“A look inside a mind without peer.”

— Edward Snowden

The Hardware

HACKER

ADVENTURES IN MAKING
c HARDWARE

Andrew “bunnie” Huang

PRAISE FOR
The Hardware Hacker

“Hardware, says bunnie, is a world without secrets: if you go
deep enough, even the most important key is expressed in
silicon or fuses. bunnie’s is a world without mysteries, only
unexplored spaces. This is a look inside a mind without peer.”
—EDWARD SNOWDEN

“A tour de force that combines the many genius careers
of one of the world’s great hacker-communicators: practi-
cal, theoretical, philosophical, and often mind-blowing.”
—CoRry DOCTOROW, AUTHOR OF LITTLE BROTHER AND TECHNOLOGY
ACTIVIST

“bunnie lives in the world of hardware where the solder
meets the PCB. He has more practical experience and is
a better teacher of how the ecosystem of hardware works
than any other person I've ever met, and I know a lot of
people in this space. He has rendered this experience
and expertise into an amazing book—a hacker’s-point-of-
view bible to anyone trying to work in or understand and
work in the emerging and evolving world of hardware.”
—dJoI ITo, DIRECTOR, MIT MEDIA LAB

“bunnie is the ultimate tour guide of hardware hacking as it
stands today, with an eye toward the sublime art of how things
are really made. The Hardware Hacker will take you on a journey
through the factories of the world, covering both the technical
and ethical implications of the ‘stuff’ we manufacture and buy.”
—LIMOR “LADYADA” FRIED, FOUNDER & ENGINEER, ADAFRUIT
INDUSTRIES

“Curious how the devices in our daily lives come into being?
Want to manufacture your own project? In this well-written
book, bunnie describes the ins and outs of the manufacturing
process in China. A very entertaining and informative read.”
— MITCH ALTMAN, INVENTOR OF TV-B-GONE"

“The Hardware Hacker 1s, at its core, the primer for under-
standing the culture of making something in China, how to
build thousands of things, and why Open Hardware works.”
—HACKADAY

The
Hardware
Hacker

Adventures in Making
and Breaking Hardware

Andrew “bunnie” Huang

The Hardware Hacker. Copyright © 2017 by Andrew “bunnie” Huang.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

20191817 123456789

ISBN-10: 1-59327-758-X
ISBN-13: 978-1-59327-758-1

Publisher: William Pollock Copyeditor: Rachel Monaghan
Production Editor: Alison Law Compositor: Alison Law

Cover and Jacket Design: Hotiron Creative Proofreader: Emelie Burnette
Interior Design: Beth Middleworth Indexer: BIM Creatives, LLC.

Developmental Editor: Jennifer Griffith-Delgado

The images on the following pages are reproduced with permission: pages 58-59 © David Cranor; page 124
© m ss ng p eces; pages 216, 227-228 © Scott Torborg; page 248 © Joachim Strombergson; pages 253
(bottom) and 254255 © Jie Qi; page 256 (top) © Chibitronics; page 310 © Nadya Peek; page 326 (top) from
Eva Yus et al., “Impact of Genome Reduction on Bacterial Metabolism and Its Regulation,” Science 326,
no. 5957 (2009), reprinted with permission from AAAS; page 349 © Sakurambo, used under CC BY-SA 3.0.

The interviews on the following pages were originally published online and are reproduced with permission:
pages 190-204, originally published as “MAKE'’s Exclusive Interview with Andrew (bunnie) Huang — The
End of Chumby, New” by Phillip Torrone in Make: (April 30, 2012), http://makezine.com/2012/04/30/
makes-exclusive-interview-with-andrew-bunnie-huang-the-end-of-chumby-new-adventures/; pages
357-372, originally published in Chinese as “Andrew “bunnie” Huang : FFREH. SIESBEHRE in
China Software Developer Network (July 3, 2013), http://www.csdn.net/article/2013-07-03/2816095;
pages 372—-382, originally published as “The Blueprint Talks to Andrew Huang” in The Blueprint (May
15, 2014), hitps:/ /theblueprint.com/stories/andrew-huang/.

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Huang, Andrew, author.

Title: The hardware hacker : adventures in making and breaking hardware /
Andrew “Bunnie” Huang.

Description: 1st ed. | San Francisco : No Starch Press, Inc., [2017]

Identifiers: LCCN 2016038846 (print) | LCCN 2016049285 (ebook) | ISBN
9781593277581 (pbk.) | ISBN 159327758X (pbk.) | ISBN 9781593278137 (epub)
| ISBN 1593278136 (epub) | ISBN 9781593278144 (mobi) | ISBN 1593278144
(mobi)

Subjects: LCSH: Electronic apparatus and appliances--Design and construction.
| Electronic apparatus and appliances--Technological innovations. |
Computer input-output equipment--Design and construction. | Reverse
engineering. | Electronic industries. | Huang, Andrew.

Classification: LCC TK7836 .H83 2017 (print) | LCC TK7836 (ebook) | DDC
621.381092--dc23

LC record available at https:/lecn.loc.gov/2016038846

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective own-
ers. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using
the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in it.

http://makezine.com/2012/04/30/makes-exclusive-interview-with-andrew-bunnie-huang-the-end-of-chumby-new-adventures/
http://makezine.com/2012/04/30/makes-exclusive-interview-with-andrew-bunnie-huang-the-end-of-chumby-new-adventures/

To all the wonderful, patient, and accepting people

who have supported this eccentric hacker

ACKNOWLEDGMENTS

Thanks to all the hard-working staff at No Starch Press for
making this book happen. In particular, thanks to Bill Pollock
for conceiving and sponsoring the effort, and thanks to Jennifer
Griffith-Delgado for compiling, editing, and arranging my
writing into the form of this book.

brief contents

PLEEACE .. vttt Xvii
part 1

adventures in manufacturing.......ccccceeceeeeeeeereeececceeeeeeennnns 1
chapter 1. made In china............oovvvvviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 7
chapter 2. inside three very different factories.............cccceeeeennnee. 43
chapter 3. the factory floor..........ccoovvvvvvireeeeieiieeeeeeeeeeeeeeeeeeeeen 73
part 2

thinking differently:

intellectual property in chinacceeeeeeereeeeennnceeeeenns 115
chapter 4. gongKkal INNOVALIONvvvvvvuiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeens 119
chapter 5. fake G00AS.......uvvviiiiiiiiiieiiiiieeeeeeeeeeeeeeeceeee e 143
part 3

what open hardware means to meccceeeeeeeeneeceeeenns 175
chapter 6. the story of chumby..........cccovvveeiiiiiiiiiiieeeeeee, 181
chapter 7. novena: building my own 1aptop.....ccccceeeeeeeeeiiiiinnnnnnn, 215

chapter 8. chibitronics: creating circuit stickers..........ccccceeeeennnn. 251

viii brief contents

part 4

a hacker’s PerSPeCtiVE....ccciiiieeeeeeeereeeereeeeeeeeseeesesescassanns 275
chapter 9. hardware hacking..........cccooovveeeiiiiiiiiiiiiiiiiieieeeeeeeee, 279
chapter 10. biology and bioinformatics...........cccoeeeeuvriirierreeeeeennn. 325
chapter 11. selected INtErVIEWS.........uuvvuuiuiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeens 357
EPIIOZUE ...eiiiiiiiec e e 383

contents 1n detail

preface

part 1
adventures in manufacturing

1. made in china
The Ultimate Electronic Component Flea Market

The Next Technological Revolution...............cccceeeeeuvnnnnnee..
Touring Factories with Chumby..........cccccvevieeeiiiiiinnnnnee.
Scale in Shenzhenccceveiieeiiiieniieecee e
Feeding the Factorycccccccoeviiiiiiiiiiiiiiee e,
Dedication to QUalityccccovviiiieieiiiiiiiiee e
Building Technology Without Using It.........ccccceeeeennnen...
SKkilled WOTKETScccvvveiiiieeeiiieeiiieeeiiee e e e eeveeesvaee e
The Need for Craftspeoplecccceeeeveivieieeeeiiiieeeeeeereennn.
Automation for Electronics Assemblycccceeeveeiiunneeeeenn.
Precision, Injection Molding, and Patience.......................
The Challenge of QUAlity........ccceeccvveeeivieiniieeiiieeeiee e,
Closing Thoughts........ccccoeeeiiiiiiiiiieieeee e

2. inside three very
different factories

Where Arduinos Are Born........cccceevevcciiieeiniiieeeeiiieeen,
Starting with a Sheet of Copper.........cccccvveevvirercrieeiinenn.
Applying the PCB Pattern to the Copper..........cccvveeeenne.
Etching the PCBS......ccooviiiiiiiiecie e
Applying Soldermask and Silkscreen............cccccceeuvveeeennn.
Testing and Finishing the Boards..........c.cccceeveiiieeiinnnnns

XVl1l

x contents in detail

Where USB Memory Sticks Are Born.....cccceeeeeeeeeeeeeeeeiiiiiiiininennnnn, 57
The Beginning of a USB Stick..........ccooevvviieiieiiiiiiieeeccieeeee e 57
Hand-Placing Chips on a PCB.........ccccciiiiiiiiiiiieee e, 59
Bonding the Chips to the PCBi.......ccccoveviiiiiiieeeeee e 61
A Close Look at the USB Stick Boardscccocveeviiiiiniiiiniienen. 61

A Tale Of TWO ZIPPELS ...ccuuerrririiiieeeeeeeeeeeeeiciiieeeeeeeeeeeeeeeeeeceaaneeeeees 64
A Fully Automated Processccooouvveiiieiiiiieeieiiieee e 67
A Semiautomated Process.........cccvevcveeiriieeniiiieeiie e 68
The Irony of Scarcity and Demand...........cccccoeevvviieeiniiiieeeceenneene. 70

3. the factory floor 73

How to Make a Bill of Materialsccccoevvieiviiieniiieeiieeiee e, 74
A Simple BOM for a Bicycle Safety Lightcccocceveiiiiiiiiniinnn. 74
Approved Manufacturersoooevvveeieeiiiieeeeeeeiiieeeeeeeeireeeeeeenns 76
Tolerance, Composition, and Voltage Specification 76
Electronic Component Form Factor..........ccocveeeveiiiiieiiiiiiiieeceeennns 77
Extended Part NUmDbDErsccoooueeeiiiiiiiiiiiieeee e 78
The Bicycle Safety Light BOM Revisited.........cccccoevveeerivieennieennnenn. 79
Planning for and Coping with Change.........c..ccccooeevvviiiiiniiiinneen, 82

Process Optimization: Design for Manufacturing......................... 84
WHY DFM? ...ttt ettt sae et s s enns 85
Tolerances to COnSIAETooviiriieiiiriiienie ettt 86
Following DFM Helps Your Bottom Line...........cccocevvviiiiiniininneenn. 88
The Product Behind Your Productccccceevvveiiiiieeiiiiiiieneeiieen. 91
Testing vs. Validation........cccccoeeeeiviieiiieiiiiee e e 97

Finding Balance in Industrial Designccoeoeecviiiiiiiieeeenennnnnn. 100
The chumby One’s Trim and Finish..........ccccoeoviiiiiiiiiiiniieeinn. 101
The Arduino Uno’s Silkscreen Artcocccevveeeveerieenieniieenienieenne 104
My DeSign ProCesscoovvviiiieiiiiiiiee et 105

Picking (and Maintaining) a Partner..........ccccceeeecviviiiiiiieeenennnnn. 107
Tips for Forming a Relationship with a Factory..............cccuoo..... 107
Tips 0N QUOLALIONS ...eeeiieiiriieeeeeiiirieeeeeeeeeee e et eeerree e e eeaneeaes 108
Miscellaneous AdVICEcccuuieeueeeiriieieiieeeiieeesiee et 111

Closing ThoUgGhES..........coooiiiiiiiiiiieeeeee e 113

contents in detail xi

part 2
thinking differently:
intellectual property in china 115
4. gongkai innovation 119
I Broke My Phone’s Screen, and It Was Awesome....................... 120
Shanzhai as Entrepreneurs.......occccceveeeeeeeeiiiiiiiiiiieeeeee e e 121
Who Are the Shanzhai?cccecceeviiiiiieniiiiieie e 122
More Than CopyCatscccueeerveeeriieeeiiieeiieeenieeeereesireeenereeeseeees 123
Community-Enforced IP Rules........cccccoeiivviiiiiiiiiiiiiec e 124
The $12 PRONE ...ttt 126
Inside the $12 Phonecccooviiiiiiiiiiiiieiiiccieceeeeee e 128
Introducing GONgKaLcceeevviiieciiieiiie ettt 131
From Gongkai to Open SOUTCeccccvvveeeeeiiiiieieeeeiiieeeeeeiveeeenn 134
Engineers Have Rights, T00cooviiiiiiiiiiiiiiiecccccieee e, 135
Closing Thoughts........uuiieieiieeieiiiieiiiiiieeeeeeee e 141
5. fake goods 143
Well-Executed Counterfeit Chipsccccevvveeeeeeeeiiiiiiiiiiieeeeeeeeeeenn, 143
Counterfeit Chips in US Military Hardware...............cccoeeevnnnnnns 149
Types of Counterfeit Parts........ccocvveeeeiiiiiiieeeniie e 150
Fakes and US Military Designscccccveeeeeveiiieieeeiciieeee e 153
Anticounterfeit MeasUTescccceevvieeeiiiieeiieeesiie e e sreeesvee e 154
Fake MicroSD Cards......cccceeeveeiiieeriiiiieee et e 156
Visible Differences........cccceeeuiiiieiieeiiieeeiie e esiieereeesvee e 157
Investigating the Cardscccccvvviiiiiiiiiiiiiiece e, 158
Were the MicroSD Cards Authentic?........c.ccceevveevveeervieenineeennen. 159
Further Forensic Investigation..........cccccveeieeieiiiiieeiiciiiieee e 160
Gathering Data........cccveeiiieeiiiieeee e 162
Summarizing My FIndings..........ccccevvveiiiiiiiiiiice e 166
Fake FPGAS ..coviiiiieeee et 168
The White Screen ISSUEccccveiiriiiiniiiiiiieeieeee e, 168
Incorrect ID Codes ...vvieiiieeeiiieeeiieeciiee et evee e eve e e 170
The SOIUtIONeiiiiiieiiie e e 172

Closing ThoUgGhES.cooiiiiiiiiiiiiieeeeeee e 174

xii contents in detail

part 3
what open hardware means to me 175
6. the story of chumby 181
A Hacker-Friendly Platformccccoooviiiiiiiiiniiiiiiiiiciciiiieeeeee. 182
Evolving chumbyuuiiiiiiiiiiiiiiiiiiiieeeeee e 184
A More Hackable Devicecccceeeriieeeiiiieiiie e 186
Hardware with NO Secrets.......ccooceviiiiiiiniiiiniiieiiceeeeceee e, 187
The End of Chumby, New Adventuresccccceceeeeiveeeeenciveeeeennnns 189
Why the Best Days of Open Hardware Are Yet to Come............. 205
Where We Came From: Open to Closed.........ccceevvveeviieeeireennnnen. 206
Where We Are: “Sit and Wait” vs. “Innovate”cccocceeevveennnen. 208
Where We're Going: Heirloom Laptops......ccccccveeeiieencieeennieeeeen. 210
An Opportunity for Open Hardware..........ccccceeeeuvveeeeieniiieeeeennns 211
Closing ThoughtsS.......ccccviiiiiiiiiiiieeeiie e e 214
7. novena: building my own laptop 215
Not a Laptop for the Faint of Heartcccoeeveeeeeeieiiiiiiiiiiinnnnnn. 217
Designing the Early Novena........ccooovvveveeeeieeieiiiiciciiieeeeeeeeeeeee 219
Under the HoOd......ccooviiiiiiiiiiiieee e 219
The ENcloSure.......cccuviiiieiiiiiieeecee e 224
The Heirloom Laptop’s Custom Wood Composite........................ 227
GrOWINg NOVENAS ..ecocuvieeiiiiieeiiieeeiteesireeesreeeeireeeseeeeeseseeesssaeesnnnens 228
The Mechanical Engineering Detailscccocveeeieiciiieeieennnnnnn.. 229
Changes to the Finished Product...........ccooeviiiiviieeiiiiiiiiiiinnns 232
Case Construction and Injection-Molding Problems.................... 233
Changes to the Front Bezelcccovveeviiiiniiiiiiieecie e 237
DIY SpPeakers....cccuuiiiiiiciiieeeeeceee e 238
The PVT2 Mainboardcccceeveiiiiieeiiiiiieee e e 238
A Breakout Board for Beginners...........ccocveeeeieiivieeiieiiiieee e 241
The Desktop Novena’s Power Pass-Through Board...................... 242
Custom Battery Pack Problems...........ccccoooviviiiiiiiiiiiiiiceieee e, 243
Choosing a Hard DIiveccocveeiiieiiiiieeiieiiiieeee e 244
Finalizing FIrmware.........cccccoeeviiiiiiiiiiiieee e 246
Building a CommuUNItY...........ccooeriiiiiiireeeeeeeeeeeeeeeeiicireeeeeeeeeeeeeeenns 247

Closing Thoughts........ccceiiiiiiiiiiiiiiieee e 249

contents in detail xiii

8. chibitronics: creating circuit stickers 251

Crafting with CIrcuitsccccvvieiieiiiiiieeeriiiee e eciree e 257
Developing a New Processcccovviveieiiiiiiiiiiiiiiicceeeiee e 259
Visiting the Factory......ccceeciiiieieeiiieeeeeeee e 260
Performing a Process Capability Test........ccccovvviieiiviiiieeeennnnen. 261

Delivering on a Promise...........cccooeeiiiiviiiiieeieeeeeeececciiieeeeeee e 264

Why On-Time Delivery Is Importantccccoeeeeeeeeeeeeeeeniiinnnnnnnnnn, 266

Lessons Learnedcccoooevviiiiiiiiiiiieiiec e 266
Not All Simple Requests Are Simple for Everyone....................... 267
Never Skip a Check PIotccccvvvieiiiiiiieeieeeeee e 268
If a Component Can Be Placed Incorrectly, It Will Be................. 268
Some Concepts Don’t Translate into Chinese Well 270
Eliminate Single Points of Failure...........ccooovviiiiiiiiiieiiiniiieneen, 271
Some Last-Minute Changes Are Worth Itccccooevvivcieeinennn. 271
Chinese New Year Impacts the Supply Chain..............ccecuvveeennn. 272
Shipping Is Expensive and Difficultccccoeeeeiiiiiiiiiniiiiinnen, 273
You're Not Out of the Woods Until You Ship......cccccceeeevvieiiinnnnnns 274

Closing ThoughtS.......cccceuviiiiriiiiiieeeieie et e 274

part 4

a hacker’s perspective 275

9. hardware hacking 279

Hacking the PICI8F1320.........ccccoociiiiiiiiiiieeeeeeeeeiiireeeee e, 281
Decapping the ICccooiiiieciie e 282
Taking a Closer LooKc.veeiieiiiiiiiieiiiieee e e 283
Erasing the Flash Memoryccooccviiiiiiiniiiiieeeiiiieiee e 284
Erasing the Security Bitsccccceoeeiiiiiiiiiiieee e, 285
Protecting the Other Dataccccveevviieeciiiieiie e, 287

Hacking SD Cardsvveeeiiiiiiiiiiiiiiiiieieee e e 289
How SD Cards WOTK........cceeerviieeiiieiiieesiieeereeesereeeseneeeeveeeseneas 290
Reverse Engineering the Card’s Microcontroller 293
Potential Security ISSUESccccvvveeiiieiiieeiie e 298
A Resource for HObDYIStSvvviiiiiiiiiiiiiiiiieee e 298

Hacking HDCP-Secured Links to Allow Custom Overlays......... 298
Background and Contextccccveeeeieiiiiieiieiiiiieeeeeeeee e 300

How NeTV Workedoueeeeiiiiiiiieieeeee e 302

xiv contents in detail

Hacking a Shanzhai Phoneccccovvviiiiiiiiiiiiireeecee e, 306
The System ArchiteCture........cccovvveeeeeeiiiiieieeiiieee e e 306
Reverse Engineering the Boot Structure...........ccccoevvvvieiieennnnnn... 311
Building a Beachheadcccooviiiiiiiiiiiic e, 315
Attaching a Debuggercccveiiieiiiiiiiiiiiieee e 317
Booting an OS........ooooiiieiiiieeie et 321
Building a New Toolchain.........cccccoeeveviiiiiiieiiiiiieeeeiieee e 321
Fernvale Results........cccoeiiiiieiiiiieiiie et 323

Closing Thoughts.......ccceiiiiiiiiciiiiiieeeeee e 324

10. biology and bioinformatics 325

Comparing HIN1 to a Computer Virusccccceeeveeeercnveeeeennnnen. 327
DNA and RNA as BitS...cocieeiiiiiiiieecieeeeeeee e 328
Organisms Have Unique Access Ports.......cccceevveeeeevinieeeieeinnnnn... 330
Hacking Swine FIU.......ccoooeiiiiiiiiiiiiccee e 331
Adaptable INFIUENZAcoovviiiiieiiiiiiee e 333
A SIIVer LINING ..occooeiiiiiii ettt e ee e e 335

Reverse Engineering Superbugscccceeeeveeiiiiiiiiiiiiinieieeeeeeeeen, 335
The O104:H4 DNA SeqUeNCe.........ccceevveuiviieeeeeiiieeeeeeireee e 336
Reversing Tools for Biology.......ccovvvieeieiiiiieeceeiiiiieeeeeciieee e 338
Answering Biological Questions with UNIX Shell Scripts.......... 340
More Questions Than ANSWETScccvvveeeeeeiiveeeeeeeiireeeeeeeevnenen 342

Mythbusting Personalized Genomics...........ccceeeveevvvviireeeeeeeeeeenn. 344
Myth: Having Your Genome Read Is Like Hex-Dumping

the ROM of Your Computerccceeevvvveeieeieciiieee e 344
Myth: We Know Which Mutations Predict Disease...................... 345
Myth: The Reference Genome Is an Accurate Reference............. 345

Patching @ GENOMIEoooiiiiiiiiiiiiiieeeeeee e 346
CRISPRS in Bacteriacoooviieiiiieiiieeeiec e 347
Determining Where to Cut a Gene.........cccceeeeevvieiiieeeciieeeieee e, 350
Implications for Engineering Humans..........cccccccoooeeviiniiiennnn... 351
Hacking Evolution with Gene Drive...........cccoeevvvieeeeiinneeeeeennnn.. 352

Closing Thoughts.........cccoiiiiiiiiiiiiiiiieeee e, 354

contents in detail xv

11. selected interviews 357
Andrew “bunnie” Huang: Hardware Hacker (CSDN)................. 357
About Open Hardware and the Maker Movementccc........ 358
About Hardware Hackerscoocoevvviiveieeieeiiiiiieeeeeeeeeeeeeeeeeens 367
The Blueprint Talks to Andrew Huangcccoeeeeeeeeeeiiniiiiinnnnnnn, 372
epilogue 383

index 384

preface

When Bill Pollock, founder of No Starch Press, first contacted
me with the idea of publishing a compilation of my writings, I

was skeptical. I didn’t think there would be enough material
to fill a hundred pages. It seems I was wrong.

My mother often said, “It doesn’t matter what’s in your
head if you can’t tell people what’s in it,” and when I was in
seventh grade, she enrolled me in an after-school essay writ-
ing class. I hated the class at the time, but in retrospect, I'm
thankful. Starting with my college application essays and up
to this day, I've found the ability to organize my thoughts into
prose invaluable.

Xvill PREFACE

Most of the material in this book was originally published
on my blog, but as you’ll soon see, those posts weren’t puff
pieces written to drive ad revenue. One reason I write is to
solidify my own understanding of complicated subjects. It’s
easy to believe you understand a topic until you try to explain
it to someone else in a rigorous fashion. Writing is how I distill
my intuition into structured knowledge; I only write when I
find something interesting to write about, and then I post it
with a CC BY-SA license to encourage others to share it.

This book includes a selection of my writings on manu-
facturing, intellectual property (with a focus on comparing
Western versus Chinese perspectives), open hardware, reverse
engineering, and biology and bioinformatics. The good editors
at No Starch Press also curated a couple of interviews I've done
in the past that were particularly informational or insight-
ful. The common thread throughout these diverse topics is
hardware: how it’s made, the legal frameworks around it, and
how it’s unmade. And yes, biological systems are hardware.

I've always gravitated toward hardware because while I'm
not particularly gifted when it comes to abstract thought (hence
the need to write to organize my thoughts), I am pretty good
with my hands. I have a much better chance of understanding
things that I can see with my own two eyes.

My entire understanding of the world has always been
built on a series of simple, physical experiences, starting from
when I stacked blocks and knocked them over as a child. This
book shares some of my more recent experiences. I hope that
by reading them, you will gain a deeper understanding of the
world of hardware, without having to spend decades stacking
blocks and knocking them over.

Happy hacking,
—b.

Part 1

adventures in
manufacturing

I first set foot in China in November 2006. I had no idea what I
was walking into. When I told my mother I was going to visit
Shenzhen, she exclaimed, “Why are you going there? It’s just a
fishing village!” She wasn’t wrong: Shenzhen was just a town
of 300,000 back in 1980, but it had exploded into a megacity of
10 million in less than 30 years. Between my first visit and
the time I wrote this book, Shenzhen gained an estimated
4 million people—more than the population of Los Angeles.

In a way, my understanding of manufacturing over the
years has mirrored Shenzhen’s growth. Before going to China,
I had never mass-produced anything. I didn’t know anything
about supply chains. I had no idea what “operations and logis-
tics” meant. To me, it sounded like something out of a math
or programming textbook.

Still, Steve Tomlin, my boss at the time, charged me with
figuring out how to build a supply chain suitable for our hard-
ware startup, Chumby. Sending a novice into China was a
big risk, but my lack of preconceived notions was more of an
asset than a liability. Back then, venture capitalists shunned

2 PART 1

hardware, and China was only for established companies look-
ing to build hundreds of thousands of units of a given product.
My first set of tours in China certainly supported that notion,
as I primarily toured mega-factories serving the Fortune 500.

Chumby was lucky to be taken under the wing of PCH
International as its first startup customer. At PCH, I was
mentored by some of the finest engineers and supply chain
specialists. I was also fortunate to be allowed to share my
experiences on my blog, as Chumby was one of the world’s
first open hardware startups.

Although meeting the minimum order volumes of our con-
ventional manufacturing partners was a constant struggle,
I kept noticing small things that didn’t square with conven-
tional wisdom. Somehow, local Chinese companies were able
to remix technology into boutique products. The so-called
shanzhai integrated cell phones into all kinds of whimsical
forms, from cigarette lighters to ornamental golden Buddha
statuettes (more on this in Chapter 4). The niche nature of
these products meant they had to be economical to produce in
smaller volumes. I also noticed that somehow factories were
able to rapidly produce bespoke adapter circuits and testing
apparatuses of surprisingly high quality in single-unit volumes.
I felt there was more to the ecosystem—a story that was being
told over and over again—but few had the time to listen, and
those who did heard only the parts they wanted to hear.

The financial crisis of 2008 changed everything. The con-
sumer electronics market was crushed, and factories that were
once too busy printing money were now swimming in excess
capacity. I made friends at several medium-sized factories
in the area. I started to inquire about how, exactly, these
factories were able to so nimbly produce their internal test
equipment, and how shanzhai were able to prototype and build
such bespoke phones.

adventures in manufacturing 3

The bosses and engineers were initially reticent, not because
they wanted to hide potential competitive advantages from
me, but because they were ashamed of their practices. Foreign
clients were full of corporate process, documentation, and qual-
ity procedures, but they also paid dearly for such overhead.
Local companies were much more informal and pragmatic. So
what if a bin is labeled “scrap”? If the bits inside are suitable
for a job, then use them!

I wanted in. As an engineer, tinkerer, and hacker, I cared
a lot about the cost to produce a few units, and a couple of
minor assembly defects was nothing compared to the design
issues I had to debug. I eventually managed to coax a factory
into letting me build a part using its low-quality but ultra-
cheap assembly process.

The trick was to guarantee that I would pay for all the
product, including defective units. Most customers refuse to
pay for imperfect goods, forcing the factory to eat the cost of
any part that isn’t exactly to specification. Thus, factories
strongly dissuade customers from using cheaper but low-
quality processes.

Of course, my promise to pay for defective product meant
there was no incentive for the factory to do a good job. It could
have, in theory, just handed me a box of scrap parts and I'd
still have had to pay for it. But in reality, nobody had such ill
intentions; as long as everyone simply tried their best, they
got it right about 80 percent of the time. Since small-volume
production costs are dominated by setup and assembly, my
bottom line was still better despite throwing away 20 percent
of my parts, and I got parts in just a couple of days instead of
a couple of weeks.

Having options to trade cost, schedule, and quality against
each other changes everything. I've made it a point to discover
more alternative production methods and continue shortening

4 PART 1

the path between ideas and products, with ever more options
along the cost-schedule-quality spectrum.

After Chumby, I decided to remain unemployed, partly to
give myself time for discovery. For example, every January,
instead of going to the frenzied Consumer Electronics Show
(CES) in Las Vegas, I rented a cheap apartment in Shenzhen
and engaged in the “monastic study of manufacturing”; for
the price of one night in Las Vegas, I lived in Shenzhen for a
month. I deliberately picked neighborhoods with no English
speakers and forced myself to learn the language and customs
to survive. (Although I'm ethnically Chinese, my parents pri-
oritized accent-free fluency in English over learning Chinese.)
I wandered the streets at night and observed the back alleys,
trying to make sense of all the strange and wonderful things
I saw going on during the daytime. Business continues in
Shenzhen until the wee hours of the morning, but at a much
slower pace. At night, I could make out lone agents acting out
their interests and intentions.

If there’s one thing those studies taught me, it’s that I
have a lot more to learn. The Pearl River Delta ecosystem is
incomprehensibly vast. As with the Grand Canyon, simply
hiking one trail from rim to base doesn’t mean you’ve seen it
all. T have, however, picked up enough knowledge to build a
custom laptop and to develop a new process for peel-and-stick
electronic circuits.

In this part of the book, you’ll follow my journey as I learned
the Shenzhen ecosystem over the years, via a remix of blog
posts that I wrote along the way. Some of the essays are reflec-
tions on particular aspects of Chinese culture; others are case
studies of specific manufacturing practices. I conclude with a
chapter called “The Factory Floor,” a set of summary recom-
mendations for anyone considering outsourced manufacturing.
If you're in a hurry, you can skip all the background and go
directly there.

adventures in manufacturing 5

However, hindsight is 20/20. Once you've walked a path,
it’s easy to point out the shortcuts and hazards along the
way; it’s even easier to forget all of the wrong turns and bad
assumptions. There’s no one-size-fits-all method for approach-
ing China, and my hope is that by reading these stories, you
can come to your own (perhaps different) conclusions that

better serve your unique needs.

1. made 1n china

Before my first visit to China, I was convinced that Akihabara
in Tokyo was the go-to place for the latest electronics, knick-
knacks, and components. That changed in January 2007, when
I first set eyes on the SEG Electronics Market in Shenzhen.
SEG is eight floors of all the components a hardware addict
could ever want, and only later did I learn that it’s just the
tip of the Hua Qiang electronics district iceberg.

As the lead hardware engineer at Chumby at the time, I
was in China with then-CEQO Steve Tomlin to figure out how
to make chumbys (an open source, Wi-Fi-enabled content
delivery device) cheaply and on time. With prices like those
at SEG, we were definitely in the right country to make at
least the first part of that mission a success.

8 CHAPTER 1

H3h ﬁ%#’ﬂb COMPUTER&COMPUTER ACCESSORIES

AN EXCLUSIVE SHOP
’! /F f”ﬁﬁﬁf muﬁﬁ?e#— Tgeigml BR
Computer&Gomputer
8/F amREH Aeteasories
0 te
. pmmcmuiceses P f- gRBRA GIRELD bt
. Computer&Computer

Components 6/ F 'ﬁ‘n!‘n Lo Accessories

B Bran Exclusive Shop

#EmEeo Computer&Computer
S 5/F ampms TN Clksoies

-(‘J :{ti‘
1 Y

Shenzhen’s SEG Electronics Market, the new electronics mecca.
Akihabara, eat your heart out!

THE ULTIMATE ELECTRONIC COMPONENT
FLEA MARKET

When I first stepped into the SEG building, I was assaulted
by a whirlwind of electronic components: tapes and reels of
resistors and capacitors, ICs of every type, inductors, relays,
pogo pin test points, voltmeters, and trays of memory chips.
As a total newcomer to manufacturing in volume, I was blown
away by everything I saw at SEG.

made in china 9

All of those parts were crammed into tiny six-by-three-
foot booths, each with a storekeeper poking away at a laptop.
Some storekeepers played Go, and some counted parts. Some
booths were true mom-and-pop shops, with mothers tending
to babies and kids playing in the aisles.

A couple of family-run component shops

10 CHAPTER 1

Other booths were professional setups with uniformed
staff, and these worked like a bar—complete with stools—for
electronic components.

> ' - A
> Lo ~

A swanky professional parts seller

No one at SEG says, “Oh, you can get 10 of these LEDs or
a couple of these relays,” like you might hear in Akihabara.
No, no. These booths specialize, and if you see a component
you like, you can usually buy several tubes, trays, or reels
of it; you can get enough to go into production the next day.

Looking around the market, I saw a woman sorting stacks
of 1GB mini-SD cards like poker chips. A man was putting
sticks of 1GB Kingston memory into retail packages, and next
to him, a girl was counting resistors.

made in china 11

Snwsn. .

The bottom-left corner of this display was packed with all kinds of SD cards.

Another booth had stacks of power supplies, varistors,
batteries, and ROM programmers, and yet another had chips
of every variety: Atmel, Intel, Broadcom, Samsung, Yamaha,
Sony, AMD, Fujitsu, and more. Some chips were clearly ripped
out of used equipment and remarked, some of them in brand-
new laser-marked OEM packaging.

The sheer quantity of chips for sale at a single booth at SEG was incredible.

12 CHAPTER 1

I saw chips that I could never buy in the United States,
reels of rare ceramic capacitors that I could only dream about
at night. My senses tingled; my head spun. I couldn’t suppress
a smile of anticipation as I walked around the next corner to
see shops stacked floor to ceiling with probably 100 million

resistors and capacitors.

Reels and reels of components, in every shop window

Sony CCD and CMOS camera elements! I couldn’t buy
those in the United States if I pulled teeth out of the sales
reps. (Some sellers even have the datasheets behind the coun-
ter; always ask.) Next, I spotted a stack of Micrel regulator
chips, followed by a Blackfin DSP chip for sale. Nearby, a
lady counted 256Mb DRAM chips—trays of 108 components,
stacked 20 high, in perhaps 10 rows.

made in china 13

The equivalent of Digi-Key's entire stock of DRAM chips sat right in front of me!

And across from her were a half-dozen more little shops
packed with chips just like hers. At one shop, a man stood
proudly over a tray of 4Gb NAND flash chips. All of this was
available for a little haggling, a bit of cash, and a hasty good-bye.

A close look at a tray of 4Gb flash chips

14 CHAPTER 1

And that’s just the first two floors of SEG. There are six
more floors of computer components, systems, laptops, mother-
boards, digital cameras, security cameras, thumb drives, mice,
video cameras, high-end graphics cards, flat-panel displays,
shredders, lamps, projectors—you name it. On weekends,
“booth babes” dressed in outrageous Acer-branded glittery
bodysuits loiter around, trying to pull you in to buy their
wares. This market has all the energy of a year-round CES
meets Computex, except instead of just showing off the latest
technology, the point is getting you into these booths to buy
that hardware. Trade shows always feel like a bit of a strip
tease, with your breath making ghostly rings on the glass as
you hover over the unobtainable wares underneath.

But SEG is no strip tease. It’s the orgy of consumer and
industrial electronic purchasing, where you can get your grubby
paws on every piece of equipment for enough kuai* out of your
wallet. Between the smell, the bustle, and the hustle, SEG is
the ultimate electronic component flea market. It’s as if Digi-
Key went mad and let monkeys into its Minnesota warehouse,
and the resulting chaos spilled into a flea market in China.

Of course, a lot of the parts I marveled at in 2007 are
antiques now. For example, 4Gb flash chips are trash, and
1GB flash disks are old news. At the time, however, those
things were a big deal, and SEG is still the best place to get
the latest tech in bulk.

THE NEXT TECHNOLOGICAL REVOLUTION
Three blocks down the street from SEG lay the Shenzhen
Bookstore.' The first and most visible rack was a foreign book

section, packed with classics like Stanford University professor
Thomas Lee’s The Design of CMOS Radio-Frequency Integrated

* Colloquial word for yuan, the base counting unit for the renminbi (RMB), the currency in China.

T This bookstore has closed since the visit I describe here.

made in china 15

Circuits and several titles by UCLA professor Behzad Razavi.
I picked up Lee’s book, and it cost 68 kuai, or $8.50 USD. Holy
cow! Jin Au Kong’s book on Maxwell’s equations? $5. Jin Au
Kong taught me Maxwell’s equations at MIT.

I went on a spree, packing my bag with six or seven titles,
probably around $700 worth of books if I'd bought them in the
United States. At the checkout counter, I bought them for less
than $35, complete with the supplemental CDs, saving about
$665. That’s equivalent to buying an economy-class ticket to
Hong Kong!

In China, knowledge is cheap. Components are cheap.
The knowledge in the books at the Shenzhen Bookstore was
the Real Deal, the parts to use that knowledge are down the
street at SEG, and within an hour’s drive north are probably
200 factories that can take any electronics idea and pump it
out by the literal boatload. These are no backward factories,
either. With my own eyes, I saw name-brand, 1,550-nanometer,
single-mode, long-haul, fiber-optic transceivers being built
and tested there. Shenzhen is fertile ground, and you need to
see it to understand it.

Shenzhen has the pregnant feel of the swapfests in Silicon
Valley back in the ’80s, when all the big companies were just
being founded and starting up, except magnified by 25 years
of progress in Moore’s law and the speed of information flow
via the internet. In this city of 12 million people, most are
involved in tech or manufacturing, many are learning English,
and all of them are willing to work hard.

There has to be a Jobs and Wozniak there somewhere,
quietly building the next revolution. But I'm a part of Shenzhen,
too, and I still tremble in my boots with terror and excitement
at the thought of being part of that revolution. This is my story,
starting with that eye-opening trip to Shenzhen for Chumby.

16 CHAPTER 1

TOURING FACTORIES WITH CHUMBY

In September 2006, Chumby was just a team of about a half-
dozen people, and we had just given away about 200 early
prototype chumby devices at FOO Camp, a conference put on
by Tim O’Reilly. The devices were well received by the FOO
Camp attendees, so I got the go-ahead to build the Asian
supply chain.

Steve and I went to China to visit potential factories in
November, but before we left, we had a trusted vendor in the
United States give their best price for the job as a baseline
for negotiations with the Chinese manufacturers. Then, we
called up a lot of friends with experience in China and lined up
about six factory tours. We hit quite a variety of places, from
specialty factories as small as 500 people to mega-factories
with over 40,000 people.

There’s no substitute for going to China to tour a factory.
Pictures can only tell the story framed by the photographer,
and you can’t get a sense of a facility’s scale and quality without
seeing it firsthand. In general, factories welcome you to take
a tour, and I wouldn’t work with one that didn’t allow me to
visit. However, most factories do appreciate a week’s notice,
although as your relationship with them progresses, things
should become more open and transparent.

Speaking of openness, Chumby’s open source nature helped
the factory selection process a lot. First, we had no fears about
people stealing our design (we were giving it away already),
so we’d eliminated the friction of NDAs (non-disclosure agree-
ments) when sharing critical information like the bill of mate-
rials. I think this gave us a better reception with factories in
China; they seemed more willing to open up to us because
we were willing to open up to them. Second, there was no
question in any factory’s mind that this was a competitive
situation. Anybody could and would quote and bid on our job

made in china 17

(in fact, we received a few unsolicited quotations that were
quite competitive), so it saved a round of huffing and puffing.

After reviewing several manufacturing options, Steve
and I eventually decided to work with a company called PCH
China Solutions. PCH itself owns only a few facilities, but it
has a comprehensive network of trusted and validated ven-
dors, primarily in China but also in Europe and the United
States. Not surprisingly, the factories that PCH subcontracts
to were some of the best facilities we visited in China. PCH
is actually headquartered out of Ireland—thus most of their
staff engineers are Irish—so there was also no language bar-
rier for us. (PCH engineers are also hardworking, resourceful,
and well trained—and, as a bonus, they always seem to know
the best place to find a pint, no matter where they are. I had
no idea China had so many Guinness taps!)

There’s a lot to take in when you tour even one factory,
let alone a half-dozen, and it’s easy to get overwhelmed and
lost in the vagaries of electronics manufacturing. But there
were some key details I found most fascinating during my
factory tours for Chumby and in working with PCH to bring
the chumby to life.

Scale in Shenzhen

One stunning thing about working in China is the sheer scale
of the place. I haven’t been to an auto plant in Michigan or to
the Boeing plant in Seattle, but I get the sense that Shenzhen
gives both a run for their money in terms of scale. In 2007,
Shenzhen had 9 million people.

To give you an idea of the scale of a Shenzhen factory, the
New Balance factory there employed 40,000 people and had the
capacity to produce over a million shoes a month. I estimate
that from raw fabric to finished shoe, the process took about
50 minutes, and every perfectly stitched bundle of plastic and

18 CHAPTER 1

leather was sewn by hand on an industrial sewing machine.
The stations are designed so that each stage in the process
takes a worker about 30 seconds.

Of course, the New Balance factory is dwarfed by Foxconn,
the factory where iPods and iPhones are made.

You know you're big when you have your own exit off the freeway.

Foxconn is a huge facility, apparently with over 250,000
employees, and it has its own special free trade status. The
entire facility is walled off, and I've heard you need to show
your passport and clear customs to get into the facility. That’s
just short of the nuclear-powered robotic dogs from the nation-
corporation franchulates of Neal Stephenson’s Snow Crash.

Feeding the Factory

There’s an old Chinese saying: min yi shi wei tian. A literal
translation would be “people consider food divine” or “for people,
food is next to heaven.” You can also look at it as a piece of
governing advice: “the government’s mandate [synonymous

made in china 19

with heaven] is only as robust as the food on people’s plates.”
Or, you can interpret it as an excuse to procrastinate: “let’s
eat first [since it is as important as heaven].”

Whichever way you cut it, I think the saying still holds in
China. One important metric for gauging how well a factory
treats its employees is how good the food is, as it’s common
for factory workers to be housed, fed, and cared for on site.

The food is actually quite good at some factories. For
example, when eating with the workers at the factory that
manufactured chumby circuit boards, I was served a mix of
steamed fish, broiled pork, egg rolls, clean fried vegetables,
and some pickled-vegetable-and-meat combo. Rice, soup, and
apples were also provided in “help yourself” quantities.

A meal from the factory that made the chumby circuit boards

Every facility I visited also had separate utensils and plates
for guests. At one factory, my food was served on a Styrofoam
plate with disposable chopsticks, while a factory worker I ate
with was served food on a steel plate with steel chopsticks. I
hadn’t passed the factory’s physical examination, so they gave

20 CHAPTER 1

me disposable eating tools to prevent me from contaminating
the factory with potential foreign diseases.

Going back to scale, some factory food operations are
impressively large. I heard that Foxconn’s workers consume
3,000 pigs a day. From pigs to iPhones, it all happens right
here in Shenzhen!

A truckload of pigs, exiting the highway toward Foxconn

Dedication to Quality

After I started working with PCH on actually manufacturing
the chumby, I ran into a situation sometime around June 2007
that showed me just how dedicated the factory workers in
Shenzhen were to getting their jobs right.

I had updated the chumby motherboard to include an
electret microphone, with an integral pre-amp field-effect
transistor (FET). The microphone needed to be inserted in
the correct orientation with respect to the circuit so the FET
would receive a proper bias current.

made in china 21

The first samples I got back from PCH’s factory had the
microphone in backward, and I called the factory to tell them
to reverse its polarity. I was going to visit the factory the next
week, and I wanted to see corrected samples. When I arrived
and tested the microphone, I found to my dismay that the
microphones were still not working.

How could that be? There are only two ways to connect a
microphone.

It turns out there were two operators on the line assem-
bling the microphone. One soldered the red and black wires
to the microphone. The next soldered these red and black
wires to the circuit board. The operators were told to reverse
the order, and both of them dutifully complied—giving me a
microphone that was still soldered in backward, but with the
color of the wires swapped. (This is actually a pretty typical
story for problems in China.)

The factory was scheduled to manufacture a first pilot run
of 450 circuit boards the next day. Everything had to go per-
fectly for Chumby’s production timeline to stay on schedule.
We had soldering stencils rebuilt (we were debugging a yield
issue with the QFN packaged audio CODEC as well) and
ready by around noon, and by around 6 PM, I had the first
boards in my hands to test. I ran the final factory test, and
the device failed again—at the microphone. This was not a
happy moment for anybody in the factory, as the factory was
liable for any manufacturing defects.

I donned my smock and marched onto the line to start
debugging the problem.

For the rest of the night, I remained in the factory, and so
did every manager and tech involved in manufacturing the
chumby. The pressure was enormous: right next to us was a
line churning out 450 potentially defective circuit boards, and
I was unwilling to pull the plug because I still didn’t know
what the root cause was, and we had to stay on schedule.

22 CHAPTER 1

y

-

[was debugging circuits at 3 AM on the day of the final factory test for the chumby.

I literally had a panel of factory workers standing by the
entire night to bring me anything I needed: soldering irons,
test equipment, more boards, X-ray machines, microscopes.
Remarkably, not a single person hesitated; not a single person
complained; not a single person lost focus on the problem.
People canceled dinner plans with friends without batting an
eyelash. Anyone who wasn’t needed in a particular moment
was busy overseeing other aspects of the project. I hadn’t seen
blind dedication like that since I worked with the autonomous
underwater robotics team at MIT.

And this went on until 3 AM.

Embarrassingly, the problem wasn’t PCH’s fault in the
end. The problem was the new firmware release I received
earlier that day from the team in the United States. It had
a bug that disabled the microphone due to a hack that was
accidentally checked into the build tree.

made in china 23

Even more impressively, when PCH found out, nobody was
angry, and nobody complained. (Well, the saleswoman gave
me a hard time, but I deserved it; she had been kind enough
to accompany me on the production line all night long and be
my translator, since my Mandarin wasn’t up to snuff.) They
were simply relieved that it wasn’t their fault.

We all parted ways, and I came back into the factory the
next day at 11 AM, after a good night’s sleep. I saw Christy,
the factory’s project manager for manufacturing the chumby
boards. I asked her when she came into work, and she told me
she always has to report by 8 AM. I started to feel really bad;
Christy stayed up late because of our bug, and she came in early
while I slept in. I asked her why she stayed up so late even
though she knew she had to report to work at 8 AM. She could
have gone home, and we could have continued the next day.

She just smiled and said, “It’s my job to make sure this
gets done, and I want to do a good job.”

Building Technology Without Using It

Here’s another interesting story. On our way out of the factory
floor one day, Xiao Li (the quality assurance manager at the
factory where we made the chumby) asked me, “What does a
chumby do?” I didn’t speak Chinese very well, and she didn’t
speak English very well either, so I decided to start with a
few basic questions.

I asked her if she knew what the World Wide Web was.
She said no.

I asked her if she knew what the internet was. She said no.

I was stunned, and I didn’t know what to say. How do you
describe the color blue to the blind?

Xiao i was an expert in building and testing computers.
On some projects, she probably built PCs and booted Windows
XP a hundred thousand times over and over again. (God knows

24 CHAPTER 1

I heard that darn startup sound a zillion times during the
microphone incident, as there was a bank of final test stations
for ASUS motherboards right next to me.) But she didn’t know
what the internet was.

I had assumed that if you touched a computer, you were
also blessed by the bounties of the internet. All at once, I felt
like a spoiled snob and a pig for forgetting that Xiao Li prob-
ably couldn’t afford a computer, much less broadband internet
access. Given the opportunity, she was certainly smart enough
to learn it all, but she was too busy making money that she
probably sent back home to her family.

In the end, the best I could do was to tell Xiao Li that the
chumby was a device for playing games.

Skilled Workers

Shenzhen workers may not know a lot about everything they
make, but on top of their dedication, they are highly skilled.
I once watched a guy working at the same factory that sewed
the chumby bags, and I swear, he could sew cosmetic cases
together at a rate of 5 seconds per bag. And he wasn’t even
100 percent focused on his task; he was listening to his iPod
while he sewed.

And apparently, he wasn’t their fastest employee! They had
someone about twice as fast, and he’d been with the company
for about seven years. I went to watch the faster worker, but
he had already gone to lunch because he’d finished everything;
there were two enormous bins of finished cosmetic cases next
to his workstation.

made in china 25

On a similar note, I was amazed to learn how rubberized
tags (the ones you see all over clothes) are made in China. I
always thought they were pressed by a machine, but I was
wrong. All those words, colors, and letters are drawn by hand.
Someone just places a logo stencil over the blank tag, paints
over the stencil with amazing precision, and moves on to the
next tag in their queue. When there are multiple colors, there’s
a person for each color, to keep the process quick.

I asked PCH if they had any mechanized factories for stuff
like that. They told me the facilities exist, but the minimum
order quantity is enormous (hundreds of thousands, sometimes
millions) because of the extraordinarily low cost of the product
and the relatively high cost of tooling for the automated process.
This is consistent with what I've heard about McDonald’s Happy
Meal toys. They're usually held together with screws because it’s
cheaper to pay someone to screw together a toy over the whole
production run than it is to make a steel injection-molding tool
with the tolerances necessary for snapping the toys together.*

There was a similar trade-off inside the chumby hardware.
There were four connectors on the internal chumby electronics.
Using the US-based vendors that I could source, one connector
had a best price of about $1 USD, and the other three had a
best price of about $0.40 each. PCH’s very talented sourcing
expert (her reputation was feared and respected by every
vendor) managed to find me connectors that cost $0.10 and
$0.06, respectively, saving almost a full $2 in cost. There’s one
catch: the connectors lacked the sacrificial plastic pick-and-
place pad that would enable them to be machine-assembled.

The solution? A person, of course.

* Due to high wage inflation since this particular visit, this is probably no longer true.

26 CHAPTER 1

This man hand-placed the cheaper connectors on every chumby,
for about a nickel per unit. Thanks to him, chumbys were $2 cheaper,
which freed up more money for us consumers to spend ar Starbucks.

The Need for Craftspeople

I'd like to introduce you to a man I know simply as Master
Chao. I met him during the chumby manufacturing process,
and I'm pretty sure that in your lifetime, you have used or
seen something that he created.

When I went to the sample room for the factory where
Master Chao worked, I was shocked at how many items on
their shelf I had purchased, used, or seen in a store in the
United States myself. Top-tier consumer brands manufacture
their stuff in this factory, and to the best of my knowledge,
the factory had just one master pattern maker at the time:
Master Chao. He’s had a hand in creating cosmetic bags for
Braun, accessory cases for Microsoft, and the medical braces for
major brands sold in drugstores, among many other products.

made in china 27

Master Chao is the person in the foreground; in the background is Joe Perrott,
Chumby’s excellent project engineer from PCH China Solutions.

Master Chao is a craftsman in the traditional sense. It
used to be that the finest furniture was designed and built only
with the intuition and skill of a master craftsman. Now, we
all go to IKEA and get CAD-designed, supply-chain-managed,
picture-book-assembly furniture kits—and despite all that, it
doesn’t look too shabby. As a result, the word craft has been
relegated to describe some scrapbook or needlepoint kit you
buy at Michaels and put together on a slow weekend. We've
forgotten that in an age before machines, “craft” was the only
way anything of any quality was built.

It turns out, however, that traditional craft still matters,
because CAD tools haven’t brought about the ability to simu-
late our mistakes before we make them.

The creation of a flat pattern for textile goods is a good
example of a process that requires a craftsman. A flat pattern
is the set of 2D shapes used to guide the cutting of fabrics.
These shapes are cut, folded, and sewn into a complex 3D

28 CHAPTER 1

shape. Mapping the projection of an arbitrary 3D shape onto
a 2D surface with minimal waste area between the pieces is
hard enough. The fact that the material stretches and distorts,
sometimes in different directions, and that sewing requires
ample tolerances for good yields, makes pattern creation a
difficult problem to automate.

The chumby cases added another level of complexity,
because they involved sewing a piece of leather onto a soft
plastic frame. In that situation, as you sew the leather on, the
frame distorts slightly and stretches the leather out, creating
a sewing bias dependent upon the direction and rate of sewing.
This force is captured in the seams and contributes to the final
shape of the case. I challenge someone to make a computer
simulation tool that can accurately capture those forces and
predict how a product like that will look when sewn together.

Yet, somehow, Master Chao’s proficiency in the art of
pattern making enabled him to very quickly, and in very few
iterations, create and tweak a pattern that compensated for
all of those forces. His results, all obtained with cardboard,
scissors, and pencils, were astoundingly clever and insightful.
Be grateful for his old-world skills; they’ve likely played a role
in the production of something you’ve used or benefited from.

There wasn't a single computer in Master Chao’s office, yet the products
I'saw here wrapped around a wide array of high-tech devices.

made in china 29

Automation for Electronics Assembly

Before my work at Chumby, I thought almost everything was
made by a machine. Of course, the tours of the textile factories
corrected my impression very quickly; yet high-tech stuff like
electronics assembly does still tend to be heavily automated,
even in China. The only exceptions I saw during my factory
tours were, ironically, the lowest-cost products, such as toys.
These shops were still dominated by lines of workers, stuffing
and dip-soldering circuit boards by hand.

One interesting dichotomy related to automation is the
bimodal distribution of products that use chip-on-board (CoB)
technology. CoB assembly directly bonds a silicon die to a PCB.
Finished CoB assemblies have the distinctive “glob of epoxy”
look to them, as opposed to the finished plastic-package look.
High-end, dense electronics assemblies often employ CoB
technologies. I've done a couple of CoB designs for some 10
Gb optical transceivers in my time, and they were not cheap.

At the same time, however, almost all toys use CoB technol-
ogy, to eliminate the cost of the IC package! It’s a testament
to toy factories’ tenacity about cost reduction that they would
buy an automated wire bonder and stick it next to lines mold-
ing doll heads and sewing up stuffed animals because having
an in-house wire bonder saves a nickel.

A typical wire bonder bonds a wire as thin as a human
hair to a site on a silicon chip not much larger than the wire
diameter, and it does this several times a second. Wire bond-
ers are very fast, precise pieces of equipment. The bonding
happens so quickly that the board seems to swivel smoothly
around, but in fact, it stops 16 times as it spins around, and
at each stop, a wire is bonded between the chip and the board.

Immediately before bonding, however, the chip is glued very
carefully to the board by hand, and immediately after bond-
ing, the chip is encapsulated by a human operator dispensing
epoxy very carefully by hand. That means wire bonder is the

30 CHAPTER 1

only automated piece of equipment on assembly lines for simple
toys. Seeing that process gave me a new appreciation for what
goes into those talking Barney dolls that sell for $10 at Target.

The chumby manufacturing process used a bit of automa-
tion, too, courtesy of a chip shooter. Chip shooters (as well as
pick-and-place machines) place surface-mount components on
PCBs so the components can be soldered.

T — . pata ool

The chumby PCB assembly factory in China had dozens of lines
filled with tried-and-true Fuji chip shootets.

It’s absolutely mesmerizing to see a chip shooter in action.
The chip shooters at the chumby PCB assembly factory were
capable of placing 10,000 to 20,000 components per hour, per
machine. This means that each machine could put down 3 to
6 components per second. The robotic assemblies move faster
than the eye can see, and it all turns into an awe-inspiring
blur. The chip shooter I saw at the chumby factory worked
something like a Gatling gun: the chip gun itself was fixed,
and the board danced around beneath the gun. The chip
shooter actually “looked at” each component and rotated it to
the correct orientation before putting it down on the board.

made in china 31

This is the end of the line for a chumby core board assembly!

The factory we used for the chumby’s PCB assembly also
produced name-brand PC motherboards and seemed to have
no problem pushing out well over 10,000 such complex assem-
blies each day. But even though processes like component
placement can be automated, there are some things a machine
just can’t do.

Precision, Injection Molding, and Patience

In the course of engineering the chumby, I also had to learn
about injection molding, because the circuit board had to go
inside a case of some kind. For an electronics guy with little
mechanical background, this was no small hill to climb. The
concept seems simple: you make a cavity out of steel, push
molten plastic into it at high pressure, let it cool, and voila—
a finished part comes out, just like the Play-Doh molds from
elementary school.
Oh, if only the process were that simple.

32 CHAPTER 1

Sure, plastic flows, but it’s not particularly runny. It moves
slowly, and it cools as it flows. The color of the plastic is
impacted by the temperature changes, and when using an
improperly designed mold, you can even see flow lines and knit
lines in the final product. There’s also a whole assortment of
issues with how the finished part is pulled from the mold, how
the mold is made and finished, where the gates and runners
are for getting the plastic inside the mold, and so on.

Fortunately, PCH had experts in China who knew all about
this, and I got to learn mostly by watching.

If I were to summarize injection molding with a single
adjective, it would be precision. When done right, the molds
are precise to better than hair-thin tolerances, yet they are
made out of hard steel. Achieving this level of precision out of
such a durable material is no mean feat, and it’s impressive
to see a machine cut a mold out of raw steel.

The machine that cut the molds for the chumby case had
a moving stage that rapidly pushed around a block of steel
probably weighing several hundred pounds; it milled away at
the metal in quite a hurry!

The mold-cutting machine used in manufacturing chumbys.
Compatre it to the people standing next to it for scale.

made in china 33

But machining is only the roughest step in mold making.
After the rough shape is cut out, the mold is put into an elec-
trical discharge machine (EDM), where a burst of electrons
knocks microscopic chunks off the steel surface. This is a ter-
rifically tedious process: I've watched many EDMs do their job,
and it’s like watching paint dry. EDMs are, however, wicked
precise, and they yield spectacular, repeatable results.

From a project management standpoint, the phenomenally
long lead times of production-quality injection-molded plastics
was the biggest eye opener for me. All told, the chumby mold
transformed from a block of raw steel into a first-shot tool in
four to six weeks, and I had to go to China and see the tooling
shop do its work before I was convinced there wasn’t some
gross amount of schedule padding.

Even more harrowing from the risk management stand-
point was the lack of good simulation tools to predict how
plastics would flow through a mold. If we saw visible blemishes
like flow lines and knit lines, we had to wait four to six weeks
to see if the new mold was better. Ouch!

Fortunately, the toolmakers Chumby used in China antici-
pated these issues, and they made the tools to err on the side
of excess steel, because removing material to fix a problem is
much easier than adding material. It’s like the old carpenter’s
saying: measure twice, cut once, and if you have to cut wrong,
cut long.

The mold that was used to create the chumby’s back bezel
was extra complex, because it involved a process called over-
molding. If you happen to own a chumby classic, look at the
back side. There’s a rubbery TPE surrounding the hard ABS
bezel. Many people assumed this was a glued-on rubber band.
In fact, the TPE is molded in place on the back piece. This
requires a two-shot mold.

34 CHAPTER 1

o ®

The final mold for the chumby’s back bezel, inside an injection-molding machine

There were actually two molds, and one side of the mold
spun around so that the alternating material systems could
be molded at the right points in the process.

A lot of hard work goes into the humble plastic parts you
see every day, and that’s all part of creating quality products.
But at the same time, there’s also a very real need to meet the
expectation of cheap prices.

The Challenge of Quality

Clearly, with the expectation of low cost of China-made goods
comes a great challenge in quality management. Look at the
media coverage on topics like lead paint in toys, industrial
chemicals in food, and other items made in China, and you
can see some of the bad decisions made to keep prices down.

When considering cases like that, I think it’s important
to apply Hanlon’s razor. To paraphrase, “Never attribute to
malice that which can be adequately explained by ignorance.”

made in china 35

The Brits also have a nice, pithy version of the aphorism:
“Cock-up before conspiracy.”

Some manufacturers are indeed out there to make a buck
at any cost, but I think the majority of mistakes are made out
of ignorance. Most of the rank-and-file in factories don’t know
what their product is ultimately used for, and under intense
pressure to reduce costs, they make those bad decisions.
Factories also have to deal with products that are woefully
underspecified, as well as customers who overwhelm them
with all kinds of frivolous requirements—and most customers
don’t follow up in either case. In the end, the factories play a
game of “ship and find out,” and if the customer doesn’t notice
a missing spec, then the spec must not have been important.
It’s not a great game, and it means that customers need to be
ever vigilant about audits and keeping the quality standard up.

THE DISCONNECT BETWEEN AMERICA AND CHINA

One fundamental problem behind this game is that many
Chinese residents do not understand or appreciate basic
things that we take for granted in America, and vice versa.
Many Chinese factory workers are well educated, but they
didn’t grow up in a “gadget culture” like we have in the United
States, so you can’t assume anything about their abilities to
subjectively interpret specifications for a product.

For example, you can tell a US engineer, “I'd like a button
on that panel,” and you’ll probably get something pretty close
to what you expect in terms of look and feel, since you and
the engineer share common experiences and expectations
for a button on a panel. If you did the same in China, you'd
probably get something that looks a little awkward and has a
clunky feel but is darn cheap and really easy to build and test.
While the latter properties are desirable for practical reasons,
American gadget connoisseurs just won’t buy something that’s
aesthetically awkward or feels clunky.

36 CHAPTER 1

Yet, ultimately, it’s those consumers who want—nay,
demand—low-priced goods, and that need drives the decision
to manufacture in China. The trouble is that aside from the
label on the product that says “Made in China” or “Made in the
USA,” consumers really don’t care about the manufacturing
process. What markup would you pay for a gadget that said
“Made in the USA” on it? The cost premium for US labor is
10 times what it 1s in China. Think about it: can the average US
factory worker be 10 times more productive than the average
Chinese factory worker? It’s a hard multiplier to play against.

I'm not saying there’s no value in domestic vendors: it
would be a lot less effort and less risk for me to get stuff made
in the United States. In fact, most early prototypes are made
there because of the enormous value that the domestic ven-
dors can add. However, the pricing just doesn’t work out for a
mass-market product. Nobody would buy it, because its price
wouldn’t justify its feature set. One could even accuse me of
being lazy if I were to just stick with a domestic vendor and
pass the higher cost on to the customers.

BEING INVOLVED IN THE MANUFACTURING PROCESS

In the end, manufacturing in China is the best way to keep
costs down, and to maintain quality, there is no substitute
for going to China and getting directly involved. Almost every
factory will “clean up” the day you come to visit, but with a
sharp eye and the right questions, you can see through any
quick veneers put in place.

When I evaluated factories for Chumby, I always visited
the quality control (QC) room. I expected to see rows of well-
maintained and well-worn binders with design documenta-
tion and QC standards, as well as golden samples, which are
pre-production samples of a product. I'd demand to see the
contents of a random binder and the golden sample associated
with it, and verify that the employees knew what was going
on in the binder. (Some factories do fill product binders with

made in china 37

random data.) I also considered hard investments in equip-
ment a good sign: the best manufacturers I visited all had a
couple of rooms with sophisticated equipment for thermal,
mechanical, and electrical limit testing, and of course, opera-
tors were in the room actually using the equipment. (I could
definitely imagine a Chinese manufacturer buying a room of
equipment just for show.)

But I suspect that toy manufacturers and food manufactur-
ers don’t fly technicians like me out to factories in China to
oversee things on a regular basis. Contrast that with Apple,
which regularly sends a cadre of engineers to work intense
two-week (or longer) shifts in the factories (usually Foxconn,
affectionately nicknamed “Mordor” by some at Apple). As a
result, I bumped into many Apple engineers at the expat bars
in Shenzhen.

The fact that PCH China Solutions offered Western-style
management and quality control on site in China was impor-
tant for us at Chumby. If we had a problem with a vendor,
PCH sent someone to the factory right away to see what was
going on—no phone tag, no FedEx filibuster. And factory
owners in China tend to be very responsive when you show
up at their doorstep.

Thus, Chumby’s approach to the quality conundrum was
holistic. We started by having an engineer (me) at the factory
almost on day one to survey the situation. It’s important to
learn what the factory can and cannot do. I looked at what was
being built on the line and what techniques were used. Then,
when it came time to engineer the product, I tried to use the
processes and techniques that were most comfortable for the
factory. When I had to do something new (and any good, inno-
vative product will need to), I picked my battles and focused
on them, because anything new would be a multiweek chal-
lenge to get right. This strategy applies to even the smallest
details: if the factory shrink-wraps goods in plastic, and you

38 CHAPTER 1

want to wrap your product in paper, then plan to focus heavily
on developing the paper-wrapping process, because it’s quite
possible that none of the line workers at your factory of choice
have even seen a paper-wrapped product before.

Of course, when developing a new process for the chumby,
I preferred to be in the factory, and I still do. There’s nothing
like standing on the line and showing the workers who will
be building your device how it should be made. For example,
I personally trained the chumby assembly-line workers on
how to attach a piece of copper tape to the LCD assembly to
form a proper EMI shield.

It’s difficult to describe the intricacies of how to fold tape
across a complex piece of sheet metal to ensure it makes good
electrical contact to the grounding surfaces without risking
a short circuit to other components. Subtleties like the fact
that the adhesive on one side is a poor insulator also require a
basic understanding of physics that line workers simply don’t
have. Worse yet, explaining these concepts requires technical
words that your translator might not even know.

In my case, even a good 3D drawing or photograph of the
finished assembly couldn’t have gotten the whole concept
across, because the stiffness of the tape required a particu-
lar motion to fold without tearing. Describing the process
remotely, approving samples via photographs, and ultimately
approving a unit delivered via FedEx might have taken a
couple of weeks, but standing in front of a group of workers
and demonstrating the process firsthand took only a few
minutes. And despite the language barrier, I could tell from
their facial expressions and body language whether they
understood the importance of a particular step. Given those
cues, I immediately reviewed processes that were ambiguous
or difficult to master.

Typically, when you can demonstrate a process at this level
of detail and intimacy, the workers will get it right within

made in china 39

hours, instead of weeks. This is part of the reason I spent so
much time in China during the development of the chumby’s

manufacturing process.

Everyone was involved in the chumby quality process. This photo shows
CEO Steve Tomlin (far left) and Artistic Director Susan Kare (middle)
at the sewing factory, working out the details of logo silkscreening.

HOMEGROWN REMOTE TESTING

However, it wasn’t always possible for Chumby to send some-
one to China. I, for one, preferred not to live in China, so at
Chumby, we relied a lot on PCH to watch the quality and make
sure things went well, and they did a superb job.

Often, working long distance meant that new processes
took weeks to phase in if I wasn’t there to tweak and approve
on the spot, because every single tweak involved sending
something almost round-trip through FedEx. After going
through that process a few times, I learned to allocate two
weeks per tweak, as opposed to the few hours it took when I
was on the factory floor.

Those sets of two weeks added up fast.

40 CHAPTER 1

Given the difficulty of overseeing operations in China from
the United States, remote electronic monitoring of the products’
test results was essential. For the chumby, I developed a set of
testers that programmed, personalized, booted, verified, and
measured every device off the assembly line. All data from the
testing process was recorded to a log, and at the end of the
day, the log was transferred to a server in the United States.

This data let me debug a plethora of problems on the floor.
I could tell if an operator at a particular tester was having
trouble with their barcode scanner. I also immediately knew
if there was a yield problem that day, or if the throughput was
slower than expected. It was very powerful to have this home-
grown audit capability in place, because the factory knew I
was watching them. In fact, having such a capability in place
can make relationships with the factory run better: the fac-
tory eats the cost of yield problems (at least initially), so they
appreciate it when the design engineer can offer expedient
advice and help before any problems get out of hand.

D&

A pair of chumby test stations in the factory in China. There’s quite a story about
the trouble we went through getting those laptops into China.

made in china 41

FURTHER FACTORY TESTING

Once you've finished setting up the testing process, it can run
autonomously at the factory. For example, at the chumby’s PCB
factory, the first pass of final inspection was done manually—
one person went over every circuit board, and then with the
help of a cardboard template, another operator ensured that
no components were missing. The units then went on to auto-
mated testing.

Periodically, both PCH and the factory also performed
Restriction of Hazardous Substances (RoHS) testing on chumby
units to ensure that there was no contamination with a speci-
fied set of potentially harmful chemicals, including lead. RoHS
1s a hazardous chemical safety standard required in Europe
but, ironically, not in the United States. Factories routinely
do this test on all products, even those only shipping to the
United States, because latent contamination on the line could
prevent other products manufactured on the same line from
shipping to Europe.

Even after all that testing, back in the United States,
Chumby continued to sample units for QC purposes. To this
end, we regularly ordered, characterized, and dissected devices
to ensure that all the operating procedures were being followed.

MISTAKES STILL HAPPEN

Despite such safeguards, some mistakes will be made on any
product. Every product goes through a phase where bugs that
weren’t caught by internal QA get pounded out. You have to
rely on a top-notch customer service and support team, and
you have to plan on being very agile and innovative during
this phase to solve the problems and prevent them from ever
happening again.

When I was at Chumby, if I heard about a unit in the wild
with hardware problems, I actually called the customer who
reported it. I wanted to know what went wrong so I could fix
the problem and make sure it never happened again, to anyone!

42 CHAPTER 1

My biggest hope with the chumby, however, was to avoid
what happened to Microsoft and the Xbox 360’s “red ring of
death,” where consoles would experience a major hardware
failure, stop working, and just display a red light around the
power button, causing huge frustration for players. This prob-
lem only exhibited itself after the Xbox 360 had been out for
years, after millions of units had been shipped. Situations like
the red ring of death are a product engineer’s worst nightmare.

So you see, getting the chumby (or any product) to the
point where it can ship to consumers is just the beginning.
The real challenge starts after.

If you ever find yourself at this point in the manufacturing
process, I wish you luck!

CLOSING THOUGHTS

The stories told here share some of my adventures—and
failures—Ilearning how to build products in volume. The next
two chapters are more reflective and less narrative. The next
chapter takes us on a virtual tour of three factories to see what
we can learn from them, and Chapter 3 attempts to summa-
rize all the lessons I've learned about manufacturing so far.

2. 1nside three very
different factories

It’s hard to understand how a computer works without opening

it and looking around inside. Likewise, it’s hard to understand
how products are made without going into a factory and tour-
ing the line. Although we often think of manufacturing as the
necessary but boring step after innovation, in reality, the two
are tightly coupled. An inventor thinks about a product once;
a factory thinks about the same product day in and day out,
sometimes for years on end.

The importance of factories as an innovation node is only
growing in today’s connected global economy. The reality is
that there is no “Apple factory” or “Nike factory.” Rather, there
1s a series of facilities that are domain experts in processes
(such as PCB fabrication or zipper manufacturing) that are

44 CHAPTER 2

curated by the familiar brands. Thus, it’s not uncommon to see
two competitors’ products running side by side down similar
lines in a single facility. This concentration of domain-specific
expertise means that the best place to learn how to make an
aspect of your product better is often the same place that
makes a similar aspect in everybody else’s products.

Some of the greatest insights I've had into improving a
product have come from observing technicians at work on a
line and seeing the clever optimization tricks they’ve developed
after doing the same thing over and over for so long.

This chapter takes you on a tour of three factories that
make everyday things: PCBs (in particular, the ones used in
the Arduino), USB memory sticks, and zippers. By peeling back
the curtain, you’ll get some insight into the design trade-offs
behind the products, and how they can be made better. In the
PCB factory, I discovered the secret of how they print a high-
resolution map of Italy on the back of every Arduino; in the
USB memory stick factory, I witnessed a strange marriage
of high- and low-tech manufacturing techniques; and in the
zipper factory, I found out how even the humblest of products
can bear valuable lessons for product designers.

WHERE ARDUINOS ARE BORN

It was July 2012, and it had been about six months since my
previous startup, Chumby, ceased operations. I had decided to
take a year off to figure things out and cross a few items off the
bucket list, one of which was a trip to Italy. My girlfriend had
the bright idea of reaching out to the Arduino team to see if I
could visit their factory in Scarmagno (this was years before
the Arduino/Genuino split) as part of our itinerary. Members
of Officine Arduino (particularly managing director Davide
Gomba) kindly took time out of their busy schedules to show

inside three very different factories 45

me around their factory. They patiently waited as I expressed
my inner shutterbug and general love for all things hardware,
and I definitely came away with a lot of great photos.

A small town in northern Italy, Scarmagno is about an
hour and a half west of Milan by car, near the Olivetti factories
on the outskirts of Torino. The town handles all the circuit
board fabrication, board stuffing, and distribution for officially
branded Arduinos. I was really excited to see the factories,
and the highlight of my tour was seeing System Elettronica,
the PCB factory that made the Arduino PCBs.

One charming aspect of System Elettronica is that the
owner painted the factory green, white, and red to match the
colors of the Italian flag. On the factory floor, I saw some of

that spirit in the red and green posts that ran the length of
the facility.

A wide view of the factory floor at System Elettronica in August 2012

But I soon stopped paying much attention to the décor, as
that factory floor was also where I got to follow a fresh batch of
Arduino Leonardos through the entire manufacturing process.
Here’s how those boards were made.

46 CHAPTER 2

Starting with a Sheet of Copper

Arduino Leonardo boards start as huge sheets of virgin copper-
clad FR-4, a material made of fiberglass and epoxy that most
PCBs use for a substrate, an insulating and structural layer
between the copper layers. The sheets were 1.6mm thick (the
most common thickness for a PCB, which corresponds to 1/16
inch), probably a meter wide, and about a meter and a half long.

A stack of copper sheets waiting to become Arduino boards

The first step in processing PCBs is to drill all the holes—
pads, vias (the small holes that connect different layers of the
PCB), mounting holes, plated slots, and so forth. When a PCB
1s manufactured, the holes are drilled before patterning, the
stage where a masking chemical is photographically defined
on the sheet everywhere the final boards need to have copper,
including locations of traces, solder pads, and so on. Some of
the drilled holes are used to align the masks that pattern the
traces later in the process. Drilling is also a dirty and messy
process that could damage circuit patterns if they were in
place beforehand.

inside three very different factories 47

The CNC drilling head used to drill the Arduino boards

The blank copper panels were stacked three high, and a
CNC drill took a single pass for all three, allowing it to drill
three substrates at a time.

The drill rack used by the CNC drilling machine.
If you've ever had 1o create NC-drill files, this is that “drill rack.”

Every hole in the Arduino board was mechanically drilled,
including vias. The same is true of any PCB with through-holes,
which is why the via count is such an important parameter
in calculating the cost of a PCB.

48 CHAPTER 2

Note that the particular drill I saw at System Elettronica
was relatively small. I've seen massive drill decks in China
that gang (mechanically attach) four or six drill heads together
in a truck-size machine, processing dozens of panels at the
same time as opposed to the three panels this drill could
handle. The reasoning behind this approach is that the precise,
robotic positioning assembly is the expensive part of a drilling
machine. The drill itself is cheap—just a spinning motor to
drive the bit. So, one way to increase throughput is to gang
several drills together on one large assembly and move them
in concert. Each individual drill still goes through its own
stack of panels, but for the price of one X-Y positioner, you
get four to six times the throughput as the drill I saw on my
trip to Italy. Those bigger machines drill so fast and hard that
the ground shakes with every via drilled, even from several
meters away.

Once the panels are drilled, cleaned, and deburred, they

are ready for the next step in the manufacturing process.

A stack of finished, drilled panels of Arduino Leonardo boards

inside three very different factories 49

Applying the PCB Pattern to the Copper

The next step is to apply a photoresist, a light-sensitive chemi-
cal, to the panel and expose a pattern. At System Elettronica,
this process used a light box and a high-contrast film. I've also
seen direct laser imaging—in the form of a raster-scanning
laser—used to apply a pattern to a PCB. Direct laser scanners
are more common in quick-turn prototype houses, and film
imaging is more common in mass-production houses.

Before and after: the right panel shows photoresist prior to exposure,
and the left panel after.

A PCB being mounted into a light box that will expose its unprocessed backside film

50 CHAPTER 2

After the pattern is applied, each panel of boards is sent
into a machine to be developed. In this case, the same machine
is used to develop both the photoresist and the soldermask.

This photo of a panel with developed photoresist is
one of my favorite photos from the System Elettronica factory.
Also, something about “Codice: Leonardo” just sounds cool.

inside three very different factories 51

Etching the PCBs

After photo processing and development, the panels go through
a series of chemical baths that etch and plate the copper.

The panels are swished gently back and forth in a chemi-
cal bath to expedite the etching process. The movement also
circulates used etchant away from the panels, ensuring a
more uniform etch rate regardless of the amount of copper to
be removed. Moving the panels through these chemical baths
was fully automated at Scarmagno. Automation is necessary
because the panels must be treated with a series of caustic
chemical baths with minimal exposure to oxygen. Oxygen can
spoil a panel in a matter of seconds, so the transfer between
the baths needs to be fast, and the amount of time a panel
spends in a bath must be consistent. The baths also contain
chemicals harmful to humans, so it’s much safer for a robot
to do this work.

A machine that moves panels around in etchant

Once the panels are processed in this series of solutions, a
dull, white plating (which I'm guessing is nickel or tin) develops
on all the surfaces of the panel not treated with photoresist,
including the previously unplated through-hole vias and pads.

52 CHAPTER 2

Fanels of Arduino Leonardo boards after going through a series of chemical baths

At this point, the resist and unplated copper are stripped
off, leaving just the raw FR-4 and the plated copper. The final
step of processing produces a bright copper finish.

A panel etched of unwanted copper

inside three very different factories 53

PCB panels with bright, shiny copper. This photo doesn’t show an Arduino panel,
as those weren’t going through the machine when I photographed it.

Applying Soldermask and Silkscreen

Once the copper is polished, the panels are ready for the solder-
mask (a protective, lacquer-like layer that insulates the copper
traces below and prevents solder bridging above) and silkscreen
(the ink used to label components, draw logos, and so on).
These are applied in a process very similar to that of the trace
patterns, using a photomask and developer/stripper machine.

N

3 ,~
1
%
&
'

A panel of Arduino boards with both soldermask and silkscreen developed

54 CHAPTER 2

In the case of Arduinos, the silkscreen is actually a second
layer of soldermask. A very specific formulation of dry-film
white soldermask was procured for the Arduino team to create
a sharp, good-looking layer that resolved the intricate artwork
you see on Arduino boards—particularly the map of Italy on
the backside. Other techniques I've seen for producing silk-
screen layers include high-resolution inkjet printing, which is
better suited for quick-turn board houses, and of course, the
namesake squeegee-and-paint silkscreen process.

Testing and Finishing the Boards

After all that chemical processing, the panels receive a protec-
tive plating of solder from a hot-air solder leveling machine.

With the solder plating in place, every board is 100 percent
tested. Every trace has its continuity and resistance measured
with a pair of flying probes. The process I saw is called flying
head testing (also referred to as flying probe testing), and in that
sort of setup, several pairs of arms with needlelike probes test
continuity between pairs of traces in a swift tapping motion.
Considering all the traces on an Arduino Leonardo, that’s a
lot of probing! Fortunately the robot’s arms move like a blur,
as it can probe hundreds of points per minute.

NOTE An alternative to flying head testing is clamshell testing,
where a set of pogo pins is put into a fixture that can test the
entire board with a single mechanical operation. However,
clamshell fixtures are very labor-intensive to assemble and
maintain, and require physical rewiring every time the Gerber
files describing the PCB images are updated. So, in lower
volumes, flying probe testing is more cost-effective and flex-
tble than clamshell testing.

inside three very different factories 55

A stack of near-finished PCB panels,
ready for a final step of routing out the individual boards

This particular facility only created the panels; a different
factory actually populated the components. In situations like
that, before the panels can be sent to the next factory, the
individual PCBs need to be routed so they’ll fit inside surface
mount technology (SMT) machines to have the components
placed. The panels are once again stacked up and batch-
processed through a machine that uses a router bit to cut and
release the boards. After that, the boards are finally ready to
ship to the SMT facility.

Several Arduino panels, stacked for routing

56 CHAPTER 2

A veritable stack of about 25,000 bare Arduino PCBs,
ready to leave the PCB factory. From there, they were stuffed,
shipped, and sold to makers around the world!

I'm glad I made the side trip to visit the Arduino PCB fac-
tory. I've visited several PCB factories, and every one has a
different character and its own set of tricks to improve yield, as
well as unique limitations that designers need to compensate
for. It was also interesting to see the little trick about using an

inside three very different factories 57

extra layer of soldermask instead of silkscreen for achieving
high cosmetic quality. While the resolution of a silkscreen is
limited by the mesh of the silk barrier to hold the paint, sol-
dermask is limited by the quality of the optics and chemical
developing, giving over an order of magnitude improvement in
resolution and ultimately a higher perceived quality. Normally
the lower quality of silkscreen is acceptable because end users
don’t see the circuit boards inside computers, but for Arduino,
the end product is the circuit board.

WHERE USB MEMORY STICKS ARE BORN

Several months after my tour of the Arduino factory, I had the
good fortune of being a keynote speaker at Linux Conference
Australia (LCA) 2013. In my talk, “Linux in the Flesh:
Adventures Embedding Linux in Hardware,” I discussed how
Linux is in all kinds of devices we see every day. This story
isn’t about Linux, but it does connect me and, tangentially,
LCA to a factory.

One of the tchotchkes I received from the LCA organizers
was a little USB memory stick with Tux the penguin, the Linux
mascot, on the outside. When I saw the device, I thought it
was a neat coincidence that about a week before the confer-
ence, I had been in a factory that manufactured USB memory
sticks exactly like it. I saw the USB stick board assembly
process from start to finish, and it surprisingly involved a lot
less automation than the Arduino manufacturing process did.

The Beginning of a USB Stick

USB sticks start life as bare flash memory chips. Prior to
being mounted on PCBs, these chips are screened for memory
capacity and functionality.

58 CHAPTER 2

A workstation where flash memory chips are screened.
The metal rectangle on the left with the circular cutaway is the probe card.

At a workstation in this factory, stacks of bare-die flash
chips awaited testing and binning with a probe card, which
has tiny, very accurately positioned pins used to touch down
on pads only a little bit wider than a human hair on a silicon
wafer’s surface. (I love how the worker at this particular
station used rubber bands to hold an analog current meter to
the probe card.)

The probe card, up close

inside three very different factories 59

Looking through the microscope on the microprobing station. Notice the needles
touching the square pads at the edge of the flash chip’s surface. Each pad is
perhaps 100 microns on a side—a human hair is about 70 microns in diameter.

Interestingly, the chips I saw were absolutely not tested
in a clean-room environment. Workers handled chips with
tweezers and hand suction vises and mounted the probe cards
into their jigs by hand.

Hand-Placing Chips on a PCB

Once the chips were screened for functionality, they were placed
by hand onto the USB stick PCBs. This is not an unusual
practice; every value-oriented wire-bonding facility I've visited
relies on the manual placement of bare die.

60 CHAPTER 2

A controller IC being placed on a panel of USB-stick PCBs.
The tiny bare dies are on the right, sitting in a waffle pack.

A zoomed-out view of the die-placing workstation

The lady I watched placing the bare die was using a chop-
stick-like tool made of hand-cut bamboo. I still haven’t figured
out exactly how the process works, but my best guess is that the
bamboo sticks have just the right surface energy to adhere to

inside three very different factories 61

the silicon die, such that silicon sticks to the tip of the bamboo
rod. A dot of glue is preapplied to the bare boards, so when
the operator touches the die down onto the glue, the surface
tension of the glue pulls the die off of the bamboo stick.

It’s trippy to think that the chips inside my USB stick were
handled using modified chopsticks.

Bonding the Chips to the PCB

Once the chips were placed on the PCB, they were wire bonded
to the board with an automated bonding machine, which uses
computer-assisted image recognition to find the location of
the bond pads (this is part of the reason the factories can get
away with manual die placement). Wire bonding is the pro-
cess that connects an integrated circuit to its packaging, and
the automated bonding machine connected wires to the IC at
an insane speed, rotating the circuit board all the while. As I
watched this process, the operator had to pull off and replace
a misbonded wire by hand and then refeed the wire into the
machine. Given that these wires are thinner than a strand of
hair and that the bonding pads on the packaging and the IC
are microscopic, that was no mean feat of manual dexterity.

A Close Look at the USB Stick Boards

Just as the Arduino factory used panels containing multiple
Leonardo boards, the USB memory stick factory used panels
of eight USB sticks each. Each stick in the panel consisted of
a flash memory chip and a controller IC that handled the
bridging between USB and raw flash, a nontrivial task that
includes managing bad block maps and error correction, among
other things. The controller was probably an 8051-class CPU
running at a few dozen MHz.

62 CHAPTER 2

@000 00060 0200 0600

0000 0006 0000 0066

CRCR)

©0ee

[CRONC)

00 o0

The partially bonded but fully die-mounted PCB that the
factory owner gave me as a memento from my visit.
Some of the wire bonds were crushed in transit.

inside three very different factories 63

intel)

The die marking from the flash chip. Apparently, it's made by Intel.

64 CHAPTER 2

A die shot of the controller chip that went inside the USB sticks

Once the panels were bonded and tested, they were over-
molded with epoxy and then cut into individual pieces, ready
for sale.

But that’s enough about electronics manufacturing; next,
I want to show you a different kind of factory floor.

A TALE OF TWO ZIPPERS

My friend Chris “Akiba” Wang has a similar background to
mine, except in his younger years he was way hipper: he was
a dancer for acts like LL Cool J and Run DMC in the ’90s.
After going through a phase working for big semiconduc-
tor companies, he eventually quit and followed his passion
to design and manufacture his own hardware projects. An
expert in short-range, low-power wireless networking (he’s
co-authored a book on Bluetooth low energy and sells an
Arduino + 802.15.4 variant called the “Freakduino”), he now

inside three very different factories 65

consults for organizations like the United Nations and Keio
University, runs FreakLabs, and collaborates with various
dance acts, such as the Wrecking Crew, to provide unique and
compelling lighting solutions for stage shows.

I had the good fortune of introducing Akiba to the greater
Shenzhen area on a trip with MIT Media Lab students in
2013—the same trip where we toured the USB memory stick
factory. Since then, he’s been exploring deeper and deeper into
the area. As his work spans the disciplines of performance
art, wearables, and electronics, his network of factories is
quite different from mine, so I always relish the opportunity
to learn more about his world.

In January 2015, Akiba took me to visit his friend’s zipper
factory. I was very excited for the tour: no matter how humble
the product, I always learn something new by visiting its fac-
tory. This factory was very different from both the Arduino and
the USB stick facilities. There were far fewer employees, and
it was a highly automated, vertically integrated manufacturer.
To give you an idea of what that means, this facility turned

metal ingots, sawdust, and rice into zipper parts.

Approximately 1 ton of ingots,
composed of 93 percent zinc and 7 percent aluminum alloy

66 CHAPTER 2

Compressed sawdust pellets, used to fuel the ingot smelter

e, used 1o feed the workets

Ric

inside three very different factories 67

Finished zipper puller and slider assemblies

Let’s look at one side of how that process actually works.

A Fully Automated Process

Between the three input materials and the output product
was a fully automated die-casting line to create the zipper
pullers and sliders, a set of tumblers and vibrating pots (or,
as I like to call them, “vibrapots”) to release and polish the
zippers, and a set of machines to deburr and join each puller
to its slider. I think I counted fewer than a dozen employees
in the facility, and I'm guessing their capacity well exceeds a
million zippers a month.

I was mesmerized by the vibrapots* that put the zippers
together. There were two vibrapots: one with pullers and one
with sliders. Both sliders and pullers were deposited onto a
moving rail, and as I watched these miracles at work, it looked
as if the sliders and pullers were lining themselves up in the
right orientation by magic. Each fell into its rail, and at the
end of the line, they were pressed together into a familiar zip-
per form, all in a single, fully automated machine.

*] honestly don’t what they’re called, so yes, I'm going to keep calling them that.

68 CHAPTER 2

When I put my hand in the pot, I found there was no
stirrer to cause the motion; I just felt a strong vibration. I
relaxed my hand, and found it started to move along with all
the other items in the pot. The entire pot was vibrating in a
biased fashion, such that the items inside tended to move in
a circular motion. This pushed the pullers and sliders onto
the set of rails, which were shaped to take advantage of asym-
metries in the objects to allow only the pieces that jumped on
the rail in the correct orientation to continue to the next stage.

A Semiautomated Process

Despite the high level of automation in this factory, many of
the workers I saw were performing one operation. They fed the
pullers for a different kind of zipper into a device connected
to another vibrapot containing sliders, while the device put
the sliders and pullers together.

Of course, I asked, “Why do some zippers have fully auto-
mated assembly processes, whereas others are semiautomatic?”’

The answer, it turns out, is very subtle, and it boils down
to shape.

Note the difference in these two pullers, indicated by the arrows.

inside three very different factories 69

One tiny tab, barely visible, was the difference between full
automation and needing a human to join millions of sliders and
pullers together. To understand why, let’s review one critical
step in the vibrapot operation. A worker kindly paused the
vibrapot responsible for sorting the pullers into the correct
orientation for the fully automatic process so I could take a

photo of the key step.

Pullers coming through the vibrapot

When the pullers came around the rail, their orientation
was random: some faced right, some left. But the joining opera-
tion must only insert the slider into the smaller of the two holes.
That tiny tab allowed gravity to cause all the pullers to hang
in the same direction as they fell into a rail toward the left.

The semiautomated zipper design doesn’t have this tab;
as a result, the design is too symmetric for a vibrapot to align
the puller. I asked the factory owner if adding the tiny tab
would save this labor, and he said absolutely.

At this point, it seemed blindingly obvious to me that all
zippers should have this tiny tab, but the zipper’s designer
wouldn’t have it. Even though such a tab is very small, con-
sumers can feel the subtle bumps, and some perceive it as a

70 CHAPTER 2

defect in the design. As a result, the designer insisted upon
a perfectly smooth tab, which accordingly had no feature to
easily and reliably allow for automatic orientation.

The Irony of Scarcity and Demand

I'd like to imagine that most people, after watching a person
join pullers to sliders for a couple of minutes, would be quite
content to suffer a tiny bump on the tip of their zipper to
save another human the fate of manually aligning pullers
into sliders for eight hours a day. Alternatively, I suppose an
engineer could spend countless hours trying to design a more
complex method for aligning the pullers and sliders, but there
are two problems with that:

* The zipper’s customer probably wouldn’t pay for that effort.

* It’s probably net cheaper to pay unskilled labor to manu-
ally perform the sorting.

This zipper factory owner had already automated every-
thing else in the facility, so I figure they’ve thought long and
hard about this problem, too. My guess is that robots are
expensive to build and maintain; people are self-replicating
and largely self-maintaining. Remember that third input to
the factory—rice? Any robot’s spare parts have to be cheaper
than rice for the robot to earn a place on this factory’s floor.

In reality, however, it’s too much effort to explain this
concept to end customers; in fact, quite the opposite happens
in the market. Putting the smooth zippers together involves
extra labor, so the zippers cost more; therefore, they tend to
end up in high-end products. This further enforces the notion
that really smooth zippers with no tiny tab on them must be
the result of quality control and attention to detail.

My world is full of small frustrations like this. For example,
most customers perceive plastics with a mirror finish to be
of a higher quality than those with a satin finish. There is

inside three very different factories 71

no functional difference between the two plastics’ structural
performance, but making something with a mirror finish takes
a lot more effort. The injection-molding tools must be pains-
takingly and meticulously polished, and at every step in the
factory, workers must wear white gloves. Mountains of plastic
are scrapped for hairline defects, and extra films of plastic are
placed over mirror surfaces to protect them during shipping.

For all that effort, for all that waste, what’s the first thing
users do? They put their dirty fingerprints all over the mirror
finish. Within a minute of a product coming out of the box,
all that effort is undone. Or worse yet, the user leaves the
protective film on, resulting in a net worse cosmetic effect
than a satin finish.

Contrast this to satin-finished plastic. Satin finishes don’t
require protective films, are easier for workers and users to
handle, last longer, and have much better yields. In the user’s
hands, they hide small scratches, fingerprints, and bits of dust.
Arguably, the satin finish offers a better long-term customer
experience than the mirror finish.

But that mirror finish sure does look pretty in photographs
and showroom displays!

3. the factory floor

The previous two chapters were filled with stories of my per-
sonal experiences learning, making mistakes, and growing
with the manufacturing ecosystem in the greater Shenzhen
area. In January 2013, after I'd learned the ropes, the MIT
Media Lab asked me to start mentoring graduate students on
supply chain and manufacturing, and I took them on a tour
of Shenzhen (the same tour where I met Akiba and visited
the USB memory stick factory). This chapter is an attempt
to distill everything I taught over a course of weeks into a
couple dozen pages.

74 CHAPTER 3

The challenges and trade-offs in low-volume manufactur-
ing are different from those of well-funded corporate exercises
that prototype at the scale of thousands of units. I learned this
over time, but not everyone has six years to bumble through
all the newbie mistakes. If you're already in a fast-moving
tech startup, you probably don’t have the luxury of doing any
exploration at all. The lessons in this chapter are applicable
to anyone looking to bootstrap a hardware product from an
initial prototype to moderate volumes (perhaps hundreds of
thousands of units). Treat this summary as a general guideline,
not a detailed roadmap. The devil is always in the details, and
one fun part of making new, innovative hardware products is
there’s no end of novel and interesting challenges to be solved.

HOW TO MAKE A BILL OF MATERIALS

Most makers trying to scale up their output quickly realize
the only practical path forward is to outsource production. If
only outsourcing were as easy as schematic + cash = product!

Whether you work with the assembly shop down the street
or send your work to China, a clear and complete bill of mate-
rials (BOM) is the first step to outsourcing production. Every
single assumption you make about your circuit board, down to
the color of the soldermask, has to be spelled out unambigu-
ously for a third party to faithfully reproduce your design.
Missing or incomplete documentation is the leading cause of
production delays, defects, and cost overruns.

A Simple BOM for a Bicycle Safety Light

For a case study, suppose you ran a successful Kickstarter
campaign for a bicycle safety light. It contains a circuit that
uses a 555 timer to flash a small array of LEDs. After a great
marketing campaign, several hundred orders need to be filled

in a few months’ time.

the factory floor 75

At first, a BOM for the bicycle light, as automatically gen-
erated by a design tool such as Altium, might look like this:

Quantity | Comment | Designator
1 0.1uF C1

1 10uF C2

3 white LED [D1, D2, D3
1 2N3904 [Q1

1 100 R1

2 20k R2, R4

1 1k R3

1 555 timer | Ul

A very basic bicycle safety light BOM

This BOM, along with a schematic, is likely sufficient
for any graduate of a US electrical engineering program to
reproduce the prototype, but it’s far from adequate for a manu-
facturing cost quotation. This version of the BOM addresses
only electronics. A complete BOM for an LED flasher also
needs to include the PCB, battery, plastic case pieces, lens,
screws, any labeling (like a serial number), a manual, and
packaging (plastic bag plus cardboard box, for example). It
may also need a master carton to ship multiple LED flashers
together, as a single boxed LED flasher is too small to ship
on its own. Although cardboard boxes are cheap, they aren’t
free, and if they aren’t ordered on time, inventory will sit on
the dock until a master carton is delivered for final pack-out
prior to shipment.

The following key information is also missing:

* Approved manufacturer for each component

* Tolerance, material composition, and voltage specification
for passive components

* Package type information for all parts

* Extended part numbers specific to each manufacturer

Let’s look at each of the missing items in more detail.

76 CHAPTER 3

Approved Manufacturers

A proper factory will require you to supply an approved ven-
dor list (AVL) specifying the allowed manufacturer(s) for
every part on a PCB. A manufacturer is not a distributor but
rather the company that actually makes a part. A capacitor,
for example, could be made by TDK, Murata, Taiyo Yuden,
AVX, Panasonic, Samsung, and so on. I'm still surprised at
how many BOMs I've reviewed list DigiKey, Mouser, Avnet,
or some other distributor as the manufacturer for a part.

It may seem silly to trifle over who makes a capacitor, but
there are definitely situations where the maker of a component
matters—even for the humble capacitor. For example, blindly
substituting the filter capacitors on a switching regulator, even
if the substitute has the same rated capacitance and voltage,
can lead to unstable operation and even boards catching fire.

Of course, some parts in a design can be truly insensitive
to the manufacturer, in which case I would mark “any/open”
on the BOM for the AVL. (This is particularly true for parts
like pull-up resistors.) This invites the factory to suggest their
preferred supplier on your behalf.

Tolerance, Composition, and Voltage Specification

For passive components marked “any/open,” you should always
specify the following key parameters to ensure the right part
1s purchased:

* For resistors, specify at minimum the tolerance and watt-
age. A 1 kQ, 1 percent tolerance, 1/4 W carbon resistor is
a very different beast from a 1 kQ, 5 percent tolerance,
1 W wire-wound resistor!

* For capacitors, specify at minimum the tolerance, voltage
rating, and dielectric type. For special applications, also
specify certain parameters such as ESR or ripple current

the factory floor 77

tolerance. A 10 uF, electrolytic, 10 percent tolerance capaci-
tor rated for 50V has vastly different performance at high
frequencies compared to a 10 uF, ceramic, 20 percent toler-
ance capacitor rated for 16V.

Inductors are sufficiently specialized that I don’t recom-
mend ever labeling them as “any/open” in your BOM. For
power inductors, the basic parameters to specify are core
composition, DC resistance, saturation, temperature rise, and
current, but unlike resistors and capacitors, inductors have no
standard for casing. Furthermore, important parameters such
as shielding and potting, which can have material impacts on
a circuit’s performance, are often implicit in a part number;
hence, it’s best to fully specify the inductor. The same goes
for RF inductors.

Electronic Component Form Factor

Always fully specify the form factor, or package type, of a com-
ponent. Poorly specified or underspecified package parameters
can lead to assembly errors. Beyond basic parameters like the
Electronic Industries Alliance (EIA) or JEDEC Solid State
Technology Association package code (that is, 0402, 0805,
TSSOP, and so on), consider the following package informa-
tion as you create your BOM:

Surface mount packages The height of a component
can vary, particularly for packages larger than 1206 or for
inductors. Pay attention to whether the board is slotting
into a tight case.

Through-hole packages Always specify lead pitch and
component height.

For ICs in general, try to also specify the common name
that corresponds to the package, not just the manufacturer’s

78 CHAPTER 3

internal code. For example, a Texas Instruments “DW” type
package code corresponds to an SOIC package. This consis-
tency check helps guard against errors.

Extended Part Numbers

Designers often think about components in abbreviated part
numbers. A great example of this is the 7404. The venerable
7404 is a hex inverter and has been in service for decades.
Because of its ubiquity, 7404 can be used as a generic term
for an inverter among design engineers.

When going to production, however, you must specify
information like the package type, manufacturer, and logic
family. A complete part number for a particular hex inverter
might be 74VHCTO04AMTC, which specifies an inverter made
by Fairchild Semiconductor, from the VHCT series, in a TSSOP
package, shipped in tubes. The extra characters are very
important, because small variations can cause big problems,
such as quoting and ordering the wrong packaged device and
being stuck with a reel of unusable parts or subtle reliability
problems.

For example, on a robotics controller I designed (codenamed
Kovan), I encountered a problem due to a mistaken substitution
of VHC in the part number for a component in the VHCT logic
family. Using the VHC part switched the input thresholds of
the inverter from TTL to CMOS logic-compatible, and some
units had an asymmetric response to input signals as a result.
Fortunately, I caught this problem before production ramped.
The correct part was used on all other units, and I avoided a
whole lot of potential rework—or worse, returns from upset
customers. Luckily, the only cost of the mistake was reworking
the few prototypes I was validating before production.

Here’s another example of how missing a few characters in
a part number can cost thousands of dollars. A fully specified

the factory floor 79

part number for the LM3670 switching regulator might be
LM3670MFX-3.3/NOPB. If /NOPB is omitted, the part num-
ber is still valid and orderable—but that version uses leaded
solder. This could be disastrous for products exporting to a
region that requires RoHS compliance (meaning lead-free,
among other things), like the European Union.

The X in the part number is another, more subtle issue.
Part numbers with an X come in reels of 3,000 pieces, and
those lacking an X come in reels of 1,000 pieces. While many
factories will question an /NOPB omission since they typically
assemble RoHS documentation as they purchase parts, they
rarely flag the reel quantity as an issue.

But you should care about the reel quantity. If you plan to
build only 1,000 products, including the X'in the part number
means you’ll have 2,000 extra LM3670s. And yes, you're on
the hook to pay for the excess, since your BOM specified that
part number. There are many valid reasons for ordering excess
parts, so factories will rarely question a decision like that.

On the other hand, parts ordered in lots of 1,000 units
are a bit more expensive per unit than those ordered in lots
of 3,000. So, if you leave out the X as your volume increases,
you’ll end up paying more for the part than you have to. Either
way, the factory will quote your BOM exactly as specified, and
if your quantity specifiers are incorrect, you could be leaving
money on the table—or worse, losing money.

The bottom line? Every digit and character counts, and
lack of attention to detail can cost real money!

The Bicycle Safety Light BOM Revisited

With those four points in mind, consider how a proper, fully
specified BOM for the bicycle safety light example might look.

80 CHAPTER 3

qm] 001 uado/Aue wd()Z X WI(py X WI()9 ‘UOIIRD I9ISRIN 200
32038 Q]G T0]0d

M] 0007 ardwres xoq papnyour 99s uado/Aue [eINIRU ‘WO(] X W9 X WIQ XOq pIeoqpier) 1
_ _ WWG] X WG 6eAO0D

M] 0007 Jpd 1A ordwes apodreq uado/Aue ‘9pod 93Bp puUR IoqUINU [eLIdS ‘[9qe] 9p0Od Teyg 1

w1 0001 uado/Aue 1830 ‘Seq dnase[d g WIZ] X W] 1
parutxd saprs om] 93Tym

SYMm ¢ 0001 Te'ga [enuew 93TjAysery uado/Aue pue 32e[q ‘193YS Y ‘TenuewW UOIIdNIISU] T
(speaT wwg) sarm HAY

I 1| 0005 051-590 Toomey] 97 >[2B[q pue pa1 WDOGT A6 ‘deug A1arreq 1
wuwg

yooas | 0oov uado/Aue Surddes-gpes ‘sdiryd peay wed ‘pxziN ‘maiog ¥
SYM {7 _ _ Tedd ‘9313

/19T 0001 [dIISTA SNAT THOITAHSYTA aqr pes] ‘ystuty xoxxux ‘suaj ‘sreuoqreskfod snse[q 1
M {7 _ _ 2'[q

/19T 0001 | dALISTA dOL IHOITAHSYTA aqr ‘2215 pea] ‘ystuty unyes ‘osed dol ‘g dnselq 1
SYM {7 _ _ 3oe|q ‘931

/19T 0001 | JILSTA 109 IHODITAHSYTA agr pes] ‘ystuty upes ‘ased wooq ‘SqV Ase[d 1
_ _ WG X WG “UIAIISY[IS 23YMm “TSYVH

Sy | 0001 | dIZTA SYITITD THOITAHSYTA adqr 40d SJSEUIAP[OS 19218 ‘40T -/+ WWY'T ‘LY ‘FDd 1

sy | 0001 QSSSAN 1L In| 8DIOS QSSSAN 1

s 8| 00001 uado/Aue e) %S MIT/T ST I

Sy 8| 00001 uado/Aue AN 2070 %1 MIT/T 0T (4

s g 000S EARRE Sruoseue] X 0102 %S MZ/T "WYo 001 I

uOuuj_UEOn:.Emm

9| 0001 SODT1P06E17d NO 10| €ee-10S P06ENT I

sagr| 000g 9/DMNEEOSXTTSS xownT| €q ‘cd 1A % 1-1 SUI] 183[1938 ‘(T 2IYM €

Sz | 0002 (4VS80)3M901DTUSXITZED MaL (4 9021 MGX ‘%01 A9T Orwerad gy I

s g 00001 “H-AMPOTIIS0TIWL uapng oAte 1D 20k0 MGX %01 AGC Oruresad iy 1

peoq| DOW N/d VIAV 1AV | oieuSisaq| oSeyeq anpep [41D

The improved bicycle safety light BON

the factory floor 81

There’s a big difference between a BOM that any engineer
could use to produce a prototype, like the first one I showed for
the bicycle safety light, and a BOM like this, which any factory
could use to mass-produce a product. Notice the MOQ (mini-
mum order quantity) and Lead Time columns in particular.
These columns are irrelevant when you’re building low-volume
prototypes, as you'd typically buy parts from distributors that
have few MOQ restrictions and maintain stock for next-day
deliveries. When scaling into production, however, you save
a lot of money by cutting the distributor overhead and buying
through wholesale channels. In wholesale channels, MOQs
and lead times matter.

The good news is that the factory will fill in the MOQ and
lead time as part of the quotation process. But you’ll find it
helpful to track these parameters from the beginning. If the
MOQ of a particular component is very high, the factory may
have to buy massive numbers of excess parts, which increases
the effective price of the project. If the lead time of a part is
very long, you may want to consider redesigning for a part with
a shorter lead time. Using parts with shorter lead times not
only saves time but also improves cash flow: no one wants to
tie up cash on long-lead components four months in advance
of sales revenue.

This BOM also includes several nonelectronic items—like
the box, a bar code label, and so on—which wouldn’t be on the
engineering prototype’s BOM. These miscellaneous bits are
easy to forget, but a missing user manual in an initial BOM
is often not discovered until the final sample is opened for
approval, leading to a last-minute scramble to get the manual
into the final product. Many products have been delayed
simply because a user manual or box art wasn’t completed and
approved in time, and it sucks to have a hundred thousand
dollars’ worth of inventory idling in a warehouse for want of
a slip of paper.

82 CHAPTER 3

Beyond a proper BOM, providing the factory with golden
samples of your product along with your CAD files is another
best practice. These working prototypes enable the factory
to make smarter decisions about any ambiguities in your
submitted BOM. Hand-soldering one more unit just for the
factory may seem annoying, but in my opinion, a few hours
of soldering beats a week of trading emails with the factory.

NOTE When you're building a business model, parts and packag-
ing still aren’t the only costs to consider. Even this detailed
BOM doesn'’t list factory margin, labor for assembly, pack-
out, shipping, duties, and so on. I discuss these “soft costs”
in “Picking (and Maintaining) a Partner” on page 107.

Planning for and Coping with Change

Of course, even if your design is perfect and your BOM is
ideal, your design may still have to change if vendors end-
of-life (EOL), or stop making, components you selected. And
let’s face it: there’s always a chance your design assumptions
won’t survive contact with real consumers, too.

Before crossing the threshold into production, formalize the
process for changing a design with the factory. It’s best prac-
tice to use written, formal engineering change orders (ECO) to
update the factory on any changes after the initial quotation.
At minimum, here’s what an ECO template should include:

* The details of each changed part, and a brief explanation
of why the change is needed

* A unique revision number for conveniently referencing the
change down the road

* A method to record the factory’s receipt of the ECO
paperwork

the factory floor 83

Be thorough with ECOs, rather than relying on casual
emails, or the buyers at your factory may buy the wrong part.
Worse yet, the factory might install the wrong part, and entire
lots of your product will need to be scrapped or reworked. Even
after troubleshooting a problem with the factory engineers, I
still write up a formal ECO and submit it to the production
staff to formalize the findings. I hate paperwork as much as
the next engineer, but in production, one small mistake can
cost tens of thousands of dollars, and that thought keeps me
disciplined on ECOs.

On the next page is an actual ECO I issued that ended up
saving me time and money.

Note the date on this ECO: February 27, 2014. This ECO
was issued right before the Chinese New Year, when the fac-
tories go on holiday for a couple of weeks. There is significant
turnover of unskilled labor inside factories after the holidays,
and thus there’s a lot of opportunity for work orders to get
lost and forgotten. Worried that the ECO would be missed, I
consulted with the managers after the factory resumed pro-
duction to ensure the ECO wasn’t forgotten. They assured me
it was applied, but I still felt a vague paranoia, so I asked for
photos of the circuit board to confirm. Sure enough, the first
production batch was missing the change in my ECO.

Thanks to the detailed ECO, the factory readily admitted
its error, repaired the entire production run, and paid for the
reworking. But if I'd sent the change order in a quick email
without referencing specific batches or work orders, there
could have been sufficient ambiguity for the factory to get out
of the rework charges. The factory could have argued that it
thought I meant to apply the change to a future production
run, or it could simply deny receiving a confirmed order, as
emails are a fairly casual form of communication. Either way,
a few minutes of documentation saved days of negotiation and
hundreds of dollars in rework fees.

84 CHAPTER 3

ENGINEERING CHANGE ORDER

Date: 27 February 2014

" Sutajio Ko-Usagi Pte LTD
H bunnie@ 5.com

ECO number: 0001 version: 2

Project:

Subassembly: & <= o sensor and microcontroller - &
Reference PO: PO-0018 and PO-0016

Background

Per request by engineer , pull-ups on inputs to the microcontroller and trigger sticker are to be
modified to enhance flexibility and better target user use-cases.

On the microcontroller, R2, R3, and R4 (all 22M, 5%) shall be omitted, to allow the inputs to be used in
applications that bar the presence of a pull-up.

On the trigger, R16 shall be changed from 10k, 1% to 22M, 5%, to allow for resistive-touch style
sensing of the input pin.

CHANGE ORDER DETAILS

ORIGINAL NEW

Designator Value Designator Value Comments

R2 22M, 5% 0603 R2 DNP BOM change only

R3 22M, 5% 0603 R3 DNP BOM change only

R4 22M, 5% 0603 R4 DNP BOM change only

R16 10k, 1% 0603 R16 22M, 5% 0603 BOM change only
MATERIAL DISPOSITION

No extra material needs to be ordered to execute this change.

Excess material resulting from this change shall be held by and applied to future builds. No

expected change to PO or cost for assembly.

Version history

version 2 — changed 0805 to 0603 for part footprints, was a typo.

Example of an actual ECO used in production.
Thanks to the formal documentation process, a production
mix-up related to this ECO was resolved in my favor.

PROCESS OPTIMIZATION:
DESIGN FOR MANUFACTURING

While you're designing your final product and putting together
a BOM, considering yield, the number of good units that come
out of the manufacturing process, is also important. Yield is
a boring subject for many engineers, but for entrepreneurs,

the factory floor 85

success or failure will be determined in part by whether they
achieve a reasonable yield. Fortunately, you can help your
yield by designing with it in mind.

Why DFM?

Unlike software, every copy of a physical good has slight imper-
fections. Sometimes the imperfections cancel out; sometimes,
they gang up and degrade performance. As production volume
ramps, a fraction of the product always ends up nonsalable.
In a robust design, the failing fraction may be so small that
functional tests can be simplified, leading to further cost reduc-
tions. In contrast, designs sensitive to component tolerances
require extensive testing and will suffer heavy yield losses.
Reworking defective units incurs extra labor and parts charges,
ultimately eroding profits.

Thus, redesigning to improve robustness in the face of nor-
mal manufacturing tolerances is a major challenge of moving
from the engineering bench to mass production. This process
1s called design for manufacturing (DFM).

acceptance acceptance
‘ evel ‘ eve

2 failing units § passing units 2 failing units | passing units

g : < i

3 3

el ey

3 S

H* I

performance metric performance metric
(e.g., brightness uniformity) (e.g., brightness uniformity)

Left, before DFM, almost half the units are not meeting the acceptance level and
are therefore failing. Right, after DFEM, the acceptance level is the same, but the
average performance is improved, leading to most units passing.

To understand the importance of DFM, consider these
graphs. Each depicts a bell curve, which is an assumed sta-
tistical distribution of a particular parameter. The x-axis is a
parameter of interest, and the y-axis is the number of items
produced that hit the given parameter. For example, in a plot

86 CHAPTER 3

of the brightness of thousands of LEDs, the x-axis would be
brightness, and the y-axis would be the number of LEDs that
reach a given brightness. The position of the bell curve relative
to the pass/fail criteria determines the net production yield.

On the right-hand curve, most LEDs are bright enough,
and most of the production inventory is shippable. On the
left-hand curve, maybe 40 percent of the LEDs pass. Given
that most hardware companies operate with about a 30 to 50
percent gross margin, scrapping 40 percent of the material
would mean the end of the business. In such a situation, the
only viable options are to spend the time and effort to rework
the LEDs until they pass or to lower the performance require-
ment. The product wouldn’t be as high quality as hoped, but
at least the business could keep operating.

Tolerances to Consider

The goal of DFM is to ensure that your product always passes
muster and that you’re never faced with the unsavory choice of
reducing margins, lowering quality standards, or going out of
business. But there are some component aspects to think about
when applying DFM.

ELECTRONIC TOLERANCES

Passive component tolerances are the most obvious tolerances
to design for. If a resistor’s true value can be +/—5 percent of
its labeled value, be sure the rest of your circuit can cope with
the edge cases.

Active component datasheet parameters—like current
gain (hFE) for bipolar transistors, threshold voltage (V,) for
field effect transistors (FETSs), and forward bias voltage (Vy)
for LEDs—can also vary widely. Always read the datasheet,
and watch for parameters with a great disparity between their
minimum and maximum values, a difference often referred

to as a min-max spread. For example, the min-max on hFE

the factory floor 87

for Fairchild’s 2N3904 ranges from 40 to 300, and the V; on
a superbright LED from Kingbright is between 2 and 2.5V.

Nominal operating voltage aside, a component’s maxi-
mum voltage rating is particularly important for capacitors
and input networks. I try to use capacitors rated for twice
the nominal voltage; for example, where possible, I use 10V
capacitors for 5V rails and 6.3V capacitors for 3.3V rails. To
understand why, consider ceramic capacitor dielectrics, which
have reduced capacitance with increasing voltage. In designs
operating near a ceramic capacitor’s maximum voltage, that
component’s operating capacitance will be at the negative
end of its tolerance range. Also, input networks (any part of
the circuit that a user can plug something into) are subject to
punishing electrostatic discharge and other transient abuses,
so pay special attention to the ratings of capacitors there to
achieve your desired reliability.

Finally, after you have a good sense of the components you’ll
use, pay close attention to trace widths and layer stack varia-
tions when designing your PCB. These will impact systems
that require matched impedance or deal with high currents.

MECHANICAL TOLERANCES

Electronic tolerances aren’t the end of your worries, though;
mechanical tolerances are important, too. Neither PCBs nor
cases will come out exactly the right size, so design your case
with some wiggle room. If your case design has zero tolerance
for the PCB dimensions, half the time the factory will force
PCBs into cases, when either the PCB is cut a little large or
the case comes out a little small. This can cause unintentional
mechanical damage to the circuitry or the case.

And don’t forget about cosmetic blemishes! Any manu-
factured product is subject to small blemishes, such as dust
trapped in plastics, small scratches, sink marks, and abra-
sions. It’s important to work out the acceptance criteria for

88 CHAPTER 3

such defects with the factory ahead of time. For example, you
might tell the factory that a unit can be considered “good” if
1t has no more than two dot blemishes larger than 0.2mm, no
scratch longer than 0.3mm, and so on. Most factories will have
a particular system they’ve adopted to describe and enforce
these standards. If you discuss these parameters in advance,
the factory can craft the manufacturing process to avoid such
defects, as opposed to the more expensive alternative of building
extra units and throwing away those that don’t meet criteria
imposed late in the game.

Of course, avoiding defects isn’t free. To keep your product
cheaper, avoid high-gloss finishes and consider using matte
or textured finishes that naturally hide blemishes.

Following DFM Helps Your Bottom Line

To imagine DFM in a real-world scenario, return to the bicycle
safety flasher case study from “How to Make a Bill of Materials”
on page 74. Say the prototype design calls for an array of
three LEDs in parallel, each with its own resistor to set the
current. The forward bias voltage, or V,, of an LED at a given
brightness can vary by perhaps 20 percent between devices;
in this case, that swing is from 2.0 to 2.5V.

A design that limits the current to the LEDs with resis-
tors, called resistive current limiting, will amplify this varia-
tion. This happens because an efficient circuit would drop a
minority of the voltage across the current-limiting resistor,
leaving the parameter that sets the current (the voltage drop
across the resistor) more sensitive to the variation in V. Since
the brightness of an LED is not proportional to the voltage
but rather the current flowing through it, setting the LED
brightness with resistive current limiting can cause jarring
inconsistencies in LED brightness.

the factory floor 89

40% impact on
current-set resistor
35— voltage
34— -
2.5 .
current-set resistor voltage
2 4 m LED voltage
20% LED V,
1.5 variation
14
0.5
O —

high V, low V,

Comparing high V; and low V; corners

In this example, a 20 percent LED V,variation (from 2.0V
to 2.5V, per the LED manufacturer’s specification) leads to a
40 percent change in the voltage across a current-set resistor
for a fixed 3.3V supply. This will cause a 40 percent change
in the current flowing through the LED. As brightness is
directly proportional to current, the change manifests as up
to a 40 percent variation in perceived brightness between
individual LEDs. A design like that may work well most of
the time; the problem would only be pronounced when a high
V; unit is observed next to a low V; unit.

P3.3Vv P3.3v P3.3V
= LED o LED = LED
o brightness & brightness & brightness
oo / oo / e /
s D10C S D11C S D12C
%) X %) Y %) N
g ~N \ g ~N \ 8 ™~ \
= = =
& R13C e R14C £ R15C
< 33002, 1% < 3300, 1% < 3309, 1%

GND GND GND

Setting current for individual LEDs using resistors
can lead to dramatic variations in brightness.

90 CHAPTER 3

The one or two units prepared on the lab bench during
development may have looked great, but in production a mean-
ingful fraction may have such serious brightness uniformity
issues that units must be rejected. As most large hardware
businesses have to survive on lean margins, losing even 10 per-
cent of finished goods to defects is a terrible outcome.

One stop-gap option is to rework the failed units. A factory
can identify an LED that is too dim or too bright in an array
and replace it with one that better matches its cohorts. But
that rework would drive up costs and result in an unexpected
and unpleasant invoice at the 11th hour of a manufacturing
program. Naive designers may be inclined to blame the fac-
tory for poor quality and argue over who should bear the cost,
but it’s better to proactively avoid these kinds of problems by
subjecting every design to a DFM check and using a small
pilot run to sanity-check yield before punching out a whole
bunch of units.

The cost of yield fallout quantifies how much money to
spend on extra circuitry to compensate for normal compo-
nent variability. For example, a product with a $10 cost of
goods sold (COGS) that yields 80 percent good units has an
effective cost per salable unit of $12.50, as calculated with
this formula:

Effective cost = COGS X total units built / yielded units

Increasing the COGS by $2.50 to improve yield to 100 per-
cent would allow you to break even. But using the same for-
mula, spending $1 extra dollar in COGS to improve yield to
99 percent would actually improve the bottom line by $1.38.

the factory floor 91

22uH Sumida CDRH5D28R-220NC

VvCC
| — LED_A
: VIN SW [

VOUT GND 3 LED_K

y 5 2
CIRL FB
ciic R10C SP669IEK-L/TR

10k, 1%

W

R11C
20.00, 1%
Set for 10mA

C10C
pull up to turn on by default

PWM

104E 6.3V, X5R, 10%
0.224F 50V, X7R [10%

GND —e

GND

21

A circuit to set the current on three LEDs, created by applying DFN

In the case of the bicycle safety light, that dollar could
be spent on a current-feedback boost regulator IC like the
SP6699EK-L/TR, allowing the LEDs to be stacked in series
instead of parallel. The design would be far more complicated
and expensive than using individual resistors, but it would
guarantee each LED has a consistent, identical current flow-
ing through it by driving all three LEDs in a series circuit with
a fixed-current feedback loop. That would virtually eliminate
brightness variation. While the cost of the boost regulator is
much greater than the penny spent on three current-limiting
LEDs, the improvement in manufacturing yield more than pays
for the extra component costs. In fact, this trick is standard
practice for applications that require good uniformity of bright-
ness out of LEDs, such as in the backlights of LCD panels. A
typical mobile phone backlight uses about a dozen LEDs, but,
thanks to circuits like this, you never see light or dark splotches
despite the large variations in V;between the constituent LEDs.

The Product Behind Your Product

Alongside dealing with tolerances, another often-neglected
design responsibility is the test program. A factory can only
detect the problems it is instructed to look for. Therefore, every

92 CHAPTER 3

feature of a product must be tested, no matter how trivial. For
example, on a chumby device, every user-facing feature had
an explicit factory test, including the LLCD, touchscreen, audio,
microphone, all the expansion ports (USB, audio), battery,
buttons, knobs, and so on. I made sure that even the simplest
buttons were tested. While it’s tempting to skip testing such
simple components, I guarantee that anything not tested will
lead to returns.

I like to call the factory tester “the product behind your
product.” That’s because in some cases, the factory tester is
more complicated and more difficult to engineer than the
product you're trying to sell. This is particularly true of simple
products.

A REAL-WORLD TEST PROGRAM

As a case study, consider this microcontroller sticker from

Chibitronics, a project I discuss at length in Chapter 8.

A microcontroller circuit—on a sticker

This circuit is very simple: it consists of just an 8-bit AVR
microcontroller and a handful of resistors and capacitors.

the factory floor 93

(It’s also the same product referred to in the ECO example on
page 84.) My collaborator and I sketched in Adobe Illustrator
for about two days before we derived the final shape for this
product. Then we spent about a day in Altium designing the
circuit, and about a week coding in the Arduino IDE to create
its firmware. In all, the development process took about two
weeks. For production, the microcontroller is paired with a
set of sensors that can process sound, light, and touch, and as
a result, the test program runs on all four at the same time.

The testing machine for the Chibitronics microcontroller sticker

The test rig pictured consists of a 32-bit ARM computer
running Linux with a graphical Ul rendered on an HDMI
monitor. Behind this is an FPGA, some adapter electronics to
create analog waveforms for testing, and a mechanical pogo-pin

94 CHAPTER 3

assembly for touching down on the sticker. Breaking down the
design process for this rig into its component parts, we spent:

* Several days designing in Altium
* A week programming in the Xilinx ISE for the FPGA
* A couple of weeks hacking on Linux drivers

* A couple of solid months hacking in C++, to create the Qt
integration framework

* A couple of days in SolidWorks, to create the mechanical
apparatus to hold the whole thing together

Altogether, creating the tester for the microcontroller
sticker took over two months, compared to the two weeks to
create the product itself.

Why go through all this effort? Because time is money,
and defects and returns are expensive to process. The tester
can process one board in under 30 seconds; and in those 30
seconds, the tester has to program two microcontrollers; test
sensors for light, sound, and touch; and confirm operation
at both 5V and 3V. A manual test for all these operations
could take several minutes of skilled labor and wouldn’t be
as reliable. Thanks to this tester, we processed zero returns
due to defective material. Also, the graphical Ul on the tester
makes it very easy for the factory to determine exactly which
point in the circuit is failing, facilitating fast rework of any
imperfect material.

GUIDELINES FOR CREATING A TEST PROGRAM

As a rule of thumb, for every product you make, you’re actually
making two related products: one for the end user, and a test
for the factory. In many ways, the test for the factory has to
be as user-friendly and foolproof as the product itself; after all,
tests are not run by electrical engineers. But the related testing

the factory floor 95

product will be much quicker and faster to build if adequate
testing features are designed into the consumer product.

And no, don’t outsource the test program to the factory,
even if the factory offers that service. The factory often won’t
understand your design intent, so their test programs will
either be inefficient or test for the wrong behavior. Factories
also have an incentive to pass as much material as possible,
as quickly as possible, so their test programs tend to be primi-
tive and inadequate.

Here are some guidelines to follow when designing your
own program:

Strive for 100 percent feature coverage.

Don’t overlook simple or secondary features like status LEDs
or an internal voltage sensor. When creating the test list, I
take an “outside/inside” approach. First, look at the product
from the outside: list every way a consumer can interact
with it. Does your test program address every interaction
surface, even if only superficially? Is every LED lit, every
button pressed, every sensor stimulated, and every memory
device touched? Has every bullet point in your marketing
material been confirmed? Promising “world-class” RF sensi-
tivity is different from simply advertising the presence of a
radio. Then, think about the inside: from the schematic, look
at every port and consider key internal nodes to monitor.
If the product has a microcontroller, review which drivers
are loaded to cross-check the test list, and make sure no
components are forgotten.

Minimize incremental setup effort.
Optimize the amount of time required to set up the test for
each unit. This is often done through jigs that employ pogo
pins or prealigned connector arrays. A test that requires
an operator to manually probe a dozen test points with a

96 CHAPTER 3

multimeter or insert a dozen connectors is time-consuming
and error-prone. Most factories in China can help design
the jig for a nominal cost, but jig design is easier and more
effective if the design itself already includes adequate test
points.

Automate test procedure into a linear flow.

An ideal test runs with a single button press, and produces
a pass or fail result. In practice, there are always stop
points that require operator intervention, but try not to
require too much. For example, don’t require an operator
to key in or select an SSID from a list during each Wi-Fi
connectivity test. Instead, fix the test target’s SSID and
hardcode that value into a test script so the connection
cycle is automatic.

Use icons and colors, not text, to communicate with
operators.
Not every operator is guaranteed to be literate in a given
language.

Employ audit logs.

Record test results correlated to device serial numbers
by incorporating a barcode scanner into the test rig.
Alternatively, have the device print a coupon with a unique,
timestamped code or a locally stored audit log to prove
which units passed a test. Logs will help you figure out
what went wrong when a consumer returns a failed prod-
uct, and they let you quickly check that all products were
tested. After an eight-hour shift of testing, an operator may
make mistakes, such as accidentally putting a defective
unit into the “good” bin. Being able to check that every
shipped product was subjected to and passed the full test
can help you identify and isolate such problems.

the factory floor 97

Provide an easy update mechanism.
Like any program, test programs have bugs. Tests also
need to evolve as your product is patched and upgraded.
Have a mechanism to update and fix test programs without
visiting the factory in person. Many of my test fixtures can
“phone home” via a VPN, and I can SSH into the jig itself
to fix bugs. Even my simplest jig employs a Linux laptop
(or equivalent) at its core. This is in part because Linux is
easier to update and maintain than a bespoke microcon-
troller that requires a special adapter for firmware updates.

These guidelines are easy to implement if your product
1s designed with testability in mind. Most of the products
I design run Linux, and I leverage the processor inside the
product itself to run most tests and help manage the test user
interface. For products that lack user interaction surfaces, an
Android phone or a laptop connected via Wi-Fi or serial can
be used to render the test user interface.

Testing vs. Validation

Production tests are meant to check for assembly errors, not
parametric variations or design issues. If a test is screening out
devices because of normal parametric component variations,
either buy better components or redo your design.

For consumer-grade products, you don’t need to run a
five-minute comprehensive RAM test on every unit. In theory,
your product should be designed well enough that if it’s all
soldered together correctly, the RAM will do its job. A quick
test to check that there are no stuck or open address pins is
often enough. Name-brand chip vendors typically have very
low defectivity, so you're not validating the silicon; rather,
you're validating the solder joints and connectors and check-
ing for missing or swapped components. (But if you buy clone

98 CHAPTER 3

chips or off-brand, remarked, or partially tested devices to
cut costs, I recommend making a mini validation program for
those components.)

VALIDATING A SWITCH

To illustrate the difference between production testing and
validation, let’s look at how both might work for a switch.

A production test for a switch may simply ask the operator
to hit the switch a few times and verify that the feel is right,
and that electrical contact is made through a simple digital
indicator. A validation test, on the other hand, may involve
selecting a few devices at random, measuring the switch contact
resistance with a multimeter that is accurate to five signifi-
cant digits (also called a five-digit multimeter), subjecting the
devices to elevated humidity and temperature for a couple of
days, and then putting the devices into an automated jig that
cycles the switches 10,000 times. Finally, you might remeasure
the switch contact resistance with a five-digit multimeter and
note any degradation in close-state contact resistance.

Clearly, this level of validation can’t be performed on every
device manufactured. Rather, the validation program evalu-
ates the switch’s performance over the expected lifetime of the
product. The production test, on the other hand, just makes
sure the switch is put together right.

NOTE It’s good practice to rerun validation tests on a couple of
randomly sampled units out of every several thousand units
produced. There are formulas and tables you can use to com-
pute how much sampling you need to achieve a certain level
of quality, just search online for “manufacturing validation
test table.”

But how much testing is enough? You can derive one
threshold for testing through a cost argument. Every additional
test run incurs equipment costs, engineering costs, and the

the factory floor 99

variable cost of the test time. As a result, testing is subject to
diminishing returns: at some point, it’s cheaper just to take
a product return than to test more. Naturally, the testing bar
1s much higher for medical or industrial-grade equipment, as
the liability associated with faulty equipment is also much
higher. Likewise, a novelty product meant to be given away
may need much less testing.

DESIGNING YOUR TEST JIG

A final thought: always apply solid engineering to your test jig
design. When I worked on the chumby 8, there was a problem
where a 50-pin flat flex cable adapter was exhibiting random
cold-solder-joint failures. I asked the factory to build a test
to validate the adapters. Their solution was to hang LEDs
from every pin of the adapter, apply a test voltage to one side
of the cable, and look for LEDs that didn’t light on the other
side. The cold solder joints weren’t simply open or closed,;
some just had high resistance. Enough current would flow to
light an LED, yet there was also enough resistance to cause
a fault in the design.

The factory proposed buying 50 multimeters and attach-
ing them to every pin to check the resistance manually, which
would have been expensive and error-prone. It’s not reason-
able to expect an operator to look at 50 displays hundreds of
times a day and be able to reliably find the out-of-spec num-
bers. Instead, I chose to daisy-chain the connections across
the adapter and use a single multimeter to check the net
resistance of the daisy chain. By putting the connections in
series, I could check all 50 connections with a single numeric
measurement, as opposed to the subjective observation of an
LED’s brightness.

As this case illustrates, there are good and bad ways to
implement even a test as simple as checking for cold solder
joints on a cable adapter. Ever more complicated components

100 CHAPTER 3

require ever more subtle tests, and there’s real value in using
engineering skills to craft efficient yet foolproof tests.

FINDING BALANCE IN INDUSTRIAL DESIGN

Even if your product passes all validation tests with flying
colors, it still may not be successful if consumers don’t want
1it. Remember: sex sells. To within a factor of two or so, the
performance of a CPU or amount of RAM in a box is less
important to a typical consumer than how the device looks.
Apple devices command a hefty premium in part because of
their slick industrial design, and many product designers
aim to emulate the success of Sir Jonathan Ive, Apple’s chief
design officer, in their own products.

There are many schools of thought in industrial design,
the process of designing how a product will look before actu-
ally making it. One school invokes the monastic designer,
who creates a beautiful, pure concept, and the production
engineers, who spoil the design’s purity when they tweak
it for functionality. Another school invokes the pragmatic
designer, who works closely with production engineers to
hammer out gritty compromises to produce an inexpensive
and high-yielding design.

In my experience, neither extreme is compelling. The
monastic approach often results in an unmanufacturable
product that is either late to market or expensive to produce.
The pragmatist approach often results in a product that looks
and feels so cheap that consumers have trouble assigning it a
significant value. The real trick is understanding how to strike
a balance between the two, and it begins by getting into the
factory and understanding how things are done. Here’s a couple
of examples of what I've learned about how different factory
processes affect that balance, from Chumby and Arduino.

the factory floor 101

The chumby One’s Trim and Finish

Trim and finish are difficult, making them points of distinc-
tion in a product’s appearance. When I worked at Chumby, we
wanted the final product to have a minimalist, honest finish.
(Honest finishes feature the natural properties of the mate-
rial systems in play and eschew the use of paints and decals.)
Minimalist designs are very hard to manufacture because with
fewer features, even tiny blemishes stand out. Honest finishes
can be difficult, too, as all the burs, gates, sinks, knits, scoring,
and flow lines that are facts of life in manufacturing are laid
naked before the consumer. As a result, this school of design
requires well-made manufacturing tools that are constantly
checked and maintained throughout production.

If you don’t have pockets deep enough to invest in new
equipment and capabilities on behalf of your factory (that is,
if you’re not a Fortune 500 company), the first step is to learn
the vocabulary available. A design vocabulary is defined by the
capabilities of the factory or factories producing the goods, like
what materials you can obtain, what finish is possible, what
tolerances are achievable, and what fastening technology exists.
These are all heavily dependent upon the processes available
to your factory.

Therefore, I find that visiting a factory in person early in
the design process results in a better design. After a factory
visit, you'll discard some design vocabulary, but you’ll discover
some new vocabulary as well. The engineers who work in the
factory day in and day out develop process innovations that
can open up novel design possibilities that you won’t discover
unless you visit.

The chumby One is a concrete example of the impact
manufacturing processes can have on design outcome. In the
original concept art, a blue highlight was added around the
front edge to resemble a speech balloon, like those used in

102 CHAPTER 3

comic strips. The idea was that the chumby would caption
your world with snippets from the internet.

A finished chumby One unit

But applying a blue trim across a raised surface was very
hard. The first factory used paint, because the front edge wasn’t
flat enough to make silk screening an option. Pad printing (also
known as tampo printing, a process in which ink is transferred
from a silicone pad to an object) can handle curved surfaces,
but the alignment of the ridge on the chumby One wasn’t
good enough, and the tiniest ink bleed over the edge looked
terrible from the side. Decals and stickers likewise couldn’t
achieve the alignment we wanted. In the end, a small channel
was carved to contain the paint, and the factory created the
highlight with a stencil and spray paint.

The yield was terrible. In some lots, over 40 percent of the
chumby One cases were thrown away due to painting errors.
Fortunately, plastic is cheap, so throwing away every other
case after painting had a net cost impact of about $0.35.

the factory floor 103

underpaint

too thin

overpaint

Two chumby One units with bad paint jobs

Midway through production, we started producing chumby
One units in a second-source facility. The second factory had
different plastic molding equipment, and unlike the first fac-
tory, this facility could do double-shot molds. A double-shot
mold involves twice the number of tools of a single-shot injec-
tion mold, but it can injection-mold two different colors, or
even two different materials, into the same mold. At the new
factory, we tried a double-shot process instead of painting for
the thin blue strip.

A perfect chumby One ridge,
from the double-injection mold process

104 CHAPTER 3

The results were stunning. Every unit came off the line with
a crisp blue line, and no paint meant a cleaner, more honest
finish. But the cost per case jumped to $0.94 apiece with the
more expensive process, despite the 100 percent yield. It would
have been cheaper to throw away more than half of the painted
cases, but even the best painted cases could not compare to the
quality of the finish delivered by the double-shot tool.

The Arduino Uno’s Silkscreen Art

Another great example of how tweaking a factory process can
improve a product’s appearance is the Arduino motherboard.
The wonderfully detailed artwork on the back side, sporting
an outline of Italy and very fine lettering, isn’t silkscreen. The
factory that makes these boards actually puts on two layers
of soldermask: one blue and one white.

'obbbobbb buuububbu \j)

PO\RD gmnn R
Jc TRO @@ o © @ ==
ARDUINO o X) @ Q@D

"ROHS COMPLIANT i
*ZERO CARBON_FOOTRRINT
IMPATTO ZER

The underside of an Arduino Uno R3

When Arduino boards are manufactured, soldermask is
applied through the photolithographic process I described
in “Where Arduinos Are Born” on page 44. This process
results in artwork with much better resolution, consistency,

the factory floor 105

and alignment than a silkscreen. And since an Arduino’s look
is the circuit board, this art gives the product a distinctive,
high-quality appearance that is difficult to copy using conven-
tional processing methods.

Thus, the process capability of a factory (whether it’s
painting versus double-shot molding, or double soldermask-
ing versus silkscreening) can have a real effect on a product’s
perceived quality, without a huge impact on cost. The factory,
however, may not appreciate the full potential of its processes,
and until a designer interacts with the facility directly, your
product can’t harness that potential, either.

Unfortunately, many designers don’t visit a factory until
something has gone wrong. At that point, the tools are cut,
and even if you discover a cool process that could solve all your
problems, it’s often too late.

My Design Process

Design is an intensely personal activity, and as a result,
every designer will develop their own process. If you need
a framework for developing your own, however, this is the
general process I might use to develop a product on a tight,
startup budget:

1. Start with a sketchbook. Decide on the soul and identity of
the design, and pick a material system and vocabulary that
suits your concept. But don’t fall in love with it, because
it may have to change.

2. Break down the design by material system, and identify a
factory capable of producing each material system.

3. Visit the facility, and note what is actually running down
the production lines. Don’t assume anything based on the
one-off units from the sample room. Practice makes perfect,
and from the operators to the engineers, factory workers
execute procedures they do daily much better than they
would an arcane capability they don’t use often.

106 CHAPTER 3

4.

Reevaluate your design based on a new understanding
of what’s possible at the factory, and iterate. Go back to
step 1 if small tweaks aren’t enough. This is the stage when
it’s easiest to make compromises without sacrificing the
purity of your design.

Rough out the details of your design. Pick sliding surfaces,
parting lines where pieces of the case snap together, fin-
ishes, fastening systems, and so on based on what the
factory can do best.

Pass a revised drawing to the factory, and work with them
to finalize details such as draft angles, fastening surfaces,
internal ribbing, and so on.

Validate the design using a 3D print and extensive 3D
model checks.

Identify features prone to tolerance errors, and trim the
initial manufacturing tool so that the tolerance favors
modifications that will help you minimize costly changes
to the tool. For example, consider injection molding, where
a steel tool is the negative of the plastic it’s molding.
Removing steel from a tool (adding plastic) is easier than
adding steel (removing plastic), so target the initial test
shot to use more steel on critical dimensions, as opposed
to too little. A button is one mechanism that benefits from
tuning like this: predicting exactly how a button will feel
from CAD or 3D prints is hard, and perfecting the tactile
feel usually requires a little trimming of the tool.

Of course, this process isn’t a set of hard rules to follow.

You may need to add or repeat steps based on your experience

with your factory, but if you choose a good factory, this should

be a good starting point.

the factory floor 107

PICKING (AND MAINTAINING) A PARTNER

Just like the wands from Harry Potter, a good factory chooses
you as much as you choose it, so forget the term vendor and
replace it with partner. If you're doing it right, you aren’t simply
instructing the factory; there should be a frank dialogue about
the trade-offs involved and how the manufacturing process
can be improved. That’s the only way to get the best product
possible.

A healthy relationship with a factory can also lead to better
payment terms, which improves your cash flow. In some cases,
factory credit can directly replace raising venture capital, tak-
ing loans, or getting Kickstarter funding. As a result, I treat
good factories with the same respect as investors and partners
in a business. For an idea of what that means, here are some
tips on how to choose and work with your factory.

Tips for Forming a Relationship with a Factory

First, pick the right-sized factory for your product. If you
work with a factory that’s too big, you risk getting lost in
bureaucracy and pushed out of the production line by bigger
customers at critical times. Work with a factory too small, and
it won’t be able to provide the services you need. As a rule, I
pick the biggest facility where I can get direct access to the
lao ban (factory boss) on a regular basis, because if you can’t
talk to the boss, you're nobody. It’s a good sign if the lao ban
is there on the first meeting to give you a tour and asks astute
questions about your business over lunch.

Second, follow the adage “Sunlight is the best disinfectant.”
If a factory won’t quote with an open BOM, where the cost of
every component, process, and margin is explicitly disclosed,
I won’t work with them. Cost reduction discussions cannot

108 CHAPTER 3

function without transparency, because there are too many
places to bury costs otherwise. Likewise, if cost discussions
turn into a game of whack-a-mole, where reduced costs on one
line item are inexplicably popping up in another, run away.

This final tip applies primarily to startups. In your early
stages, everyone knows your cash supplies are finite. Even if
you've just closed a big round of financing, swaggering into a
factory with money bags is not a sustainable approach. Smart
factories know your cash supplies are limited, and if the great-
est value you propose to bring to the factory is piles of money,
your value is limited; in the best case, it won’t really pay out
until years down the road when the product is shipping in
high volumes. As a result, it’s helpful to try to deliver value
to the factory in nonmonetary ways.

As silly as it sounds, being a pleasant and constructive
person goes a long way in currying the favor of your facility.
Manufacturing is a high-stress, low-margin business, and
everyone in the facility has to deal with difficult problems all
day. I find I get better service—even better than customers
with deeper pockets—if I treat my factories as I would treat
a friendly acquaintance, and not as slave labor or a mere
subcontractor. Mistakes happen, and being able to turn a
bad situation into a learning experience will benefit you on
the day you make a stupid (and perhaps expensive) mistake.

Tips on Quotations

Openness aside, know that if a quote seems too good to be
true, it often is. When negotiating prices with a factory, step
back and check if the quote makes sense. Factories that lose
money on a deal will stop at nothing to make it back, and
many manufacturing horror stories have roots in unhealthy
cost structures. A factory’s first prerogative is survival,
even if that means mixing defective units into lots to boost

the factory floor 109

margin, or assighing novice engineers to a flagging project
to better monetize their seasoned engineers on more profit-
able customers.

As you evaluate a quote, make sure it includes the following:

* The price of each part

* The excess material for the job due to minimum order
quantities (MOQ@s)

* Labor costs
* The factory’s overhead cost

* Nonrecurring engineering (NRE) fees
Let’s look at a few of these items in detail.

KEEPING AN EYE ON EXCESS

Excess is the result of what I call the “hot dogs and buns”
problem. Hot dogs come in packs of 10, but buns come in
packs of 8. Unless you buy 40 servings, you’ll have leftover
buns or hot dogs.

Likewise, many components only come in 3,000-piece
reels. A 10,000-piece build requires 4 reels for a total of 12,000
pieces, leaving 2,000 pieces of excess. Factories can buy parts
in cut tape or partial reels, but the cost per part of cut tape
is much higher, as the risk of excess material is shifted onto
the distributor.

Excess isn’t all bad, though: it can be folded into future
runs of a product. As long as your product sustains a decent
production rate, excess component inventory should turn into
cash on a regular basis. At some point, however, production
will end or pause, and the bill for the excess will arrive, put-
ting a crimp on cash flow. If a quote lacks an excess column,
the factory may charge you for the full reel but keep the excess
for their own purposes; this is where many of the gray-market

110 CHAPTER 3

goods in Shenzhen come from. They may also just send an
unexpected invoice for it down the road, which often arrives
at the worst possible time—revenue from the product has
already ceased, but bills keep coming in. Either way, it’s best
to know up front the complete cradle-to-grave business model.

FIGURING OUT LABOR COSTS

Labor costs are devilishly tricky to estimate, but the good news
is that for high-tech assemblies, labor is typically a small frac-
tion of total cost. The labor cost of assembling small volumes
of a straightforward board with 200 parts may be about $2 or
$3 in China, while the cost of assembling in the United States
is closer to $20 or $30. Even if labor prices double overnight
in China and halve in the United States, China may still be
competitive.

This is in contrast to the lower-value goods moving out
of China (such as textiles), where the base value of the raw
material is already low, so labor costs are a significant por-
tion of the final product cost. I usually don’t argue much over
labor costs, since the end result of scrimping on labor is often
lowered quality, and pushing too hard on labor costs can force
the factory to reduce the workers’ quality of life by trimming
benefits.

THE FACTORY’S OVERHEAD

Negotiating factory margin is also a bit of an art, and there are
no hard-and-fast rules. I'll give guidance here, but there are
always exceptions to the rule, and every factory can cut you a
special deal depending on the circumstances. Ultimately, it’s
important to look at the big picture when reviewing a factory’s
quote and use some common sense.

What constitutes a fair margin for a factory depends on
how much value it adds to your product, and the volume of
production. The definition of “margin” also varies depending on
the facility. Some facilities include scrap, handling overhead,

the factory floor 111

and even research and development expenses in the margin,
while others may break those out on separate lines.

In general, margin ranges between single-digit and low
double-digit percentages, depending upon volume, value add,
and project complexity. For very low-quantity production lots
(fewer than 1,000 pieces), you may also be charged a per-lot
line fee. This fee partially defrays the cost of setting up an
assembly line only to tear it down after a couple of hours. A
line’s throughput may be very fast, producing hundreds to
thousands of units a day, but it also takes days to set up.

NONRECURRING ENGINEERING COSTS

NRE costs are onetime fees required to set up a production
run, such a stencils, SMT programming, jigs, and test equip-
ment. Note that reusing test equipment between customers is
considered bad practice; if a multimeter is required as part of
a production test, don’t be surprised if a bill for a multimeter
is tacked onto the NRE. Customers have drastically varying
standards around the maintenance and use of test equipment,
so good factories don’t take chances with it.

Miscellaneous Advice

Who you can talk to and how open the factory is about costs
are certainly key concerns, but with experience, you’ll learn a
lot more about dealing with factories that doesn’t fall into any
particular category. To close, here are a few more important
points to keep in mind when selecting a factory.

SCRAP AND YIELD

Ideally, you'd pay a factory only for good, delivered items,
and the factory would bear the burden of defective units. This
gives the factory an incentive to maintain a high production
quality, because every percent of defectiveness eats away
at its margin. But if your design has a flaw or is too hard to
build, and defectiveness is high, the factory may start shipping

112 CHAPTER 3

lower-quality units as a desperate measure to meet produc-
tion and margin targets. It may also start selling defective
goods on the gray market to recover cost, leading to brand
reputation problems down the road.

To avoid situations like that, reach an understanding
with the factory ahead of time on how to handle scrap units
or exceptional yield loss. This may include, for example, a
dedicated “scrap” line item inside the quotation to handle
defectiveness explicitly.

ORDER MORE UNITS THAN THE PROVEN DEMAND

Despite everyone’s best efforts, mistakes will happen, custom-
ers will receive bad devices, and you’ll want extra working units
for returns and exchanges. Ordering 1,000 pieces to fulfill a
1,000-piece Kickstarter campaign means if customers want
to return or exchange units that were broken in shipping, all
you can do is issue refunds. It’s just not practical to fire up
the factory to make a dozen replacement units.

As a general rule, I order a few percent excess beyond the
number of units I need to deliver to customers, to have stock
on hand to handle returns and exchanges. Units that don’t
get used up by the returns process can be turned into demo
loaners or business development giveaways to drum up the
next set of orders!

SHIPPING COSTS MONEY

Keep an eye on shipping costs. These fees aren’t typically built
into a factory’s quotation, but they impact your bottom line,
even more so for low-volume products. Shipping FedEx is a
great way to save time, but it’s also very expensive. Courier
fees can easily wash out the profit on a small project, so man-
age those costs.

NOTE Couriers offer discounts to frequent shippers, but you have
to call in to negotiate the special rates.

the factory floor 113

FACTOR IN IMPORT DUTIES

Components imported to China without an import license are
levied a roughly 20 percent compulsory duty on their value.
The general rule for China is dutiable on import, duty free on
export. If something is accidentally shipped across the border to
Hong Kong, expect to pay a duty to get it back into China, too.

Get a customs broker to work angles for saving money; for
example, some brokers can get goods taxed by their weight
and not their value, which for microelectronics is typically a
good deal. T haven’t figured out all the customs rules, as they
seem to be a moving target. Every month it seems there’s a
new rule, fine, exceptional fee, or tariff to deal with. There are
also plenty of shady ways to get goods into China, but I sleep
better at night knowing I do my best to comply with every rule.

Quotations don’t include duties, because factories assume
by default that you will have an import license. Import licenses
enable the duty-free import of goods. But import licenses cost
a few thousand bucks, take weeks to process, and have no
room for flexibility, as they are tied to an exact BOM for the
product. Small engineering change orders can invalidate an
import license. I've known customs officers to count the number
of decoupling caps on a PCB, and if it doesn’t match the count
in the license, a fine is levied and the license is invalidated.
Even deviations in the material used to line a decorative box
can invalidate a license. In short, this import license scheme
favors high-volume products, and punishes low-volume pro-
ducers, so tread lightly.

CLOSING THOUGHTS

Going to China for manufacturing clearly isn’t for everyone.
Particularly if you're based in the United States, the overhead
of courier fees, travel, duties, and late-night conference calls
adds up rapidly. As a rule of thumb, a small US-based company

114 CHAPTER 3

is often better off assembling PCBs in the United States for
volumes under 1,000 units, and you won’t start seeing clear
advantages until volumes of perhaps 5,000 to 10,000 units.

That math shifts in China’s favor as processes like injection
molding and chassis assembly come into play, due to the exper-
tise Chinese factories have in these labor-intensive processes.
The break-even point can also be much lower if you live in or
near China, as courier fees, travel, and time-zone impact are
all a small fraction of what they’d be from the United States.
This compounds with the fact that locals are more effective
at leveraging the component ecosystem in China, leading to
further cost reductions compared to a design produced using
only US parts.

On the other hand, physically large assemblies or systems
built using lots of dutiable components may be cheaper to
build domestically, as they save on shipping costs and tariffs.
In the end, keep an open mind and try to consider all the pos-
sible secondary costs and benefits of domestic versus foreign
manufacturing before deciding where to park production.

Part 2

thinking differently:
intellectual property
1n china

China has a reputation for lax enforcement of intellectual
property (IP) laws, and that leads to problems like fake and
copycat products. This part of the book takes a nuanced look
at China’s IP ecosystem and finds a novel way to reward inno-
vation that serves as an alternative to traditional Western
IP practices.

First, consider this question: what, exactly, constitutes a
fake? It seems relatively straightforward to answer; anything
that’s not an original must be a fake. The situation becomes
muddied, however, when you consider the possibility that
some contract manufacturers produce fakes by running a
ghost shift, an after-hours production run not reported to the
product’s brand owner. These items are produced on the same
equipment, by the same people, and with the same procedures
as the original product, but they’re sold directly to customers
at a much higher margin to the manufacturer.

116 PART 2

In fact, the spectrum of fakes runs an entire gamut of pos-
sibilities. Used and damaged goods get upcycled; production
rejects with minor flaws are refurbished and sold as originals;
original products get relabeled to advertise a higher capabil-
ity or capacity (for example, memory cards with 4GB actual
capacity are sold as 8GB), and so on. Chapter 4 relates sev-
eral encounters I've had with fake goods in China, and dives
into the issues and incentives enabling the rise of such fakes.

Cloning and copying are also common practices in China.
A nebulous and sometimes shadowy group of rogue innova-
tors known as shanzhai creates products that attempt to
mimic the features and function of an original product, often
with assistance from the original’s blueprints. But the clones
are heavily modified to save cost or include unique features.
Often, the most offensive aspect of the practice is the use of the
original product’s brands and trade dress on the clones. Aside
from trademark violations, a look inside the products reveals
an incredible amount of original engineering and innovation.

Dismissing the shanzhai as mere thieves and copycats
overlooks the fact that they can achieve what few Western
companies can: they can build complete mobile phones, and
on a shoestring budget to boot. Chapter 5 takes a deep dive
into a prime example of shanzhai engineering, a feature
phone designed for emerging markets that costs under $10.
The phone is a tour de force of cost reduction and a fresh look
at ways of building to address markets that are untouchable
with Western engineering practices.

One of the most insightful lean engineering practices
enabling the creation of complex systems on a shoestring bud-
get 1s the shanzhai method for sharing IP. I'll explore this by
comparing and contrasting the Western notion of open source

thinking differently: intellectual property in china 117

with the shanzhai method, which I refer to as gongkai. In
Western law, open source has a formal definition, referring
specifically to an IP sharing system governed by an explicit
license to share. This license is granted by the copyright holder,
often with significant commercial restrictions. Open source
advocates vigorously defend this notion and are quick to dis-
avow any IP that doesn’t explicitly use an approved license.

In gongkai, if you can obtain a copy of the blueprints,
you can use them as you please; it doesn’t matter who made
them. Yet people still share their ideas because the blueprints
act as an advertisement. Blueprints often refer explicitly to
certain chips or contain contact information for the firm that
drew them. The creators hope circulating their blueprints will
bring business to their factory when people order parts or sub-
assemblies referenced within, or when people call their firm
to improve or customize the design. In other cases, blueprints
are traded. For example, there are bulletin board exchanges
where before you download a blueprint, you must contribute
one of your own.

In short, the gongkai IP ecosystem is a variant of the ad-
driven business model, but optimized for hardware-oriented
businesses. Just as Google provides high-quality search,
email, and mapping services for free in exchange for show-
ing ads, shanzhai innovators share ideas to land follow-up
orders in their factories.

Here lies a key distinction between most Western inno-
vators and their counterparts in Shenzhen: everyone who is
anyone in Shenzhen owns or has close ties to a factory. The
fastest path to material wealth is selling more product. Arguing
over who has rights to abstract ideas is a waste of effort best
left for baijiu-fueled discussions after dinner.* On the opposite
end of the spectrum are Western patent trolls so removed

* Baijiu is a type of strong Chinese alcohol.

118 PART 2

from factories that they probably don’t even have a soldering
iron, yet they invest millions of dollars into litigation and
collecting royalties on ideas they didn’t invent.

Neither system is perfect, but the gongkai method is
uniquely adapted to the fast pace of technology. In a world
where chips get faster and cheaper every couple of years, a
20-year patent lifetime is an eternity. Spending a decade to
bring a product to market simply is not an option; the best
factories in China can turn a napkin sketch into a prototype
in days and bring it to scale production in weeks. Long patent
terms may be appropriate for markets like pharmaceuticals,
but in fast-moving markets, investing months and tens of
thousands of dollars in lawyer fees to negotiate a license or
just apply for a patent can lead to missed opportunities.

Perhaps a discussion on reforming the Western patent
system is long overdue. The gongkai ecosystem is living proof
that granting 20-year monopolies on ideas as trivial as “slide
to unlock” for a smartphone may not be the One True Path to
incentivize innovation. I look forward to starting the conver-
sation with this whirlwind tour of the good, the bad, and the
ugly of the Chinese IP.

4. gongkal innovation

If the term intellectual property sounds like an oxymoron to you,
you're not alone. If I give you an apple and say, “This is your
apple,” what that means is pretty clear. You can do what you
want with that apple: you can eat it, sell it, or even use the seeds
to plant an apple tree and make more apples, which you can
then sell or use to feed your family. But if I hand you a phone
and say, “This Apple iPhone is yours,” you own the collection
of atoms in your hand, but you have extremely limited rights
to the software, patents, and trademarks—the intellectual
property—associated with that phone. Unlike with the fruit,
you can’t take what’s inside your iPhone and use that knowl-
edge as a seed to make more iPhones.

120 CHAPTER 4

Intellectual property works very differently in China,
though. There, you could (and people do) use a phone as the
seed for your own original works. Two experiences I had in
China opened my eyes to the fact that there isn’t one true path
for dealing with intellectual property.

I BROKE MY PHONE’S SCREEN,
AND IT WAS AWESOME

My first story begins, as many of my adventures do, with step-
ping out of a taxi at the Futian border checkpoint going into
China. It was May 2014, and I was heading to Shenzhen to
hammer out production plans for the Novena open hardware
laptop, which I'll talk more about in Chapter 7. As I stepped
out of the taxi, my hand caught on my backpack, sending my
phone tumbling toward the concrete sidewalk. As the phone
smashed into the ground, I heard the dry “thud” of a shatter-
ing touchscreen.

There is no better place in the world to break your phone’s
screen than the border crossing into Shenzhen. Within an hour,
I had a new screen installed by skilled hands in Hua Qiang
Bei, for just $25—including parts and labor.

I originally planned to replace the screen myself. The phone
still worked, so I hastily visited 1Fixit for details on how to
replace the screen and then booked it to Hua Qiang Bei to pur-
chase replacement parts and tools. The stall I visited quoted
me about $120 USD for a new screen, but then the shop owner
grabbed my phone out of my hands and launched a built-in
self-test program by punching *#0*# into the dialer UL

She confirmed that there were no bad pixels on my OLED
display and that the digitizer was still functional, just cracked.
She then offered to buy my broken OLED and digitizer module,
but only if her shop could replace my screen. I said that would
be fine as long as I could watch to make sure they didn’t swap
out any other parts.

gongkai innovation 121

Of course, they had no problem with that. In 20 minutes,
they took my phone apart, removed the broken module, stripped
the adhesive from the phone body, replaced the adhesive, fit-
ted the phone with a “new” (presumably refurbished) module,
and put it all back together. The process involved a hair dryer
(used as a heat gun), copious amounts of contact cleaner (used
to soften the adhesive), and a very long thumbnail (in lieu of
a spudger/guitar pick). Unfortunately, I couldn’t take pictures
of the process because the device I would have used to do so
was in pieces in front of me.

This is the power of recycling and repair. Instead of pay-
ing $120 for a screen and throwing away a functional piece of
electronics, I just paid the cost to replace the broken glass. I
had assumed that the glass on the digitizer was inseparable
from the OLED, but apparently those clever folks in Hua
Qiang Bei found an efficient way to recycle those parts. After
all, the bulk of the module’s cost was in the OLED display.
The touchscreen sensor electronics, which were also grafted
onto the module, were undamaged by the fall. Why waste
perfectly good parts?

And so my phone had a broken screen for all of an hour,
and it was fixed for less than the cost of shipping spare parts
to Singapore (my country of residence). Experiences like this
get me thinking: why aren’t there services like this in every
country? What makes Shenzhen so unique that you can go from
a broken screen to a fixed phone in half an hour for much less
than the cost of a monthly phone bill? A multitude of factors
contribute to this phenomenon, most of which can be traced
to a group of people called the shanzhai.

SHANZHAI AS ENTREPRENEURS

The shanzhai of China originally became famous as the pro-
ducers of knockoffs of products like the iPhone, so they've
historically been dismissed by the popular press as simply

122 CHAPTER 4

“copycat barons.” But I think they may have something in
common with teams like Hewlett and Packard or Jobs and
Wozniak, back when they were working out of garages.

Who Are the Shanzhai?

To understand why I think this, it helps to understand the
cultural context of the word shanzhai. Shanzhai (LLUZE) comes
from the Chinese words mountain fortress, but the literal
translation is a bit misleading. The English term fortress
connotes a large fortified structure or stronghold, perhaps
conjuring imagery of castle turrets and moats. On the other
hand, its denotation states that it is simply a fortified place,
and this is closer to the original Chinese meaning, which refers
to something like a cave or guerrilla-style hideout.

In its contemporary context, shanzhai is a historical allu-
sion to the people who lived in such hideouts, like Song Jiang
and his 108 bandits, a group of outlaws who lived in the 12th
century. A friend of mine described Song Jiang as a sort of
Robin Hood meets Che Guevara. He was a rebel and a soldier
of fortune, yet selfless and kind to those in need. The tale is
still popular today; my father instantly recognized it when I
asked him about it.

Modern shanzhai innovators are rebellious, individualis-
tic, underground, and self-empowered—just like Song Jiang.
They’re rebellious in the sense that they are celebrated for
their copycat products. They’re individualistic in the sense
that they have a visceral dislike for the large companies.
(Many shanzhai are former employees of large companies,
both American and Asian, who departed because they were
frustrated by the inefficiency of their employers.) They’re
underground in the sense that once a shanzhai “goes legit”
and does business directly through traditional retail chan-
nels, they no longer belong to the fraternity of the shanzhai.
They'’re self-empowered in the sense that they’re universally

gongkai innovation 123

tiny operations, bootstrapped on minimal capital, and their
attitude 1s, “If you can do it, then I can as well.”

An estimated 300 shanzhai organizations were operating
in Shenzhen in 2009. Shanzhai shops range from just a couple
of folks to a few hundred employees. Some specialize in pro-
cesses like tooling, PCB design, PCB assembly, or cell phone
skinning, while others have broader capabilities.

Since the shanzhai are small, they have to be efficient to
maximize output. One shop of under 250 employees can churn
out over 200,000 mobile phones per month with a high mix of
products, sometimes producing runs as short as a few hundred
units. Collectively, shanzhai in the Shenzhen area produced
an estimated 20 million phones per month in 2009. That’s an
economy approaching a billion dollars a month. Most of those
phones sell into third-world and emerging markets like India,
Africa, Russia, and southeast Asia.

More Than Copycats

Significantly, the shanzhai’s product portfolio includes more
than just copycat phones. They innovate and riff on designs
to make original products as well. These original phones inte-
grate wacky features like 7.1 stereo sound, dual SIM cards,
a functional cigarette holder, a high-zoom lens, or a built-in
UV LED for counterfeit money detection.

The shanzhai do to hardware what the web did to mashup
compilations. Mobile phones that are also toy Ferraris and
watch-phone combos (complete with camera!) are good examples:
they don’t copy any single idea, but rather mix IP from multiple
sources to create a new heterogeneous composition, such that
the original source material is still distinctly recognizable in
the final product. Also, like many web mashups, the result
might seem nonsensical to a mass market (like the Ferrari
phone) but is extremely relevant to a select long-tail market.

124 CHAPTER 4

In a way, some shanzhai products are just ahead of their time;
the watch-phones I saw, for example, predated smartwatches
by several years.

(©
Warlboro

Top: The front and back sides of a phone made to look like a pack of cigarettes.
Bottom left: An Android-based smart watch, which unlike the Apple Watch
includes a call-capable phone in the watch. Bottom right: A shanzhai-designed
“baby iPhone,” running Android, shown next to an Apple iPhone 6 for scale.

Community-Enforced IP Rules

The shanzhai also employ a concept called the open BOM:
when one shanzhai builds something new, they share the bill
of materials and other design documents with the others. If
the product is based on an existing product, any improvements
they make are also shared. These rules are policed by word of
mouth within the community to the extent that if someone is
found cheating, they are ostracized by the shanzhai ecosystem.

This system is viewed very positively in China. For example,
I once heard a local say it was great that the shanzhai could

gongkai innovation 125

not only clone an iPhone but also improve upon the original
by giving the clone a user-replaceable battery. US law would
call this activity illegal and infringing, but given the fecun-
dity of mashup culture on the web, I can’t help but wonder
if hardware mashup isn’t a bad thing. There’s definitely a
perception in the United States that if it’s strange and it
happens in China, it must be bad. This bias casts a long
shadow over objective evaluation of a cultural phenomenon
that could eventually be very relevant to the United States.

In a sense, the shanzhai are brethren of the classic Western
notion of hacker-entrepreneurs, but with a distinctly Chinese
twist. My personal favorite shanzhai story is about a chap who
owns a three-story house that I am extraordinarily envious
of. His bedroom is on top, the middle floor is a complete SMT
manufacturing line, and the bottom floor is a retail outlet
for the products produced a floor above and designed in his
bedroom. Talk about a vertically integrated supply chain!
Owning infrastructure like that would certainly disrupt the
way I innovate. I could save on production costs, reduce my
prototyping time, and aggressively turn inventory around,
thereby reducing inventory capital requirements. And if my
store were in a high-traffic urban location, I could also cut out
the 20 to 50 percent minimum retail margin typically required
by US retailers.

I have a theory that when the amount of knowledge and
the scale of the markets in Shenzhen reach critical mass, the
Chinese will stop being simply workers or copiers. They’ll take
control of their destinies and, ultimately, become innovation
leaders. These stories about the shanzhai and their mashups
are just the tip of an iceberg with the potential to change the
way business is done—perhaps not in the United States, but
certainly in that massive, untapped market often referred to
as “the rest of the world.”

126 CHAPTER 4

THE $12 PHONE

Mashup cell phones demonstrate the shanzhai’s innovation
and willingness to experiment. But despite all the bells and
whistles, those phones are quite affordable. One question you
might ask, then, is how cheaply can you make a phone?

A short jaunt to the northeast corner of the Hua Qiang Bei
electronics district brings you to the Mingtong Digital Mall. It’s
a four-story maze packed with tiny shops hawking all manner
of quirky phones with features useful in economies that lack the
infrastructure of consistent electricity or cable networks. For
instance, some phones can run for a month thanks to comically
oversized batteries. Others have analog TV tuners, integral
hand-crank chargers, and multiple user profiles, enabling a
family or small village to share a single phone.

During a visit to the Hua Qiang Bei district in 2013, I paid
$12 for a complete phone, featuring quad-band GSM, Blue-
tooth, MP3 playback, an OLED display, and a keypad for the
Ul It’s nothing compared to a smartphone, but it’s useful if
you’re going out and worried about your primary phone get-
ting wet or stolen. And for a couple billion people, it may be
the only phone they can afford.

Keep in mind this is the contract-free price. In countries
that allow carriers to lock phones, such as the United States,
phones are often given away or sold to buyers at a fraction of
their cost in exchange for a subscription contract often worth
several times the phone’s value. The fact that I paid $12 over
the counter for a contract-free, nonpromotional, unlocked,
new-in-box phone with a charger, protective silicone sleeve,
and cable means that the phone’s production cost has to
be somewhere below the retail price of $12. Otherwise, the
phone’s maker would be losing money. Rumors placed its cost
below $10.

gongkai innovation 127

My simple but functional $12 phone

This is a really amazing price point. That’s about the price

of a large Domino’s cheese pizza, or a decent glass of wine in an

urban US restaurant. It’s even cheap compared to an Arduino

Uno. Admittedly, the comparison is a little unfair, but humor
me and take a look at the specs for both, shown in Table 1.

Table 1: Comparing the $12 Phone with an Arduino

Spec This phone Arduino Uno

Price $12 $29

CPU speed 260 MHz, 32-bit 16 MHz, 8-bit

RAM 8MiB 2.5kiB

Interfaces USB, microSD, SIM USB

Wireless Quadband GSM, Bluetooth —

Power LiPo battery, includes adapter External, no adapter

Display

Two-color OLED

128 CHAPTER 4

How is it possible that this phone has better specs than
an Arduino and costs less than half the price? I don’t have
the answers, but I'm trying to learn them. Tearing down the
phone yielded a few hints.

Inside the $12 Phone

First, there are no screws in this phone. The whole case snaps

together.

The back of the phone, after the cover is removed

gongkai innovation 129

There are (almost) no connectors on the inside. For shipping
and storage, you get to flip a switch to hard-disconnect the
battery. As best as I can tell, the battery also has no secondary
protection circuit. Still, the phone features accoutrements such
as a backlit keypad and decorative lights around the edge.

L
===
—_—
—_—
—_—
—_—
==
==
—_—
=
—_—
=
-
—
—
—
—
—_—
=
==
o
—_—
—
fro—
——
f—
ot
=
—_
=

There are little decorative LEDs all over this PCB.

130 CHAPTER 4

The Bluetooth antenna is the small length of wire on the bottom left.

The electronics consist of just two major ICs: the MediaTek
MT6250DA and a Vanchip VC5276. The MT6250 is rumored
to sell in volume for under $2. I was able to anecdotally con-
firm the price by buying a couple of pieces on cut tape from a
retail broker for about $2.10 each.* That beats the best price
I've ever been able to get on an ATMega of the types used in
an Arduino. With price competition like this, Western firms
are suing to protect ground: Vanchip got into a bit of a legal
tussle with RF Micro, and MediaTek has been subject to a
few lawsuits of its own.

Tivo MediaTlek MT6250 ICs

* No, I will not broker these chips for you.

gongkai innovation 131

Of course, you can’t just call up MediaTek and buy these
chips. It’s extremely difficult to engage with them “going
through the front door” to do a design. However, if you know
a bit of Chinese and the right websites, you can download
schematics, board layouts, and software utilities for some-
thing similar to this phone, possibly with some different
parts . .. for “free.” Free is in quotes because you could obtain
the source code but not the unambiguous legal right to use it,
as the source code was distributed without the explicit legal
consent of the copyright holders. But anyone unconcerned or
unfamiliar with such legal frameworks could build versions of
this phone, with minimal cash investment. It feels like open
source, but it’s not: it’s a different kind of open ecosystem.

Introducing Gongkai

Welcome to the Galapagos of Chinese “open” source. I call

it gongkai (2

7t), which is the Chinese transliteration of
the English open, as applied to open source. There’s a literal
translation for open source into Chinese (kaiyuan), but the
only similarity between gongkai practices and Western open
source practices is that both allow you to download source
code; the legal and cultural frameworks that enable such shar-
ing couldn’t be more different. It’s like convergent evolution,
where two species may exhibit similar traits, but the genes
and ancestry are totally different.

Gongkai refers to the fact that copyrighted documents, some-
times labeled “confidential” and “proprietary,” are made known
to the public and shared overtly, but not necessarily according to
the letter of the law. This copying isn’t a one-way flow of value,
as it would be in the case of copied movies or music. Rather,
these documents are the knowledge base someone would need
to build a phone using the copyright owner’s chips, and sharing
the documents promotes sales of their chips. There is ultimately
a quid pro quo between the copyright holders and the copiers.

132 CHAPTER 4

Western model of IP Chinese model of IP

)) 4
3 ® s e\

(87 a5 __a

Comparing IP models. On the left, the Western “broadcast” model, with
a single owner who controls and disseminates IP and is paid by society.
On the right, the Chinese “network” model, where IP trades hands
like a commodity, and payment is often in-kind or as favors.

This gray relationship between companies and entrepre-
neurs is just one manifestation of a much broader cultural
gap between the East and the West. The West has a “broad-
cast” view of IP and ownership: good ideas and innovation
are credited to a clearly specified set of authors or inventors,
and society pays them a royalty for their initiative and good
works. China has a “network” view of IP and ownership: one
attains the far-reaching sight necessary to create good ideas
and innovations by standing on the shoulders of others, and
people trade these ideas as favors. In a system with such a
loose attitude toward IP, sharing with the network is necessary,
as tomorrow your friend could be standing on your shoulders,
and you’ll be looking to them for favors.

In the West, however, rule of law enables IP to be amassed
over a long period of time, creating impenetrable monopoly
positions. That’s good for the guys on top but tough for upstarts,
causing a situation like the modern Western cell phone mar-
ket. Companies like Apple and Google build amazing phones
of outstanding quality, and startups can only hope to build
an “appcessory” for their ecosystem.

gongkai innovation 133

I've reviewed business plans for over 100 hardware start-
ups, and the foundations for most are overpriced chipsets
built with antiquated process technologies. I'm no exception
to this rule; the Novena uses a Freescale (now NXP after an
acquisition) 1. MX6 processor, which was neither the cheapest
nor the fastest chip on the market when I designed the laptop.
But it’s a chip with two crucial qualities: anyone can freely
download almost complete documentation for it, and anyone
can buy it on Digi-Key.

Scarce documentation and supply for cutting-edge technol-
ogy force Western hardware entrepreneurs to look primarily
at Arduino, Beaglebone, and Raspberry Pi as starting points
for their good ideas. Chinese entrepreneurs, on the other hand,

churn out new phones at an almost alarming pace.

Every object pictured here is a phone.

Phone models change on a seasonal basis. Entrepreneurs
experiment all the time, integrating wacky features into
phones, such as cigarette lighters, extra-large battery packs
(to charge a second phone), huge buttons (for the visually

134 CHAPTER 4

impaired), call-home buttons only (to give to children for emer-
gencies), watch form factors, and so on. This works because
small teams of engineers can obtain complete design packages
for working phones—including the case, board, and firmware—
allowing them to fork the design and focus only on changing
the pieces they really care about.

As a hardware engineer, I want that.

I want to be able to fork existing cell phone designs. I saw
the $12 phone, and I, too, wanted to use a 364 MHz 32-bit
microcontroller with megabytes of integrated RAM and dozens
of peripherals that costs $3 in single quantities. The Arduino
Uno’s ATMega microcontroller, a 16 MHz 8-bit microcontroller
with a few kilobytes of RAM and a smattering of peripherals,
pales in comparison yet costs twice as much, at $6.

From Gongkai to Open Source

So, I decided to take my study of the phone one step further
from a teardown, and attempt to make my own version—in
the style of the shanzhai, but interpreted through Western
eyes. That’s how Sean “xobs” Cross and I started a project
we dubbed Fernvale. Sean has been my adventure partner
on dozens of projects since we first met at Chumby, where I
recognized his talent as a firmware engineer when he showed
me how he ported Quake to chumby in his spare time. Sean
has always marched to the beat of his own drum. Born in
Germany to American parents, he studied cognitive science in
college, and prior to working at Chumby, he spent six months
wandering New Zealand and Australia, searching for adven-
ture and work. At Chumby, he was easy to spot, thanks to his
ponytail and kilt (actually, a Utilikilt).

After Chumby went out of business, Sean and I found
ourselves washed up on the shores of Singapore, where I
started a boutique hardware consulting firm called Sutajio
Ko-Usagi, which is bunniestudios translated to Japanese and

gongkai innovation 135

then romanized into English characters. Sean’s virtuoso coding
abilities have been an excellent complement to my hardware
design skills, and since then, we’ve completed several signifi-
cant open source projects.

We figured at first we should at least try to go “through
the front door” and inquire directly with the chipmakers about
what it might take to get a proper Western-licensed embedded
development kit (EDK) for the chips used in these shanzhai
phones. Our inquiries were met with a cold shoulder. I was
told the volumes for our little experiment were too small, or
we’d have to enter minimum purchase agreements backed by a
prohibitive cash deposit in the hundreds of thousands of dollars.

Even for people who jump through such hoops, these EDKs
don’t include all the reference material the Chinese get to play
with. The datasheets are incomplete, and you're forced to use
the companies’ proprietary OS ports. It feels like a case of the
nice guys finishing last. Could we find a way to get ahead yet
still play nice?

Engineers Have Rights, Too

Thus, Fernvale had two halves: the technical task of reverse
engineering and re-engineering the phone and the legal task
of creating a general methodology for absorbing gongkai IP
into the Western ecosystem. I'll recount the technical task in
Chapter 9 and focus on the legal task for the remainder of
this chapter.

After some research into the legal frameworks and chal-
lenges, I believed I'd found a path to repatriate some of the IP
from gongkai into proper open source. I must, however, give a
disclaimer: I'm not a lawyer. I'll tell you my beliefs, but don’t
construe them as legal advice.*

* I've often wondered why the “I am not a lawyer” disclaimer is necessary. It was explained to me
that even the appearance of dispensing legal advice without the disclaimer can make me guilty of
practicing law without a proper license. I could also be held accountable for bad decisions made
by people who construe the opinions as legal advice.

136 CHAPTER 4

My basic idea with Fernvale was to exercise the right to
reverse engineer in a careful, educated fashion to increase the
likelihood that, if push came to shove, the courts would agree
with my actions. But I also feel that shying away from reverse
engineering simply because it’s controversial is a slippery slope:
to have your rights, you must exercise them. If women didn’t
vote and black people sat in the back of the bus because they
were afraid of controversy, the United States would still be
segregated and without universal suffrage. Although reverse
engineering is a trivial issue compared to racial equality and
universal suffrage, the precedent is clear: in order to have
rights, you must be bold enough to stand up and assert them.

DEALING WITH PATENTS AND OTHER LAWS

Open source has two broad categories of IP issues to deal with:
patents and copyrights. Patents present complex issues, and
it seems the most practical approach is to essentially punt on
the issue. For instance, nobody, as far as I know, checks their
Linux commits for patent infringement before upstreaming
them, and in fact, many corporations have similar policies at
the engineering level.

Why? Determining which patents apply and if a product
infringes takes a huge amount of resources. Even after expend-
ing those resources, you can’t be 100 percent sure. Further,
becoming very familiar with the body of patents amplifies
the possibility that any infringement is willful, thus tripling
damages. Finally, it’s not even clear where the liability for
infringement lies, particularly in an open source context.

Thus, Sean and I did our best not to infringe with Fernvale,
but we couldn’t be 100 percent sure that no one would allege
infringement. However, we did apply a license to our work
that includes a “poison pill” clause for patent holders who

gongkai innovation 137

might attempt to litigate. Poison pills make the entire body of
open source work unavailable to any party who files a lawsuit
alleging infringement of any part against any entity.*

For copyrights, the issue is also extremely complex. The
Coders’ Rights Project from the Electronic Frontier Foundation
(EFF) has a Reverse Engineering FAQr that’s a good read if
you really want to dig into the issues. To sum it up, courts
have found that reverse engineering to understand the ideas
embedded in code and to achieve interoperability is fair use.
As a result, anyone likely has the right to study the gongkai-
style IP, understand it, produce a new work, and apply a
Western-style Open IP license to it.

However, before I could attack the copyright issues for
Fernvale, I had to make sure we wouldn’t bump into other
laws that could impede our fair use rights. First, there’s the
Digital Millennium Copyright Act (DMCA). The DMCA makes
circumventing any encryption designed to enforce a copyright
basically illegal, with only a few poorly tested exemptions
allowed. Since none of the files or binaries Sean and I down-
loaded were encrypted or had access controlled by any tech-
nological measure, we didn’t have to do any circumvention.
No circumvention, no DMCA problem.

All the files we obtained came from searches linking to
public servers, so there would be no Computer Fraud and
Abuse Act (CFAA) problems. None of the devices we used in
the work came with shrink-wraps, click-throughs, or other
end-user license agreements (EULAs), terms of use, or other
agreements that could waive our rights.

* Specifically, Apache 2.0, section 3 reads, “Grant of Patent License. . . . If You institute patent
litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that
the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work
shall terminate as of the date such litigation is filed.”

T https:/ /www.eff.org/issues/coders /reverse-engineering-faq/

138 CHAPTER 4

DEALING WITH COPYRIGHTS

With the DMCA, CFAA, and EULA concerns set aside, we were
finally able to address the core issue: what to do about copyrights.
The cornerstone of our methodology hinged on decisions
rendered on several occasions by courts stating that facts are
not copyrightable. For example, Justice O’Connor wrote the
following in Feist Publications, Inc. v. Rural Telephone Service
Co., Inc. (449 U.S. 340, 345, 349 (1991):*
Common sense tells us that 100 uncopyrightable facts do not magi-
cally change their status when gathered together in one place. . . .

The key to resolving the tension lies in understanding why facts
are not copyrightable: The sine qua non of copyright is originality.

And:

Notwithstanding a valid copyright, a subsequent compiler remains
free to use the facts contained in another’s publication to aid in
preparing a competing work, so long as the competing work does
not feature the same selection and arrangement.

Based on this opinion, anyone has the right to extract facts
from proprietary documentation and carefully re-express those
facts in their own selection and arrangement. Just as the facts
that “John Doe’s phone number is 555-1212” and “John Doe’s
address 1s 10 Main St.” are not copyrightable, facts such as
“The interrupt controller’s base address is 0xA0060000” and
“Bit 1 controls status reporting of the LCD” aren’t copyright-
able, either. Sean and I extracted such facts from datasheets
and re-expressed them in our own header files where, as the
legal owners of newly created expressive speech, we applied
a proper open source license of our choice.

MAKING A PROGRAMMING LANGUAGE

But the situation was further complicated by hardware blocks
we had absolutely no documentation for. In some cases, we
couldn’t even learn what a block’s registers meant or how the

* See also Sony Computer Entertainment, Inc. v. Connectix Corp., 203 F. 3d 596, 606 (9th Cir.
2000) and Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522-23 (9th Cir. 1992).

gongkai innovation 139

blocks functioned from a datasheet. For these blocks, we iso-
lated and extracted the code responsible for initializing their
state. We then reduced this code into a list of address and
data pairs, and expressed it in a custom scripting language
we called scriptic. We invented our own language to avoid
subconscious plagiarism—it’s too easy to read one piece of
code and, from memory, code something almost exactly the
same. By transforming the code into a new language, we were
forced to consider the facts presented and express them in an
original arrangement.

Scriptic is basically a set of assembler macros, and the
syntax is very simple. Here is an example of a scriptic script:

#include "scriptic.h"
#include "fernvale-pll.h"

sc_new "set plls", 1, 0, O

sc_write16 0, 0, PLL_CTRL_CON2
sc_write16 0, 0, PLL_CTRL_CON3
sc_write16 0, 0, PLL_CTRL_CONO
sc_usleep 1

sc_write16 1, 1, PLL_CTRL_UPLL_CONO
sc_write16 0x1840, 0, PLL_CTRL_EPLL_CONO
sc_writel6 0x100, 0x100, PLL_CTRL_EPLL_CON1
sc_write16 1, 0, PLL_CTRL_MDDS_CONO
sc_write16 1, 1, PLL_CTRL_MPLL_CONO
sc_usleep 1

sc_write16 1, 0, PLL_CTRL_EDDS_CONO
sc_write16 1, 1, PLL_CTRL_EPLL_CONO
sc_usleep 1

sc_writel6 0x4000, 0x4000, PLL_CTRL_CLK CONDB
sc_usleep 1

sc_write32 0x8048, 0, PLL _CTRL_CLK CONDC
/* Run the SPI clock at 104 MHz */
sc_write32 0xdo02, 0, PLL CTRL_CLK CONDH
sc_write32 oxb6ao, 0, PLL _CTRL_CLK CONDC
sc_end

140 CHAPTER 4

This script initializes the Phase Locked Loop (PLL, a
circuit for generating clock waveforms) on the target chip for
Fernvale, the MediaTek MT6260. To contrast, here are the
first few lines of the code snippet from which that scriptic
code was derived:

// enable HW mode TOPSM control and clock CG of PLL control

*PLL_PLL_CON2 = 0x0000; // 0xA0170048, bit 12, 10 and 8 set to 0
// to enable TOPSM control
// bit 4, 2 and 0 set to 0 to enable
// clock CG of PLL control

*PLL_PLL_CON3 = 0x0000; // 0xA017004C, bit 12 set to 0 to enable
// TOPSM control

// enable delay control
*PLL_PLLTD_CONO= 0x0000; // Ox A0170700, bit 0 set to 0 to
// enable delay control

// wait for 3us for TOPSM and delay (HW) control signal stable
for(i = 0 ; i < loop 1us*3 ; i++);

// enable and reset UPLL

reg val = *PLL_UPLL_CONoO;

reg val |= 0x0001;

*PLL_UPLL_CONO = reg val; // 0xA0170140, bit 0 set to 1 to
// enable UPLL and
// generate reset of UPLL

The original code actually goes on for pages and pages, and
even this snippet is surrounded by conditional statements,
which we culled as they were irrelevant to initializing the
PLL correctly.

Knowledge of our rights, a pool of documentation to extract
facts from, and scriptic were tools in our armory. With them,
Sean and I derived sufficient functionality for our Fernvale
project to eventually boot a small, BSD-licensed, real-time
operating system (RTOS) known as NuttX, running on our
own custom hardware. I'll go more into the gory details of how
we did that in Chapter 9.

gongkai innovation 141

CLOSING THOUGHTS

Rights atrophy and get squeezed out by competing interests
if they aren’t vigorously exercised. Sean and I did Fernvale
because we think it’s imperative to exercise our fair use rights
to reverse engineer and create interoperable, open source solu-
tions. For decades, engineers have sat on the sidelines and
seen ever more expansive patent and copyright laws shrink
their latitude to learn freely and to innovate. I'm sad that the
formative tinkering I did as a child is no longer a legal option
for the next generation of engineers.

The rise of the shanzhai and their amazing capabilities is
a wake-up call. I see it as evidence that a permissive IP envi-
ronment spurs innovation, especially at the grassroots level.
If more engineers learn their fair use rights and exercise them
vigorously and deliberately, perhaps this can catalyze a larger
and much-needed reform of the patent and copyright system.
Our Fernvale project is hopefully just a signpost pointing the
way for much bigger efforts to bridge the gap between the
gongkail and open source communities.

Being able to cherry-pick the positive aspects of gongkai
into the Western IP ecosystem is an important tool. Rule of
law has its place, and an overly permissive system has its
own problems. The next chapter explores some of the nega-
tive consequences of an overly permissive IP ecosystem: fake
and counterfeit goods.

5. fake goods

The gongkai system fosters an amazing amount of innovation

in China, and the shanzhai can make interesting original
products, like the cell phones I showed you in Chapter 4. That
said, China does produce plenty of fake electronic goods, and
they aren’t all knockoff iPhones. Clever counterfeiters can
produce fake integrated circuits, including microSD cards
and even FPGAs.

WELL-EXECUTED COUNTERFEIT CHIPS

For instance, in 2007 (while I was still working with Chumby)
I encountered some counterfeit chips so well executed that I
couldn’t be certain they were fake without investigating.

144 CHAPTER 5

Tiwo suspicious chip specimens from an Asian source

The chips claimed to be ST19CF68s, a chip made by STMicro-
electronics and described on its datasheet as a “CMOS MCU
Based Safeguard Smartcard I/O with Modular Arithmetic
Processor.” ST19CF68 chips are normally sold prepackaged in
smartcard (for example, the chip on the front of a credit card)
or diced wafer (a silicon wafer that’s been diced into individual
chips, but with no other package around it) format, but curi-
ously, these were SOIC-20 packaged devices. To find out the
reason for the odd package choice, I dissolved the black epoxy
packaging off the top of one chip to decapsulate it so I could
inspect the silicon on the inside using a microscope.

The die inside the package was much too small and
simple for a complex microcontroller unit (MCU) matching

fake goods 145

the description of the ST19CF68. The pattern of gold-colored
rectangles tiled across the chip was too coarse; I could make
out individual transistors at low zoom with an optical micro-
scope. The size of these features is referred to as the chip’s
process geometry. The process geometry of a smartcard would
typically trail a cutting-edge CPU by at most three or four
generations, making transistors very difficult to resolve even
at the highest levels of zoom.

The silicon inside the fake ST19CF68

Along with the unexpectedly coarse process geometry, why
did this part have 20 bondable pads and 20 pins when, accord-
ing to the datasheet, it should have only 8 pads? Zooming in
a bit on the die revealed some interesting details.

146 CHAPTER 5

e Rt
‘i_\ \‘ :\‘ i
\R

The chip manufacturer and copyright date

The chip wasn’t made by STMicroelectronics after all!
The label on the silicon said F'SC, indicating it was made by
Fairchild Semiconductor. Of course, then I had to check the
part label on the silicon, too.

Discovering the true part number

fake goods 147

The die within that chip turned out to be a Fairchild
741.CX244, which is a “Low Voltage Buffer/Line Driver with
5V Tolerant Inputs and Outputs.” The 741.CX244 is a much
cheaper piece of silicon than the ST19CF68 the package sup-
posedly contained.

Of course, the mismatched pin count was suspicious, but
manufacturers have been known to put chips in larger pack-
ages, especially during early runs of the chip before it has
been size-optimized. The thing that really got me was the
convincing quality of the package and the markings.

Normally, remarked or fake chips look cheesier than this
one. The original chips are sanded down or painted over to
remove the previous markings, and the new marking is typi-
cally applied with silkscreened paint.

But these chips showed no evidence of remarking at all. The
markings are of first-run quality: someone acquired unmarked
blanks of the 74LLCX244 chip and programmed a production
laser engraver to put high-quality fake markings on an other-
wise virgin package. They even got the proportions of the ST
logo exactly right.

A close-up of the outside of the fake ST19CF68

148 CHAPTER 5

The quality difference between a remarked chip and first-
run marking is like the quality difference between spray paint
used to hide a scratch on a car and the car’s original, factory-
fresh paint job. This chip definitely had the “new car” look.

This discovery left me with a lot of unanswered questions.
How did someone acquire unmarked Fairchild silicon? Was
the person an insider, or did Fairchild sloppily throw away
unmarked reject chips without grinding them up or clipping
off leads so they couldn’t be picked out of a dumpster and
resold? The laser-marking machine used to make those mark-
ings wasn’t a cheap desktop engraver, either; it had to be a
high-power raster engraver, and the artwork was spot-on.

I still find it hard to believe those fake chips were made
and sold, but maybe I shouldn’t. I've seen brazen remarking
of dual inline memory modules (DIMMs, the memory used
in personal computers) in the SEG Electronics Market, and
many counterfeiters at the market openly display their arsenal
of professional-quality thermal transfer label printers and
hologram sticker blanks.

If fakes of this quality become more common, they could
present a problem for the supply chain. Clearly, whoever
made the counterfeit ST19CF68 can fake just about any chip,
and the fakes are gradually appearing on the US market.
Resellers, especially distributors that specialize in buying
excess manufacturer inventory, implicitly trust the mark-
ings on a chip.

I don’t think chipmakers will put anticounterfeiting mea-
sures on chip markings, but the quality of these fakes definitely
made me wary when I discovered them, and it still does. Not
all fakes get spotted before they’re used, and fake components
pose problems in any project where they appear.

fake goods 149

COUNTERFEIT CHIPS IN
US MILITARY HARDWARE

Counterfeit chips can be particularly problematic when they
find their way into military projects. The US military has a
unique problem: it’s one of the biggest and wealthiest buyers
of really old parts because military designs have shelf lives of
decades. Like anything else, the older a part is, the harder it is
to find, and sometimes contractors are sold fakes. For example,
a 2011 Senate hearing report revealed that some parts used
in the P-8 Poseidon (a plane the US Navy commissioned from
Boeing) were, as an article from the Defense Tech website put
it, “badly refurbished,” causing a key system to fail.

The US government attempted to reduce fakes in its
supply chain with Amendment 1092 to the National Defense
Authorization Act for Fiscal Year 2012 (H.R. 1540). The amend-
ment is a well-intentioned but misguided provision outlining
measures designed to reduce the prevalence of counterfeit
chips in the US military supply chain.

Even before Amendment 1092 was put on the table, the
Defense Authorization Act drew flak for a provision that
authorizes the US military to detain US citizens indefinitely
without trial. It also rather ironically requires an assessment
of the US federal debt owed China as a potential “national
security risk” (section 1225 of H.R. 1540).

Under the anticounterfeit amendment, first-time offenders
can receive a $5 million fine and 20-year prison sentence for
individuals, or a $15 million fine for corporations—a penalty
comparable to that of trafficking cocaine.* While the amend-
ment explicitly defines counterfeit to include refurbished
parts represented as new, the wording is regrettably vague on
whether you must be willfully trafficking such goods to also
be liable for such a stiff penalty.

* See Sec 2320 (b) at https:/ /www.govtrack.us/congress/bills/112/hr1540/text.

150 CHAPTER 5

If you took a dirty but legitimately minted coin and washed
it so that it looked mint condition, nobody would accuse you of
counterfeiting. Yet this amendment puts a 20-year, $5 million
penalty not only on the act of counterfeiting chips destined for
military use but also potentially on the unwitting distribu-
tion of refurbished chips that you putatively bought as new.
Unfortunately, in many cases an electronic part can be used
for years with no sign of external wear.

The amendment also has a provision to create an “inspec-
tion program”:

(b) Inspection of Imported Electronic Parts —

(1) . ..the Secretary of Homeland Security shall establish a program
of enhanced inspection by U.S. Customs and Border patrol of elec-
tronic parts imported from any country that has been determined
by the Secretary of Defense to have been a significant source of
counterfeit electronic parts . . .

Inspecting fruits and vegetables as they enter the coun-
try for pests and other problems makes sense, but requiring
customs officers to become experts in detecting fake elec-
tronic components seems misguided. Burdening vendors with
detecting fakes when there are such high penalties for failure
is also misguided, given how easy it is for forgers to create
high-quality counterfeits.

Types of Counterfeit Parts

To better understand the magnitude of the chip counterfeiting
problem, let’s look at how fakes are made. The fake chips I've
seen fall into the following broad categories.

EXTERNAL MIMICRY

The most trivial counterfeit chips are simply empty plastic
packages with authentic-looking top marks, or remarked parts
that share only physical traits with the authentic parts. For
example, a simple transistor-transistor logic (TTL) chip might

fake goods 151

be placed inside the same package, with identical markings,
as an expensive microcontroller.

I consider external mimicry trivial because fakes produced
this way are easy to detect in a factory test. At worst, you're
sold a mixture of mostly authentic parts with a few counter-
feits blended in so that testing just one part out of a tube or
reel isn’t good enough to catch the issue. But most products
employ 100 percent testing at the system level, so typically
the problem is discovered before anything leaves the factory.

REFURBISHED PARTS

Counterfeits don’t technically have to be fake at all, though.
Refurbished parts are authentic chips that are desoldered from
e-waste and reprocessed to look new. They're very difficult to
spot since the chip is in fact authentic, and a skilled refurbisher
can produce stunningly new-looking chips that only isotopic
or elemental analysis could identify as used.

This category also includes parts that are “new” in the
sense that they’ve never been soldered onto a board but have
been stored improperly, perhaps in a humid environment.
Such chips should be scrapped but are sometimes stuck in a
fresh foil pack with a more recent date code, and sold as new.

REBINNED PARTS

Counterfeiters sometimes remark authentic parts that have
never been used (and so can be classified as new) as a better ver-
sion of an otherwise identical part. A classic example is grind-
ing and remarking CPUs with a higher speed grade, or more
trivially, marking parts that contain lead as RoHS-compliant.

But rebinning can get more sophisticated. Vendors may
reverse engineer and reprogram the fuse codes inside the
remarked chip so that the chip’s electronic records actually
match the faked markings on top. Vendors have also been
known to hack flash drive firmware so that a host operating

152 CHAPTER 5

system will perceive a small memory as much larger. Such
hacks even go so far as to “loop” memory so that writes beyond
the device capacity appear to succeed, thus requiring a time-
consuming full readback and comparison of the written data
to detect the issue.

GHOST-SHIFT PARTS

Some fakes are created on the exact same fabrication facility
as authentic parts; they’re run very late at night by rogue
employees without the manufacturer’s authorization and
never logged on the books. These unlogged production runs
are called ghost shifts. It’s like an employee in a mint striking
extra coins after-hours. Ghost-shift parts are often assigned
a lot code identical to a legitimate run, but certain testing
steps are skipped.

Ghost shifts often use marginal material left over from the
genuine product that would normally be disposed of but was
intercepted on the way to the grinder. As a result, the mark-
ings and characteristics of the material often look absolutely
authentic. These fakes can be extremely hard to detect.

FACTORY SCRAP

Factory rejects and prototype runs can be recovered from the
scrap heap for a small bribe, given authentic markings, and
resold as new. To avoid detection, workers often replace the
salvaged scrap with physically identical dummy packages,
thus foiling attempts to audit the scrap trail. This practice of
replacing salvageable scrap with dummy fakes helps drive the
market for the trivial “external mimicry” fakes. The existence
of an industry that supplies low-quality fakes to dodge audits
that would otherwise prohibit high-quality fakes gives you
an idea of how sophisticated and mature the counterfeiting
industry has become.

fake goods 153

SECOND-SOURCING GONE BAD

Second-sourcing is a standard industry practice where competi-
tors create pin-compatible replacements for popular products
to drive price competition and strengthen the supply chain
against events like natural disasters. The practice goes bad when
inferior parts are remarked with the logos of premium brands.

High-value but functionally simple discrete analog chips
such as power regulators are particularly vulnerable to this
problem. Premium US-branded power regulators sometimes
fetch a price 10 times higher than drop-in Asian-branded sub-
stitutes. However, the Asian-branded parts are notorious for
spotty quality, cut corners, and poor parametric performance.
Clearly, there is ample opportunity for counterfeiters to make a
lot of money by buying unmarked chips from the second-source
fab and remarking them with authentic-looking top marks of
premium US brands. In some cases, there are no inexpensive
or fast tests to detect these fakes, short of decapsulating the
chip and comparing mask patterns and cross-sections, as I
did for the ST19CF68.

Fakes and US Military Designs

The variety of counterfeiting methods available, combined with
the fact that many commodity parts have production cycles of
only a few years, presents a big problem for institutions like
the US military, where design lifetimes are often measured in
decades. It’s like asking someone to build a NeXTcube* moth-
erboard today using only certifiably new parts, with no second-
hand or refurbished parts allowed. I don’t think it’s possible.
The impossibility of this situation may sometimes make
military contractors complicit in the consumption of coun-
terfeit parts to bad effect. In the P-8 Poseidon case, people
were quick to point fingers at China, but a poor refurbishing

* Remember that one? The NeXTcube was a computer released in 1990 by Steve Jobs’s
company, NeXT.

154 CHAPTER 5

job 1s probably detectable with a simple visual inspection.
Maybe part of the problem is that a subcontractor was lax in
checking incoming stock—or perhaps looking the other way.
If those parts were the last of their kind in the world, what
else could be done?

My guess is that the stocks of any distributor in the second-
hand electronics business are already flooded with undetected
counterfeits. Remember, only the bad fakes are ever caught,
and chip packaging was not designed with anticounterfeiting
measures in mind. While all gray-market parts are suspect,
that’s not necessarily a bad thing.

Gray markets play an essential role in the electronics
ecosystem; using them is a calculated, but sometimes unavoid-
able, risk. In fact, many traders in the gray market are very
upfront about their goods being recycled. Many even post signs
on their stalls advertising this fact. However, these signs are
written in Chinese. In that case, whose fault is it—the seller
for selling recycled goods, or the buyer for not being able to
read the sign?

Anticounterfeit Measures

The counterfeit chip situation is a mess, but some simple
measures could fix it.

PHYSICAL IDENTIFIERS

Embedding anticounterfeit measures in chips approved for
military use is one option. For chips larger than 1 cm wide,
a unique 2D barcode could be laser-engraved by equipment
relatively common in chip packaging facilities. Despite a
tiny footprint, the codes would be backed with a guarantee
of 100 percent uniqueness. Such techniques are effective in
biotech, where systems like Matrix 2D track disposable sample
tubes in biology labs.

Another potential solution is to mix a UV dye into the
component’s epoxy that changes fluorescence properties upon

fake goods 155

exposure to reflow temperatures—a consistent set of well-
defined temperatures at which solder melts. This makes it
1mpossible to recondition the chip to a “new” state after it’s been
soldered down the first time. If the dye is distributed through
the entire package body, it will be impossible to remove with
surface grinding alone.

CHANGING HOW E-WASTE IS HANDLED

Managing e-waste more effectively would also alleviate the
counterfeit problem. E-waste is harvested in bulk for used
parts. Crudely desoldered MSM-series chips—the brains of
many Android smartphones, made by Qualcomm and marketed
under the brand name of Snapdragon—are purchasable by
the pound, at around 10 cents per chip. Counterfeiters clean
up the chips, reball (that is, add new solder balls, for ball-grid
array packages) and sometimes remark them, put them into
tapes and reels, and sell them as brand-new, commanding a
markup 10 times the original purchase price. A single batch
of refurbished chips can net thousands of dollars, making the
practice a compelling source of income for skilled workers
who would otherwise earn $200 per month in a factory doing
exactly the same thing.* (Factories are typically authorized
to recover chips off of defective boards or consumer returns
that can’t be repaired.)

If the United States stopped shipping e-waste overseas for
disposal, or at least ground up the parts before shipping them,
then the supply for refurbished chip markets would decrease.
Domestic e-waste processing would also create more jobs, a
resource as valuable as gold.

On the other hand, I think component-level recycling is
quite good for the environment and the human ecosystem in
the long term. Most electronic parts will function perfectly for

* This was the salary rate in the mid-2000s; due to wage inflation since then, it’s risen to around
$1,000 per month, but refurbishing chips is still more lucrative.

156 CHAPTER 5

years beyond a consumer’s trash bin, and emerging economies
create technology-hungry markets that can’t afford new parts
purchased on the primary market.

KEEPING A RESERVE OF AUTHENTIC PARTS

A final option to ensure trustworthiness for critical military
hardware could be to establish a strategic reserve of parts.
A production run of military planes is limited to perhaps
hundreds of units, a small volume compared to consumer
electronics production runs. I imagine the lifetime demand of
a part, including replacements, is limited to tens of thousands
of units. Physically, then, a parts reserve isn’t unmanageable:
10,000 chips will fit inside a large shoebox.

Financially, I estimate purchasing a reserve of raw replace-
ment components for critical avionics systems would add only
a fraction of a percent to the cost of an airplane. This could
even lead to long-term savings, as manufacturers can achieve
greater scale efficiency if they run one large batch all at once.

Obviously, anticounterfeit measures would be incredibly
useful in civilian projects, too. I have sympathy for anyone
who has to deal with counterfeit parts, as I myself have been
burned on several occasions. Here’s a tale of a particularly
annoying issue I ran into during my work on the chumby One.

FAKE MICROSD CARDS

In December 2009, in the middle of the chumby One’s produc-
tion run, I set out on a forensic investigation to find the truth
behind some irregular Kingston memory cards. The factory
called to tell me that SMT yield dropped dramatically on one
lot of chumby Ones, so I drove over to see what I could do to
fix the problem. After poking and prodding at some chumby
Ones, I realized that all failing units had Kingston microSD
cards from a particular lot code. I had the factory pull the
entire lot of microSD cards from the line and rework the units

fake goods 157

that had these cards loaded. After swapping the cards, yield
returned to normal.

The story should have ended there. In this situation, I'd
usually get a return merchandise authorization (RMA) from
the manufacturer for the defective parts, exchange the lot for
parts that work, and move on. But I had a couple of problems.

First, Kingston wouldn’t take the cards back, because we
programmed them. Second, there were a lot of defective cards
(about 1,000 altogether, and chumby was already deeply back-
ordered), and memory cards aren’t cheap. This type of memory
card cost around $4 or $5 at the time, leaving a few thousand
dollars in scrap if we couldn’t get them exchanged. Chumby
couldn’t afford to sneeze at a few kilobucks, so I kicked into
forensics mode.

Visible Differences

Irregular external markings were the first suspicious feature
I noticed about the defective Kingston cards.

Kingston®A !

268

- fsp-co26 TAWARS]
/ il AN

e

ot Code 3

An irregular microSD card (left) and a normal card (right).
The arrows and circles show suspicious differences.

The strangest physical difference was that the lot code
on the irregular card was silkscreened with the same stencil

158 CHAPTER 5

as the main logo. Silkscreening a lot code isn’t unusual, but
typically, the manufacturer won’t use the same stencil for the
lot code and the logo. There should be some variance in the
coloration, font, or alignment of the lot code from the rest of
the text. The entire batch of irregular cards also had the same
lot code (N0214-001.A00LF). Typically, the lot code changes
at least every couple hundred cards. Contrast the irregular
card with the normal card, which is laser-marked. The normal
cards’ lot codes varied with every tray of 96 units.

The second strange feature was subtler and perhaps not
damning: an irregularity in the microSD logo. Brand-name
vendors like Kingston are very picky about the accuracy of
their logos: SanDisk cards have a broken D, but Kingston cards
sold in the United States almost universally use a solid D.

Investigating the Cards

Oddities in the external markings were just the start. When I
read the electronic card ID data on the two cards (by checking
/sys entries in Linux), this is what I found in the irregular card:

€id:41343253443247422000000960400049
¢sd:002600325b5a83a9e6bbf8016800095
date:00/2000

fwrev:0x0

hwrev:0x2

manfid:0x000041

name:SD2GB

oemid:0x3432

SCr:0225000000000000
serial:0x00000960

And this is what I found in the normal card:

€id:02544d5341303247049c62cae60099dd
¢sd:002e00325b5aa3a9ffff{800a80003b
date:09/2009

fwrev:0x4

hwrev:0x0

manfid:0x000002

fake goods 159

name:SA02G
oemid:0x544d
sCr:0225800001000000
serial:0x9c62cae6

First, notice the date code on the irregular card. Dates are
counted as the offset from 00/2000 in the CID field, so a value of
00/2000 means the manufacturer didn’t bother to assign a date.
Furthermore, in the year 2000, 2GB microSD cards didn’t even
exist. Also, the serial number on the defective card is very low:
in decimal, 0x960 is 2,400. Other cards in the irregular batch
had similarly low serial numbers, in the hundreds or thousands.

For a popular product like a microSD card, the chance of
getting the very first units out of a factory is pretty remote. For
example, the serial number of the normal card is 0x9C62CAEG
in hexadecimal, or 2,623,720,166 in decimal, which is much
more feasible. Very low serial numbers, like very low MAC
ID addresses, are hallmarks of a ghost shift.

Finally, the manufacturer’s ID on the irregular card is 0x41
(capital A in ASCII), which I didn’t recognize.* The original
equipment manufacturer identification (OEMID) number
was 0x3432—an ASCII 42, which is one more than the hex
value for the manufacturer ID. Manufacturer IDs are usually
the ASCII character given by the hexadecimal value, not the
hexadecimal values themselves. Confusing hex and ASCII is a
possible sign that someone who didn’t appreciate the meaning
of the fields was running a ghost shift making these cards.

Were the MicroSD Cards Authentic?

Armed with this evidence, Chumby confronted the Kingston
distributor in China and Kingston’s US sales representative.
We asked whether the cards were authentic and, if so, why the
serialization codes were irregular. After some time, Kingston
swore the cards were authentic, not fakes, but it did reverse

* JEDEC Publication N. 106AA lists all SD card manufacturer ID codes, and 0x41 wasn’t on there.

160 CHAPTER 5

its position on exchanging the cards. The company took back
the programmed cards and gave us new ones, no further
questions asked.

However, Kingston never said why the card ID numbers
were irregular. I know Chumby was small fry compared to the
Nokias of the world, but companies should still answer basic
questions about quality control, even for small fry. I was once
accidentally shipped an old version of a Quintic part, and once
I could prove the issue, I received world-class customer service
from Quintic. The company gave me a thorough explanation
and immediately paid for a full exchange of the parts. That
was exemplary service, and I commend and strongly recom-
mend Quintic for it. Kingston, on the other hand, did not set
an example to follow.

I'd normally have disqualified Kingston as a vendor, but I
was persistent. It was disconcerting that a high-profile, estab-
lished brand would stand behind such irregular components.
Who could say SanDisk or Samsung wouldn’t do the same?
Price erosion at the time hit flash vendors hard, and as small
fry, I could have been taken advantage of by any of those com-
panies as a sink for marginal material to improve their bottom
line. Given the relatively high cost of microSD cards, I needed
incoming quality control (IQC) guidelines for inspections to
follow to accept or reject shipments from memory vendors
based on set quality standards. To develop those guidelines,
I continued digging for the truth behind those cards.

Further Forensic Investigation

First, I collected a lot of sample microSD cards. I wanted to
collect both regular and irregular cards in the wild, so I went
to the Hua Qiang Bei district and wandered around the gray
markets there. I bought 10 memory cards from small vendors,
at prices from 30 to 50 RMB ($4.40 to $7.30 USD).

fake goods 161

Shopping for irregular cards was interesting. In talking to
a couple dozen vendors, I learned that Kingston, as a brand,
was weak in China for microSD cards. SanDisk did a lot more
marketing, so SanDisk cards were much easier to find on the
open market, and the quality of gray-market SanDisk cards
was fairly consistent.

Small vendors were also entirely brazen about selling well-
crafted fakes. They had bare cards sitting loose in trays in the
display case. (Page 11 in Chapter 1 has photos showing what
an SD card vendor’s stall looks like.) Once I agreed on a price
and committed to buying a card, the vendor tossed a loose card
into a “real” Kingston retail package, miraculously pulled out
a certificate—complete with hologram, serial numbers, and a
kingston.com URL to visit to validate the purchase—and
slapped the certificate on the back of the retail package right
in front of my eyes.

A freshly purchased Kingston microSD card. It was just like new!

One vendor particularly interested me. There was literally
a mom, a pop, and one young child sitting in a small stall of

162 CHAPTER 5

the mobile phone market. They were busily slapping dozens
of non-Kingston cards into Kingston retail packaging. They
had no desire to sell to me, but I was persistent. This card
interested me in particular because it also had the broken D
logo, but no Kingston marking. The preceding photo is the
card and the package it came in; the card is Sample 4 in the
next section, where you can see a detailed analysis of seven
different microSD cards from my shopping trip.

Gathering Data

After collecting my samples, I read out their card ID information
by checking their /sys entries under Linux and then decapsu-
lated (that is, dissolved) their packages with nitric acid. As you
can see in the photos in Table 2, my decapsulation technique
was pretty crude. Most of the damage to the cards came from
removing dissolved encapsulant with acetone and a Q-tip. I had
to get a little rough, which didn’t do the bond wires any favors.
But it was good enough for my purposes.

Here’s all the basic information I pulled from those cards:

Sample 1 Theirregular card that started this whole inves-
tigation. It was purchased through a sanctioned Kingston
distributor in China, and to the best of my knowledge, none
were shipped to Chumby’s end customers. MID = 0x000041,
OEMID = 0x3432, serial = 0x960, name = SD2GB.

Sample 2 A normal card that I purchased from the same
sanctioned Kingston distributor in China where I bought
Sample 1. It was typical of microSD cards actually shipped
in the first lot of chumby Ones. MID = 0x000002, OEMID =
0x544D, serial = 0x9C62CAEG, name = SA02G.

Sample 3 A Kingston card purchased through a major
US retail chain. MID = 0x000002, OEMID = 0x544D,
serial = xAGEDFA97, name = SD02G. Note how the MID and
OEMID are identical to those Sample 2, but not Sample 1.

fake goods 163

Sample 4 The non-Kingston card I saw slapped into
Kingston-marked packaging, bought on the open market
in Shenzhen. MID = 0x000012, OEMID = 0x3456, serial =
0x253, name = MS. Note the low serial number.

Sample 5 A device from a more established retailer in the
Shenzhen market. I bought it because it had the XXX.A00LF
marking, like my original irregular card. MID = 0x000027,
OEMID = 0x5048, serial = 0x7CA01E9C, name = SD2GB.

Sample 6 A SanDisk card bought on the open market
from a sketchy shop run by a sassy chain-smoking girl
who wouldn’t stop texting. I actually acquired three total
SanDisk cards from different sketchy sources, but all of
them checked out with the same CID info, so I opened
only one. MID = 0x000003, OEMID = 0x5344, serial =
0x114E933D, name = SU02G.

Sample 7 A Samsung card that I bought from a Samsung
wholesale distributor. I didn’t scan this one before decap-
sulating it, and the card actually had no markings on the
outside (it was blank, with just a laser mark on the back),
so I didn’t photograph it. From appearances alone, it was
the sketchiest of the bunch, but it was one of the best built.
You can’t judge a book by its cover! MID = 0x00001B,
OEMID = 0x534D, serial = 0xB1FE8A54, name = 00000.

That’s a lot of data, and I had my work cut out for me in
drawing some kind of useful conclusion from it all.

NOTE Interestingly, one SanDisk card from three in Sample 6
turned out to be used and only quick-formatted. With help
from some recovery software, I found DLLs, WAVs, maps,
and VeriSign certificates belonging to Navione’s Careland
GPS. Someday, I'll acquire lots of refurb microSD cards and
collect interesting data from them.

164 CHAPTER 5

Table 2: A Breakdown of All the Cards Collected for the Investigation

Sample 1: Sample 2: Sample 3:
Original Normal US retail
Kingston Kingston Kingston card
card from card from

authorized authorized

Kingston distro Kingston distro

Front markin:
5 Kingston® & Kingstor® A Kingstoi® |

ZEBO 268 268
iCrO D iCro icro
msm . ms> mns>
nC/
Noz?k“““mf, §0-0026 TAIWAC §D-C02G JAPAN
74 7€

TAWAN SDCI2GB 45

Back marking

Decapsulated

Controller die éﬂﬁﬁm
marking ORI

w2 R R

SanDisk/Toshiba
flash

Flash die marking

fake goods 165

Sample 4:
Fake card
bought from
Shenzhen
market

Sample 5:
Questionably
authentic
Kingston card
bought from
Shenzhen market

Sample 6:
SanDisk card
bought from
Shenzhen
market

Sample 7:
Samsung card
bought from
authorized
Samsung distro

SanDisk/Toshiba
flash

m;uc/zca
-002.A0,
TAIWAN °ﬁ§

W G e

I

o ettt NNy
T

SanDisk/Toshiba

flash

Photo
unavailable

Photo
unavailable

166 CHAPTER 5

Summarizing My Findings

Here are the most interesting high-level conclusions I drew

from my survey:

The “normal” Kingston cards (Samples 2 and 3) were fab-
ricated by Toshiba, as indicated by the flash die markings
and their OEMIDs. In ASCII, 0x544D 1s TM, presumably for
Toshiba Memory. These cards employ Toshiba controllers
and Toshiba memory chips and seem to be of good quality.
Thankfully, they were only ones sent to Chumby customers.

The irregular card (Sample 1) used the same controller chip
as the outright fake (Sample 4) I bought in the market.
Both the irregular Kingston and the fake Kingston had low
serial numbers and wacky ID information. Both of these
cards exhibited abnormal operation under certain circum-
stances. I still hesitate to call Kingston’s irregular card a
fake, as that’s a very strong accusation, but its construc-
tion was similar to another card of clearly questionable
quality, which leads me to question Kingston’s choice of
authorized manufacturing partners.

The irregular card is the only card in the group that does
not use a stacked CSP construction. Instead, it uses side-by-
side bonding—that is, the microcontroller and the memory
chip are simply placed next to each other. Stacked CSPs
place the microcontroller on top of the memory chip. This
1s significantly more complex than side-by-side placement
because the chips must first have their inert back-side
material ground off to make the overall height of the stack
fit inside such a slim package. Despite the difficulty, stack-
ing chips is popular because it allows vendors to cram more
silicon into the same footprint.

The only two memory chip foundries in this sample set were
Toshiba/SanDisk and Samsung. (SanDisk and Toshiba co-
own the factory that makes their memory chips.)

fake goods 167

e Samsung’s NAND die, which is the most expensive part of
a microSD card, is about 17 percent larger than dies from
Toshiba/SanDisk. This means that Samsung microSD
cards should naturally carry a slightly higher price than
Toshiba/SanDisk cards. However, Samsung can offset that
against the ability to place the same bare die that normally
gets crammed inside a microSD package into thin small
outline package (TSOP) devices suitable for board-level
machine assembly instead. If demand for microSD cards
slumps, Samsung can slap excess bare dies inside TSOP
packages and sell those to third parties that do conventional
machine assembly of chips. Plus, Samsung also doesn’t
have a middleman like Kingston to eat away at margins.

I knew (like many others in manufacturing) that Kingston
wasn’t a semiconductor manufacturer, in that it owned no
fabrication facilities, but this research implied that Kingston
did no original design of its own. I hoped to at least find a
Kingston-branded controller chip inside the Kingston cards,
even if the chip was fabricated by a foundry. I also expected to
see Kingston sourcing memory chips from a broader variety of
companies. Being able to balance the supply chain and be less
dependent on a single, large competitor for chips would be a
significant value-add to customers, giving Kingston leverage
to negotiate a better price that few others can achieve. But
every Kingston card I bought had a SanDisk/Toshiba memory
chip inside. The only “value-add” that I saw was in the selec-
tion of the controller chip.

Oddly enough, of all the vendors, Kingston quoted Chumby
with the best lead times and pricing, despite SanDisk and
Samsung making all their own silicon and thereby having
lower inherent costs. This told me that Kingston must have
a very low margin on its microSD cards, which could explain
why irregular cards found their way into its supply chain.
Kingston is also probably more willing to talk to smaller

168 CHAPTER 5

accounts like Chumby because, as a channel brand, Kingston
can’t compete against OEMs like SanDisk or Samsung for the
biggest contracts from the likes of Nokia and Apple.

So, the irregular microSD card I pulled from the chumby
One production line may not have been counterfeit, but it was
still a child of the remarking ecosystem in China. Kingston
is more of a channel trader and less of a technology provider,
and is probably seen by SanDisk and Toshiba as a demand
buffer for their production output. I also wouldn’t be surprised
if SanDisk/Toshiba sold Kingston less-than-perfect parts,
keeping the best of the lot for themselves. Thus I'd expect
Kingston cards to have slightly more defective sectors, but
thanks to the magic of error correction and spare sectors, this
fact is hidden to end users.

As a result, Kingston plays an important role in stabiliz-
ing microSD card prices and improving fab margins. But the
potential conflict of interest seems staggering, and I'm still very
curious about how this ecosystem came to be. Buying a signifi-
cant amount of a competitor’s technology from a competitor’s
fab yet still selling at a competitive price is counterintuitive
to me, and perhaps my greatest folly in investigating that
irregular microSD card was expecting something different.

FAKE FPGAS

Anyone who has done manufacturing in China for a while will
have more than one story about irregularities in the supply
chain. Here’s another one of my favorite stories, which high-
lights some of the core incentives that drive agents to cheat.

The White Screen Issue

It was March 2013, and I was wrapping up the first volume pro-
duction run of a bespoke robotics controller board codenamed

fake goods 169

Kovan.* At the conclusion of any production run, I always
review the list of issues encountered in production, to identify
areas of improvement. Manufacturing is a Sisyphean struggle
toward perfection: every run has some units you just have to
scrap, and the difference between profit and loss is how well
you can manage the scrap rate.

On this run, one particular problem, dubbed the “white
screen issue” after its most obvious symptom, was the domi-
nant problem. About 4 percent of the total run exhibited this
problem, accounting for almost 80 percent of unit failures. I
had the factory send me a few samples of the failed units to
analyze in more detail.

As T've often discovered when analyzing failed units, the
most obvious symptom of the problem was only tangentially
related to the root cause. The LCD screen appeared white on
these units because the FPGA failed to configure. An FPGA,
short for Field Programmable Gate Array, is essentially a blob
of logic and memory devices embedded in a dense network of
wires that can be configured at runtime to behave a certain
way. The behavior of the FPGA is typically described in a
high-level language that resembles a programming language
like C (for instance, Verilog) or Ada (like VHDL), which is then
compiled into a configuration bitstream.

FPGAs are very handy for implementing time-sensitive
hardware interfaces that software would have trouble emu-
lating. In this particular application, the FPGA controlled
everything from the motors to the sensors and even the LCD.
When the FPGA failed to configure, the LCD didn’t receive
sync and data signals, leading it to show a blank, white screen
instead of the expected factory test patterns.

FPGA failure was a big deal. For starters, the FPGA was
the most expensive part on the board by a long shot, at around

* Kovan is open hardware; you can read more about it and download the source on the Kosagi
wiki at http:/ /www.kosagi.com/w/index.php?title=Kovan_Main_Page.

170 CHAPTER 5

$11 per chip. I was also worried this problem could point to
a deeper design issue. Perhaps the FPGA’s power regulators
were unstable, or maybe there was an issue with the boot
sequence that aggravated a corner case in configuration tim-
ing that would creep into the “good” production units as they
aged. The situation definitely warranted a deeper investigation.

Incorrect ID Codes

I hooked up the debug console, dug into the problem, and dis-
covered that the failure was linked to the FPGA not responding
with the correct ID code. The ID code is checked via queries
over a test access bus known as JTAG. Most users don’t check
an FPGA ID before programming, but we designed an ID code
check into Kovan because we allowed customers to specify
what capacity FPGA they wanted to use for a given production
lot. Some applications are more demanding, while others are
more cost-sensitive. As a result, a customer could have a mixed
inventory of FPGAs, and we wanted to be able to detect and
protect the hardware from an accidental mismatch between
the bitstream and the FPGA.

But this was a single production lot, and in theory all the
FPGAs should have been the same. How, then, could the FPGA
have reported a mismatched ID code at all? I scratched my
head for a while and suspected a bug in our JTAG implemen-
tation, until I looked up the reported ID code. It was a known
code—Dbut for silicon marked as “Engineering Samples” from
Xilinx, the vendor that makes these FPGAs. Engineering
samples are preproduction units sold by Xilinx that have some
minor known bugs but are sufficiently functional for most
applications, to the point where most customers wouldn’t see
a difference, except for the ID code.

I looked closer at the PCB, and for the first time, I noticed
that a small, white rectangle was laser-etched into the FPGA’s
surface. The rectangle was right below the part number, where

fake goods 171

the “ES” designator for an engineering sample would normally
be marked. Someone had blasted the letters off and sold us
engineering samples as full production units!

9;;0)

Chip has been laser-
\ etched to remove “ES”

desi

RBO7 ™ 7t
RIDEw &

For contrast, an FPGA of the same type that hasn't been tampered with

The problem was very clearly a supply chain issue, not
a design issue. Someone in the chain was taking ES silicon,

172 CHAPTER 5

blasting off the letters, and blending them in with legitimate
units at a rate of around 3 to 5 percent. Typically, Xilinx
would require that all ES silicon in a distributor’s inven-
tory be scrapped once production units become available,
but the ES units were almost fully functional, to the point
where most applications would be unaffected. A production
bitstream would seamlessly load into an ES part, and nobody
would know the difference. The only way to tell them apart
would be by doing an ID code check, which is, as I noted
previously, atypical.

Thus, slipping ES silicon into production lots would likely
go unnoticed. Mixing ES parts in at a rate of 3 to 5 percent
was also very clever: a low mix rate makes substitutions very
hard to catch without 100 percent prescreening of the parts.
Even in production, if the ES silicon were marginal, it would
be maddeningly difficult to nail down the root cause of an
issue due to its rarity.

In fact, there’s a correlation between manufacturing dif-
ficulty and the use of FPGAs. Usually if your design calls for
an FPGA, you're pushing boundaries on multiple fronts, so
a scrap rate of a few percent is to be expected. The margin
on FPGA-powered hardware is also often fat enough that a
4 percent failure rate might simply be accepted by the end
customer. Thus, whoever did this knew exactly what they
were doing; it was virtually risk-free money.

Finally, it’s important to note that most vendors in a sup-
ply chain survive on single-digit margins, so finding an extra
3 to 5 percent of “free money” on the most expensive part on a
board virtually doubles profitability. That provides a very strong
incentive to cheat, especially if you think you won’t be caught.

The Solution

The resolution to this problem was quite interesting. I met
with the managers and CEO of AQS, the CM charged with

fake goods 173

producing Kovan, briefed them about the problem, and showed
them the evidence I had accumulated. When my presentation
ended, the CEO didn’t point a finger at upstream vendors or
partners. Instead, he immediately looked his staff in the eyes
and asked, “Did any of you do this?” He understood better than
anyone else in the room that any individual buyer or manager
would effectively double their take-home pay that month if
they could pull off this cheat without getting caught.

In other words, the truly remarkable part of this situation
1s how rarely the problem I experienced happens, given what’s
at stake and how hard these problems are to catch. And while I
do have a few good bar stories to tell about fakes in the supply
chain, remember that I've also shipped hundreds of thousands
of units of good product. The majority of people I've worked
with in China are hardworking, honest people who pass on
easy opportunities to cheat me and turn a profit. It’s important
not to generalize the whole based on the bad actions of a few.

At the end of the day, the vendor who sold us the chips
didn’t admit fault, but they did replace all remarked units at
their own cost. (We still had to pay for the labor cost to replace
the chips and recertify the boards.) This is about the closest
you can get to an amicable resolution in China when you're
not a giant like Apple or Foxconn. I did send a note to Xilinx
HQ about potential misbehavior by one of their authorized
vendors, but in the end, I'm a small customer, and the sub-
stitution of parts could have happened literally anywhere on
the supply chain. Even the courier delivering the packages
could have done the swap.

It wouldn’t be worth the cost to Xilinx in terms of man-
power, relationships, and focus to investigate the problem
and rat out the one bad actor in literally hundreds of possible
suspects. But I'd like to imagine that at least a memo was
sent around, and whoever was swapping in the ES parts got
scared enough that they stopped.

174 CHAPTER 5

CLOSING THOUGHTS

At the end of the day, a permissive IP ecosystem has benefits
and drawbacks. As an engineer and a designer, I prefer to be
in an ecosystem where ideas are accessible, even if it means I
have to be on guard for occasional problems with fake goods.
Put another way, a fundamental prerequisite for virality is the
ability to make copies. The explosion of interest in hardware
startups is in part thanks to the highly competitive manufac-
turing ecosystem that could flourish only in a product-over-
patent culture.

Westerners who come to China without understanding the
principles of gongkai and guanxi* often feel like they’re being
cheated. But once you understand the rules and learn how to
use them to drive your interests, you won’t feel like the game
is rigged against you anymore.

In the US IP system, honor has little economic value, and
law trumps honor. For example, patent trolling is a perfectly
legal, and very profitable, way to make a living. In the Chinese
system, however, reputation can trump law. This opens the
door for corruption but also crowdsources the enforcement of
social and moral values, driving a market value for honor,
especially in local, tightly knit communities.

Of course, the approach of making money by locking up
ideas and selling the rights to them is patently incompatible
with a permissive IP ecosystem. Thankfully, the notion that
ideas are community property dovetails nicely with my open
source philosophies. In the next part of the book, I'll talk more
about my experiences creating open hardware and building
businesses rooted in these principles.

* Guanxi (%3%) is a traditional social networking platform deeply embedded in the Chinese
culture. Like modern social networks, it has notions of followers, likes/dislikes, karma, and
moderators. Guanxi predates the modern legal system and can be more effective than the civil
code for resolving or avoiding all manners of disputes. Guanxi is also essential in facilitating
new deals and relationships.

Part 3

what open hardware
means to me

Before there was open hardware, hardware was open.

A yellow, tattered sheet of paper hanging next to my
monitors—the schematic for the Apple II computer—reminds
me of that fact every day. When I got the schematic as a child,
it became a blueprint for the rest of my life. I couldn’t under-
stand the schematic, but that didn’t matter; it taught me that
hardware is knowable. It empowered me to understand my
world and master the technology I relied on. That empower-
ment propels me to this day.

The legal doctrine of open source was still nascent when the
Apple IT was created, so while anyone can read the schematic,
it bears no open source license. It simply shows the patent
number 4,136,359. Back then, people just shared ideas—until
investors with lawyers came along and tragically spoiled the
commons. The software community defended itself with the
same tools used against it: primarily, copyright law.

Copyright law originally applied to literary and artistic
works. Today it also applies to computer code because, like
literature and art, code is a form of expressive speech. In the
same way that you can copyright a painting of the Grand

176 PART 3

Canyon but not the Grand Canyon itself, you can copyright
an implementation of Quicksort in C but not Quicksort itself.
To ensure source code could be shared freely, the software
community created open source licenses. Those licenses range
from copyleft (that is, openness begets openness) arrange-
ments like the GNU Public License (GPL) to more permissive
agreements that boil down to “acknowledge me, don’t sue me,
and otherwise do as you wish,” like the Berkeley Software
Distribution (BSD) licenses.

Hardware blueprints can be protected by copyright, too,
but blueprints are functional, so defining “open hardware” is
trickier. Virtually every piece of hardware used to ship with
a schematic. Somewhere along the way, however, it became
impossible for users to service hardware themselves without
breaking its warranty. Devices are now filled with trade secrets.
This shift created an artificial distinction between closed and
open hardware. I say “artificial” because while software can be
encrypted with ciphers so strong you’d have to build a planet-
sized computer to break them, you can reverse any hardware
design into a schematic, given a powerful enough microscope
and the software to stitch and process the resulting images.

The internet is littered with well-intentioned but misguided
attempts to apply software-centric open copyright licenses to
hardware. But using a software license on a piece of hardware
is like filing a marriage license for a corporate merger: while
the license conveys the author’s intent, it may not actually
do anything. For example, the text of the GPL doesn’t use the
word hardware once, meaning a court could rule that the GPL
doesn’t legally apply to hardware.

Some hardware-specific open licenses have been created to
help rectify the situation (the CERN OHL is a decent copyleft-
style hardware license), but the community is divided over
how much of the creation process has to be open for a piece
of hardware to be considered open. For instance, if I share

what open hardware means to me 177

schematics for a board I designed using a closed-source tool,
many would argue that the design does not qualify as open
source. But even if I designed the board using a schematic
capture and layout tool that was free and open source software
(F/OSS) compliant, what about the designs of the silicon chips
it uses or the bits of firmware burned into the silicon? Do we
need to see blueprints of the particle accelerators used to shoot
dopants into the silicon? What about the machine used to
engrave the masks used for silicon production? It’s turtles all
the way down. Hardware can’t be purely open source, because
at some point, ideas must translate into matter, and access to
the objects required to transform and shape matter is rarely
open to the community.

There are, however, much more pragmatic approaches
to open hardware than doing electron microscopy or demanding
open silicon foundries. Simply sharing blueprints at a given
layer of abstraction takes much less effort, is more intuitive,
and still has a positive effect. The shanzhai’s gray-market style
of open source, which I referred to in earlier chapters as gong-
kai, reaps the benefits of such sharing. In China, blueprints
are shared publicly, but under dubious terms. Most designs
still bear “confidential” or “proprietary” copyright notices, and
the shanzhai use pirated copies of professional-grade, closed
source design software to create derivative works. But at the
end of the day, this laissez-faire openness creates an ecosystem
where hundreds of small companies make a living repairing
or building mobile phones. Walking through the electronics
markets of Shenzhen made me realize that building a phone
isn’t difficult or scary. Communities outside the shanzhai just
don’t feel empowered to peer inside the box, due to restrictive
IP laws.

The gongkai ecosystem, explored in Part 2, values intellec-
tual and physical property almost equally. Schematics without
a supply chain are useless: you can’t make a phone call with

178 PART 3

blueprints for a phone. Likewise, chipmakers have no business
if no products use their chips. As a result, hardware creators
have a natural incentive to share information, particularly
the information necessary to design a given module or chip
into a larger system. Getting a customer to adopt chip-specific
design IP virtually guarantees that customer will purchase
the same chips when they’re ready to bring a product to mass
production. This balance between IP and the supply chain
has been difficult to strike in IP-centric Western ecosystems,
where ideas are much more valuable than factories. This
may partially explain why so many manufacturing jobs have
migrated to China, an ecosystem that more comparably values
the production of products and the ideas behind them.

I'm optimistic that with consistent effort, growing public
awareness, and the right economic conditions, the world’s
hardware ecosystem will eventually yield an open silicon
foundry. However, until then, “open hardware” has to be a
more pragmatic concept that is constrained to exist within
certain layers of abstraction. After all, just being able to
share blueprints (even if the licenses aren’t perfect and the
formats aren’t easily edited) dramatically affects innovation.
The shanzhai are living proof.

Whether it’s gongkai or open source, open hardware is
about empowering users to be the masters of their own tech-
nology, not about any specific legal arrangement. Damn the
torpedoes—full speed ahead! The freedom to learn, tinker,
and improve technology is so core to my person that I view it
as a basic human right. Freedom atrophies if not exercised,
which is why I actively defend this freedom. I share my work
openly, hoping to empower others and raise awareness that
technology is knowable. We're not slaves to our computers or
the corporations that build them.

I also challenge legislative and legal attempts to curtail
our freedoms. I was born into a DMCA-free world; I'd like to

what open hardware means to me 179

leave the world in a similar state by establishing that everyone
has the right to understand, repair, and modify the things
they own. This is more important than ever as we become
increasingly dependent upon technology. If we allow technol-
ogy to become a black box, we also surrender our agency to
the companies and governments that produce and regulate it.

This part of the book describes how I built three open
hardware platforms: chumby, Novena, and chibitronics. 1
hope that by reading my stories, you’ll also realize hardware
1s knowable and be empowered by this knowledge.

6. the story of chumby

One of my earliest open hardware projects was chumby, the

Wi-Fi-enabled content delivery device that took me to China
to set up my first supply chain in 2007.* Working on chumby
was personally exciting to me for two reasons. First, I had the
opportunity to build a product that could improve people’s lives
in some small way. The always-on, always-connected users who
blog and rely on IM to keep in touch could use chumby to make
those connections more easily. At the same time, chumby was
a chance for me to create a truly open platform that enabled
hackers to tinker and modify it however they liked.

* Of course, I want to make clear that I wasn’t the only guy behind chumby; I worked with a
whole team of fun, talented people. As I mentioned in Chapter 1, I was just the lead hardware
designer, though I did the Linux kernel stuff too. (That was new for me at the time, but it was
a lot of fun learning the insides of Linux from boot to halt!)

182 CHAPTER 6

A HACKER-FRIENDLY PLATFORM

Hackers have an insatiable desire to extend, modify, custom-
ize, and abuse consumer products to discover unintended
functionality. At Chumby, we hoped hackers would learn
how the device worked and transform it to do things we never
imagined, so we designed chumby to be as open as possible to
anybody who wanted to hack it. We considered not only open
source software hackers, but also hardware hackers, artists,
and crafters—that is, people skilled with and passionate about
noncomputer things, like metalworking, sewing, or carpentry.
To encourage and enable chumby hackers, we made the source
code, schematics, board layouts, bill of materials, flat patterns,
and 3D CAD databases of the plastic pieces freely available.
You can still find them all on the chumby wiki (http://wiki
.chumby.com/).

The original soft chumby

the story of chumby 183

The idea was to let hackers break away from point-solution
hacks on inscrutable hardware and into hacks they could
share with just about anyone. For instance, imagine you add
a blood pressure cuff to a chumby and give the chumby to your
grandmother. Now you can check on Grandma’s health, and
she can watch pictures of her grandchildren while she gets
her blood pressure taken. But imagine this scenario with a
WRT-54G router instead of a chumby. Sure, you can add a
blood pressure cuff to a WRT-54G as well (in fact, it’s quite
similar to chumby architecturally), but try teaching Grandma
how to set it up and use it. In other words, we felt making
chumby a simple product would allow hackers to make their
own hacks more usable and more understandable to the less
technical people in their lives.

Making chumby open had other benefits for hackers, too.
This time, imagine your thermostat is a little too far from the
place where you actually want to regulate temperature. You
could solve that problem in a weekend by adding a tempera-
ture sensor to a chumby. The chumby platform has Wi-Fi and
I built a hacker sensor package for the device, so the project
would require minimal hardware grunge work: you’d just mod
two chumbys (one with a temperature sensor and one with an
interface to the thermostat) and enable both with the sensor
package. Such a device would not only help you keep your liv-
ing room at the right temperature but also tell you the latest
news and help you track your favorite TV shows.

The icing on the cake is that you'd also be free to publish
your modifications and even resell modified chumbys with
those custom capabilities. Others could benefit from your
work, and you could make some money. (On a lighter note,
the original chumby housing was made of fabric, so you could
even modify it to match your décor!)

The original chumby design, now called the chumby classic,
premiered at FOO Camp in 2006, and it went on sale in 2008.

184 CHAPTER 6

Unfortunately, however, the chumby classic hit full-stride
launch in the middle of the worst economic downturn since
the Great Depression. Its cute, cuddly form factor had a price
tag that many consumers just couldn’t stomach, so I did what
any entrepreneur would do in a recession: I scaled back.

EVOLVING CHUMBY

Shortly after Lehman Brothers filed for Chapter 11 bankruptcy
protection in 2008, we started work on a product that could
address a new economic reality. As I drew my first napkin
sketches for the product, which we later dubbed the chumby
One, the stock market was in free fall and losing several hun-
dred points a day. Given that, the key goal was cost reduction.
I took a good, hard look at the whole design so I could build a
cheaper, faster product that would be better for the market.
We wanted chumby One to win new customers yet retain the
loyalty of our existing consumer base, and we wanted it out
before Christmas 2009.

Fortunately, an applications engineer from Freescale (since
acquired by NXP) contacted me about a new, remarkably inex-
pensive CPU (the 1.MX233) that Freescale planned to launch
in 2009. It looked like a promising fit for chumby, so I drew
up some straw-man renderings and ran some cost scenarios.
At CES in January 2009, we shared the new design with a
few potential customers to get feedback on the features and
pricing. The idea slow-rolled through March, and after the
Chinese New Year, I built the first prototype board.

NOTE One really cool thing about the i. MX233 is that it has embed-
ded power regulators, and they aren’t just linear regulators:
they’re switching regulators. But they’re not just any switch-
ing regulators; they derive three voltages using just a single
inductor! How cool is that? I have to give mad props to the
guy who designed that system.

the story of chumby 185

Around May, we contracted an industrial designer to do
some sketches, and by June, we had a near-final industrial
design. We made our first 3D-printed prototypes around then,
but we couldn’t afford a mechanical engineering contractor.
I had to learn SolidWorks and do the mechanical integration
for the 3D prototype myself. Since I enjoy learning new things,
the experience was quite rewarding.

In July, we inked a purchase order for steel tooling, and by
August, we had first-shot plastics. I spent September refining
and debugging the design and October on more testing, refin-
ing, and ramping up mass production. By November 2009,
the first shipment of chumby Ones was 35,000 feet above the
Pacific Ocean en route to LAX.

L N

1
|

*chumby ‘\\

The finished chumby One

The chumby One retailed for about half the price of the
chumby classic, and it had more features, like an FM radio
and support for a rechargeable lithium ion battery, a feature
users of the squishy, leather chumby classic often requested.
The initial reactions to the battery in the chumby One were
an interesting study in consumer psychology. For some reason,
even though the chumby One was smaller and lighter than
the chumby classic and did exactly the same things, people

186 CHAPTER 6

didn’t feel it should have a rechargeable battery. They had
no intrinsic desire to pick up the chumby One and carry it
around. That just goes to show how much form factor influ-
ences a consumer’s perception of function!

At any rate, customers certainly liked all those options,
but to me, they weren’t the most significant new features.

A More Hackable Device

What really excited me about the chumby One was that it was
much more hackable than the chumby classic. On the chumby
classic, we used a soldered-down SLC NAND chip, which
was cost-effective but made development quite complicated.
Developers were exposed directly to all the warts of NAND
flash memory, including bad blocks and error correction, and
if the system failed to boot correctly, one had few recovery
options. We addressed these problems on the chumby One by
storing the firmware on a microSD card.

If you happen to get your hands on a chumby One, you’ll
notice that you can’t replace the microSD card from the out-
side. We made that choice to prevent nonhackers from pulling
the microSD card out and wondering why the device wouldn’t
boot. But if you unscrew and remove the back panel (no glue
seals, unlike the chumby classic), the microSD card is easy
to access. Thanks to this key change, hackers didn’t have to
worry about bricking their chumbys. If someone screwed up
the firmware, they could just pull the microSD card out, mount
it on their dev box, and write a new image.

We also chose to make the chumby One’s microSD card a
managed NAND device so that we could directly drop ext3 (a
popular default Linux filesystem configuration) onto it. The
root partition was still mounted as read-only at the factory to
prevent accidental damage, but a managed NAND system made
remounting the root partition as read/write and modifying
the Linux system trivial. We consciously made the OS image

the story of chumby 187

use only a small portion of the total microSD card capacity,
leaving hackers with over a gigabyte of extra space to load
custom applications and libraries. (Keep in mind that a gig
was a big deal at the time.)

In hardware, what’s good for hackers is also good for
developers. The flexibility we added for hackers allowed us
to add a ton of great features to the OS. For example, the
chumby One supported certain 3G modems and could serve
Wi-Fi as an access point through those 3G modems. That
basically made the device a 3G-to-Wi-Fi router, which I found
enormously useful when I was traveling and needed to create
a Wi-Fi hotspot for other devices. We didn’t expose that fea-
ture at the mainstream user level at first, but we knew we (or
anyone else—it was an open project, after all) could wrap a
GUI around it and make it more user-friendly if people liked
it. And if you plugged a USB keyboard into a chumby One, it
would automatically open a console shell that you could type
into. That’s handy for times when you can’t SSH in, like when
you're debugging network scripts.

Hardware with No Secrets

As with the chumby classic, we also made the chumby One
design as open as possible. We posted schematics, gerber files,
and the GPL source code online. In the following figure, you
can see a preproduction pilot chumby One board. The mass-
production board was basically identical, with some minor
tweaks to enhance compatibility with the SMT machines we
used in China.

In particular, notice the pair of test points on the board
labeled SETEC ASTRONOMY in the bottom-left corner of
the photo of the back of the mainboard. You could use those
points to bypass the write protection on the chumby One’s
authentication ROM and wipe out the keys that Chumby
used to authenticate the device. I can’t think of a real reason

188 CHAPTER 6

to do that, but I added them on the principle that hardware
you own shouldn’t hold secrets from you. If you don’t like hav-
ing encrypted access codes on a device, you should be able to
nuke them. In the case of a chumby One, that meant you’d no
longer have the codes to fetch widgets from Chumby’s servers,
but hey, it’s your hardware. When hardware is truly yours,
you can void the warranty and do what you want with it. Of
course, we published the security protocol that chumby Ones
used to fetch widgets, too.

I also designed the chumby One motherboard with mounting
holes and features so it could be retrofitted back into a chumby
classic. Although Chumby never planned to put chumby One
boards into chumby classic enclosures—hand-stitched Italian
leather was just too expensive, and there were a couple of
technical issues with integration—I thought intrepid hackers
would appreciate the option to do it themselves.

TPS2113A
power switch

TTL-level 115200, (wall power to Chumbilical connector (not used);
MicroSD 8N serial console Li-ion battery local +5V warning: not compatible with
firmware card connector rollover) chumby classic chumbilical

(@GB) Unpopulated

passives

for composite
(NTSC/PAL)
video output

LM2621
+5V boost
regulator
(for Li-ion to
USB power)

Microphone
connector

Authentication LCD connector FM radio wire

ROM write protect
override points

The chumby One mainboard (back)

the story of chumby 189

Stereo headphone Internal USB 2.0

. A “Power” Single inductor
and line output to WirFi riser Freescale button provides 3 switchin,
(1/8 inch) External USB 2.0 . p s

1.MX233 CPU DC voltages

+5V DC input

Mono speaker
connector

KXTE9 3-axis
accelerometer
(not used)

Heat sink
= due to linear
4 charging
ol circuit inside

MMA7455 i MX233

3-axis)
accelerometer Wiggly
traces :-)
GL850G
USB2.0 hub
Top switch
“snooze bar” 64 MB

DDR DRAM

High-power stereo FM Radio CPID EEPROM NAND Potentiometer

Quadrature
speaker amps QN8005B (authenticated flagh riser connector encoder
(not used) SP6690 LED DCID IDcodes) (not used, (notused) riser connector
backlight EEPROM boots
regulator (unsecured from microSD)
ID codes)

The chumby One mainboard (front)

I continued to work on improving the chumby line for sev-
eral years, but eventually, I wanted more time for personal
projects and a break from entrepreneurship.

THE END OF CHUMBY, NEW ADVENTURES

In April 2012, Chumby as the world knew it came to an end.
We had run out of money, and the investors had run out of
patience. I'd already left the company discreetly in January; I
had a good run, but it was also time for me to move on. Upon
hearing the news, my good friend Phil Torrone from Make:
reached out to me for an interview, and I was happy to oblige.
You can read the full interview online,* but I've excerpted
parts of it here that you might find useful if you're excited to
get into the hardware business.

* See http:/ /makezine.com/2012/04/ 30/ makes-exclusive-interview-with-andrew-bunnie-huang
-the-end-of-chumby-new-adventures/ for the full interview.

190 CHAPTER 6

Phil: How did you get involved at Chumby? And what was
your role at the company?

bunnie: I was originally an advisor to the company, a consul-
tant brought in to figure out some bits of the hardware strategy.
We had weekly dinners where we’d talk about what the product
might be. Eventually, I got excited enough about the product
that I just hammered out an initial prototype motherboard in
my spare time. Around the same time, my boss at my prior
company was really irritating me (he lectured me about the
importance of being in my chair every morning by 9AM, com-
pletely ignoring the fact that I'd worked until midnight the
day before), so I resigned on the spot and joined the founding
team of Chumby.

My role at the company was initially VP of Hardware,
which sounds grand. But when the hardware organization
consists of exactly one person, you're also the solder jockey
and the janitor. Now that I think back on it, the team took a
big chance on me. At the time I had no experience in supply
chain management and had never been to China. They took
a leap of faith and gave me the opportunity to figure it all
out. I really appreciate that they gave me so much latitude
to learn on the job.

Phil: What was the best part of making the chumby?

bunnie: There were so many great things about making the
chumby. I think overall, one of the best parts was that I had
to figure everything out from conception to distribution. It
meant that I got to see every part of the process firsthand:
industrial design, electronics design, tooling, supply chain,
retail, and reverse logistics. There are so many things that go
into a product, and satisfying that curiosity about how things
are made was great.

The other thing I really treasure from making the chumby
was all the wonderful people I got to work with and meet

the story of chumby 191

along the way. I made a lot of friends, and I had so many
excellent mentors.

And finally, I think the best part about making chumby
isn’t really the making. It’s seeing people use it, and seeing
people enjoy and appreciate the device. The smile on a user’s
face is the ultimate reward.

Phil: Can you talk about making a device from start to finish,
from idea to factory to retail shelves?

bunnie: One of the best parts about making a device from
start to finish is that you have a totally unconstrained set of
tools to solve the problems at hand. You can solve business
problems with board layout, and vice versa. For example, there
was a question about how we could uniquely and flexibly brand
units, in a fashion that allowed for swappable faceplates (that
1s, snap on the NFL faceplate and get your football scores, snap
on the Bloomberg faceplate and get your financial news, and
so on). This is a topic that could take dozens of meetings to
hash out. But as the sole hardware guy, I knew that embed-
ding an EEPROM costs only $0.20 and while everyone else
discussed possible solutions in the staff meeting, I fired up
my board design tool, added the eight-pin EEPROM to the
board, tossed on an appropriate connector, and had the whole
solution engineered by the time action items were assigned. It
actually took me longer to convince them that the work was
done than it took to do the work.

I think I ended up absorbing many of the skills required
to build a product from start to finish because it’s very diffi-
cult to communicate requirements. The question was always
whether it would be faster for me to do it myself or to explain
1t to someone else, wait for them to do it, and possibly have
to re-explain it and have them change it. That’s one reason I
learned mechanical design; the industrial design and plastics
tooling is a long pole in the tent for many consumer products,

192 CHAPTER 6

and being able to efficiently and effectively communicate with
a mechanical engineering team using their language was
important to getting the job done right.

Phil: What were the challenges with retail sales?

bunnie: Retail and distribution were the most difficult chal-
lenges. Here are a few difficulties I encountered:

Dealing with the merchant buyers. Brick-and-mortar
retailers hire teams of buyers assigned to monetize shelf
space. They think about products in terms of revenue per
shelf space, and they don’t really see anything beyond
that. This puts into sharp relief any improvements you
want to add to the product that also drive up product
costs. Merchants tend to look at your product as so many
grams of plastic and so many wires. They multiply those
numbers by the commodity price of the raw materials to
set expectations for how much they’ll pay to have it on
the shelf. It’s possible to cut better deals, but educating
a merchant about the value of your product takes a lot of
effort. Unfortunately, the turnover in merchant staff can
be fairly high, so you may spend months cutting a deal
only to find that the person you were working with has
left the organization.

Margin. Everyone in the supply chain has a hand out:
the distributor, the merchant, and the factory. Beyond that,
market development funds and other slush money have
to be factored in. At the end of the day, the shelf cost of a
product is about three times your BOM cost. This means
adding a $0.50 part turns into a $1.50 retail price impact.

This is aggravated by the fact that prices are quantized
into “magic” numbers (like $19.99, $49.99, or $99.99) that
you have to hit. You just don’t MSRP a product for $127.45.
If a product retails for above $99, it’s psychologically binned
with the $149 or $199 products. When your product’s BOM

the story of chumby 193

cost approaches one of these quantization points, you’ll do
lots of soul searching about whether it’s worth $0.50 to
1improve, say, the speakers. Either that small cost increase
will come out of your own margin, or you risk pushing your
product into a higher price tier.

Cash flow. Retailers are notoriously bad at paying on
time. You may negotiate 60-day terms, but often you’re not
paid after 90 or even 120 days. If your product doesn’t sell
out so that the retailer has to place another order with you
(at which point you have some leverage to collect outstand-
ing payment), you'll get strung out. This can be partially
mitigated with financial instruments such as factoring
insurance. Insurance companies will sell insurance on
anything, including insurance hedging against retailers not
paying on time or going insolvent before they can pay you.

Reverse logistics and returns. Many retailers offer
no-questions-asked return guarantees. That’s great for
the customer, but guess who services those returns? The
retailer passes the buck back to the entrepreneur! This is
part of why payment times can be quite bad: retailers are
retaining cash to hand back to customers to satisfy returns.
Once the returns are processed, you get to figure out how
to get the returned material off their dock and back into
a facility where you can refurbish the units. Typically,
most returned units aren’t defective. They simply didn’t
meet customer expectations, or the customer had buyer’s
remorse after an impulse buy. The otherwise working
units are usually missing accessories or are cosmetically

marred, thereby requiring extensive rework to refurbish.

Contracts. Retailers will hand you a default contract
full of terms that very strongly favor them in almost every
contingency. Sometimes, the contracts can expose you to
liabilities that you can’t possibly hope to cover. For example,

194 CHAPTER 6

I've seen language such that if an affiliated content website
was down for longer than a specified amount of time, then
you could be liable for nonspecific damage to the brand
reputation of the retailer selling your goods. Those sorts
of open-ended liabilities are unacceptable, and negotiating
them out can take months. Other onerous terms include
penalties for late shipments or fines for defective units.
The contract negotiation process is very distracting to top
management and can put a real drag on an organization.

Phil: Did you get any patents? How do they work within the
world of open source?

bunnie: Yes, I actually was granted several patents dur-
ing my tenure at Chumby. Patents are a very natural way
to protect hardware ideas. As F/OSS [free and open source
software] licenses like the GPL [GNU general public license]
and BSD [Berkeley software distribution] rely on copyright
for power, open hardware licenses can likewise draw upon
patents for power.

When we started, no license existed that addressed the
patent issue, so chumby created its own flavor of open source
license. It was basically an automatic cross-license with users
who created derivative works. Those who utilized our source
would get a license to the patents, under the condition that
any patents granted for the derivative work also had to be
automatically licensed back to us.

The license had a couple of other restrictions that were not
“truly” open, like a condition that the derivative work had to
at least give users the option to run the chumby network in a
competing product (an opt-in checkpoint during the boot pro-
cess). There was also an “ask us if you want to manufacture”
clause, which stated that derivatives going to mass production
had to get additional authorization from Chumby. We added
that primarily to create a checkpoint to verify interoperability

the story of chumby 195

with the servers, and also to enforce proper trademark and
branding rules. Burying that clause in the license meant that
the license couldn’t be called open source because Chumby could
always say no, though it never did in practice. However, the
situation does highlight an ongoing struggle in open source
hardware: how to address trademark and interoperability
issues in an increasingly complex and diverse ecosystem.
Also, the rights to the patents I created at Chumby are
all assigned to the investors. They will likely be sold to the
highest bidder, which could very well be a patent troll. I would
regard that outcome as unfortunate, but it’s a reality that I
must accept. The investors have the right to explore all lawful
venues to recover their investment. In an ideal world, however,
I'd buy back the rights at an affordable price, license them
to the open source community, and try to establish a mate-
rial precedent on how to handle patents in the open source

community.

Phil: Do you have any advice for a maker who is considering
taking venture capitalist funding? Anything different if they're
doing open source hardware?

bunnie: I think VC funding is suitable only for accelerating
certain kinds of growth. It’s not very good for early-stage
research and development or businesses that have slow, but
steady, growth models.

The hardware model is radically different from the soft-
ware model. Software is innately scalable. You can acquire
100,000 users overnight. Monetizing the user base in software
is trickier, but most software plays start with scale and then
worry about money.

Because hardware requires the movement of atoms to
acquire a user, scalability is limited by the rate at which you
can economically and reliably assemble your atoms and ship
them to the customer. On the other hand, there is a very natural

196 CHAPTER 6

point for monetization in hardware: the margin you charge on
every unit sold. Money comes earlier and more often, but the
growth rate is limited by pesky things like the laws of physics
and the availability of raw materials and skilled labor to build
the units. Notable exceptions to this rule are concepts like the
Square reader. Square’s hardware was cleverly designed to
be so cheap that its cost was arguably lower than the cost to
acquire a customer through other means (like print advertis-
ing and mailing campaigns), making the dongle cheap enough
to just give away.

Therefore, in hardware, first ask this: what is your distri-
bution channel, and how hard is getting your product to end
users? Ultimately, the size of that pipe and the monetary drag
on transactions limits the growth rate of your idea. You also
have to factor in boomerang costs like returns and customer
support costs. You'll be shocked at how many support calls
you get from people who forgot to plug your product in.

If you have an awesome distribution channel, a solid
marketing campaign, and customers lined up out the door,
maybe VC is a reasonable match. But a typical maker will
start out selling stuff online, possibly in boutique stores. The
time it takes to turn capital into revenue will be on the order
of months initially, and that’s a brutal cycle to finance with
VC. All the money you have tied up in the supply chain isn’t
adding any value to you, but you traded a lot of your owner-
ship in the company to get that money.

I would typically recommend that a maker try to first
fund research and development out of pocket, or with a very
friendly angel loan. Once you have a prototype and a solid plan
for production, it’s smarter to go into debt to finance small
batches of builds so you're never overextended and build your
market one step at a time. Every time you turn inventory, you
should come back with more cash, which you can plow into
making more inventory.

the story of chumby 197

Doing this forces good discipline. It will help you focus on
leaning up the supply chain so that inventory turns faster.
The best hardware companies turn inventory in a matter of
days. If you're growing your capital base by 20 percent with
every inventory turn, it only takes four turns to double your
money: $100 turns into $120, which turns into $144, which
turns into $172, which on the fourth turn results in $207.
That’s the magic of compounded percentages.

If you can do a full turn of inventory once every eight
weeks and sustain a 20 percent growth rate with each turn,
you’ll grow your business by over 300 percent in one year. Of
course, the markets are never so ideal and predictable, but
you can play with turn time versus margin available to grow
your business. Higher-margin businesses can take longer to
turn inventories and still sustain a palatable growth rate.

Bootstrapping like this is a lot of hard work, but at the
end of the day, you own every penny you make, as you have
no investors. The glory stories for this model aren’t as big as,
say, Instagram or Google, but if you’re doing it right, you're
in control, and your work is more likely to pay off in the end.
In fact, many successful Chinese hardware manufacturing
businesses grew primarily using bootstrapped funding just
like this.

Phil: What are your thoughts on Kickstarter for funding?

bunnie: I don’t think it’s a good idea to fund early research
and development with Kickstarter or other crowdfunding plat-
forms because of the hard commitments you have to make to
customers early on. Kickstarter is a great phenomenon, but you
also need to be careful raising money there. To some extent,
Kickstarter is the ultimate dumb money. Customers are sold
on a vision and buy in early on, and you have to deliver on that
vision. In crowdsourcing your money, you’ve also crowdsourced
your board of directors. But the road to product development

198 CHAPTER 6

is never smooth. As a result, Kickstarter money can lock you
into commitments early on that you can’t back out of.

I think Kickstarter can be a better solution than VC, but you
should only use it after the idea has matured sufficiently and
you’re primarily looking to find a better way to finance produc-
tion than VC money or a bank loan. In fact, after you consider
the frictional losses of extracting money from Kickstarter, a
bank loan with a few percent interest could be favorable. But
of course, a bank loan doesn’t come with the same visibility,
marketing, and upside potential as a crowdfunding platform.

Phil: When you advise companies, what do you most often
suggest to the founders?

bunnie: Ship or die! Particularly if you've accepted VC funding.
The moment VC money hits your books, you’re on a fixed-length
fuse. If that fuse runs out and you haven’t created substantial
value, a bomb goes off that wipes out a chunk of your valua-
tion. If you’ve raised a million dollars and you plan to burn it
in a year, every day “costs” you $4,000. I use that as a value
barometer to guide decision making: if $30 in expedite fees
can pull in the schedule on a long-pole task by one day, the
money is well spent. This is also part of the reason I lived on
“China time” while chumby was in production even though
I was in California. Staying up until 4 or 5AM every night to
flip emails with the factory and shorten the longest pole in the
tent shaved days off the schedule, which translated to tens of
thousands of dollars in burn.

In the face of “ship or die,” don’t look to ship the perfect
product. Shipping a product that’s good enough is more impor-
tant than shipping a great product late, especially in consumer
electronics or any similarly seasonal business. In consumer
electronics, up to 90 percent of your business can happen in the
fourth quarter. If you miss Christmas, you’ll have no revenue
for the next three quarters; missing Christmas is like dropping

the story of chumby 199

an extra year of burn on your capitalization table. Worse yet,
during that year, your competitors will continue to improve.

Chumby suffered from precisely this. We premiered an
alpha version of the device in August 2006, but we missed
Christmas 2007. We didn’t launch our squishy, connected
alarm clock until just after Christmas, in February 2008.

Consider some world events that happened around these
dates: the iPhone shipped in June 2007, and the global economy
crashed in October 2008. It was bad enough that we had to
weather almost a full year, from February 2008 until Christmas
2008, burning venture money to stay warm. But when the
economy fell out, so did the appetite for a $200 stocking stuffer.
We had too much inventory and had to fight for survival.

If my memory is correct, we could have shipped a product
for Christmas 2007. It just wouldn’t have been quite as polished
and would have lacked some features. But maybe it would
have been good enough. In retrospect, the iPhone had by far
less momentum in 2007 than in 2008, and we probably could
have cleared a lot of inventory. On the other hand, perhaps
knowing the iPhone, its apps, and its awesome touchscreen
would obsolete a connected alarm clock drove us to second-
guess our strategy and delay launch to strengthen features
like streaming music integration.

At any rate, the lesson is clear enough to me: ship or die!

A second piece of advice I'd give to hardware companies is
to aim high with price. It’s virtually impossible to raise your
pricing if you start too low, and there’s nothing like a sale to
get people to buy.

Hardware startups that principally sell online are tempted
to set the price as low as possible to drive buzz and improve
initial sales. The temptation to sell your $35 device for $49
direct online is huge. After all, that’s about a 28 percent margin
(unless your BOM doesn’t factor in soft costs). That’s great,

200 CHAPTER 6

until you've dropped off the front page of Engadget and your
sales are plummeting.

Engaging a retailer may help bring in more, and more
consistent, sales, but a retailer will initially try to buy your
product from you for between 40 and 60 percent of your MSRP.
This means they’d want to buy a product for $49 and sell it at
$99. If you've already sold a bunch of units at $49, there’s no
way the retailer can sell it for $99. To access retail, you'd have
to sell your $35 product to a retailer for $25 so the retailer can
sell it at your established price of $49. Even if you're successful
with such a drastic cost-down, you're still left making no money!

Selling your $35 device for $99 might garner fewer cus-
tomers at first, but your initial margins would be spectacular,
and you’d have the room to cut in a retailer or run sales of your
own to get more customers. That’s part of the reason MSRPs
are so high. Retailers also love to use sales to make units move,
and a $99 unit priced down to $69 feels like a smart buy. But
at $69, the retailer is only making 29 percent margin.

Aiming too low on pricing effectively robs you of the oppor-
tunity to use retail as a possible distribution channel, and
you simultaneously lose the opportunity to have sales and
promotions yourself. Promotions are important because viral
marketing can only get you in front of a customer once or
twice at best. So when you put your heart and soul into your
product, price it like you mean it.

Phil: If you could do it over, how would you change the hard-
ware of the chumby? The software? The way chumby was made?

bunnie: Well, as my previous answer indicates, I would have
focused much more on shipping on time, perhaps at the expense
of jettisoning some features.

A more counterintuitive thing I learned is that accessories
and packaging can take more time to develop than a product.
The squishy chumby classic came with a wonderful set of linen

the story of chumby 201

and microfiber bags and rubber charms. (We developed over a
dozen charms in all.) There was also a custom power adapter,
branded ribbons, gift boxes, branded tissue paper . .. I even
had to iterate the hardware design and spin an injection-mold
tool to improve the attachment method for the charms to the
device. I spent at least four months intensely focused on the
accessories and packaging for the product. Our fan base went
wild over the attention to detail, and that helped goose sales.

But in retrospect, I wonder if we could have done better
forgoing the details and shipping before Christmas. One of the
most gut-wrenching realizations that small companies have
to make is that they aren’t Apple. Apple spends over a billion
dollars a year on tooling. An injection-molding tool may cost
around $40,000 and take two to three months to make; Apple
1s known to build five or six simultaneously and then scrap all
but one so they can evaluate multiple design approaches. For
Apple, tossing $200,000 in tooling to save two months’ time
to market i1s peanuts. But for a startup that raised a million
bucks, that’s unthinkable. Apple also has hundreds of staff; a
startup has just a few members to do everything. The precision
and refinement of Apple’s products come at an enormous cost
that is out of reach for startups.

I don’t mean to say that design isn’t important. It’s still an
absolutely critical element to a product, and good design and
attention to detail allow a startup to charge more for a prod-
uct and differentiate themselves from competitors. Apple has
raised the bar very high for design and user experience, and
users will judge your product accordingly. But it’s important
to keep in mind that your true bar for comparison is other
startups, not Apple. If your chief competitor is Apple, either
you need a billion dollars in cash to invest in product design
or you need to rethink your strategy.

That leads to another thing I'd probably change. Pivoting
1s so important for a startup. A startup has to be able to run

202 CHAPTER 6

circles around big companies. Culturally, Chumby just found
it challenging to be agile enough to adapt to a rapidly chang-
ing technological landscape.

Of course, hindsight is 20/20. There’s a lot we could have
done differently, but when I think back on all the early deci-
sions we made and how we got there (the resistive touchscreen,
lack of integrated battery, using Flash as our core platform),
I don’t see how we could have made any different fact-based
decisions back then.

But that does show a flaw of fact-based reasoning. Engineers
love to make decisions based upon available data and high-
confidence models of the future. But I think the real visionaries
either don’t know enough, or have the sheer conviction and cour-
age to see past the facts and cast a long shot. It’s probably a bit
of both. Taking risks also means there’s a bit of luck involved.

I certainly have a fact-induced myopia. My recent focus on
operational efficiency, schedules, and risk management has
sapped my ability to have creative and audacious visions. I'm
actually taking a year off from entrepreneurship to decompress
a bit and to try to rediscover and develop the creative bits of
myself that have atrophied over the past couple of years.

Phil: Now that you’ve been part of a full cycle of a VC-
funded company that makes hardware, what suggestions do
you have for company structure, from the people to the loca-
tion to the overall organization?

bunnie: The structure really depends on the type of product
you're trying to build. Hardware has many different special-
ties (like consumer, medical, and industrial) and markets (like
high-end boutique, hobby items, and mass market devices).
There’s good business potential in all of them, but your location,
focus, and team composition need to be tuned based on your
product and what gives you a competitive edge. At Chumby,
hardware was just a barrier to entry for apps to run in your

the story of chumby 203

home, so it was instantly a race to the bottom. The hardware
part of the company had to run lean (remember, Chumby had
one hardware engineer and one operations director), and it
needed a China-centric strategy from day one.

Generally, if you can suffer doing a hardware startup
through bootstrapping, it’s worthwhile. A broad range of
hardware products can be bootstrapped at first—and then
Kickstarted, debt-financed, or VC-funded to scale. For instance,
MakerBot developed and shipped its 3D printer entirely on
angel money, before closing a round of VC funding. Bre Pettis,
one of the cofounders, once mentioned that they lived on noth-
ing but cup ramen noodles for a month.

Any hardware company that has passed the idea phase
and is entering the scaling-up phase has to be razor-focused
on operations and cash flow. Maintaining a build-to-order
paradigm is critical but difficult: a key metric for any hardware
company, small or large, is how quickly you can turn inventory
into cash. There are two halves to the equation. One is leaning
up your supply chain and trimming lead times so you don’t need
to sit on much inventory, yet can satisfy new orders quickly.
The other is leaning up your cash management so you can bill
customers quickly while stretching your credit lines as far as
possible. That’s a multidimensional optimization problem that
can make your head explode without the right staff, so your
team should include a crack operations director and someone
adept in semi-exotic financial instruments like factoring insur-
ance, collateralized lines of credit, and trade contracts.

Being able to access China effectively early offers a disrup-
tive advantage to your startup (it’s hard to ignore the order-
of-magnitude advantage China has over the United States in
assembly costs), but working with China does come at a huge
cost and risk to the organization. It may not be for everyone,
particularly on day one.

204 CHAPTER 6

I outsourced myself to Singapore to get closer to China,
because I knew I’'d never be able to get away from the China
ecosystem. China has such a firm grip on hardware manufac-
turing, and I think it will take decades for them to lose their
edge. This geographic diversity also means that any effective
hardware startup has to be able to function effectively with
a delocalized team.

Phil: What’s next for bunnie? What are you most excited to
do next?

bunnie: That is the question for me! I don’t really know what’s
next. As I noted earlier in the interview, I'm taking a year off to
do things that aren’t specifically entrepreneurial. My current
priorities are to first have fun with my work, second to not
lose too much money, and third to do something good for the
community through a combination of hacktivism, volunteer
work, and open source methodology. I'm hoping in this year
I'll collect the bits of my soul that I've lost along the way, find
some new ones, and relearn the value of magic in my life. 'm
also spending a fair bit of my focus tuning up myself, getting
fit, changing my diet habits, and losing weight. The coolest
piece of hardware you’ll ever own is your body, and if that’s
not working well, there’s no hope for anything else. Once I'm
done with my aimless wanderings, hopefully I'll have a better
idea of what’s next!

While reviewing that interview for this book, I chuckled
a bit to myself. By that point, the year I took off had turned
into four years. Several concerned associates of mine asked,
“When are you going to stop your midlife crisis and get a real
career?” But in retrospect, not going back to the corporate
world was the best decision I ever made.

I do live a lot leaner than I did when I had VC/corporate
backing, but I have a lot more independence. It was a choice
between golden handcuffs and an Aeron chair, or a rucksack

the story of chumby 205

and an interesting spot near the horizon. I'm still working on
collecting the bits of my soul, and I'm still slowly relearning the
values of enchantment and wonder. But at least I have the free-
dom to contemplate values other than the wealth of my invested
shareholders. Thankfully, I had some success in revising my
dietary habits and fitness level; tuning up my own body was an
excruciating year of calorie tracking, sore muscles, and blistered
hands, but it paid off in spades. My mother used to tell me that
without health, you have nothing; she’s absolutely right. If you
don’t have the stamina to work, it’s hard to turn opportunities
into outcomes. With any luck, my health will hold out, and I'll
have many more stories to share with you in the future.

WHY THE BEST DAYS OF OPEN HARDWARE ARE
YET TO COME

One of the most critical outcomes from my year of soul search-
ing was the realization that the best days of open hardware
are still ahead. As I contemplated in my interview with Phil,
Chumby didn’t fail because of its open hardware model. At
worst, the model had little bearing upon the consumer appeal
of the product; at best, it was a good talking point. Nowhere in
that interview did I gripe about plummeting sales in response
to cheap clones appearing on the market due to our liberal
open source policies.

Rather, one of our biggest challenges was an inability to
keep up with Moore’s law. Chumby simply didn’t have the
resources as a startup to keep pace. It took two to three years
to push a major platform revision, at which point that revision
was already obsolete. My PhD dissertation® was centered on
Moore’s law and its impact on computer architecture. The most
powerful computers are descendants of a processor designed
in the 1970s (the Intel 8085) with derivatives still used today

* http:/ /bunniestudios.com/bunnie/phdthesis.pdf

206 CHAPTER 6

as the brains of toaster oven. Why? Because running existing
code on backward-compatible CPUs has almost always been
faster than porting old code to a new microarchitecture. Given
that fact, in my thesis, I designed a microarchitecture that
nobody could possibly implement at the time but that might
be optimal for a computer that could be built 10 to 15 years
out. A small team of researchers would have ample time to
develop the infrastructure necessary for a novel computer
that would be relevant the day it’s finally switched on. I spent
several months in the late ’90s studying the underpinnings
of Moore’s law, trying to understand where it runs thin and
where it holds strong. At the time, the strongest limitation was
the speed of light, so my thesis revolved around architectural
tricks to reduce communication latencies.

In 2011, about a decade after my graduation and right
around the end of Chumby, I had an opportunity to give a
“vision” keynote at the Open Hardware Summit. I decided to
review my notes from college and see if there might be another
decade left in Moore’s law. There isn’t, and that has profound
ramifications on the future of open source hardware. This sec-
tion is an adaptation of a blog post I wrote in 2011 sharing
my thoughts; thankfully, here in 2016, I've yet to retract any
of the statements I made back then.

Where We Came From: Open to Closed

Open hardware is a niche industry, and certain trends have
caused the hardware industry to favor large, closed businesses
at the expense of small or individual innovators. Looking 20
to 30 years into the future, however, I see a fundamental shift
in trends that can tilt the balance of power to favor innova-
tion over scale.

As 1 said in this part’s preface: in the beginning, hardware
was open. Early consumer electronic products, such as vacuum-
tube radios, often shipped with user manuals containing full

the story of chumby 207

schematics, a list of replacement parts, and instructions for

service. In the '80s, computers often shipped with schematics.

For example, the Apple II shipped with a reference manual

that included a full schematic of the mainboard, an artifact I

credit for strongly influencing me to get into hardware.

PAGE

5%5 SERIES. PLF=10

—C

123A7 1208
1STOET. 08¢ LF AR DET fAY.C
Sag Bag

SRR

125C7

050 a1

=

=== ;\mm.n;x

35L66T
oUTRUT

33,000~

TUBE AND TRIMMER LOCATIONS

ot

oo = NOTES voLTAGE i uuoTe: Switer
od ke osc sduhe ON" DN IT 10N,
o
H

2

POWER
coRo

+ BEMOTE contRoL.
T

T T

unE
FILTER CHOKE,

WoEaTes
by Gonssrs

RECT,

INBIEATES COMMON
L ViRING INSUCATED
= FRom cnaseis

L

spoT
switar

L= st Guo.j
TERMINKL BRD.

COUPLING UNIT

PLF-10 POMER LINE FILTER

ectPTALE

i

T

~gem

£ %
7

Rt
£

35256T

Replacement Parts
Insist on genuine factory-tested parts, which are readily identifed and may be purchased from authorized dealers.

RenbRE

RADIO-REMOTE,
SwTen

STOCK DESCRIPTION STOCK DESCRIPTION
CHASSIS ASSEMBLIES 32089 | Socket—Dial lamp socket
13087 | Capacitor—g0 i 13203 | Socke—Rhonosraph s
apac .
12062 | Capaci 30585 | Spring—Drive cord spring.viveens
s0sss 33819 | Transformer—First if transformer...... [N
:g% g 32678 | Volume control and power switch............
5580 POWER LINE FILTER PLF-10
33321 13087 | Capacitor—80 mmid.
12484 or—0.26 mfd.
82672 33492 coil.
33320 33403 | Receptacle—Power receptacle e
32962 35401 L I
33323
32908 SPEAKER ASSEMBLIES
FrH] (39106—2)
12409 32064 | Transformer—Output transformer......vverss
14871 mev—u ohms, t w.
19408 | Reimor—35cohme 4wtk MISCELLANEOUS ASSEMBLIES
13058 | Resistor—22.000 ahime. 3 watt X839 | Gabinet—luory finish—Model SXGI. ...
12454 | Resistor—33,000 ohms, } watt X-838 5 .
13412 | Resistor—47,000 ohme, } watt. ... 32042
12264 | Resistor—220,000 ohms, watt... ... 33817
12285 Rtunm'—!ﬂ‘) 000 ohms, i watt 33308
12679 | Resistor—2.2 meg., 1 wa 32447
13801 | Resintor—10 megs 4 watt. 32043
82945 | Shaft—Tuning knob shaft and 31646 | Spring—Knob retaining spring

Additional Replacement Parts:

Stock No.
32046

11765

Lamp—Dial lamp, Mizda No, 51

Etamiarm:r\-Second I-F tran:

Dr:m—Candtnler drive drum and in-

witch—'Remote™ switeh. .

ker—Complete—less transformer

A vacuum-

tube radio schematic

208 CHAPTER 6

But contemporary user manuals lack this depth of informa-
tion. The most complex diagram I've seen in a Mac Pro user
guide instructs you on how to sit at the computer: keep your
“thighs tilted slightly,” “shoulders relaxed,” and so on.

What happened? Did electronics just get too hard and
complex? On the contrary, improving electronics got too easy:
the pace of Moore’s law has been too much for small-scale
innovators to keep up.

Where We Are: “Sit and Wait” vs. “Innovate”

Consider this snapshot of Moore’s law, which states that
“goodness” (pick virtually any metric: performance, transis-
tor density, price per quanta, etc.) doubles every 18 months.

Linear Imp‘rovement fffff
101 Moore’s Law (t=18 months) —

Goodness (AU)

Time (years)

Moore’s law, doubling once every 18 months versus linear improvement of 75 percent
per year. The shaded sliver between the two lines at t < 2 years represents the
window of opportunity where linear improvement exceeds Moore’s law.

This chart is unusual in that the vertical axis is linear.
Most charts depicting Moore’s law use a logarithmic vertical

the story of chumby 209

scale, which flattens the curve’s sharp upward trend into a
much more innocuous-looking straight line. The shaded area,
on the other hand, represents a linear improvement over time.
This might represent a small innovator working at a constant,
noncompounding, but respectable rate of 75 percent per year to
add or improve features on a given platform. The tiny (almost
invisible) space enclosed by the curves represents the market
opportunity of the small innovator versus Moore’s law.

The juxtaposition of these two curves highlights the central
challenge facing small innovators. Sitting and waiting have
long been more profitable than innovating. If it takes two
years to double the performance of a system, you're better off
simply waiting and upgrading to the latest hardware in two
years. Racing against Moore’s law is a Sisyphean exercise.

This exponential growth mechanic favors large businesses
with the resources to achieve huge scale. Instead of developing
one product at a time, a competitive business must have the
resources and vision to develop three or four generations of
products simultaneously. Reaching the global market within
the timespan of a single technology generation requires a
supply chain and distribution channel that can do millions
of units a month: selling at a rate of 10,000 units per month,
reaching “only” a million users, or about 1 percent of the house-
holds in the United States alone, would take eight years. And
significantly, the small barrier (a few months’ time) created
by closing a design and forcing the competition to reverse-
engineer products can be an advantage, especially against
the pace of Moore’s law.

Thus, technology markets have become inaccessible to
small innovators as individuals struggle to keep up with the
technology treadmill and big companies continue to close their
designs to gain a thin edge on their competition. This trend
1s changing, however.

210 CHAPTER 6

Where We’re Going: Heirloom Laptops

Gordon Moore, the man who observed Moore’s law, is one of
Intel’s co-founders. Moore’s law is best known for describing
how transistor density, and by extension CPU performance,
would increase over time. For instance, consider this plot of
Intel CPU clock speed at introduction versus time.*

10000

T +4+ R
S

#

1000 3
A
— ey
N t+ ¥
an) kiad
> 100 +f
= w7
g e
-
& o
v + + +
Q +
o) +
2
Q 1hy
D +
[a)
@)
01
N © o3 A 0 > > 9 n
S g £ & & 3 § S Q\
o & S & S) <) &
e & S & & S < &
O = ({ic& W \z? \§ QE’&

Date of Introduction

CPU clock speed over time. The plateau has held steady since 2014.

Notice the abrupt plateau where clock speed stops increas-
ing. At that point, CPU makers started using multicore tech-
nology to drive performance, but this wasn’t by choice. CPUs
reached physical limits that prevented practical clock scaling,
primarily related to power and wire delay scaling. Transistor
density, and hence core count, continues to increase over
time, but the pace is decelerating. Transistor count used to
double once every 18 months; then it slowed down to double
less than once every 24 months. Eventually, transistor density
scaling will effectively end. The absolute endpoint for transis-
tor scaling is a topic of debate, but one studyT indicates that

* Data primarily from https://en.wikipedia.org/wiki/ List_of_Intel_microprocessors and https://
en.wikipedia.org/wiki/List_of Intel_Core_i7_microprocessors. I track Intel CPUs because histori-
cally they have led the MHz curve and thus provide the most rigorous interpretation of Moore’s law.

1 H. Iwai, “Roadmap for 22nm and Veyond,” Microelectronic Engineering 86, no. 7-9 (2009), doi:
10.1016/j.mee.2009.03.129.

the story of chumby 211

scaling may stop at an effective gate length of about 5 nm.
That’s about the space between 10 silicon atoms, so even if
this guess is wrong, it can’t be wrong by much.

The implications are profound. One day, you won’t be able
to rely on buying a faster computer next year. Your phone won’t
get any smaller or more powerful. And the flash drive you buy
next year will cost the same and store the same number of
bits as the one you bought this year. The idea of an “heirloom
laptop” may sound preposterous today, but someday, we may
perceive our computers as cherished and useful heirlooms to
hand down to our children as part of our legacy.

An Opportunity for Open Hardware

This slowing trend is good for small businesses, and likewise
open hardware practices. To see why, let’s revisit the plot of
Moore’s law versus linear improvement. This time, I'll overlay
two new scenarios: technology doubling once every 24 and
36 months.

100

Linear improvernent
Moore’s law (t=18 months)
Moore’s law (t=24 months) -
Moore’s law (=36 months) ----

Goodness (arbitrary units), log scale
S

Time (years)

Three different Moore’s law scenarios. The shaded sliver between linear
improvement and the t=18 months scenario turns into a large region of opportunity
under the t=36 months scenario. (Note that the vertical axis is log scale.)

212 CHAPTER 6

The area bounded by the curved line and the straight line
at the bottom represents the market opportunity for linear
improvement versus Moore’s law. In the 36-month scenario,
not only does linear improvement have over eight years to go
before it is lapped by Moore’s law, but also there is a point
at around year two or three where the optimized solution is
clearly superior to Moore’s law. In other words, there is a
genuine market window for monetizing innovative solutions
at a pace that small businesses can handle.

As Moore’s law decelerates, there’s also potential for greater
standardization of platforms. Creating a standard tablet or
mobile phone chassis with interchangeable components may
seem ridiculous now, but it becomes a reasonable proposition
when components stop shrinking and changing so much. As
technology decelerates, there will be a convergence between
hardware found in mobile phones and hardware found in
embedded CPU modules like the Arduino. Just look at the
Raspberry Pi, which was introduced in 2012. Models released
in 2016 offer a quad-core, 1.2GHz CPU for performance com-
parable to entry-level smartphones at the time.

Creating stable, performance-competitive open platforms
will empower small businesses. Of course, a small business
can still choose to be closed, but by doing so, it must create a
vertical set of proprietary infrastructure, and the dilution of
focus to implement such a stack could be disadvantageous.

In the post—-Moore’s law future, FPGAs may perform
respectably compared to their hardwired CPU kin, for at
least two reasons. First, the flexible yet regular structure
of an FPGA may lend it a longer scaling curve, in part due
to the FPGA’s ability to reconfigure circuits around small-
scale fluctuations in fabrication tolerances. Second, the extra
effort to optimize code for hardware acceleration will amortize
more favorably as CPU performance scaling increasingly
relies upon difficult techniques like using parallel cores on a

the story of chumby 213

massive scale. Massively multicore CPU architectures look
a lot like the coarse-grain FPGA architectures proposed in
academic circles in the '90s. An equalization of FPGA-to-CPU
performance should greatly facilitate the penetration of open
hardware at a deep level.

There will be a rise in repair culture as technology becomes
less disposable and more permanent. Replacing worn-out
computer parts five years from their purchase date won’t
seem so silly when the replacement part has virtually the
same specifications and price as the old part. This rise in
repair culture will create a demand for schematics and spare
parts that in turn facilitates the growth of open ecosystems
and small businesses.

Personally, I'm looking forward to the return of artisan
engineering, where elegance, optimization, and balance are
valued over feature creep, and where I can use the same tool
for a decade and not be viewed as an anachronism. (Most
people laugh when they hear I held on to Eudora 7 as my
email client until 2012, when I switched to my current client,
Thunderbird.)

The deceleration of Moore’s law has already impacted
markets that are less sensitive to performance. Consider
the rise of Arduino. It took several years to gain popularity,
with virtually the same hardware at its core the whole time.
Fortunately, the demands of Arduino’s primary market (physi-
cal computing, education, and embedded control applications)
have not grown, allowing the platform to remain stable. This
stability has enabled Arduino to grow deep roots in a thriv-
ing user community with open and interoperable standards.

With some hard work and a bit of luck, I believe the open
hardware ecosystem will surely blossom. The inevitable slow-
down of Moore’s law may spell trouble for technology giants,
but it will also create an opportunity for the open hardware
movement to grow roots and start something potentially very

214 CHAPTER 6

big. To seize this opportunity, open hardware pioneers will need
to set the stage by creating a culture of permissive standards
and customs that can scale over time.

I look forward to being a part of open hardware’s bright
future.

CLOSING THOUGHTS

Although chumby, conceived in 2006, was a bit ahead of its
time and the company ultimately fell victim to Moore’s law,
my reflections on the slowing pace of Moore’s law encouraged
me to try yet another experiment in open hardware. The next
chapter, on Novena, shares the story of my quixotic adventures
building a bespoke open source laptop.

7. novena: building
my own laptop

It was 2012, and I was unemployed. My previous startup had

failed, and I was taking a year off to figure out what I should
do next. My friend xobs (introduced in Chapter 4) and I had
a tradition that we maintain to this day: every Friday, we sit
down for a few beers at lunch and shoot the breeze. During
one of those “Beer Friday” discussions, we decided to build our
own laptop. I expressed displeasure with how I'd never been
employed to build a product that I'd actually want to use every
day. As a design engineer, you're typically driven by market
requirements, not your own eclectic tastes. We bantered a
bit about things we’d find useful and realized that, thanks to
the gradual slowing of Moore’s law, maybe it wasn’t so crazy
for us to build an open laptop with some wacky features just

216 CHAPTER 7

for hackers. From there, we started a hobby project to build
a computer just for ourselves, something we’'d use every day
that would be easy to extend and mod—our very own electronic
Swiss Army knife. We gave the project the code name Novena,
the name of a Singaporean metro station and Latin for “nine.”

The second-generation Novena design that went up on Crowd Supply

novena: building my own laptop 217

The finished Novena was a 1.2GHz, Freescale (now NXP)
1.MX6 quad-core ARM architecture computer closely coupled
with a Xilinx FPGA. It was designed for users who wanted to
modify and extend their hardware: all the documentation and
PCBs were and still are open and free to download,* and we
gave it a variety of features that facilitated rapid prototyping.

NOT A LAPTOP FOR THE FAINT OF HEART

As I talked to more people about Novena, however, I realized
that others were interested in owning a laptop like that but
perhaps didn’t want (or didn’t know how) to make their own
circuit boards. In response to the overwhelmingly positive
feedback we received to a blog post on the topic, xobs and
I launched a campaign on Crowd Supply in 2014, once the
design was stable and tested. Over 1,000 people pledged their
support; I am happy to report that we fulfilled every single
campaign pledge, most of them within a few months of the
promised date. After the campaign’s close, we decided it would
spread our limited resources too thin to maintain the supply
chain for the full laptop configuration, but we would sell and
support the Novena motherboard hardware for at least five
years from the launch of the campaign.

To be clear, Novena is not a machine for the faint of heart.
It’s an open source project, which means part of the joy (and
frustration) of the device is that it is continuously improv-
ing. It’s perhaps the only laptop that’s ever shipped with a
screwdriver. Anyone who bought one of the original designs
had to install the battery and screw on the LCD bezel of their
choice—green or blue. The speakers came as a kit so users
wouldn’t have to use our speaker box design. If someone had
access to a 3D printer, they could make and fine-tune their
own speaker box.

* You can find the documentation online via the Kosagi wiki at http://www.kosagi.com/.

218 CHAPTER 7

Despite all of those DIY options, I wasn’t looking to break
any low-price records with Novena. It was designed as a low-
volume, handcrafted laptop made with uniquely open source
components, and the cost matched the design. We offered
three tiers:

* An “all-in-one desktop” option for $1,195 that was ready
to use with a keyboard and mouse out of the gate, but
needed to be plugged in

* A “laptop” option for $1,995 that included a battery con-
troller board, for hackers on the go

* An “heirloom laptop” tier for $5,000 that came in a gor-
geous, handcrafted wood-and-aluminum case

In Chapter 6, I said that as Moore’s law slows down, 1
predict parents passing down computers to their children. The
Heirloom Novena is meant to be treated that way, though it
has the same hardware on the inside as the other two options.

But those prices weren’t so different from the prices of
high-end consumer laptops. The biggest challenge was figur-
ing out how to offer something so custom and complex at that
price point, in low volumes. We weren’t looking to recover the
research and development cost in the campaign; that’s a sunk
cost, as anyone is free to download the source and benefit from
our thoroughly vetted design today. Our minimum funding goal
of $250,000 was a tiny fraction of what’s typically required to
recover the million-dollar-plus investment behind the develop-
ment and manufacture of a conventional laptop; xobs and I met
this challenge with a combination of know-how, unique design,
and strong relationships with our supply chain.

novena: building my own laptop 219

DESIGNING THE EARLY NOVENA

We optimized the Novena’s design to reduce the amount of
expensive tooling required, while still preserving our primary
goal of it being easy to hack and modify. We spent a year and
a half poring over three revisions of the PCBA until we were
confident that the complex design would be functional and
producible. We also optimized certain tricky components, such
as the LCD and the internal display port adapter, for reliable
sourcing at low volumes. Finally, I spent a few months travel-
ing the world, lining up a supply chain that could deliver this
design (even in low volume) at a price comparable to other
premium laptops.

Of course, all the design documentation is open, so with
sufficient skill and resources, you could build a Novena from
scratch yourself. I chose the hardware and its subcomponents
to make this the most practically open hardware laptop I could
with state-of-the-art technology. You can download, without
NDA, the datasheets for all the components, and key periph-
eral options were chosen such that you can build a complete
firmware from source with no opaque blobs.

Under the Hood

This board’s dimensions are approximately 121 mm X 150 mm;
it’s sized to fit comfortably underneath a standard-sized laptop
keyboard (though the image is rotated compared to the instal-
lation orientation). As you can see in the full laptop photos
earlier in the chapter, the port farm is on the right side of the
laptop, not the bottom. The board is just under 14 mm thick,
a height set by the thickness of an Ethernet connector. The
base portion of my Lenovo T520 is just under 24 mm thick,
and once a keyboard and plastics are stacked on this board,
the base of the Novena comes to just about the same thickness.

220 CHAPTER 7

Supplemental i.MX6 CPU (1.2 GHz quad
. N Cortex A9 capable)
digital I/O port(via CPU) Spartan 6 FPCA

3x UART ports
SATA-II CSG324 pinout

PMIC (FTDI pinout)

DDR3
8% analog inputs SO-DIMM
(up to 12 bit,

200ksps via FPGA)

8x digital I/O
(via FPGA)
Raspberry Pi-compatible
expansion header

Battery board
interface

(via CPU) L
8x PWM headers (crashlogs,
(ESC/servo compatible etc.)
pinout)
(via FPGA) : E E RTC backup supercap
mPCle - - - (optional battery)

UIM

LVDS LCD port:
(bottom side) ™

dual-channel,

for mobile EIA-644A plus
data cards USB for camera
& LED backlight
USB Wi-Fi
module header (up to QXGA res)

(AW-NU137)

2x internal USB ports
(for KB & mouse)

Internal ampliﬁed/
speaker drivers @ . -
(1.1W into

8 ohms)

direct drive for
resistive touchscreen
digital
microphone

Headphoné USB\ HDMI 1Gbit 100 Mbit direct power
USB2.0 ports & I;mc mictoSD OTG ¢y 4 Ethernet Ethernet (fo_r configurations
(compatible boot without battery)
with most ~ FLASH
mobile phone kits)

(high-current

capable) socket 3-axis

(bottom side) accelerometer
The earliest Novena motherboard

Now let’s look at some of the motherboard’s features.

PRELIMINARY FEATURES

The first iteration of the Novena motherboard used a Freescale
iMX6 CPU, which has an NDA-free datasheet and program-
ming manual. In the lists that follow, items marked with a
double asterisk (**) require a closed-source firmware blob, but
the system is bootable and usable without the blob.

The CPU footprint we used could support the following
quad- and dual-lite versions of the iMX6:

* Quad-core Cortex A9 CPU with NEON FPU @ 1.2 GHz
¢ Vivante GC2000 OpenGL ES2.0 GPU, 200Mtri/s, 1Gpix/s**

This version of Novena booted from microSD firmware. In
terms of other internal memory, it had a 64-bit, DDR3-1066
SO-DIMM, which could be upgraded to 4GB, and a SATA-II
(3Gbps) hard drive.

novena: building my own laptop 221

Novena was full of internal ports and sensors from the

start, too. These are the highlights:

A Mini PCI-express (mPCle) slot, for blob-free Wi-Fi,
Bluetooth, mobile data, and so on

A UIM slot, for mPCle mobile data cards

A dual-channel LVDS LCD connector with up to QXGA
resolution (2,048 X 1,536 px) at 60 Hz and a USB 2.0 side
channel for a display-side camera

A resistive touchscreen controller (capacitive touch dis-
plays, on the other hand, typically come with an integrated
controller)

1.1 W, 8-ohm internal speaker connectors

Two USB2.0 internal connectors, for a keyboard and mouse
or trackpad

A digital microphone
A three-axis accelerometer

A header for an optional AW-NU137 Wi-Fi module**
We made the following ports externally accessible:

HDMI
The SD card reader

The headphone and microphone jacks (compatible with
most mobile phone headsets, these also supported sensing
inline cable buttons)

Two USB 2.0 ports, supporting high-current (1.5A) device
charging

A 1Gb Ethernet port

222 CHAPTER 7

And, of course, since xobs and I were making the Novena

for ourselves, we included a bunch of other “fun” features that

we knew would be great for hackers:

100Mb Ethernet (dual Ethernet capability allows Novena
to be used as an inline packet filter or router)

USB On-the-Go (enables the Novena to spoof or fuzz
Ethernet, serial, and other connections over USB via a
gadget interface to other USB hosts)

A utility serial EEPROM, for storing crash logs and other
bits of handy data

A Spartan-6 CSG324-packaged FPGA with several inter-
faces to the CPU, including a 2Gbps (peak) RAM-like
bus—for bitcoin mining, or whatever else you might want
to toss in an FPGA

Eight FPGA-driven 12-bit, 200ksps analog inputs
Eight FPGA-driven digital I/O pins

Eight FPGA-driven PWM headers, compatible with hobby
ESC and PWM pinouts (enables direct interfacing with
various RC motor/servo configurations and quad-copter
controllers)

Raspberry Pi—compatible expansion header
Thirteen CPU-driven supplemental digital I/Os
Three internal UART ports

We tweaked those specs going into production, making the

most drastic changes around the FPGA expansion connectors.

Instead of a cluster of motion-control-focused headers, we opted

to install a header capable of high data rates, which xobs and

I used to great effect in future projects involving the Novena.

novena: building my own laptop 223

THE BATTERY BOARD

To give maximum power management flexibility, I imple-
mented the battery interface functions on a daughtercard. I
co-opted a cheap and common SATA-style connector to route
power and control signals between the mainboard and the
daughtercard. To prevent users from accidentally plugging
a hard drive into the battery port, I inverted the gender of
the battery-SATA connector from the actual mass-storage
SATA-II connector.

The battery card in the first Novena board was meant to
work with the battery packs used by most RC enthusiasts:
LiPo packs ranging from 2S1P to 4S1P (that is, two-cell to
four-cell). RC packs are great because they're designed for
super-fast charging and they’re cheap and easy to buy. For the
board-side battery plug, I decided to use the Molex connector
found on classic disk drives, since they are cheap, common, and
easy to assemble with simple tools. I couldn’t use a standard
RC connector because the vast majority of them are designed
for inline use, and the few that have board mounts were too
thick or too weird for this application.

2-4 cell LiPo support
(3-cell balancing
connector shown)

Battery thermal sensors

STMB32 for system power and

Analog panel meter driver GP analog charging control & monitoring

Battery status
(5 LED bar)

Power
input

Primary battery
connector (uses

classic disk drive
Molex header)

Battery connector to mainboard

The preliminary Novena battery board

224 CHAPTER 7

The battery board could charge batteries at rates in excess
of 4A; for example, charging a three-cell, 45 Wh (4 Ah) bat-
tery took about one hour. If typical power consumption were
around 5 to 6 W per hour, that would be seven or eight hours
of runtime with a one-hour charge time. Of course, since the
whole laptop was user-configurable, typical power consumption
was really hard to estimate. If a user dropped in a monster
LCD and a power-hungry magnetic hard drive with loads of
peripherals, the power consumption would be much higher.

xobs suggested another cute power-related feature that
made it into the design. He thought it would be neat to embed
a retro analog needle meter into the palm rest of the laptop
to display power consumption in real time. I thought it was a
great idea, so I designed that into the circuit board. Of course,
the analog meter is driven by a DAC on the battery micro-
controller, so it could be configured to perform a multitude of
useful (or not so useful) analog readouts, such as remaining
runtime, battery voltage, temperature, the time (represented
as an analog value), and so on.

After spending a couple of months validating all the fea-
tures (it was a long list of features to grind through), we ported
drivers and a Linux distro to the board. That was no small
task either, but thankfully, I had xobs’s skillful help, and we
got the job done.

The Enclosure

From there, I was really looking forward to designing the enclo-
sure. For the first revision, I thought about making something
out of laser-cut acrylic that would be vaguely tablet-like, to
avoid having to mess around with a friction clutch on the first
go at a case. I ended up hand-building our first prototype cases
from aluminum and leather, to validate the laptop use case

novena: building my own laptop 225

for Novena. That design was rough; as Cory Doctorow put it
on Boing Boing, it was “gloriously fuggly.”*

Ilove that my laptop smells of leather when it runs!

* http:/ /boingboing.net/2014/01/17/building-a-fully-open-transpa.html

226 CHAPTER 7

The second-generation Novena case I showed earlier is
sleeker. The first thing you probably noticed about the design
is that it opens the “wrong” way. This feature allows the
Novena to be used as a wall-hanging unit when the screen is
closed. It also solves a major problem I had with the original
clamshell prototype: it was a real pain to access the hardware
for hacking, as it was blocked by the keyboard mounting plate.

In the version we sold on Crowd Supply, the screen auto-
matically pops open with the slide of a latch, thanks to an
internal gas spring. (Novena isn’t just an open laptop—it’s a
self-opening laptop!) We intentionally left the internals naked
in this mode for easy access, but bare internals also make clear
that Novena isn’t for casual home users.

We included an array of mounting bosses—which we called a
Peek array—as well, to facilitate hackability. Normally, laptops
have mounting points only for the handful of features designed
into their original blueprints. But a hackable laptop must
accommodate a huge space of possible peripherals. Instead of
requiring users to drill holes or glue things down in their laptop
cases, we provided a regular array of threaded inserts. It was a
bit like a breadboard, but for rapid mechanical prototyping. To
help define the array, I consulted with Nadya Peek, a graduate
student at MIT’s Center for Bits and Atoms and an expert in
digital fabrication—hence the name Peek array.

Another feature of the second-generation design is that
the LCD bezel is made of a single, simple aluminum sheet.
This allows anyone with access to a minimal machine shop to
modify or craft their own bezels; no custom tooling required.
My hope with that design was to make adding knobs and
connectors or changing the LCD relatively easy for Novena
hackers. To encourage users to experiment, we shipped desk-
top and laptop Novenas with two LCD bezels so no one had to
worry about having an unusable machine if they messed one
up while experimenting.

novena: building my own laptop 227

Most laptops have a keyboard and mouse attached to the
enclosure, but the Novena has a detached keyboard and track-
point because that feature was attractive to me personally. I'd
always wanted a display I could “hang” on the seat in front
of mine when sitting in an airplane or a bus: it’s a lot easier
on the neck, and the arrangement actually works better if the
person in front reclines their seat.

While I was still considering whether to do a clamshell
design or some other funky design for the exterior, I also
thought about trying an enclosure made of wood and brass.
After all, the whole idea of making my own laptop was to
play around with some new ideas! As mentioned earlier, we
actually did wind up doing a limited run of a wooden-cased
Novena that we dubbed the heirloom laptop.

The Heirloom Novena laptop

THE HEIRLOOM LAPTOP’S CUSTOM WOOD
COMPOSITE

When mainline Novena production was finally humming along
in April 2015, I spent a week in Portland, Oregon, working

228 CHAPTER 7

alongside Kurt Mottweiler (a designer and woodworker who
specializes in making cameras with wooden enclosures) to
hammer out all of the final open issues on the Heirloom
devices. xobs and I are certainly proud of how the Heirloom

Novenas turned out!

Working with Kurt on the Heirloom laptop

Growing Novenas

In a literal sense, the Heirloom Novenas were “grown.” Wooden
enclosures meant important structural elements came from
trees. Making every laptop identical would have been easy, but
we felt it would be much more apropos of a bespoke product to
make each laptop unique by picking the finest woods and match-
ing their finish and color in a tasteful fashion. As a result, no
two Heirloom laptops look the same; each is uniquely beautiful.

Some handpicked wood, waiting to become a Novena case

novena: building my own laptop 229

A lot of science and engineering went into the Heirloom
laptops, too. For starters, Kurt created a unique composite
material by layering cork, fiberglass, and wood. To help char-
acterize the novel composite, we took some material samples
to the Center for Bits and Atoms, where Nadya Peek and Will
Langford characterized the performance of the material. We
took sections of the wood composite and performed a three-point
bend test using an Instron 4411 electromechanical material
testing machine.

Heirloom composite material loaded into the testing machine

The Mechanical Engineering Details

From the test data, we were able to extract the flexural modu-
lus (also called Young’s modulus) and flexural strength of

230 CHAPTER 7

the material. I'm not a mechanical engineer by training, so
terms like modulus and specific strength kind of go over my
head. But Nadya was kind enough to lend me some insight.
She pointed me at the Ashby chart, which, as with some xked
comic panels, I could stare at for an hour and still not absorb
all the information contained within.

1000 =
o Engineering /Ppmond
o Ceramics /p Si€ Alumina WC-Co
B W-Alloy3
SiN, ~ zo, i | Mo
B ¢ < All
A S BeO Steelo Alloys ™ *
100 Engineering Uni-Ply o Ce Cu plloys
E Ci i KERP ~ Zn Alloys
F omposites ~ KFRI
r T~ || GERE Al Alloys
C CERP \ Tin Alloys
= L Tlaminates Rock, Stone
£ K GERP o
T} - KFRP, - Cdment, b
g o) Alloys \ Cpnerete Engineering
@« 10 Fir Pine b Alovs
=] = arallel Woods Tt
=) : o Grain Cergmics
'8 C Falsa Wood PS /Epoxies
- roducts) rc(]) pyc
E Heirloom ppl EMMA
- ite - Nylon . .
0 composite Payesters | Engineering
=} aterial oa Polymers
= 1.0 Pine
e Fir
o - HDPE
> C Pérpendiculaf
- to Grain PTFE
Spruce
B Rals FPPE plasticised
- b Ve
0.1 F Hard |\ [
r Buty]
E PU
B Polymer Elastomer:
Cork Foams Silicbrle
Soft
Bytyl
0.01 1 P R R R L P R S R L
0.1 0.3 1.0 3 10 30

Density, g/cm?

The Ashby chart plots Young's modulus versus density for many materials. The
annotated area shows approximately where the Heirloom composite material lands.

The bottom left of the chart shows bendy, light materi-
als like cork, and the top right of the chart has rigid, heavy
materials, like tungsten (W). For a laptop case, we wanted a
material with the density of cork but the stiffness of plastic.
Wood products occupy a space in the chart to the left of plas-
tics, meaning they are less dense, but they have a problem:

novena: building my own laptop 231

they are weak perpendicular to the grain. Depending on the
direction of the strain, wood can be as yielding as polyethylene
(the material used to make plastic shopping bags) or stiffer
than polycarbonate (the material layered with glass to make
bulletproof windows). Composite materials are great because
they allow you to blend the characteristics of multiple materi-
als to hit the desired characteristic. In the Heirloom laptop’s
case, Kurt blended cork, glass fiber, and wood.

The measurements of the Heirloom composite show a flex-
ural strength of about 33 megapascals, and a flexural modulus
of about 2.2 to 3.2 gigapascals.* The density of the material is
0.49 g/em®, meaning it’s about half the density of ABS plastic,
the plastic LEGO bricks are made from. As shown on the Ashby
chart, plotting these numbers reveals that the Heirloom com-
posite occupies a nice spot to the left of plastics and provides a
compromise on stiffness based on grain direction. And during
testing, the material didn’t fail catastrophically.

Graphs of load versus extension on the Heirloom laptop composite,
as plotted by the Instron testing machine

Even after being bent past its peak load, the composite was
still mostly intact and providing resistance. This result was a
bit surprising. We had expected the material to break in two

* One megapascal is 1 newton (unit of force) per mm? 1 gigapascal is 1 kilonewton per mm®.

232 CHAPTER 7

on failure, like natural wood. Furthermore, after we reset
the test, the material bounced back to its original shape. We
bent the composite by over 10 mm, but once the load was
removed, I could barely tell it went through testing. This high
fracture toughness and resilience are desirable properties for
a laptop case.

Of course, watching a machine go to work on the material
was fun, but there’s nothing quite like holding it yourself. I
still remember picking up the material, feeling how light it
was, giving it a good bend, and being surprised by its rigidity
and ruggedness.

CHANGES TO THE FINISHED PRODUCT

From the moment Novena was successfully crowdfunded, an
incredible team of people worked to make it a reality. With
help from the engineers and product managers at our manu-
facturing partner, AQS, Novena’s case moved from prototype
to pilot production just four months after the campaign.

'\,,_

The conference room where we did the T1 plastics review in Dongguan, China

Sure, xobs and I did plenty of work on our own before we
even started the crowdfunding, but it takes many hands to build

novena: building my own laptop 233

a product of this complexity. We couldn’t have done it without
our dedicated and hardworking team at AQS. I've said before
that your factory is your partner, and thanks to a great partner,
we were able to get this done in a short amount of time.

Case Construction and Injection-Molding Problems

By the late summer of 2014, the Novena cases we were carrying
around were made of entirely production-process hardware—no
more hand-built prototypes. To get there, we’d opened a total
of 10 injection-molding tools; for comparison, a product like
NeTV or chumby had perhaps 3 or 4 injection-molding tools.

As I briefly described in Chapter 1, injection molding is a
process where plastic is molded into a net shape. Hot, high-
pressure liquid plastic is forced into a hardened steel cavity
called a tool. The steel tool is a masterpiece of engineering in
itself: it’s a water-cooled block weighing about a ton and capable
of handling pressures found at the bottom of the Mariana
Trench, and the internal surfaces are machined to tolerances
better than the width of a human hair. On top of that, the tool
contains a clockwork of moving pieces, with dozens of ejector
pins, sliders, lifters, and parting surfaces that come apart and
back together again smoothly over thousands of cycles. It’s
amazing that tools of such complexity and refinement can be
crafted in a couple of months.

With so many moving parts, it’s no surprise that the tools
required several iterations of refinement to get absolutely
perfect. In tooling jargon, the iterations are referred to as TO,
T1, T2, and so on. You're doing pretty well if you can go to full
production at T2; thankfully, our T1 plastics were 99 percent
of the way there, meaning we had an easy path to full produc-
tion. T1 had just a few issues relating to flow and knit lines,
as well as spots where the plastic warped during cooling or
bound itself to the tool during ejection, causing deformation.
This manifested itself as spots where the seams weren’t as

234 CHAPTER 7

tight as we wanted them to be in the case, and with just a
little bit of tuning, we were production-ready.

Most people have only seen products of finished tooling,
so I'll share what a pretty typical TO (first-attempt) shot looks
like, particularly for a large and complex tool like the Novena
case base part. Test shots like this are typically done with
scrap resin in light colors that highlight defects. We used
gray plastic here to make tuning the mold easier, but the final
units had black bases.

F g -n "
fff,,,,,,,, i!ilﬂmmi \\\\m\ Al

f T IH Mh.m.

\\\\\\\\\\\i\

—

o

(O_ (i

7 IIIIIIIIIIIIIIIMIH -
b IIIIIIIIIIIIIIIIIIM

Some TO shots of the base of the Novena case. The regular array of circles on the
left in the top photo form the basis of the Feek array. 1o make the array, threaded
brass inserts were heat-staked into the circular bosses after injection molding.

There’s a lot going on with this piece of plastic. Let’s zoom
in on some of the artifacts.

novena: building my own laptop 235

A visual guide to the deformations in the TO case base

The circles highlight a set of sink marks, which happen
when the opposite side of the plastic has a particularly thin
or thick feature. These areas cool faster or slower than the
bulk of the plastic, causing them to pucker slightly and cre-
ate a sort of shadow. Sink marks are particularly noticeable
on mirror-finish parts. In this case, the sink marks happened
because the plastic underneath the nut bosses of the Peek
array were much thinner than the surrounding plastic. To
fix this problem, we thickened that region slightly, reducing
the overall internal clearance of the case by 0.8 mm. That
was possible because fortunately, I'd designed the case with
a little extra clearance margin.

The straight arrow points to a knit line. This is a region
where plastic flow meets within the tool. As plastic is injected
into the cavity, it tends to flow from one or more gates, and
where the molten plastic meets itself, a hairline scar forms.
Knit lines are often located at points of symmetry between the
gates where the plastic is injected. On this tool, there were
four gates located underneath the spot where the rubber feet
go. Gates are considered cosmetically unattractive, and thus
we placed them strategically to hide their location.

236 CHAPTER 7

The white feathery artifacts indicated by the curved arrow
are flow marks. These streaks appeared because the plastic
cooled a bit too quickly within the tool. You can often fix this
problem by adjusting the injection pressure, cycle length,
and temperature. It’s best to use test shots on the molding
machine to make those tweaks. You can tweak one parameter
at a time, shot after shot, until you find an optimum cooling
speed. This process can sometimes take hundreds of shots,
creating a small hill of scrap plastic as a by-product.

Most of these gross defects were fixed by T1, and at that
point, the plastic looked much closer to production-grade.
We were also able to start using black-colored plastic, which
tends to hide defects.

There were still a few issues around fit and finish, of
course. But despite them, the case felt much more solid than
the prototypes, and the gas piston mechanism was finally
consistent and really smooth.

The T1 case base, in initial testing after the
live hardware was transferred into the plastics

novena: building my own laptop 237

Changes to the Front Bezel

The front bezel of Novena’s case (not to be confused with the
aluminum LCD bezel) went through some changes after the
campaign. When we closed funding, it had two outward-facing
USB ports and one switch. Novena shipped with two switches,
one outward-facing USB port, and one inward-facing USB port.

One switch is for power: it goes directly to the power board
and can be used to turn the system on and off even when the
main board is fully powered down. The other switch is wired
to a user keypress to facilitate Bluetooth association for key-
boards that are being stupid. Some keyboards can take up to
a half-minute to cycle through something (presumably, it’s
security-related) before they connect. There are hacks for
bypassing that, but you'd have to run a script on the host.
Our idea was that by pressing this button, users could trigger
a convenience script to get past the utter folly of Bluetooth.
This switch also doubles as a wake-up button for when the
system is suspended.

As for the USB ports, the design still had four in total, but
the configuration became as follows:

* Two higher-current-capable ports on the right
* One standard-current-capable port on the front

* One standard-current-capable port facing toward the Peek

array

In other words, we faced one USB port toward the inside
of the machine. Since half the fun of Novena is modding the
hardware, I figured a USB port on the inside would be at least
as useful as one on the outside.

For users who wouldn’t do hardware mods, an inside
USB port would also be a fine place to plug small dongles
that generally stay attached, like the radio transceiver for
a keyboard. It’s a little inconvenient to initially plug in the

238 CHAPTER 7

dongle, but keeping the radio transceiver dongle facing inside
helps protect it from damage when you throw your laptop into
your travel bag.

DIY Speakers

We toyed with several speaker options for Novena. A core idea
behind the design was to encourage every user to choose their
own speaker. Some people really listen to music on their laptop
when they travel, but others simply rely upon the speaker
for notification tones and would prefer to use headphones for
media capabilities. Physics dictates that high-quality sound
requires a certain amount of space and mass. We wanted users
with a more relaxed fidelity requirement to be able to reclaim
the space and weight that nicer speakers would require.
Kurt Mottweiler selected a nice but very compact off-
the-shelf speaker, the PUI ASE06008MR-LW150-R, for the
Heirloom. When we found that the same speaker fit well into
the standard Novena’s Peek array and had acceptable fidelity,
particularly for its size, we adopted it as the standard offer-
ing for audio. But we shipped it with a mounting kit for easy
removal, so users who might need to reclaim the space (or
who wanted to put in larger speakers) could do so with ease.

The PVT2 Mainboard

The Novena mainboard went through a minor revision prior to
mass production. The fourth and final revision of the mother-
board was known as the “PVT2” version. The majority of the
changes focused on replacing or updating components that
were at risk of reaching end-of-life. The two most significant
additions from a design standpoint were an internal flexible
printed circuit (FPC) header to connect to the front bezel clus-
ter, and a dedicated hardware real-time clock (RTC) module.

novena: building my own laptop 239

We added the internal FPC header to improve signal rout-
ing from the mainboard to the front bezel cluster. We had to
run two USB ports plus a smattering of GPIOs and power to
the front bezel, and the original connection scheme required
multiple cables. The updated design condensed that into a
single FPC to simplify the design and improve reliability.

We included a dedicated hardware RTC module because
the 1.MX6’s built-in RTC didn’t perform well. The CPU simply
had a higher leakage on the RTC than reported in the data-
sheet, and the lifetime of the RTC when the system was turned
off was measured in, at best, minutes. We decided that there
was too much risk in continuing to develop with the on-board
RTC and opted for an external, dedicated RTC module that
we knew worked. To increase compatibility with other 1.MX6
platforms, we picked the same module used by the Solid-Run
Hummingboard, the NXP PCF8523T/1.

It’s also important to note that we completely overhauled
the FPGA expansion header on our second revision of the
motherboard. The version of the motherboard shown at the
beginning of this chapter contained a cluster of headers
optimized for motion control applications. We decided that
our motherboard was too large for anyone to put it inside a
quad copter, and perhaps the FPGA would see more use as a
high-speed data acquisition and processing device. To enable
this functionality, we gave the FPGA a dedicated 256MB of
DDR3 memory and broke out high-speed differential signals
to a connector capable of passing signals at rates exceeding a
gigabit per second. Users could still use the FPGA for motion
control applications, but they’d need to plug in a simple
breakout board (like the GPBB I discuss next) to route our
signals to the connector formats commonly used by motion
control systems.

240 CHAPTER 7

=l N BN S e C e

The updated Novena motherboard

novena: building my own laptop 241

A Breakout Board for Beginners

One of the rewards every backer received as thanks for sup-
porting our campaign was a breakout board that we referred
to as the GPBB, or the General-Purpose Breakout Board.
Redesigning our FPGA expansion header on Novena to target
high-speed applications also made getting started with the
device much more difficult for entry-level hackers. Due to the
constraints of physics, high-speed connectors tend to have
very dense pin arrangements that are unfriendly to beginners.
We designed the GPBB to help entry-level users work with
the FPGA. The GPBB converts the dense, high-speed signal
header on the FPGA into a beginner-friendly 0.1-inch-pitch,
40-pin header and includes a few LEDs and analog data con-
verters to boot.

AH X PBB DUTH
Designed in
Singapore

/J\% 07,14

s _am Ci
. =r

2.0 License

&
o
v
o
"
w
(o]
)
<
[
(=4
[=4
2
o

©
Apache

o Lo
ITTTTTTIIR JRL LI JHHIHHHIE
| s

The final production GPBB

242 CHAPTER 7

One growing challenge for beginners is the fact that Moore’s
law keeps on pushing down the allowable voltage range of
digital I/0s. Newer generations of transistors run at lower
voltages, which make them incompatible with the venerable
+5 V standards most entry-level projects use. For instance,
our FPGA could only handle signals up to +3.3 V. As a result,
we built voltage translators into the GPBB that could safely
handle +5 V and bring them down to the +3.3 V levels accepted
by the FPGA.

The final version of the GPBB included a tweak enabling
users to adjust the I/0 voltage, instead of fixing it at +5 V. We
provided a software setting to allow users to choose whether
the GPBB’s external I/Os default to 5 V or 3.3 V, and we
designed the board so that users could adjust the lower voltage
to 2.5 Vor 1.8 V by changing a single resistor (R12). I labeled
that resistor “I/O VOLTAGE SET” and made it a 1206 part,
so soldering novices could make the change themselves.

The Desktop Novena’s Power Pass-Through Board

The “all-in-one desktop” tier originally included just the desktop
case, the Novena mainboard, and the front panel breakout.
But that configuration made power management awkward, as
I designed the overall power management system for the case
assuming there would be a helper microcontroller managing
a master cutoff switch.

Complexity is the devil, and getting the software going
for even a single configuration was hard enough on its own.
Ultimately, we found it cheaper to introduce a new piece of
hardware to the power management system for the desktop,
rather than deal with multiple code configurations.

Therefore, desktop systems shipped with a power pass-
through board. It was a simple PCB assembly containing just
the STM32 controller and power switch of the full battery

novena: building my own laptop 243

board. This allowed us to use a consistent gross power man-
agement architecture across both the desktop and the laptop
systems.

The desktop’s pass-through board

This approach was like swatting a fly with a sledgehammer—
but the sledgehammer cost as much as the flyswatter. Plus it’s
inconvenient to carry both a flyswatter and a sledgehammer
around. So, yes, we used a 32-bit ARM CPU to read the state
of a pushbutton and flip a GPIO, and yes, a full multithreaded
real-time operating system (ChibiOS) ran underneath it all.

It did feel a little silly, though. That’s why we broke out
some of the unused GPIO pins, making Novena even more
hackable. Hopefully, some clever user will find an application
for all that untapped power!

Custom Battery Pack Problems

The battery pack for Novena was definitely a wildcard in the
project stack. Building Novena was the first time xobs or I had
made a system with such a high-capacity battery, and working
through all the shipping regulations to get them delivered to
customers was a challenge.

Some countries have particularly strict regulations around
importing lithium batteries. In the worst case, we had to
send some customers a laptop with no battery inside, and

244 CHAPTER 7

we shipped an off-the-shelf battery pack from a vendor that
specializes in RC battery packs (like Hobby King) separately
to those customers at our own cost. They got the same bat-
tery featured in the crowdfunding campaign, but they had to
plug it in themselves. That was our safest fallback solution,
since Hobby King ships thousands of battery packs a day all
around the world.

Shipping woes didn’t stop us from developing a custom
battery pack, though. Maintaining a standing stock of bat-
tery packs is difficult because batteries need to be periodi-
cally conditioned, so only campaign backers got that battery
pack—provided their country of residence allowed its import.
We couldn’t know for sure until we tried, but we did get
UN38.3 certification for the custom battery pack. In theory,
that certification would allow us to ship the batteries by air
freight, but regulations around battery shipment are always
in flux. It seems countries and carriers keep inventing new
rules, particularly with all the paranoia about the potential
use of lithium batteries as incendiary devices, and we didn’t
have the resources to keep up with the zeitgeist.

The custom pack’s capacity was rated at 5,000 mAh, which
is about twice the capacity of the pack we featured in the
crowdfunding campaign. (That one had 3,000 mAh printed
on the outside but delivered about 2,500 mAh in practice.) In
real-life testing, the custom pack provided about six or seven
hours of runtime with minimal power management enabled.
Also, since I got to specify the battery, I knew it had the correct
protection circuitry built into it and the provenance of its cells,
so I was confident in its long-term performance and stability.

Choosing a Hard Drive

The crowdfunding campaign referenced providing 240GiB Intel
530 (or equivalent) and 480GiB Intel 720 drives for the laptop

novena: building my own laptop 245

and heirloom models, respectively. We left the spec slightly
ambiguous because the SSD market moves quickly. We knew
the best drive when we drew up the spec would probably be
different from the best drive we could get when we actually
did the purchasing.

After doing some research, we felt the best equivalent
drives at purchase time were the 240GiB Samsung 840 EVO
(for the laptop model) and the 512GiB Samsung 850 Pro (for
the Heirloom). xobs and I personally used the 840 EVO in our
own units for several months, and it performed admirably.

An important metric for us was how well the drives held
up under unexpected power outages. Outages happen fairly
often, for example, when you’re doing development work on a
power management subsystem. Some hard drives failed quite
reliably (how’s that for an oxymoron?) after a few unexpected
power-down cycles.

For the Heirloom, we used Samsung’s 850 PRO series.
This drive came with a serious warranty fit for an heirloom:
10 years. Samsung could offer such a high claim of reliabil-
ity because the drive used a technology the company calls
V-NAND, which I consider the first bona fide production-grade
3D transistor technology.

NOTE Intel claims it makes 3D transistors, but that’s just market-
ing hype. Yes, the gate region has a raised surface topology,
but you still only get a single layer of devices. From a design
standpoint, you're still working with a 2D graph of devices.
Intel should have stuck with what I consider the “origi-
nal” (and more descriptive/less misleading) name, FinFET,
because by calling these 3D transistors, I don’t know what it
will call actual 8D arrays of transistors, if it ever gets around

to making them.

246 CHAPTER 7

Chipworks, a patent support company, did an excellent
initial analysis of V-NAND,* showing that the technology isn’t
about stacking just a couple of transistors. A V-NAND stack
1s a 38-layer active transistor sandwich, all in a single spot.
This is process technology badassery at its finest. This is Neo
decoding the Matrix. This is Mal shooting first. It’s a game
changer, and it’s not vaporware. Heirloom backers received
laptops with over 4 trillion of those transistors packed inside.

Finalizing Firmware

From the software side, the next step at this point was final-
izing the kernel, bootloader, and distro selection, as well as
deciding what to show when Novena booted for the first time.

Marek Vasut got Novena supported in mainline U-Boot
(Universal Bootloader), one of the most popular open source
bootloaders. (Marek is one of U-Boot’s maintainers.) The pro-
cess involved a surprising number of patches, in part because
few ARM boards support as much RAM as Novena. With those
patches in place, Novena had full U-Boot support, including
USB and video.

We decided to make Debian the factory-default distribution
for Novena, and we used the stock Linux kernel with those
patches added. Any patches that we thought might be useful
to other projects were submitted upstream and will continue to
be submitted. Upstreaming just means that a package that
1s part of a derivative operating system becomes part of the
distro it’s derived from.

We did keep a few local patches, ranging from special-
ized hacks to experimental features, features that weren’t
ready to push upstream, or features that relied on features
that weren’t upstream at the time. For example, the display
system on a laptop is very different from what you’d usually

* If you're curious, you can find that analysis at https:/ /www.chipworks.com /about-chipworks/
overview/blog/second-shoe-drops-%E2%80%93-samsung-v-nand-flash/.

novena: building my own laptop 247

see on an ARM device. In most ARM devices, the screen is
fixed during boot and it isn’t possible to hot-swap displays at
runtime. Like a typical laptop, Novena supports two different
displays at once and allows you to plug in an HDMI monitor
without requiring a reboot. Support for this feature required
a local-only patch to the kernel, as it relied on features that
weren’t yet upstreamed for the ARM platform at that time.

Finally, we just had to decide what to show when Novena
powered up. In Linux, it’s not at all common to have a first-
boot setup screen where you create your user, set the time,
and configure the network. That’s common in Windows and
OS X, which come preinstalled, but under Linux, the installer
generally takes care of that.

We were torn between creating a good desktop-style experi-
ence and making a practical embedded developer’s experience.
A desktop-style experience would ship as a blank slate and
prompt the user to create an account via a locally attached
keyboard and monitor. But embedded developers may never
plug in a monitor, and instead prefer to connect via console or
SSH; for them, a default username, password, and hostname
would have been more helpful. Either way, we wanted to cre-
ate just a single firmware common across all platforms and
avoid special-casing releases to a particular target.

In the end, we decided to create a desktop-style experi-
ence, with escapes for power users to bypass the formalities
of user enrollment. This gave us the best of both worlds. It
improved the accessibility of Novena to entry-level users, yet
power users could still cut to the chase and get down to work.

BUILDING A COMMUNITY

From the start, xobs and I built Novena to empower hackers,
so I was pleased that even before shipping, Novena had active
alpha developers. Jon Nettleton and Russell King worked on

248 CHAPTER 7

graphics, Marek Vasut from U-Boot lent a hand, and a couple
of other alpha user groups actually made hardware for the
system.

MyriadRF, an open source hardware and software commu-
nity focused on wireless technology, created a software-defined
radio board for Novena. We bought and integrated those boards
with the first desktop and laptop units we shipped.

The CrypTech group also started applying Novena to its
projects before the laptop shipped. The CrypTech project
developed a hardware security module, with a BSD and CC
BY-SA 3.0 licensed reference design. The group wanted to
create a widely reviewed, designed-for-crypto device that
anyone could compose for their application and easily build
with their own trusted supply chain. CrypTech used Novena
to prototype elements of its design.

A\ "5 o™
ey

AN\
.

A prototype CrypTech expansion board, plugged into the Novena motherboard

The expansion board shown here is a prototype noise source
based on avalanche noise from a transistor in the middle of
the board. CrypTech uses that noise to generate entropy in

novena: building my own laptop 249

Novena’s FPGA. The entropy is then combined with entropy
generated by ring oscillators in the FPGA and mixed using,
say, SHA-512 to generate seeds. The seeds are then used to
initialize the ChaCha stream cipher, ultimately resulting
in a stream of cryptographically sound random values. The
result is a high-performance, state-of-the art, random-number-

generator coprocessor.

CLOSING THOUGHTS

As a final note, if there’s one thing xobs and I have learned in
the hardware business, it’s that you can’t count your chickens
before they hatch. Making good progress to a certain point
didn’t mean we’d have an easy path to finished units. Even
though we had fully functional prototypes at the close of
fundraising, it still took months of intense effort to deliver
hundreds of units to end users.

Now that Novena has finished shipping, we’re continuing
to support our enthusiastic yet very patient user base. It’s a lot
of work, which falls primarily on xobs’s shoulders, but we’ve
been answering questions from users, pushing patches, and
keeping the Novena kernel up to date.

We do this even though we garner no new revenue from
Novena sales. Upon reviewing our post-campaign sales data,
it was fairly clear there was no viable path forward to run
a hardware business selling Novena; we'd sell on average a
couple of units per month. Although we cleared the minimum-
order requirements of our vendors through the initial crowd-
funding campaign, it would be very difficult to engage any of
our suppliers at volumes less than a couple hundred units.
Selling a couple units per month at that minimum buy would
leave us saddled with inventory debt for about a hundred
months. We'd be in debt to our suppliers for several years.
Being unable to repay your suppliers for several years is also
known as bankruptcy.

250 CHAPTER 7

We are, of course, keeping our original promise to support
the Novena motherboard for at least five years from the initial
funding campaign. We've set aside a hefty chunk of cash to
ensure a steady supply of the mainboards. Our original crowd
funding and now online sales partner, Crowd Supply, has
taken over the remaining inventory of cases and accessories.
Thanks to our open hardware model, Crowd Supply has the
option to manufacture and sell accessories for Novena, should
end user demand materialize.

In the end, I'm very happy to see the tender green shoots of
new projects aiming to offer better open source laptop solutions
to end users. Rather than compete with them, I think it’s most
appropriate for Novena to give way and enable enthusiastic
new developers to find opportunity and fortune selling their
solutions. After all, we started on this adventure mostly to see
if it could be done. We wanted to build a cool tool, customized
for our everyday use case; we didn’t want to start a business
selling laptops with a sustainable mass-market appeal. If the
ultimate impact of the Novena project is raising the bar for
open hardware, and perhaps even encouraging a new genera-
tion of laptop-themed projects, that would be a huge reward
in and of itself.

8. chibitronics:
creating circuit
stickers

In today’s world of contract manufacturing and turnkey ser-
vice providers, designers tend to pick from a palette of exist-
ing processes to develop products. Most consumer electronic
devices are an amalgamation of rigid PCBs with SMT reflow
or through-hole wave soldering, ABS or PC injection mold-
ing, sheet-metal forming, and some finishing processes like
painting or electroplating. These options cover the full range
of utility most products require. Really outstanding products,
however, also tend to introduce new materials or novel manu-
facturing processes.

Developing those new processes doesn’t have to be
expensive—as long as you’re willing to go onto the factory
floor and direct the improvements yourself. In other words, the

252 CHAPTER 8

expensive bit of process development is typically paying the
experts developing and qualifying the process, not so much
the equipment or materials.

To prove that point to myself, I started exploring flex circuits
as a design medium. Instead of using a 1- or 2-millimeter-thick
rigid substrate composed of woven glass fiber impregnated
with a stiff epoxy, flex circuits typically use a pliable poly-
mer substrate just fractions of a millimeter thick. Polyimide
1s a popular substrate in flex circuits because of its ability
to withstand soldering temperatures. Although flex-circuit
technology is common inside consumer products (a mobile
phone probably contains at least a half-dozen flex PCBs, con-
necting peripherals like buttons, cameras, and displays to the
mainboard), this technology is underrepresented in hobby and
DIY products. But I don’t think it has to be.

I had a hunch that the right kind of product designed in
flex could enable new and creative applications, but I wasn’t
quite sure how, so I decided to learn more about the unique
benefits and challenges of designing for flexible circuits. As
part of a project where I explored the guts of SD cards, which
I'll talk more about in Chapter 9, I needed to create an adapter
for my Novena that would allow me to snoop and emulate
the NAND flash memory found inside certain styles of older
SD cards. The thinness and pliability of flexible circuits were
a great match for the job.

The resulting adapter was very thin; it fit perfectly under
the TSOP package of the NAND. The bendy nature of the
board meant I could also accommodate a broad variety of
target board shapes, even boards much larger than a typical
SD card. Although a useful application of flexible circuits, it
still felt like I was just scratching the surface of possibility.

chibitronics: creating circuit stickers 253

My custom flex adapter

Then came the moment of serendipity. While working
on the SD card project, I met Jie Qi, then a PhD candidate
at the MIT Media Lab, who was combining papercraft and
electronics as part of her research. She was part of the group
of MIT Media Lab students I took on a tour of Shenzhen in
January 2012, and seeing examples of her paper circuits set
the gears turning in my head.

emrear M

£

&

#

L}

]

“
[t

o

4

The final artwork for Jie Qi’s paper circuit art piece, Pu Gong Ying Tu

254 CHAPTER 8

Peeling back the painting to reveal circuitry

chibitronics: creating circuit stickers 255

IS

The flower circuits inside Pu Gong Ying Tu

Using nothing more than copper tape, paper, and dollops
of solder or tape to hold components in place, Jie was able to
craft sublime works of art that glowed and interacted with
viewers. These enchanting masterpieces showed how electron-
ics could be used not just as a functional medium, but also as
an expressive medium, inspiring wonder and awe. The photo
here shows the insides of one of her famous early works, Pu
Gong Ying Tu (Dandelion Painting), where the circuitry itself
1s as much a work of art as the painting overlaying it.

Jie 1s also very passionate about education, and she saw
great potential in paper electronics to make technology more
relevant and accessible to non-engineering audiences. On
our trip to Shenzhen, we discussed the possibility of building
circuits on flex and then soldering a flex circuit onto paper.
In the end, she felt that would be at best a marginal improve-
ment. Although soldering isn’t a difficult skill to master, the
high temperatures, chemicals, and specialized equipment
involved are a major deterrent to beginners. What would really
be magical is if circuits could be assembled like stickers on a

256 CHAPTER 8

page. Wouldn't it be great if we could use flex-circuit technol-
ogy with traditional SMT reflow processes to create modules
that users could then stick onto wires made of copper tape?
And that’s how we came to collaborate on Chibitronics, a
project in which we designed a set of peel-and-stick electronic
circuits for crafting and education. Chibitronics has been an
open hardware project from the start, and you can still find all
the activities from the Circuit Sticker Sketchbook, the source
code for all microcontrollers used, and other technical details
through the project’s wiki at http:/ /chibitronics.com/wiki/.

s

The Chibitronics STEM Starter Kit includes the Circuit Sticker Sketchbook,
LED stickers, copper tape, batteries, and binder clips for the batteries.

5. DIY PRESSURE SENSOR

Rather than turning your lights fully on or
fully off with a switch, you can gradually fade
your LEDS in and Out USINg a pressure sensor.
The black conductive plastic in your kit has a
resistance that changes with pressure. In other
words, how well it conducts electricity changes
when you press on it. We can use this to make a.
pressure sensor.

The harder you press, the better the material
conducts, and the brighter your light shines.

Sensor NOT pressed: Sensor pressed:
LED is dim LED is bright

When you don't press, conductive particles in
the plastic are far apart. Electrons cannot flow
well, 50 your light is dim. When you do press, the
particles are squashed together and the electrons
can find more and easier paths to flow, and
likewise the light gets brighter:

PRESSURE SENSOR 73

An explanation of how to create a DIY pressure sensor

chibitronics: creating circuit stickers 257

PRESSURE SENSOR
TEMPLATE

cut black
conductive
plastic and

k&~ completely f&|
cover foil

R EEEEEEEEEE
S SR a0 o rrlry

‘What comes to life when you press the heart?

The DIY pressute sensor with paper overlay

CRAFTING WITH CIRCUITS

The solution we arrived at in early 2012 built on a body of work
from Professor Leah Buechley’s High-Low Tech research group
at MIT. We decided to build circuits on a flexible polyimide
substrate with anisotropic tape (also called Z-tape, because
electricity only flows vertically through the tape, not laterally)
laminated on the back.

258 CHAPTER 8

rd
e e

.
-

A piece of Z-tape under a microscope

Using Z-tape allows end users to assemble circuits without
high-temperature processes like soldering or reflow. The abil-
ity to simply stick components in place is incredibly useful for
art projects, which often involve heat-sensitive and/or pliable
material substrates like paper, fabric, and plastic. Circuit
stickers and copper tape are flexible, too, further enabling any-
one to integrate electronics into projects using nontraditional
materials. Such friendly and expressive materials encourage
creators to turn the circuits themselves into beautiful works
of art.

Circuit stickers on paper

chibitronics: creating circuit stickers 259

Circuit stickers on fabric

Creating these circuit stickers revolved around the limita-
tions of the Z-tape. In the magnified section of Z-tape laminated
onto a polyimide substrate shown here, the silvery-white
stipples are tiny metal particles that span from one side of the
adhesive layer to the other according to a statistical distribu-
tion. Given the nature of the metal distribution, to ensure
good electrical contact, each pad on a circuit sticker needed
to be fairly large. Furthermore, traces very close to each other
could be shorted out by the embedded metal particles, so as
designed the circuits, I had to be careful to leave enough space
between exposed pads. The datasheet for the Z-tape material
contains rules for the minimum pad size and spacing, so |
used those as a guide.

Developing a New Process

It’s one thing to design stickers containing working electronic
circuits, but it’s a whole different thing to actually build
them. No standard manufacturing processes existed that
could produce circuit stickers as we envisioned them. At last,
I had a meaningful opportunity to test my theory that new
process development can be done cheaply if you're willing to
do it yourself. So I started my own little research program to
explore flex-circuit media and the challenges of making circuit
stickers out of them, all on a shoestring R&D budget.

260 CHAPTER 8

Visiting the Factory

As a first step, I visited the facility where flex PCBs are manu-
factured. The visit was eye-opening.

A worker manually aligning coverlay onto flex-circuit material

Instead of soldermask, flex-circuit traces are protected by
a polyimide sheet called coverlay. Soldermask is too brittle
and will crack if bent, but coverlay reliably stays intact over
thousands of flexing cycles. Sometimes, however, you want
to make portions of a flex circuit stiff; for instance, a part of
the circuit might need to stay stiff for mechanical mounting,
and a stiff circuit is also helpful for SMT processing.

Steel plates being laminated to the back of flex-circuit material

chibitronics: creating circuit stickers 261

I knew that polyimide stiffeners could be laminated to
flex, but as it turns out, steel lamination is also possible. I
wouldn’t have known that if I hadn’t taken the factory tour
myself. Visiting the factory in person also gave me an invalu-
able opportunity to see the wide range of complex shapes that
could be produced thanks to die cutting. Having a variety
of possible shapes was key, because we wanted to make the
circuit stickers look cool, too. Questions like how narrow we
could cut the material or how tight a radius is allowable in a
die cut are difficult to answer by email, but the answers were
intuitively obvious after I saw the process in person.

The intricate flex-circuit shapes achievable with die cutting

Performing a Process Capability Test

After the factory visit, the next step was to do a process capa-
bility test to push the limits of the manufacturing process.
We designed a non-homogenous sheet of sticker variants that
exercised all kinds of capabilities: long via chains, 3-mil line
widths, 0201 components (a small SMT package size), 0.5 mm
pitch QFN parts (surface-mount components that have all
their contacts on the bottom), bulky components, the use of
soldermask instead of coverlay, fine detail in silkscreening,
captive tabs, curved cutouts, hybrid SMT and through-hole

262 CHAPTER 8

soldering techniques, Z-tape lamination, and more. Our process
capability test intentionally broke parts of the manufacturing
process to discover weak links that could prevent our design
from working out.

2w

The circuit sticker design we manufactured for the process capability test

chibitronics: creating circuit stickers 263

When I first presented the design, the factory rejected it
outright, saying it was impossible to manufacture. After I
explained my goals, however, the factory agreed to produce it,
with the understanding that I'd accept and pay for all units
made, naturally including the defective ones. Through ana-
lyzing the failure modes of the defective units, I developed a
set of design rules for maintaining high yield (and therefore
lowering cost) on the circuit stickers.

Based on these design rules, Jie and I created our first
set of “production candidate” stickers. They included LEDs of
four different colors (white, red, blue, and yellow), as well as
two sets of smart stickers. The first set of smart stickers con-
tained a preprogrammed microcontroller that could generate
patterns of light, such as fading, heartbeats, twinkling, and
blinking. We called these the “effects” stickers; they are a form
of physical programming that enables noncoders to customize
the behavior of their projects. The second set contained a user-
programmable microcontroller with a fun record-and-playback
capability loaded into it as a demo, along with three sensors.
We called these the “sensor & microcontroller” stickers.

We ran small batches of our production candidates to
find problems we might encounter should we need to scale
up, and we thoroughly investigated any issues that would
affect reliability, yield, or usability. In particular, we had to
develop a novel method for laminating Z-tape onto the back of
the stickers that would be process-compatible with the type
of die cutting necessary to create stickers.

After two iterations of production candidates, we felt we
were ready to see what other people could do with circuit
stickers. As this was part of Jie’s doctoral research, we had
two options for doing user testing. The traditional academic
approach would have been to apply for a budget from her
advisor, produce a limited number of stickers, and conduct a
series of closed workshops to study how young and creative

264 CHAPTER 8

minds interacted with this new media. But this happened in
2013, so viable crowdfunding platforms unlocked the possibil-
ity of offering our research directly to interested users, thus
allowing us to conduct research at scale. The MIT Media Lab
where Jie researched is also very keyed in to the possibilities
enabled by research at scale, as embodied by their “deploy”
initiative. In 2011, when Joi Ito became the Media Lab’s new
director, he started transforming the Media Lab’s culture
from “demo or die” to “deploy or die,” which was eventually
shortened to the less menacing “deploy” directive. Under the
old “demo or die” regime, research groups were encouraged to
create whizzy demonstrations of technology that could help
raise money. Under Ito’s directive, the idea is to get technol-
ogy out of the lab and into the wild by conducting research
at scale through tools like crowdfunding and lean hardware.

In November 2013, we launched a crowdfunding campaign
with Crowd Supply. It was very important to us to remain
pure to the academic mission behind the circuit stickers, so
we set our funding goal at just $1. If even one person thought
circuit stickers might be interesting, we’d produce the stickers
and work with that person to gather feedback. And, of course,
we would make that research available to the world, in case
someone wanted to fork the project or otherwise hack their
circuit stickers.

We beat our modest goal by several orders of magnitude,
closing just shy of $60,000 after a little over one month of
funding and a very low-key campaign.

DELIVERING ON A PROMISE

As part of our campaign, we stated that we would ship orders
for fulfillment by May 2014. Thankfully, we were able to meet
our goal, right on time.

chibitronics: creating circuit stickers 265

Sixty-two cartons containing over a thousand Chibitronics starter kits,
waiting for pickup

Delivering on time is no simple task for any crowdfunded
project, however. I made the contentious choice to use Crowd
Supply in part because they show more savvy around vetting
hardware products, and the services they offer to campaigns
(fulfillment, tier-one customer support, post-campaign preorder
support, and rolling delivery dates based on demand versus
capacity) are a boon for hardware upstarts. Getting fulfill-
ment, customer support, and an ongoing e-commerce site as
part of the package meant we didn’t have to hire someone to
deal with all of that. Whether your “company” consists of just
two people trialing an academic project or a couple of people
working out of a garage, that’s a big deal.

Crowd Supply doesn’t have the same media footprint or
brand power that Kickstarter has, which can make it harder
to raise as much money. But at the end of the day, I feel it’s
very important to establish an example of sustainable crowd-
funding practices that’s better for both the entrepreneur and
the consumer. It’s not just about a money grab today; it’s
about building a brand and reputation that can be trusted
for years to come.

266 CHAPTER 8

WHY ON-TIME DELIVERY IS IMPORTANT

I set a personal challenge for Chibitronics to take our delivery
commitment to backers very seriously. I've seen too many
underperforming crowdfunding campaigns, and I'm deeply
concerned that crowdfunding for hardware is becoming syn-
onymous with scams and spams.

Kickstarter and Indiegogo have been plagued by non-
delivery and scams, and their blithe, caveat emptor attitude
around campaigns highlights the conflict of interest between
consumers and crowdfunding websites. The crowdfunding
sites are basically saying to backers, “Hey, thanks for the
nickel, but what happened to your dollar is your problem.”
I'm honestly worried that crowdfunding will get such a bad
reputation that it eventually won’t be a viable platform for
well-intentioned entrepreneurs and innovators.

The bottom line is this: if I can’t prove to current and
future backers that I can deliver a project on time, I stand
to lose a valuable platform for launching my future products.
Fortunately, we definitely proved ourselves with Chibitronics,
and I've continued to use Crowd Supply for other crowdfund-
ing projects since.

LESSONS LEARNED

We didn’t deliver Chibitronics on time because we had it easy,
though. When I drew up the original campaign timeline, my
minimum and maximum bounds on delivery time spanned
from just after Chinese New Year 2014 (February) to around
April. I padded that schedule by one month beyond the max,
just to be safe, and we used every last bit of this padding.

I made a lot of mistakes along the way, but through a
combination of hard work, luck, planning, and strong factory
relationships, we successfully overcame many hardships. Here
are a few lessons I learned during the process.

chibitronics: creating circuit stickers 267

Not All Simple Requests Are Simple for Everyone

Every Chibitronics starter kit included a physical copy of a
fantastic book Jie wrote as a step-by-step, self-instruction
guide to designing with circuit stickers, the Circuit Sticker
Sketchbook (shown on pages 256—-257). The book is unusual
because you’re meant to paste electronic circuits into it, so we
had to customize several aspects of the printing. The paper
had to be the right thickness to get good light diffusion when
LEDs were placed underneath a sheet. The binding needed
special attention for a better circuit-crafting experience, and
there’s even a little pocket in the back to hold swatches of craft
material used as part of the projects in the book.

The printer found most of these requests relatively easy
to accommodate, but one in particular threw them for a loop.
The book’s metal spiral binding had to be nonconductive so
that placing copper tape on the binding wouldn’t accidentally
cause a short circuit.

Checking a wire for conductivity seems like a simple
enough request for someone who designs circuits for a living,
but for a book printer, it’s weird. No part of traditional book
printing or binding requires such knowledge. The printer
originally said they couldn’t guarantee anything about the
conductivity of the binding wire. Sure enough, while the first
sample wire was nonconductive, the second was conductive,
and the printer couldn’t explain why.

Face-to-face meetings were invaluable here. Instead of
yelling at the printer over email, we arranged a meeting with
them during one of my monthly trips to Shenzhen. We had a
productive discussion about their concerns, and at the conclusion
of the meeting, we ordered them a $5 multimeter in exchange
for a guarantee of a nonconductive book spine. In the end, the
printer was simply unwilling to guarantee something for which
they had no quality control procedure, which is completely rea-
sonable. We just had to teach them how to use a multimeter.

268 CHAPTER 8

This unusual nonconductivity requirement did extend our
lead time by several days and added a few cents to the cost of
the book, but overall, I was willing to accept that compromise.

Never Skip a Check Plot

The pad shapes for the circuit stickers are complex polyline
geometries, which Altium, the PCB design software I was
using, didn’t handle very gracefully. I discovered the hard way
that in Altium, the soldermask layer occasionally disappears
for pads with complex geometry. Older versions of my design
would contain a soldermask layer, but then upon saving the
design file, the layer would silently disappear. This sort of bug
is rare, but it does happen. Normally, I'd import the gerber
file into a third-party tool as a check plot before making an
order, but I was in a rush and reordering an existing design
that had worked before, so I skipped the check plot procedure.

The result? Thousands of dollars’ worth of PCBs had to
be scrapped, and we lost four weeks from the schedule. Ouch.

It was good that I padded my delivery dates—and that I
keep a bottle of fine Scotch on hand, to help bitter reminders
of what happens when I get complacent go down a little easier.

If a Component Can Be Placed Incorrectly, It Will Be

I'm paranoid about parts being placed incorrectly, as this prob-
lem has burned me many times. The Chibitronics effects sticker
sheet was a prime example of the issue waiting to happen.

The Chibitronics effects stickers

chibitronics: creating circuit stickers 269

The sheet is an array of four stickers that flash different
patterns on an LED but are otherwise identical. The flash-
ing pattern is controlled by software. Trying to manage four
separate firmware files and get them all loaded into the right
spot in a tester is a nightmare waiting to happen. To solve
that problem, I designed the stickers to use the exact same
firmware. Their behaviors were instead set by the value of a
single external resistor, which was measured on boot by the
microcontroller’s integrated ADC.

My logic went something like this: if all the stickers have
the same firmware, there’s no “wrong way” to program the
stickers. Right?

Unfortunately, I also designed the master PCB panels to
be perfectly symmetric. You could load the panels into the
assembly robot rotated by pi radians, and the assembly pro-
gram would run flawlessly—except that the resistors setting
the firmware behavior would be populated in reverse order
compared to the silkscreen labels. Despite having fiducial holes
to provide a frame of reference and text on the PCBs in both
Chinese and English that is uniquely orienting, this problem
actually happened. On the first effect sticker samples, the
“heartbeat” sticker was “blinking,” the “twinkle” sticker was
“fading,” and vice versa.

Fortunately, the factory very consistently loaded the boards
in backward, which is the best case for a problem like this. I
rushed a firmware patch (also a risky thing to do) that reversed
the interpretation of the resistor values, and had a new set
of samples shipped to me in Singapore via FedEx for a san-
ity check. We also built a secondary test jig to add a manual
double-check for correct flashing behavior on the line in China.

The effects sheet problem was solved, but in making that
additional test, we discovered another common problem.

270 CHAPTER 8

Some Concepts Don’t Translate into Chinese Well

I wrote instructions in Chinese to describe the difference
between fading (a slow blinking pattern) and twinkling (a
flickering pattern) to the factory, but it turns out that the
Chinese translations for blink and twinkle are similar. Twinkle
translates to IN¥k (“flickering, twinkling”) or [A¥E (“to glint, to
glitter, to sparkle”), and blink translates to [AA (“flickering,
sparkling, glittering”) or [ASE (“brilliant, shiny, to glisten, to
twinkle”).

I always dread writing subjective descriptions for test
operators in Chinese, which is part of the reason I try to auto-
mate as many tests as possible. As one of my Chinese friends
once remarked, Mandarin is a wonderful language for poetry
and arts but difficult for precise technical communications.

The challenge, then, was to come up with a bulletproof,
cross-cultural explanation of the difference between fading and
twinkling, using only simple terms anyone could understand;
that is, I had to avoid technical terms like random, frequency,
hertz, and periodic.

I sent the factory a video of the different LED patterns,
and our factory recommended we use 3 (“gradual change”)
for fade and IN¥F (“flickering, twinkling”) for twinkle. I'm still
not convinced that was a bulletproof description, but it was
superior to any translation I came up with. And, to this day,
we are dogged by problems trying to explain to quality control
staff the difference between these effects. It turns out that a
malfunctioning sticker also makes a pretty good twinkling
effect—for a while.

Funnily enough, it was also a challenge for Jie and me
to agree upon what a “twinkle” effect should look like. She
described our first iteration of the effect as “closer to a lightning
storm than twinkling.” We had several long conversations on
the topic, followed by demo videos to clarify the desired effect.

chibitronics: creating circuit stickers 271

We basically tweaked code until it looked about right to both
of us. Given the difficulty we had describing the effect to each
other, it’s no surprise I had trouble accurately describing the
effect in Chinese.

Eliminate Single Points of Failure

When we built test jigs, we built two copies of each, even
though throughput requirements demanded just one. Why?
Because one might fail.

And guess what: one test jig did fail. I still don’t know why.
Thank goodness we built two copies, though, or I'd have had
to rush to China on short notice to diagnose why our sole test
jig didn’t work.

Some Last-Minute Changes Are Worth It

About six weeks before we finalized our order for the Chibi-
tronics kits with the factory, Jie suggested that we include
a stencil of the sticker patterns with the sensor and micro-
controller kits. She reasoned that it can be difficult to lay
out the copper tape patterns for complex stickers like the
microcontroller, which has seven pads, without a drawing of
the contact patterns. I originally resisted the idea; I didn’t
want to delay shipment on account of something we didn’t
originally promise. As Jie discovered, I can be very tempera-
mental, especially when it comes to schedule slips. (Sorry,
Jie! Thanks for bearing with me.)

But her arguments were sound, so I instructed our fac-
tory to search for a stencil vendor. After two weeks, we hadn’t
found anyone willing to take the job, but our factory’s sourcing
department didn’t give up. Eventually, they found one vendor
who had enough material in stock to tool up a die cutter and
turn around a couple thousand stencils within two weeks—just
barely in time to meet the schedule.

272 CHAPTER 8

A /

cujm. e

The sensor and microcontroller sheet and stencil

When I got samples of the sensor and microcontroller kit
with the stencils, I gave them a whirl. Jie was absolutely right
about their utility. I found my experience vastly improved
when I had a template to work from, particularly for the
microcontroller sticker with seven closely spaced pads, and
I felt users would agree. That’s how even though the stencil
wasn’t promised as part of the original campaign, all backers
who ordered the sensor and microcontroller kit received a free
stencil to help them lay out designs.

Chinese New Year Impacts the Supply Chain

Even though the Chinese New Year is a two-week holiday, our
initial schedule essentially wrote off the month of February.
Reality matched this expectation, but I want to share with
you exactly how Chinese New Year impacted this project, in
case you're considering manufacturing a product in China.

chibitronics: creating circuit stickers 273

We had a draft manuscript of our book ready in January,
but I couldn’t get a complete sample until March. That wasn’t
because the printer was closed for a month straight; like every-
one else, their holiday was about two weeks long. The paper
vendor, however, started their holiday about 10 days before
the printer, and the binding vendor ended their holiday about
10 days after the printer. Even though each vendor took only
two weeks off, the net supply chain for printing a custom book
was out for around 24 days, or effectively the entire month of
February. The staggered observance of Chinese New Year is
necessary because of the sheer magnitude of human migration
that accompanies the holiday.

Shipping Is Expensive and Difficult

When I ran the initial numbers on shipping, I realized that
we weren’t exactly selling circuit stickers—taking the book
into account, by volume and weight, our principal product
was printed paper. To optimize logistics cost, I pushed to ship
starter kits (which contained a book) and additional stand-
alone book orders by ocean, rather than air.

We actually had starter kits and books ready to go almost
four weeks before the first kits shipped, but we just couldn’t
get a reasonable quotation for the cost of shipping them by
ocean. We spent almost three weeks haggling and quoting
with ocean freight companies. In the end, their price was
basically the same as going by air but would take three weeks
longer and incurred more risk. Freight cost is apparently a
minor component of shipping by ocean, and you get killed by
a multitude of surcharges, from paying the longshoremen
to paying all the intermediate brokers and warehouses that
handle your goods at the dock. Those fixed costs added up such
that even though we were shipping over 60 cartons of goods,
air shipping was still more cost-effective.

274 CHAPTER 8

NOTE For reference, a Maersk 40-foot sea container would fit over
1,250 cartons, each containing 40 starter kits. We were an
order of magnitude away from being able to efficiently utilize
ocean freight.

You’re Not Out of the Woods Until You Ship

At each milestone in this project, I had to remind myself not
to count my chickens before they hatched. Problems ranging
from a routine UPS screwup to a tragic aviation accident to a
logistics problem at Crowd Supply’s fulfillment depot to a cus-
toms problem could stymie an on-time delivery. But, at the very
least, we did everything within our power to deliver on time.

Thankfully, when all was said and done, our backers
received their orders right on time. Since then, Chibitronics
has continued to surpass my wildest expectations. Although
we started this project as an academic experiment, grassroots
user adoption prompted us to grow the experiment into a full-
fledged company. As the circuit stickers are an open hardware
project, the specs are available for savvy hackers to play with,
but most users are nontechnical folks who would benefit more
directly from support on basic usage. To that end, the company
strives to provide users with assistance, activities, and more
stickers to help them keep learning and making beautiful
electronic crafts.

CLOSING THOUGHTS

Chibitronics has been an ongoing learning experience for me,
as I've never had a company successfully mature like this. I'm
excited to see where the company goes, but as an engineer,
I also know my limitations: I'm not cut out to be a business-
person. Once the company is big enough to support its own
staff in a sustainable fashion, I'm looking forward to handing
over the reins, returning to my workbench, and dreaming up

new open hardware inventions.

Part 4

a hacker’s perspective

Engineering and reverse engineering are two sides of the
same coin. The best makers know how to hack their tools, and
the best hackers routinely make new tools. I might set out to
design a circuit, and find myself reverse engineering a chip
because the datasheet is vague, incomplete, or simply incorrect.
Engineering is a creative exercise; reverse engineering is a
learning exercise. When you combine them, even the toughest
problems can be solved as a creative learning exercise.

I spent over a quarter-century in school, but I've learned
more about electronics from reverse engineering. I love try-
ing to figure out why the engineer behind a piece of random
hardware made certain design choices. Highly skilled engi-
neers develop clever tricks without realizing how innovative
they are. Those tricks often go undocumented or unpatented,
and the only way to tap that knowledge is to decipher it from
finished designs.

After seeing enough boards, I started recognizing patterns
and personal styles that almost have a cultural nature about
them. For example, Apple circuit boards are austere and black,
with a look almost as iconic as Steve Jobs’s black mock turtle-
necks. There are so many decisions to make when designing
a circuit board that most engineers can only draw from their

276 PART 4

cultural influences and toolchains to constrain stylistic things
like fonts and part choices.

This kind of learning is so important to me that, for over
a decade now, every month I've presented a circuit board on
my blog and challenged readers to divine its function from its
design. Part of my motivation for holding these regular competi-
tions is to make reverse engineering feel culturally acceptable
to readers. People often ask me if reading other people’s designs
or modifying and hacking hardware is legal. But anyone who
has raised a child knows that learning through emulation is
a part of human nature. I disagree with interpretations of the
law that put the terms of a software license above your right
to own your hardware. If you can’t hack it, you don’t own it.

The importance of democratic access to technology only
grows as we become increasingly dependent on smartphones
and computers. Technology is fundamentally neutral toward
human ethics; the people who control technology are respon-
sible for applying it ethically. One school of thought believes
that technology should be controlled by a select group of
trusted masters; the other believes that control over technol-
ogy should belong to anyone with the motivation and will
to learn it. Increasingly, our technology infrastructure is
becoming a monoculture managed by a cartel of technology
providers. Everyone carries identical phones running operat-
ing systems based on the same libraries and uses one or two
cloud services to store their data. But history has proven that
a monoculture with no immunity is a recipe for disaster. One
virus can wipe out a whole population. Universal access to
technology may allow the occasional bad actor to develop a
harmful exploit, but this bitter pill ultimately inoculates our
technological immune system, forcing us to grow stronger and
more resilient. Wherever that threat comes from, a robust
and vibrant culture of free-thinking technologists will be our
ultimate defense against any attack.

a hacker’s perspective 277

Speaking of viruses and immune systems, there are remark-
able parallels between hardware systems and biological sys-
tems. Just as hacking is all about rethinking APIs to do
unexpected things, a central tenant of biology—evolution—is
all about superior implementations of “APIs” superseding
weaker interpretations.

I routinely read journals about the life sciences not just
because I find the subject fascinating, but also because it’s good
for me. Looking outside your primary field for fresh ideas is
very helpful for problem solving. Figuring out how an organism
works is an incredibly difficult reverse engineering problem:
there’s no documentation, there’s no designer to consult, and
your diagnostic tools are roughly equivalent to throwing crate
after crate of smartphones into a blender and running the
mixture through various sieves. Biologists have developed
a bag of extremely clever tricks to map out complex systems
without the benefit of an oscilloscope, and at a high level, some
of the principles are applicable to electronic systems.

As our understanding of biology becomes more complete,
there’s ample opportunity for computer engineering principles
to advance the field. We're already at the point of custom-
engineering organisms; the technology to hack humans—or
engineer our successor—is likely to arrive within decades.
Such powerful tools deserve a closer look so that we can make
independent judgments about what is fact and what is fiction.

While engineering is a creative activity, hacking is an
important and often underrated learning exercise. The ability
to effortlessly switch modes from forward to reverse engineer-
ing is a powerful tool, and the right to hack is the foundation
of a healthy technological culture. The first chapter in this
section reviews some of my own hacking methods and efforts
and discusses some of the legal frameworks that protect these
activities. The second chapter attempts to unpack some key
concepts from biology and frame them from the perspective

278 PART 4

of an electronics person. The final chapter in this book is a
collection of interviews where I discuss what being a hacker
means to me, as well as recap some of my experiences in
manufacturing and hardware startups. The collection isn’t
exhaustive, but I hope you enjoy reading some of my more
off-the-cuff thoughts.

9. hardware hacking

The biggest barrier to hacking is often the fear that you’ll break

something while poking around. But you have to break eggs
to make an omelet; likewise, you have to be willing to sacrifice
devices to hack a system. Fortunately, acquiring multiple
copies of a mass-produced piece of hardware is easy. I often
do a bit of dumpster diving or check classified advertisements
to get sample units for research purposes. I generally try to
start with three copies: one to tear apart and never put back
together, one to probe, and one to keep relatively pristine. I use
the pristine copy to sanity-check whether a certain behavior
is due to my probing or just how the hardware behaves.

280 CHAPTER 9

My typical approach to any hardware hack is first getting
the device open and then getting a probe in just the right spot
without affecting the device’s functionality. When you're look-
ing inside computer chips, that’s virtually the entire challenge.
The first hack in this chapter is an example of silicon hacking,
and you’ll see that once the package is off and you're staring
at naked silicon, an attacker has a profound advantage.

Some hardware hacks require more system engineering,
particularly when you want to reverse engineer and repur-
pose a device. In these situations, I tend to develop additional
bespoke tools that allow me to tweak and observe a system in
close to real time, or at least as fast as I can type commands,
to minimize the time spent validating hypotheses. The goal
is to make the primary limitation how fast you can think
of ideas to test, not how long it takes to upload a change to
test those ideas. The second hack in this chapter talks about
reverse engineering a relatively simple System-on-Chip (SoC)
device found inside common SD memory cards and some tools
I developed to aid that process.

Finally, some hacks inevitably push the boundaries of the
law. The third hack in this chapter talks about NeTV, a sys-
tem I developed that takes a new look at the High-Definition
Content Protection (HDCP) encryption standard, which secures
most HDMI video links. NeTV is a hack on both a legal issue
and a hardware system. It works around the thorny problems
presented by the DMCA by reinterpreting the HDCP standard
to enable a man-in-the-middle (MITM) attack to change video
data without circumventing encryption. No circumvention,
no DMCA problem. Hacks often push the boundary of what’s
legal and what’s been tested in the courts. Just like any other
system, the legal system can also be hacked, and one key
takeaway from this chapter is how to think of laws as just
another constraint to work with on the way to achieving a
particular goal.

hardware hacking 281

The final hack in this chapter combines hardware penetra-
tion, tool creation, and legal considerations to reverse engineer
a complex mobile phone SoC. That’s another project I worked
on with xobs, and once again, building bespoke hacking tools
was invaluable because it allowed us to experiment with the
system as it ran.

HACKING THE PIC18F1320

Keeping a secret is a common challenge for any security
system. To solve this challenge, security system designers
frequently hide secrets inside silicon chips because the chips’
rugged epoxy packages and tiny geometries are difficult to
penetrate and inspect.

This sounds good in theory but is problematic in practice.
Chip designers make mistakes, and when a chip has a problem,
the designers need a way to open it up and investigate. This
situation is so common that there are commercial services that
specialize in opening up chips expressly for that purpose. Called
failure analysis services, they've mastered several techniques
for removing tough epoxy from chips.

A couple of years before my crash course in setting up a
Chinese supply chain with Chumby, I decided it would be fun
to demonstrate how simple hacking a chip can be if you're
aware of failure analysis services. At the time, Microchip’s
PIC series of microcontrollers was quite ubiquitous, so I
decided to have a go at a popular PIC model. PICs typically
have configuration fuses, which you can activate to prevent
certain regions of memory from being read or written to.
But there’s often a legitimate need to read the contents of a
secured, programmed PIC. For instance, a company that loses
either the documentation for a product or the personnel that
originally created the codes for a secured PIC would be stuck
without a way to read the chip. This is a problem when a
company needs to revise or upgrade a legacy line of products.

282 CHAPTER 9

I wanted to figure out how to dump the memory from a
secured PIC. Knowing I'd have to break a few eggs to make
this omelet, I scored four PIC18F1320s from a friend and
started stripping them down. Here’s what I found.

A PIC18F1320 in its native state

Decapping the IC

First, I had to take the top off so I could see the silicon under
the hood. Many homebrew techniques for decapping a chip
typically involve applying fuming nitric or sulfuric acid, but
those aren’t compounds you’d want to keep at home, nor are
they easy to obtain. Nitric acid, in particular, is an important
compound for explosives fabrication. So, I've found the easiest
and most reliable way to decap a chip is to just send it to a
failure analysis lab. For about $50, you can have a decapped
part in two days.

I decapped three parts for this project. Two were function-
ally decapped (silicon revealed with the device still in its lead
frame, fully functional), and the last was fully decapped (just a
bare silicon die with no package). I had one die fully decapped
because my inspection microscope had a very short working
distance at the highest magnifications, and the remaining
epoxy from the package would have interfered with the lens.

hardware hacking 283

A functionally decapped PIC18F1320.
The little raised square in the middle (it’s goldish in real life) is the silicon chip.

Taking a Closer Look

With my decapped ICs in hand, I did a sweep around one of
the dies with the microscope and noticed several prominent
features. Because physics is the same everywhere, most of the
fine-grained structure in a silicon chip looks pretty much
the same, no matter who makes the chip. These constraints
propagate their way up to the system level, and with a bit of
training, you can read a silicon chip like a book.

Dickson-style charge pump

for FLASH/EEPROM
8KB FLASH Bandgap¢ programming
/ - / /
[0 = OO
®]ﬂ‘ fi o - @
LAl ; : : ®
® 7 L, O
r i H’_ o ““} T ;
] Wiy
ADA] L;‘:L 1:1" 1256 bytes
converter : v : \ L~ EEPROM
- ‘ S U r ‘
i T |
256 bytes— 2k || 2
SRaM [t TGS J]
S| [Mt \ ¢
st ‘ M\
o I f il Sl \e
oo LIV 00 6 o
S / ey = S e——— \
Security fuse Computational core Internal timers/
array Microcode ROM2 oscillators

My best guess at what various structures in this chip do. I could be wrong.

284 CHAPTER 9

One set of structures grabbed my attention immediately:
there were metal shields over some transistors, following a
regular pattern that had about the right number of devices to
account for all the security bits. Full-metal shields covering a
device are very rare in silicon, so they're like a big X marking
the spot where something very important is kept.

A transistar

Shie1d§

”A

Zooming in on the metal shields

Erasing the Flash Memory

The shields were significant because of some interesting facts
about flash memory technology, which this PIC device used
to store the security fuse information, as well as the internal
program code. Flash technology uses a floating-gate transis-
tor structure very similar to old UV-erasable programmable
read-only memory (UV-EPROM) technologies like the ceramic-
packaged 2716 chips from the 1970s, which had quartz windows
so they could be erased.

In both flash and UV-EPROM devices, data is written
when electrons tunnel into a floating gate, where the electrons
remain for decades. The extra electrons in the floating gate

hardware hacking 285

create a measurable offset in the characteristics of the storage
transistor. The difference is that flash memory can withdraw
the stored electrons (erase the device) using only electrical
pulses, while a UV-EPROM requires energetic photons to
knock the electrons out of the floating gate. The UV light
required to accomplish this is typically on a wavelength of
around 250 nm. You need expensive quartz optics to manipu-
late this wavelength of UV without excessive loss, making it
a bit difficult to harness.

Here’s the important conclusion I drew from these facts:
flash devices can usually also be erased using UV light since
they have a similar transistor structure to UV-EPROM devices.
The encapsulation around a flash device normally prevents
any UV light from effectively reaching the die, but since the
PIC devices had the plastic around them removed, I could
attempt to apply UV light and see what happened.

I performed a simple experiment by programming the PIC
device with a ramping pattern, where I stored the hexadeci-
mal numbers from 0x00 to OxFF over and over again. Then,
I tossed the PIC into my UV-EPROM eraser to bake for . . .
oh, about the length of a good long shower and some email
checking. When I took the device out of the eraser, the flash
memory was indeed blanked to its normal all 1s state, and the
security fuses were unaffected. After baking a few more PIC
devices in the eraser, I found that if I didn’t bake a PIC long
enough, I got odd readings out of the array I wrote to, such as
all Os, a phenomenon that I still don’t understand.

Erasing the Security Bits

Clearly, the metal shields over the security fuses were there to
thwart attempts to selectively erase the security fuses while
leaving the flash memory array unaffected.

286 CHAPTER 9

UV light source

Reflected light
/ Metal shield
[]
Trapped “Control”

charges gate

“Floating”_ '}
pe =g
Source Drain

Erasure due to
bounced light

A diagram showing how the shields got in the way of the fuse bits,
and how to work around them

My problem was that for the flash memory transistor to be
erased, high-intensity UV light needed to strike the floating gate.
The metal shield effectively reflected all incident light, so the
light never reached the gate. But I knew there was a refraction
index mismatch between the optically clear protective dielectric
layer of silicon dioxide covering the chip and the silicon proper,
meaning light at certain angles would reflect off of the smooth
silicon surface. For an example of this reflective effect, jump
in a swimming pool, go under water, and look up at where the
water and air meet. The water should look highly reflective at
an oblique angle because the refractive index mismatch between
water and air causes total internal reflection of light.

I planned to use this reflection to bounce the UV light off
the oxide to hit the metal shield and bounce back onto the
floating gate. By angling the PIC inside the ROM eraser,
I thought I could get enough light to bounce into the flash
memory transistor region and erase the security bits. After a
couple of attempts using bits and bobs of material to fix the
angle of the chip, I developed a simple technique that worked
surprisingly well: shoving the chip into the antistatic foam
liner of the UV eraser at an angle.

hardware hacking 287

The chip in the UV eraser’s antistatic foam

Protecting the Other Data

That technique didn’t protect the flash data I wanted to keep,
though. To avoid erasing this data, I made a hard mask out of
a very carefully cut piece of electrical tape and stuck that mask
to the surface of the die using a steady hand, two tweezers, and
a microscope. The electrical tape blocked the UV light from
directly hitting the flash code memory regions and somewhat
absorbed light bounced back from the silicon substrate.

Al e

Electrical tape

The die in its package, with electrical tape over the flash ROM array

288 CHAPTER 9

This mask allowed me to reset only the security fuses
without impacting the flash code array too much. The follow-
ing screenshots show the array memory status according to
the programming and readback tool I was using.

oseillator B
Fail-Safe Clock Momitor Ensble Dissbled

nabled

300002 imer Disabled
Ensbled

Lel z.ov
IMPLAB ICD 2 Ready 300003 Disabled-Controlled by SUDTEN bit
[Programrming Tar L
Velidating configuration field 300005
rasing 300006
Programming EEFROM Mem| L
Programming Program Mema

RS tnpuc disapled

) Frotect 0D0200-00OTTT

300008 Data EEFROM Code Protect
Code Protect Boot

300008

30000

300000 Teble Read Protect Boot Disabled

[wPLaB 1DE v7.11

nited Workepae

=
= Output
eerD Memory
Read Succeaded
IMPLAB ICD 2 R
L
EEPROM o 300001 cscillator EXT RC-CLEOUT on RA6
Fail-Safe Clock Honitor Ensble abled

300002

IMPLAB ICD 2 Rieady
[Reading. 300003

2758
300008 Master Clear Enshle MCLR ensbled, RAS input dissbled
300006 st Enan

L PO s
Code Protect 00200~ OOOFFF Disaniea |

Data EZPRON Code Protect Disanled
e protect

300008

300000

300000 Table Read Protect Boot Disabled

The device settings after erasure

hardware hacking 289

In the before shot, note the settings of the security fuses in
the Configuration Bits window and the values programmed
in the flash ROM, shown in the Program Memory window.
In the after shot, the security fuses switch to being disabled,
while the flash ROM contents in the Program Memory win-
dow read identically to what was programmed in previously.
A different part of the code array was actually still erased,
but I could probably have fixed that by cutting a bigger piece
of electrical tape.

I've heard reports that since this hack was published,
Microchip started putting metal shields over the code memory
array as well as the fuses, making it a bit more difficult to pull
off this trick. Still, this hack underscores the fact that quite
often, the hardest part of silicon hacking is removing the outer
package, and fortunately, there are cheap, if obscure, services
available to assist with that problem.

HACKING SD CARDS

Years later, I found myself hacking into yet another interest-
ing device with flash memory: an SD card. I'd already torn
down SD cards when investigating a batch of potentially fake
cards that found their way into Chumby production units,
which I discuss in “Fake MicroSD Cards” on page 156. This
time, my intent was to figure out how to get an SD card to
do something it wasn’t made to do. This particular hack was
another team effort with my friend xobs, and it was funded by
DARPA’s Cyber Fast Track (CFT) initiative. The brainchild of
uberhacker .mudge (one of the original crew of LOpht), CFT
was a hack on the US government to make it smarter about
innovation, particularly on matters related to internet security.
We pulled it off around the same time we were working on
Novena and I was collaborating with Jie Qi on Chibitronics.

290 CHAPTER 9

xobs and I discovered that some SD cards contain vulner-
abilities that allow arbitrary code execution on the memory
cards themselves. We also found that similar classes of vul-
nerabilities exist in related devices like USB flash drives
and solid-state drives. On the dark side, code execution on a
memory card enables MITM attacks where the card seems to
behave one way but in fact does something else as an attacker
intercepts and manipulates communications between the
card and the device using it. On the light side, however, this
vulnerability also gives hardware enthusiasts access to a very
cheap and ubiquitous source of microcontrollers.

Some of the eggs—or rathet, SD cards—wwe cracked open to find the vulnerability

How SD Cards Work

To understand the hack, you need to know how SD cards are
structured. The information I'm about to explain applies to
all managed flash devices, which includes microSD, SD, and
MMC, as well as the eMMC and iNAND devices typically
soldered onto the mainboards of smartphones to store the
operating system and other private user data.

hardware hacking 291

Flash memory is billed as a contiguous, reliable storage
medium, and it’s really cheap—so cheap that the premise is
literally too good to be true. In reality, all flash memory is
riddled with defects, without exception. It crafts the illusion
of reliability through sophisticated error correction and bad-
block management functions. This system is the result of a
constant arms race between the engineers and mother nature:
every time the fabrication process shrinks transistors, memory
becomes cheaper but more unreliable. Likewise, with every
generation of chips, engineers create more sophisticated and
complicated algorithms to compensate for nature’s propensity
for entropy and randomness at the atomic scale.

These algorithms are too complicated and too device-specific
to be run at the application or operating system level, so every
flash memory disk ships with a reasonably powerful micro-
controller to run a custom set of disk abstraction algorithms.
Even tiny microSD cards contain not one, but at least two,
chips: a controller and at least one flash chip. (High-density
cards stack multiple flash dies.)

AT f"ﬂ"ww @

& : A { E o S
A) ’ s e M
L e s \‘,f'"fl.;_r R « L3y
A) 7V s |

kA s VORI

FRL 2 SECROP TR

Inside a microSD card. The small square in the upper-right
corner is a microcontroller SoC mounted on top of the larger
flash memory chip that it manages.

In my experience, the quality of the flash chip(s) integrated
into memory cards varies widely. The chip could be anything

292 CHAPTER 9

from high-grade, factory-new silicon to material with more than
80 percent bad sectors. If you're concerned about e-waste, you
may (or may not) be pleased to know that memory card vendors
commonly use recycled flash chips salvaged from discarded
parts. Larger vendors tend to offer more consistent quality,
but even the largest players staunchly reserve the right to mix
and match flash memory chips with different controllers yet
sell the assembly as the same part number. That’s a nightmare
if you're dealing with implementation-specific bugs.

A memory card’s embedded microcontroller is often a heav-
ily modified Intel 8051 or ARM CPU that approaches 100 MHz
performance levels and has several hardware accelerators
on-die. Amazingly, adding these controllers to a memory card
only costs about $0.15 to $0.30, particularly for companies that
can fab both the flash memory and the controllers in the same
business unit. Even more interestingly, due to the high cost
of testing chips at the wafer level, it’s probably net cheaper to
add a microcontroller that manages bad blocks, rather than
thoroughly test and characterize each raw flash memory chip.
And in fact, managed flash devices tend to be cheaper per bit
than raw flash chips, despite the extra functionality.

Every flash implementation has unique algorithmic
requirements, multiplying the number of hardware abstrac-
tion layers a microcontroller must handle. This complexity
inevitably leads to bugs, meaning indelibly burning a static
body of code into on-chip ROM just isn’t feasible, particularly
for third-party controllers.

Thus, a firmware loading and update mechanism is vir-
tually mandatory. End users are rarely exposed to this pro-
cess since it all happens in the factory, but the mechanism
exists. While exploring the electronics markets in China, I've
seen shopkeepers burn firmware onto a card that “expands”
the card’s capacity. In other words, they load firmware that
reports the capacity of a card as much larger than the actual

hardware hacking 293

available storage. The fact that this is possible at the point of
sale indicates the update mechanism is likely not well secured.

Reverse Engineering the Card’s Microcontroller

xobs and I discovered an example of this vulnerability while
exploring memory cards using AppoTech’s AX211 and AX215
microcontrollers. We discovered a simple “knock” sequence
transmitted over manufacturer-reserved commands (a com-
mand named cMD63 followed by the bytes A, P, P, 0) that dropped
the controller into a firmware loading mode. After receiving
the knock sequence, the card accepted the next 512 bytes and
ran the data as code.

NOTE The AppoTech chips I describe here technically integrate suf-
ficient functionality that in an academic sense, they’re not
mere microcontrollers; they’re full SoCs. But it’s just weird
to me to refer to the AppoTech as an SoC, so I won’t. It will
always be a microcontroller to me!

The AppoTech system on this particular memory card also
used an 8051 microcontroller. From the knock sequence beach-
head, we used a combination of analyzing code with IDA, the
interactive disassembler, and fuzzing (that is, giving the micro-
controller invalid or random input to see how it responds) to
reverse engineer most of the 8051’s function-specific registers.
That allowed us to develop novel applications for the control-
ler without the manufacturer’s proprietary documentation.
We did most of this work with the Novena laptop hardware I
described in Chapter 7.

As I alluded at the beginning of this chapter, we devel-
oped several bespoke tools to help us reverse engineer the SD
card. One of the more interesting tools we (and by we, I mean
primarily xobs) made is an interactive REPL (read-evaluate-
print-loop) shell for executing arbitrary code on the SD card.
The following listing shows what that environment looks like.

294 CHAPTER 9

root@bun
FPGA har
Debug mo
Result o
00000000
Expected
Loaded d
Locating
AX211> h
List of
hello
peek
poke
Jump
dumprom
memset
null
disasm
ram
sfr
nand
extop
reset
help
For more
AX211> h
Help for
Disassem
Usage: d
AX211> d
.org 0x0

nie-novena:~/ax211-code# ./ax211 -d debug.bin
dware v1.26
de APPO response [6]: {0x3f 0x00 Oxcl Ox04 0x17 Oxab}
f factory mode: 0
of 41 1f of of of ff ff |.A...... |
0x00 0x00, got 0xOf Ox41
ebugger
fixup hooks... Done
elp
available commands:
Make sure the card is there
Read an area of memory
Write to an area of memory
Jump to an area of memory
Dump all of ROM to a file
Set a range of memory to a single value
Do nothing and return all zeroes
Disassemble an area of memory
Manipulate internal RAM
Manipulate special function registers
Operate on the NAND in some fashion
Execute an extended opcode on the chip
Reset the AX211 card
Print this help
information on a specific command, type 'help [command]'
elp disasm
disasm:
ble a number of bytes at the given offset.
isasm [address] [bytes]
isasm 0x200 16
200
nop
nop
reti

nop
mov R7, A
reti

mov R7, A
nop
mov R7, A
nop
mov R7, A
nop

hardware hacking 295

From inside this environment, we could run programs in a
debugger, get a list of available commands and what they did
by entering help, and disassemble sections of code by entering
disasm. Although it took a lot of time to develop an interactive
tool with such a rich feature set, the effort quickly paid off
because we could test complex hypotheses using automated
fuzzing frameworks.

The code upload size was limited to 512 bytes, which meant
we had to partition the REPL environment between the host
Novena computer and the target device.* For example, dis-
assembling a particular region of memory breaks down to a
script executed on the host side that drives issue requests to
the AX211 to dump the requested portion of memory, followed
by the disassembly algorithm running on the host ARM CPU.

HOST
(ARM i.MX6)

TARGET
(AX211/ 8051)

FPGA GPIO-like
interface

SD PHY
state machine

y SD PHY emulator Dispatch ISR debug.bin
5[.................................... : (512 bytes of :
J A I 8051 assembly)
: : (. :
Main loop l Echo
Initialize |
k» H | Peek
ixup |
REPL shell | i Poke
Formatting | Jump
Disassemble : Nand
: (etc.) | o
i debugger.c | T get
| (ete)

Fartitioning the SD debugger functions between the host and the target

The tool we built started with an SD physical emulation
layer, which I'll refer to as PHY. We used the FPGA built into
the Novena to present a GPIO-like register API for the SD

* You can find a copy of the code at htips://github.com/xobs/ax211-code/.

296 CHAPTER 9

host PHY. There was one register for data output, one register

for data input, and one register to bitwise set the data direc-
tion. The AX211 card was attached to the FPGA via a custom
flex-circuit adapter.*

A flex-circuit adapter plugged into a Novena

The SD commands were received on the AX211 and pro-
cessed by a hardware state machine attached to the embedded
8051 CPU. The state machine handled receiving the data, plus
it computed and checked the cyclic redundancy code for error
detection. Once a complete packet was received by the state
machine, an interrupt notified the 8051 of the packet’s arrival.

* Tangentially, we used the same flex adapter I mentioned in Chapter 8, which led in part to
the development of Chibitronics.

hardware hacking 297

We hijacked the interrupt processing mechanism and
remapped the default handler to our own 512-byte code stub.
That allowed us to define a novel set of SD commands that we
used to implement the callback functions our REPL environ-
ment needed, like peek, poke, jump, NAND register manipula-
tion, and so on. These callbacks were also an ideal hook for
implementing an MITM attack.

[aVala) - |
| IDA View-A || SN2 ltype| argument | resp | sbbreviation command description
:.: ::: 1‘ hde: t-tf SIZE 066 B 2| cvon e e O_IDLE STATE _ Resats all cards i idle siale
ToN cHUN de:0500 SIZE 0008 _| o e
. . CWDZ b |3t0]stAibis |2 |ALL_SEND_CID [Asks any card 1o 5end the CID numbers
jmp @DPTR on the CMD line (any card that s
loonnected 1o the host wil respona)
ajmp code 446 CMDI jpar [aT0)skibis [R6 (SEND RELATIVE_ [Askihe card o putlish a new relative
o address (RCA)
—_— ajmp code 442 CWD4 b [3i16] DSR a ISET DSR Programs the OSR of all cards
) shll bits
—_— ajmp code 4E4 CWDE_fos ards [reter |
cwoT e 6] RCA [Rib imand foggles a card between the
— e ajmp code 4EE i50) skt bits fforly | CARI Eorerby ang et s botvoen
. s from t e programming and disconnact statos.
. elecied I Dot ases, e card i seected by 18
T ajup Eodifoes d) own relative address and gels deselected

Ll le ajmp code 482 L. In the case thal the RCA squals 0
- Inen the host may do one of the fallowing:
| Use cther RCA number to. perform
T ajmp code 518 card de-selection.
rr | Resend CMD3 to change its RCA
; number 1o other than O and then usel
ajmp code 52 CMDT with RCA=D for card de]
seloction
e ajmp code 543
CWDA b [21:iZeserved bIS[R? [SEND_IF_GOND [Sends SO Memary Cars inerface
L1 le ajmp code SIE 11:B]supply ondition, which includes host supply

777 potiage(vHs) \voltage information end asks the card
i - [oxtheck patem Nnether card suppors votage. Reaerved
ajmp <ode_56 bits shall be set to ‘0’
cmDg c [31:16]RCA R2 [SEND_CSD Addressed card sends I:uzrﬂ specilic
—_— ajmp code_4a2 15:0] stll bits data (CSD) an |he CME line
CMGT0 e [IGIOIRCA R [SENDCID IAddressed card ands [card oni
=T ajmp code 573 [15:0) stuf bits fication (CID) on CMD the line.
,,, WG Fosened
ajmp code_584 CMD12 Bc 11:0] stuff bits Rt STOP_ Forces the card to stop transmission
TRANSMISSION
_— ajmp code_4a2 CMD13 fec 3| 18] RCA R1 END_STATUS |Addressed card sends its status.
- 18:0] st bits register.
lsoaoa3s0 [oouo03m0: DT @ TaBIats | ST
Ld | M A

The callback functions for the REPL, displayed in IDA

I don’t know how many other manufacturers leave their
firmware updating sequences unsecured. AppoTech is a rela-
tively minor player in the SD controller world; a handful of
companies that you've probably never heard of also produce
SD controllers, including Alcor Micro, Skymedi, Phison, and
SMI. Of course, there are also SanDisk and Samsung. Each
has different mechanisms and methods for loading and updat-
ing firmware. But I know of at least one Samsung eMMC
implementation using an ARM instruction set that had a
bug requiring a firmware updater to be pushed to Android
devices, indicating yet another potentially promising venue
for further discovery.

298 CHAPTER 9

Potential Security Issues

From a security perspective, our findings indicated that while
memory cards look inert, they run code that could be modified
to perform MITM attacks that are difficult to detect. There’s no
standard protocol or method to inspect and attest to the con-
tents of the code running on the memory card’s microcontroller.
If you're using an SD card in a high-risk, high-sensitivity situ-
ation, don’t assume that running a security-erase command
(or some other secure erase tool) on a card will guarantee the
complete erasure of sensitive data. If you really need data
to disappear, I recommend disposing of your memory card
through total physical destruction. Grind it up with a mortar
and pestle if you have to.

A Resource for Hobbyists

From a DIY and hacker perspective, our findings suggested
a potentially interesting source of cheap and powerful micro-
controllers for use in simple projects. An Arduino clone—with
an 8-bit, 16 MHz microcontroller—will set you back around
$20. A microSD card with several gigabytes of memory and
a microcontroller with several times the performance costs a
fraction of the price. While SD cards are admittedly I/O-limited,
some clever hacking of the microcontroller in an SD card could
make for a very economical and compact data logging solution
for I12C or SPI-based sensors.

HACKING HDCP-SECURED LINKS
TO ALLOW CUSTOM OVERLAYS

“That’s neat, but is it legal?” is a frequently asked question
I get when hacking. Just as engineered systems have hacks,
legal systems have loopholes. Some legal loopholes exist by

hardware hacking 299

design; others are unintentional. Either way, they can provide
vital breathing room for innovation. When contemplating a
hack, I consider legal issues as I do engineering constraints,
similar to having to fit something within a case of a certain
height or run for a certain length of time on a given battery.

Around 2011, when I was still at Chumby, we were puzzling
about how to drive adoption in the face of the iPhone and
Android phones consuming the market niche we hoped to
occupy. Cost was an eternal barrier for user adoption, and the
integral LCD in a chumby was by far the highest-cost item. Our
then-CEOQO, Steve Tomlin, observed that the biggest screen in
the house had yet to become connected to the internet in any
meaningful way. And so this question was posed to me: could we
find a way to kill two birds with one stone, removing the screen
from our bill of materials while bringing TVs into the internet
age? This was before products like the Google Chromecast or
the Logitech Revue were introduced on the market.

It occurred to us that we could pack a cheap computer into
a stick that plugs into an HDMI port. This solves the prob-
lem of getting chumby onto a TV screen, but then you're not
watching your favorite movies or TV shows when the chumby
is selected. We figured what people really wanted was some
way to watch TV and have, say, Twitter or Facebook notifica-
tions pop up onscreen, too.

The concept is simple enough. Take the existing output
from a cable box, Blu-ray player, or AV receiver; feed it into
a box that blends in chumby content; and pass the resulting
video on to a TV. But due to the ubiquitous application of
HDCP encryption over digital video feeds, it is legally perilous
to remix content if you do it the wrong way. Figuring out the
right way to do it is how NeTV was born.

300 CHAPTER 9

A NeTV sporting the Chumby logo

Inside the NeTV

Background and Context

NeTV was my response to the challenge of remixing existing
video with internet content while staying within legal bound-
aries, aided by the public release of the master key to HDCP
in September 2010. To help you understand this hack, let’s
start with a little background on HDCP.

hardware hacking 301

High-bandwidth Digital Content Protection is a pixel-level
encryption system used to encrypt video transmissions over
HDMI. HDCP puts broadcasters and studios in control of the
screens their content plays on, as those companies use the
encryption as a copyright control mechanism. HDCP restricts
legitimate content manipulation like picture-in-picture dis-
plays, content overlays, and third-party filtering and image
modification. Combine HDCP with the DMCA, which crimi-
nalizes the circumvention of copyright control, and you’ll real-
ize that when watching certain videos, it’s illegal to modify
content on your own screen. That’s why there are few HDMI
video mixing solutions that actually operate on broadcast or
movie content.

To recap, I had four goals for NeTV: enable consumer-
side content remixing, allow users to eliminate ads or replace
them with ads relevant to themselves, create an interactive
TV experience, and make something compatible with any TV.
To accomplish those goals, I designed NeTV as a man in the
middle to take data from, say, a Blu-ray player, and apply the
master key to give users a custom overlay. There are many
applications for video overlays, but the basic scenario is that
while you’re enjoying content X, you’d also like to be aware
of content Y. Combining the two content sources requires a
video overlay mechanism.

With my MITM attack, NeTV overlaid a WebKit browser
(the engine Safari and Chrome use) over any video feed. A
concrete use case for this technology is overlaying Twitter feeds
as news crawlers across a TV show to watch community com-
mentary in real time on the same screen you're watching the
show on. Some TV programs attempt to incorporate Twitter
feeds already, but they’ve only done so on the source side;
users can only watch hashtags the show displays. With this
hack, however, the same broadcast program (say, a political

302 CHAPTER 9

debate) could have a very different viewing experience based
on which hashtag is keyed into the viewer’s Twitter crawler.

The simple fact that a trivial video overlay is an interest-
ing topic illustrates the distortion of traditional rights and
freedoms brought about by the DMCA. Unlike the HDCP
strippers people speculated would come out of the master key’s
release, however, my hack never decrypted the original video
data it operated on. Thus, it didn’t circumvent copyright, and
the DMCA couldn’t apply to it. Loophole found!

How NeTV Worked

Of course, I released the exploit as an entirely open source
project,* including the hardware and the Verilog implemen-
tation of the Spartan-6 FPGA I used to create the TMDS-
compatible source and sink. TMDS is the signaling standard
used by HDMI and DVI. The basic pipeline within the FPGA
deserializes incoming video and reserializes it to the output.
In this trivial mode, NeTV is simply a signal amplifier for the
video: encrypted pixels in, encrypted pixels out—no decryption
and no video manipulation.

NeTV could mix a user-generated content stream over an
encrypted video feed because HDCP encrypts without valida-
tion. In other words, if a man in the middle tampers with the
encrypted feed, the receiver simply accepts the tampered pixels
as valid data, decrypts them, and presents them to the user.
The lack of link verification is intentional and necessary. The
natural bit error rate of HD video links is atrocious, but the
human eye won’t detect bit errors even on the level of 1 in every
10,000 bits. (At high error rates, users see a “sparkle” or “snow”
on the screen, but the image is largely intact.) Allowing some
pixel-level corruption keeps consumer costs low. Otherwise,

*You can read the documentation on the Sutajio Ko-Usagi wiki, although by the time of publica-
tion, the original NeTV product sold on Adafruit will probably have been phased out in favor of
a newer, better implementation.

hardware hacking 303

much higher-quality cables would be required along with FEC
techniques to achieve a bit error rate compatible with strict
cryptographic verification techniques like full-frame hashing.
Thus, NeTV’s prime challenge is to derive a keystream
identical and synchronized to the transmitter’s keystream,
encrypt the user-generated content with this keystream,
and selectively swap the transmitter’s pixels on the fly for
user-encrypted pixels. If everything lines up, the receiver will
decrypt an image that appears to be a perfect overlay of user-
generated content on top of the original video feed.

NeTV
NeTV Ul Tx-synchronized
: video cipher stream :
Video source = B v
H) H i XOR : e ———— .
: Cipher : Cipher
: stream : stream
HPX 002005020 H : RXX H HE 2020202020204 H
P B e R :
DR0%020202020% Encrypted : : pixels for alternate 20020202030 Decrypted :
Fevecen video i Video encrypted pixels | Video | pOGGO00 video
DAXDIXAXIX PXOZ00X020Z0 (I
XOR SR umm
DO |00 u
XXX
OO V06
u PO 1L 00N
m XXX

{ Original
i video

A high-level conceptual diagram of how NeTV worked

CREATING THE OVERLAY

To generate the user overlay content, we connected a tiny
embedded Linux computer to an FPGA. From the Linux com-
puter’s standpoint, the FPGA emulates a parallel RGB LCD
that you can access by using the frame buffer at /dev/fb0
(the filepath for the first frame buffer in Linux). The Linux
computer would automatically launch a WebKit browser full-
screen at boot, thus filling /dev/fb0 with the user’s content.

The system selected which pixel to swap by observing the
color of the WebKit overlay’s video, a trick known as chroma
keying. The overlay video wasn’t encrypted and was gener-
ated by the user, so looking at the color of the overlay video
was perfectly legal. Other more expressive and aesthetically

304 CHAPTER 9

appealing pixel-combining methods like alpha blending, how-
ever, would have required decrypting the original video, which
would have been illegal.

If the overlay video matched a certain chroma key color (in
this case, a specific shade of bright pink), the incoming video
was displayed; otherwise, the overlay video was displayed.
Following this system, users could create transparent “holes”
in the custom UI to show the original video underneath.
Since the UI was rendered by a WebKit browser, users could
implement chroma keying by simply setting the background
color in the CSS of the UI pages to that magic shade of pink.
With those settings, the default state of a web page would be
transparent, and all items rendered on top of it were opaque,
so long as the Ul elements avoided the chroma key color and
turned off enhancements like anti-aliasing.

CRAFTING A KEYSTREAM

Of course, the chroma keying happened in the encrypted
domain. Thus, the FPGA’s second job was to snoop the HDMI
link and craft a keystream identical to the transmitter’s.
First, the FPGA observed an I2C link found on HDMI known
as the data display channel (DDC). The DDC enables moni-
tors to report their capability records (called extended display
identification data, or EDID) and is also where the encryption
keys are exchanged.

By observing the key exchange handshake between the
transmitter and the receiver, NeTV could mathematically
extract the transmitter’s and receiver’s private keys with the
help of the HDCP master key. Once the private-key vectors
were derived, they could be multiplied exactly as they'd be
in the source or sink to derive the shared secret, called Km.
When that shared secret was written into the FPGA’s HDCP
engine, the cipher state was ready to go, allowing NeTV to
encrypt overlays on the video transmitted between the video
source and the video display device.

hardware hacking 305

By considering legal constraints as just another engineering
constraint, I was able to create a completely new device that
proves a point: it’s incorrect to automatically equate hacks
that work around a DRM system with attempts to circumvent
copyright. NeTV never decrypts previously encrypted video and
can’t operate without an existing, valid HDCP link, making it
a bona fide, non-infringing, commercially useful application

of the HDCP master key.

10202UU0d [INH

FPGA
12C-like DDC bus
EDID
% EEEEp (2 s]ff):p Local
Z squash PLL &
3 sync
22
& ||mos | &5 =
. video)E_,_';i § ? TN:IDS
N [video
i vz
7
| Genlock | Encipher
Configuration
Line FIFO registers
8 lines
A 2C
A
y y
Virtual LCD RGB 12C
WiFi 802.11 USB2.0 128 MB DDR2
Power switch 800 MHz
PXA 168
MicroSD

USB2.0

Power + OTG

Wall
adapter

Brownout

firmware

IR remote

detector

IR
extender
port

A more detailed block diagram showing how NeTV’s FPGA worked

So far in this chapter, we've seen examples of different
hardware hacking approaches and techniques, from physi-
cal penetration to system-level tool building and analysis

306 CHAPTER 9

to treating legal constraints as engineering problems. In
“Who Are the Shanzhai?” on page 122, I discussed the legal
approach of a project, codenamed Fernvale, to reverse engineer
a mobile phone chipset. In addition to thinking about law as
engineers, xobs and I had to pull out all the stops and apply
every technical skill at our disposal to reverse engineer such
a complex system. The rest of this chapter dives into some of
these techniques.

HACKING A SHANZHAI PHONE

When xobs and I worked on Fernvale, our goal was to make
a new platform derived from the hardware in my $12 gong-
kai phone and repatriate technical information into the open
source IP system. We had no documentation whatsoever for
some parts of the chip we wanted to reverse, but that didn’t
deter us. We navigated complex legal waters and created our
own custom scripting language to program the chip’s firmware
to avoid subconscious plagiarism.

Compared to the firmware, though, the hardware reverse-
engineering task was fairly straightforward. The documents
we scavenged gave us a notion of the chip’s pinout, and the
pin naming scheme was sufficiently descriptive that I could
apply common sense and experience to guess how to connect
the chip. For ambiguous areas, I buzzed out some stripped-
down phones with a multimeter or stared at them under a
microscope to determine connectivity. In the worst cases, I'd
probe a live phone with an oscilloscope to make sure I under-
stood the connections correctly. The more difficult question
was how to architect the hardware.

The System Architecture

We weren’t gunning to build a phone, but rather something
closer to Particle’s Spark Core (since reborn as the Photon),
a generic System-on-Module type of single-board computer

hardware hacking 307

built for Internet of Things applications. In fact, our original
renderings and pinouts were designed to be compatible with
the Spark ecosystem of hardware extensions, until we real-
ized the gongkai phone’s MT6260 microcontroller just had too
many interesting peripherals to fit into such a small footprint.

One-sided layout,
allows for SMT to
daughtercard

Castellations for
SMT processing

MicroUSB
SMT castellations

MT6260DA
(to scale)

RF connector
to Fernvale Spore

DIP headers,
note pins protrude
from component side

0.3 mm FFC connector
to Fernvale Blade

Early sketches of the Fernvale PCB

We settled eventually on a single-sided core PCB that we
called the Fernvale Frond, which embedded the microUSB,
microSD, battery, camera, speaker, and Bluetooth functionality

308 CHAPTER 9

(as well as the obligatory buttons and LED) on one board. The
Frond turned out slim and small, at 3.5 mm thick, 57 mm long,
and 35 mm wide. We included holes to mount a partial set of
pin headers, spaced for Arduino compatibility, although the
board could only be plugged into 3.3 V—compatible Arduino
devices.

Arduino Uno

Fernvale Frond

‘

Eudl { keSS

The actual implementation of the Fernvale Frond,
pictured with an Arduino Uno for size reference

We broke the remaining peripherals out to a pair of con-
nectors: one dedicated to GSM-related signals (GSM is the
protocol for 2G cell phone networks) and the other to Ul-related
peripherals. We called the GSM board the Fernvale Spore
and the Ul board the Fernvale Blade. We split GSM into a
module with many choices for the RF frontend to make GSM a
bona fide user-installed feature, thus pushing the regulatory

hardware hacking 309

and emissions issue down to the user level. Splitting the
Ul-related features out to another board also reduced the
cost of the core module and let users try the Frond in numer-
ous scenarios without being locked into a particular LCD or

button arrangement.

s

2 (23
v w mRISwE

i

5
(s}
xS

J

G20 +14

— Keypad SIM
GSM antenna | Headphone | TS | LCD
GSM REF: Expansion/breakout
PA + TxRx + Filters board

AFE header | | Expansion header

Fernvale Mainboard
(MT6260DA)

UART | Speaker | Battery | Camera [USB 1.1 | MicroSD [BT | Arduino

A Fernvale system diagram, showing the features of each of the three boards

310 CHAPTER 9

Inside the MT6260

I had some X-rays taken of the MT6260 to help us identify fake com-
ponents. We had to source our MT6260s on the gray market, and we
wanted to guard against being sold empty epoxy blocks or remarked
versions of other chips. The MT6260 has -DA and -A variants, where
the difference is how much on-chip flash memory is included.

An X-ray of the MT6260 chip.
Look carefully to spot outlines of multiple ICs among the wire bonds.

To our surprise, this $3 chip didn’t contain a single IC, but rather
a set of at least four (possibly five) chips integrated into a single mul-
tichip module (MCM) containing hundreds of wire bonds. I remember
back when the Pentium Pro’s dual-die package came out in the late
1990s. It sparked arguments over yield costs of MCMs versus using a
single big die; generally, MCMs were considered exotic and expensive.

I also remember at the same time Krste Asanovic, then a professor
at the MIT Artificial Intelligence Lab and later at UC Berkeley, told
me that the future of electronics wasn’t system-on-a-chip devices, but
rather “system-mostly-on-a-chip” devices. The root of his claim was
that the economics of adding in mask layers to merge DRAM, flash,

hardware hacking 311

analog, RE and digital into a single process wasn’t favorable; bonding
multiple dies together into a single package was cheaper and easier.

It’s still a race between the cost impact (in terms of both the per-
unit cost and nonrecurring engineering costs) of adding more process
steps in the semiconductor fab, and the yield impact, relative rework-
ability, and lower nonrecurring engineering cost of assembling modules.
Single-chip, System-on-Chip devices were the zeitgeist when Krste
made that observation and they still kind of are, so it was interesting
to see a significant data point validating his insight.

Understanding the internal structure of the chip was also helpful
in reverse engineering the system. Knowing that MediaTek was simply
combining several chips together in a single package shed much-needed
light on the purpose and organization of their APIs. It also tipped us
off that certain elements of the system would be reused across several
product categories and generations, so we knew we could draw mean-
ingful conclusions from documentation on older or related chips. When
you're piecing together a puzzle this complex, every clue helps, includ-
ing those gained by just looking at the physical structure of the chip.

Reverse Engineering the Boot Structure

Shanzhai engineers in China seem to have access to just enough
documentation to assemble a phone and customize its Ul, but
not enough to do a full OS port. After looking at enough phones,
I eventually realized that all phones based on a particular
chipset will have the same backdoor codes, and their GUIs
are often inconsistent with the implemented hardware. For
example, the $12 phone I tore down in Chapter 4 prompted
me to plug headphones into the headphone jack for the FM
radio to work, yet it has no headphone jack.

To make Fernvale accessible to engineers in the West
through open source licensing, we had to reconstruct everything
from scratch, including the toolchain, the firmware flashing
tool, the OS, and the applications. But all the Chinese phone
implementations simply relied on MediaTek’s proprietary
toolchain, meaning we had to do some reverse engineering
to figure out the boot process and firmware upload protocol.

312 CHAPTER 9

My first step in reversing a chip is always to dump the
ROM, if possible. We found exactly one phone model with an
external ROM that we could desolder (it used the -D ROMless
variant of the chip), and we read its data using a conventional
ROM reader. We saw very little ciphertext in the ROM, but
there was a lot of compressed data. Here is a page from our

notes after we did a static analysis on the ROM image:

0X0000_0000
0X0000_0200
0X0000_0800
0X0000_09BC
0X0000_0A10

0x0000_3400

0x0000_A518
0x0000_B704
0X0001_0000
0x0001_0368
0x0001_0828

0x0007_2F04
0x0007_2F05
0x0009_F005
0x0009_F006

0X000A_2C1A
0X000A_328C
0x007E_E200
0x007E_F400

media signature "SF_BOOT"
bootloader signature "BRLYT", "BBBB"
sector header 1 ("MMM.8")
reset vector table
start of ARM32 instructions
- stage 1 bootloader?
sector header 2 ("MMM.8")
- stage 2 bootloader?
thunk table of some type
end of code (padding until next sector)
sector header 3("MMM.8") - kernel?
jump table + runtime setup (stack, etc.)
ARM thumb code start - possibly also
baseband code
code end
begin padding "DFFF"
end padding "DFFF"
code section begin "Accelerated
Technology / ATI / Nucleus PLUS"
code section end; pad with zeros
region of compressed/unknown data begin
modified FAT partition #1
modified FAT partition #2

The hexadecimal numbers on the left are memory addresses,
and the text on the right describes what xobs and I thought was
stored at each address. One concern about reverse engineer-
ing an SoC is it has an internal boot ROM that always runs
before code is loaded from an external device. That internal
ROM can also have signature and security checks that prevent
tampering with the external code.

hardware hacking 313

To determine how hard reverse engineering this system
would be, we wanted to quickly figure out how much code was
running inside the CPU before jumping to external boot code.
A Tek MDO4104B-6 oscilloscope let us accomplish that task
in just a couple of hours.

D2 is the interpretation of
the analog trace as ASCII data

M 8.00ms

Zoom Factor: 40 X Zoom Position: 19.9ms

Digital
signals

7“W ‘7m‘
value Mean Min Max v JW#33.20% J120M points J{_ |
& Mean 119V 1.19 1.19 1.19 .0

8:58:00

DO
‘»TTimin Resolution: 4.00ns | (28 May 2014
1

UART analog trace
overlaps CLK/STROBE
from SPI ROM

Screenshot from the Tek MDO4104B-6.
The top quarter shows a zoomed-out view of the entire capture.
Notice how the SPI ROM accesses are punctuated with console output.

This particular oscilloscope has the uncanny ability to
perform post-capture analysis on deep, high-resolution analog
traces and output the result as digital data. For example, we
could simply probe around the chip with a multimeter while
cycling power until we saw something that looked like an
RS-232 encoded signal, and then run a post-capture analy-
sis to extract any ASCII text that was coded in the analog
traces. Likewise, if we captured SPI traces, the oscilloscope
could extract ROM access patterns through a similar method.
By looking at the timing of text emissions versus SPI ROM

314 CHAPTER 9

address patterns, we quickly determined that if the internal
boot ROM did any verification, it was minimal and nothing
approaching the computational complexity of RSA encryption.

From there, we needed to speed up our measure-modify-
test loop. Desoldering the ROM, sticking it in a burner, and
resoldering it to the board were going to get old really fast.
Fortunately, we’'d implemented a NAND flash ROM emulator
(we lovingly shortened that to ROMulator) on Novena, which
we previously used to reverse engineer the AX211 contained in
certain SD cards. We just reused that codebase and made an
SPI ROMulator. We hacked up a GPBB and its corresponding
FPGA code to add the ability to swap between the original boot
SPI ROM and a dual-ported 64kiB emulator region that was
also memory-mapped into the Novena Linux host’s address
space. Then, we plugged the phone into the laptop and put
the ROMulator to work.

FPGA
Original
SPINOR
o EEPROM
|
Bypass =
> M A A
Cs_emu|
> G4k BRAM —| SPIDUS [-
emulation |-
- Cs cpu o x| zZ
B] gl g
Level \J
> 64k BRAM translators i
shadow H

MT6260
CPU

— EIM interface

A

\ 4

Novena i.MX6 host

A block diagram of the SPI ROMulator FPGA

https://github.com/bunnie/novena-spi-romulator
https://github.com/bunnie/novena-spi-romulator

hardware hacking 315

There's a phone in my Novena! What's that doing there¢

With the address stream determined by the Tek oscil-
loscope, some rapid ROM patching by the ROMulator, and
hints of a SHA-1 function existing in the ROM via a static
code analysis using IDA, we determined that the initial boot-
loader (which we called the 1bl), was hash-checked using a
SHA-1 appendix.

NOTE The assembly for a hash function tends to have a very dis-
tinctive shape, or set of instructions, and a given hash also
has some amount of magic numbers unique to it. Given those
facts, when trying to reverse an authentication method, one
of the first things a hacker does is use IDA to search for such
constants near a function with the shape of the hash function

in question.

Building a Beachhead

The next step was to create a small interactive shell we could
use as a beachhead for running experiments on the target
hardware. Just as he did for the SD card reverse engineering
project, xobs created a compact REPL environment, called
Fernly, that supported commands like peeking at memory,
writing data, and dumping CPU registers.

316 CHAPTER 9

Designing the ROMulator to make the emulated ROM
appear as a 64kiB memory-mapped window on a Linux host
enabled useful POSIX abstractions like the mmap() function, the
open() function (via /dev/mem), the read() function, and the
write() function to access the emulated ROM. xobs used these
abstractions to create an I/O target for radare2, a portable
reverse engineering framework. The I/0 target automatically
updated the SHA-1 hash every time we made changes in the
1bl code space. With that system in place, we could do cute
things like interactively patch and disassemble code within
the emulated ROM space.

bunnie@bunnie-novena-laptop code radare? bunnie@bunnie-naven;

0x0019046b 0x22f39b1f0 0x09200100 OxdofoO0al

0xTd0020fe 0x70eaedf7 OxD008F4bd Ox00100300

0x0086F800 0x00668070 0x0086b470 0x0085d070
x00000cSb 0x6F6FE670 0x6F742064 Ox616d6F79 Ox202c616d

0x00000cEb 6b04 1sls r3, r5, 17

0x000! d 1900 movs [

[fob1

X f
0x00000cT1 fa22
0x ooo1

2009

aloo

fodo

fe20 movs ro,

oofdf7ed stec2 4, cr14, [r0, -988] ; Oxf

ea7l strb r2, [r5, 3]
bdf40800 ; <UNDEFINED> D
OxfEFFFFffTB4bdc97() ; hit1_0

0x00000c87 0003 1sls r0, ro, 12
1000 movs rd, r2
00788600 strb.w ro, [r
7080
6600
70b4
B6OO
70d0
8500 o
7066 str r0, [r6, 100]
6fef ldr r7, [r5, 116]
6420 movs r0, 100
746F ldr r4, [r6, 116]

796F ldr r1, [r7, 116]
6d61 str r5, [r5, 20]
6d61 str r5, [r5, 20]
2c20 movs ro, 44
2578 ldrb r5, [rd4, 0]
Oaod lsrs r2, r1, 20
f 00f8b500 strb.w r0, [rO,
0x00000ch3 2664335 ; <UNDEFINED> D 41
OxfEFFFFFFFE62773d() ; hit1_0
movs r0, r0
add r2, 60 ; (adr r2, O
movs r5,
adcs rd, r1

Fatching some code in the ROM

We also wired up the power switch of the phone to an FPGA
I/0. That allowed us to write automated scripts that toggled

hardware hacking 317

the power on the phone while updating the ROM contents so
we could automatically fuzz unknown hardware blocks.

Attaching a Debugger

We had to take an unconventional approach to attach a debug-
ger to the code in the ROM, because locating critical blocks
was difficult, and JTAG was multiplexed with critical func-
tions on the target device. xobs emulated the ARM core and
used his Fernly shell to reflect virtual loads and stores to the
live target. We were able to attach a remote debugger to the
emulated core that way, bypassing the need for JTAG entirely.
That also let us use cross-platform tools like IDA on x86 for
the reversing Ul.

At the heart of this debugging technique was QEMU, a
multiplatform system emulator. QEMU supports emulating
ARM targets, specifically the ARMv5 chip our target device
used. We made a new virtual machine type, called Fernvale,
that implemented part of the observed hardware on the target
and simply passed unknown memory accesses directly to the
device.

The Fernly shell was stripped down to support only three
commands: write, read, and zero-memory. The write command
pokes a byte, word, or dword of data into RAM on the live tar-
get. A read command reads a byte, word, or dword from the
live target. The zero-memory command is an optimization, as
the operating system writes large quantities of zeros across
a large memory area.

We also hooked and emulated the serial port registers,
allowing a host system to display serial data as if it were
printed on the target device. Finally, we emulated SPI, IRAM,
and PSRAM as they’d appear on the real device. Other areas
of memory were either trapped and funneled to the actual
device or left unmapped and reported as errors by QEMU.

318 CHAPTER 9

Remote debug Ul host (any architecture)

GDB, IDA, etc.

;

GDB network
protocol

;

Actual MT6260 running Fernly QEMU virtual
shell with LD/ST reflector ARM CPU

Load/store
dispatch

Actual MT6260

: Unknown

: ¢ memory
Fernly shell : i regions Known/bypassable
(run on boot) : : memory regions
Fernly serial
protocol
Emulated
: : Emulated CPU ID
Actual : : UART
hardware !
peripherals : : Emulated
SPI FLASH

peripherals

Virtual MT6260 running on Novena

The architecture of the debugger

Invoking the debugger was a multistage process. First,
we primed the actual MT6260 target with the Fernly shell
environment. Then, we booted the QEMU virtual ARM CPU
with a version of the original vendor image primed with a
known register state at a convenient point in the boot pro-
cess. At this point, code execution proceeded on the virtual
machine until a load or store was performed to an unknown
address. On that load or store, virtual machine execution
paused while a query was sent to the real MT6260 via the
Fernly shell interface. The load or store was then executed on
the real machine, which would relay the results of the load
or store to the virtual machine so execution could resume.

hardware hacking 319

We couldn’t run Fernly directly from the SPI ROM because
the vendor binary’s initialization routine modified SPI ROM
timings. But of course Fernly would have crashed if a store
happened to land somewhere inside its memory footprint. To
avoid the possibility of a load or store overwriting the Fernly
shell code, we hid the code in a region of IRAM that was
trapped and emulated. Emulating the target CPU let us attach
a remote debugger like IDA via GDB over TCP. The debugger
had complete control over the emulated CPU and could access
its emulated RAM. Here is an example of the output of the
hybrid QEMU/live-target debug harness.

bunnie@bunnie-novena-laptop:~/code/fernvale-qemu$./run.sh

~~~ Welcome to MTK Bootloader V005 (since 2005) ~~~

READ WORD Fernvale Live 0xa0010328 = 0x0000... ok
WRITE WORD Fernvale Live 0xa0010328 = 0x0800... ok
READ WORD Fernvale Live 0xa0010230 = 0x0001... ok
WRITE WORD Fernvale Live 0xa0010230 = 0x0001... ok
READ DWORD Fernvale Live 0xa0020c80 = 0x11111011... ok
WRITE DWORD Fernvale Live 0xa0020c80 = 0x11111011... ok
READ DWORD Fernvale Live 0xa0020c90 = 0x11111111... ok
WRITE DWORD Fernvale Live 0xa0020c90 = 0x11111111... ok
READ WORD Fernvale Live 0xa0020b10 = 0x3f34... ok
WRITE WORD Fernvale Live 0xa0020b10 = 0x3f34... ok

This output shows the trapped serial writes appearing on
the console, plus a log of the writes and reads executed by the
emulated ARM CPU as they were relayed to the live target
running the reduced Fernly shell. This was our beachhead.

From there, xobs and I discovered the offsets of a few IP
blocks that were reused from previous known MediaTek chips
by searching for their “signature” in memory. A signature
could be as simple as the power-on default register values, or
something more complex, like changes in bit patterns due to
the side effects of bit set or clear registers located at offsets



320 CHAPTER 9

within the IP block’s address space. Following the signatures
helped us find the register offsets of several peripherals and
generate a memory map.

Starting Ending Size of Description

Address Address Region

0x00000000  OxOfffffff oxofffffff PSRAM map, repeated and mirrored
at 0x00800000 offsets

0x10000000  Ox1fffffff oxofffffff Memory-mapped SPI chip

2222222222 22202 NN onnnINNNINNININRININRINNIIINNINNN?

0x70000000  0x7000cfff  oOxcfff On-chip SRAM (maybe cache?)
2222222272 2222222272 2222222272 2202222222222222222222222220222?

0x80000000  0x80000008  0x08 Config block (chip version, etc.)
0x82200000 222222222 2222222202

0x83000000 2222222222 2222222222

0xa0000000  0xa0000008  0x08 Config block (mirror?)
0x10010000  ?22?222222? 2222222222  (?SPI mode?) ?2222222222222222272
0x10020000 0xa0020e10  0x0e10 GPIO control block

0xa0030000 0xa0030040  0x40 WDT block

+ 0x08 -> WDT register (?)
+ 0x18 -> Boot src (?)
0xa0030800 2222222222 2222221222 nnrnanninninnnnnnnnn

0xa0040000 2222222222 2222222222 2222222222222222222222222222202?

0xa0050000 22222222702 2222222222 2222222222222222222222222220220222

0Xxa0060000 2222222222 2222222222 22 Possible IRQs at 0xa0060200 ??

0Xa0070000 ========== ========== == Empty (all zeroes) ===========
0xa0080000 0xa008005c  Ox5c¢ UART1 block
0xa0090000  0xa009005C  0X5C UART2 block

0xa00a0000 2222222222 2222222222 mnnnnnnnnnnnnnnm

This memory map shows what content is stored at different
address ranges on the chip. For instance, the second address
range in the map (0x10000000 to Ox1FFFFFFF) consisted
of 0xOFFFFFFF bytes corresponding to a memory-mapped
SPI chip.



hardware hacking 321

Booting an OS

After finding the register offsets, we progressed rapidly on
many fronts, but our goal (to port NuttX, a BSD-based real-
time operating system, to the device) remained elusive. There
was no documentation on the interrupt controller within the
canon of shanzhai datasheets. We found the routines that
installed the interrupt handlers through static analysis of the
binaries, but we couldn’t determine the address offsets of the
interrupt controller itself.

All we could do was open the MediaTek codebase and
refer to the header file that contained the register offsets and
bit definitions of the interrupt controller. This fit within our
self-imposed limitations to not breach copyright, because facts
are not copyrightable. I describe the legal reasoning behind
this idea in Chapter 4, under “Dealing with Copyrights” on
page 138. After looking up those facts, we created our own
custom scripting language, called Scriptic, to avoid uncon-
sciously plagiarizing anything from the existing codebase.

Building a New Toolchain

Requiring users to own a Novena ROMulator to hack on
Fernvale wasn’t a scalable solution, however. To round out
the story, we created a complete developer toolchain. The
compiler was fairly cut-and-dried; many standard compilers
support ARM as a target, including clang and GCC. But mak-
ing open tools for flashing the MT6260 was much trickier.
All the existing tools we knew supported the protocol version
required by the MT6260 were proprietary Windows programs.
That meant we had to reverse engineer the MediaTek flashing
protocol and write our own open source tool.



322 CHAPTER 9

Fortunately, a blank, unfused MT6260 shows up as /dev/
ttyUSBO when you plug it into a Linux host. In other words,
it shows up as an emulated serial device over USB. That took
care of the lower-level details of sending and receiving bytes
to the device, leaving us to reverse engineer the protocol layer.

xobs located the internal boot ROM of the MT6260 and
performed static code analysis to learn more about the proto-
col. He also did some static analysis on MediaTek’s flashing
tool and captured live traces using a USB protocol analyzer
to clarify the remaining details. Here is a summary of the
commands he extracted, as we used in our open version of
the USB flashing tool.

enum mtk_commands {
mtk_cmd_old writel6 = Oxail,
mtk_cmd_old read16 = Oxa2,
mtk_checksum16 = Oxa4,
mtk_remap_before jump to_da = 0xa7,
mtk_jump_to da = Oxa8,
mtk_send _da = Oxad,
mtk_jump_to maui = 0xb7,
mtk_get version = Oxb8,
mtk_close usb_and reset = 0xb9,
mtk_cmd_new _read16 = 0xdo,
mtk cmd _new read32 = Oxd1,
mtk_cmd_new writel6 = Oxd2,
mtk_cmd new write32 = Oxd4,
// mtk_jump_to_da = 0xd5,
mtk_jump_to bl = 0xdé,
mtk get sec_conf = 0xd8,
mtk_send cert = Oxeo0,
mtk_get me = Oxel, /* Responds with 22 bytes */
mtk_send auth = Oxe2,
mtk_sla flow = Oxe3,
mtk_send root cert = Oxe5,
mtk_do_security = oxfe,
mtk_firmware version = Oxff,

};

This is just a C enum structure, making it a very geeky
way of specifying a mapping of numbers to command



hardware hacking 323

meanings. For example, mtk_cmd old write16is command OxA1l,
mtk_command_old read16 is command 0xA2, and so on.

Fernvale Results

After about a year of on-and-off effort between work on the
Novena and Chibitronics campaigns, we were able to boot a
port of NuttX on the MT6260, supporting a minimal set of hard-
ware peripherals. It was enough for us to roughly reproduce
the functionality of an AVR used in an Arduino-like context,
but not much more.

xobs and I presented our results at the 31st Chaos Com-
munication Congress (CCC), and events actually took an
unexpected twist as we wrote our proposal. The week before
submission, we learned that MediaTek released the LinkIT
ONE development platform, based on the MT2502A, in con-
junction with Seeed Studios. The LinkIT ONE is an Internet
of Things platform made for entrepreneurs and hobbyists. It’s
integrated into the Arduino framework and features an open
API that enables the full functionality of the chip, including
GSM functions. But the core OS that boots on the MT2502A
in the LinkIT ONE is still proprietary, and you can’t access
the hardware without going through the API calls provided
by the Arduino shim.

Realistically, it’s still going to be a while before we can port
a reasonable fraction of the MT6260’s features into the open
source domain. It’s quite possible we’ll never be able to do a
blob-free implementation of the GSM call functions, as those
are controlled by a DSP unit that’s even more obscure and
undocumented than the MT6260. Given the robust function-
ality of the LinkIT ONE compared to Fernvale, we decided to
leave the question of whether there was value in continuing
the effort to reverse engineer the MT6260 to the open source
community. In the end, there was a lot of enthusiasm for the
project, but not a lot of action. The LinkIT ONFE’s introduction



324 CHAPTER 9

took a lot of wind out of the sails of the Fernvale project, which
has since been effectively retired.

This is, in fact, the fate of most open source projects. There
are dozens, if not hundreds, of open source operating systems
but only one Linux. The truth is that there are far more inter-
esting ideas than capable developers to execute them. For an
open source project to catch fire and become self-sustaining,
it has to not only pass the minimum viable product (MVP)
stage but also meet a receptive audience with a real need
for the project. Sometimes your project strikes a chord, and
a huge community pushes it forward. Other times, you get a
lot of nice, helpful onlookers who nod appreciatively but are
unwilling or too busy with day jobs to jump in. And still other
times, you yell into a void or, worse, get torn to shreds on some
internet forum about how flawed and pointless your project is.

CLOSING THOUGHTS

Given the nature of open source projects, I tend to take a
page from my startup days and follow a “fail forward fast”
philosophy. Try a bunch of different things, see what sticks,
learn from your mistakes, and try again. It’s important not
to get too wedded to any one idea, especially if the idea isn’t
working out. Finally, you’ll find it helps to be more about the
journey than the destination. Fernvale was most certainly an
epic journey; xobs and I learned a lot, honed a set of tools and
skills that we continue to use to this day for other projects,
and most importantly, had a lot of fun.

In the next chapter, we'll take a look at another kind of
hacking that will become increasingly relevant to all of us over
the coming decades—that of biological systems.



10. biology and
bioinformatics

I once came across a beautiful diagram in Science* show-
ing the metabolic pathways of one of the smallest bacteria,
Mycoplasma pneumoniae. It reminded me of staring at an
Apple IT schematic when I was less than a decade old. Back
then, I knew that the Apple II schematic’s fascinatingly com-
plex mass of lines was a map to the computer in front of me,
though I didn’t know quite enough to do anything with that
map. But the point was that a map existed, so despite its
1imposing appearance, it gave me hope that I could unravel
such complexities. Biological “schematics” like the one on the
next page give me the same hope.

* Eva Yus et al., “Impact of Genome Reduction on Bacterial Metabolism and Its Regulation,”
Science 326, no. 5957 (2009): 1263—-1268, http./ /science.sciencemag.org/content/326/5957/1263/.



326 CHAPTER 10

ATP ADF__ATP e

\ma @g/

ug )
- P~ (o J

AP ADP

The Apple Il schematic from my wall



biology and bioinformatics 327

The M. pneumoniae diagram isn’t quite as precise as the
Apple II schematic, but from 10,000 feet, they feel similar
in complexity and detail. The metabolic diagram is detailed
enough for me to trace a path from glucose to ethanol, and
the Apple II schematic is detailed enough for me to trace a
path from the CPU to the speaker. And just as a biologist
wouldn’t make much of a box with 74L.S74 attached to it, an
electrical engineer wouldn’t make much of a box with ADH
inside it. (A 74LS74 contains two instances of a synchronous
electronic storage device, and ADH is alcohol dehydrogenase,
an enzyme coded by gene MPN564 that can turn acetaldehyde
into ethanol.)

Furthering the computer analogy, though, the Science
article’s authors also included a list that read like a BOM for
M. pneumoniae in their supplemental material. The pentago-
nal boxes in the diagram are enzymes, proteins that catalyze
specific chemical reactions. Each enzyme is listed with a
functional description along with its gene sequence, which is
equivalent to source code.

At the very end of that list, I saw a table of uncharacter-
ized genes. If you’ve done a bit of reverse engineering, you've
probably made similar tables for parts or function calls in an
electronic system. They're the first place I go for fresh clues
when I get stuck. I find it heartening to see biologists and
hackers applying similar techniques to reverse engineering
complex systems.

COMPARING H1IN1 TO A COMPUTER VIRUS

The comparison of biological systems to computer systems
doesn’t stop at the metabolic level. I once read a fascinating
article in Nature* that compared the pathogenic components

* Gabriele Neumann, Takeshi Noda, and Yoshihiro Kawaoka, “Emergence and Pandemic Potential
of Swine-Origin HIN1 Influenza Virus,” Nature 459, no. 7249 (2009): 931-939, hitp:/ /www.nature
.com/nature/journal/v459/n7249/full/nature08157.html.


http://www.nature.com/nature/journal/v459/n7249/full/nature08157.html
http://www.nature.com/nature/journal/v459/n7249/full/nature08157.html

328 CHAPTER 10

of the novel HIN1 virus (better known as swine flu) to those of
other flu strains, and that article got me thinking about how
digital and organic viruses compare. For example, how big is
an organic virus relative to a digital one? To put the question
another way, how many bits does it take to kill a human, or
at least make one quite sick? In exploring this idea, I found
it helpful to draw a few analogies between the digital and
organic worlds.

DNA and RNA as Bits

When the HIN1 pandemic broke out in 2009, the virus was com-
prehensively sequenced and logged in the National Center for
Biotechnology Information’s (NCBI) Influenza Virus Resource
database, and the data collected there is amazing. I love the
specificity of the records. For example, the entire sequence
of an instance of influenza known as A/Italy/49/2009(H1N1)
isolated from the nose of a 26-year-old female Homo sapiens
returning from the United States to Italy is on the NCBI web-
site. Here are the first 120 bits of the DNA sequence:

atgaaggcaa tactagtagt tctgctatat acatttgcaa ccgcaaatgc agacacatta

With 120 bits total, each symbol (A, T, G, or C) represents
2 bits of information. In genes, this can be alternatively rep-
resented as an amino acid sequence, where every three DNA
symbols are a codon corresponding to one amino acid. Long
chains of amino acids fold into complex structures called pro-
teins that give structure and function to a cell, and chains of
amino acids too short to be a complete protein are often called
peptides. Using a translation lookup table that biologists call
the standard genetic code, I converted the previous sequence
into the following peptide: MKAILVVLLYTFATANADTL.

In this sequence, each symbol represents an amino acid,
which is the equivalent of six bits or three DNA bases per
amino acid. There are 20 amino acids in the canonical codon



biology and bioinformatics 329

table, and each letter corresponds to a different amino acid.
M is methionine, K is lysine, A is alanine, and so on.

Now, consider RNA, which passes information from DNA
on how to synthesize proteins to the rest of the cell. As with
DNA, each base in RNA specifies one of four possible symbols
(in this case, A, U, G, or C), so a single base corresponds to two
bits of information. DNA and RNA are information-equivalent
on a one-to-one mapping. Think of DNA as a program stored on
disk and RNA as the same program loaded into RAM. When
DNA is loaded, protein synthesis instructions are transcribed
into RNA, but all T bases are replaced with U bases.

Proteins, then, are the output of running an RNA pro-
gram. Proteins are synthesized according to the instructions
in RNA on a three-to-one mapping. You can think of proteins
like pixels in a frame buffer, as follows:

* A complete protein is like an image on the screen.
e Each amino acid on a protein is like a pixel.

* Each pixel has a depth of six bits, due to the three-to-one
mapping of a medium that stores two bits per base.

* Finally, each pixel goes through a color palette (the codon
translation table) to transform the raw data into a final
rendered color. Unlike a computer frame buffer, however,
different biological proteins vary in amino acid count
(analogous to a pixel count).

To ground this in a specific example, imagine that six
bits stored as ATG on your hard drive (DNA) are loaded into
RAM (RNA) as AUG because T is transcribed as U when
going from DNA to RNA. When the RNA program in RAM is
executed, AUG is translated to a pixel (amino acid) of color
M, or methionine, which is the biological “start” codon—that
1s, the first instruction in every valid RNA program.



330 CHAPTER 10

As a shorthand, since DNA and RNA are one-to-one equiva-
lent, bioinformaticists represent gene sequences in DNA for-
mat, even if the biological mechanism is in RNA format. The
influenza virus has an RNA architecture, rather than DNA,
and the 120 bits of DNA I showed earlier correspond to an
RNA subroutine in influenza. That subroutine codes for the
HA gene, which produces an H1 variety of the hemagglutinin
protein. This is the HI in the H1IN1 designation of swine flu.

Organisms Have Unique Access Ports

Given that background information, if you think of organisms
as computers with IP addresses, each functional group of cells
in the organism listens to the environment through its own
active port. As port 25 maps specifically to SMTP services on a
computer, port H1 maps specifically to the windpipe region on
a human. Interestingly, the same port H1 maps to the intes-
tinal tract on a bird. Thus, the same H1N1 virus will attack
the respiratory system of a human and the gut of a bird. In
contrast, H5—the variety of hemagglutinin protein found in
H5N1, the deadly avian flu—specifies the port for your inner
lungs. As a result, H5N1 is much deadlier than HIN1 because
it attacks your inner lung tissue, causing severe pneumonia.
H1N1 is less deadly because it attacks a more benign port
that just makes you blow your nose a lot and cough up loogies.

NOTE Researchers are still discovering more about the H5 port. The
Nature article I read indicated that perhaps certain human
mutants have lungs that don'’t listen on the H5 port. People
whose lungs ignore the H5 port would have a better chance
of surviving an avian flu infection, while those that open port
H5 on the lungs have no chance to survive (make your time
... all your base pairs are belong to H5N1).*

* If you're not familiar with this turn of phrase, see https://en.wikipedia.org/wiki/All_your
_base_are_belong_to_us.


https://en.wikipedia.org/wiki/All_your_base_are_belong_to_us
https://en.wikipedia.org/wiki/All_your_base_are_belong_to_us

biology and bioinformatics 331

Knowing a virus is deadly, you can figure out how many
bits it takes to kill a human (or at least make one quite sick)
by calculating the number of bits in the viral genome. The
question, then, is how many bits are in this instance of HIN1?
The raw number of bits, by my count, 1s 26,022; the number
of actual coding bits is approximately 25,054. I say “approxi-
mately” because in some places, the virus does the equivalent
of self-modifying code to create two proteins out of a single
gene. It’s hard to say what counts as code and what counts as
an incidental, nonexecuting NOP sled required for the self-
modified code.

That means it takes about 25Kb or 3.2KB of data to code
for a virus that has a nontrivial chance of killing a human.
This is more efficient than a computer virus like MyDoom,
which comes in around 22KB. Knowing that I could be killed
by 3.2KB of genetic data is humbling. Then again, with roughly
800MB of data in my genome, there’s bound to be an exploit

or two.

Hacking Swine Flu

One interesting consequence of reading this Nature article and
having access to the virus sequence is that in theory, I now
know how to modify the virus sequence to make it deadlier.
For instance, the Nature article notes that variants of the
PB2 influenza gene with glutamic acid at position 627 in the
sequence have a low pathogenicity, meaning they aren’t very
deadly. However, PB2 variants with lysine at the same posi-
tion increase the likelihood of mortality.

Let’s see the sequence of PB2 for HIN1. Going back to the
NCBI database, I found the following amino acid sequences
around position 627:




332 CHAPTER 10

The numbers to the left indicate the position of the first
symbol in each line of the sequence; I'll follow that convention
for the rest of this discussion. Check the line labeled 621, and
note the E in position 627. E is the symbol for glutamic acid.
Thankfully, HIN1 seems to be a less-deadly version of influ-
enza; perhaps this is why fewer people died from contracting
H1N1 than the media might have led you to believe.

Now, let’s reverse this back to the DNA code:

E
gaa

Notice the GAA codes for E. To modify this genome to be
deadlier, you'd simply need to replace GAA with one of the
codes for lysine (K). Lysine can have a code of either AAA or
AAG. Thus, a deadlier variant of HIN1 would have a coding
sequence like this:

K
aaa
~ changed

So, a single base-pair change—simply flipping two bits—
might be all you’d need to turn the HIN1 swine flu virus
into a deadlier variant. Theoretically, I could apply a series
of well-known biological procedures to synthesize this strain
and actually implement the hack. As a first step, I could go to
a DNA synthesis website and order the modified sequence to
get my deadly little project going for just over $1,000. Some of
those companies have screening procedures to protect against
DNA sequences that could be used to implement biohazardous
products, but even if they happened to screen for HA variants,
there are well-known protocols for site-directed mutagenesis
that could possibly be used to modify a single base of RNA
from material extracted from normal HIN1.



biology and bioinformatics 333

Adaptable Influenza

Of course, I have to give influenza some credit. It packs a
deadly punch in 3.2KB, and despite scientists’ best efforts, we
haven’t eradicated it. Could influenza do hacks like the one I
just described on its own already?

The short answer is yes.

In fact, the influenza virus evolved to allow for these adap-
tations. Normally, when DNA is copied, an error-checking
protein runs over the copied genome to verify that no mistakes
were made. This keeps the error rate quite low. But remember,
the influenza virus uses an RNA architecture. It therefore
needs a different mechanism from DNA for copying.

Inside its protein capsule, the influenza virus packs code
for a protein complex called RNA-dependent RNA polymerase,
which is a tiny machine for copying RNA off of RNA templates.
Normally, RNA is only generated by transcribing DNA, not by
copying an existing piece of RNA, so this mechanism is essen-
tial for the replication of RNA-based influenza. Significantly,
RNA-dependent RNA polymerase omits an error-checking
protein that would prevent mutations. The result is that
influenza makes about one error per 10,000 base pairs that
get copied. The influenza genome is about 13,000 base pairs
long, so on average, every copy of an influenza virus has one
random mutation.

Some of these mutations make no difference; others ren-
der the virus harmless; and quite possibly, some render the
virus much more dangerous. Since viruses are replicated and
distributed in astronomical quantities, the chance that this
little hack could end up occurring naturally is in fact quite
high. I think this is part of the reason health officials were so
worried about HIN1: people had no resistance to it, and even
though it wasn’t as deadly as it could have been, the strain
was probably just a couple of mutations away from being a
much bigger health problem.



334 CHAPTER 10

There is one other important subtlety to the RNA archi-
tecture of the influenza virus, aside from its high mutation
rate: the virus’s genetic information is stored as eight separate,
relatively short, snippets of RNA. In many other viruses and
simple organisms, genetic information is instead stored as a
single unbroken strand.

To understand why that’s important, consider what hap-
pens when a host is infected by two types of the influenza
virus at the same time. If the genes were stored as a single
piece of DNA or RNA, there would be little opportunity for the
genes between the two types to shuffle. But because influenza
stores its genes as eight separate snippets, those genes mix
freely inside the infected cell and are randomly shuffled into
virus packets as they emerge. If you're unlucky enough to
get two types of flu at once, the result is a potentially novel
strain of flu, as RNA strands are copied, mixed, picked out of
the metaphorical hat, and then packed into virus particles.
This process is elegant in that the same mechanism allows
for mixing of an arbitrary number of strains in a single host.
If you can infect a cell with three or four types of influenza
at once, the result is an even wilder variation of flu particles.

This mechanism is part of the reason novel H1N1 is called
a triple-reassortant virus. Through a series of dual infections or
perhaps a single calamitous infection of multiple flu varieties,
novel HIN1 acquired a mix of RNA snippets that gave it high
transmission rates and made it something humans weren’t
innately immune to. That’s the perfect storm for a pandemic.

If there were a computer analogy to this RNA-shuffling
model, it would be a virus that distributes itself in the form
of unlinked object code files plus a small helper program that,
upon infecting a host, relinks its files in a random order before
copying and redistributing itself. It would also search for
similar viruses that may already be infecting that computer
and on occasion link in object code with matching function



biology and bioinformatics 335

templates from the other viruses. This rearrangement and
novel relinking of the code itself would foil classes of antivirus
software that search for virus signatures based on fixed code
patterns. It would also proliferate a diverse set of viruses in
the wild, with less predictable properties.

The influenza virus’s multilevel adaptation mechanism is
remarkable. The virus has both a slowly evolving point muta-
tion mechanism and a mechanism for drastically altering its
properties in a single generation through gene-level mixing
with other viruses. It doesn’t work quite like sex, but the
result is probably just as good, if not better. It’s also remark-
able that these two important properties of the virus arise as
a consequence of using RNA instead of DNA as the genetic

storage medium.

A Silver Lining

Since there are so many variants of flu, no vaccine can target
all types of the virus, but the HIN1 story does have a silver
lining. Apparently, a patient who contracted swine flu during
the pandemic created a novel antibody with the remarkable
ability to confer immunity to all 16 subtypes of influenza A.
A group of researchers sifted through the patient’s white blood
cells and managed to isolate four B cells that contained the
code to produce this antibody. They cloned the cells and pro-
duced antibodies, facilitating further research into a potential
vaccine that could confer broad protection against the flu.

I found this really interesting at a gut level because it gives
me hope that if a killer virus did wipe out most of humanity,
maybe a small group of people would survive it.

REVERSE ENGINEERING SUPERBUGS

In 2011, a “superbug” strain of E. coli (a species of bacteria
with subtypes that can cause food poisoning) called EHEC
0104:H4 broke out in Europe. When I found out that scientists



336 CHAPTER 10

at BGI, located in Shenzhen, had released the entire sequence
of O104:H4 freely online for anyone to examine, I got very
curious about the situation. I couldn’t help but wonder exactly
what tools bioinformaticists use to analyze DNA sequences.
Manually inspecting the relatively simple sequences of the
influenza virus is one thing, but there must be computational
tools to help make sense of more complicated organisms like
E. col.

Fortunately, my perlfriend (s/perl/girl/) is also a noted
bioinformaticist. She took some time out of her busy schedule
to show me some tools of the trade. It turns out most of the
tools for analyzing DNA are freely available online. Since DNA
is just sequences of A’s, T’s, G’s, and C’s, the standard data
interchange format is plain old ASCII text, which means you
can do a lot of analysis using command-line tools like grep,

sed, and awk.

The 0104:H4 DNA Sequence

The raw sequence data BGI provided was a set of oversampled
subsequences that we needed to assemble by matching up
overlapping regions. Stitching subsequences together is a bit
like composing a large picture from small photos taken at ran-
dom. With enough sampling, you’ll eventually create a mostly
complete picture, but the image will still have ambiguities,
particularly in areas with regular patterns.

The genome of O104:H4 was provided as a list of over
500,000 short DNA samples. The assembly process stitched
the short DNA samples together into 513 contiguous fragments
of DNA (known as contigs), with a total genome length of
5.3 million base pairs. An organism like E. coli has just one big
loop of DNA, so there were 513 spots where limitations in the
sequencing technology (or just bad luck) missed an unknown
number of base pairs, preventing us from knowing the entire,
unbroken sequence. Notably, a typical, non-superbug strain of



biology and bioinformatics 337

E. coli has around 4.6 million base pairs, so 0104:H4 is prob-
ably at least 15 percent longer. Likewise, this strain would
take more time to replicate than a non-drug-resistant strain.
Take a look at contig 34 of the assembly:

GATTACA

I could have picked any contig, and it probably would have
made about as much sense to you as this block of letters. Aside
from making gratuitous pop culture references (the word
GATTACA occurs 252 times in the genome of 0104:H4), the
raw DNA sequence isn’t very insightful. It’s a bit like star-
ing at binary machine code. To analyze the data, you need to
“decompile” the “methods” contained within the code.

In this case, we were searching for DNA sequences that
code for proteins. As I mentioned earlier, proteins are com-
plex, often interwoven chains of molecules consisting of small
building blocks known as amino acids. Cells get things done
using proteins: some proteins turn sugar into energy, others
use that energy to move around or change the cell’s shape, and
still others are responsible for copying and repairing the cell.

Fortunately, protein sequences are highly conserved in
DNA. Nature tends to reuse protein structures, with few
modifications, between organisms. Thus, a function that has
been determined through a biological experiment, even on
another species, can often be correlated with a sequence of
DNA. For instance, one common experiment for determining
the function of a sequence is to cut a piece of DNA out of a
cell and observe what happens to the cell; the loss of function



338 CHAPTER 10

resulting from the missing DNA is often indicative of the
protein’s role in the cell.

Biologists have amassed decades of research on what
certain proteins do into huge databases. Thus, to figure out
what a chunk of DNA means, you can do a fuzzy pattern
match between your DNA of interest and the database of
known proteins.

Reversing Tools for Biology

I needed two tools to reverse engineer DNA: a protein data-
base and a piece of software called BLASTX. Both are free to
download online.

THE UNIPROT DATABASE

I downloaded a list of known proteins from the Universal
Protein Resource, or UniProt (http://www.uniprot.org/). In
2011, a search of the database for “drug resistance” restricted to
E. coli organisms yielded a list of 1,378 proteins that scientists
have identified over the years as parts of the E. coli bacteria’s
drug-resistance machinery. Every year, new discoveries are
added to the database.

Here’s a snippet from the database that describes a protein
that gives 0104:H4 resistance to a drug you may recognize:

>sp|POAD65 |PBP2_ECOLI Penicillin-binding protein 2
0S=Escherichia coli (strain K12) GN=mrdA PE=3 SV=1

MKLONSFRDYTAESALFVRRALVAFLGILLLTGVLIANLYNLOIVRFTDYQTRSNENRIK
LVPIAPSRGIIYDRNGIPLALNRTIYQIEMMPEKVDNVQQTLDALRSVVDLTDDDIAAFR
KERARSHRFTSIPVKTNLTEVQVARFAVNQYRFPGVEVKGYKRRYYPYGSALTHVIGYVS
KINDKDVERLNNDGKLANYAATHDIGKLGIERYYEDVLHGQTGYEEVEVNNRGRVIROLK
EVPPQAGHDIYLTLDLKLOQYIETLLAGSRAAVVVTDPRTGGVLALVSTPSYDPNLFVDG
ISSKDYSALLNDPNTPLVNRATQGVYPPASTVKPYVAVSALSAGVITRNTTLFDPGWWQL
PGSEKRYRDWKKWGHGRLNVTRSLEESADTFFYQVAYDMGIDRLSEWMGKFGYGHYTGID
LAEERSGNMPTREWKQKRFKKPWYQGDTIPVGIGQGYWTATPIOMSKALMILINDGIVKY
PHLLMSTAEDGKQVPWVQPHEPPVGDIHSGYWELAKDGMYGVANRPNGTAHKYFASAPYK
TAAKSGTAQVFGLKANETYNAHKIAERLRDHKLMTAFAPYNNPQVAVAMILENGGAGPAV
GTLMROILDHIMLGDNNTDLPAENPAVAAAEDH




biology and bioinformatics 339

PBP2_ECOLI* is linked to penicillin resistance and is a
mutated gene that determines the shape of the bacteria. It
seems this resistant variant adapted to operate despite the
presence of penicillin; bacteria with nonresistant forms of
the gene are unable to form properly shaped cell walls in the
presence of penicillin, and are killed by the drug. Other genes
might cause more active countermeasures, like pumping an
antibiotic out of the cell or modifying the antibiotic to be less
toxic to the cell. Browsing the UniProt database gives you a
feel for the huge variety of genes available in nature that can
make bacteria resistant to drugs.

THE DECOMPILER

Next, I needed the actual decompiler. That’s where BLASTX
(eventually updated to BLAST+) came in. BLASTX is a variant
of BLAST, which stands for Basic Local Alignment Search Tool.
First, I had this analysis program compute all possible trans-
lations of the E. coli DNA to protein sequences. Translating
DNA results in six possible protein sequences: DNA can be
read forward and backward (known as 5'—3’ and 3'>5’), and
each direction has three possible frame positions. Then, I had
the program check for patterns among the resulting amino acid
sequences that matched the database of sequences known to
provide drug resistance. (I could have also checked for other
types of patterns, by typing something different into the data-
base query.) The result was a sorted list of each known drug
resistance protein, along with the region of the E. coli genome
that best matches the protein.

The following is the BLASTX output for the penicillin

example.

* Incidentally, I find it amusing that the sequence for PBP2 is shorter than, for example, my
PGP public key block.



340 CHAPTER 10

# BLASTX 2.2.24 [Aug-08-2010]

# Query: 43 87880

# Database: uniprot-drug-resistance-AND-organism-coli.fasta

# Fields: Query id, Subject id, % identity, alignment length,
mismatches, gap openings, q. start, q. end, s. start, s. end,
e-value, bit score

43 sp|POAD6S5 |PBP2_ECOLI 100.00 632 0 0 29076 30971 1 632 0.0 1281

43 sp|POAD68 |FTSI_ECOLI 25.08 650 458 21 29064 30926 6 574 2e-33 142
43 sp|P60752|MSBA_ECOLI 32.80 186 120 6 12144 12686 378 558 6e-17 87.0
43 sp|P60752|MSBA_ECOLI 27.78 216 148 5 77054 77677 361 566 8e-14 76.6
43 sp|P77265|MDLA_ECOLI 27.98 193 133 6 12141 12701 370 555 2e-10 65.5

--snip--

The Fields line describes what each column in the table
shows. In the % identity column, you can see that the gene for
PBP2_ECOLI has a 100 percent match inside the genome of
0104:H4.

Answering Biological Questions
with UNIX Shell Scripts

With this list, I could answer some interesting questions, like
“How many of the known drug resistance genes are inside
0104:H4?” Here’s the one-liner program that my perlfriend
wrote to answer that particular question:

cat uniprot_search m9 | awk '{if ($3 == 100) { print;}}' | \
cut -f2 |grep -v "# | cut -f1 -d"_" | cut -f3 -d"|" | \
sort | uniq | wc -1

The output from that script told us that 1,138 genes in
0104:H4 were a 100 percent match against the database of
1,378 genes that can confer drug resistance. When we loos-
ened the criteria to also list 99 percent matches, allowing for
one or two mutations per gene, the list expanded to 1,224 out
of 1,378. The “superbug” O104:H4 earned its title, having
acquired roughly 90 percent of the known resistance genes!



biology and bioinformatics 341

I also wanted to answer the inverse question: which drug-
resistance genes are most definitely not in 0104:H4? By looking
at the resistance genes missing from a superbug, we might be
able to gather clues as to which treatments could be effective
against the bug.

To rule out a drug-resistance gene, we crafted another
search that would reveal which resistance genes in the data-
base had less than a 70 percent match against the sequence
of O104:H4. The 70 percent threshold was just an arbitrary
number I picked; there’s probably a rigorous standard that
scientists and clinicians use.

Here is the list, as it appeared in my terminal:

AOSKI3 A2I604 A3RLX9 A3RLYO A3RLY1 ASH8A5 BOFMU1 B1A3K9 B1LGD9
B3HN85 B3HN86 B3HP88B5AG18 B6ECG5 B7MM15 B7MUI1 B7NQ58 B7NQ59
B7TR24 BLR CML D2I9F6 D5D1U9 D5D1Z3 D5KLY6 D6JAN9 D7XSTO D7Z7R4
D7Z7W9 D7ZDQ3 D7ZDQ4 D8BAY2 D8BEX8 D8BEX9 DYR21 DYR22 DYR23
E00C79 E0QC80 EOQE33 EOQF09 EOQF10 EOQYN4 E1J2I1 E1S2P1 E1S2P2
E1S382 E3PYRO E3UI84 E3XPK9 E3XPQ2 E4P490 E5ZP70 E6A4R5 E6A4R6
E6ASX0 E6AT17 E6B2K3 E6BS59 E7JQVO E7JQZ4 E7UST3 E9U1P2 E9QUGM7
E9VGQ2 E9VX03 E9Y7L7 085667 Q05172 Q08JA7 QOPH37 Q0T948 Q0T949
00TI28 Q1R202 Q1R203 Q3HNE8 04HG53 04HG54 Q4HGV8 Q4HGV9 Q4HH67
0Q4U1X2 04U1X5 Q50JE7 051348 0560QZ5 Q56078 Q5DUC3 Q5UNL3 Q6PMN4
Q6RGG1 Q6RGG2 Q75WM3 Q79CI3 Q79D79 Q79DQ2 Q79DX9 Q79IE6 Q791GO
Q7BNC7 Q83TT7 Q83ZP7 Q8GoW6 Q8GIoW7 Q8GI08 Q8VNN1 Q93MZ2 Q99399
09F0D9 Q9F0S4 Q9F7CO Q9F8W2 Q9L798

You can plug any of these protein codes into the UniProt
database and find out more about them. For example, BLR
1s beta-lactamase, an enzyme that causes resistance to beta-
lactam antibiotics. UniProt describes it like this:

Has an effect on the susceptibility to a number of antibiotics involved
in peptidoglycan biosynthesis. Acts with beta lactams, D-cycloserine
and bacitracin. Has no effect on the susceptibility to tetracycline,
chloramphenicol, gentamicin, fosfomycin, vacomycin or quinolones.
Might enhance drug exit by being part of multisubunit efflux pump.
Might also be involved in cell wall biosynthesis.

Unfortunately, a cursory inspection revealed that most func-
tions that O104:H4 lacked were just small, poorly understood



342 CHAPTER 10

fragments of machines involved in drug resistance. As a result,
there was no clear candidate for a superbug killer in its genome.

More Questions Than Answers

The good news is that anyone can access the tools to analyze
genomes, and some tools, such as grep, awk, and sed, are already
familiar to computer engineers. The bad news is that while we
can ask questions about the genome with these tools, we're still
left with more questions than answers. For example, antibiotic
resistance sounds like a good thing for the survival of bacte-
ria, so why don’t all bacteria have it? And how do bacteria go
about acquiring (or losing) such genes?

The rise of antibiotic-resistant superbugs is a product of our
love of antibiotics. As DNA in E. coli copies at a rate of about
a dozen base pairs per second, shedding even a single unused
gene can lend a meaningful advantage in an exponential growth
race; after all, an E. coli population can double every 20 minutes
in optimal conditions. As a result, there is selective pressure
to shed genes that aren’t necessary for survival. The genome
of O104:H4 is 15 percent longer than that of a typical E. coli
strain, which means that after seven generations, a typical E.
coli strain would have twice the population of 0104:H4. Within
half a day under optimal, antibiotic-free growth conditions, a
strain of E. coli unburdened with antibiotic resistance genes
would have over 20 times the population of 0104:H4. Thus, a
bacterium that hangs on to its antibiotic resistance genes is
like a sprinter wearing a bulletproof vest to a race. Likewise,
one of the greatest natural threats to superbugs is a lean,
fast-replicating common bug that can edge out the superbug
by sheer numbers alone.

However, bacteriocidal and bacteriostatic antibiotics kill off
or prohibit growth of nonresistant bugs, respectively, leaving
only the resistant bugs to grow unhindered. Over time and
with exposure to several types of antibiotics, it stands to reason



biology and bioinformatics 343

that the resistant bug population would continue to selectively
breed for multiple resistance genes, creating a superbug.

Still, I find it astonishing that resistant bugs seem to
develop resistance genes so quickly. We're taught that evolu-
tion is a slow process, so it seems remarkable that bacteria can
serendipitously evolve a suite of antibiotic resistance genes
totaling hundreds of thousands of base pairs. New genes do
in fact take a very long time to spontaneously arise (there are
very few clearly documented cases of this, such as the Long-
Term Evolution Experiment by Richard Lenski). Instead, most
resistance genes are acquired from the environment through
horizontal gene transfer.

Our environment is teeming with DNA fragments. The
GitHub of biology is all around us, from the dirt to the sea
to the air we breathe. Some DNA fragments code for useful
traits; some are just junk. When a bacterium is under stress
(like it 1s when exposed to antibiotics), it may start to take up
random DNA fragments from the environment and manufac-
ture proteins based off the code. If it’s going to die anyway, it
might as well, right? Most of the time, the incorporated DNA
fragments are not helpful, but if one lucky bacterium picks up
the necessary resistance gene from the environment, it can
rapidly outcompete others in an antibiotic-laden environment.

Thus, while nonresistant strains of a bug will rapidly
outnumber antibiotic-resistant strains, the tiny remaining
population of resistant bugs (or perhaps even their lifeless
bodies floating about in the environment) form a reservoir of
genetic material that can be drafted in times of stress. And
since the genetic code is interoperable across all species, resis-
tance genes can even be acquired from unrelated organisms.

Discovering that the functions O104:H4 lacked were poorly
understood was an interesting lesson in itself. Fiction popular-
1zes the notion that knowing a DNA sequence is the same as
knowing what diseases or traits an organism may have. But



344 CHAPTER 10

even though we know the sequences and general properties of
many proteins, it’s much harder to link proteins to a specific
disease or trait. At some point, someone has to get their hands
dirty and do biological experiments involving actual organ-
isms to assign biological significance to a given protein family.
Pop culture references to DNA analysis are glibly unaware
of this missing link in the process, which leads to overinflated
expectations for genetic analysis, particularly in its utility
for diagnosing and curing human disease and applications
in eugenics. Let’s take a closer look at some of those myths.

MYTHBUSTING PERSONALIZED GENOMICS

We're definitely living in The Future in a lot of ways. For
instance, we have electric cars! But Hollywood reels from
the ’60s and "70s also predicted that I'd be using a flying car
to get around town by now, not just an electric car on the
ground. Of course, automotive technology isn’t the only victim
of Hollywood hype.

The potential impact of personalized genomics is greatly
overstated in movies like GATTACA, which create a myth that
your genome is like a crystal ball, and somehow your fate is
predestined by your genetic programming. The perlfriend I
mentioned earlier coauthored a paper in Nature* examining
23andMe’s direct-to-consumer (DTC) personal genomics offer-
ings. Let’s have a look at her paper, and let the mythbusting
begin!

Myth: Having Your Genome Read Is Like
Hex-Dumping the ROM of Your Computer

An inexpensive technique to look at parts of the genome is
called genotyping. Here, a selective diff is done between your
genome and a reference human genome; in other words, your

*P.C. Ng et al., “An Agenda for Personalized Medicine,” Nature 461, no. 7265 (2009): 724—726,
hitp:/ /www.nature.com/nature/journal/v461/n7265/full/461724a.himl.



biology and bioinformatics 345

genome is simply sampled in potentially interesting spots for
single-point mutations called single nucleotide polymorphisms
(SNPs, pronounced “snips”). The concept of genotyping natu-
rally leads to two questions. First, how do you decide which
SNPs are interesting enough to sample? And second, how do
you know the reference genome is an accurate comparison
point? This sets up two more busted myths.

Myth: We Know Which Mutations Predict Disease

Some mutations in the human genome simply correlate with
disease; they are not proven to be predictive or causal. In
truth, we really don’t understand why many genetic diseases
happen. For poorly understood diseases, all we can say is that
people who have a particular disease tend to have a certain
pattern of SNPs. It’s important not to confuse causality with
correlation.

Thus, while scientists can make predictions about diseases
based on SNPs, most of those predictions are correlative, not
causative (and weakly correlative, at that). As a result, a
genotype should not be considered a crystal ball for predict-
ing your disease future. Rather, it’s closer to a Rorschach blot
that you have to squint and stare at for a while before you can
say what it means. For instance, in the paper my perlfriend
wrote, she found that companies often didn’t match up on
their predictions for disease risk because they interpreted
mutation meanings differently.

Myth: The Reference Genome Is an Accurate Reference

The word reference in reference genome should tip you off on a
problem: it implies there are “reference people.” Ultimately,
just a handful of individuals were sequenced to create today’s
reference genome, and most of them are of European ances-
try. As time goes on and more full-sequence genetic data is
collected, the reference genome will be merged and massaged



346 CHAPTER 10

to present a more accurate picture of the overall human race,
but for now, it’s important to remember that a genotype study
1s a diff against a source repository of questionable universal
validity.

For example, some SNPs have different frequencies in dif-
ferent populations. The base A might dominate in a European
population, but at that same position in an African population,
the base G could dominate. It’s also important to remember
that the reference genome has an aggregate error rate of about
1 error in 10,000 base pairs, although to be fair, the process
of discovering a disease variant usually cleans up any errors
in the reference genome for the relevant sequence regions.

It will be decades before we have a full understanding
of what all the sequences in the human genome mean, and
even then, they may not be truly predictive of disease risk or
anything else about our health. Here lies perhaps the most
important message, and a point I can’t stress enough: in most
situations, environment has more to do with who you are,
what you will become, and what diseases you will have than
your genes do. Any upside to personal genomics won’t be due
to crystal-ball predictions, but rather to the fact that know-
ing about their own genetic predispositions may encourage
more people to make lifestyle changes that will help them
stay healthy. If there’s one thing I've learned from dating a
preeminent bioinformaticist, it’s that no matter your genetic
makeup, most common diseases can be prevented or delayed
with proper diet and exercise.

PATCHING A GENOME

So far in this chapter, I've given examples of sequencing and
analyzing genomes. That’s more or less the equivalent of being
able to dump a program executable and analyze it in IDA.
Oftentimes, after you analyze an executable, you’ll want to



biology and bioinformatics 347

patch it to do something new. Patching software is relatively
straightforward and reliable: just fire up a hex editor and
change the file. In the worst case, you might have to use a
focused ion beam (FIB) to modify the individual wires of a
mask ROM inside a chip.

But historically, the ability to patch a genome has been
severely limited. Information in cells is stored at the molecu-
lar level, and changing a specific portion of a gene can be a
painstaking process. Just as vacuum tubes and transistors
came before the integrated circuit, zinc finger nucleases (ZFNs)
and transcription activator-like effector nucleases (TALENSs)
enabled gene editing, but with significant caveats in efficiency,
performance, and ultimately, cost. In 2012, the integrated cir-
cuit of gene editing was introduced: the CRISPR/Cas* system.

CRISPRs in Bacteria

CRISPR, short for clustered regularly interspaced short palin-
dromic repeat, describes a particular RNA structure, while Cas
are proteins that associate with CRISPRs. CRISPRs are, as far
as biologists know, common only in bacteria and archaea (for
example, fungi), and they’re part of a devilishly clever system
for immunity in simple organisms. Like humans, bacteria have
Immune systems that can be programmed through exposure
to pathogens. When bacteria encounter a viral invader, they
have proteins that can snip out short sequences of the viral
DNA and archive the sequences as spacers in a CRISPR.
Labs that failed for months to edit a gene using TALENSs
switched to CRISPR/Cas and succeeded on the first try. They
succeeded so quickly because the process just involves design-
ing a short snippet of RNA that’s inserted into a CRISPR, a
simple exercise that can be done entirely on a computer or, 1

* Addgene has an excellent white paper describing the system in great detail. I recommend
checking it out if my cursory treatment here whets your appetite: https://www.addgene.org/
CRISPR/guide/.



348 CHAPTER 10

daresay, by hand. The RNA snippet itself can be fabricated
in about a week for less than $50 using one of several service
providers, replacing a significant amount of wet lab complex-
ity with an informatics exercise.

Each CRISPR region is tagged by a leader sequence, imme-
diately followed by the CRISPR proper. A CRISPR itself con-
sists of a guide RNA (gRNA) or “spacer” sequence delimited by
a well-defined DNA direct repeat sequence that is palindromic.

NOTE The term spacer is used when discussing an immune system,
while guide RNA is used when discussing genome editing.
Calling a region of interest a spacer is confusing, but mis-
nomers can happen with reverse engineering. I can’t blame
scientists for first noticing a pattern of repeating delimiters
and calling the stuff between the delimiters “spacers.” After
all, physicists got the current flow convention backward and
stuck with it. Who are we to judge?

Palindromic typically means that a string is equivalent
when simply reversed, like the word racecar. When biologists
say a sequence is “palindromic,” they mean the sequence is
equivalent when first complemented (A—T, T>A, G—>C, C—G)
and then reversed. For instance, GAATTC is considered biologi-
cally palindromic, even though it is not lexically palindromic.

The CRISPR/Cas system was described shortly after
the demise of Chumby, and at the time, I was interning at
Dr. Swaine Chen’s infectious diseases laboratory at the Genome
Institute of Singapore. Among other things, I studied various
strains of E. coli that induce urinary tract infection, under
the guidance of Lu Ting Liow. While assisting an investiga-
tion into portions of phage virus DNA that found its way into
E. coli, I was asked to write a script to identify palindromic and
repeating sequences of DNA in the E. coli genome. My script
showed that the genome was littered with the sequences; I
figured the code had a bug and didn’t think much of the result.



biology and bioinformatics 349

But perhaps some of the direct repeats I saw were portions
of a CRISPR.

Let’s look at a CRISPR from a strain of E. coli now. This
1s the CRISPR direct repeat sequence for E. coli 0104:H4:

Tccccac GCGGGGA

The bolded base pairs are the palindromic regions. When
this DNA sequence is translated into RNA (so that T—U), the
palindromic region can pair with itself, forming a hairpin or
stem loop, as shown here.

A stem loop

This shape hints at the significance of the repeated palin-
dromic structures in a CRISPR: when translated into RNA, the
sequence can fold onto itself, forming a secondary structure.
It’s important to remember that genes are not just lines of
code; they are physical molecules whose overall shape sig-
nificantly impacts their function. Biologists use a four-tier
system for describing the physical structure that molecules
like DNA, RNA, and proteins can take based on their source
code. Primary structure is simply the sequence of monomers



350 CHAPTER 10

(bases or amino acids). Secondary structure refers to physical
shapes that arise from the localized interactions of monomers,
due to physical properties such as the spacing and number of
hydrogen bonds between molecules, or the affinity of certain
monomers for water. In RNA and DNA, that means structures
like hairpin loops; in proteins, it means structures like spi-
rals and sheets. Tertiary structure refers to the complex 3D
shape of a molecule that arises from long-distance interactions
between potentially remote portions of the primary sequence.
Tertiary structure is particularly applicable to proteins, as
some amino acids, such as cysteine, can cross-link with each
other over longer distances. Quaternary structure refers to
structures formed from the interaction of multiple molecules.
A Cas9/RNA complex is an example of a quaternary structure.
The final, chemically active and targeted molecule arises only
when a Cas9 protein is merged with a gRNA, and the stem
loop secondary structure of the gRNA is necessary for Cas9
to recognize it.

Determining Where to Cut a Gene

RNA derived from a CRISPR region through transcription is
incorporated into a protein complex with other Cas proteins.
Specific Cas proteins (such as Cas9) use the RNA as a search-
and-destroy template: the Cas9/RNA complexes float around
the cell, and when they find a DNA sequence that matches the
RNA template, they selectively cut the DNA at the template
site, effectively neutralizing the intruding virus. But you may
have noticed a recursion problem: the Cas9/RNA complex
should also cut up the CRISPR region in the host organism’s
genome, as that region also has the target pattern. This would
effectively destroy the CRISPR region for future use.

To avoid destroying the CRISPR region, the Cas9/RNA
complex targets the template DNA plus a short, defined three-
to-five base pair sequence called a proto-space adjacent motif



biology and bioinformatics 351

(PAM). For example, the PAM for a popular Cas9 protein from
S. pyogenes is [AGTC]GG when written in regular expression
format; biologists use a different convention, NGG, to say the
same thing. As long as the CRISPR archive doesn’t include
the PAM sequence, it won’t be cut up by the complex.

The PAM requirement means there are some limitations
on where you can cut a gene. It’s a bit like targeting only hex
strings that end in 0xC3 or searching for return-oriented
programming (ROP) gadgets. Just as hackers searching for
ROP gadgets look for short sequences of instructions that end
in a RET opcode, bioinformaticists have to search for short
sequences of DNA to edit that end in a PAM.

Despite these limitations, CRISPR/Cas has proven to be
a versatile and reliable gene-editing tool. It has been adapted
to both cut genes and paste in new sequences. Making a
precise cut at an arbitrary location in DNA is the hardest
step of inserting new DNA. But in conjunction with well-
studied techniques like non-homologous end joining (NHEJ)
or homology-directed repair (HDR), CRISPR/Cas can be used
to insert modifications into a gene.

Implications for Engineering Humans

Even though CRISPR/Cas is a naturally occurring system
found in bacteria and fungi, the universal genetic code means
the system is binary-compatible with all species, including
humans. Before this system was discovered, genes were largely
read-only, especially in living organisms. CRISPR/Cas gives
us a much more reliable and efficient tool to patch and repair
genes, without necessarily disrupting the viability of the host
organism. Biologists have managed to pack the necessary DNA
for a CRISPR/Cas exploit into viruses, enabling them to sneak
these gene-editing tools through the cell walls of live, complex
organisms like mice, plants, and humans. The structure of a
CRISPR also allows scientists to perform multiple edits in a



352 CHAPTER 10

single experiment, expanding the experimental and therapeutic
versatility of the technique.

This technology has already been validated on human cells,
even human embryos, and the implications are simply mind-
boggling. Regardless of ethical standards set by the scientific
and legal communities in your country of residence, I think the
promise of custom-designed children, free of genetic diseases
that once plagued parents, is too strong a temptation. Even
if most countries banned such a practice, I feel it’s inevitable
that someone, somewhere, perhaps funded by a wealthy bil-
lionaire unable to have viable children of their own, will start
tinkering with custom-engineered humans. If the results are
positive, it will likely change the course of humanity more
profoundly than Moore’s law. And that’s if a mechanism called
gene drive doesn’t get there first.

Hacking Evolution with Gene Drive

Gene drive rewrites the rules of sexual reproduction and,
consequently, evolution in a way previously unseen in nature.
You might know that you have two copies of every gene: one
from your mother and one from your father. Each copy is an
allele. If the alleles match, you're said to be homozygous for
that gene. If the alleles are different, you're heterozygous for
it. Normally, which allele a child gets from each parent is a
coin toss, and the fitness of a child in a given environment is
the primary deciding factor for passing a set of alleles on to
a new generation.

Gene drive eliminates this coin toss. Environmental selec-
tion is short-circuited, allowing genes with potentially negative
side effects to propagate rapidly in a population. This exploit is
made possible by outfitting the desired allele with a CRISPR/
Cas-assisted gene-editing mechanism that targets and converts
a heterozygous allele into a homozygous allele. For example,
if a mother has a gene outfitted with a CRISPR/Cas-assisted



biology and bioinformatics 353

gene drive mechanism, it doesn’t matter what the father’s
genes are. Inside the child, the mother’s copy will express the
CRISPR/Cas editing mechanisms, seeking out the father’s copy
and editing it to be the same as the mother’s.

In terms of disruptive power, if CRISPR/Cas is the rm com-
mand, then gene drive is like calling rm -r * instead.

This has a profound effect on natural selection. Forget
survival of the fittest; changes no longer have to strictly
benefit an organism’s fitness to spread through the popula-
tion. Furthermore, gene-driven changes can sweep through a
natural population at an exponential rate (much faster than
typical mutations) because they don’t rely on coin tosses and
natural selection to amplify a mutation.

On the upside, gene drive could be used to force good
changes into the world, like malaria-free mosquitoes. On the
downside, this new mechanism, previously unseen in nature,
could wreck havoc on evolution and the ecosystem. Although
our changes could be well engineered and well intentioned,
nature likes to shake things up through mutations, spontane-
ous rearrangements, and horizontal gene transfer. If a gene-
driven organism were to pick up extra genes in the payload
region, the outcome could be unpredictable.

For instance, malaria-free mosquitoes would benefit
humans, but mosquitoes also play a large role in the Earth’s
ecosystem as a food source for fish and birds. If modified mos-
quitoes failed to thrive and occupy their ecological niche, there
could be a domino effect that hurts other species. This could
all happen on a timescale so short that we may not be able to
reverse it if we tried. Furthermore, organisms like mosquitoes
don’t recognize geopolitical boundaries. Thus, banning gene
drive in most of the world doesn’t make anyone safe from its
potential consequences. If just one well-engineered organism
makes it into the wild, everyone has to deal with it.



354 CHAPTER 10

Perhaps it’s no mistake that CRISPR/Cas has been found
only in bacteria and archaea—organisms that are known to
reproduce asexually. Perhaps the ability to short-circuit the
fitness requirement in sexual reproduction rapidly degrades
the overall fitness of any germ line carrying a CRISPR/Cas
mutation so that the line goes extinct before it can take over
a population. After all, any accidental genes or spontaneous
mutation that finds its way into a CRISPR/Cas payload would
also sweep through the population as quickly as the initial
drive.

The question, then, is how long does it take for this degra-
dation and extinction to happen? The example of eradicating
malaria vectors would have a very different outcome if the
modified mosquitoes went extinct within a few years versus
several millennia.

CLOSING THOUGHTS

Clearly, there are a lot of unanswered questions on the frontier
of biological engineering, and it’s all happening right now.
Whether good or bad, the outcome of today’s experiments will
probably affect humanity as profoundly as Moore’s law and
the internet. Electronic technology reshaped the way we think
and communicate, and biotech will reshape our bodies and our
environment. The big difference is that in biotech, we haven’t
developed the ability to do backups, but we are developing
technology with the potential power of the rm -r * command.

Personally, I'm optimistic; I think these technologies can
and will be used to improve our lives. But for that to happen,
we need society to understand the issues at stake and have a
vigorous and open debate. Even if these biological techniques
have scary implications for our health and safety, failing to
disclose and discuss vulnerabilities just invites zero-days. And
who wants to wake up one morning infected with crippling
malware and no viable patch?



biology and bioinformatics 355

Hardware breakthroughs have changed our lives as we
know it, but Moore’s law is slowing down, and DNA sequencing
has outpaced it. Who knows what new world will be created
by advancements in biotech? And just as society benefits from
the responsible disclosure and sharing of vulnerabilities and
exploits, engaging in scientific discourse is more construc-
tive than attempting to censor it. Perhaps the experience
and perspectives gained in maturing the hardware industry
over the past 50 years from pocket calculators into pocket
supercomputers can help guide biotech to a similarly positive
outcome.






11. selected interviews

I've done several interviews over the years, and this chapter
compiles a couple that I thought you might enjoy. The first
interview was originally published by the China Software
Developer Network (CSDN), which describes itself as a “pro-
grammer magazine.” At the end, you’ll find a story from the
Blueprint, a collection of interviews with founders and inno-
vators in hardware.

ANDREW “BUNNIE” HUANG:
HARDWARE HACKER (CSDN)

This interview originally appeared in CSDN in Chinese in 2013,
and the magazine kindly allowed me to publish an English
translation on my blog. In the first section, I discussed my



358 CHAPTER 11

thoughts on the maker movement, which was relatively new
at the time, and my experience with making hardware prod-
ucts. The second section was more about hardware hacking
and what I feel it means to have a hacker spirit. You can find
the original Chinese-language version at http://www.csdn
.net/article/2013-07-03/2816095.

About Open Hardware and the Maker Movement

The maker and open hardware movements have attracted
a lot of attention. Chris Anderson wrote a book called
Makers, and Paul Graham called this time the “Hardware
Renaissance.” How do you think this movement will affect
ordinary people, developers, and our IT industry?

This movement, as it may be, is more a symptom than a cause,
in my opinion. First, let’s review how we got to this point.

In 1960, there was only hardware, and it was all open. When
you bought a transistor radio, it had a schematic printed in
the back. If the radio broke, you had to fix it yourself. It was
popular to buy kits to make your own radios.

Between 1980 and 1990, the personal computer revolution
began. Computers started to become powerful enough to run
software that was interesting and enabling.

From 1990 to 2005, Moore’s law drove computers to be twice
as fast and have twice as much memory every 1.5 to 2 years.
Only software mattered, because unless you could afford to
fab a chip in the latest technology, making hardware wasn’t
worth it. By the time you got the components together, a new
chip would make your design look slow. Optimizing software
also mattered less than features, convenience, and creativity.
Users could just buy a faster computer and run old software
faster. “Making” fell out of fashion because there was no time
for it: you had to ship code or die.


http://www.csdn.net/article/2013-07-03/2816095
http://www.csdn.net/article/2013-07-03/2816095

selected interviews 359

From 2005 to 2010, computers didn’t get much faster
in terms of clock speed, but they got smaller. Smartphones
were born. Everything became an app, and everything is still
becoming more connected.

From about 2010 to now, Moore’s law has been slowing
down. This slowdown is rippling through the innovation chain.
PCs aren’t getting faster, better, or cheaper in a meaning-
ful way. We buy new PCs just to replace broken ones, not
because the latest model is so much better. It’s too early to
tell, but smartphones may also be solidifying as a platform:
the 1iPhone 5 is quite similar to the iPhone 4, and Samsung
phones also look pretty similar across revisions.

The question, then, is how to innovate? How can you create
market differentiation? With Moore’s law slowing down, it’s
possible to innovate in hardware and not have your innova-
tion look slow because a new chip came out. You have steady
platforms (PCs, smartphones, tablets) that you can target your
hardware ideas toward. You don’t have to fab chips just to have
an advantage. Everyone is now sifting through technology’s
past, looking for niches that were overlooked. Even an outdated
smartphone motherboard looks amazing when you put it in
a quadcopter, satellite, HVAC system, automobile, energy
monitoring system, health monitoring system, and so on.

Furthermore, as humans, we fundamentally feel differ-
ently toward physical things and virtual things. Apps are
wonderful, but human homes are more than a smartphone, a
food tray, a bed, and a toilet. People still surround themselves
with knickknacks, photos of friends, and physical gifts from
special occasions. I don’t think there will ever be a time when
a virtual teddy bear app will displace a physical teddy bear
for cuddling at night.

As a result, there will always be a place for people to make
hardware that fills this need for tangible goods. This hardware



360 CHAPTER 11

will merge more technology and run more software, but in the
end, there is a space for makers and hardware startups, and
that space is just getting bigger now that hardware technol-
ogy is stabilizing.

Arduino and Raspberry Pi seem to reduce the threshold
for designing hardware. How do you think this will affect
the hardware industry? Do you think these platforms
will progress the industry by leaps and bounds? If not,
what does it take to make a really innovative hardware
product?

Arduino and Raspberry Pi serve specific market niches.

Arduino’s key contribution is reducing computation to an
easy-to-use physical form. It was made first and foremost by
designers and artists, and less so by technologists. This unique
perspective on technology is very powerful because people who
aren’t programmers or hardware designers want to access hard-
ware technology, too. Some very moving, deep interactive art
pieces have been made using the Arduino, allowing hardware
to transform menial control applications into artwork that
changes your mood or makes you think about life differently. I
think Arduino is just the first step toward taking the “tech” out
of technology and letting everyday people not just use technol-
ogy but create with it. There will be other platforms, for sure.

Raspberry Pi is a very inexpensive embedded hardware
reference module, and I think other platforms will follow in its
footsteps. It’s cheap enough that for many applications, you
can use the Raspberry Pi as is and gain no net cost advantage
by designing and building your own hardware. For hardware
professionals, the nice thing about this platform is that instead
of buying a reference design and then having to spin your own
board, you can just buy the Raspberry Pi and ship it in your
product. For people who have relatively low-volume products,
this makes sense.



selected interviews 361

I see an ongoing trend toward product design becoming
more feasible at low volumes. There’s still a market for million-
unit blockbuster devices like smartphones and coffeemakers,
but eventually, there will also be a market for devices that only
have a production run of 1,000 to 10,000 units, but with a much
higher margin. These small-run products will be developed
and sold by teams of just one or two people so that the profit
will still be a good living for the individuals. The key to the
success for these products is that they are highly customized
and help solve a specific problem for a small group of users
who are willing to pay more for the solution.

When new concepts or technologies first appear, they
always generate optimistic discussion, but most of them
will really affect our lives only after a long period of
development. When discussing the maker and open
hardware movements, are we too optimistic? Does the
average person have common misunderstandings about
this field?

Yes, it does take a long time for technology to really change
our lives.

The maker movement, I think, is less about developing
products and more about developing people. It’s about helping
people realize that because technology is man-made, every per-
son has the power to control it with a little knowledge. There
1s no magic in technology. You could also say that anyone can
be a magician with a little training.

Open hardware is more of a philosophy. The success or
failure of a product is largely disconnected from whether the
hardware is open or closed. Closing hardware doesn’t stop
people from cloning or copying, and opening hardware doesn’t
mean that bad ideas will be copied simply because they are
open. Unlike software, hardware requires a supply chain,
distribution, and a network of relationships to build it at a



362 CHAPTER 11

low cost. That overhead means being open or closed is only
a small part of the equation, and the question of whether to
open or close a project revolves around how much you want
to involve end users or third parties to modify or interoperate
with your product.

Looking at the future of open source hardware, do you
think it will be analogous to the open source software
industry, where many commercial companies also
support open source software? What are the differences
between them?

I don’t think they’re quite analogous. In software, the cost to
copy, modify, and distribute is basically zero. I can clone a
copy of the Linux source repository, run the make command,
and have the same high-quality kernel running on my desktop
that runs on top-end servers and supercomputers.

But copying hardware has a real cost: the parts, the facto-
ries, and the skilled workers used to build them; the quality
control procedures; and the manufacturing process are all
important factors in the final product’s cost, look, feel, and
performance. Simply giving someone a copy of my schematics
and drawings doesn’t mean they can make my exact product.
Even injection molding has art to it. If I give the same CAD
drawing to two tooling makers, the outcome could be very dif-
ferent depending on where the mold maker decides to place
the gates, the ejector pins, the cooling for the mold, the mold
cycle time, temperature, and so on.

And then you have to think about the distribution chan-
nel, reverse logistics, financing, and so on. Even as the world
becomes more efficient at logistics, you'll never be able to buy
a TV as easily as you can download the movies that you'd
watch on that TV.



selected interviews 363

What kind of business model do you think is ideal for
an open source hardware company? Could you give an
example?

One of my key theories behind open source hardware is that
regardless of the license, hardware is essentially open, at least
at the level of schematics and PCB layout. For a relatively
small amount of money, you can pay a service to extract the
details required to copy a PCB design. Therefore, you can
assume that once you ship hardware, it can be copied. If you
accept this assumption, then it follows that not releasing
schematics and PCB layouts won’t stop people from copying
your goods. If someone wants to copy a piece of hardware, they
will, whether you share your design files or not.

But sharing design files does make a difference to a sepa-
rate and important group of people. There are other businesses
and individual innovators who could use your design files to
design accessories, upgrades, or third-party enhancements
that rely upon your product. In that case, sharing your design
files improves your opportunity for new business relation-
ships, which makes doing so (with an open source hardware
license to reserve a few basic rights and protections) a practi-
cal suggestion.

Clearly, some hardware strategies aren’t compatible with
open source. If your sole value to the consumer is your abil-
ity to make stand-alone hardware, and you have no strategic
advantage in terms of cost, then you’d want to keep your plans
secret to delay low-cost copies for as long as possible.

But the most innovative products today aren’t just pieces
of hardware. They also involve software and services. Open
hardware business models work better in such hybrid products.
In many cases, consumers are willing to pay annually (think
in terms of subscriptions, advertising, upsells, accessories,



364 CHAPTER 11

royalties, or upgrades) for many products. In fact, it’s most
profitable to just collect these fees and not involve yourself in
the hardware manufacturing portion. Controlling access to an
ongoing service is also much easier than controlling the plans
for a piece of hardware.

Thus, if you couple a profitable online service with your
hardware, open hardware makes a lot of sense. Letting other
people copy the hardware, sell it, and add more users to your
online service simply means you get more revenue without
more risk.

You come to China often and know a lot about this
country. China’s software technology is not advanced. Do
you think that being the world factory center will help
China improve its overall level of technology? How can
this country change from just a manufacturing center to
a place focused on design, research, and development?
What is China missing?

I wouldn’t say I know much about China. I know a little about
one small corner of China in one specific area—hardware
manufacturing. If there’s one thing I do know, however, it’s
that China is a very big country with many different kinds of
people and a long history that I am only beginning to under-
stand. However, I've lived through almost the entire history
of high technology, so I can comment on the relationship
between high technology and people, from which I can derive
some perspective about China.

First, every country that is a technology powerhouse today
started with manufacturing. The United States started as
colonies of Britain, mining ores, trapping furs, and farming
cotton and tobacco. Over time, the United States had steel
mills and linen production. The United States didn’t really
start to develop original technology until the early 1900s, and
that process didn’t take off until the mid 1900s.



selected interviews 365

Japan developed similarly. It started in manufacturing,
copying many US-made goods. In fact, if you believe the histori-
cal accounts, the first cars and radios made in Japan were not
great. It took the United States and Japan decades to go from
manufacturing-based economies to service-based economies.

Compare that to China, where the electronics manufactur-
ing industry started maybe 20 years ago, at most, and China is
just turning the corner from being a manufacturing-oriented
economy to one that can do more design and software technol-
ogy. I believe this is a natural series of events. Some portion of
entry-level workers will eventually become technicians, then
some technicians will become designers, and finally, some
designers will become successful entrepreneurs.

In concrete numbers, if you have 10 million factory work-
ers, maybe 1 percent, or 100,000 workers, will learn enough
to become technicians after a few years. After a few years
of technician work, maybe 1 percent will gain enough skill
to become original designers, giving 1,000 designers. These
experienced, grassroots designers would become the core of an
entrepreneurial economy, and from there, the economy could
begin to transform.

Over the course of a decade or two, a thousand companies
would eventually be distilled to just a handful of global brand
companies. I believe China is currently going through this
final phase. A lot of people in Shenzhen have the experience
of manufacturing, the wisdom to do design, and the ability to
apply their talent to innovation and original product design.
The next decade will be an exciting one for China’s technology
industry, if the current policies on economic and intellectual
development stay roughly on course.

This pattern applies primarily to hardware or hardware-
dominated products. Software products have a similar pat-
tern, but I believe there are unique cultural aspects that give
the West an advantage in software design. In hardware, if a



366 CHAPTER 11

process is not efficient or is producing low yield, you can easily
identify the root cause and produce direct physical evidence of
the problem. Hardware problems, in essence, are indisputable.

In software, if code is not efficient or it’s poorly written,
it’s very hard to identify the exact problem that causes it. You
can see evidence of programs crashing or running slowly, but
there’s no broken wire or missing screw you can hold up to
show everyone why the software is broken. Instead, develop-
ers have to review complex designs, consider many opinions,
and ultimately, identify a problem that comes down to nothing
more than one individual’s bad decision. All software APIs are
simply constructs of human opinions.

Asian cultures have a strong focus on guanxi, reputation,
and respect for the elders. The West tends to be more rebel-
lious and willing to accept outsiders as champions, and they
have less respect for the advice of elders. As a result, I think
it’s very culturally difficult in an Asian context to discuss code
quality and architectural decisions. The field of software itself
is only 30 years old, and older, more experienced engineers
are also the most out of date in terms of methodology and
knowledge. In fact, the young engineers often have the best
ideas. But if it’s culturally difficult for young engineers to
challenge the decisions of elder engineers, you end up with
poorly architected code and no hope to be competitive.

Overcoming these obstacles is possible, but enforcing the
correct incentives and culture would require a very strong
management philosophy. The workers should be rewarded
fairly for making correct decisions, and there can be no favor-
ites based upon friendship, relationship, or seniority. Senior
engineers and managers must see a real financial reward for
accepting their mistakes, instead of saving face by forcing junior
engineers to code patches around bad high-level decisions. US
companies usually achieve this alignment by sharing equity
in a company among the engineers so that the big payout only



selected interviews 367

comes if the company as a whole survives, regardless of an
individual’s ego.

What do you think the relationship between individual
makers and commercial companies will be in the future?
And as individual makers may compete not only with
commercial companies but also with other makers in the
future, what factors are critical to a product’s success?

As minimum order quantities decrease and innovation gets
closer to the edge, I think commercial companies will see
more competition from makers, especially as the logistics
industry transforms itself into an API that can plug directly
into websites. At the end of the day, the most critical factor
to success will still be how much value consumers perceive
from a product. This is related to superior features and good
product quality, but the presentation to the consumer and how
clearly the benefits are explained are important, too.

As a result, any product will need to be visually appeal-
ing, be easy to use, and come with marketing material that
clearly explains the benefits of using it. Those elements are
often challenging for individual makers who are good at mak-
ing products that are valuable technically but have less talent
for sales and marketing. Makers who can master both facets
will have an edge.

About Hardware Hackers

You’ve participated in the development process of many
products, but what is your personal goal?

I would like to make people happy by building things that
improve their life in some way. The greatest pleasure is to
see someone enjoying something I made, and knowing I've
improved that person’s life in some small way. Sometimes, the
product is solving a big problem for its users; other times, the



368 CHAPTER 11

product is more whimsical, and the user’s happiness comes from
fun or beauty. But either way, knowing I'm helping another
person by making something is important to me. I've learned
that money beyond a certain level doesn’t make me any hap-
pier. This makes me difficult to work with, because it’s hard
for people to just hire me by offering a lot of money. Instead,
they need to convince me that the activity will somehow also
make people happy.

Another important goal for me is to just understand how
the world works. I have a natural curiosity, and I want to
learn and understand all kinds of things. The universe has
a lot of patterns to it, and sometimes, you’ll find seemingly
unrelated pieces fitting together like magic. Discovering these
links and seeing the world fit together like a big jigsaw puzzle
1s profound and satisfying.

Failure tends to give people more experience. Could
you talk about the not-so-successful projects you have
participated in, or if you’ve ever seen other failed projects
that inspired you?

My life is a story of failures. The only thing I have done repeat-
edly and reliably is fail. But I have two rules when handling
failure:

1. Don’t give up.

2. Don’t make the same mistake twice.

If you follow these rules, eventually, youll find success
after many failures. That said, I do have an interview that
focuses on one of my recent failures. You can read it at http://
makezine.com/2012/04/30/ makes-exclusive-interview-with
-andrew-bunnie-huang-the-end-of-chumby-new-adventures/.*

* This interview is excerpted in Chapter 6.



selected interviews 369

Your book, Hacking the Xbox, has been published for
10 years. For people who want to learn reverse engineering
or become a hardware hacker today, how do these
experiences and skills still apply?

I’d like to think the core principles covered in the book are
still relevant today. The Xbox was simply an example I used
to show how to do things. The approach and the techniques
are applicable to a broad range of problems.

For the Chinese audience, I have found mobile phone
repair manuals to be quite interesting to read, even though
I can’t read Chinese well. Their descriptions on the theory of
electronics are not always completely accurate, but practi-
cally speaking, they’re good enough, and they provide a quick
way to get started while learning immediately useful skills
in repairing phones.

There’s also a Chinese magazine, called 754k B8 (something
like Radio Electronics in English), which I have found to be
quite good. If you get started building the projects in there, I
think you will learn very quickly.

The Xbox One has more stringent restrictions for users.
What do you think about this? Are you interested in
exploring this black box and upgrading your book?

I haven’t done much work on video game consoles in a while;
there’s a whole new generation of console hackers who are
excited to explore them, and I'm happy for that. As for the Xbox
One’s security, I'm sure it is one of the most secure systems
built. Microsoft did a very good job on the Xbox 360, and the
Xbox One security team members I know personally have a
very solid understanding of the principles needed to build
secure hardware. It should be very hard to crack.

That said, I'm glad I have no desire to buy or use one. I
think I would become very frustrated with their use policies
and restrictions very quickly.



370 CHAPTER 11

There’s a lot of controversy over whether electronic
devices should have a lock to prevent user rooting. What
do you think about this? Is there a contradiction between
ensuring user safety and giving users complete control
of their devices?

I believe users should own their hardware, and owning some-
thing means having the right to modify it and having root
access rights. If a company is concerned about users being
unsafe, then it’s easy enough to allow users to opt out by sign-
ing an electronic waiver to give up their support and warranty
rights in order to gain complete access to their own machines.
Most people who can root their machines are already smarter
than the phone support they would be calling inside the com-
pany, so they shouldn’t have problems.

The laws have changed to make some rooting activities
illegal, even on hardware that you bought and own. I think
this reduction in our natural rights of ownership is dangerous
and can put consumers in unfair situations. This also discour-
ages consumers from exploring and learning more about the
technologies they’ve become so dependent upon.

As hardware systems become more integrated, do you think
hardware hacking is getting more and more difficult, or
do you worry about hardware hackers becoming extinct?
If so, how could we change this situation?

Hardware system integration has been increasing for a long
time. The TX-0 just used transistors, the Apple II used TTL
ICs, PCs use controller chipsets, and mobile phones have just
a single System-on-Chip. Increasing integration does make
some parts harder to hack, but there are always opportunities
at the system integration level.

In other words, I still think there is art in hardware, but
the level at which hardware hackers have to work gets higher



selected interviews 371

every day, and that’s a good thing. It means hacks are getting
more powerful with time as well.

Hacking the Xbox is dedicated to Aaron Swartz. Could
you talk about why you think the hacker spirit is
important today?

The hacker spirit is the ultimate expression of human problem-
solving ability. It’s about the ability to see the world for what it
is, and not the constructs and conventions that society puts in
place. For instance, a brick is not just used to make buildings;
it can be a doorstop, a weapon, a paperweight, a heating bal-
last, or it can be ground up and used for soil. Hackers question
convention through the lens of doing what’s most practical and
correct for the situation at hand. Sometimes their methods
aren’t always harmonious, as hackers often prioritize doing
the right thing over being nice or playing by the rules.

I find the more difficult situations become, the more per-
vasive and stronger the hacker spirit becomes among common
people. I see evidence of this around the world. This spirit is
linked to the human will to survive and to thrive. I think it’s
important for a society to cultivate and tolerate the hacker
spirit. Not everyone has it, but the few who do help make

society more resilient and survivable in hard times.

Do you have other words you would like to share with
Chinese readers?

I was reading some comments on a Chinese web forum and
was surprised that many Chinese regard the term shanzhai
as a negative term. As an outsider, I feel that the shanzhai
have done a lot of very interesting and useful innovation.

In English, we have a similar problem. The term hacker in
English started as a good term but over time became associated
with many kinds of negative acts. The term maker was coined
to distinguish between the positive and negative aspects of



372 CHAPTER 11

hackers, but I still call myself a hacker because I still adhere
to the traditional definition of the word.

It may be easier to explain the innovation happening
in China if a similar linguistic bifurcation could happen in
Chinese. I recently proposed referring to the innovative, open
aspects of what the shanzhai do, like their method of sharing
design files, as gongkai (2FF). Significantly, I feel the term
FFH (kai fang, which means to lay open or to open to the
public) as used in FFHIRNKEE (kai fang yuan dai ma, which
means open source software) doesn’t quite apply. It refers to a
specific Western-centric legal aspect of being open, which is not
applicable to the methods engaged in the Chinese ecosystem.

NOTE Incidentally, kaifang also means to bloom, so it sounds poetic
in Chinese. Gongkai, on the other hand, just means public or
overt—uwhether you like it or not. Its meaning is not as poetic

or optimistic as kai fang.

The fact that China has found its own way to share IP,
unique from the Western system, doesn’t mean that the Chinese
system is bad. It’s actually quite interesting, and I'm very curi-
ous to see where it goes. Since I see positive value in some
of the methods that the shanzhai use, I'd propose using the
more positive, generic term gongkai to describe the style of
IP sharing commonly used in China, but I would stop short of
formally associating it with the strict definition of open source.

But then again, who am I to say? I'm not a native Chinese
speaker, and maybe there is a much better way to address
the situation.

THE BLUEPRINT TALKS TO ANDREW HUANG

The Blueprint publishes stories about founders in the hardware
space, and this interview focuses on, as the writer put it, my
“personal journey.” I discuss what got me into hardware as a



selected interviews 373

kid, what projects I was working on when I gave the interview,
and pitfalls that hardware startups should keep an eye out
for. The original interview, which includes some photos of my
projects and answers to a few other interesting questions that
didn’t appear in the interview proper, is at https:/ /theblueprint
.com/stories/andrew-huang/.

How would you describe your first encounters with
hardware?

My dad bought an Apple II clone when I was eight years old,
and that sparked my interest in hardware. The clone came
without a case, leaving all of the electronics exposed. I could
see the electronics, and I wanted to fiddle with them. My dad
didn’t want me to touch the computer because I might break it,
but when he wasn’t home, I'd still fiddle with the electronics.
I broke it several times because the chips were in sockets.
Even though my dad told me not to, I just wanted to see what
happened when you put the chips in backward. I learned very
early on that putting chips in backward is a bad thing!

The great thing is that the Apple IT came with a cool set of
schematics and source code. I was the weird kid in elementary
school who carried around an Apple II reference manual. On
the playground, I'd just pull up the schematic and stare at
it because it was so fascinating. I didn’t understand what I
was looking at, but I had some inkling about the connection
between lines on the schematic and wires on the board. Over
time, I learned to map the schematic’s symbols to the computer
functions bit-by-bit, and it all started coming together.

By junior high or high school, I was able to build my own
plug-in cards for the computer, and I built a little speech
synthesizer. That’s what you do when you grow up among
cornfields in Michigan and kids don’t want to play with you
because you look strange and you are the only Chinese kid.


https://theblueprint.com/stories/andrew-huang/
https://theblueprint.com/stories/andrew-huang/

374 CHAPTER 11

How did your early experiences affect your decision to
go into the hardware industry?

I just kept learning more from there. When I went to MIT, I
flipped a coin, and instead of going into biology, I went into
electronics. I got a degree, eventually went into industry, hated
that, and then went back for my PhD because I wanted to hide
in my shell a little more. After getting my PhD, I participated
in a bunch of startups that all failed. I never had a successful
startup, but I learned a lot from failure.

I did some silicon chip design and reverse engineering
before I did manufacturing. For many years, I wanted to do
the biggest, baddest, hardest project I could do, which meant
working for a pure tech startup. With something like that,
you’re way in the future and basically by the time the technol-
ogy works and goes onto the market, the patents have expired.
There is no capital monetization, you work really hard, and
the product is really obscure. As a result, I never had anything
ship in volume. That was the most frustrating part: to put
my life into something and never have it see the light of day.

What lessons did you learn while working on chumby?

I got tired of working for a pure tech company and decided it
was time to join a company that could monetize a business idea
quickly. When I joined Chumby, I wanted to do open hardware
and manufacturing, and I started logging experience in both.
I worked on the first chumby and then multiple generations
after that from 2005 to 2010.

When I started, I had never mass-produced a product or
done mechanical design. I didn’t even know what injection
molding was. But I had the privilege of sitting with other
engineers at PCH, and I would just get on the factory floor, see
what they were doing, and learn about it. By the time I was
through with Chumby, I was able to use SolidWorks to design
my own cases and make injection-molded cases from scratch.



selected interviews 375

It was a very educational experience. I learned to do test
plans, manufacturing, sourcing, and other skills you just have
to pick up along the way. When Chumby went under, I was
living in Singapore, where I had attempted to open a field
office. I stayed behind to wind down the office, give it a clean
shutdown, and make sure everyone got jobs elsewhere. After
everything was taken care of, I decided to be unemployed
for one year; the first thing I did was design a radiation sen-
sor for Japan after the terrible earthquake and tsunami on
March 11, 2011.

Then I started thinking about what my next project would
be. I did a series of projects like reverse engineering SD cards,
and I met Jie Q1, who I helped to produce circuit stickers under
the Chibitronics brand.

One of the guys working with me in Singapore was Sean
Cross, and we were sitting around asking what we should
build. We decided to build something we could use because
when I was at Chumby, I built things for other people rather
than myself. I use a laptop every day, and we needed a devel-
opment platform, so we built a laptop that we would actually
use. We're now doing a crowdfunding campaign around that
product.

How would you describe your process of going from a
prototype to manufacturing it?

There’s actually a lot of art in designing things to be easy to
make. One great approach to this is to be fully responsible
for your own supply chain. I don’t like to have a supply chain
manager and a manufacturing manager. I want to make
something myself. I insist on doing all of the testing myself. I
insist on handling the manufacturing issues myself because,
from a design standpoint, doing so forces you to think, “Can I
build that? If I gloss over this bit of detail, I might pay dearly
for that later.”



376 CHAPTER 11

From the very beginning when you start designing, I
think about how to make something manufacturable. What
manufacturing process should I use? How do I make sure I
can source all of these components? When I actually get to
the manufacturing time, I've made all the decisions because
I'm the one who has to pay the price at the end of the day.

What do people most overlook when they are designing?

There are a lot of aspects you could forget. The two that come
to mind first are the ability to source the materials and the
yield. For example, the instructions for a cool project in Make:
magazine often tell you to go find an obscure or out-of-date
object, like a motor from a 1980s VHS player. In theory, that
would be great because many people have this cheap item in
their garage. But all of a sudden, everyone is going to eBay
trying to find the same part, and it’s not sourceable.

On the yield side, a lot of people won’t run the numbers
in terms of what it means to be yielding. Every step of the
manufacturing process has some fallout. If every step is about
99 percent yield and you take 10 steps like that, your yield
will be about 90 percent. People essentially build the Leaning
Tower of Pisa into their project, and at the end of the day the
problems compound, preventing delivery. It’s crucial to build
a system that is robust and reworkable so that every step
can be coupled with another step to minimize yield fallouts.
Otherwise, you'll throw away a lot of money.

How would you describe how things have changed in
the perception of hardware since you got involved in
manufacturing?

It’s weird. Right around the time I was working on the Xbox
in 2001, hardware was probably at the rock bottom. During
the dot-com boom, working on Web 2.0 was really super-hot,
and if you did something with Amazon or XML, it was cool.
Soldering was a low-value thing that happened somewhere else.



selected interviews 377

But I was that weird guy who knew how to solder in a
lab, so people would come to me with broken things and I'd
fix them. I just stuck with it because that’s what I do, and I
love doing it. One reason the Xbox’s security was relatively
easy to break was because of the assumption that hardware
was hard and soldering was difficult. But if you know how to
solder, breaking the security is very easy. I did it on a grad
school budget for about $150. I gave some talks at conferences
after the Xbox hacking, basically telling people that hardware
is not hard, that there’s no magic behind it. I showed people
that the “magic” was actually pretty simple manufacturing
techniques.

Then Kickstarter came. Money started going into a system
where it hadn’t before because VCs wouldn’t touch hardware.
They thought hardware was a retail chasm where all this
money had to be paid up front, then basically the startups all
die, and investors don’t get returns.

All of a sudden, these cool companies began raking in a
million dollars in Kickstarter as their seed round and eventu-
ally delivering on their products enough of the time. There’s
nothing like money to get the interest of the guys in Silicon
Valley. Since then, hardware perception has changed radically.
People are starting to get into hardware more and more. The
problem is that a lot of people think they have to add hardware
to products now, yet have no idea how.

Another problem is an increasing number of scams on
Kickstarter, where there are all these hardware bits and pieces,
and backers can’t tell what’s real or what’s fake. I know the
industry definitely feels like a bubble already; I can sense the
bubble growing now.

I think maybe I liked it better when nobody knew about
hardware because at least I didn’t have to worry about com-
peting with fraudsters.



378 CHAPTER 11

How have you approached finding your own factories?

If you’re a startup and the only value you can bring to a
factory is money, then you're basically worthless. Startups
don’t have any money, and if you have money, it’s finite. All
factories know this.

A lot of startups want to go to somewhere like Foxconn, but
Foxconn has a ton of people and capability. They don’t need
your help. But they do need your money, and you don’t have a
lot of it. If you try to engage with the really hip factories, you'll
deplete your cash very quickly and won’t be able to launch.

I look for factories that are missing certain capabilities,
so I can give them more value than money. When I come in
with my product, I help train the staff to build my product.
The factories see value in that training, and I get to that point
where I'm building a relationship by trading more than money.

What’s the challenge for online hardware startups when
they get to the retail phase?

In the world of the internet, where everything is automated,
it seems like you could solve any problem with technology.
But retail is all about the salesperson meeting buyers face-
to-face, doing demonstrations, and going to the Walmart or
Target headquarters to actually develop relationships and cut
deals. It feels like an older system, and a lot of people don’t
expect that because they’re doing business with Kickstarter.

The problem is that people want to physically see and
touch and feel a product before they spend a couple hundred
dollars on it. Best Buy is becoming a showroom for Amazon,
but offering the product in-store is really valuable. There is
probably room for some disruption (perhaps you can convince
credible reviewers to try your hardware and describe it to other
people), but at the end of the day, retail presence is needed to
sell hardware effectively.



selected interviews 379

Margins are much fatter online, so companies that start a
business online from the beginning tend to underprice their
products. Then, when they get to retail, they can’t survive.

What are some of the most common questions that hard-
ware entrepreneurs ask you?

The questions teams tend to ask usually center on weaknesses
in their team composition. Some teams have super-hotshot
electrical engineers, but they have no mechanical engineering
background. These teams have a bunch of “mech-y” questions.
Some teams have no electrical engineers, and then the big
question is how to create a hardware startup with no one who
can design electronics.

Hardware startup teams generally tend to be technical,
so they're often weak on marketing and business. Some do
have business guys involved early on who can map it all out
and get a strategy in place, but a lot of teams have great tech
ideas without realizing they’re missing crucial aspects to their
strategy.

At that point, I get them to tell me what they’re doing, and
I give feedback. It’s almost not what teams ask, but rather
what they forget to ask, that they need the most help with.

What do you think is missing from startups that will
be necessary for the ongoing support of the hardware
ecosystem?

There is a huge mismatch between the way manufacturing
has been done and the way it needs to be done to match these
more agile, lean, and honestly, less experienced companies.
But I don’t think it’s an impassable chasm.

The original design manufacturers (ODMs) who have fac-
tories and resources need to raise their level of service. People
expect ODMs to be able to answer a lot of questions. There



380 CHAPTER 11

are unreasonable expectations between startups and ODMs
because ODMs can offer absolutely zero insight into costing
down your product. People get upset because they just don’t
see that conflict of interest.

A lot of people think that building a product in China
means the cost of parts gets magically cheaper. They don’t
understand. A factory is not a designer; its job is to ensure that
your design works and is built to specification. If you specify an
expensive part, and the factory substitutes a cheaper version,
who gets the blame when the product doesn’t work as well?
Furthermore, the factory makes its money as a percentage
margin over the bill of materials. Thus, recommending cheaper
parts to use exposes them to greater risk, while making them
less money. A lot of people get mad at factories for not being
more aggressive on keeping the cost down, but if you think
about it, you really have to get engaged. You need to get an
engineer working with these guys to cost things down because
ultimately, it’s your bottom line. It’s your net profit. You don’t
just go to China and expect them to do it right.

An ODM can possibly solve that problem by hiring staff
dedicated to reducing costs, but then the ODM would either
need to charge the customer extra to make the service sus-
tainable, or require a significantly larger order volume over
which to amortize the extra cost of providing such services.

More interoperability in the industry would be good, too.
One startup I work with is Spark,* which really tries to enable
people to use its hardware platform by being open. I feel like
one piece missing for Spark is getting ODMs to be “Spark
certified” to make products that use Spark’s platform. Often,
someone wants to design one product into another product,
and suggestions about how to do that effectively are all over

* Eventually, Spark changed its name to Particle.



selected interviews 381

the place. Even if you have all the necessary information, it’s
not a streamlined process for most people.

When someone is given all the design answers, a lot of
decoding still has to happen. Even bigger companies are afraid
of that because they don’t have the competency to hire the
people to get that decoding done.

What is your current focus in the hardware industry?

Right now, I'm working with Jie Qi on circuit stickers. We're
getting to the point of shipping the units out, and I'm hell-
bent on making sure that I meet the deadlines I set for my
campaign. I actually want to ship on time and get things to
people when I said I would because there has been way too
much lateness in crowdfunded campaigns. It doesn’t have
to be that way. You just have to set expectations, have your
stuff together before you announce the date, and know when
the inventory is pretty much ready to go. We have a number
of product lines that are selling; about half are done with
manufacturing and are just waiting in the factory to ship. A
couple of new lines are behind, but we still have until May to
solve these issues. I think it will be no problem, and I'm look-
ing forward to seeing our lines grow and develop and work
with more people.

The other thing I am working on is this Novena laptop
project with Sean Cross, which we weren'’t really planning on
doing last year. I built this handmade prototype last December;
it was a little, kind of crummy, leather-and-paper thing. We
used it to give a presentation at CCC, and the response was
overwhelming. That was great, and I refactored the design
to make it more manufacturable and more sourceable. The
campaign seems to be going well so far. I think it will fund,
and I'm looking forward to getting Novena manufactured and
out in the world.



382 CHAPTER 11

What have you learned from your two crowdfunding
campaigns?

Completing almost two crowdfunding campaigns has given me
a lot of insight. Earlier, I mentioned that people selling online
price their product too low to later move into retail. But it’s
been really painful to maintain the high price that I say that
everyone else should maintain. It’s so tempting to go lower to
an unsustainable point.

The reason a lot of crowdfunding campaigns fail to deliver
is because they price too low. They can’t actually build the
product for the price they set. Even knowing this, I still had
to grit my teeth on the laptop because I had to price it higher
than I would have liked. Despite the high price, if we were
to close the campaign at exactly the amount I hope to raise,
I would probably just barely not lose money on it, but a lot
of people don’t see that. Look at something like the Ubuntu
Edge, which raised $12 million but needed $25 million to
succeed. That’s because in order to set a price of $700-800
per phone, they had to build 40,000 phones. So even though
people thought the Ubuntu Edge was cool and it raised a lot
of money, it didn’t reach its funding goal, which is a sad con-
clusion for everyone.

I knew I could either price my laptop much lower and
need thousands of people to buy it to reach my goal, or I could
service a really focused market of a few hundred open source
enthusiasts who are totally on the same page as me. At the
end of the day, especially in the early phases, you really want
those enthusiasts. They’re going to be your best users. You
want to take care of them and give them the best service pos-
sible. You're going to charge a little more, but you're going to
build a really good product for them and they're going to be
happy. That’s a much happier conclusion in my mind than
trying to shoot the moon and failing.



epilogue

When I start hacking or making, it’s driven by curiosity. Only a

small portion of my work ends up being relevant or interesting,
but I journal my successes and my failures at my blog, http://
bunniestudios.com/, and I occasionally tweet observations at
@bunniestudios. It’s hard to know what will be a hit or a miss;
but as long as I'm learning, the journey is worthwhile. And so
I will keep wandering the electronic frontier . . .


https://twitter.com/bunniestudios/

1Index

A

accessories and packaging, 200-201
adaptations, influenza, 333-335
Akiba, 64-65
all-in-one desktop Novena, 218, 242243
Amendment 1092 to National Defense
Authorization Act, 149-150
American vs. Chinese manufacturing,
35-36
amino acids, 328-329
anisotropic tape, 257-259
antibiotic-resistant superbugs, 342—-343
anticounterfeit measures for
US military, 149, 154—-156
Apple
Apple 11, 207, 326-327, 373
Foxconn, 18, 20
quality control, 37
refinement costs, 202
AppoTech chips, 293
approved vendor list (AVL), 76
Arduino, 213, 360
Arduino Uno, 104-105, 127
manufacturing, 44-57
copper sheets, 46-48
etching PCBs, 51-53
PCB pattern, applying to copper,
49-50
soldermask and silkscreen,
53-54
testing and finishing, 5457
artisan engineering, 213
Asanovié¢, Krste, 310-311
Ashby chart, 230
audit logs for test programs, 96
authentic parts, keeping reserve of, 156
automation
for electronics assembly, 29-31
test program, 96
in zipper factory, 67-70
AVL (approved vendor list), 76

B

bacteria
CRISPRs in, 347-350
metabolic pathways, 325-327
barcode, embedding in chips, 154
battery board, Novena, 223-224
battery pack, Novena, 243244
beachhead, building, 315-317
bicycle safety light, 74-75, 79-82
bill of materials (BOM), 7484
approved vendor list, 76
for bicycle safety light, 74-75, 79-82
change, planning for, 82—84
extended part numbers, 78-79
form factor, 77-78
quotations, 107-108
tolerance, composition, and voltage
specification, 76-77
biology and bioinformatics, 277-278
comparing HIN1 to computer virus,
327-335
adaptable influenza, 333-335
DNA and RNA as bits, 328-330
hacking swine flu, 331-332
silver lining, 335
unique access ports, 330-331
patching genome, 346354
CRISPRs in bacteria, 347-350
gene drive, 352—354
human engineering, 351-352
where to cut genes, 350-351
personalized genomics, 344346
reverse engineering superbugs,
335-344
antibiotic resistance, 342344
0104:H4 DNA sequence,
336-338
reversing tools for biology,
338-340
UNIX Shell Scripts, 340-342
BLASTX decompiler, 339-340



Blueprint interview, 372—382

BOM. See bill of materials

bonding USB chips to PCBs, 61

booting OS, 321

bootstrapping, 197, 203

boot structure, reverse engineering,
311-315

bottom line, and DFM, 88-91

breakout board for beginners, 241242

building technology without using it,
23-24

business model, 363

C
capacitors, 12, 76-77
case construction
chumby, 2628
Novena, 233-236
cash flow, Chumby, 193
cell phones
hacking, 306-324
attaching debugger, 317-320
beachhead, building, 315-317
booting OS, 321
building new toolchains,
321-323
results, 323—-324
reverse engineering boot
structure, 311-315
system architecture, 306-311
screen replacement, 120-121
$12 phone, 126-140
engineer rights, 135-140
from gongkai to open source,
134-135
hardware, 128-131
CFT (Cyber Fast Track) initiative, 289
change, planning for and coping with,
82-84
check plots, 268
Chibitronics, 251-274
background, 251-259
check plots, 268
Chinese New Year, impact on
supply chain, 272-273

index 385

complications regarding simple
requests, 267268
delivery, 264—-266
developing new process, 259
incorrect placement of components,
268-269
last-minute changes, 271-272
process capability test, 261-264
shipping, 273-274
single points of failure,
eliminating, 271
stencil of sticker patterns, 271-272
test program, 92—-94
translation issues, 270-271
visiting factory, 260—261
China. See also factories; Shenzhen,
China
Chinese New Year, impact on
supply chain, 272-273
Chinese translation problems,
270-271
technology growth, 364—-366
China Software Developer Network
(CSDN) interview, 357-372
about hardware hackers, 367-372
about open hardware and maker
movement, 358—-367
chip-on-board (CoB) technology, 29
chips
bonding to PCBs, 61
counterfeit, 143—-148. See also
US military hardware,
counterfeit chips in
decapping, 282—283
hand-placing on PCBs, 59-61
SEG Electronics Market, 11-14
for USB memory sticks, 57-59
chip shooters, 30
Chipworks, 246
chroma keying, 303-304
Chumby, 1-2, 181
automation in assembly, 29-31
case production, 26—28
cash flow, 193
chumby classic, 183—-184



386 index

Chumby (continued)
chumby One
development of, 184—-189
trim and finish, 101-104
connector placement, 25—26
contracts, 193—-205
counterfeit microSD cards
authenticity, 159—160
electronic card ID data, 158-159
forensic investigation, 160162
gathering data, 162—-165
summarizing findings, 166-168
visible differences, 157-158
factory testing, 41
factory tours, 1617
hacker-friendly platform, 182-184
injection molding, 31-34
interview with Phil Torrone,
189-205
lessons learned from, 374—-375
margin, 192-193
merchant buyers, 192
microphone factory installation,
20-23
motherboard, 188-189
NeTV. See NeTV
quality control, 36—39
remote testing, 39—40
reverse logistics and returns, 193
test points, 187—188
circuit stickers, 251-274. See also
Chibitronics
background, 251-259
check plots, 268
Chinese New Year, impact on
supply chain, 272273
complications for simple requests,
267-268
delivery, 264—266
developing new process, 259
incorrect placement of components,
268-269
last-minute changes, 271-272
process capability test, 261-264
shipping, 273-274

single points of failure,
eliminating, 271
stencils of, 271-272
translation issues, 270-271
visiting factory, 260—-261
Circuit Sticker Sketchbook, 256-257,
267-268
clamshell testing, 54
cloning, 116
CoB (chip-on-board) technology, 29
Coders’ Rights Project, 137
COGS (cost of goods sold), 90-92
colors, communicating with operators
through, 96
community-enforced IP rules, 124-125
community support for Novena,
247-249
company structure, 202—-203
composition, BOM, 76-77
computer virus, comparing HIN1
virus to, 327-335
adaptability, 333—-335
antibodies, 335
DNA and RNA as bits, 328-330
hacking HIN1 virus 331-332
unique access ports in organisms,
330-331
configuration fuses, 281
contracts, negotiating, 193-205
copper sheets, for PCBs, 46-50
copying, 116
copyrights, 137, 138, 175-177
cosmetic blemishes, 87-88
cost of goods sold (COGS), 90-92
counterfeit goods. See fake goods
couriers, 112
coverlay, 260261
craftspeople, need for, 2628
CRISPR/Cas system, 347—352
Cross, Sean “xobs”, 134-135, 215-216,
289-290. See also Novena,;
SD cards, hacking
crowdfunding, 197-198, 265, 266, 382
Crowd Supply, 250, 264, 265
CrypTech, 248-249



custom battery pack problems, 243-244
Cyber Fast Track (CFT) initiative, 289

D

data display channel (DDC), 304
Debian, 246
debugger, attaching, 317-320
decapping IC, 282283
decompiler, 339-340
dedicated hardware real-time clock
(RTC) module, 238-239
dedication to quality, 20-23
defective units, paying for, 3
delivery of circuit stickers, 264—266
design files, sharing, 363
design for manufacturing (DFM),
84-100. See also test program
bottom line, 88-91
overview, 85-86
testing vs. validation, 97-100
tolerances, 86—88
design process, 105—-106
design vocabulary, 101
desktop Novena, 218, 242-243
DFM. See design for manufacturing
Digital Millennium Copyright Act
(DMCA), 137
direct repeat sequence, 348
direct-to-consumer (DTC) personal
genomics, 344—-345
disease predictions based on
mutations, 345
distribution channel, 196
DIY speakers, 237-238
DMCA (Digital Millennium
Copyright Act), 137
DNA, 328-330. See also genome
double-shot molds, 103-104
DRAM chips, 12-13
drilling process, PCB boards, 46—48
drug resistance, 338-341
DTC (direct-to-consumer) personal
genomics, 344—-345

index 387
E
ECO (engineering change orders),
82—-84
E. coli, 342

EDID (extended display
identification data), 304
EDK (embedded development kit), 135
EDM (electrical discharge machine), 33
EFF (Electronic Frontier
Foundation), 137
effects stickers, 263
EHEC 0104:H4, 335-344
answering questions with UNIX
shell scripts, 340—342
antibiotic resistance, 342—344
DNA sequence, 336-338
reversing tools for biology, 338—340
electrical discharge machine (EDM), 33
electronic card ID data, 158-159
Electronic Frontier Foundation
(EFF), 137
electronic tolerances, 86—-87
embedded development kit (EDK), 135
enclosure, Novena, 224-227
end-of-life (EOL), 82
engineering change orders (ECO), 82-84
engineering humans, 351-352
engineering samples, 170-172
engineer rights, 135-140
copyrights, 138
patents and other laws, 136-137
programming languages, 138-140
EOL (end-of-life), 82
erasing
flash memory, 284285
memory cards, 298
security bits, 285-287
etching PCBs, 51-53
e-waste, handling, 155-156
extended display identification data
(EDID), 304
extended part numbers, 78-79
external mimicry, 150-151



388 index

F

factories, 2—3, 43—44. See also quality;
specific factories by name
automation, 29-31
building technology without
using it, 23-24
dedication to quality, 20-23
defective units, paying for, 3
feeding workers, 18-20
injection molding, 31-34
mistakes in manufacturing, 34,
41-42
need for craftspeople, 26—28
partnerships with, 107-113
import duties, 113
ordering more units than proven
demand, 112
quotations, 108-111
scrap and yield, 111-112
shipping costs, 112
tips for forming, 107-108
scale in Shenzhen, 17-18
scrap, 152
searching for, 378
skilled workers, 24-26
testing, 41
failure analysis services, 281
failures, learning from, 368—369
Fairchild 74L.CX244, 146-147
fake goods, 143-174
chips, well-executed, 143148
chips in US military hardware,
149-156
anticounterfeit measures,
154-156
types of counterfeit parts,
150-153
US military designs, 153-154
FPGAs, 168-174
incorrect ID codes, 170-172
solutions, 172-174
white screen issue, 168—-170
microSD cards, 156168
authenticity, 159—-160
electronic card ID data, 158-159

forensic investigation,
160-162
gathering data, 162165
summarizing findings,
166-168
visible differences, 157-158
feeding factory workers, 18-20
Feist Publications, Inc. v. Rural
Telephone Service
Co., Inc., 138
Fernly shell, 315-316, 317-319
Fernvale, 306
attaching debugger, 317-320
beachhead, building, 315-317
booting OS, 321
Frond, 307-308
legal tasks, 134-136
peripheral connectors, 308-309
results, 323—-324
reverse engineering boot structure,
311-315
system architecture, 306—311
system diagram, 309
toolchains, building new, 321-323
field programmable gate array.
See FPGAs
film imaging, 49-50
firmware
in memory cards, 292
Novena, 246247
five-digit multimeter, 98
flash chips, for USB memory sticks,
57-59
flash memory, erasing, 284-285
flat patterns, 26-28
flex circuits, 252-253
flex PCB factory, 260—261
flow marks, 236
flying head testing, 54
form factor, 77-78
forward bias voltage, 88, 89
founders, suggestions for, 199
Foxconn, 18, 20
FPC (internal flexible printed circuit)
header, 238-239



FPGAs (field programmable gate array)
counterfeit, 168174
incorrect ID codes, 170-172
solutions, 172-174
white screen issue, 168—170
future trends, 212213
Novena, 239
Freescale/NXP iMX6 CPU, 220
front bezel, Novena, 237-238
fully decapped chips, 282
functionally decapped chips, 282—-283
fuzzing, 293

G

gene drive, 352—-354
General-Purpose Breakout Board
(GPBB), 241242
genome
disease predictions based on
mutations, 345
genotyping, 344—345
patching, 346354
CRISPRs in bacteria, 347-350
engineering humans, 351-352
gene drive, 352—354
where to cut genes, 350-351
reference, 345346
genotyping, 344—345
ghost shift, 115, 152
golden samples, 36, 82
gongkai (&), 117-118, 119-120.
See also shanzhai
cell phone screen replacement,
120-121
defined, 131-134
vs. kai fang yuan dai ma
(GFRURKE), 372
$12 phone, 126-140
engineer rights, 135-140
from gongkai to open source,
134-135
hardware, 128-131
GPBB (General-Purpose Breakout
Board), 241-242
gray markets, 154

index 389

H

H1N1 virus, comparing to computer
virus, 327-335
adaptability, 333—-335
antibodies, 335
DNA and RNA as bits, 328-330
hacking H1N1 virus 331-332
unique access ports in organisms,
330-331
H5 port, 330
hacker-friendly platform, 182—184
hacker spirit, 371
hacking hardware. See hardware
hacking
hand-placing chips on PCBs, 59-61
hard drive, choosing, 244-246
hardware hacking, 279-281
CSDN interview about, 367—372
general discussion, 275-278
HDCP-secured links to allow
custom overlays, 298-306
of PI C18F1320, 281-289
closer look, 283—284
decapping IC, 282-283
erasing flash memory, 284285
erasing security bits, 285-287
protecting other data, 287-289
of SD cards, 289—298
potential security issues, 298
resource for hobbyists, 298
reverse engineering
microcontroller, 293—297
shanzhai phones, 306-324
attaching debugger, 317-320
beachhead, building, 315-317
booting OS, 321
building new toolchains, 321-323
Fernvale results, 323-324
reverse engineering boot
structure, 311-315
system architecture, 306—-311
structure of cards, 290-293
hardware startups, 378-380
hash function, 315
HDCP-secured links, hacking, 298-306



390 index
health, caring for, 205
heirloom laptops, 210-211
Heirloom Novena, 218, 227-232
hard drive, 245-246
mechanical engineering details,
229-232
wood for enclosure, 228-229
honest finishes, 101
horizontal gene transfer, 343
human engineering, 351-352

I

ID codes, FPGA, 170-172
import duties and licenses, 113
1.MX233, 184
incoming quality control (IQC)
guidelines, 160
incorrect placement of components on
circuit stickers, 268—269
industrial design, 100—-106
Arduino Uno silkscreen art, 104-105
chumby One trim and finish,
101-104
personal design process, 105—106
injection molding
general discussion, 31-34
in Novena manufacturing, 233236
innovation, 359
input networks, 87
intellectual property (IP). See also
gongkai; shanzhai
general discussion, 115-118
Western vs. Chinese models,
131-132
internal flexible printed circuit (FPC)
header, 238-239
interoperability, 380
interviews, 357-382
Blueprint, 372—382
China Software Developer Network
(CSDN), 357-372
about hardware hackers, 367-372
about open hardware and maker
movement, 358-367
Make:, 189-205

inventory turning, 196-197

investigating fake microSD cards,
158-159, 160-162

involvement in manufacturing process,
36-39

IP. See intellectual property

1QC (incoming quality control)
guidelines, 160

Tto, Joi, 264

J

Japan, economic development of, 365
JTAG, 170

K

kai fang yuan dai ma
(F BUR4L13), 372
keystreams, 304-306
Kare, Susan, 39
Kickstarter, 197-198, 377
Kingston microSD cards, 156—168
authenticity, 159-160
electronic card ID data, 158-159
forensic investigation of, 160—-162
gathering data, 162-165
summarizing findings, 166—168
visible differences, 157-158
knit lines, 235
Kovan, 169

L

labor costs, 110

laptop Novena, 218

laser imaging, 49

last-minute changes, 271-272

LCA (Linux Conference Australia), 57

LCD bezel, Novena, 226

LEDs, in bicycle safety light, 74-75,
79-82

Li, Xiao, 23-24

LinkIT ONE, MediaTek, 323—324

Linux Conference Australia (LCA), 57

logs for test programs, 96



M

Make: interview, 189-205
MakerBot, 203
maker movement, 358-367
managed NAND system, 186-187
man-in-the-middle (MITM) attacks,
290, 298, 301
manufacturer ID, 158-159
manufacturing. See factories
margins
chumby, 192-193
factory, 110-111
Master Chao, 2628
MCM (multichip module), 310
mechanical engineering, Novena,
229-232
mechanical tolerances, 87—-88
MediaTek LinkIT ONE, 323-324
MediaTek MT6250DA, 130-131
MediaTek MT6260, 140, 310-311
merchant buyers, 192
metal spiral binding, Circuit Sticker
Sketchbook, 267-268
microcontroller
in memory cards, 292
reverse engineering, 293—297
test program, 92-94
microphone, chumby, 20-23
microSD cards
chumby One, 186
counterfeit, 156—168
authenticity, 159—-160
electronic card ID data,
158-159
forensic investigation, 160—162
gathering data, 162—-165
summarizing findings, 166—168
visible differences, 157-158
military hardware, counterfeit chips in,
149-156
anticounterfeit measures, 154—156
types of counterfeit parts, 150-153
US military designs, 153—-154
minimum order quantity (MOQ), 81

index 391

min-max spread, 86—-87
mirror-finished plastic, 70-71
mistakes in manufacturing, 34, 41-42
MITM (man-in-the-middle) attacks,
290, 298, 301
MIT Media Lab, 264
monastic design, 100
Moore’s law, 206-212, 359
MOQ (minimum order quantity), 81
motherboard
chumby One, 188-189
Novena, 221-222, 238-239
Mottweiler, Kurt, 228, 238
multichip module MCM), 310
mutations, disease predictions
based on, 345
Mycoplasma pneumoniae, 325-327
MyriadRF, 248

N

NAND flash chips, 13
National Defense Authorization Act,
149-150
NeTV, 280
background on HDCP, 300-301
conceptual diagram of, 303
development of, 299-300
FPGA diagram, 305
goals for, 301
how it worked, 302—-303
keystream, creating, 304-305
user overlay content, creating,
303-304
New Balance factory, 17-18
Ng, P.C., 344-345
nonrecurring engineering (NRE)
costs, 111
Novena, 133, 215-250
all-in-one desktop, 218, 242243
breakout board for beginners,
241-242
case construction, 233236
community support, 247-249
custom battery pack, 243-244



392 index
Novena (continued)
design, 219-227
battery board, 223-224
enclosure, 224—227
motherboard, 221-222
dimensions, 219
DIY speakers, 237—238
firmware, 246247
front bezel changes, 237-238
hard drive, choosing, 244—246
Heirloom, 218, 227-232
hard drive, 245-246
mechanical engineering details,
229-232
wood for enclosure, 228-229
injection molding, 233-236
laptop, 218
motherboard, 238-239
power pass-through board, 242—243
pricing, 218
PVT2 mainboard, 238—-240
users, 217-218
NRE (nonrecurring engineering)
costs, 111
NuttX, 141

o

0104:H4 DNA sequence, 336—-338
ocean freight, 273-274
ODMs (original design manufacturers),
379-380
online hardware startups, 378-380
on-time delivery, 266
open BOM, 124-125
open source, 117, 134-135
hardware, 176178, 205-214. See
also Chibitronics; Chumby;
Fernvale; Kovan; NeTV;
Novena
CSDN interview about, 358-367
heirloom laptops, 210-211
monetization, 195-196
opportunities for, 211-214
trends in, 206—209
software, 362

ordering more units than proven
demand, 112

original design manufacturers (ODMs),
379-380

overlay, creating, 303—-304

overmolding, 34

P
package type, 77-78
pad printing, 102
palindromic sequences, 348
PAM (proto-space adjacent motif),
350-351
Particle’s Spark Core, 306-307
partnerships with factories, 107-113
import duties, 113
order more units than proven
demand, 112
quotations, 108-111
scrap and yield, 111-112
shipping costs, 112
tips for forming, 107-108
part numbers, 78-79
patching genome, 346-354
CRISPRs in bacteria, 347-350
engineering humans, 351-352
gene drive, 352—354
where to cut genes, 350-351
patents, 136-137, 194-195
patterning, 46
pattern makers, 26-28
PB2 influenza gene, 331-332
PCBs, 44-57
applying pattern to copper, 49-50
bonding chips to, 61
for circuit stickers, 260-261
copper sheets, 46—48
etching, 51-53
Fernvale Frond, 307-308
hand-placing chips on, 59-61
soldermask and silkscreen, 53—54
testing and finishing, 54-57
PCH China Solutions, 17, 37
Peek, Nadya, 226
Peek array, 226



penicillin resistance, 338—339
Perrott, Joe, 27
personal design process, 105—106
personalized genomics, 344—346
Phase Locked Loop (PLL), 140
photoresist, 49-50
physical identifiers, embedding,
154-155
physical programming, 263
PIC18F1320, hacking, 281-289
closer look at, 283—-284
decapping IC, 282283
erasing flash memory, 284-285
erasing security bits, 285—-287
protecting other data, 287-289
plastic finishes, 70-71
PLL (Phase Locked Loop), 140
poison pills, 136-137
polyimide, 260—261
power pass-through board, 242—243
pragmatic design, 100
precision, 31-34
pricing
aiming high, 199-200
Novena, 218
quality control, 34—35
probe card, 58
process capability test, 261-264
process geometry, 144145
production candidate stickers, 263
programming languages, 138-140
protecting data when hacking, 287-289
protein database, 338—-339
proteins, 329, 337
proto-space adjacent motif (PAM),
350-351

Q

QC (quality control) room, 36—-39
QEMU, 317-318
Qi, Jie, 253-256, 263—-264, 270-271.
See also Chibitronics
quality, 34-35
American vs. Chinese
manufacturing, 35-36

index 393
dedication to, 20—23
factory testing, 41
involvement in manufacturing
process, 36—39
mistakes, 41-42
remote testing, 39-40
quality control (QC) room, 36—39
quaternary structure, 350
quotations, evaluating, 108-111

R

Radio Electronics (FTo4 ), 369
Raspberry Pi, 360
read-evaluate-print-loop (REPL) shell,
293-297
real-time clock (RTC) module, 238-239
reballing, 155
rebinned parts, 151-152
recycling, 154—-155
red ring of death, 42
reference genome, 345—-346
refurbished parts, 150-151, 154
remote testing, 39—40
repair culture, 213
REPL (read-evaluate-print-loop) shell,
293-297
resistive current limiting, 88
resistors, 76
Restriction of Hazardous Substances
(RoHS) testing, 41
retailers, engaging, 200, 378
returns, in retail, 193
reverse engineering, 137
boot structure, 311-315
general discussion, 275-278
microcontroller, 293—297
superbugs, 335—-344
antibiotic resistance, 342—344
0104:H4 DNA sequence,
336-338
reversing tools, 338-340
UNIX shell scripts, 340—-342
reverse logistics, 193
RNA, 328-330
RNA-dependent RNA polymerase, 333



394 index

robotics controller, 78

RoHS (Restriction of Hazardous
Substances) testing, 41

ROM, dumping, 312-316

rooting, user, 370

routing PCBs, 55

RTC (real-time clock) module, 238-239

rubberized tags, 25

S

Samsung microSD cards, 163-168
SanDisk microSD cards, 163-168
satin-finished plastic, 70-71
scale in factories, 17-18
scarcity and demand, 70-71
Scarmagno, Italy, 44-45
scrap, handling, 111-112
scriptic language, 139—140
SD cards, hacking, 289-298
potential security issues, 298
resource for hobbyists, 298
reverse engineering microcontroller,
293-297
structure of cards, 290-293
vulnerabilities, 290
secondary structure, 349-350
second-sourcing, 153
security bits, erasing, 285—287
security issues, SD cards, 298
semiautomated process, in zipper
factory, 68-70
sensor and microcontroller
stickers, 263
shanzhai (II3E), 116-117, 121-125,
177, 371-372. See also
gongkai
cell phones, 2
community-enforced IP rules,
124-125
hacking phones, 306—324
attaching debugger, 317-320
beachhead, building, 315-317
booting OS, 321
building new toolchains,
321-323

Fernvale results, 323—-324
reverse engineering boot
structure, 311-315
system architecture, 306—311
more than copycats, 123—124
sharing design files, 363
Shenzhen, China, 1-4. See also
factories
screen replacement, 120-121
SEG Electronics Market, 8-14
shanzhai organizations in, 123
Shenzhen Bookstore, 14-15
“ship or die” motto, 198-199
shipping products, 112, 273-274
side-by-side bonding, 166
signatures, in memory, 319-320
silkscreen, 53-54, 57
single nucleotide polymorphisms
(SNPs), 345-346
single points of failure,
eliminating, 271
sink marks, 235
skilled workers, 2426
smartcards, 144-145
smart watches, 124
SMT (surface mount technology), 55,
7778
SNPs (single nucleotide
polymorphisms), 345-346
soldermask, 53-54, 57
Song Jiang, 122
smartphones. See cell phones
spacers, 348
speakers, Novena, 237-238
SPI ROMulator FPGA, 313
ST19CF68 chips, 144-148
stacked CSPs, 166
standardization of platforms, 212
stencil of circuit sticker patterns,
271-272
superbugs, reverse engineering,
335-344
antibiotic resistance, 342—344
0104:H4 DNA sequence, 336—-338
reversing tools, 338—340
UNIX shell scripts, 340—-342



supply chain, impact of Chinese New
Year on, 272-273
surface mount technology (SMT), 55,
77-78
swine flu. See H1N1 virus, comparing
to computer virus
switches
Novena, 237
validating, 98-99
system architecture, 306-311
System Elettronica, 44-57
applying PCB pattern to copper
sheet, 49-50

applying soldermask and silkscreen,

53-54
copper sheets, 46-48
etching PCBs, 51-53
testing and finishing, 54-57
System-on-Chip devices, 310-311

T
tampo printing, 102
technology level, in China, 364—-366
Tek MDO4104B-6 oscilloscope, 313
tertiary structure, 350
testing
flash chips, 58-59
PCBs, 54-57
vs. validation, 97-100
test jigs, 99-100, 271
test points, chumby One, 187-188
test program, 91-95
guidelines for, 94-97
icons, communicating with
operators through, 96
real-world, 92-94
setup of, 95-96
update mechanisms for, 97
3D transistors, 245
through-hole packages, 77-78
tolerances, 76-77, 86—88
Tomlin, Steve, 39, 299
toolchains, building new, 321-323
tooling, 233-234

index 395

Torrone, Phil, 189-205
toy factories, 29-30
transistor scaling, 210-211
translation problems, 270-271
transparency in factory relationships,
107-108
trim and finish, chumby, 101-104
triple-reassortant virus, 334—335
$12 phone, 126-140
engineer rights, 135-140
from gongkai to open source,
134-135
hardware, 128-131

U

U-Boot (Universal Bootloader), 246
Ubuntu Edge, 382
unique access ports, in organisms,
330-331
Universal Protein Resource (UniProt),
338-339, 341
UNIX shell scripts, answering
biological questions with,
340-342
upstreaming, 246
USB flashing tool, open version of,
320-322
USB memory stick factory, 57-64
beginning of USB sticks, 57-59
bonding chips to PCBs, 61
close look at USB stick boards,
61-64
hand-placing chips on PCBs, 59-61
USB ports, Novena, 237
US military hardware, counterfeit
chips in, 149-156
anticounterfeit measures, 154—156
types of counterfeit parts, 150-153
US military designs, 153-154
UV dye in chips, 154-155
UV-erasable programmable read-only
memory (UV-EPROM),
284-285, 286



396 index

A% X

vacuum-tube radio schematic, 207 Xbox 360, 42

validation vs. testing, 97-100 Xbox One, 369

Vanchip VC5276, 130 Xilinx, 170-174

Vasut, Marek, 246, 248 xobs, 134-135, 215216, 289-290.

venture capitalist funding, 195-196, See also Novena; SD cards,
197-199 hacking

vibrapots, 67—68

viruses. See H1N1 virus, comparing to Y

computer virus
V-NAND, 245, 246
voltage specification, BOM, 76-77

yield, 84-85, 90, 111-112
Young’s modulus, 229-230

Z

zipper factory, 64-71

w

Wang, Chris “Akiba”, 64-65

waste, handling, 155-156

white screen issue, 168—170

wire bonding, 29-30, 61

wood enclosure for Novena, 228-229

fully automated process, 67-68

irony of scarcity and demand, 70-71

semiautomated process, 68—70
Z-tape, 257-259



ABOUT THE AUTHOR

Andrew “bunnie” Huang has always had trouble getting up
before noon. That, compounded with his tendency to question
authority means he will never hold a job at a Fortune 500.
Thus, he is grateful for all the beers that he’s received from
crowdfunding because it means he can get some calories
through hydration.



The Electronic Frontier Foundation (EFF) is the leading organization
defending civil liberties in the digital world. We defend free speech
on the Internet, fight illegal surveillance, promote the rights of
innovators to develop new digital technologies, and work to ensure
that the rights and freedoms we enjoy are enhanced — rather than
eroded — as our use of technology grows.

EFF.IIHIs







“A tour de force that combines the many genius
careers of one of the world’s great
hacker-communicators: practical, theoretical,
philosophical, and often mind-blowing.”

— Cory Doctorow, author of Little Brother
and technology activist

“An amazing book—a hacker’s-point-of-view bible
to anyone trying to work in or understand the
emerging and evolving world of hardware.”

— Joi Ito, Director, MIT Media Lab

“bunnie is the ultimate tour guide of hardware
hacking as it stands today, with an eye toward the
sublime art of how things are really made.”

— Limor “ladyada” Fried, Founder & Engineer,
Adafruit Industries

“A very entertaining and informative read.”

— Mitch Altman, inventor of TV-B-Gone®

ISBN: 978-1 5‘!32? 758-1
|”||| |I || T
b 89145 7?7580 &




	brief contents

	contents in detail
	preface
	Part 1: adventures in manufacturing
	1.  made in china
	The Ultimate Electronic Component Flea Market
	The Next Technological Revolution
	Touring Factories with Chumby
	Scale in Shenzhen
	Feeding the Factory
	Dedication to Quality
	Building Technology Without Using It
	Skilled Workers
	The Need for Craftspeople
	Automation for Electronics Assembly
	Precision, Injection Molding, and Patience
	The Challenge of Quality

	Closing Thoughts

	2.  inside three very 
     different factories
	Where Arduinos Are Born
	Starting with a Sheet of Copper
	Applying the PCB Pattern to the Copper
	Etching the PCBs
	Applying Soldermask and Silkscreen
	Testing and Finishing the Boards

	Where USB Memory Sticks Are Born
	The Beginning of a USB Stick 
	Hand-Placing Chips on a PCB
	Bonding the Chips to the PCB
	A Close Look at the USB Stick Boards

	A Tale of Two Zippers
	A Fully Automated Process
	A Semiautomated Process
	The Irony of Scarcity and Demand


	3.  the factory f loor
	How to Make a Bill of Materials
	A Simple BOM for a Bicycle Safety Light
	Approved Manufacturers
	Tolerance, Composition, and Voltage Specification
	Electronic Component Form Factor
	Extended Part Numbers
	The Bicycle Safety Light BOM Revisited
	Planning for and Coping with Change

	Process Optimization: 
Design for Manufacturing
	Why DFM?
	Tolerances to Consider
	Following DFM Helps Your Bottom Line
	The Product Behind Your Product
	Testing vs. Validation

	Finding Balance in Industrial Design
	The chumby One’s Trim and Finish
	The Arduino Uno’s Silkscreen Art
	My Design Process

	Picking (and Maintaining) a Partner
	Tips for Forming a Relationship with a Factory
	Tips on Quotations
	Miscellaneous Advice

	Closing Thoughts


	Part 2: thinking differently: intellectual property in china
	4.  gongkai innovation
	I Broke My Phone’s Screen, and It Was Awesome
	Shanzhai as Entrepreneurs
	Who Are the Shanzhai?
	More Than Copycats
	Community-Enforced IP Rules

	The $12 Phone
	Inside the $12 Phone
	Introducing Gongkai
	From Gongkai to Open Source
	Engineers Have Rights, Too

	Closing Thoughts

	5.  fake goods
	Well-Executed Counterfeit Chips
	Counterfeit Chips in 
US Military Hardware
	Types of Counterfeit Parts
	Fakes and US Military Designs
	Anticounterfeit Measures

	Fake MicroSD Cards
	Visible Differences
	Investigating the Cards
	Were the MicroSD Cards Authentic?
	Further Forensic Investigation
	Gathering Data
	Summarizing My Findings

	Fake FPGAs
	The White Screen Issue
	Incorrect ID Codes
	The Solution

	Closing Thoughts


	Part 3: what open hardware means to me
	6.  the story of chumby
	A Hacker-Friendly Platform
	Evolving chumby
	A More Hackable Device
	Hardware with No Secrets

	The End of Chumby, New Adventures
	Why the Best Days of Open Hardware Are Yet to Come
	Where We Came From: Open to Closed
	Where We Are: “Sit and Wait” vs. “Innovate”
	Where We’re Going: Heirloom Laptops
	An Opportunity for Open Hardware

	Closing Thoughts

	7.  novena: building 
     my own laptop
	Not a Laptop for the Faint of Heart
	Designing the Early Novena
	Under the Hood
	The Enclosure

	The Heirloom Laptop’s Custom Wood Composite
	Growing Novenas
	The Mechanical Engineering Details

	Changes to the Finished Product
	Case Construction and Injection-Molding Problems 
	Changes to the Front Bezel
	DIY Speakers
	The PVT2 Mainboard
	A Breakout Board for Beginners
	The Desktop Novena’s Power Pass-Through Board
	Custom Battery Pack Problems
	Choosing a Hard Drive
	Finalizing Firmware

	Building a Community
	Closing Thoughts

	8.  chibitronics: 
     creating circuit 
     stickers
	Crafting with Circuits
	Developing a New Process
	Visiting the Factory
	Performing a Process Capability Test

	Delivering on a Promise
	Why On-Time Delivery Is Important
	Lessons Learned
	Not All Simple Requests Are Simple for Everyone
	Never Skip a Check Plot
	If a Component Can Be Placed Incorrectly, It Will Be
	Some Concepts Don’t Translate into Chinese Well 
	Eliminate Single Points of Failure
	Some Last-Minute Changes Are Worth It
	Chinese New Year Impacts the Supply Chain 
	Shipping Is Expensive and Difficult 
	You’re Not Out of the Woods Until You Ship 

	Closing Thoughts


	Part 4: a hacker’s perspective
	9.  hardware hacking
	Hacking the PIC18F1320
	Decapping the IC
	Taking a Closer Look
	Erasing the Flash Memory
	Erasing the Security Bits
	Protecting the Other Data

	Hacking SD Cards
	How SD Cards Work
	Reverse Engineering the Card’s Microcontroller
	Potential Security Issues
	A Resource for Hobbyists

	Hacking HDCP-Secured Links 
to Allow Custom Overlays
	Background and Context
	How NeTV Worked

	Hacking a Shanzhai Phone
	The System Architecture
	Reverse Engineering the Boot Structure
	Building a Beachhead
	Attaching a Debugger
	Booting an OS
	Building a New Toolchain
	Fernvale Results

	Closing Thoughts

	10.  biology and 
       bioinformatics
	Comparing H1N1 to a Computer Virus
	DNA and RNA as Bits
	Organisms Have Unique Access Ports
	Hacking Swine Flu
	Adaptable Influenza
	A Silver Lining

	Reverse Engineering Superbugs
	The O104:H4 DNA Sequence
	Reversing Tools for Biology
	Answering Biological Questions 
with UNIX Shell Scripts
	More Questions Than Answers

	Mythbusting Personalized Genomics
	Myth: Having Your Genome Read Is Like 
Hex-Dumping the ROM of Your Computer 
	Myth: We Know Which Mutations Predict Disease
	Myth: The Reference Genome Is an Accurate Reference

	Patching a Genome
	CRISPRs in Bacteria
	Determining Where to Cut a Gene
	Implications for Engineering Humans
	Hacking Evolution with Gene Drive

	Closing Thoughts

	11.  selected inter views
	Andrew “bunnie” Huang:
Hardware Hacker (CSDN)
	About Open Hardware and the Maker Movement
	About Hardware Hackers

	The Blueprint Talks to Andrew Huang


	epilogue
	index



