBar = wx.MenuBar()
        menuBar.Append(filemenu, '&File')
        self.SetMenuBar(menuBar)

        # Start with a login UI
        self.login_panel = LoginPanel(self, onlogin=self.login_accepted)

    def do_layout(self):
        self.sizer = wx.BoxSizer(wx.VERTICAL)
        self.sizer.Add(self.login_panel, 1, flag=wx.EXPAND | wx.ALL, border=10)
        self.SetSizer(self.sizer)

create_controls is fairly straightforward. It instantiates a menu that only contains
File>Exit, and a login panel, whose implementation we’ll cover a bit later on. Note that
when we create a visible control, we pass self as the first parameter to the constructor.
That’s because the SearchFrame instance we’re constructing is the parent window of
that control.

do_layout uses a WxWidgets feature called “sizers” to do some automated layout. Sizers
are a complex topic, but here’s all you need to know about this snippet:

• A BoxSizer stacks widgets in a single direction, in this case vertically.
• The second parameter to sizer.Add is a scaling factor. If it’s zero, the widget you’re

adding will always stay the same size if the parent window resizes; if it’s anything
else, all the things the sizer is controlling will adjust to fill their container. There’s
only one control in this sizer, but we still want it to take up the full area of the
window, so we pass 1.

• The border parameter tells the sizer how much area to leave around the widget as
padding.

• The wx.EXPAND flag tells the sizer that we want the widget to expand in the direction
the sizer isn’t stacking. In this case, we’re stacking vertically, but we also want this
widget to expand horizontally.

• The wx.ALL flag specifies which edges of the widget should have the border area.

72 | Chapter 4: Python and the Search API

www.it-ebooks.info

http://www.it-ebooks.info/


That’s it! Aside from managing a couple of fields, most of this code is managing the UI,
which is almost exactly what we’d want from a UI class. Let’s write the first of the two
panels that we swap in and out.

GitHub login
The LoginPanel class is similar in structure to the SearchFrame class, with a couple of
key differences, which we’ll describe after the wall of code.

class LoginPanel(wx.Panel):
    def __init__(self, *args, **kwargs):
        self.callback = kwargs.pop('onlogin', None)
        wx.Panel.__init__(self, *args, **kwargs)

        self.create_controls()
        self.do_layout()

    def create_controls(self):
        self.userLabel = wx.StaticText(self, label='Username:')
        self.userBox = wx.TextCtrl(self, style=wx.TE_PROCESS_ENTER)
        self.passLabel = wx.StaticText(self, label='Password (or token):')
        self.passBox = wx.TextCtrl(self, style=wx.TE_PROCESS_ENTER)
        self.login = wx.Button(self, label='Login')
        self.error = wx.StaticText(self, label='')
        self.error.SetForegroundColour((200,0,0))

        # Bind events
        self.login.Bind(wx.EVT_BUTTON, self.do_login)
        self.userBox.Bind(wx.EVT_TEXT_ENTER, self.do_login)
        self.passBox.Bind(wx.EVT_TEXT_ENTER, self.do_login)

    def do_layout(self):
        # Grid arrangement for controls
        grid = wx.GridBagSizer(3,3)
        grid.Add(self.userLabel, pos=(0,0),
                 flag=wx.TOP | wx.LEFT | wx.BOTTOM, border=5)
        grid.Add(self.userBox, pos=(0,1),
                 flag=wx.EXPAND | wx.LEFT | wx.RIGHT, border=5)
        grid.Add(self.passLabel, pos=(1,0),
                 flag=wx.TOP | wx.LEFT | wx.BOTTOM, border=5)
        grid.Add(self.passBox, pos=(1,1),
                 flag=wx.EXPAND | wx.LEFT | wx.RIGHT, border=5)
        grid.Add(self.login, pos=(2,0), span=(1,2),
                 flag=wx.EXPAND | wx.LEFT | wx.RIGHT, border=5)
        grid.Add(self.error, pos=(3,0), span=(1,2),
                 flag=wx.EXPAND | wx.LEFT | wx.RIGHT, border=5)
        grid.AddGrowableCol(1)

        # Center the grid vertically
        vbox = wx.BoxSizer(wx.VERTICAL)
        vbox.Add((0,0), 1)

The Code | 73

www.it-ebooks.info

http://www.it-ebooks.info/


        vbox.Add(grid, 0, wx.EXPAND)
        vbox.Add((0,0), 2)
        self.SetSizer(vbox)

    def do_login(self, _):
        u = self.userBox.GetValue()
        p = self.passBox.GetValue()
        g = Github(u, p)
        status,data = g.issues.get()
        if status != 200:
            self.error.SetLabel('ERROR: ' + data['message'])
        elif callable(self.callback):
            self.callback(u, p)

There’s some structure that’s similar to above. We’ll start with the constructor.

Recall that this panel is created with a keyword argument in the SearchFrame class, like
LoginPanel(self, onlogin=self.login_accepted). In the constructor definition,
we pull that callback out and store it for later. Afterward, we just call the two other
construction functions and return.

create_controls has more to it than SearchFrame’s version, because this panel has
more controls. Every static-text, text-input, and button control gets its own line of code.
The wx.TE_PROCESS_ENTER style tells the library that we want an event to be triggered
if the user presses the enter key while the cursor is inside that text box.

The next block binds control events to method calls. Every event in WxPython will call
the handler with a single argument, an object which contains information about the
event. That means we can use the same event handler for any number of different kinds
of events, so we do – the ENTER handlers for both text boxes and the BUTTON handler for
the button all go through self.do_login.

do_layout uses a different kind of sizer – a GridBagSizer. Again, the topic of sizers is
way outside the scope of this chapter, but just know that this kind arranges things in a
grid, and you can allow some of the rows or columns to stretch to fill the container. Here
we drop all of the controls into their positions with the pos=(r,c) notation (here “rows”
come first, which isn’t like most coordinate systems), and cause one control to span two
columns with the span parameter. The flags and border parameters mostly mean the
same thins as before, and the AddGrowableCol function tells the layout engine which
parts of the grid should be allowed to stretch.

Then we do something curious: we put the GridBagSizer into another sizer. Sizer nest‐
ing is a powerful feature, and allows almost any window layout to be possible — al‐
though perhaps not easy or simple. The vertical box sizer also contains some bare tuples;
this special form is called “adding a spacer.” In this case, we sandwich the sizer with all
the controls between two spacers with different weights, making it float about a third
of the way down the window. The effect is like Figure 4-3.

74 | Chapter 4: Python and the Search API

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 4-3. Resizing behavior of login UI

Then comes the do_login method, which tests out the given credentials, and if they
work, passes them back through the callback set at construction time. If they don’t work,
it sets the text of a label, whose foreground color has been set to a nice, alarming shade
of red.

GitHub search
Once the user has successfully logged in, we destroy the LoginPanel instance and show
the SearchPanel.

class SearchPanel(wx.Panel):
    def __init__(self, *args, **kwargs):
        self.orgs = kwargs.pop('orgs', [])
        self.credentials = kwargs.pop('credentials', {}) 
        wx.Panel.__init__(self, *args, **kwargs)

        self.create_controls()
        self.do_layout()

    def create_controls(self):
        self.results_panel = None
        self.orgChoice = wx.Choice(self, choices=self.orgs, style=wx.CB_SORT)
        self.searchTerm = wx.TextCtrl(self, style=wx.TE_PROCESS_ENTER)
        self.searchTerm.SetFocus()
        self.searchButton = wx.Button(self, label="Search")

        # Bind events
        self.searchButton.Bind(wx.EVT_BUTTON, self.do_search)
        self.searchTerm.Bind(wx.EVT_TEXT_ENTER, self.do_search)

    def do_layout(self):

The Code | 75

www.it-ebooks.info

http://www.it-ebooks.info/


        # Arrange choice, query box, and button horizontally
        hbox = wx.BoxSizer(wx.HORIZONTAL)
        hbox.Add(self.orgChoice, 0, wx.EXPAND)
        hbox.Add(self.searchTerm, 1, wx.EXPAND | wx.LEFT, 5)
        hbox.Add(self.searchButton, 0, wx.EXPAND | wx.LEFT, 5)

        # Dock everything to the top, leaving room for the results
        self.vbox = wx.BoxSizer(wx.VERTICAL)
        self.vbox.Add(hbox, 0, wx.EXPAND) 
        self.SetSizer(self.vbox)

    def do_search(self, event):
        term = self.searchTerm.GetValue()
        org = self.orgChoice.GetString(self.orgChoice.GetCurrentSelection())
        g = Github(self.credentials['username'], self.credentials['password'])
        code,data = g.search.issues.get(q="user:{} {}".format(org, term)) 
        if code != 200:
            self.display_error(code, data)
        else:
            self.display_results(data['items'])

    def display_results(self, results): 
        if self.results_panel:
            self.results_panel.Destroy()
        self.results_panel = SearchResultsPanel(self, -1, results=results)
        self.vbox.Add(self.results_panel, 1, wx.EXPAND | wx.TOP, 5)
        self.vbox.Layout()

    def display_error(self, code, data): 
        if self.results_panel:
            self.results_panel.Destroy()
        if 'errors' in data:
            str = ''.join('\n\n{}'.format(e['message']) for e in data['errors'])
        else:
            str = data['message']
        self.results_panel = wx.StaticText(self, label=str)
        self.results_panel.SetForegroundColour((200,0,0))
        self.vbox.Add(self.results_panel, 1, wx.EXPAND | wx.TOP, 5)
        self.vbox.Layout()
        width = self.results_panel.GetSize().x
        self.results_panel.Wrap(width)

There’s quite a bit here, but some of it is familiar. We’ll skip the usual walkthrough, to
point out a couple of interesting features.

When creating the panel, we pass in the user’s credentials and list of
organizations.
When we add the search bar to the sizer, we use 0 as a scale factor. This means
that it shouldn’t exand to fit the available size, but keep its own size instead, to
leave room to add a results panel later on.

76 | Chapter 4: Python and the Search API

www.it-ebooks.info

http://www.it-ebooks.info/


Here’s where the actual search is being done.
We pass the search results into another class, then add it to the main sizer with
parameters to fill the remaining available space.
If an error is returned from the search call instead, we display it here. There’s
some code to adjust the wrap width of the text, based on the laid-out width of
the control. This isn’t a great approach; doing it better is left as an exercise for
the reader.

Again, there’s a fair amount of code here, but most of it should look familiar.

Displaying results
So now we have our login panel, and a way for the user to enter a search query, but no
way to display results. Let’s fix that.

Whenever search results are retrieved, we create a new instance of SearchResultsPa
nel, which then creates a series of SearchResult instances. Let’s look at both of them
together:

class SearchResultsPanel(wx.ScrolledWindow): 
    def __init__(self, *args, **kwargs):
        results = kwargs.pop('results', [])
        wx.PyScrolledWindow.__init__(self, *args, **kwargs)

        # Layout search result controls inside scrollable area
        vbox = wx.BoxSizer(wx.VERTICAL)
        if not results:
            vbox.Add(wx.StaticText(self, label="(no results)"), 0, wx.EXPAND)
        for r in results:
            vbox.Add(SearchResult(self, result=r),
                     flag=wx.TOP | wx.BOTTOM, border=8)
        self.SetSizer(vbox)
        self.SetScrollbars(0, 4, 0, 0)

class SearchResult(wx.Panel):
    def __init__(self, *args, **kwargs):
        self.result = kwargs.pop('result', {})
        wx.Panel.__init__(self, *args, **kwargs)

        self.create_controls()
        self.do_layout()

    def create_controls(self): 
        titlestr = self.result['title']
        if self.result['state'] != 'open':
            titlestr += ' ({})'.format(self.result['state'])
        textstr = self.first_line(self.result['body'])
        self.title = wx.StaticText(self, label=titlestr)
        self.text = wx.StaticText(self, label=textstr)

The Code | 77

www.it-ebooks.info

http://www.it-ebooks.info/


        # Adjust the title font
        titleFont = wx.Font(16, wx.FONTFAMILY_DEFAULT,
                            wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_BOLD)
        self.title.SetFont(titleFont)

        # Bind click and hover events on this whole control 
        self.Bind(wx.EVT_LEFT_UP, self.on_click)
        self.Bind(wx.EVT_ENTER_WINDOW, self.enter)
        self.Bind(wx.EVT_LEAVE_WINDOW, self.leave)

    def do_layout(self):
        vbox = wx.BoxSizer(wx.VERTICAL)
        vbox.Add(self.title, flag=wx.EXPAND | wx.BOTTOM, border=2)
        vbox.Add(self.text, flag=wx.EXPAND)
        self.SetSizer(vbox)

    def enter(self, _):
        self.title.SetForegroundColour(wx.BLUE)
        self.text.SetForegroundColour(wx.BLUE)

    def leave(self, _):
        self.title.SetForegroundColour(wx.BLACK)
        self.text.SetForegroundColour(wx.BLACK)

    def on_click(self, event): 
        import webbrowser
        webbrowser.open(self.result['html_url'])

    def first_line(self, body):
        return body.split('\n')[0].strip() or '(no body)'

The containing panel is simple enough that it only consists of a constructor. This
class’s job is to contain the results, and present them in a scroll window.
A SearchResult comprises two static text controls, which contain the issue’s title
and the first line of its body.
We’re binding the click handler for this entire panel, but also the mouse-enter
and mouse-leave events, so we can make it behavior more like a link in a browser.
Here’s how you open the default browser to a URL in Python.

Overall, WxPython isn’t so bad, once you get used to it. It lacks some facilities of newer
frameworks, but there’s nothing better for getting a basic cross-platform UI out the door
quickly.

That’s all of the code! If you’ve been following along, you can run this code file and do
issue searches. However, our use case has a non-technical user runnnig this; let’s see
what can be done to make it easy for them.

78 | Chapter 4: Python and the Search API

www.it-ebooks.info

http://www.it-ebooks.info/


Packaging
What we’re not going to do is require anyone to install Python 2.7 and a bunch of
packages. We’ll use PyInstaller to bundle our application into something that’s easy to
distribute and run.

Let’s assume you wrote all the code above into a file called search.py, and agi
thub.py is sitting in the same directory. Here’s how to tell PyInstaller to generate a single
application for you:

$ pyinstaller -w search.py

That’s it! The -w flag tells PyInstaller to create a “windowed” build of your application,
rather than the default console build. On OS X, this generates a search.app application
bundle, and on Windows this generates a search.exe file. You can take either of these
to a computer with no Python installed, and they’ll run perfectly.

That’s because PyInstaller has copied everything necessary for your program to run,
from the Python interpreter on up, inside that file. The one I just generated is 67MB,
which seems large for such a simple program, but that number is more reasonable when
you consider what’s inside the package.

Summary
Whew! This chapter was quite a journey. Let’s take a breath, and look at what we’ve
learned.

The main bulk of the code in this chapter had to do with defining a graphical interface.
Code for this task is always pretty verbose, because of the sheer complexity of the task.
With WxPython in your tool belt, however, you can now write GUI applications using
Python, with code that’s no harder to write than with other toolkits, and get the ability
to run on every major platform for free.

We saw how to ask Git for credentials to a Git server using ‘git credential`. This feature
is quite capable, and includes the ability to write a custom credential storage back-end,
but we at least saw a peek into how it works. Using this knowledge, you can piggy-back
on your users’ existing habits to avoid having to ask them for the same things over and
over again.

We also saw a rather nice HTTP API abstraction with agithub. We authenticated and
queried the issue-search API endpoint, using what looked like object-method notation.
agithub is a great example of how a library package can be both future-proof and
idiomatic – the library constructs a query URL by looking at the chain of properties and
methods used in the call. This is a great jumping-off point for querying other REST
APIs using the same pattern.

Packaging | 79

www.it-ebooks.info

http://www.it-ebooks.info/


Finally, the main thrust of this chapter was using the GitHub search API. You’ve learned
about its general behavior, the different categories of search, how to interpret and sort
results, and ways of focusing a search to reduce the number of uninteresting results.
Using this knowledge you should be able to find anything you’re looking for on GitHub
or GitHub Enterprise. You also know that the search UI on GitHub is just a thin layer
over the search API, so the same tricks and techniques will serve you whether you’re
writing code or using a browser.

In the next chapter we will look at using DotNET with the Commit Status API.

80 | Chapter 4: Python and the Search API

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5

DotNet and the Commit Status API

At the risk of oversimplifying things too much, one way to look at a Git repository is as
just a long series of commits. Each commit contains quite a bit of information: the
contents of the source files, who created the commit and when, the author’s comments
on what changes the commit introduces, and so on. This is all good stuff, and works
very well for Git’s main use case: controlling the history of a software project.

GitHub’s commit-status API adds another layer of metadata to a commit: what various
services say about that commit. This capability primarily shows itself in the pull-request
UI, as shown in Figure 5-1. Each commit in the pull request is annotated with a symbol
indicating its status - a red “×” for failure or error, a green “✓” for success, or an amber
“•” to indicate that a decision is in the process of being made. This feature also surfaces
at the bottom of the pull-request; if the last commit in the branch is not marked as
successful, you get a warning about merging the request.

Figure 5-1. Commit status in the pull-request UI

81

www.it-ebooks.info

http://www.it-ebooks.info/


The most obvious application for this feature is a continuous-integration service. A
program like Jenkins will get a notification when new commits are pushed to a branch,
run a build/test cycle using the new code, and post the results through the commit-
status API. An application like this can even include a link back to the build results, so
the user can find out which tests failed. This is a great way to bring together everything
needed to make a decision about a proposal: what code has changed, what do people
think about it, and does this change break anything? The answer to all of these questions
is available on the same page: the pull-request conversation view.

Building and testing is only the beginning, though; the status of a commit can be used
for other purposes as well. For example, open-source projects often have a license
agreement that you must sign in order to submit a contribution. These are called “con‐
tributor license agreements,” and usually contain language about licensing the contri‐
bution to the maintainers of the project. But it’s tedious to manually check every in‐
coming pull request to see if the author has signed the CLA, so a continuous-integration-
style service can be used for this. CLAHub is one such example: it checks to see if all of
the authors of the contained commits have signed the CLA, and marks the latest commit
as “error” if not.

So now we know what the feature is, and what its intended use is. Let’s take a look at
how a program can interact with it.

The API
First, let’s talk about access control. The commit status API exposes the need for OAuth
as few others do. Making a repository private means you want complete control of what
people or applications can access it. Naturally you trust GitHub’s internal code to do the
right thing with your data, but what about some random application from the Internet?
OAuth gives you a way to grant private-repository access to an application with limits
– the use of OAuth scopes allows an application to ask for a specific set of permissions,
but it won’t be able to do just any old thing with your data. Plus, these you’re always in
control of these permissions; you can revoke an application’s access at any time.

The OAuth system includes the concept of scopes, which can be requested by and gran‐
ted to an application, each of which allows a certain set of actions. The commit-status
API requires the repo:status OAuth scope, which allows an application read and write
access to just commit statuses; there is no access granted to the actual contents of the
repository. This might seem strange: how can you judge the status of a commit without
being able to inspect its contents? Just remember that this feature has use cases beyond
continuous integration, and an application may not need full access to make a decision.
For services that do need to be able to look at the repository contents, you can request
the repo scope, which grants read and write access to the entire contents of a repository,
including commit statuses. As of this writing, there’s no way to request read-only access

82 | Chapter 5: DotNet and the Commit Status API

www.it-ebooks.info

http://www.it-ebooks.info/


to repositories, so if a service needs access to your data, you have to trust it with write
access also.

Raw statuses
Now that we know how we get access to commit statuses, let’s see what they look like.
Commit statuses exist as atomic entities, and each commit can have a practically un‐
limited number of them (the actual number is in the thousands). You can query for
existing statuses by doing a GET request to the API server at /repos/<user>/<repo>/
<ref>/statuses, and it will return a list of them that looks like this:

[
  {
    "url": "https://api.github.com/repos/…",
    "id": 224503786,
    "state": "success",
    "description": "The Travis CI build passed",
    "target_url": "https://travis-ci.org/libgit2/libgit2/builds/63428108",
    "context": "continuous-integration/travis-ci/push",
    "created_at": "2015-05-21T03:11:02Z",
    "updated_at": "2015-05-21T03:11:02Z"
  },
  …
]

Most of this is self-explanatory, but a couple of fields need explaining. The state field
can be “success,” “failure,” “error,” or “pending,” depending on the state of the service’s
decision. The target_url is a URL for the specific decision made for this commit (in
this case a build/test log), which helps the user figure out why a particular decision was
reached. And the context parameter is used for correlating multiple status updates to
a single service; each application sets this according to its own rules, but any process
that creates statuses should post the pending status and the result status using the same
context value.

This API is useful for getting the raw data involved, but it gets complicated quickly. How
do you decide if a given commit is “good?” What if there are 3 pending statuses, one
success, another pending, two failures, and another success, in that order? The con
text field can help you correlate a single service’s updates, and you can order them by
created_at to see how each one turned out, but that’s a lot of work. Fortunately, the
API server can do it for you.

Combined status
If you instead do a GET to /repos/<user>/<repo>/<ref>/status (note that the last
word is singular), you’ll instead get a response that looks like this:

The API | 83

www.it-ebooks.info

http://www.it-ebooks.info/


{
  "state": "success",
  "statuses": [
    {
      "url": "https://api.github.com/repos/…",
      …
    },
    { … }
  ],
  "sha": "6675aaba883952a1c1b28390866301ee5c281d37",
  "total_count": 2,
  "repository": { … },
  "commit_url": "https://api.github.com/repos/…",
  "url": "https://api.github.com/repos/…"
}

The statuses array is the result of the logic you’d probably write if you had to: it collapses
the statuses by context, keeping only the last one. The state field contains an overall
status that takes into account all of the contexts, providing a final value based on these
rules:

• failure if any of the contexts posted a failure or error state
• ‘pending` if any of the contexts’ latest state is pending (or if there are no statuses)
• success if the latest status for every context is success

This is probably exactly what you want, but if you find that your use case calls for
different rules, you can always use the statuses endpoint to get the raw data and cal‐
culate your own combined status.

Creating a status
Now obviously these statuses have to come from somewhere. This API also includes a
facility for creating them. To do this, you simply make a POST request to /repos/
<user>/<repo>/statuses/<sha>, and supply a JSON object for the fields you want to
include with your status:

• state is required, and must be one of pending, success, error, or failure.
• target_url is a link to detailed information on the process of deciding what the

state is or will be.
• description is a short string describing what the service is doing to make a deci‐

sion.
• context is an application-specific string to allow the API to manage multiple serv‐

ices contributing to a single commit’s status.

84 | Chapter 5: DotNet and the Commit Status API

www.it-ebooks.info

http://www.it-ebooks.info/


Notice how the last component in that URL is <sha>. While you can query for statuses
or a combined status using a ref name (like master), creating a status requires you to
know the full SHA-1 hash of the commit you want to annotate. This is to avoid race
conditions: if you were targeting a ref, it may have moved between when your process
started and when it finishes, but the SHA of a commit will never change.

Let’s write an app
Alright, now that we know how to read and write statuses, let’s put this API to work. In
this chapter, we’ll build a simple HTTP service that lets you create commit statuses for
repositories you have access to, using the OAuth web flow for authorization. The system
we’ll build will be fairly limited in scope, but it’s a great starting point to customize for
your specific needs.

The language this time is C#, running on the CLR (Common Language Runtime). At
one point in the history of computing this wouldn’t have been a good choice for a book
like this, since it was only available on Windows, the development tools cost quite a bit
of money, and the language and libraries were fairly limited. However, with the advent
of Mono (an open-source implementation of the .NET runtime), the open-sourcing of
the CLR core, and the availability of free tools, C# is now a completely valid and rather
nice option for open-source or hobby developers. Plus, it has a vibrant ecosystem of
packages we can leverage to make our jobs easier.

Libraries
You’ll be happy to know that we won’t be writing an entire HTTP server from scratch
in this chapter. There are a number of open-source packages that do this work for us,
and in this project we’ll be using Nancy. Nancy is a project that started as a CLR port of
the Sinatra framework for Ruby (it takes its name from Frank Sinatra’s daughter, Nancy).
It’s very capable, but also very succinct, as you’ll see.

We also won’t be directly implementing access to the GitHub API, because GitHub
provides a CLR library for that. It’s called octokit.net, and it does all the right things
with regard to asynchrony and type safety. This is the same library used by the GitHub
client for Windows, so it’ll definitely do the job for our little application. It is, however,
the source of a constraint on how we set up our example project: it requires a rather
new version of the CLR (4.5) in order to function. If you want some guidance on how
to avoid this pitfall and follow along, continue reading the next section. If you’ve worked
with Nancy before, and have installed NuGet packages in the past, you might be able to
skip to the section labeled “First steps” on page 89.

Let’s write an app | 85

www.it-ebooks.info

http://www.it-ebooks.info/


Following along
If you’d like to follow along with the code examples, here’s how to set up a development
environment with all the necessary elements. The process is different on Windows (us‐
ing Visual Studio) and any other platforms (using Xamarin tools).

Visual Studio
If you’re running Windows, you’ll want to visit https://www.visualstudio.com/ and
download the Community edition of Visual Studio. The installer will present you with
lots of options; for this example, we’ll only need the “web developer” components, but
feel free to check all the boxes that look interesting to you. (If you have access to a higher
tier of Visual Studio, or already have it installed with the web-development packages,
you’re all set.)

In order to make things just a little smoother, you’ll want to install a plugin: the Nancy
project templates. Visit https://visualstudiogallery.msdn.microsoft.com/ and search for
“nancy.templates”. As of this writing, there appears to be some difficulty with file for‐
mats, so when you download it, it comes as a ZIP file. If this has been resolved by the
time you’re reading this, simply double-click the file to install the templates; if not, you’ll
have to rename it to have a .vsix extension first.

The next step is to create a new project using one of the newly-installed templates. Go
to “File>New Project…” and select “Visual C#>Web>Nancy Application with ASP.NET
Hosting” from the template list (as shown in Figure 5-2. Make sure the path and name
settings at the bottom are to your liking, and click OK.

86 | Chapter 5: DotNet and the Commit Status API

www.it-ebooks.info

https://www.visualstudio.com/
https://visualstudiogallery.msdn.microsoft.com/
http://www.it-ebooks.info/


Figure 5-2. Creating a Nancy application in Visual Studio

Next, change the target CLR framework version to something that will work with Oc‐
tokit. Right-click on the project’s node in the Solution Explorer, and select “Properties.”
In the “Application” section, set Target Framework to be “.NET 4.5” (or later), and save.
You may be prompted to re-load the solution.

The very last step is to add NuGet packages for Octokit and Nancy. Right-click on the
project node in Solution Explorer, and select “Manage NuGet Packages…” Do a search
for “Nancy”, and upgrade it if necessary – there’s a chance the Nancy project template
specifies an out-of-date version. Then do a search for “Octokit,” and install that. At this
point, you should have an empty solution, configured and ready for our example code.
To run it with debugging, go to “Debug>Start Debugging…,” or hit F5. Visual Studio
will start the server under a debugger, and open an IE instance on http://localhost:
12008/ (the port might be different), which should serve you the default Nancy “404
Not Found” page.

Xamarin Studio
On OS X and Linux, as of this writing the easiest way forward is to visit http://
www.monodevelop.com/ and install MonoDevelop. Mono is an open-source imple‐
mentation of Microsoft’s CLR specification, and MonoDevelop is a development envi‐
ronment that works much like Visual Studio, but is built on Mono, and is completely

Let’s write an app | 87

www.it-ebooks.info

http://localhost:12008/
http://localhost:12008/
http://www.monodevelop.com/
http://www.monodevelop.com/
http://www.it-ebooks.info/


open-source. If you try to download MonoDevelop on a Windows or OS X machine,
you’ll be prompted to install Xamarin Studio instead; this is a newer version of Mono‐
Develop with more capabilities, and will work just as well for these examples.

There are no Nancy-specific project templates for these IDEs, so you’ll just start with
an empty web project. Go to “File>New>Solution…”, and choose “ASP.NET>Empty
ASP.NET Project” from the template chooser, as shown in Figure 5-3.

Figure 5-3. Creating an empty ASP.NET application in Xamarin Studio

The rest of the wizard steps are about the project name and location; feel free to name
and locate this project however you like.

Next, update the target framework setting. Control- or right-click on the node in the
solution explorer that corresponds with your project (not your solution), and select
“Options” from the menu. Under “Build>General,” set the Target Framework to
“Mono / .NET 4.5” (or later) and click OK.

Lastly, install the Nancy and Octokit NuGet packages. Go to “Project>Add NuGet
Packages…” in the menu to open the package manager. Search for Nancy, check the box
next to it, search for Octokit, check its box, and click “Add Packages” at the bottom right.
Once the process is complete, your project is ready for our example code. To run it under

88 | Chapter 5: DotNet and the Commit Status API

www.it-ebooks.info

http://www.it-ebooks.info/


the debugger, go to “Run>Start Debugging…,” or type ⌘-Enter. Xamarin will start the
server and open a browser window to http://127.0.0.1:80080 (possibly with a different
port), which at this point will just show the default “404 Not Found” page.

First steps
Alright, now that we have a project ready for some code, let’s get our Nancy application
up and running. Here’s what it looks like to do perform a simple request using Nancy
and Octokit.

using Nancy;
using Octokit;
using System;
using System.Collections.Generic;
using System.Linq;

namespace NancyApp
{
    public class Handler : NancyModule // 
    {
        private readonly GitHubClient client =
            new GitHubClient(new ProductHeaderValue("MyHello")); // 

        public Handler()
        {
            Get["/{user}", true] = async (parms, ct) => // 
                {
                    var user = await client.User.Get(parms.user.ToString()); // 
                    return String.Format("{0} people love {1}!",
                                         user.Followers, user.Name); // 
                };
        }
    }
}

Here we derive a class from NancyModule, which is all you have to do to start
receiving and processing HTTP requests in Nancy.
The GitHubClient class is the entry point for Octokit. Here we create an instance
which we’ll use later on, using a placeholder product name – this name will not
be used for the APIs we’ll be accessing.
The module’s constructor needs to set up route mappings. We map /{user} to
a lambda function using the Get dictionary that comes with NancyModule. The
second parameter to the index operator says that the handler will be
asynchronous.

Let’s write an app | 89

www.it-ebooks.info

http://127.0.0.1:80080
http://www.it-ebooks.info/


Here we see how to get the {user} part of the request URL (it comes as a property
on the parms parameter), and how to query the GitHub User API using Octokit.
Note that we have to await the result of the network query, since it may take
some time.
Nancy request handlers can simply return a text string, which will be marked as
HTML for the viewing browser. Here we return a simple string with the user’s
name and number of followers.

The async and await keywords bear special mention. These comprise a syntactic nicety
that encapsulates a series of functions that are running on an event loop. The code looks
like it runs in order, but really when the await keyword is reached, the system starts an
asynchronous request, and returns control back to the main event loop. Once the request
has finished, and the promise is fulfilled, the event loop will then call back into the code
that’s expecting the return value of the await keyword, with all the scope variables intact.
This feature was introduced in .NET 4.0 (which was released in 2012), and it lets you
write asynchronous code almost as though it were synchronous. This is but one of the
features that make C# the favorite of many developers.

This example is a bit more complicated than “hello, world,” but it’s still fairly succinct
and clear. This bodes well, because we’re about to introduce some complexity, in the
form of OAuth.

OAuth flow
In order to post a status update for a commit, we’re going to have to ask the user for
permission. Apart from asking for their username and password (which gives way too
much control, and if two-factor authentication is enabled may not even be enough), the
only way to do this is OAuth, which isn’t entirely straightforward.

Here’s a simple outline of the OAuth process, from our little server’s point of view:

1. We need an authorization token, either because we don’t have one, or because the
one we have is expired. This is just a string of characters, but we can’t generate it
ourselves, so we ask GitHub for one. This involves redirecting the user’s browser to
a GitHub API endpoint, with the kind of permission we’re asking for and some
other details as query parameters.

2. GitHub tells the user (through their browser) that an application is requesting some
permissions, and they can either allow or deny them.

3. If the user allows this access, their browser is redirected to a URL we specified in
step 1. A “code” is passed as a query parameter; this is not the access token we want,
but a time-limited key to get one.

90 | Chapter 5: DotNet and the Commit Status API

www.it-ebooks.info

http://www.it-ebooks.info/


4. From inside the handler for this request, we can use a REST API to get the actual
OAuth access token, which we can store somewhere safe. We do this because if we
already have a token, we can skip all the way to the last step of this process.

5. Now we have permission, and we can use the GitHub API in authenticated mode.

This might seem overly complicated, but its design achieves several goals. First, per‐
mission can be scoped – an application is almost never given full access to the user’s
account and data. Second, the whole exchange is secure; at least one part of this has to
go through the user, and cannot be automated. Third, the access token is never trans‐
mitted to the user’s browser, which avoids an entire class of security vulnerabilities.

Let’s walk through the code for our tiny little server’s implementation of this flow. First,
once we have a token, we should store it so we’re not going through the entire redirect
cycle for every user request. We’re going to store it in a cookie (though since this goes
back and forth to the user’s browser, a production application would probably use a
database). Nancy can help us with this, but first we have to enable it, and the way this
is accomplished is by using a bootstrapper. We’re going to add this class to our appli‐
cation:

using Nancy;
using Nancy.Bootstrapper;
using Nancy.Session;
using Nancy.TinyIoc;

namespace NancyApp
{
    public class Bootstrapper : DefaultNancyBootstrapper
    {
        protected override void ApplicationStartup(TinyIoCContainer container,
                                                   IPipelines pipelines)
        {
            CookieBasedSessions.Enable(pipelines);
        }
    }
}

Nancy will automatically detect a bootstrapper class, and use it to initialize our server.
Now, from within a NancyModule, we can use the Session property to store and retrieve
values that are transmitted as cookies.

Next, we have to include our application’s ID and secret in some of the requests, so we
embed them in the code by adding these fields to the Handler class. If you don’t have
an application, visit https://github.com/settings/developers to create one and use http://
localhost:8080/authorize (depending in your environment, the port number might
be slightly different) for the callback URL – we’ll see why in a bit.

        private const string clientId = "<clientId>";
        private const string clientSecret = "<clientSecret>";

Let’s write an app | 91

www.it-ebooks.info

https://github.com/settings/developers
http://www.it-ebooks.info/


Obviously, you should use values from your own API application if you’re following
along.

After that, we’ll need a helper method that kicks off the OAuth process:

private Response RedirectToOAuth()
{
    var csrf = Guid.NewGuid().ToString();
    Session["CSRF:State"] = csrf; // 
    Session["OrigUrl"] = this.Request.Path; // 

    var request = new OauthLoginRequest(clientId)
        {
            Scopes = { "repo:status" }, // 
            State = csrf,
        };
    var oauthLoginUrl = client.Oauth.GetGitHubLoginUrl(request);
    return Response.AsRedirect(oauthLoginUrl.ToString()); // 
}

CSRF stands for “cross-site request forgery.” This is a mechanism by which we
can be sure the OAuth request process really did originate from our site. The
GitHub OAuth API will pass this value back to us when the user authorizes
access, so we store it in the cookie for later reference.
Storing the original URL in the session cookie is a UX feature; once the OAuth
process has completed, we want to send the user back to what they were trying
to do in the first place.
repo:status is the permission set we’re asking for. Note that we’re also including
our CSRF token in this object; this is so GitHub can give it back to us later for
verification.
Here we use Octokit to generate the redirect URL, and send the user’s browser
there.

RedirectToOAuth is a method that can be called from any route handler in our module,
if it’s discovered that the token is missing or invalid. We’ll see how it’s called a bit later,
but for now let’s follow the rest of the OAuth process.

In our GitHub application settings, we specified an authorization URL. In this case,
we’ve specified http://localhost:8080/authorize, and that’s where GitHub will re‐
direct the user’s browser if they decide to grant our application the permissions it’s asking
for. Here’s the handler for that endpoint, which has been inserted into the module con‐
structor:

Get["/authorize", true] = async (parms, ct) => // 
    {
        var csrf = Session["CSRF:State"] as string;
        Session.Delete("CSRF:State");

92 | Chapter 5: DotNet and the Commit Status API

www.it-ebooks.info

http://www.it-ebooks.info/


        if (csrf != Request.Query["state"]) // 
        {
            return HttpStatusCode.Unauthorized;
        }

        var queryCode = Request.Query["code"].ToString();
        var tokenReq =  new OauthTokenRequest(clientId, // 
                                              clientSecret,
                                              queryCode);
        var token = await client.Oauth.CreateAccessToken(tokenReq);
        Session["accessToken"] = token.AccessToken; // 

        var origUrl = Session["OrigUrl"].ToString();
        Session.Delete("OrigUrl");
        return Response.AsRedirect(origUrl); // 
    };

This is how you map paths to handler functions in Nancy. Any class that derives
from NancyModule has an indexable object for every HTTP verb, and you can
attach a synchronous or asynchronous handler to any one of them. There are
also ways to include dynamic portions of URLs, which we’ll see later on.
Here we verify the CSRF token we generated before. If it doesn’t match,
something shady is happening, so we return a 401.
This is the REST call that converts our OAuth code to an access token. In order
to verify that this really is our application asking for the token, we pass in both
the client ID and secret, as well as the code given to us by GitHub.
This is where we store the resulting token in the session cookie. Again, this
wouldn’t be a good idea for a real application, but for our purposes it’ll do.
Here we redirect the user back to what they were originally trying to do, with as
little disruption as possible.

Once all that is done, we’ve got our token and are able to continue on our merry way.
All our handlers have to do to trigger an OAuth sequence is to call Redirect
ToOAuth() if it’s necessary, and we’ll automatically return the user to where they were
when the process completes.

Status handler
Having gone through all that OAuth business, we should now have a token that grants
us permission to create commit statuses, so let’s see what it takes to do that. We’re going
to add this handler to our Nancy module constructor:

Get["/{user}/{repo}/{sha}/{status}", true] = async (parms, ct) => // 
    {
        var accessToken = Session["accessToken"] as string;
        if (string.IsNullOrEmpty(accessToken))

Let’s write an app | 93

www.it-ebooks.info

http://www.it-ebooks.info/


            return RedirectToOAuth(); // 
        client.Credentials = new Credentials(accessToken);

        CommitState newState = Enum.Parse(typeof(CommitState), // 
                                          parms.status,
                                          true);
        try
        {
            var newStatus = new NewCommitStatus // 
            {
                State = newState,
                Context = "example-api-app",
                TargetUrl = new Uri(Request.Url.SiteBase),
            };
            await client.Repository.CommitStatus.Create(parms.user, // 
                                                        parms.repo,
                                                        parms.sha,
                                                        newStatus);
        }
        catch (NotFoundException) // 
        {
            return HttpStatusCode.NotFound;
        }

        var template = @"Done! Go to <a href=""https://" // 
        + @"api.github.com/repos/{0}/{1}/commits/{2}/status"
        + @""">this API endpiont</a>";
        return String.Format(template,
                             parms.user, parms.repo, parms.sha);
    };

Note the request path for this handler: a GET request to localhost:8080/user/
repo/<sha> will create a new status. This is easy to test with the browser, but
also makes it easy for web crawlers to unknowingly trigger this API. For this
example it’s okay, but for a real application you’d probably want to require this
to be a POST request.
Here’s where our OAuth helper comes in. We redirect through the OAuth flow
if the session cookie doesn’t have an authorization token. It’s not shown here,
but we’d also want to do this if we get an authorization exception from any of
the Octokit APIs.
Here we’re trying to parse the last segment of the request URL into a member
of the CommitState enumeration. Octokit tries to maintain type safety for all of
its APIs, so we can’t just use the raw string.
The NewCommitStatus object encapsulates all the things you can set when
creating a new status. Here we set the state we parsed earlier, a hopefully-
unique context value that identifies our service, and a not-very-useful target URL
(which should really go to an explanation of how the result was derived).

94 | Chapter 5: DotNet and the Commit Status API

www.it-ebooks.info

http://www.it-ebooks.info/


This is the REST call to create the new status, which is asynchronous.
There are a number of exceptions that could be thrown from the API, but the
biggest one we want to handle is the NotFoundException, which has been
translated from the HTTP 404 status. Here we translate it back to make for a
nice(r) experience for the user.
If we succeed, we render a snippet of HTML and return it from our handler.
Nancy sets the response’s content-type to text/html by default, so the user will
get a nice clickable link.

That’s it! If you’ve typed all this into a project of your own, you should be able to run it
under the debugger, or host it in an ASP.NET server, and create commit statuses for
your projects by opening URLs in your browser.

We noted this a bit earlier, but it bears repeating: this particular example responds to
GET requests for ease of testing, but for a real service like this you’d probably want
creation of statuses to use a POST request.

Summary
Even if you haven’t written a lot of code during this chapter, you’ve learned a lot of
concepts.

You’ve seen the commit status API, and you’ve seen how it’s used by continuous inte‐
gration software, but you know that it can be used for much more. You can read and
write statuses, and you know how the API server coalesces many statuses into a single
pass/fail value, and you also know how to write your own multi-status calculation if the
default one doesn’t meet your needs. You also know what’s behind the green checkmarks
and red X’s you see in your pull requests.

You’ve learned how the OAuth web flow works, and why it’s designed the way it is. OAuth
is the key to many other capabilities of the GitHub API, and it’s the right thing to do
with regards to trust and permissions. This will allow you to write truly world-class
GitHub-interfacing applications, whether running on the web or on a user’s device.

You’ve gained a passing knowledge of C#, including its package system, at least one IDE,
lambda functions, object initializers, and more. C# really is a nice language, and if you
use it for a while, you’ll probably miss some of its features if you write in anything else.

You’ve seen NuGet, the .NET package manager, and had a peek at the multitudes of
packages in this ecosystem. The capability you have here is astounding; libraries exist
for many common activities, and lots of uncommon ones too, so no matter what you
need to do, you’re likely to find a NuGet package to help you do it.

You’ve learned about Nancy, with which you can quickly build any HTTP service, from
a REST API to an HTML-based interface, and all with a compact syntax and intuitive

Summary | 95

www.it-ebooks.info

http://www.it-ebooks.info/


object model. If you’ve never been exposed to the Sinatra view of the world, this probably
makes you think about web servers a bit differently, and if you have, you’ll have a new
appreciation for how this model can be idiomatically implemented.

And you’ve had an introduction to Octokit, a type-safe implementation of a REST API,
with built-in asynchrony and OAuth helpers. This toolkit really does make working
with the GitHub API as simple and straightforward as using any .NET library, including
the ability to explore it using Intellisense.

In the next chapter we will look at using Ruby to create and build Jekyll blogs.

96 | Chapter 5: DotNet and the Commit Status API

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6

Ruby and Jekyll

The GitHub Jekyll repository (https://github.com/jekyll/jekyll) calls itself a “blog-aware,
static site generator in Ruby.” What does this mean? Jekyll is a set of technologies for
building web sites. There are probably as many tools for generating web sites as there
are websites, though, so why does Jekyll deserve notice over others? The Jekyll tool
provides just enough to build a beautiful site, but then, the authors stopped and kept
the core Jekyll tool free of many possible but risky improvements. Many other web site
tools layer more and more complicated processes and require complicated backends
for hosting. Jekyll is an antidote to this way of thinking. You can layer many other pieces
onto Jekyll and build ever more complex sites if you want to, but you don’t have to.
Often, thinking simple leads to a much more elegant way to do things.

More concretely, Jekyll specifies a format that will take a set of files and compile them
into HTML. Jekyll builds on top of two proven tools: Markdown, a markup language
which is surprisingly readable and expressive, and Liquid Templates, a simple pro‐
gramming language which gives you just enough components to build modern web
pages requiring conditionals and loops, but safe enough that you can run untrusted
pages on public servers. With these two technologies and agreement on a layout struc‐
ture, Jekyll can build very complicated web sites paradoxically without requiring a
complicated structure of files and technologies.

Jekyll works natively with GitHub because a Jekyll blog is stored as a Git repository.
When you push files into GitHub from a repository which GitHub recognizes as a Jekyll
site, GitHub automatically rebuilds the site for you. Jekyll is an open source generator
and defines a format for your source files, a format which other tools can easily under‐
stand and operate upon. This means you can build your own tools to interact with a
Jekyll blog. Combining an open source tool like Jekyll with a well written API like the
GitHub API makes for some powerful publishing tools.

Oddly enough, Jekyll takes us back to the advent of the web when all pages were static,
and often created by hand. Nowadays most modern sites are dynamically generated

97

www.it-ebooks.info

https://github.com/jekyll/jekyll
http://www.it-ebooks.info/


using a database backend. Jekyll provides us with a tool that recognizes we only need
to be dynamic when new content is created and not when a new visitor requests the
same page as the previous visitor. This is unfortunately how many sites work right now,
resulting in the same page being regenerated over and over, and has led to overwrought
solutions like page caching which has layered more lipstick on the pig. By acknowledg‐
ing these facts, there is a massive reduction in complexity of Jekyll sites and with it,
immense freedom. It may feel like you have traveled back in time, because when you
look at a site built by Jekyll, you are looking at a set of static files, backed by nothing
more complex than the same web server technologies available before the dot com bust
of 2000.

The Harmless Brew that Spawned Jekyll
Though you won’t see it in the documentation, the popularity of Jekyll is due in large
part to the desire of bloggers, especially very technical ones, wanting a blogging tool
option other than Wordpress. For many bloggers, Wordpress is a poor choice of blogging
tools. Of course, there is always language snobbery in any programming community,
but Wordpress is built on a language, PHP, which is widely reviled by developers from
various language communities. Because PHP is more accessible language than other
languages, the choice of PHP has fostered a large community of plugin developers.
Unfortunately, this community is fractured, and the plugins which arise from it are at
best poorly documented and poorly integrated, and at worst, poorly designed and buggy.
While Wordpress does often have a plugin for anything you need, the problem it solves
often creates more problems in the long term when scalability or database optimization
or security, for example, become concerns.

Jekyll is interesting because of the components which are not present when compared
against Wordpress. Jekyll does not require a database. Jekyll does not require you know
how to write in HTML. While Wordpress ostensibly advertises itself as a tool which can
be used without knowledge of these technologies, talk to those of us who have struggled
with recovery of a mangled database after installation of a new Wordpress plugin, or
resolving scalability issues on a large Wordpress site, or analyzing and fixing broken
HTML produced by the Wordpress editor. We’ll tell you that, when using Wordpress,
you don’t need to know about MySQL or HTML at all, because it is already too late by
then to fix whatever problem you are facing.

Jekyll responds to these concerns in a really elegant way. Instead of authoring in HTML,
you author in a simple and readable language called Markdown, which the Jekyll engine
converts automatically to HTML for you. Instead of storing posts and other data inside
a MySQL database, you use the filesystem to store posts and layouts and then regenerate
the entire site when infrequent changes are made. And, to faciliate interaction, you use
client side JavaScript plugins instead of pushing that interaction into your database.
Jekyll has found a sweet spot with a simple technology set that makes your life easier

98 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


and makes beautiful blogs and simple web sites. And, the biggest benefit of doing things
the “Jekyll” way is that all dependencies can sit within a repository, and this means your
entire site can be hosted on GitHub.

(Less Than) Evil Scientist Parents
Like many of the open source technologies in heavy usage at GitHub, jekyll was originally
developed by Tom Preson Warner, one of the co-founders of GitHub, and Nick Quar‐
anto, of 37 Signals, though there are now thousands of contributors to the Jekyll code‐
base. Like many open source projects, the strength of the tool comes not from the
brilliance of the original developers or the brilliance of the idea, but the way that those
original developers cultivated community and involvement among the users of the tool.

Operating Jekyll Locally
To really use jekyll, you’ll need the jekyll gem. As we explain in the [Link to Come],
we could install a ruby gem using this command:

$ gem install jekyll

There are two issues with doing installation this way. The first is that any commands
we run inside the command line are lost to us and the world (other than in our private
shell history file). The second is that if we are going to publish any of our sites to GitHub,
we will want to make sure we are matching the exact versions of Jekyll and its depen‐
dencies so that a site that works on our local laptop also works when published into
GitHub. If you don’t take care of this, you’ll occasionally get an email like this from
GitHub:

 The page build failed with the following error:

 page build failed

 For information on troubleshooting Jekyll see
 https://help.github.com/articles/using-jekyll-with-pages#troubleshooting
 If you have any questions please contact GitHub Support.

The fix for these two issues is a simple one. You’ve probably seen other chapters using
a Gemfile to install ruby libraries. Instead of using a manual command like bundle to
install from the command line, let’s put this dependency into the Gemfile. Then, anyone
else using this repository can run the command bundle install and install the correct
dependencies. And, instead of using the jekyll gem directly, use the github-pages
gem which synchronizes your jekyll gem versions with those on GitHub. If you do get
the email above, run the command bundle update to make sure that everything is
properly setup and synchronized and generally this will reproduce the issues on your
local setup, which is a much faster place to fix them.

The Harmless Brew that Spawned Jekyll | 99

www.it-ebooks.info

http://www.it-ebooks.info/


$ printf "gem 'github-pages' >> Gemfile
$ bundle install

Creating and managing your dependencies inside a Gemfile is the smart way to get your
jekyll tool synced with the version running on GitHub.

Now we are ready to create a Jekyll blog.

A Jekyll Blog in 15 Minutes
Now that we have our required tools, let’s create a simple blog. Run these commands.

$ jekyll new myblog
$ cd myblog

The jekyll new commands creates the necessary structure for a minimal jekyll blog.
Taking a look inside the directory, you’ll see a few files which comprise the structure of
a basic Jekyll blog.

The jekyll new command installs two CSS files: one for the blog (main.css) and one
for syntax highlighting (syntax.css). Remember, you are in full control of this site; the
main.css file is simply boilerplate which you can completely throw away if it does not
suit your needs. The syntax file helps when including code snippets and contains syntax
highlighting CSS which prettifies many programming languages.

Installation of a new blog comes with a .gitignore file as well which contains one entry:
_site. When you use the jekyll library to build your site locally, all files are by default
built into the _site directory. This .gitignore file prevents those files from being included
inside your repository as they are overwritten by the jekyll command on GitHub when
your files are pushed up to GitHub.

The jekyll new command does not create or initialize a new git
repository for you with your files. If you want to do this, you will need
to use the git init command. The jekyll initialization command
does create the proper structure for you to easily add all files to a git
repository; just use git add .; git commit and your gitignore file
will be added and configure your repository to ignore unnecessary
files like the _site directory.

All your blog posts are stored in the _posts directory. Jekyll sites are not required to
have a _posts directory (you can use jekyll with any kind of static site) but if you do
include files in this directory jekyll handles them in a special way. If you look in the
_posts directory now, you see that the jekyll initialization command has created your
first post for you, something like _posts/2014-03-03-welcome-to-jekyll.Markdown.
These posts have a special naming format: the title of the post (with any whitespace

100 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


replaced with hyphens) trailed by the date and then an extension (either .Markdown
or .md for Markdown files, or .textile for Textile)

Your new jekyll blog also comes with a few HTML files: an index.html file which is the
starting point for your blog, and several layout files which are used as wrappers when
generating your content. If you look in the _layouts directory, notice there is a file
named default.html and another named post.html. These files are the layout files,
files which are wrapped around all generated content, like those from your Markdown
formatted blog posts. For example, the post.html file is wrapped around the generated
content of each file stored inside the _posts directory. First the markup content is turned
into HTML and then the layout wrapper is applied. If you look inside each of the files
inside the _layouts directory, you will see that each contains a placeholder with {{ con
tent }}. This placeholder is replaced with the generated content from other files.

These placeholders are actually a markup language on their own: “Liquid Templating.”
Liquid Templating (or Liquid Markup) was developed and open sourced by Shopify,
and is a safe way to include programmatic constructs (like loops and variables) into a
template, without exposing the rendering context to a full fledged programming envi‐
ronment. Shopify wanted to build a way for untrusted users of their public facing sys‐
tems to upload dynamic content but not worry that the markup language would permit
malicious activity; for example, given a full fledged embedded programming language,
they would open themselves to attack if a user wrote code to open network connections
to sites on their internal networks. Templating languages like PHP or ERB (embedded
ruby templates, popular with the Ruby on Rails framework) allow fully embedded code
snippets and while this is very powerful when you have full control over your source
documents, it can be dangerous to provide a mechanism where that embedded code
could look like system("rm -rf /"). Liquid provides many of the benefits of embedded
programming templates, without the dangers.

Lastly, your jekyll directory has a special file called _config.yml. This is the jekyll con‐
figuration file. Peering into it, you’ll see it is very basic:

name: Your New Jekyll Site
markdown: redcarpet
pygments: true

We only have three lines to contend with and they are simple to understand: the name
of our site, the Markdown parser used by our jekyll command, and whether to use
pygments to do syntax highlighting.

To view this site locally run this command:

$ jekyll serve

This command builds the entirety of your jekyll directory, and then starts a mini web
server to serve the files up to you. If you then visit http://localhost:4000 in your web

A Jekyll Blog in 15 Minutes | 101

www.it-ebooks.info

http://www.it-ebooks.info/


browser, you will see something the front page of your site and a single blog post listed
in the index.

Figure 6-1. A bare Jekyll site

Clicking into the link inside the “Blog Posts” section, you will then see your first post.

Figure 6-2. A sample post

Our jekyll initialization command created this new post for us. This page is backed by
the Markdown file inside the _posts directory which we saw earlier.

102 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


---
layout: post
title:  "Welcome to Jekyll!"
date:   2014-03-03 12:56:40
categories: jekyll update
---

You'll find this post in your `_posts` directory - edit this post and re-build (or run with the `-w` switch) to see your changes!
To add new posts, simply add a file in the `_posts` directory that follows the convention: YYYY-MM-DD-name-of-post.ext.

Jekyll also offers powerful support for code snippets:

{% highlight ruby %}
def print_hi(name)
  puts "Hi, #{name}"
end
print_hi('Tom')
#=> prints 'Hi, Tom' to STDOUT.
{% endhighlight %}

Check out the [Jekyll docs][jekyll] for more info on how to get the most out of Jekyll. File all bugs/feature requests at [Jekyll's GitHub repo][jekyll-gh].

[jekyll-gh]: https://github.com/mojombo/jekyll
[jekyll]:    http://jekyllrb.com

Hopefully you’ll agree this is a fairly intuitive and readable alternative to raw HTML.
This simplicity and readability is one of the major benefits of using Jekyll. Your source
files maintain a readability that allows you to focus on the content itself, not on the
technology that will eventually make them beautiful. Let’s go over this file and investigate
some of the important pieces.

YFM: YAML Front Matter
The first thing we see in a Jekyll file is the YAML Front Matter (YFM).

---
layout: post
title:  "Welcome to Jekyll!"
date:   2014-03-03 12:56:40
categories: jekyll update
---

YFM is a snippet of YAML (“YAML Aint Markup Language”) delimited by three hy‐
phens on both the top and bottom. YAML is a simple structured data serialization lan‐
guage used by many open source projects instead of XML. Many people find it more
readable and editable by humans than XML. The YFM in this file shows a few config‐
uration options: a layout, the title, the date and a list of categories.

The layout specified references one of the files in our _layouts directory. If you don’t
specify a layout file in the YFM, then Jekyll assumes you want to use a file called de

A Jekyll Blog in 15 Minutes | 103

www.it-ebooks.info

http://www.it-ebooks.info/


fault.html to wrap your content. You can easily imagine adding your own custom
layout files to this directory and then overriding them in the YFM. If you look at this
file, you see that it manually specifies the post layout.

The title is used to generate the <title> tag and can be used anywhere else you need it
inside your template using the double braces syntax from Liquid: {{ page.title }}.
Notice that any variable from the _config.yml file is prefixed with the site. namespace,
while variables from your YFM are prefixed with page.. Though the title matches the
filename (after replacing spaces with hyphens), changing the title in the YFM does not
affect the name of the URL generated by Jekyll. If you want to change the URL, you need
to rename the file itself. This is a nice benefit if you need to slightly modify the title and
don’t want to damage preexisting URLs.

The date and categories are two other variables included in the YFM. They are com‐
pletely optional and strangely unused by the structure and templates created by default
using the Jekyll initializer. They do provide additional context to the post, but are only
stored in the Markdown file and not included inside the generated content itself. The
categories list is often used to generate an index file of categories with a list of each post
included in a category. If you come from a Wordpress background, you’ll likely have
used categories. These are generated dynamically from the MySQL database each time
you request a list of them, but in Jekyll this file is staticly generated. If you wanted
something more dynamic, you could imagine generating a JSON file with these cate‐
gories and files, and then building a JavaScript widget which requests this file and then
does something more interactive on the client side. Jekyll can take any template file and
convert it to JSON (or any other format) — you are not limited to just generating HTML
files.

YFM is completely optional. A post or page can be rendered into your Jekyll site without
any YFM inside it. Without YFM, your page is rendered using the defaults for those
variables, so make sure the default template, at the very least, is what you expect will
wrap around all pages left with unspecified layouts.

One important default variable for YFM is the published variable. This variable is set
to true by default. This means that if you create a file in your Jekyll repository and do
not manually specify the published setting, it will be published automatically. If you set
the variable to false then the post will not be published. With private repositories you
can keep the contents of draft posts entirely private until writing has completed by
making sure published is set to false. Unfortunately, not all tools that help you create
Jekyll Markdown files remember to set the published variable explicitly inside of YFM,
so make sure you check before committing the file to your repository if there is some‐
thing you don’t yet want published.

104 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


Jekyll markup
Going past the YFM, we can start to see the structure of Markdown files. Markdown
files can be, at their simplest, just textual information without any formatting characters.
In fact, if your layout files are well done, you can definitely create great blog posts without
any fancing formatting, just pure textual content.

But, with a few small Markdown additions, you can really make posts shine. One of the
first Markdown components we notice is the backtick character, which is used to wrap
small spans of code (or code-ish information, like filenames in this case). As you use
more and more Markdown, you’ll find Markdown to be insidiously clever in the way it
provides formatting characters without the onerous weight that HTML requires to offer
the same explicit formatting.

Check out the [Jekyll docs][jekyll] for more info on how to get the most out of Jekyll. File all bugs/feature requests at [Jekyll's GitHub repo][jekyll-gh].

[jekyll-gh]: https://github.com/mojombo/jekyll

Links can be specified using [format][link], where link is the fully qualified URL
(like “http://example.com”), or a reference to a link at the bottom of the page. In our
page we have two references, keyed as jekyll-gh and jekyll; we can then use these
inside our page with syntax like [Jekyll's GitHub repo][jekyll-gh]. Using refer‐
ences has an additional benefit in that you can use the link more than once by its short
name.

Though not offered in the sample, Markdown provides an easy way to generate headers
of varying degrees. To add a header, use the # character, and repeat the # character to
build smaller headers. These delimiters simply map to the H tag; two hash characters
## turns into a <h2> tag. Building text enclosed by <h3> tags looks like ### Some
Text. You can optionally match the same number of hash symbols at the end of the line
if you find it more expressive (### Some Text ###), but you don’t have to.

Markdown offers easy shortcuts for most HTML elements: numbered and unordered
lists, emphasis and more. And, if you cannot find a Markdown equivalent, you can
embed normal HTML right next to Markdown formatting characters. The best way to
write Markdown is to keep a Markdown cheat sheet near you when writing. John Gruber
from Daring Fireball invented Markdown, and his site has a more in depth description
of the how and why of Markdown.

Using the jekyll command
Running jekyll --help will show you the options for running jekyll. You already saw
the jekyll serve command which builds the files into the _site directory and then
starts a webserver with its root at that directory. If you start to use this mechanism to
build your Jekyll sites then there are a few other switches you’ll want to learn about.

A Jekyll Blog in 15 Minutes | 105

www.it-ebooks.info

https://github.com/adam-p/Markdown-here/wiki/Markdown-Cheatsheet:
http://www.it-ebooks.info/


If you are authoring and adjusting a page often, and switching back into your browser
to see what it looks like, you’ll find utility in the -w switch (“watch”). This can be used
to automatically regenerate the entire site if you make changes to any of the source files.
If you edit a post file and save it, that file will be regenerated automatically. Without the
-w switch you would need to kill the jekyll server, and then restart it.

The jekyll watch switch does reload all HTML and markup files, but
does not reload the _config.yml file. If you make changes to it, you
will need to stop and restart the server.

If you are running multiple Jekyll sites on the same laptop, you’ll quickly find that the
second instance of jekyll serve fails because it cannot open port 4000. In this case,
use jekyll --port 4010 to open port 4010 (or whatever port you wish to use instead).

Privacy Levels with Jekyll
Jekyll repositories on GitHub can be either public or private repositories. If your repos‐
itory is public you can host public content generated from the Jekyll source files without
publishing the source files themselves. Remember, as noted previously, that any file
without publishing: false inside the YFM will be made public the moment you push
it into your repository.

Themes
Jekyll does not support theming internally, but it is trivial to add any CSS files or entire
CSS frameworks. You could do this yourself, or you could just fork an existing jekyll
blog which has the theming you like. The most popular themed Jekyll blog structure is
Octopress. We don’t display this here, but you another easy option is to add the Bootstrap
CSS library just as we did in the [Link to Come] chapter.

Publishing on GitHub
Once you have your blog created, you can easily publish it to GitHub. There are two
ways which you can publish Jekyll blogs:

• As a github.io site
• On a domain you own

Github offers free personal blogs which are hosted on the github.io domain. And, you
can host any site with your own domain name with a little bit of configuration.

106 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


Using a GitHub.io Jekyll Blog
To create a github.io personal blog site, your Jekyll blog should be on the master branch
of your Git repository. The repository should be named username.github.io on Git‐
Hub. If everything is setup correctly you can then publish your Jekyll blog by adding a
remote for GitHub and pushing your files up. If you use the hub tool (a command for
interacting with git and GitHub), you can go from start to finish with a few simple
commands. Make sure to change the first line to reflect your username.

The hub tool was originally written in Ruby and as such could be
easily installed using only gem instal hub, but hub was recently
rewritten in Go. Go has a somewhat more complicated installation
process, so we won’t document it here. If you have the brew com‐
mand installed for OSX, you can install hub with the brew install
hub command. Other platforms vary, so check http://github.com/
github/hub to determine the best way for your system.

Use thse commands to install your github.io hosted Jekyll blog.

$ export USERNAME=xrd
$ jekyll new $USERNAME.github.io
$ cd $USERNAME.github.io
$ git init
$ git commit -m "Initial checkin" -a
$ hub create  # You'll need to login here...
$ sleep $((10*60)) && open $USERNAME.github.io

The second to the last line creates a repository on GitHub for you with the same name
as the directory. That last line sleeps for 10 minutes while your github.io site is provi‐
sioned on GitHub, and then opens the site in your browser for you. It can take ten
minutes for GitHub to configure your site the first time, but subsequent content pushes
will be reflected immediately.

Hosting On Your Own Domain
To host a blog on your own domain name, you need to use the gh-pages branch inside
your repository. You need to create a CNAME file in your repository, and then finally
establish DNS settings to point your domain to the GitHub servers.

The gh-pages branch
To work on the gh-pages branch, check it out and create the branch inside your repos‐
itory.

$ git checkout -b gh-pages
$ rake post title="My next big blog post"
$ git add _posts

A Jekyll Blog in 15 Minutes | 107

www.it-ebooks.info

http://github.com/github/hub
http://github.com/github/hub
http://www.it-ebooks.info/


$ git commit -m "Added my next big blog post"
$ git push -u origin gh-pages

You will need to always remember to work on the gh-pages branch; if this repository is
only used as a blog, then this probably is not an issue. Adding the -u switch will make
sure that git always pushes up the gh-pages branch whenever you do a push.

The CNAME file
The CNAME file is a simple text file with the domain name inside of it.

$ echo 'mydomain.com' > CNAME
$ git add CNAME
$ git commit -m "Added CNAME"
$ git push

Once you have pushed the CNAME file to your repository, you can verify that GitHub
thinks the blog is established correctly by visiting the admin page of your repository.
An easy way to get there is using the github gem, no longer actively maintained but still
a useful command line tool.

$ gem install github
$ github admin # Opens up https://github.com/username/repo/settings

The github gem is a useful command line tool, but unfortunately it is tied to an older
version of the GitHub API, which means the documented functionality is often incor‐
rect.

If your blog is correctly setup, you will see something like Figure 3 in the middle of your
settings page.

Figure 6-3. Settings for a Jekyll blog

GitHub has properly recognized the CNAME file and will accept requests made to that
host on its servers. We are still not yet complete, however, in that we need to make sure
the DNS is established for our site.

108 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


1. This is all well documented on the GitHub blog

DNS Settings
Generally, establishing DNS settings for your site is straightforward. It is easiest if you
are setting up DNS with a subdomain as opposed to an apex domain. To be more
concrete, an apex domain is a site like mypersonaldomain.com, while a subdomain
would be blog.mypersonaldomain.com.

Setting up a blog on a subdomain is simple: create a CNAME record in DNS that points
to username.github.io.

For an apex domain, things are slightly more complicated. You must create DNS A
records to point to these IP addresses: 192.30.252.153 and 192.30.252.154. These are
the IP addresses right now; there is always the possibility that GitHub could change
these at some point in the future. For this reason, hosting on apex domains is risky. If
GitHub needed to change their IP addresses (say during a denial of service attack), you
would need to respond to this, and deal with the DNS propagation issues. If you instead
use a subdomain, the CNAME record will automatically redirect to the correct IP even
if that is changed by GitHub 1.

Importing from other blogs
There are many tools which can be used to import an existing blog into Jekyll. As Jekyll
is really nothing more than a file layout convention, you just need to pull the relevant
pieces (the post itself, and associated metadata like the post title, publishing date, etc.)
and then write out a file with those contents. Jekyll blogs prefer Markdown, but they
work fine with HTML content, so you can often convert a blog with minimal effort, and
there are good tools which automate things for you.

From Wordpress
The most popular importer is the Wordpress importer. You will need the the jekyll-
import gem, which is installed separately from the jekyll gem. If you have installed the
github-pages gem then the importers are installed alongside the other tools packaged
with this bundle.

Importing with direct database access

Once you have the jekyll-import gem, you can convert a Wordpress blog using a
command like this:

$ ruby -rubygems -e 'require "jekyll-import";
    JekyllImport::Importers::WordPress.run({
      "dbname"   => "wordpress",

Importing from other blogs | 109

www.it-ebooks.info

https://help.github.com/articles/setting-up-a-custom-domain-with-github-pages:
http://www.it-ebooks.info/


      "user"     => "hastie",
      "password" => "lanyon",
      "host"     => "localhost",
      "status"         => ["publish"]
    })'

This command will import from an existing Wordpress installation, provided that your
ruby code can access your database. This will work if you can log into the server itself
and run the command on the server, or if the database is accessible across the network
(which is generally bad practice when hosting Wordpress!).

Note the status option: this specifies that imported pages and posts are published au‐
tomatically. More specifically, the YAML for each file will specify published: true
which will publish the page or post into your blog. If you want to review each item
individually, you can specify a status of private which will export the pages into Jekyll
but leave them unpublished. Remember that if your repository is public, they will not
be listed on the blog but can still be seen if someone peruses the source code for your
blog on GitHub.

There are many more options than listed here. For example, by default, the Wordpress-
Jekyll importer imports categories from your Wordpress database, but you can turn this
off by specifying "categories" => false.

Importing from the Wordpress XML
Another alternative is to export the entire database as an XML file. Then, you can run
the importer on that file.

ruby -rubygems -e 'require "jekyll-import";
    JekyllImport::Importers::WordpressDotCom.run({
      "source" => "wordpress.xml",
      "no_fetch_images" => false,
      "assets_folder" => "assets"
    })'

This can be used to export files from a server which you don’t maintain, but works with
sites you maintain and might be a more plausible option than running against a database.

To export the XML file, visit the export page on your site (https://BLOGNAME.com/wp-
admin/export.php).

Like many free tools, there are definitely limitations to using this method of export. If
your Wordpress site is anything beyond the simplest of Wordpress sites then using this
tool to import from Wordpress means you will lose much of the metadata stored inside
your blog. This metadata can include pages, tags, custom fields, and image attachments.

If you want to keep this metadata, then you might consider another import option like
Exitwp. Exitwp is a python tool which provides a much higher level of fidelity between

110 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

https://BLOGNAME.com/wp-admin/export.php
https://BLOGNAME.com/wp-admin/export.php
http://www.it-ebooks.info/


the original Wordpress site and the final Jekyll site, but has a longer learning curve and
option set.

Exporting from Wordpress alternatives
If you use another blog format other than Wordpress, chances are there is a Jekyll im‐
porter for it. Jekyll has dozens of importers, well documented on the Jekyll importer site
http://import.jekyllrb.com/.

For example, this command line example from the importer site exports from Tumblr
blogs.

$ ruby -rubygems -e 'require "jekyll-import";
    JekyllImport::Importers::Tumblr.run({
      "url"            => "http://myblog.tumblr.com",
      "format"         => "html", # 
      "grab_images"    => false,  # 
      "add_highlights" => false,  # 
      "rewrite_urls"   => false   # 
    })'

The Tumblr import plugin has a few interesting options.

Write out HTML; if you prefer to use Markdown use md.
This importer will grab images if you provide a true value.
Wrap code blocks (indented 4 spaces) in a Liquid “highlight” tag if this is set to
true.
Write pages that redirect from the old Tumblr paths to the new Jekyll paths using
this configuration option.

Exporting from Tumblr is considerably easier than Wordpress. The Tumblr exporter
scrapes all public posts from the blog, and then converts to a Jekyll compatible post
format.

We’ve seen how we can use the importers available on import.jekyllrb.com to import.
What if we have a non-standard site that we need to import?

Scraping Sites into Jekyll
If you are stuck with a site that does not fit any of the standard importers, you could
write your own importer by perusing the source of the Jekyll importers on GitHub. This
is probably the right way to build an importer if you plan on letting others use it, as it
will extend several jekyll importer classes already available to make importing standard
for other contributors. Learning all the existing methods and reading through the doz‐
ens of samples can be a lot of work, however; another option is just to write out our files
respecting the very simple format required by Jekyll. As we are programmers in the true

Scraping Sites into Jekyll | 111

www.it-ebooks.info

http://import.jekyllrb.com/
http://github.com/jekyll/jekyll-import
http://www.it-ebooks.info/


sense of the word we embrace and accept our laziness and choose the second route. Let’s
write some code to scrape and generate a Jekyll site.

Almost fifteen years ago while traveling in Brazil I grew increasingly frustrated with the
guide books I used. It seemed like every time I went to a restaurant recommended by a
guidebook I left the restaurant thinking “well, either they paid for that review or the
review was written several years ago when this restaurant had a different owner.” To
address this discrepancy between reviews and realities, I built a site called ByTravel‐
ers.com. The idea was that travelers could use ByTravelers to record their experiences
and easily share their experiences with their friends and families (replacing the long
emails they used to send) and that that information would then become an authenti‐
cation source of information about good and bad travel experiences.

I used an interesting programmable web server called Roxen featuring a dynamic lan‐
guage called Pike back when the web was dominated by one dynamic language: Perl,
the “duct tape of the Internet.” The site had ambitions greater than the talents of its
architect, but suprisingly, a modest number of people found the site and started using
it to track the experiences and simultaneously offer unbiased reviews of their traveling
histories. It was exciting to see people creating content on their travels to China, Prague,
and Cuba, and I vowed to visit Bhutan at least once in my lifetime after reading one
particularly vivid account from an unknown contributor.

One of the problems with build on top of a web server and language like Roxen and
Pike that never achieved critical mass in any way is that maintenance was a challenge.
After moving back to the US and moving my hosting servers several times, I lost access
to the source code (this was long before GitHub or even Git) and I lost access to the
database and ByTravelers.com settled into oblivion.

Or, so I thought. One day I decided to look up ByTravelers on Archive.org, the Internet
Archive. I found that almost all of the articles were listed there and available. Even
though we have lost the source code and database, could we recover the site from just
the Internet Archive? Let’s scrape the articles from the Internet Archive and make them
into a modern Jekyll site.

Jekyll Scraping Tactics
We’ll use Ruby to scrape the site; Ruby has some intuitive gems like mechanize which
provide automation of web clients. There is an API for the Internet Archive, but I found
it flakey and unreliable. Scraping the site itself works well, but to reduce load on the
archive, we’ll cache our results using a gem called VCR (typically used to cached results
from hitting a web service during test runs but perfectly capable here as well).

To write our parser, we will need to look at the structure of the archive presented on
Archive.org. If we start on Archive.org, and enter “bytravelers.com” into the search box
in the middle of the page, and then click “BROWSE HISTORY” we will be presented

112 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://en.wikipedia.org/wiki/Roxen_(web_server)
http://www.it-ebooks.info/


with a calendar view which shows all the pages scraped by the Internet Archive for this
site.

Figure 6-4. Calendar view of Archive.org

In the middle of 2003 I took down the server, intending to upgrade it to another set of
technologies, and never got around to completing this migration, and then lost the data.
If we click on the calendar item on June 6th, 2003, we will see a view of the data that
was more or less complete at the height of the site’s functionality and data. There are a
few broken links to images, but otherwise the site is functionally archived inside
Archive.org

Scraping Sites into Jekyll | 113

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 6-5. Archive of ByTravelers.com on Archive.org

Taking the URL from Chrome, we can use this as our starting point for scraping. Clicking
around throughout the site, it becomes evident that each URLs to a journal entry uses
a standard format; in other words, http://www.bytravelers.com/journal/

entry/56 indicates the 56th journal item stored on the site. With this knowledge in
hand, we can iterate over the first hundred or so URLs easily.

Going to one of these pages through the archived site, it is useful to view the source of
the page and start to understand the structure of a page which we can then use when
pointing our mechanize scraper at the page to pull out content. Any modern web
browser supports a debug mode, and Chrome (my browser of choice) supports this as
well. If we hold down the control key and click (at least on Mac OSX; righting-click on
Windows or Linux works in the same way) into the “body” of a journal entry on its page,
we will see a context menu that gives us the option to “Inspect Element”. Chosing this
option brings up the Chrome Developer Tools and shows us the HTML code of the page
pretty printed for us. There are a few other items of note if we hover over any of the

114 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


printed items toward the bottom. As we moved our mouse over the <p></p> items, we
see a highlight applied to the page above, indicating the visual result once rendered in
a browser of this specific this HTML code.

Figure 6-6. Inspecting Page Structure

Moving over different places in the HTML code displays different areas of our page;
finding our way to the tr tag above the large number of td tags gives us access to the
body of the post. Once there, you can see at the very bottom of the frame a hierarchy
like html body table tbody tr td font table tbody tr which tells us clues about
the path we need to take inside the DOM to reach this particular piece of content. With
these indications in hand, we can start to write our parser to extract this text from pages
scraped from the archive.

Writing our Parser
Let’s start by writing a parser class.

require 'rubygems'
require 'mechanize'
require 'vcr'

VCR.configure do |c|  # 
  c.cassette_library_dir = 'cached'

Scraping Sites into Jekyll | 115

www.it-ebooks.info

http://www.it-ebooks.info/


  c.hook_into :webmock
end

class ByTravelersProcessor
  attr_accessor :mechanize  # 

  def initialize
    @mechanize = Mechanize.new { |agent| # 
      agent.user_agent_alias = 'Mac Safari'
    }
  end

  def run
    100.times do |i|
      get_ith_page( i ) # 
    end
  end

  def get_ith_page( i )
    puts "Loading #{i}th page"
  end

end

VCR is a ruby library which caches HTTP requests. Typically used inside of tests,
it is also an easy way to cache an HTTP request that you know will not change.
Since these are pages stored inside an archive over ten years ago, it is safe to
cache them, and the polite thing to do for an open system like Archive.org which
relies on donations to pay for their bandwidth. The code you see here is
boilerplate for configuring the VCR gem, loaded above.
Our scraping is handled with the mechanize gem, and our class should maintain
a reference to the scraper by declaring it here.
After our class is instantiated, we hook into the class initialization stage and
create our mechanize parser and assign it to the class.
As we noted above, we have about 100 pages stored in the archive which we
want to scrape. We loop 100 times over a function called get_ith_page which
will do the scraping for us. Right now this function just prints out the index it
is supposed to scrape.

Now that we have a harness for our scraper, let’s install our scraper libraries.

Scraper Library Installation

Like other chapters which use Ruby, we create a Gemfile to manage our dependencies
and then install them using the bundle command.

$ printf "source 'https://rubygems.org'\ngem 'vcr'\ngem 'mechanize'\ngem 'webmock'\n" >> Gemfile
$ bundle

116 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


With that we have the libraries we’ll use to retrieve the content, so we can commence
writing our wrapper script.

Parser Runner
Our runner is simple.

require 'rubygems'
require 'bundler/setup'
require './scraper'

btp = ByTravelersProcessor.new()
btp.run()

If we run this code now, we will just see our debug output.

$ ruby run.rb
...
Loading 91th page
Loading 92th page
Loading 93th page
Loading 94th page
Loading 95th page
Loading 96th page
Loading 97th page
Loading 98th page
Loading 99th page
...

Implementing Our Page Iterator
Now let’s write the code which pulls out the information for the body and the title by
implementing the get_ith_page method.

def get_ith_page( i )
  root = "https://web.archive.org/web/20030502080831/" +
    "http://www.bytravelers.com/journal/entry/#{i}"
  begin
    VCR.use_cassette("bt_#{i}") do # 
      @mechanize.get( root ) do |page|
        rows = ( page / "table[valign=top] tr" ) # 
        if rows and rows.length > 3
          self.process_body( i, rows[4] ) # 
        end
      end
    end
  rescue Exception => e
  end
end

def process_body( i, row )
  puts "#{i}: #{row.text().strip()[0...50]}" # 
end

Scraping Sites into Jekyll | 117

www.it-ebooks.info

http://www.it-ebooks.info/


2. Actually, this is handled by the Nokogiri parser, but Mechanizes exposes it transparently

First, we load up a VCR cassette; this code says “store any HTTP requests inside
my cassette directory (cached, specified in the configure page loaded by our
script will be cached and saved in a file at the path cached/bt_1.yml (VCR adds
the yml extension because it stores the results as a structured YAML file).
Once we have loaded the page we see one of the powerful features of mechanize
2, a simple page searching syntax. If we provide the code page / "table[va
lign=top] tr" what we are doing is searching inside the page for a tag like
<table valign="top"> and then finding all the <tr> tags inside that. Recalling
the DOM hierarchy we saw inside the Chrome Inspector, we can start to see how
we will easily retrieve content from a scraped page.
We then take the 2nd and 5th (ruby uses zero-based offsets) rows, and process
it using a method called process_body which, you guessed it, processes the two
rows as title and body respectively.
The process_body method takes the retrieved DOM nodes and converts them
to pure text (as opposed to leaving us with the HTML tags) and then strips
whitespace from the front and end, and then prints the index in parentheses, the
title and the first 50 characters of the body.

If we run our code now, we will see the body of our journal entries.

$ ruby run.rb
(4) Third day in Salvador :: I'm now entering the my third day in Salvador.  Th
(15) The Hill-Tribes of Northern Thailand :: I had heard about the hill-tribes in
northern Tha
(22) Passion Play of Oberammergau :: On Sunday, Sept. 17 Jeanne picked up Vic at Jackie
(23) "Angrezis in Bharat" :: Translation -  "Foreigners in India"Well since we
(24) Cuba - the good and bad :: April 1999Cuba, what an interesting place??!!
My a
(25) Nemaste :: Oct/Nov 2000"NEPAL"We spent our first 3 days in Ba
(26) Mexico/Belize/Guatemala :: Feb/Mar 1999Dear All
Well it´s been six weeks on t
(27) South Africa :: Apr/May 1999I got in from South Africa a few days
...

The first time we run this, we will see a slow march as Mechanize grabs each page from
the Archive.org server. The next time we run our parser, however, things will be much
faster. We have cached all the pages and so instead of doing a slow network crawl we
are now speeding across our local filesystem, reading files from disk and simulating our
network connection. Our client code does not have to change at all, the real power of
the VCR gem.

118 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


Now let’s break the title and body processing into separate methods. Add a method
called process_title and add that into the get_ith_page method underneath the re‐
named process method now called process_body.

  end

  def write_post( page )
    title = page[0][0]
    image = page[0][1]
    body = page[1]
    creation_date = page[2]
    location = page[3]

    title.gsub!( /"/, '' )

    template = <<"TEMPLATE"
---
layout: post
title: "#{title}"
published: true
image: #{image}
location: #{location}
---

#{body}
TEMPLATE

    title_for_filename = title.downcase.gsub( /,+/, '' ).gsub( /[\s\/\:\;]+/, '-')
    # puts "Title: #{title_for_filename}"
    filename = "_posts/#{creation_date}-#{title_for_filename}.md"
    File.open( filename, "w+" ) do |f|
      f.write template
    end
  end

  def run
    100.times do |i|
      get_ith_page( i )
    end
    100.times do |i|
      if pages[i]
        write_post( pages[i] )
      end
    end
  end

  def process_creation_date( i, row )
    location, creation_date = row.text().split /last updated on:/
    creation_date.strip()
  end

  def process_location( i, row )

Scraping Sites into Jekyll | 119

www.it-ebooks.info

http://www.it-ebooks.info/


    location, creation_date = row.text().split /last updated on:/  # 

    location.gsub!( /Concerning: /, "" ) # 

We’ve modified the get_ith_page method to save each page as a tuple (the title and
body) and then print them out after processing inside the run method.

Our process body might look a little excessive. Why not just return the result of
row.text()? The reason is that markdown is very specific about the format it
requires for text formatting. Each block of text separated by two newlines will
be formatted within <p> tags. Unfortunately, Mechanize and Nokogiri don’t
return text formatted that way, so this function retrieves each <p> tag we scraped,
strips whitespace from the ends, and then adds it back to a body variable. If you
scrape text from a site like we are doing here, you might need to normalize the
text in a similar way.
Do the same type of processing with the title. With this site there are occasionally
titles which include the word “Title:” in the title itself (authors have to be forgiven
for their own formatting quirks) so strip that out if we see it there.
Keep track of each page in an array with each item of the array containing the
title and body. We can then use this processed data later to build out our posts.
At the end of processing, just print out the processed data we saved to verify we
are finding the right structure in our pages.

If we re-run this script we will see identical output to the prior run, but now we are
storing the information in an array and can use it to write out our Markdown files.

Generating Markdown
Now that we have our information parsed out, we can generate Markdown from it. As
we’ve seen, Jekyll Markdown files are very simple: just a bit of YAML at the beginning,
with text content following, formatted as Markdown.

We need to create a Git repository which we can push into GitHub. There is no reason
why we cannot store our scraper scripts inside it, so let’s just add the files to the same
directory

$ git init
$ mkdir _posts
$ printf "_site" >> .gitignore
$ git add .gitignore
$ git commit -m "Initial checkin"

To generate Markdown posts, edit the run method to write out the files after we have
retrieved and parsed the pages from Archive.org.

  def write_post( page )
    title = page[0]

120 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


    body = page[1]
    creation_date = page[2]

    title.gsub!( /"/, '' ) # 

    template = <<"TEMPLATE"  # 
---
layout: default
title: "#{title}"
published: false
---

#{body}
TEMPLATE

    title_for_filename = title.downcase.gsub( /,+/, '' ).gsub( /[\s\/\:\;]+/, '-') # 
    filename = "_posts/#{creation_date}-#{title_for_filename}.md"
    File.open( filename, "w+" ) do |f|
      f.write template
    end
  end

  def run
    100.times do |i|
      get_ith_page( i )
    end
    100.times do |i|
      if pages[i]
        write_post( pages[i] ) # 
      end
    end
  end

  def process_creation_date( i, row )
    location, creation_date = row.text().split /last updated on:/ # 
    creation_date.strip()
  end

First, we modify the run method to call our new write_post method. This
method is reponsible for writing out each datum in the array of processed data
to a markdown file.
We enclose the title inside the YAML inside of double quotes, so to make sure
this does not conflict with the YAML parser we remove double quotes from the
title here. We need to do this when we generate the filename later, so we use the
gsub! method which modifies the string itself (rather than returning a new value
but leaving the existing string intact).

Scraping Sites into Jekyll | 121

www.it-ebooks.info

http://www.it-ebooks.info/


 Inside the write_post method we create a “heredoc” template, and then stick
values inside of it. Heredocs provide a more readable way to write out larger
textual data, especially those with newlines. Heredocs simply start with a tag and
then end the contents with the same tag (“TEMPLATE” here), and everything
in between is treated as a single string.
Jekyll expects markdown filenames to have a specific format. We need to modify
the title by remove commas and quotes, and then converting whitespace, colons
and semicolons to hyphen characters. We also need the creation date, which we
retrieve in a later call, and parameterize the title with that information. Then we
write out the file.
Inside our new process_creation_date method we extract the creation date
from the scraped data. We don’t show it here because it is trivial, but after the
process_body method call (which is inside the get_ith_page method) we added
a call to this new function, giving it i and row[3] as the arguments.

We now have the posts generated properly, but we don’t have an entry page into the
blog. We can create a index.md file which just displays an index of all the blog posts.
Inside this file we will use Liquid Tags to generate that list of posts. Notice that the site
variable is populated with the list of posts automatically (Jekyll loads these up as long
as they are in the _posts directory). We generate a link with the post URL, create a teaser
from the content by generating a snippet of the body using the truncate method. Then
we indicate the date that file was processed. Liquid provides a nice set of tools to convert
and process text using the pipe character which allow you to build complex structures
when combined with the looping constructs you see here.

There are a wide swath of constructs available with Liquid Templates. You can review
the documentation for specifics. One common source of confusion when first learning
Liquid is the difference between output tags and logic tags. Output tags use double
braces surrounding the content ({{ site.title }}) while logic tags use a brace and
percent symbol ({% if site.title %}). As you might expect, output tags place some
type of visible output into the page, and logic tags perform some logic operation, like
conditionals or loops.

---
layout: default
---

<h1>ByTravelers.com</h1>

Crowd sourced travel information.

<br/>

<div>
{% for post in site.posts %}

122 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


<a href="{{ post.url }}"><h2> {{ post.title }} </h2></a>
{{ post.content | strip_html | truncatewords: 40 }}
<br/>
<em>Posted on {{ post.date | date_to_string }}</em>
<br/>
{% endfor %}
</div>

The above template has both output and logic tags. We see a logic tag in the form of {%
for ... %} which loops over each post. Jekyll will process the entire posts directory
and provide it to pages inside the site.posts variable, and the for logic tag allows us
to iterate over them. Remember that if we use a {% for ... %} tag we need to “close”
the tag with a matching {% endfor %} tag. Inside of our for loop we have several output
tags: {{ post.url }} outputs the post URL associated with a post, for example. We
also have “filters” which are methods defined to process data. One such filter is the
strip_html filter which you might guess strips out HTML text, converting it to escaped
text. This is necessary when your text could include HTML tags. You’ll also notice that
filters can be “chained”; we process the body with the strip_html filter and then truncate
the text by 40 characters using the truncatewords:40 filter.

We also need to create a default layout, so create this inside the _layouts directory with
the filename default.html.

<html>
<head>
<title>ByTravelers.com</title>
</head>

<body>

{{ content }}

</body>
</html>

This file is almost pure HTML, with only the {{ content }} tag. When we specify
default as the layout inside YAML for a Markdown file, the Markdown text is converted
to HTML, and then this layout file is wrapped around it. Notice this default layout is
the same layout we have used inside our post files.

Finally, in order to convey that this is a Jekyll repository to both the command line Jekyll
processor and GitHub service, we need to create a _config.yml file. We saw a simple
version of this file earlier and can reuse this almost verbatim, changing only the name.

name: ByTravelers.com
markdown: redcarpet
pygments: true

Scraping Sites into Jekyll | 123

www.it-ebooks.info

http://www.it-ebooks.info/


Taking a moment to add our files to the Git repository, we can then take a look at our
site using the jekyll command line tool.

$ git add .
$ git commit -m "Make this into a Jekyll site"
...
$ jekyll serve --watch
Configuration file: /Users/xrdawson/Projects/GithubBook/1234000000486/support/jekyll-parser/_config.yml
            Source: /Users/xrdawson/Projects/GithubBook/1234000000486/support/jekyll-parser
       Destination: /Users/xrdawson/Projects/GithubBook/1234000000486/support/jekyll-parser/_site
      Generating... done.
 Auto-regeneration: enabled
    Server address: http://0.0.0.0:4000
  Server running... press ctrl-c to stop.

We’ve started the Jekyll server in “watch” mode which means the site will be automati‐
cally regenerated if we edit the source files. Let’s take a look at the site as currently
configured on http://localhost:4000.

Figure 6-7. No posts at all

There are no posts! Ah, we elected to keep posts “unpublished” for now to review them
before making them public. If we edit any file individually and change the line publish
ed: false inside our YFM to published: true then we will see that this file becomes

124 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


available inside our site. Let’s do this for three of the files. Notice the server regenerates
our files each time we change one of them.

...
      Regenerating: 1 files at 2014-06-20 12:54:52 ...done.
      Regenerating: 2 files at 2014-06-20 12:55:03 ...done.
      Regenerating: 1 files at 2014-06-20 12:55:15 ...done.
      Regenerating: 4 files at 2014-06-20 12:55:15 ...done.
...

And, if we reload our page we’ll see them listed inside our index.

Figure 6-8. Publishing a single post

If we trust that all these posts are correct, we can change the scraper.rb script to make
them all public (inside the heredoc template, just change the published flag), or we could
change files individually by hand as we did here.

Taking a look at the blog post itself, we see this after clicking on the first link.

Scraping Sites into Jekyll | 125

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 6-9. Not the best formatting

Not very pretty at all. We can beautiful this by adding some styling to the page. We’ll
use Bootstrap, the most popular CSS framework on GitHub. To start, edit the layout to
include Bootstrap from the Bootstrap CDN. And, add a container class around the
content.

<html>
<head>
<title>ByTravelers.com</title>

<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.css" rel="stylesheet">

</head>

<body>

{{ content }}

</body>
</html>

Notice that our files are regenerated in the terminal window with jekyll serve -w.
Refreshing the page shows some improvement, but we can do better. Let’s make a front
page which shows just the ten most recent post, and an archive page which shows all
the posts in reverse chronological order.

126 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


First, copy the existing index.md file to a file named archive.md. Our current index
looks just like our archive page needs to be. To make the front page with ten posts change
the {% for post in site.posts %} tag to {% for post in site.posts | limit:10
%}. This limits us to ten posts. Add a link to archive.html at the bottom of our in
dex.md file.

If we look at any of the pages we’ve scraped, they are now centered inside a box, but we
don’t have titles or anything else about the journal entry. Add a layout file just for posts
by creating a file called post.html inside of the _layouts directory with the following
contents.

---
layout: default
---

<h1>{{ page.title }}</h1>

{{ content }}

Notice also that this layout inherits the default layout. You can imagine wrapping many
layouts within layouts to build up complicated output trees, but in this case we can now
manage a base layout, including all the CSS and other complementary files associated
with our site, and automatically propagate changes down into lower layout files.

Add these changes to the index, and commit them.

$ git add .
$ git commit -m "Added layout specific to posts"

Now that we have a post layout, we will need to adjust our post files to use this layout
as right now they specify layout: default inside their YAML Front Matter. You might
groan at the thought of editing all the files individually, but we don’t need to go through
that much effort as it turns out. If we make a one line change to our scraper.rb script
(inside the write_post method) we can run the script again, and all our files will au‐
tomatically be updated. As we committed them to our local git repository, we can also
use tools like git diff to verify the changes we made were the correct ones.

    title.gsub!( /"/, '' )

    template = <<"TEMPLATE"
---
layout: post    #  <---- Set our layout variable to "post"
title: "#{title}"
published: true
---

#{body}
TEMPLATE

Scraping Sites into Jekyll | 127

www.it-ebooks.info

http://www.it-ebooks.info/


If we then run ruby scraper.rb we will see something like Regenerating: 31 files
at 2014-06-24 09:00:39 ...done. indicating that our post files have changed. We
can also verify that we made the correct changes by using the git diff _posts com‐
mand. The result will be something like the following.

$ git diff _posts
diff --git a/support/jekyll-parser/_posts/2000-05-23-third-day-in-salvador.md b/support/jekyll-parser/_posts/2000-05-23-third-day-in-salvador.md
index 1873972..a4dbc21 100644
--- a/support/jekyll-parser/_posts/2000-05-23-third-day-in-salvador.md
+++ b/support/jekyll-parser/_posts/2000-05-23-third-day-in-salvador.md
@@ -1,10 +1,16 @@
 ---
-layout: post
+layout: post    #  <---- Set our layout variable to "post"
 published: true
 ---
...

The astute amongst you will also note that this shows we can add comments inside of
our YAML Front Matter when needed.

Customizing Styling
Adding a CSS framework like Bootstrap helps things considerably, but we should match
the original colors as well. The easiest way to get this information is to again view the
site HTML using your browser’s developer tools. On Chrome we can see that in the
original body we hard code colors for the body, text and links.

128 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 6-10. Hard coding colors into our HTML

We need to convert this into the modern equivalent CSS and we can then add this a CSS
file and include it inside all our pages by adding a link from the default.html template.
Make a new directory inside called assets/css and write a file called site.css and
include the CSS to match our original site. The choice of using assets/css as the di‐
rectory structure is completely arbitrary; we could have chosen any structure we wanted
and as long as the reference was correct it would have worked with our HTML templates.

body {
color: #000000;
background-color: #CCCC99;
}

a {
color: #603;
}

Then, modify the default.html template and include the new CSS file to allow our style
changes to “cascade” to all our other files.

...
<title>ByTravelers.com</title>

<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.css" rel="stylesheet">
<link href="/assets/css/site.css" rel="stylesheet">

Scraping Sites into Jekyll | 129

www.it-ebooks.info

http://www.it-ebooks.info/


</head>
...

Grabbing Original Images
Our site is bare beyond text and the original colors; adding the images would add some
pop. We can easily modify our scraper.rb script and pull down the original images
from our site and then republish them into our new Jekyll blog. Taking a look at the
archived site, note that each title has an image to the left of it. If we customize our
process_title method we can retrieve these images and then publish them into our
blog.

Finding the image is easy: img = ( title/ "img" ) will retrieve an “img” tag from the
title as passed to us. Printing out the element using puts is simple way to view the
contents of the elements, one of which looks like this <img src="/web/

20030502075943im_/http://www.bytravelers.com/images/pro/book.gif"> We
can then dig into the element using syntax like img.attr('src') and get to the actual
source of the image. We’ll need to append the base site URL to this and can then retrieve
the image from archive.org.

Unfortunately, the VCR gem does not easily allow us to make requests which are not
captured. There are methods in VCR to ignore requests, but without heavily refactoring
our get_ith_method. Instead we cheat by using a command line tool called wget to
download the image. The VCR gem works by hooking into ruby libraries which make
HTTP calls; by using the wget tool we can avoid using Ruby for a moment and download
the file manually.

...
def process_title( i, title )
  img = ( title / "img" ) # 
  src = img.attr('src').text()
  filename = src.split( "/" ).pop

  output = "assets/images/"
  full = File.join( output, filename ) # 

  unless File.exists? full
    root = "https://web.archive.org"
    remote = root + src
    contents = `wget --quiet -O #{full} #{remote}`  # 
  end

  title = title.text()
  if title
    title.gsub!( /Title:/, "" )
    title.strip!
  end
  [ title, filename ]  # 

130 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


end
...

First, use the HTML node and extract the img tag from it. We then process the
result, picking the src attribute from the tag, and then split it up by slash
characters and pull off the last item returning just the filename.
We then generate a path for the image. We chose assets/images, which keeps
all our assets (like our CSS file) in a common place.
The wget command requires a full remote URL and the path we created
previously. We give it the --quiet switch to reduce noise during our processing.
We will be placing the image into the template, so we want to return it with the
title as processed data.

Once we have processed the information, we will need to modify the post template. We
passed back the image inside the processed data from the process_title method. Ruby
is an untyped language and this makes it so that even though initially we were passing
back a string result from process_title and are now passing back an array of strings,
we don’t need to change the get_ith_page which assembles the results of our processing
functions and puts them into the page array. When we iterate over the page result later,
we should interpret the first element differently and pull the first item out as our title,
and use the second item as the image for the post. This can all happen inside our
write_post method.

...
  def write_post( page )
    title = page[0][0]  # 
    image = page[0][1]
    body = page[1]
    creation_date = page[2]

    title.gsub!( /"/, '' )

    template = <<"TEMPLATE"
---
layout: post
title: "#{title}"
published: true
image: #{image}   # 
---

#{body}
TEMPLATE

...

Scraping Sites into Jekyll | 131

www.it-ebooks.info

http://www.it-ebooks.info/


As we mentioned, the first item in the array we receive is now the title and image
packages as another array. We pull the first item out as the title text, and use the
next item in the secondary array as the image.
What do we do with the image? Let’s put it into the YAML Front Matter. We can
then utilize it from within our post.html layout file using Liquid tags.

Now, we modify our post.html layout to include the image near the title.

---
layout: default
---

<h1>{{ page.title }}</h1>

<img src="/assets/images/{{ page.image }}">

{{ content }}

We use the Liquid template tags {{ page.image }} to retrieve the image from our YFM
and build an image tag inside our template.

We can also reuse this image on our index page (index.md).

---
layout: default
---

<h1>ByTravelers.com</h1>

Crowd sourced travel information.

<br/>

<div>
{% for post in site.posts %}
<a href="{{ post.url }}"><h2> {{ post.title }} </h2></a>
<img src="/assets/images/{{ post.image }}">
{{ post.content | strip_html | truncatewords: 40 }}
<br/>
<em>Posted on {{ post.date | date_to_string }}</em>
<br/>
{% endfor %}
</div>

Note that in this case the variable is presented as post.image as compared to page.im
age when we are inside a post. Jekyll and Liquid are not consistent here, so caveat emptor.

Our blog definitely has more life when we add in the original colors and images. It still
looks like a blog from the last millenium, but it is an improvement.

132 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 6-11. Restoring the original colors and images

Mapping Integration
This is a site about travel information, so it makes sense to add maps as well. We can
process the location information we retrieved from the archived site and add a map
image.

Add a new function called process_location and place it underneath the process_cre
ation_date method inside the get_ith_page method.

...
def process_location( i, row )
  location, creation_date = row.text().split /last updated on:/  # 

  location.gsub!( /Concerning: /, "" ) # 
  location.strip!
  return location # 
end
...

As we did in the process_creation_date method, we grab the row and split it
in two pieces. This time we are only interested in the first element, the location.

Scraping Sites into Jekyll | 133

www.it-ebooks.info

http://www.it-ebooks.info/


3. This idea was modified from a blog post on Katy Decorah’s blog

Each location string starts with the text “Concerning: " so we remove that here.
Return the result

Now that we have the location, we need to insert it into the post itself. Once again we
will place it inside the YFM. Modify the write_post method to grab the location from
the array argument, and use that in the template inside the YFM.

...
  def write_post( page )
    title = page[0][0]
    image = page[0][1]
    body = page[1]
    creation_date = page[2]
    location = page[3]

    title.gsub!( /"/, '' )

    template = <<"TEMPLATE"
---
layout: post
title: "#{title}"
published: true
image: #{image}
location: #{location}
---

#{body}
TEMPLATE

...

Then, inside the post.html file, add an image tag with the map. We’ll use a static image
generated by Google Maps. We can utilize the location item inside the YFM and generate
a map 3.

---
layout: default
---

<h1>{{ page.title }}</h1>

{% if page.location %}
<div>
<img src="http://maps.googleapis.com/maps/api/staticmap?center={{ page.location }}&zoom=13&size=400x100">
</div>
{% endif %}

134 | Chapter 6: Ruby and Jekyll

www.it-ebooks.info

http://katydecorah.com/code/2013/09/06/google-maps-images-api-for-jekyll/::
http://www.it-ebooks.info/


<img src="/assets/images/{{ page.image }}">

{{ content }}

Inviting Contributions with GitHub “Fork”
When you publish a Jekyll blog, the fact that it is a repository on GitHub makes it simple
to manage and track changes. In addition, because forking is a button click away, you
can ask people to contribute or make changes with very little friction. You might have
seen the banner saying “Fork me on GitHub” on many a software project page hosted
on GitHub. We can motivate others to participate in our blog using pull requests. Let’s
add that as a final touch and invite people to make contributions the GitHub way. The
GitHub blog first posted these banners and we’ll use their code as-is inside our de
fault.html page.

...
<body>

<a href="https://github.com/xrd/bytravelers.com"><img style="position: absolute; top: 0; right: 0; border: 0;" src="https://camo.githubusercontent.com/a6677b08c955af8400f44c6298f40e7d19cc5b2d/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f677261795f3664366436642e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_gray_6d6d6d.png"></a>

<div class="container">
{{ content }}
...

Publishing our blog to GitHub
Like any other GitHub repository, we can then publish our blog using the same com‐
mands we saw with earlier repositories. Obviously you should change the username
and blog name to suit your own needs.

$ export BLOG_NAME=xrd/bytravelers.com
$ gem install hub
$ hub create $BLOG_NAME # You might need to login here
$ sleep $((10*60)) && open $BLOG_NAME

And, don’t forget to setup DNS records and give yourself appropriate time to let those
records propagate out.

Summary
We’ve shown that we can quickly setup a blog on GitHub that has version control built
in. We’ve shown how to import blogs like Wordpress into Jekyll. And, we’ve taken a site
available only as an archive on the Internet Archive and scraped the content, images
and even the colors, and then converted it to a Jekyll blog. Jekyll is a simple tool for
managing websites, but a hidden benefit is that because Jekyll is so simple, you can easily
write your own tools to interact and build on top of Jekyll. Once our site is a repository
on GitHub, making changes yourself, or accepting them from other contributors is as
easy as clicking “Merge” on a pull request.

Summary | 135

www.it-ebooks.info

https://github.com/blog/273-github-ribbons:
http://www.it-ebooks.info/


In the next chapter we will continue looking at Jekyll by building an Android application
that uses the Java GitHub API bindings and allows you to create Jekyll blog posts with
the Git Data API.

136 | Chapter 0: Ruby and Jekyll

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Who You Are
	What You Will Learn
	First Class Languages You Need to Know
	Who This Book is Not For
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	cURL: a starting point for API exploration
	Breadcrumbs to Successive API Paths
	The JavaScript Object Notation (JSON) Format
	Parsing JSON from the Command Line
	Debugging Switches for cURL

	All The Headers and Data
	Authentication
	Username and Password Authentication
	oAuth

	Status Codes
	Success (200 or 201)
	Naughty JSON (400)
	Improper JSON (422)
	Successful Creation (201)
	Nothing Has Changed (304)

	Conditional Requests to Avoid Rate Limitations
	GitHub API Rate Limits
	Reading Your Rate Limits

	Accessing Content from the Web
	JSON-P
	CORS Support
	Specifying Response Content Format

	GitHub Has Amazing API Documentation
	Summary

	Chapter 2. Gists and the Gist API
	Gists are repositories
	Embedding Gists Inside HTML
	Embedding Inside Jekyll blogs

	Gist from the command line
	Gists as fully functioning apps
	Gists that render Gists
	Going deeper into the Gist API

	Summary

	Chapter 3. Gollum
	“The Story of Smeagol…”
	Repository Linked Wikis
	Markup and Structure

	Moving Gollum to Your Laptop
	Alternative Editing Options
	Editing with the Command Line
	Adding Authentication

	Building a Gollum Editor
	Hacking Gollum
	Wireframe Review Tool
	Programmatically Handling Images
	Leveraging the Rugged Library
	Optimizing for Image Storage
	Reviewing on GitHub
	Improving Revision Navigation

	Summary

	Chapter 4. Python and the Search API
	General Principles
	Authentication
	Result Format
	Search Operators and Qualifiers
	Sorting

	Search APIs in Detail
	Repository Search
	Code Search
	Issue Search
	User Search

	Our example application
	User flow

	Python
	AGitHub
	WxPython
	PyInstaller

	The Code
	Git credential helper
	Windowing and interface
	GitHub login
	GitHub search
	Displaying results

	Packaging
	Summary

	Chapter 5. DotNet and the Commit Status API
	The API
	Raw statuses
	Combined status
	Creating a status

	Let’s write an app
	Libraries
	Following along
	First steps
	OAuth flow
	Status handler

	Summary

	Chapter 6. Ruby and Jekyll
	The Harmless Brew that Spawned Jekyll
	(Less Than) Evil Scientist Parents
	Operating Jekyll Locally

	A Jekyll Blog in 15 Minutes
	YFM: YAML Front Matter
	Jekyll markup
	Using the jekyll command
	Privacy Levels with Jekyll
	Themes
	Publishing on GitHub
	Hosting On Your Own Domain

	Importing from other blogs
	From Wordpress
	Exporting from Wordpress alternatives

	Scraping Sites into Jekyll
	Jekyll Scraping Tactics
	Writing our Parser
	Publishing our blog to GitHub

	Summary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




