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Preface

Thank you for choosing to read Zero Trust Networks! Building trusted systems
in hostile networks has been a passion of ours for many years. In building and
designing such systems, we have found frustration in the pace of progress
toward solving some of the more fundamental security problems plaguing our
industry. We’d very much like to see the industry move more aggressively
toward building the types of systems which strive to solve these problems.

To that end, we are proposing that the world take a new stance toward building
and maintaining secure computer networks. Rather than being something which
is layered on top, considered only after some value has been built, security must
be fundamentally infused with the operation of the system itself. It must be ever-
present, enabling operation rather than restricting it. As such, this book sets forth
a collection of design patterns and considerations which, when heeded, can
produce systems that are resilient to the vast majority of modern-day attack
vectors.

This collection, when taken as a whole, is known as the zero trust model. In this
model, nothing is taken for granted, and every single access request—whether it
be made by a client in a coffee shop or a server in the datacenter—is rigorously
checked and proven to be authorized. Adopting this model practically eliminates
lateral movement, VPN headaches, and centralized firewall management
overhead. It is a very different model indeed; one that we believe represents the
future of network and infrastructure security design.

Security is a complicated and ever-changing field of engineering. Working on it
requires a deep understanding of many layers of a system and how bugs or
weaknesses in those layers can allow an attacker to subvert access controls and
protections. While this makes defending a system challenging, it’s also a lot of
fun to learn about! We hope you’ll enjoy learning about it as much as we have!

Who Should Read This Book

Have you found the overhead of centralized firewalls to be restrictive? Perhaps



you’ve even found their operation to be ineffective? Have you struggled with
VPN headaches, TLS configuration across a myriad of applications and
languages, or compliance and auditing hardships? These problems represent just
a small subset of those addressed by the zero trust model. If you find yourself
thinking that there just has to be a better way, then you’re in luck—this book is
for you.

Network engineers, security engineers, CTOs, and everyone in between can
benefit from zero trust learnings. Even without a specialized skillset, many of the
principles included within can be clearly understood, helping leaders make
decisions that get them closer to realizing the zero trust model, improving their
overall security posture incrementally.

Additionally, readers with experience using configuration management systems
will see the opportunity of using those same ideas to build a more secure and
operable networked system—one in which resources are secure by default. They
will be interested in how automation systems can enable a new network design
that is able to apply fine-grained security controls more easily.

Finally, this book also explores mature zero trust design, enabling those who
have already incorporated the basic philosophies to further the robustness of
their security systems.

Why We Wrote This Book

We started speaking about our approach to system and network design at
industry conferences in 2014. At the time, we were using configuration
management systems to rigorously define the system state, applying changes
programmatically as a reaction to topological changes. As a result of leveraging
automation tools for this purpose, we naturally found ourselves
programmatically calculating the network enforcement details instead of
managing such configuration by hand. We found that using automation to
capture the system design in this way was enabling us to deploy and manage
security features, including access control and encryption, much more easily
than in systems past. Even better, doing so allowed us to place much less trust in
the network than other systems might normally do, which is a key security
consideration when operating in and across public clouds.



Around that same time, Google’s first BeyondCorp paper was published,
describing how they were rethinking system and network design to remove trust
from the network. We saw a lot of philosophical similarities in how Google was
approaching their network security, and how we approached similar problems in
our own systems. It was clear that reducing trust in the network was not only our
own design preference/opinion, but the general direction the industry was
headed. With the realizations gained from comparing the BeyondCorp paper to
our own efforts, we started sharing broader understandings of this architecture
and philosophy at various conferences.

Attendees were engaged and interested in what we were doing, but the question
we frequently heard was “Where can I learn more about how to do this in my
own system?” Unfortunately, the answer was typically “Well, there’s not a
whole lot...come see me afterward.” The lack of publicly available information
and guidance became a glaring gap—one we wanted to correct. This book aims
to fill that gap.

While writing this book, we spoke to individuals from dozens of companies to
understand their perspective on network security designs. We found that many of
those companies were themselves reducing the trust of their internal networks.
While each organization took a slightly different approach in their own system,

it was clear that they all were working under the same threat model and were as
a result building solutions that shared many properties.

Our goal with this book isn’t to present one or two particular solutions to
building these types of systems, but rather to define a system model that places
no trust in its communication network. Therefore, this book won’t be focused on
using specific software or implementations, but rather it will explore the
concepts and philosophies that are used to build a zero trust network. We hope
you will find it useful to have a clear mental model for how to construct this type
of system when building your own system, or even better, reusable solutions for
the problems described herein.

Zero Trust Networks Today

The zero trust model was originally conceived by Forrester’s John Kindervag in
2010. He worked for many years to set forth architectural models and guidance
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to evolve their security posture in order to attain zero trust guarantees. John was,
and still is, an important figure in the field. His work in the area greatly informed
our understanding of the state of the union, and we thank him for popularizing
zero trust during its formative years.

Today’s zero trust networks are largely built using off-the-shelf software
components with custom software and glue to integrate the components in novel
ways. As such, when reading this text, please be aware that deploying this type
of system isn’t as easy as installing and configuring some ready-made hardware
or software...yet.

It could be said that the lack of easily deployable components that work well
together is an opportunity. A suite of open source tools could help drive adoption
of zero trust networks.

Navigating This Book

This book is organized as follows:

e Chapters 1 and 2 discuss the fundamental concepts at play in a zero trust
network.

e Chapters 3 and 4 explore the new concepts typically seen in mature zero trust
networks: network agents and trust engines.

e Chapters 5-8 detail how trust is established among the actors in a network.
Most of this content is focused on existing technology that could be useful
even in a traditional network security model.

e Chapter 9 brings all this content together to discuss how you could begin
building your own zero trust network and includes two case studies.

e Chapter 10 looks at the zero trust model from an adversarial view. It explores
potential weaknesses, discussing which are well mitigated, and which are not.

Conventions Used in This Book

The following typographical conventions are used in this book:



Italic

Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types,
environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

O’Reilly Safari

Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
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Chapter 1. Zero Trust
Fundamentals

In a time where network surveillance is ubiquitous, we find ourselves having a
hard time knowing who to trust. Can we trust that our internet traffic will be safe
from eavesdropping? Certainly not! What about that provider you leased your
fiber from? Or that contracted technician who was in your datacenter yesterday
working on the cabling?

Whistleblowers like Edward Snowden and Mark Klein have revealed the
tenacity of government-backed spy rings. The world was shocked at the
revelation that they had managed to get inside the datacenters of large
organizations. But why? Isn’t it exactly what you would do in their position?
Especially if you knew that traffic there would not be encrypted?

The assumption that systems and traffic within a datacenter can be trusted is
flawed. Modern networks and usage patterns no longer echo those that made
perimeter defense make sense many years ago. As a result, moving freely within
a “secure” infrastructure is frequently trivial once a single host or link there has
been compromised.

Zero trust aims to solve the inherent problems in placing our trust in the
network. Instead, it is possible to secure network communication and access so
effectively that physical security of the transport layer can be reasonably
disregarded. It goes without saying that this is a lofty goal. The good news is that
we’ve got pretty good crypto these days, and given the right automation systems,
this vision is actually attainable.

What Is a Zero Trust Network?

A zero trust network is built upon five fundamental assertions:

e The network is always assumed to be hostile.

e External and internal threats exist on the network at all times.



e Network locality is not sufficient for deciding trust in a network.

e Every device, user, and network flow is authenticated and authorized.

e Policies must be dynamic and calculated from as many sources of data as

possible.

Traditional network security architecture breaks different networks (or pieces of
a single network) into zones, contained by one or more firewalls. Each zone is
granted some level of trust, which determines the network resources it is
permitted to reach. This model provides very strong defense-in-depth. For
example, resources deemed more risky, such as web servers that face the public
internet, are placed in an exclusion zone (often termed a “DMZ”), where traffic
can be tightly monitored and controlled. Such an approach gives rise to an
architecture that is similar to some you might have seen before, such as the one
shown in Figure 1-1.

Internet
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' VPN
B

DMZ

| r——

gateway

Trusted

| Private
gservice

 —

Privileged

PCI
3server
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Figure 1-1. Traditional network security architecture

The zero trust model turns this diagram inside out. Placing stopgaps in the



network is a solid step forward from the designs of yesteryear, but it is
significantly lacking in the modern cyberattack landscape. There are many
disadvantages:

e Lack of intra-zone traffic inspection
e Lack of flexibility in host placement (both physical and logical)

e Single points of failure

It should be noted that, should network locality requirements be removed, the
need for VPNss is also removed. A VPN (or virtual private network) allows a
user to authenticate in order to receive an IP address on a remote network. The
traffic is then tunneled from the device to the remote network, where it is
decapsulated and routed. It’s the greatest backdoor that no one ever suspected.

If we instead declare that network location has no value, VPN is suddenly
rendered obsolete, along with several other modern network constructs. Of
course, this mandate necessitates pushing enforcement as far toward the network
edge as possible, but at the same time relieves the core from such responsibility.
Additionally, stateful firewalls exist in all major operating systems, and
advances in switching and routing have opened an opportunity to install
advanced capabilities at the edge. All of these gains come together to form one
conclusion: the time is right for a paradigm shift.

By leveraging distributed policy enforcement and applying zero trust principles,
we can produce a design similar to the one shown in Figure 1-2.
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Figure 1-2. Zero trust architecture

Introducing the Zero Trust Control Plane

The supporting system is known as the control plane, while most everything else
is referred to as the data plane, which the control plane coordinates and
configures. Requests for access to protected resources are first made through the
control plane, where both the device and user must be authenticated and
authorized. Fine-grained policy can be applied at this layer, perhaps based on
role in the organization, time of day, or type of device. Access to more secure
resources can additionally mandate stronger authentication.

Once the control plane has decided that the request will be allowed, it
dynamically configures the data plane to accept traffic from that client (and that
client only). In addition, it can coordinate the details of an encrypted tunnel
between the requestor and the resource. This can include temporary one-time-
use credentials, keys, and ephemeral port numbers.

While some compromises can be made on the strength of these measures, the



basic idea is that an authoritative source, or trusted third party, is granted the
ability to authenticate, authorize, and coordinate access in real time, based on a
variety of inputs.

Evolution of the Perimeter Model

The traditional architecture described in this book is often referred to as the
perimeter model, after the castle-wall approach used in physical security. This
approach protects sensitive items by building lines of defenses that an intruder
must penetrate before gaining access. Unfortunately, this approach is
fundamentally flawed in the context of computer networks and no longer
suffices. In order to fully understand the failure, it is useful to recall how the
current model was arrived at.

Managing the Global IP Address Space

The journey that led to the perimeter model began with address assignment.
Networks were being connected at an ever-increasing rate during the days of the
early internet. If it wasn’t being connected to the internet (remember the internet
wasn’t ubiquitous at the time), it was being connected to another business unit,
another company, or perhaps a research network. Of course, IP addresses must
be unique in any given IP network, and if the network operators were unlucky
enough to have overlapping ranges, they would have a lot of work to do in
changing them all. If the network you are connecting to happens to be the
internet, then your addresses must be globally unique. So clearly some
coordination is required here.

The Internet Assigned Numbers Authority (IANA), formally established in

1998, is the body that today provides that coordination. Prior to the
establishment of the IANA, this responsibility was handled by Jon Postel, who
created the internet map shown in Figure 1-3. He was the authoritative source for
IP address ownership records, and if you wanted to guarantee that your IP
addresses were globally unique, you would register with him. At this time,
everybody was encouraged to register for IP address space, even if the network
being registered was not going to be connected to the internet. The assumption
was that even if a network was not connected now, it would probably be



connected to another network at some point.
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Birth of Private IP Address Space

As IP adoption grew through the late 1980s and early 1990s, frivolous use of
address space became a serious concern. Numerous cases of truly isolated
networks with large IP address space requirements began to emerge. Networks
connecting ATMs and arrival/departure displays at large airports were touted as
prime examples. These networks were considered truly isolated for various
reasons. Some devices might be isolated to meet security or privacy
requirements (e.g., networks meant for ATMs). Some might be isolated because
the scope of their function was so limited that having broader network access
was seen as exceedingly unlikely (e.g., airport arrival and departure displays).
RFC 1597, Address Allocation for Private Internets, was introduced to address
this wasted public address space issue.

In March of 1994, RFC 1597 announced that three IP network ranges had been
reserved with TANA for general use in private networks: 10.0.0.0/8,
172.16.0.0/12, and 192.168.0.0/16. This had the effect of slowing address
depletion by ensuring that the address space of large private networks never
grew beyond those allocations. It also enabled network operators to use non-
globally unique addresses where and when they saw fit. It had another
interesting effect, which lingers with us today: networks using private addresses
were more secure, because they were fundamentally incapable of joining other
networks, particularly the internet.

At the time, very few organizations (relatively speaking) had an internet
connection or presence, and as such, internal networks were frequently
numbered with the reserved ranges. Additionally, security measures were weak
to nonexistent because these networks were typically confined by the walls of a
single organization.

Private Networks Connect to Public Networks

The number of interesting things on the internet grew fairly quickly, and soon
most organizations wanted at least some sort of presence. Email was one of the
earliest examples of this. People wanted to be able to send and receive email, but
that meant they needed a publicly accessible mail server, which of course meant
that they needed to connect to the internet somehow.
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With established private networks, it was often the case that this mail server
would be the only server with an internet connection. It would have one network
interface facing the internet, and one facing the internal network. With that,
systems and people on the internal private network got the ability to send and
receive internet email via their connected mail server.

It was quickly realized that these servers had opened up a physical internet path
into their otherwise secure and private network. If one was compromised, an
attacker might be able to work their way into the private network, since hosts
there can communicate with it. This realization prompted strict scrutiny of these
hosts and their network connections. Network operators placed firewalls on both
sides of them to restrict communication and thwart potential attackers attempting
to access internal systems from the internet, as shown in Figure 1-4. With this
step, the perimeter model was born. The internal network became the “secure”
network, and the tightly controlled pocket that the external hosts laid in became
the DMZ, or the demilitarized zone.

Internet DMZ ; s CaS
: network

Client i Server i Client

Figure 1-4. Both internet and private resources can access hosts in the DMZ; private resources, however,



cannot reach beyond the DMZ, and thus do not gain direct internet access

Birth of NAT

The number of internet resources desired to be accessed from internal networks
was growing rapidly, and it quickly became easier to grant general internet
access to internal resources than it was to maintain intermediary hosts for every
application desired. NAT, or network address translation, solved that problem
nicely.

RFC 1631, The IP Network Address Translator, defines a standard for a network
device that is capable of performing IP address translation at organizational
boundaries. By maintaining a table that maps public IPs and ports to private
ones, it enabled devices on private networks to access arbitrary internet
resources. This lightweight mapping is application-agnostic, which meant that
network operators no longer needed to support internet connectivity for
particular applications; they needed only to support internet connectivity in
general.

These NAT devices had an interesting property: because the IP mapping was
many-to-one, it was not possible for incoming connections from the internet to
access internal private IPs without specifically configuring the NAT to handle
this special case. In this way, the devices exhibited the same properties as a
stateful firewall. Actual firewalls began integrating NAT features almost
instantaneously, and the two became a single function, largely indistinguishable.
Supporting both network compatibility and tight security controls meant that
eventually you could find one of these devices at practically every organizational
boundary, as shown in Figure 1-5.
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Figure 1-5. Typical (and simplified) perimeter firewall design

The Contemporary Perimeter Model

With a firewall/NAT device between the internal network and the internet, the
security zones are clearly forming. There is the internal “secure” zone, the DMZ
(demilitarized zone), and the untrusted zone (aka the internet). If at some point
in the future, this organization needed to interconnect with another, a device
would be placed on that boundary in a similar manner. The neighboring
organization is likely to become a new security zone, with particular rules about
what kind of traffic can go from one to the other, just like the DMZ or the secure
zone.

Looking back, the progression can be seen. We went from offline/private
networks with just one or two hosts with internet access to highly interconnected
networks with security devices around the perimeter. It is not hard to understand:
network operators can’t afford to sacrifice the perfect security of their offline



network because they had to open doors up for various business purposes. Tight
security controls at each door minimized the risk.

Evolution of the Threat Landscape

Even before the public internet, communicating with a remote computer system
was highly desirable. This was commonly done over the public telephone
system. Users and computer systems could dial in and, by encoding data into
audible tones, gain connectivity to the remote machine. These dial-in interfaces
were the most common attack vector of the day, since gaining physical access
was much more difficult.

Once organizations had internet-connected hosts, attacks shifted from occurring
over the telephone network to being launched over the internet. This triggered a
change in most attack dynamics. Incoming calls to dial-in interfaces tied up a
phone line, and were a notable occurrence when compared to a TCP connection
coming from the internet. It was much easier to have a covert presence on an IP
network than it was on a system that needed to be dialed into. Exploitation and
brute force attempts could be carried out over long periods of time without
raising too much suspicion...though an additional and more impactful capability
rose from this shift: malicious code could then listen for internet traffic.

By the late 1990s, the world’s first (software) Trojan horses had begun to make
their rounds. Typically, a user would be tricked into installing the malware,
which would then open a port and wait for incoming connections. The attacker
could then connect to the open port and remotely control the target machine.

It wasn’t long after that people realized it would be a good idea to protect those
internet-facing hosts. Hardware firewalls were the best way to do it (most
operating systems had no concept of a host-based firewall at the time). They
provided policy enforcement, ensuring that only whitelisted “safe” traffic was
allowed in from the internet. If an administrator inadvertently installed
something that exposed an open port (like a Trojan horse), the firewall would
physically block connections to that port until explicitly configured to allow it.
Likewise, traffic to the internet-facing servers from inside the network could be
controlled, ensuring that internal users could speak to them, but not vice versa.
This helped prevent movement into the internal network by a potentially



compromised DMZ host.

DMZ hosts were of course a prime target (due to their connectivity), though such
tight controls on both inbound and outbound traffic made it hard to reach an
internal network through a DMZ. An attacker would first have to compromise
the firewalled server, then abuse the application in such a way that it could be
used for covert communication (they need to get data out of that network, after
all). Dial-in interfaces remained the lowest hanging fruit if one was determined
to gain access to an internal network.

This is where things took an interesting turn. NAT was introduced to grant
internet access to clients on internal networks. Due in some part to NAT
mechanics and in some part to real security concerns, there was still tight control
on inbound traffic, though internal resources wishing to consume external
resources might freely do so. There’s an important distinction to be made when
considering a network with NAT’d internet access against a network without it:
the former has relaxed (if any) outbound network policy.

This significantly transformed the network security model. Hosts on the
“trusted” internal networks could then communicate directly with untrusted
internet hosts, and the untrusted host was suddenly in a position to abuse the
client attempting to speak with it. Even worse, malicious code could then send
messages to internet hosts from within the internal network. Today, we know
this as phoning home.

Phoning home is a critical component of most modern attacks. It allows data to
be exfiltrated from otherwise-protected networks; but more importantly, since
TCP is bidirectional, it allows data to be injected as well.

A typical attack involves several steps, as shown in Figure 1-6. First, the attacker
will compromise a single computer on the internal network by exploiting the
user’s browser when they visit a particular page, by sending them an email with
an attachment that exploits some local software, for example. The exploit carries
a very small payload, just enough code to make a connection out to a remote
internet host and execute the code it receives in the response. This payload is
sometimes referred to as a dialer.

The dialer downloads and installs the real malware, which more often than not
will attempt to make an additional connection to a remote internet host



controlled by the attacker. The attacker will use this connection to send
commands to the malware, exfiltrate sensitive data, or even to obtain an
interactive session. This “patient zero” can act as a stepping stone, giving the
attacker a host on the internal network from which to launch additional attacks.

Victim Perimeter FW Attacker
—_ s
Visits infected site , e »
-
l€ e —— E Delivers malicious payload
Malware phones home I
I ; Command & control
E established
Data exfiltrated T e b

Figure 1-6. Client initiates all attack-related connections, easily traversing perimeter firewalls with
relaxed outbound security

OUTBOUND SECURITY

Outbound network security is a very effective mitigation measure against dialer-based attacks,
as the phone home can be detected and/or blocked. Oftentimes, however, the phone home is
disguised as regular web traffic, possibly even to networks that are seemingly benign or
“normal.” Outbound security tight enough to stop these attacks will oftentimes cripple web
usability for users. This is a more realistic prospect for back-office systems.

The ability to launch attacks from hosts within an internal network is a very



powerful one. These hosts almost certainly have permission to talk to other hosts
in the same security zone (lateral movement) and might even have access to talk
to hosts in zones more secure than their own. To this effect, by first
compromising a low-security zone on the internal network, an attacker can move
through the network, eventually gaining access to the high-security zones.

Taking a step back for a moment, it can be seen that this pattern very effectively
undermines the perimeter security model. The critical flaw enabling attack
progression is subtle, yet clear: security policies are defined by network

zones, enforced only at zone boundaries, using nothing more than the source and
destination details.

Perimeter Shortcomings

Even though the perimeter security model still stands as the most prevalent
model by far, it is increasingly obvious that the way we rely on it is flawed.
Complex (and successful) attacks against networks with perfectly good
perimeter security occur every day. An attacker drops a remote access tool (or
RAT) into your network through one of a myriad of methods, gains remote
access, and begins moving laterally. Perimeter firewalls have become the
functional equivalent of building a wall around a city to keep out the spies.

The problem comes when architecting security zones into the network itself.
Imagine the following scenario: you run a small ecommerce company. You have
some employees, some internal systems (payroll, inventory, etc.), and some
servers to power your website. It is natural to begin classifying the kind of
access these groups might need: employees need access to internal systems, web
servers need access to database servers, database servers don’t need internet
access but employees do, and so on. Traditional network security would codify
these groups as zones and then define which zone can access what, as shown in
Figure 1-7. Of course, you need to actually enforce these policies; and since they
are defined on a zone-by-zone basis, it makes sense to enforce them wherever
one zone can route traffic into another.

As you might imagine, there are always exceptions to these generalized rules...
they are, in fact, colloquially known as firewall exceptions. These exceptions are
typically as tightly scoped as possible. For instance, your web developer might



want SSH access to the production web servers, or your HR representative might
need access to the HR software’s database in order to perform audits. In these
cases, an acceptable approach is to configure a firewall exception permitting
traffic from that individual’s IP address to the particular server(s) in question.

Now let’s imagine that your archnemesis has hired a team of hackers. They want
to have a peek at your inventory and sales numbers. The hackers send emails to
all the employee email addresses they can find on the internet, masquerading as
a discount code for a restaurant near the office. Sure enough, one of them clicks
the link, allowing the attackers to install malware. The malware phones home
and provides the attackers with a session on the now-compromised employee’s
machine. Luckily, it’s only an intern, and the level of access they gain is limited.

Corp

Internet

Unprivileged
‘ employee

|
i

Privileged
employee

Figure 1-7. Corporate network interacting with the production network

They begin searching the network and find that the company is using file sharing
software on its network. Out of all the employee computers on the
network, none of them have the latest version and are vulnerable to an attack that



was recently publicized. One by one, the hackers begin searching for a computer
with elevated access (this process of course can be more targeted if the attacker
has advanced knowledge). Eventually they come across your web developer’s
machine. A keylogger they install there recovers the credentials to log into the
web server. They SSH to the server using the credentials they gathered; and
using the sudo rights of the web developer, they read the database password
from disk and connect to the database. They dump the contents of the database,
download it, and delete all the log files. If you’re lucky, you might actually
discover that this breach occurred. They accomplished their mission, as shown in
Figure 1-8.

Wait, what? As you can see, many failures at many levels led to this breach, and
while you might think that this is a particularly contrived case, successful attacks
just like this one are staggeringly common. The most surprising part however
goes unnoticed all too often: what happened to all that network security?
Firewalls were meticulously placed, policies and exceptions were tightly scoped
and very limited, everything was done right from a network security perspective.
So what gives?
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EXAMPLE ATTACK PROGRESSION

Employees targeted via phishing email

Corporate machine compromised, shell shoveled

Lateral movement through corporate network

Privileged workstation located

Local privilege escalation on workstation—keylogger installed
Developer password stolen

Compromised prod app host from privileged workstation
Developer password used to elevate privileges on prod app host
Database credentials stolen from app

Database contents exfiltrated via compromised app host



When carefully examined, it is overwhelmingly obvious that this network
security model is not enough. Bypassing perimeter security is trivial with
malware that phones home, and firewalls between zones consider nothing more
than source and destination when making enforcement decisions. While
perimeters can still provide some value in network security, their role as the
primary mechanism by which a network’s security stance is defined needs to be
reconsidered.

The first step of course is to search for existing solutions. Sure, the perimeter
model is the accepted approach to securing a network, but that doesn’t mean we
haven’t learned better elsewhere. What is the worst possible scenario network
security-wise? It turns out that there is actually a level of absoluteness to this
question, and the crux of it lies in trust.

Where the Trust Lies

When considering options beyond the perimeter model, one must have a firm
understanding of what is trusted and what isn’t. The level of trust defines a lower
limit on the robustness of the security protocols required. Unfortunately, it is rare
for robustness to exceed what is required, so it is wise to trust as little as
possible. Once trust is built into a system, it can be very hard to remove.

A zero trust network is just as it sounds. It is a network that is completely
untrusted. Lucky for us, we interact with such a network very frequently: the
internet.

The internet has taught us some valuable security lessons. Certainly an operator
will secure an internet-facing server much differently than it secures its locally

accessible counterpart. Why is that? And if the pains associated with such rigor
were cured (or even just lessened), would the security sacrifice still be worth it?

The zero trust model dictates that all hosts be treated as if they’re internet-facing.
The networks they reside in must be considered compromised and hostile. Only
with this consideration can you begin to build secure communication. With most
operators having built or maintained internet-facing systems in the past, we have
at least some idea of how to secure IP in a way that is difficult to intercept or
tamper with (and, of course, how to secure those hosts). Automation enables us
to extend this level of security to all of the systems in our infrastructure.



Automation as an Enabler

Zero trust networks do not require new protocols or libraries. They do, however,
use existing technologies in novel ways. Automation systems are what allow a
zero trust network to be built and operated.

Interactions between the control plane and the data plane are the most critical
points requiring automation. If policy enforcement cannot be dynamically
updated, zero trust will be unattainable; therefore it is critical that this process be
automatic and rapid.

There are many ways that this automation can be realized. Purpose-built systems
are most ideal, though more mundane systems like traditional configuration
management can fit here as well. Widespread adoption of configuration
management represents an important stepping stone for a zero trust network, as
these systems often maintain device inventories and are capable of automating
network enforcement configuration in the data plane.

Due to the fact that modern configuration management systems can both
maintain a device inventory and automate the data plane configuration, they are
well positioned to be a first step toward a mature zero trust network.

Perimeter Versus Zero Trust

The perimeter and zero trust models are fundamentally different from each other.
The perimeter model attempts to build a wall between trusted and untrusted
resources (i.e., local network and the internet). On the other hand, the zero trust
model basically throws the towel in, and accepts the reality that the “bad guys”
are everywhere. Rather than build walls to protect the soft bodies inside, it turns
the entire population into a militia.

The current approaches to perimeter networks assign some level of trust to the
protected networks. This notion violates the zero trust model and leads to some
bad behavior. Operators tend to let their guard down a bit when the network is
“trusted” (they are human). Rarely are hosts that share a trust zone protected
from themselves. Sharing a trust zone, after all, seems to imply that they are
equally trusted. Over time, we have come to learn that this assumption is false,
and it is not only necessary to protect your hosts from the outside, but it is also



necessary to protect them from each other.

Since the zero trust model assumes the network is fully compromised, you must
also assume that an attacker can communicate using any arbitrary IP address.
Thus, protecting resources by using IP addresses or physical location as an
identifier is not enough. All hosts, even those which share “trust zones,” must
provide proper identification. Attackers are not limited to active attacks though.
They can still perform passive attacks in which they sniff your traffic for
sensitive information. In this case, even host identification is not enough—strong
encryption is also required.

There are three key components in a zero trust network: user/application
authentication, device authentication, and trust. The first component has some
duality in it due to the fact that not all actions are taken by users. So in the case
of automated action (inside the datacenter, for instance), we look at qualities of
the application in the same way that we would normally look at qualities of the
user.

Authenticating and authorizing the device is just as important as doing so for the
user/application. This is a feature rarely seen in services and resources protected
by perimeter networks. It is often deployed using VPN or NAC technology,
especially in more mature networks, but finding it between endpoints (as
opposed to network intermediaries) is uncommon.

NAC AS A PERIMETER TECHNOLOGY

NAC, or Network Access Control, represents a set of technologies designed to strongly
authenticate devices in order to gain access to a sensitive network. These technologies, which
include protocols like 802.1X and the Trusted Network Connect (TNC) family, focus on
admittance to a network rather than admittance to a service and as such are independent to the
zero trust model. An approach more consistent with the zero trust model would involve similar
checks as close to the service being accessed as possible (something which TNC can address—
more on this in Chapter 5). While NAC can still be employed in a zero trust network, it does
not fulfill the zero trust device authentication requirement due to its distance from the remote
endpoint.

Finally, a “trust score” is computed, and the application, device, and score are
bonded to form an agent. Policy is then applied against the agent in order to
authorize the request. The richness of information contained within the agent



allows very flexible yet fine-grained access control, which can adapt to varying
conditions by including the score component in your policies.

If the request is authorized, the control plane signals the data plane to accept the
incoming request. This action can configure encryption details as well.
Encryption can be applied at the device level, application level, or both. At least
one is required for confidentiality.

With these authentication/authorization components, and the aide of the control
plane in coordinating encrypted channels, we can assert that every single flow on
the network is authenticated and expected. Hosts and network devices drop
traffic that has not had all of these components applied to it, ensuring sensitive
data can never leak out. Additionally, by logging each of the control plane
events and actions, network traffic can be easily audited on a flow-by-flow or
request-by-request basis.

Perimeter networks can be found which have similar capability, though these
capabilities are enforced at the perimeter only. VPN famously attempts to
provide these qualities in order to secure access to an internal network, but the
security ends as soon as your traffic reaches a VPN concentrator. It is apparent
that operators know what internet-strength security is supposed to look like; they
just fail to implement those strong measures throughout.

If one can imagine a network that applies these measures homogeneously, some
brief thought experiment can shed a lot of light on this new paradigm. Identity
can be proven cryptographically, meaning it no longer matters what IP address
any given connection is originating from (technically, you can still associate risk
with it—more on that later). With automation removing the technical barriers,
VPN is essentially obsoleted. “Private” networks no longer mean anything
special: the hosts there are just as hardened as the ones on the internet. Thinking
critically about NAT and private address space, perhaps zero trust makes it more
obvious that the security arguments for it are null and void.

Ultimately, the perimeter model flaw is lack of universal protection and
enforcement. Secure cells with soft bodies inside. What we’re really looking for
is hard bodies, bodies that know how to check IDs and speak in a way they can’t
be overheard. Having hard bodies doesn’t necessarily preclude you from also
maintaining the security cells. In very sensitive installations, this would still be
encouraged. It does, however, raise the security bar high enough that it wouldn’t



be unreasonable to lessen or remove those cells. Combined with the fact that the
majority of the zero trust function can be done with transparency to the end user,
the model almost seems to violate the security/convenience trade-off: stronger
security, more convenience. Perhaps the convenience problem (or lack thereof)
has been pushed onto the operators.

Applied in the Cloud

There are many challenges in deploying infrastructure into the cloud, one of the
larger being security. Zero trust is a perfect fit for cloud deployments for an
obvious reason: you can’t trust the network in a public cloud! The ability to
authenticate and secure communication without relying on IP addresses or the
security of the network connecting them means that compute resources can be
nearly commoditized.

Since zero trust advocates that every packet be encrypted, even within the same
datacenter, operators need not worry about which packets traverse the internet
and which don’t. This advantage is often understated. Cognitive load associated
with when, where, and how to encrypt traffic can be quite large, particularly for
developers who may not fully understand the underlying system. By eliminating
special cases, we can also eliminate the human error associated with them.

Some might argue that intra-datacenter encryption is overkill, even with the
reduction in cognitive load. History has proven otherwise. At large cloud
providers like AWS, a single “region” consists of many datacenters, with fiber
links between them. To the end user, this subtlety is often obfuscated. The NSA
was targeting precisely links like these in 2013, and internet-backbone links even
earlier in rooms like the one shown in Figure 1-9.



Figure 1-9. Room 641A—NSA interception facility inside an AT&T datacenter in San Francisco

There are additionally risks in the network implementation of the provider itself.
It is not impossible to think that a vulnerability might exist in which neighbors
can see your traffic. A more likely case is network operators inspecting traffic
while troubleshooting. Perhaps the operator is honest, but how about the person
who stole his/her laptop a few hours later with your captures on the disk? The
unfortunate reality is that we can no longer assume that our traffic is protected
from snooping or modification while in the datacenter.

Summary

This chapter explored the high-level concepts that have led us toward the zero
trust model. The zero trust model does away with the perimeter model, which
attempts to ensure that bad actors stay out of the trusted internal network.
Instead, the zero trust system recognizes that this approach is doomed to failure,
and as a result, starts with the assumption that malicious actors are within the



internal network and builds up security mechanisms to guard against this threat.

To better understand why the perimeter model is failing us, we reviewed how the
perimeter model came into being. Back at the internet’s beginning, the network
was fully routable. As the system evolved, some users identified areas of the
network that didn’t have a credible reason to be routable on the internet, and thus
the concept of a private network was born. Over time, this idea took hold, and
organizations modeled their security around protecting the trusted private
network. Unfortunately, these private networks aren’t nearly as isolated as the
original private networks were. The end result is a very porous perimeter, which
is frequently breached in regular security incidents.

With the shared understanding of perimeter networks, we are able to contrast
that design against the zero trust design. The zero trust model carefully manages
trust in the system. These types of networks lean on automation to realistically
manage the security control systems that allow us to create a more dynamic and
hardened system. We introduced some key concepts like the authentication of
users, devices, and applications, and the authorization of the combination of
those components. We will discuss these concepts in greater detail throughout
the rest of this book.

Finally, we talked about how the move to public cloud environments and the
pervasiveness of internet connectivity have fundamentally changed the threat
landscape. “Internal” networks are now increasingly shared and sufficiently
abstracted away in such a way that end users don’t have as clear an
understanding of when their data is transiting more vulnerable long-distance
network links. The end result of this change is that data security is more
important than ever when constructing new systems.

The next chapter will discuss the high-level concepts that need to be understood
in order to build systems that can safely manage trust.



Chapter 2. Managing Trust

Trust management is perhaps the most important component of a zero trust
network. We are all familiar with trust to some degree—you probably trust
members of your family, but not a stranger on the street, and certainly not a
stranger who looks threatening or menacing. Why is that?

For starters, you actually know your family members. You know what they look
like, where they live; perhaps you’ve even known them your whole life. There is
no question of who they are, and you are more likely to trust them with
important matters than others.

A stranger, on the other hand, is someone completely unknown. You might see
their face, and be able to tell some basic things about them, but you don’t know
where they live, and you don’t know their history. They might appear perfectly
cromulent, but you likely wouldn’t rely on one for important matters. Watch
your stuff for you while you run to the bathroom? Sure. Make a quick run to the
ATM for you? Definitely not.

At the end, you are simply taking in all the information you can tell about the
situation, a person, and all you may know about them, and deciding how
trustworthy they are. The ATM errand requires a very high level of trust, where
watching your stuff needs much less, but not zero.

You may not even trust yourself completely, but you can definitely trust that
actions taken by you were taken by you. In this way, trust in a zero trust network
always originates with the operator. Trust in a zero trust network seems
contradictory, though it is important to understand that when you have

no inherent trust, you must source it from somewhere and manage it carefully.

There’s a small wrinkle though: the operator won’t always be available to
authorize and grant trust! Plus, the operator just doesn’t scale :). Luckily, we
know how to solve that problem—we delegate trust as shown in Figure 2-1.
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Figure 2-1. An operator declares trust in a particular system, which can in turn trust another, forming a
trust chain

Trust delegation is important because it allows us to build automated systems
that can grow to large scale and to operate in a secure and trusted way with
minimal human intervention. The trusted operator must assign some level of
trust to a system, enabling it to take actions on behalf of the operator. A simple
example of this is auto-scaling. You want your servers to provision themselves
as needed, but how do you know a new server is one of yours and not some other
random server? The operator must delegate the responsibility to a provisioning
system, granting it the ability to assign trust to, and create, new hosts. In this
way, we can say that we trust the new server is indeed our own, because the
provisioning system has validated that it has taken the action to create it, and the
provisioning system can prove that the operator has granted it the ability to do



so. This flow of trust back to the operator is often referred to as a trust chain,
and the operator can be referred to as a trust anchor.

Threat Models

Defining threat models is an important first step when designing a security
architecture. A threat model enumerates the potential attackers, their capabilities
and resources, and their intended targets. Threat models will normally define
which attackers are in scope, rationally choosing to mitigate attacks from weaker
adversaries before moving onto more difficult adversaries.

A well-defined threat model can be a useful tool to focus security mitigation
efforts. When building security systems, like most engineering exercises, there is
a tendency to focus on the fancier aspects of the engineering problem to the
detriment of the more boring but still important parts. This tendency is especially
worrisome in a security system, since the weakest link in the system is where
attackers will quickly focus their attention. Therefore, the threat model serves as
a mechanism for focusing our attention on a single threat and fully mitigating
their attacks.

Threat models can also be useful when prioritizing security initiatives. Fighting
state-level actors is pointless if a system’s security measures are insufficient to
defend against a simple brute force attack on a user’s poor password. As such, it
is important to start first with simpler personas when building a threat model.

Common Threat Models

There are many different techniques for threat modeling in the security field.
Here are some of the more popular ones:

e STRIDE

DREAD
PASTA

Trike

VAST


https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://www.owasp.org/index.php/Threat_Risk_Modeling#DREAD
http://bit.ly/2rQGNoa
http://octotrike.org/
http://threatmodeler.com/threat-modeling-methodology/

The varying threat modeling techniques provide different frameworks for
exploring the threat space. Each of them is after the same goal: to enumerate
threats to the system and further enumerate the mitigating systems and processes
for those threats.

Different threat models approach the problem from different angles. Some
modeling systems might focus on the assets that an attacker would be targeting.
Others might look at each software component in isolation and enumerate all the
attacks that could be applied to that system. Finally, some models might look at
the system as a whole from the attacker’s perspective: as an attacker, how might
I approach penetrating this system. Each of these approaches has pros and cons.
For a well-diversified mitigating strategy, a blend of the three approaches is
ideal.

If we were to look at the attacker-based threat modeling methodology, we are
able to categorize attackers into a list of increasing capabilities (ordered from
least to most threatening):

1. Opportunistic attackers

So-called script kiddies, who are unsophisticated attackers taking advantage
of well-known vulnerabilities with no predetermined target.

2. Targeted attackers

Attackers who craft specialized attacks against a particular target. Spear
phishing and corporate espionage might fall under this bucket.

3. Insider threats

A credentialed but everyday user of a system. Contractors and unprivileged
employees generally fall into this bucket.

4. Trusted insider

A highly trusted administrator of a system.

5. State-level actor

Attackers backed by foreign or domestic governments and assumed to have
vast resources and positioning capabilities to attack a target.

Categorizing threats like this is a useful exercise to focus discussion around a



particular level to mitigate against. We will discuss which level zero trust targets
in the next section.

Zero Trust’s Threat Model

In RFC 3552, the Internet Threat Model is described. Zero trust networks
generally follow the Internet Threat Model to plan their security stance. While
reading the entire RFC is recommended, here is a relevant excerpt:

The Internet environment has a fairly well understood threat model. In
general, we assume that the end-systems engaging in a protocol exchange
have not themselves been compromised. Protecting against an attack when
one of the end-systems has been compromised is extraordinarily difficult. It is,
however, possible to design protocols which minimize the extent of the
damage done under these circumstances.

By contrast, we assume that the attacker has nearly complete control of the
communications channel over which the end-systems communicate. This
means that the attacker can read any PDU (Protocol Data Unit) on the
network and undetectably remove, change, or inject forged packets onto the
wire. This includes being able to generate packets that appear to be from a
trusted machine. Thus, even if the end-system with which you wish to
communicate is itself secure, the Internet environment provides no assurance
that packets which claim to be from that system in fact are.

Zero trust networks, as a result of their control over endpoints in the network,
expand upon the Internet Threat Model to consider compromises at the
endpoints. The response to these threats is generally to first harden the systems
proactively against compromised peers, and then facilitate detection of those
compromises. Detection is aided by scanning of devices and behavioral analysis
of the activity from each device. Additionally, mitigation of endpoint
compromise is achieved by frequent upgrades to software on devices, frequent
and automated credential rotation, and in some cases frequent rotation of the
devices themselves.

An attacker with unlimited resources is essentially impossible to defend against,
and zero trust networks recognize that. The goal of a zero trust network isn’t to
defend against all adversaries, but rather the types of adversaries that are
commonly seen in a hostile network.


https://tools.ietf.org/html/rfc3552#section-3

From our earlier discussion of attacker capabilities, a zero trust network is
generally attempting to mitigate attacks up to and including attacks originating
from a “trusted insider” level of access. Most organizations do not experience
attacks that exceed this level of sophistication. Developing mitigations against
these attackers will defend against the vast majority of compromises and would
be a dramatic improvement for the industry’s security stance.

Zero trust networks generally do not try to mitigate all state-level actors, though
they do attempt to mitigate those attempting to compromise their systems
remotely. State-level actors are assumed to have vast amounts of money, so
many attacks that would be infeasible for lesser organizations are available to
them. Additionally, local governments have physical and legal access to many of
the systems that organizations depend upon for securing their networks.

Defending against these localized threats is exceedingly expensive, requiring
dedicated physical hardware, and most zero trust networks consider the more
extreme forms of attacks (say a vulnerability being inserted into a hypervisor
which copies memory pages out of a VM) out of scope in their threat models.
We should be clear that while security best practices are still very much
encouraged, the zero trust model only requires the safety of information used to
authenticate and authorize actions, such as on-disk credentials. Further
requirements on endpoints, say full disk encryption, can be applied via
additional policy.

Strong Authentication

Knowing how much to trust someone is useless without being able to associate a
real-life person with that identity you know to trust. Humans have many senses
to determine if the person in front of them is who they think they are. Turns out,
combinations of senses are hard to fool.

Computer systems, however, are not so lucky. It’s more like talking to someone
on the phone. You can listen to their voice, read their caller ID, ask them
questions...but you can’t see them. Thus we are left with a challenge: how can
one be reasonably assured that the person (or system) on the other end of the line
is in fact who they say they are?
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password. Unfortunately, these methods alone are insufficient for a zero trust
network, where attackers can communicate from any IP they please and insert
themselves between yourself and trusted remote host. Therefore, it is very
important to employ strong authentication on every flow in a zero trust network.

The most widely accepted method to accomplish this is a standard named X.509,
which most engineers are familiar with. It defines a certificate standard that
allows identity to be verified through a chain of trust. It’s popularly deployed as
the primary mechanism for authenticating TLS (formerly SSL) connections.

SSL IS ANONYMOUS

The most widely consumed TLS configuration validates that the client is speaking to a trusted
resource, but not that the resource is speaking to a trusted client. This poses an obvious
problem for zero trust networks.

TLS additionally supports mutual authentication, in which the resource also validates the
client. This is an important step in securing private resources; otherwise, the client device will
go unauthenticated. More on zero trust TLS configuration in “Mutually Authenticated TLS”.

Certificates utilize two cryptographic keys: a public key and a private key. The
public key is distributed, and the private key is held as a secret. The public key
can encrypt data that the private key can decrypt, and vice versa, as shown in
Figure 2-2. This allows one to prove they are in the presence of the private key
by correctly decrypting a piece of data that was encrypted by the well-known
(and verifiable) public key. In this way, identity can be validated without ever
exposing the secret.

Certificate-based authentication lets us be certain that the person on the other
end of the line has the private key, and also lets us be certain that someone
listening in can’t steal the key and reuse it in the future. It does, however, still
rely on a secret, something that can be stolen. Not necessarily by listening in, but
perhaps by a malware infection or physical theft.

So while we can validate that credentials are legitimate, we might not trust that
they have been kept a secret. For this reason, it is desirable to use multiple
secrets, stored in different places, which in combination grant access. With this
approach, a potential attacker must steal multiple components.



Bob

' Hello |
‘ i »| Encrypt |e— @m

| Alice's public key

i 6EB69570
O8EO3CE4
(ked

Alice

Hello - »
Alical ‘4 [ Decrypt |4 @m

Alice's private key

Figure 2-2. Bob can use Alice’s well-known public key to encrypt a message that only Alice is able to
decrypt

While having multiple components goes a long way in preventing unauthorized
access, it is still conceivable that all these components can be

stolen. Therefore, it is critical that all authentication credentials be time-boxed.

Setting an expiration on credentials helps to minimize the blast radius of leaked
or stolen keys and gives the operator an opportunity to reassert trust. The act of
changing, or renewing, keys/passwords is known as credential rotation.

Credential rotation is essential for validating that no secrets have been stolen,
and revoking them when required. Systems utilizing keys/passwords that are
hard or impossible to rotate should be avoided at all cost, and when building new
systems this fact should be taken into account early on in the design process. The
rotation frequency of a particular credential is often inversely proportional to the
cost of rotation.

EXAMPLES OF SECRETS EXPENSIVE TO ROTATE

e Certificates requiring external coordination

e Hand-configured service accounts



e Database passwords requiring downtime to reset

e A site-specific salt that cannot be changed without invalidating all stored hashes

Authenticating Trust

We spoke a little bit about certificates and public key cryptography. However,
certificates alone don’t solve the authentication issue. For instance, you can be
assured that a remote entity is in possession of a private key by making an
assertion using its public key. But how do you obtain the public key to begin
with? Sure, public keys don’t need to be secret, but you must still have a way to
know that you have the right public key. Public key infrastructure, or PKI,
defines a set of roles and responsibilities that are used to securely distribute and
validate public keys in untrusted networks.

The goal of a PKI is to allow unprivileged participants to validate the
authenticity of their peers through an existing trust relationship with a mutual
third party. A PKI leverages what is known as a registration authority (RA) in
order to bind an identity to a public key. This binding is embedded in the
certificate, which is cryptographically signed by the trusted third party. The
signed certificate can then be presented in order to “prove” identity, so long as
the recipient trusts the same third party.

There are many types of PKI providers. The most popular two are certificate
authorities (CAs) and webs of trust (WoTs). The former relies on a signature
chain that is ultimately rooted in the mutually trusted party. The latter allows
systems to assert validity of their peers, forming a web of endorsements rather
than a chain. Trust is then asserted by traversing the web until a trusted
certificate is found. While this approach is in relatively wide use with Pretty
Good Privacy (PGP) encryption, this book will focus on PKIs that employ a CA,
the popularity of which overshadows the WoT provider.

What Is a Certificate Authority?

Certificate authorities act as the trust anchor of a certificate chain. They sign and
publish public keys and their bound identities, allowing unprivileged entities to
assert the validity of the binding through the signature.



CA certificates are used to represent the identity of the CA itself, and it is the
private key of the CA certificate that is used to sign client certificates. The CA
certificate is well known, and is used by the authenticating entity to validate the
signature of the presented client certificate. It is here that the trusted third-party
relationship exists, issuing and asserting the validity of digital certificates on
behalf of the clients.

The trusted third-party position is very privileged. The CA must be protected at
all costs, since its subversion would be catastrophic. Digital certificate standards
like X.509 allow for chaining of certificates, which enables the root CA to be
kept offline. This is considered standard practice in CA-based PKI security.
We’ll talk more about X.509 security in Chapter 5.

Importance of PKI in Zero Trust

All zero trust networks rely on PKI to prove identity throughout the network. As
such, it acts as the bedrock of identity authentication for the majority of
operations. Entities that might be authenticated with a digital certificate include:

e Devices
e Users

e Applications

BINDING KEYS TO ENTITES

PKI can bind an identity to a public key, but what about a private key to the entity it is meant
to identify? After all, it is the private key which we are really authenticating. It is important to
keep the private key as close to the entity it was meant to represent as possible. The method by
which this is done varies by the type of entity. For instance, a user might store a private key on
a smart card in their pocket, where a device might store a private key in an on-board security
chip. We’ll discuss which methods best fit which entities in Chapters 5, 6, and 7.

Given the sheer number of certificates that a zero trust network will issue, it is
important to recognize the need for automation. If humans are required in order
to process certificate signing requests, the procedure will be applied sparingly,
weakening the overall system. That being said, certificates deemed highly



sensitive will likely wish to retain a human-based approval process.

Private Versus Public PKI

PKI is perhaps most popularly deployed as a public trust system, backing X.509
certificates in use on the public internet. In this mode, the trusted third party is
publicly trusted, allowing clients to authenticate resources that belong to other
organizations. While public PKI is trusted by the internet at large, it is not
recommended for use in a zero trust network.

Some might wonder why this is. After all, public PKI has some defensible
strengths. Factors like existing utilities/tooling, peer-reviewed security practices,
and the promise of a better time to market are all attractive. There are, however,
several drawbacks to public PKI that work against it. The first is cost.

The public PKI system relies on publicly trusted authorities to validate digital
certificates. These authorities are businesses of their own, and usually charge a
fee for signing certificates. Since a zero trust network has many certificates, the
signing costs associated with public authorities can be prohibitive, especially
when considering rotation policies.

Another significant drawback to public PKI is the fact that it’s hard to fully trust
the public authorities. There are lots of publicly trusted CAs, operating in many
countries. In a zero trust network leveraging public PKI, any one of these CAs
can cut certificates that your network trusts. Do you trust the laws and the
governments associated with all of those CAs too? Probably not. While there are
some mitigation methods here, like certificate pinning or installing trust in a
single public CA, it remains challenging to retain trust in a disjoint organization.

Finally, flexibility and programmability can suffer when leveraging public CAs.
Public CAs are generally interested in retaining the public’s trust, so they do
employ good security measures. This might include policies about how
certificates are formed, and what information can be placed where. This can
adversely affect zero trust authentication in that it is often desirable to store site-
specific metadata in the certificate, like a role or a user ID. Additionally, not all
public CAs provide programmable interfaces, making automation a challenge.

Public PKI Strictly Better Than None



While the drawbacks associated with public PKI are significant, and the authors
heavily discourage its use within a zero trust network, it remains superior to no
PKI at all. A well-automated PKI is the first step, and work will be required in
this area no matter which PKI approach you choose. The good news is that if
you choose to leverage public PKI initially, there is a clear path to switch to
private PKI once the risk becomes too great. It begs the question, however, if it
is even worth the effort, since automation of those resources will still be
required.

Least Privilege

The principle of least privilege is the idea that an entity should be granted only
the privileges it needs to get its work done. By granting only the permissions that
are always required, as opposed to sometimes desired, the potential for abuse or
misuse by a user or application is greatly reduced.

In the case of an application, that usually means running it under a service
account, in a container or jail, etc. In the case of a human, it commonly
manifests itself as policies like “only engineers are allowed access to the source
code.” Devices must also be considered in this regard, though they often assume
the same policies as the user or application they were originally assigned to.

PRIVACY AS LEAST PRIVILEGE

The application of encryption in the name of privacy is an often-overlooked application of
least privilege. Who really needs access to the packet payload?

Another effect of this principle is that if you do need elevated access, that you
retain those access privileges for only as long as you need them. It is important
to understand what actions require which privileges so that they may be granted
only when appropriate. This goes one step beyond simple access control
reviews.

This means that human users should spend most of their time executing actions
using a nonprivileged user account. When elevated privileges are needed, the
user needs to execute those actions under a separate account with higher



privileges.

On a single machine, elevating one’s privileges is usually accomplished by
taking an action that requires the user to authenticate themselves. For example,
on a Unix system, invoking a command using the sudo command will prompt
the user to enter their password before running that command as a different role.
In GUI environments, a dialog box might appear requiring the user’s password
before performing the risky operation. By requiring interaction with the user, the
potential for malicious software to take action on behalf of the user is
(potentially) mitigated.

In a zero trust network, users should similarly operate in a reduced privilege
mode on the network most of the time, only elevating their permissions when
needed to perform some sensitive operation. For example, an authenticated user
might freely access the company’s directory or interact with project planning
software. Accessing a critical production system, however, should require
additional confirmation that the user or the user’s system is not compromised.
For relatively low-risk actions, this privilege elevation could be as simple as
reprompting for the user’s password, requesting a second factor token, or
sending a push notification to the user’s phone. For high-risk access, one might
choose to require active confirmation from a peer via an out-of-band request.

HUMAN-DRIVEN AUTHENTICATION

For particularly sensitive operations, an operator may rely on the coordination of multiple
humans, requiring a number of people to be actively engaged in order to authenticate a
particular action. Forcing authentication actions into the real world is a good way to ensure a
compromised system can’t interfere with them. Be careful, however—these methods are
expensive and will become ineffective if employed too frequently.

Like users, applications should also be configured to have the fewest privileges
necessary to operate on the network. Sadly, applications deployed in a corporate
setting are often given fairly wide access on the network. Either due to the
difficulty of defining policies to rein in applications, or the assumption that
compromised users are the more likely target, it’s now become commonplace for
the first step in setting up a machine to be disabling the application security
frameworks that are meant to secure the infrastructure.



Beyond the traditional consideration of privilege for users and applications, zero
trust networks also consider the privilege of the device on the network. It is the
combination of user or application and the device being used that determines the
privilege level granted. By joining the privilege of a user to the device being
used to access a resource, zero trust networks are able to mitigate the effects of
lost or compromised credentials. Chapter 3 will explore how this marriage of
devices and users works in practice.

Privilege in a zero trust network is more dynamic than in traditional networks.
Traditional networks eventually converge on policies that stay relatively static. If
new use cases appear that require greater privilege, either the requestor must
lobby for a change in policy; or, perhaps more frequently, they ask someone
with greater privilege (a sysadmin, for example) to perform the operation for
them. This static definition of policy presents two problems. First, in more
permissive organizations, privilege will grow over time, lessening the benefit of
least privilege. Second, in both permissive and restrictive organizations, admins
are given greater access, which has resulted in malicious actors purposefully
targeting sysadmins for phishing attacks.

A zero trust network, by contrast, will use many attributes of activity on the
network to determine a riskiness factor for the access being requested currently.
These attributes could be temporal (access outside of the normal window activity
for that user is more suspicious), geographical (access from a different location
than the user was last seen), or even behavioral (access to resources the user
does not normally access). By considering all the details of an access attempt,
the determination of whether the action is authorized or not can be more granular
than a simple binary answer. For example, access to a database by a given user
from their normal location during typical working hours would be granted, but
access from a new location at different working hours might require the user to
authenticate using an additional factor.

The ability to actively adjust access based on the riskiness of activity on a
network is one of the several features that make zero trust networks more secure.
By dynamically adjusting policies and access, these networks are able to respond
autonomously to known and unknown attacks by malicious actors.

Variable Trust



Managing trust is perhaps the most difficult aspect of running a secure network.
Choosing which privileges people and devices are allowed on the network is
time consuming, constantly changing, and directly affects the security posture
the network presents. Given the importance of trust management, it’s surprising
how under-deployed network trust management systems are today.

Defining trust policies is typically left as a manual effort for security engineers.
Cloud systems might have managed policies, but those policies provide only
basic isolation (e.g., super user, admin, regular user) which advanced users
typically outgrow. Perhaps in part due to the difficulty of defining and
maintaining them, requests to change existing policies can be met with
resistance. Determining the impact of a policy change can be difficult, so
prudence pushes the administrators toward the status quo, which can frustrate
end users and overwhelm system administrators with change requests.

Policy assignment is also typically a manual effort. Users are granted policies
based on their responsibilities in the organization. This role-based policy system
tends to produce large pools of trust in the administrators of the network,
weakening the overall security posture of the network. These pools of trust have
created a market for hackers to “hunt sys admins”, seeking out and
compromising system administrators. Perhaps the gold standard for a secure
network is one without highly privileged system administrators.

These pools of trust underscore the fundamental issue with how trust is managed
in traditional networks: policies are not nearly dynamic enough to respond to the
threats being leveled against the network. Mature organizations will have some
sort of auditing process in place for activity on their network, but audits can be
done too infrequently, and are frankly so tedious that doing them well is difficult
for humans. How much damage could a rogue sysadmin do on a network before
an audit discovered their behavior and mitigated it? A more fruitful path might
be to rethink the actor/trust relationship, recognizing that trust in a network is
ever evolving and based on the previous and current actions of an actor within
the network.

This model of trust, considering all the actions of an actor and determining their
trustworthiness, is not novel. Credit agencies have been performing this service
for many years. Instead of requiring organizations like retailers, financial
institutions, or even an employer to independently define and determine one’s
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trustworthiness, a credit agency can use actions in the real world to score and
gauge the trustworthiness of an individual. The consuming organizations can
then use their credit score to decide how much trust to grant that person. In the
case of a mortgage application, an individual with a higher credit score will
receive a better interest rate, which mitigates the risk to the lender. In the case of
an employer, one’s credit score might be used as a signal for a hiring decision.
On a case-by-case basis, these factors can feel arbitrary and opaque, but they
serve a useful purpose; providing a mechanism for defending a system against
arbitrary threats by defining policy based not only on specifics, but also on an
ever-changing and evolving score.

A zero trust network utilizes this insight to define trust within the network, as
shown in Figure 2-3. Instead of defining binary policy decisions assigned to
specific actors in the network, a zero trust network will continuously monitor the
actions of an actor on the network to update their trust score. This score can then
be used to define policy in the network based on the severity of breach of that
trust (Figure 2-4). A user viewing their calendar from an untrusted network
might require a relatively low trust score. However, if that same user attempted
to change system settings, they would require a much higher score and would be
denied or flagged for immediate review. Even in this simple example, one can
see the benefit of a score: we can make fine-grained determinations on the
checks and balances needed to ensure trust is maintained.
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Figure 2-3. Using a trust score allows fewer policies to provide the same amount of access
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Figure 2-4. The trust engine calculates a score and forms an agent, which is then compared against policy
in order to authorize a request. We’ll talk more about agents in Chapter 3.

MONITORING ENCRYPTED TRAFFIC

Since practically all flows in a zero trust network are encrypted, traditional traffic inspection
methods don’t work as well as intended. Instead, we are limited to inspecting what we can see,
which in most cases is the IP header and perhaps the next protocol header (like TCP in the case
of TLS). If a load balancer or proxy is in the request path, however, there is an opportunity for
deeper inspection and authorization, since the application data will be exposed for
examination.

Clients begin sessions as untrusted. They must accumulate trust through various
mechanisms, eventually accruing enough to gain access to the service they’re
requesting. Strong authentication proving that a device is company-owned, for
instance, might accumulate a good bit of trust, but not enough to allow access to
the billing system. Providing the correct RSA token might give you a good bit
more trust, enough to access the billing system when combined with the trust



inferred from successful device authentication.

STRONG POLICY AS A TRUST BOOSTER

Things like score-based policies, which can affect the outcome of an authorization request
based on a number of variables like historical activity, drastically improve a network’s security
stance when compared to static policy. Sessions that have been approved by these mechanisms
can be trusted more than those that haven’t. In turn, we can rely (a little bit) less on user-based
authentication methods to accrue the trust necessary to access a resource, improving the overall
user experience.

Switching to a trust score model for policies isn’t without its downsides. The
first hurdle is whether a single score is sufficient for securing all sensitive
resources. In a system where a trust score can decrease based on user activity, a
user’s score can also increase based on a history of trustworthy activity. Could it
be possible for a persistent attacker to slowly build their credibility in a system
to gain more access?

Perhaps slowing an attacker’s progress by requiring an extended period of
“normal” behavior would be sufficient to mitigate that concern, given that an
external audit would have more opportunity to discover the intruder. Another
way to mitigate that concern is to expose multiple pieces of information to the
control plane so that sensitive operations can require access from trusted
locations and persons. Binding a trust score to device and application metadata
allows for flexible policies that can declare absolute requirements yet still
capture the unknown unknowns through the computed trust score.

Loosening the coupling between security policy and a user’s organizational role
can cause confusion and frustration for end users. How can the system
communicate to users that they are denied access to some sensitive resource
from a coffee shop, but not from their home network? Perhaps we present them
with increasingly rigorous authentication requirements? Should new members be
required to live with lower access for a time before their score indicates that they
can be trusted with higher access? Maybe we can accrue additional trust by
having the user visit a technical support office with the device in question. All of
these are important points to consider. The route one takes will vary from
deployment to deployment.



Control Plane Versus Data Plane

The distinction between the control plane versus the data plane is a concept that
is commonly referenced in network systems. The basic idea is that a network
device has two logical domains with a clear interface between those domains.
The data plane is the relatively dumb layer that manages traffic on the network.
Since that layer is handling high rates of traffic, its logic is kept simple and often
pushed to specialized hardware. The control plane, conversely, could be
considered the brains of the network device. It is the layer that system
administrators apply configuration to, and as a result is more frequently changed
as policy evolves.

Since the control plane is so malleable, it is unable to handle the high rate of
traffic on the network. Therefore, the interface between the control plane and the
data plane needs to be defined in such a way that nearly any policy behavior can
be implemented at the data layer with infrequent requests being made to the
control plane (relative to the rate of traffic).

A zero trust network also defines a clear separation between the control plane
and data plane. The data plane in such a network is made up of the applications,
firewalls, proxies, and routers that directly process all traffic on the network.
These systems, being in the path of all connections, need to quickly make a
determination of whether traffic should be allowed. When viewing the data plane
as a whole, it has broad access and exposure throughout the system, so it is
important that the services on the data plane cannot be used to gain privilege in
the control plane and thereby move laterally within the network. We’ll discuss
control plane security in Chapter 4.

The control plane in a zero trust network is made up of components that receive
and process requests from data plane devices that wish to access (or grant access
to) network resources, as shown in Figure 2-5. These components will inspect
data about the requesting system to make a determination on how risky the
action is, and examine relevant policy to determine how much trust is required.
Once a determination is made, the data plane systems are signaled or
reconfigured to grant the requested access.

The mechanism by which the control plane affects change in the data plane is of

critical importance. Since the data plane systems are often the entry point for
attackers intn a network the interface hetween it and the control nlane mnst he
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clear, helping to ensure that it cannot be subverted to move laterally within the
network. Requests between the data plane and control plane systems must be
encrypted and authenticated using a non-public PKI system to ensure that the
receiving system is trustworthy. The control/data plane interface should
resemble the user/kernel space interface, where interactions between those two
systems are heavily isolated to prevent privilege escalation.

This concern with the interface between the control plane and the data plane
belies another fundamental property of the control plane: the control plane is the
trust grantor for the entire network. Due to its far-reaching control of the
network’s behavior, the control plane’s trustworthiness is critical. This need to
have an actor on the network with a highly privileged role presents a number of
interesting design requirements.

Control plane
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3. Client granted ephemeral access
configuration

2. Service reconfigured
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Figure 2-5. A zero trust client interacting with the control plane in order to access a resource

The first requirement is that the trust granted by the control plane to another
actor in the data plane should have limited real-time value. Trust should be
temporary, requiring regular check-ins between the truster and trustee to ensure
that the continued trust is reasonable. When implementing this tenet, leased
access tokens or short lifetime certificates are the most appropriate solution.



These leased access tokens should be validated not just within the data plane
(e.g., when the control plane grants a token to an agent to move through the data
plane), but also between the interaction between the data plane and the control
plane. By limiting the window during which the data plane and control plane can
interact with a particular set of credentials, the possibility for physical attacks
against the network is mitigated.

Summary

This chapter discussed the critical systems and concepts that are needed to
manage trust in a zero trust network. Many of these ideas are common in
traditional network security architectures, but it is important to lay the
foundation of how trust is managed in a network without any.

Trust originates from humans and flows into other systems via trust mechanisms
that a computer can operate against. This approach makes logical sense: a
system can’t be considered trusted unless the humans who use it feel confident
that it is faithfully executing their wishes.

Security has frequently been viewed as a set of best practices, which are passed
down from one generation of engineers to the next. Breaking out of this cycle is
important, since each system is unique, and so we discussed the idea of threat
models. Threat models attempt to define the security posture of a system by
enumerating the threats against the system and then defining the mitigating
systems and processes which anticipate those threats. While a zero trust network
assumes a hostile environment, it is still fundamentally grounded in the threat
model, which makes sense for the system. We enumerated several present-day
threatmodeling techniques so that readers can dig deeper. We also discussed how
the zero trust model is based on the internet threat model and expands its scope
to the endpoints that are under the control of zero trust system administrators.

Having trust in a system requires the use of strong authentication throughout the
system. We discussed the importance of this type of authentication in a zero trust
network. We also briefly talked a bit about how strong authentication can be
achieved in today’s technology. We will discuss these concepts more in later
chapters.

In order to effectively manage trust in a network, you must be able to positively



identify trusted information, particularly in the case of authentication and
identity. Public key infrastructure (or PKI) provides the best methods we have
today for asserting validity and trust in a presented identity. We discussed why
PKI is important in a zero trust network, the role of a certificate authority, and
why private PKI is preferred over public PKI.

Least privilege is one of the key ideas in these types of networks. Instead of
constructing a supposedly safe network over which applications can freely
communicate, the zero trust model assumes that the network is untrustworthy,
and as a result, components on the network should have minimal privileges
when communicating. We explained what the concept of least privilege is and
how it is similar and different than least privilege in standalone systems.

One of the most exciting ideas of zero trust networks is the idea of variable trust.
Network policy has traditionally focused on which systems are allowed to
communicate in what manner. This binary policy framework results in policy
that is either too rigidly defined (creating human toil to continually adjust) or too
loosely defined (resulting in security systems that assert very little).
Additionally, policy that is defined based on concrete details of interactions will
invariably be stuck in a cat-and-mouse game of adjusting policy based on past
threats. The zero trust model leans on the idea of variable trust, a numeric value
representing the level of trust in a component. Policy can then be written against
this number, effectively capturing a number of conditions without complicating
the policy with edge cases. By defining policy in less concrete details, and
considering the trust score while making an authorization decision, the
authorization systems are able to adjust to novel threats.

Zero trust networks make a clear distinction between the control plane systems
and the data plane systems. We discussed at a high level how these two systems
interact with each other to allow expected communication to flow through the
network. In later chapters we will flesh out more of the control and data plane
systems that manage communication in the network.

The next chapter digs into a fundamental entity in zero trust networks that is
used to authorize actions on the network.



Chapter 3. Network Agents

Imagine you’re in a security-conscious organization. Each employee is given a
highly credentialed laptop to do their work. With today’s work and personal life
blending together, some also want to view their email and calendar on their
phone. In this hypothetical organization, the security team applies fine-grained
policy decisions based on which device the user is using to access a particular
resource.

For example, perhaps it is permissible to commit code from the employee’s
company-issued laptop, but doing so from their phone would be quite a strange
thing. Since source code access from a mobile device is decidedly riskier than
from an enrolled laptop, the organization blocks such access.

The story described here is a fairly typical application of zero trust, in that
multiple factors of authentication and authorization take place, concerning both
the user and the device. In this example, however, it is clear that one factor has
influenced the other—a user which might “normally” have source code access
won’t enjoy such access from their mobile device. Additionally, this
organization does not want authenticated users to commit code from just any
trusted device—they expect users to use their own device.

This marriage of user and device is a new concept that zero trust introduces,
which we are calling a network agent. In a zero trust network, it is insufficient to
treat the user and device separately, because policy often needs to consider the
two together to accurately enforce desired behavior. By defining a network agent
formally in the system, we are able to capture this relationship and use it to drive
policy decisions.

This chapter will define what a network agent is and how it is used. In doing
that, we will discuss the types of data that are included in an agent, some of
which is potentially sensitive. Given the nature of that data, we will discuss
when and how an agent should be exposed to data plane systems. A network
agent, being a new concept, could benefit from standardization. We will explore
the benefits of standardizing this agent.



What Is an Agent?

A network agent is the term given to the combination of data known about the
actors in a network request, typically containing a user, application, and device.
Traditionally, these entities have been authorized separately, but zero trust
networks recognize that policy is best captured as a combination of all
participants in a request. By authorizing the entire context of a request, the
impact of credential theft is greatly mitigated.

It’s best to think of a network agent as an ephemeral entity that is formed on
demand to evaluate a policy. The data that is used to form an agent—user or
device information—will typically be stored in persistent storage and queried to
form an agent. When this data is queried, the union of the data at that point in
time is what we call an agent.

Agent Volatility

Some fields in the agent are made available specifically to mitigate against
active attacks, and are therefore expected to change rapidly relative to the
infrequent changes that IT organizations normally expect. Trust scores are an
example of this type of dynamic data. Trust score systems can evaluate each
request in the network, using that activity feed to update the trust scores of users,
applications, and devices. Therefore, in order for a trust score to mitigate a novel
attack, it needs to be updated as close to real time as possible.

In addition to rapidly changing data, agents will frequently have sparse data. A
device undergoing bootstrapping is an example scenario where the agent will
have less data when compared to a mature device. During the bootstrapping
process, little is known about the device, yet it must still interact with corporate
infrastructure to perform tasks like device enrollment and software installation.
In this case, the bootstrapping device is not yet assigned to a user and can run
into problems if policy expects an assigned user to be present in the agent. This
scenario should be expected and reflected in authorization policy.

Sparse data isn’t just found in bootstrapping scenarios. Autonomous systems in a
zero trust network will frequently have sparse data when compared to human-
operated systems. These systems, for example, will likely not authenticate the
user account the application runs under, relying instead on the security of the
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What's in an Agent?

The granularity of data contained within an agent can vary based on needs and
maturity. It can be as high level as a user’s name or a device’s manufacturer, or
as low level as serial numbers and place of residence or issue. It should be noted
that the more detailed data is more likely to have data cleanliness issues, which
must be dealt with.

AGENT DATA FIELDS

The type of data stored in an agent can greatly vary in both presence and granularity. Here are
some examples of data that one might find in an agent:

e Agent trust score

e User trust score

e User role or groups

e User place of residence

e User authentication method

® Device trust score

® Device manufacturer

e TPM manufacturer and version
e Current device location

e [P address

Another point of consideration is if the data contained in the agent is trusted or
not. For instance, device data populated during the procurement process is more
trusted than device data which is reported back from an agent running on it. This
difference in trust arises from difficulties in ensuring the accuracy and integrity
of the reported information in the event that the device is compromised.

How Is an Agent Used?



When making an authorization decision in a zero trust network, it is the agent
that is in fact authorized. While it is tempting to authorize the device and user
separately, this approach is not recommended. Since the agent is the entity which
is authorized, it is also the thing against which policy is written.

As noted in the previous section, the agent carries many pieces of information.
So while more “traditional” authorization information like IP address can still be
used, leveraging the agent also unlocks the use of “nontraditional” authorization
information like device type or city of residence. As such, zero trust network
policy is written against the agent as a whole, as opposed to crafting disjoint user
and device policy.

Using an agent to drive authorization policy encourages authors to consider the
totality of the communication context. The marriage of user and device is very
important in zero trust authorization decisions, and colocating the data in an
agent makes it difficult to ignore one or the other. As with other portions of the
zero trust architecture, lowering barrier to entry is key, and colocating the data to
make device/user comparisons easier is no different.

An agent, being the primary actor in the network, plays an additional role in the
calculation of trust scores. The trust engine can use recorded actions, in addition
to data contained within the agent itself, to score agents for their trustworthiness.
This trust score will then be exposed as an additional attribute on the agent
against which most policy should be defined. We’ll talk more about how the
trust score is calculated in the next chapter.

Not for Authentication

It is important to understand the difference between authentication and
authorization in the context of an agent. Agents serve solely as authorization
components and do not play any part in authentication. In fact, authentication is
a precursor to agent formation and is generally performed separately for user and
device. For example, devices could be authenticated with X.509 certificates,
while users might be authenticated through a traditional multifactor approach.

Following successful authentication, the canonical identifiers for users and
devices can be used to form an agent and its details. A device-specific certificate
might be used as the canonical identifier for the device and therefore be used to
nonulate information like device tvne or device owner. Similarlv. a nsername
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might serve as the lookup key to populate user information like their role in the
company.

Typically authentication is session oriented, but in the case of authorization, it is
best to be request oriented. As a result, caching the outcome of an authentication
request is permissible, but caching an agent or the result of an authorization
request is ill advised. This is because details in the agent, which are used to
make authorization decisions, can change rapidly based on a number of factors,
and it is desirable to make authorization decisions using the latest data. This is in
contrast to authentication materials, which change much less often and don’t
directly affect authorization itself.

Finally, the act of generating an agent should be as lightweight as possible. If
agent generation is expensive, it will discourage frequent authorization requests
due to performance reasons. We will talk more about how performance affects
authorization in the next chapter.

REVOKE AUTHORIZATION FIRST, CREDENTIALS
SECOND

Successful authentication is the act of proving one’s identity to a remote system. That verified
identity is then used to determine if the user actually has rights to access the resource in
question (the authorization). In the event that access must be revoked, updating authorization is
more effective than changing authentication credentials. This is doubly so when considering
that authentication results are typically cached and assigned to session identifier. The act of
validating an authenticated session is really an authorization decision.

How to Expose an Agent?

The data contained in a network agent is potentially sensitive. Personally
identifiable user information (e.g., name, address, phone number) will usually be
present on the agent to facilitate detailed authorization decisions. This data
should be treated with care to protect the privacy of users.

The sensitive nature of the data extends beyond users, however. Device details
can also be sensitive data when it falls into the hands of a determined attacker.
An attacker with detailed knowledge of a user’s device could use that data to
craft a targeted remote attack, or even learn a pattern of that user’s physical



location to steal the device.

To adequately secure the sensitive agent details, the entirety of the agent
lifecycle should be contained to trusted control plane systems, which themselves
are heavily secured. These systems should be logically and physically separated
from the data plane systems, have clear boundaries, and change infrequently.

Most policy decisions will be made in the control plane systems, since the agent
data is needed to make those decisions. However, it will often be the case that
the authorization engine in the control plane is not in the best position to enforce
application-centric policy, despite its ability to enforce authorization on a
request-by-request basis. This is especially so in user-facing systems. As a result,
some agent details will need to be exposed to data plane systems.

Let’s look at an example. An administrative application stores details on all the
customers of a particular company. This system exposes that data to employees
based on their role within the company. A search feature allows employees to
search within the subset of data that they are allowed to access. The application
needs to implement this logic, and it needs access to the role of the user in order
to do so.

In order to allow applications to implement their own fine-grained authorization
logic, agent details can be exposed to applications via a trusted communication
channel. This could be as simple as injecting headers into network requests that
flow through a reverse proxy. The proxy, being a zero trust control plane system,
can view the agent to enforce its own authorization decisions and expose a
subset of the data to the downstream application for further authorization.

Exposing agent details to the downstream application can also be useful to
enable compatibility with pre-existing applications that have a rich authorization
system. This compatibility goal highlights that agent details should be exposed
to the application in a format that is is preferred by the application. For third-
party applications, the format of the agent data will vary. For first-party
applications, a common structure for the agent data will ease management of the
system.

No Standard Exists



A zero trust network comprises many systems that concern themselves with the
agent. In order to make room for reusability in these systems, standardization of
the agent must occur. At the time of this writing, most zero trust networks
consist of systems built in-house; and while those systems have developed their
own agent standards, a public standard would unlock the control plane, allowing
components to be mixed and matched.

Rigidity and Fluidity, at the Same Time

Knowing the format of an agent, and where to find particular pieces of data
within it, is very important when considering how and by what it will be
consumed. The “coordinates” of certain pieces of data must be fixed and well
known in order to ensure consistency across control plane systems. A good
analogy here is the schema of a relational database, which applications accessing
the data must have knowledge of in order to extract the right pieces of
information.

This data compatibility is extremely important when it comes to implementing
and maintaining zero trust control plane systems. Zero trust networks,
particularly more mature ones, are likely to construct an agent from multiple
systems and data sources. Without a schema of sorts, not only will it be difficult
to surface the data in a consistent manner, but it will also contribute negatively
to the amount of effort required to introduce new control plane systems or agent
data, something which is considered critical for a maturing zero trust network.

One thing to keep in mind, however, is that agent data is likely to be fairly
sparse, thanks to the practically unavoidable data cleanliness issues encountered
in source systems like device inventories. The result is a “best-effort” agent,
where many fields may be unpopulated for one reason or another. Rather than
seeking data cleanliness (a problem that only gets harder with scale), it is best to
accept reality and craft policy that understands that not all data may be present.
So while one may still require a particular piece of data to be present in the
agent, it is a useful thought exercise to consider alternative pieces of data in its
absence.

Standardization Desirable

One might wonder how it would be possible to standardize a data format that is
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so seemingly inextricably tied to the organization consuming it. After all, an
agent is likely to contain information types that relate to business logic or other
proprietary/local information. Is standardization even feasible in such a case?

Luckily, there are already some standards out there defining data formats that
behave in such a way. One of the best examples is the Simple Network
Management Protocol (SNMP), and its associated management information
base (MIB).

SNMP is a protocol frequently used for network device management, allowing
devices to expose data to operators and management systems in a standard yet
flexible way. The MIB component describes the format of the data itself, which
is a collection of OIDs, or object identifiers. Each OID describes (and is reserved
for) a particular piece of data and is registered with ISO, a global standardization
body. This lends itself well to widely accepted “coordinates” for certain pieces
of data.

Let’s look at an example, shown in Figure 3-1, of a simplified set of nodes in an
OID tree.
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|:’ Internét (1)
‘.I directory (1) | r. mgmt (2} - |expelr[i:|;r;ental| l private (4) \
[ mib2(1) | |J.enterprise (1 |
system (1) | :interfac:es (2) | ip (4) | | cisco (9) ‘ microsoft [ juniperMiB |

(311) ) |~ (2636)

OID Tree Example
Figure 3-1. A simplified diagram showing the organization of nodes in an object identifier (OID) tree

In this example, the “ip” node and associated data would be addressed as
1.3.6.1.1.1.4. A MIB arranges and gives color to a set of OIDs. For example, a



Cisco MIB might provide definitions for all OIDs under the 1.3.6.1.4.1.9 portion
of the tree, including human-readable descriptions.

Of course, this registered list can be extended, and oftentimes chunks of OID
space are carved out for organizations or manufacturers. In this way, an OID can
be compared to an IP address, where an IP address globally identifies a computer
system and an OID globally identifies a piece of data.

Unfortunately, there is no good OID equivalent of private IP address space,
which would be useful for ad hoc or site-specific data. The best available
compromise is to register for a Private Enterprise Number with IANA, which
will give you a dedicated OID prefix for private use. Luckily, such registration is
free and with few questions asked. There have been some efforts to create a
private range similar to that found in IP. However, such efforts have been
unsuccessful.

Despite the lack of a truly free/private OID space for experimental or internal
use, SNMP remains a useful analogy to make when considering the
standardization of an agent. It describes the format and packaging of a set of data
—data that is easily found and identified using their unique OIDs—and how that
data can be transmitted and understood from one system to another.

In the Meantime?

At the time of this writing, zero trust networks are still quite new, and the field is
under active development. As such, no standard describing an agent exists today,
and it will be some time before one can be ratified. In the meantime, agents take
the form of least resistance, given the needs of the implementor. Whether it be a
JSON blob or a custom binary format, it is recommended to ensure that the data
contained within it be flexible and easily extensible. Loose typing or no typing
should be preferred over strong typing, as the latter will make introducting new
data and systems more difficult. Pluggable design patterns may help in moving
to a standardized agent in the future. However, this is far from required, and
should not be pursued if they impede the adoption of agent authorization in your
network.

Summary
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This chapter introduced the concept of a network agent, a new entity in a zero
trust network against which authorization decisions are made. Adding this
concept is critical to realizing the benefits of a zero trust network.

We explored what goes into creating an agent. Agents contain rapidly changing
data and frequently have data that is unavailable or inconsistent. Accepting that
reality is important for success when introducing the agent concept.

Agents are used purely for making authorization decisions. Authentication is a
separate concern, and the current authentication status is reflected in the
properties of an agent. Control plane systems use the agent to authorize requests.
These systems are the primary enforcers of authorization in a zero trust network,
but sometimes they must expose agent details to applications that are better
positioned to implement fine-grained authorization decisions. We explored how
to expose this data to applications while maintaining privacy.

Zero trust network administration is still very new, and as a result, no standard
yet exists for network agents. Defining a standard would allow for better reuse
and interoperability of zero trust systems, aiding the adoption of this technology.
We discussed a possible approach for standardizing the definition of an agent.

The next chapter will focus on the systems that are responsible for authorizing
all requests in a zero trust network.



Chapter 4. Making Authorization
Decisions

Authorization is arguably the most important process occurring within a zero
trust network, and as such, making an authorization decision should not be taken
lightly. Every flow and/or request will ultimately require a decision be made.

The databases and supporting systems we will discuss here are the key systems
that come together to make and affect those decisions. Together, they are
authoritative for access control and thus need to be rigorously isolated. Careful
distinction should be made between these responsibilities, particularly when
deciding whether to collapse them into a single system, which should generally
be avoided if possible.

The zero trust model is still very new, and this area is undergoing rapid
evolution. Some of the content included in this chapter is considered state of the
art at the time of this writing. Known implementations still vary wildly in their
approaches, and most are not publicly available. That being said, the major
components and responsibilities are understood.

Taking reality into account, this chapter will focus on high-level architectural
arrangement of the components required to make zero trust authorization
decisions, as well as how they fit together and enforce said decisions.

Authorization Architecture

The zero trust authorization architecture comprises four main components, as
shown in Figure 4-1:

e Enforcement
e Policy engine
e Trust engine

e Data stores



These four components are distinct in their responsibilities, and as a result, we
treat them as separate systems. From a security standpoint, it is highly desirable
that these components be isolated from each other. These systems represent the
practical crown jewels of the zero trust security model, so special care should be
taken in their maintenance and security posture. Carefully evaluate any
proposals that suggest collapsing these responsibilities into a single system.

j Data stores

A v

Policy engine |[€¢&——7  Trust engine

Control plane

Data plane

-»,  Enforcement

Network flow

Figure 4-1. Zero trust authorization systems

The enforcement component will exist in large numbers throughout the system
and should be as close to the workload as possible. It is the one that actually
affects the outcome of the authorization decision. It is typically manifested as a
load balancer, proxy, or even a firewall. This component interacts with the
policy engine, which is the piece that we use to make the actual decision. The
enforcement component ensures that clients are authenticated, and passes the
context of each flow/request to the policy engine. The policy engine compares
the request and its context to policy, and informs the enforcer whether the
request will be permitted or not.

The trust engine is leveraged by the policy engine for risk analysis purposes. It
leverages multiple data sources in order to compute a risk score, similar to a
credit score. This score can be used to protect against unknown unknowns, and



helps keep policy strong and robust without complicating it with edge cases and
signatures. It is used by the policy engine as an additional component by which
an authorization decision can be made. Google’s BeyondCorp is widely
recognized as having pioneered this technology.

Finally, we have the various data stores that represent the source of truth for the
data being used to inform authorization. This data is used to paint a full
contextual picture of a particular flow/request, using small authenticated bits of
data as the primary lookup keys (i.e., a username or a device’s serial number).
These data stores, be they user data, device data, or otherwise, are heavily
leveraged by both the policy engine and trust engine, and represent the backing
against which all decisions are measured.

Enforcement

The enforcement component (depicted in Figure 4-2) is a natural place to start. It
sits on the “front line” of the authorization flow and is responsible for carrying
out decisions made by the rest of the authorization system.

Policy engine
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Figure 4-2. An agent receives a pre-authorization signal to grant access to a system using traditional
enforcement mechanisms. These systems together form the enforcement component.

Enforcement can be broken down into two primary responsibilities. First, an



interaction with the policy engine must occur. This is generally the authorization
request itself (e.g., a load balancer has received a request and needs to know
whether it is authorized or not). The second is the actual installation and ongoing
enforcement of the decision. While these two responsibilities represent a single
component in the zero trust authorization architecture, you can choose whether
they are fulfilled together or separately.

The way you choose to handle this will likely depend on your use case. For
instance, an identity-aware proxy can call the policy engine to actively authorize
a request it has received, and in the same step use the response to either service
or reject the request. This is an example of treating the concerns as unified.
Alternatively, perhaps a pre-authorization daemon receives a request for access
to a particular service, which then calls the policy engine for authorization. Upon
successful authorization, the daemon can manipulate local firewall rules to allow
the specific request. With this approach, we rely on “standard” enforcement
mechanisms that are informed/programmed by the zero trust control plane. It
should be noted, however, that this approach requires a client-side hook in order
to notify the control plane of the authorization request. This may or may not be
acceptable, depending on the level of control over your devices and applications.

Placement of the enforcement component is very important. Since it represents
our control point within the data plane, we must ensure that enforcement
components are placed as close to the endpoints as possible. Otherwise, trust can
pool “behind” the enforcement component, undermining zero trust security.
Luckily, the enforcement component can be modeled as a client of sorts and
applied liberally throughout the system. This is in contrast to the rest of the
authorization components, which are modeled as services.

Policy Engine

The policy engine is the component that has the power to make a decision. It
compares the request coming from the enforcement component against policy in
order to determine whether the request is authorized or not. Once determined,
the result is returned to the enforcement piece for actual realization.

The arrangement of the enforcement layer and policy engine allows for dynamic,
point-in-time decisions to be made, allowing revocation to occur rapidly. As

1 .. . PR | PR | . 1 LI | 1 . 1 1



such, 1t 1S 1mportant that these components be consldered separately and
independently. That is not to say, however, that they cannot be co-located.

Depending on a number of factors, a policy engine may be found hosted side by
side with the enforcement mechanism. An example of this might be a load
balancer that authorizes requests through inter-process communication (IPC)
instead of a remote call. The most attractive benefit of this architecture is the
lower latency to authorize the request. A low-latency authorization system
enables fine-grained and comprehensive authorization of network activity; for
example, individual HTTP requests could be authorized instead of the session-
level authorization that commonly is deployed.

It should be noted that it is best to maintain process-level isolation between the
policy engine and enforcement layer. The enforcement layer, being in the user’s
data path, is more exposed; therefore, integrating the policy engine in the same
process could expose it to unwanted risk. Deploying the policy engine as its own
process goes a long way to ensure that bugs in the enforcement layer don’t result
in a policy engine compromise.

WHAT EVER HAPPENED TO RADIUS?

The relationship between the policy engine and the enforcement layer is a familiar one for
most network engineers. In 1997, the IETF ratified a standard describing the RADIUS protocol,
which provides authentication, authorization, and accounting for network services. RADIUS
stands for Remote Authentication Dial-In User Service—the name alone shows its age. While
the protocol itself is hopelessly insecure (it uses MD5 for authenticity assertions), it is
specifically written for the task at hand. What would it look like to use RADIUS between the
enforcement layer and the policy engine? RADIUS could be protected with other protocols
discussed in this book, but that feels like a kludge. Perhaps there is an opportunity to create a
RADIUS-like project, which takes into account the threat reality of today’s systems.

Policy Storage

The rules referenced by the policy engine need to be stored. These policy rules
are ultimately loaded into the policy engine, but it is strongly recommended that
the rules are captured outside of the policy engine itself. Storing the policy rules
in a version control system is ideal and provides several benefits:

e Changes to policy can be tracked over time.



¢ Rationale for changing policy is tracked in the version control system.

e The expected current policy state can be validated against the actual
enforcement mechanisms.

Many of these benefits have historically been implemented using rigorous
change management procedures. In that system, changes to the system’s
configuration are requested and approved before ultimately being applied. The
resulting change management log can be used to determine why the system is in
the current state.

Moving policy definitions into version control is the logical conclusion of
change management procedures when the system can be configured
programmatically. Instead of relying on human system administrators to load
desired policy into the system, we can instead capture the policy as data that a
program can read and apply. In many ways, loading policy is then similar to
deployable software. As a result, system administrators can use standard
software development procedures (namely code review and promotion pipelines)
to manage the changes in policy.

What Makes Good Policy?

Policy in a zero trust network is in some ways similar to traditional network
security, and in other ways substantially different.

ZERO TRUST POLICY IS STILL NOT STANDARDIZED

The reality today is that zero trust policy is still not standardized in the same way as a network-
oriented policy. As a result, defining the standard policy language used in a zero trust network
is a great opportunity.

Let’s look at what’s similar first. Good policy in a zero trust network is fine-
grained. The level of granularity will vary based on the maturity of the network,
but the desired goal is policy that is scoped to the individual resource being
secured. This is not very different than a traditional network security model that
aims to segment the network to decrease attack surface area.

The zero trust model starts to diverge from traditional network security in the



control mechanisms that are used to define policy. Instead of defining policy in
terms of network implementation details (IP addresses and ranges), policy is best
defined in terms of logical components in the network. These components will
generally consist of:

e Network services
e Device endpoint classes

e User roles

Defining policy from logical components that exist in the network allows the
policy engine to calculate the enforcement decisions based on its knowledge of
the current state of the network. To put this in concrete terms, a web service
running on one server today might be on a different server tomorrow, or might
even move between servers automatically as directed by a workload scheduler.
The policy that we define needs to be divorced from these implementation
details to adapt to this reality. An example of this style of policy from the
Kubernetes project is shown in Figure 4-3.



metadata:
name: test-network-policy
namespace: default
spec:
podSelector:
matchLabels:
role: db
ingress:
- from:
- namespaceSelector:
matchLabels:
project: myproject
- podSelector:
matchLabels:
role: frontend

Figure 4-3. A snippet from a Kubernetes network policy. These policies use workload labels, computing the
underlying IP-based enforcement rules when and where necessary.

Policy in a zero trust network also leans on trust scores to anticipate unknown
attack vectors. By defining policy with a trust score component, administrators
are able to mitigate risk that otherwise can’t be captured with a specific policy.
Therefore, most policy should include a trust score component. We’ll talk more
about the score component in the next section.

NO STANDARD EXISTS

Currently, mature zero trust networks implement their own policy language/format on a case-
by-case basis, typically being developed fully in-house. Simpler zero trust networks may
embed policy in an existing structure, such as in Figure 4-3. While the latter is generally
acceptable, it is typically outgrown as the network evolves and adds features. The advantages
of a standardized/interoperable policy language can be clearly seen. However, such work
remains an open research question.



Policy should not rely on trust score alone. Specific characteristics of the request
being authorized can also be part of the policy definition. An example of this
might be certain user roles should only have access to a particular service.

Who Defines Policy?

Zero trust network policy should be fine-grained, which can place an
extraordinary burden on system administrators to keep the policy up to date. To
help spread the load of this configuration burden, most organizations decide to
distribute policy definition across the teams so they can help maintain policy for
the services they own.

Opening up policy definition to an entire organization can present certain risks,
like well-meaning users who create overly broad policies, thereby increasing the
attack surface area of the system they intended to constrain. Zero trust systems
lean on two organizational workflows to counteract this exposure.

First, since policy is typically stored under version control, having another
person review changes to the policy helps ensure that changes are well
considered. Security teams can additionally review the changes and ask probing
questions to ensure that the policy being defined is as tightly scoped as possible.
Since the policy is defined using logical intent instead of physical components,
the policy will change less rapidly than if it was defined in physical terms.

The second organizational measure used is to layer broad infrastructure policy
on top of fine-grained policy. For example, an infrastructure group might rightly
require that only a certain set of roles be allowed to accept traffic from the
internet. The infrastructure team will therefore define policy that enforces that
restriction, and no user-defined policy will be allowed to circumvent it.
Enforcing this constraint could take several forms: an automated test of proposed
policy, or perhaps a policy engine that will simply refuse overly broad policy
assertions from untrusted sources. Such enforcement can also be useful for
compliance and regulatory requirements.

Trust Engine

The trust engine is the system in a zero trust network that performs risk analysis



against a particular request or action. This system’s responsibility is to produce a
numeric assessment of the riskiness of allowing a particular request/action,
which the policy engine uses to make an ultimate authorization decision.

The trust engine will frequently pull from data contained in authoritative
inventory systems to check attributes of an entity when computing its score. A
device inventory, for example, could provide the trust engine with information
like the last time a device was audited, or whether it has a particular hardware
security feature.

Creating a numeric assessment of risk is a difficult task. A simple approach
would be to define a set of ad hoc rules that score an entity’s riskiness. For
example, a device that is missing the latest software patches could have its score
reduced. Similarly, a user who is continually failing to authenticate could have
their trust score reduced.

While ad hoc trust scoring might be simple to get started with, a set of statically
defined rules will be insufficient to meet the desired goal of defending against
unexpected attacks. As a result, in addition to using static rules, mature trust
engines use machine learning techniques to derive a scoring function.

Machine learning derives a scoring function by calculating observable facts from
a subset of activity data known as training data. The training data is raw
observations that have been associated with trusted or untrusted entities. From
this data, features are extracted and used to derive a computer-generated scoring
function. This scoring function, a model in machine learning terms, is then run
against a set of data that is in the same format as the training data. The resulting
scores are compared against human-defined risk assessments, and the model’s
quality can then be refined based on its ability to correctly predict risk of the
data being analyzed. A model that has sufficient accuracy can then be said to be
predictive of the riskiness of yet unseen requests in the network.

While machine learning is increasingly used to solve hard computational
problems, it does not obviate the need for more explicit rules in the trust engine.
Whether due to limitation of the derived scoring models or for desired
customization of the scoring function, trust engines will typically use a mixture
of ad hoc and machine learning scoring methods.

What Entities Are Scored?



Deciding which components of a zero trust network should be scored is an
interesting consideration. Should scores be calculated for each individual entity
(user, device, and application), for the network agent as a whole, or for both?
Let’s look at some scenarios.

Imagine a user’s credentials are being brute forced by a malicious third party.
Some systems will mitigate this threat by locking the user’s account, which can
present a denial-of-service attack against that particular user. If we were to score
a user negatively based on that activity, a zero trust network would suffer the
same problem. A better approach is to realize that we’re authenticating the
network agent, and so the attacker’s network agent is counteracted, leaving the
legitimate user’s network agent unharmed. This scenario makes a case that the
network agent is the entity that should be scored.

But just scoring the network agent can be insufficient against other attack
vectors. Consider a device that has been associated with malicious activity. A
user’s network agent on that device may be showing no signs of malicious
behavior, but the fact that the agent is being formed with a suspected device
should clearly have an impact on the trust score for all requests originating from
that device. This scenario strongly suggests that the device should be scored.

Finally, consider a malicious human user (the infamous internal threat) is using
multiple kiosk devices to exfiltrate trade secrets. We’d like the trust engine to
recognize this behavior as the user hops across devices and to reflect the
decreasing level of trust in their trust score for all future authorization decisions.
Here again, we see that scoring the network agent alone is insufficient for
mitigating common threats.

Taken as a whole, it seems like the right solution is to score both the network
agent itself and the underlying entities that make up the agent. These scores can
be exposed to the policy engine, which can choose the correct component(s) to
authorize based on the policy being written.

Presenting so many scores for consideration when writing policy, however, can
make the task of crafting policy more difficult and error prone. In an ideal world,
a single score would be sufficient, but that approach presents extra availability
requirements on the trust engine. A system that tries to create a single score
would likely need to move to an online model, where the trust engine is



interactively queried during the policy decision making. The engine would be
given some context about the request being authorized so it could choose the
best scoring function for that particular request. This design is clearly more
complex to build and operate. Additionally, for policy where a system
administrator specifically wishes to target a particular component (say, only
allow deploys from devices with a score above X), it seems rather roundabout.

Exposing Scores Considered Risky

While the scores assigned to entities in a zero trust network are not considered
confidential, exposing the scores to end users of the system should be avoided.
Seeing one’s score could be a signal to would-be attackers that they are
increasing or decreasing their trustworthiness in the system. This desire to
withhold information should be balanced against the frustration of end users’
ability to understand how their actions are affecting their own trust in the system.
A good compromise from the fraud industry is to show users their scores
infrequently, and to highlight contributing factors to their score determination.

Data Stores

The data stores used to make authorization decisions are very simply the sources
of truth for the current and past state of the system. Information from these data
stores flows through the control plane systems, providing a large portion of the
basis on which authorization decisions are made, as demonstrated in Figure 4-4.

We previously spoke about the trust engine leveraging these data stores in order
to produce a trust score, which in turn is considered by the policy engine. In this
way, information from control plane data stores has flowed through the
authorization system, finally reaching the policy engine where the decision was
made. These data stores are used by the policy engine, both directly and
indirectly, but they can be useful to other systems that need authoritative data
about the state of the network.
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Figure 4-4. Authoritative data stores are used by the policy engine both directly and indirectly through the
trust engine

Zero trust networks tend to have many data stores, organized by function. There
are two primary types: inventory and historical. An inventory is a single
consistent source of truth, recording the current state of the resource(s) it
represents. An example is a user inventory that stores all user information, or a
device inventory that records information about devices known to the company.

In an inventory, a primary key exists which uniquely represents the tracked
entity. In the case of a user, the likely choice is the username; for a device,
perhaps it’s a serial number. When a zero trust agent undergoes authentication, it
is authenticating its identity against this primary key in the inventory. Think
about it like this: a user authenticates against a given username. The policy
engine gets to know the username, and that the user was successfully
authenticated. The username is then used as the primary key for lookup against
the user inventory. Keeping this flow and purpose in mind will help you choose
the right primary keys, depending on your particular implementation and
authentication choices.



A historical data store is a little bit different. Historical data stores are kept
primarily for risk analysis purposes. They are useful for examining recent/past
behavior and patterns in order to assess risk as it relates to a particular request or
action. Trust engine components are most likely to be consuming this data, as
trust/risk determinations are the engine’s primary responsibility.

One can imagine many types of historical data stores, and when it comes to risk
analysis, the sky’s the limit. Some common examples include user accounting
records and sFlow data. Regardless of the data being stored, it must be queryable
using the primary key from one of the inventory systems.

We will talk about various inventory and historical data stores as we introduce
related concepts throughout this book.

Summary

This chapter focused on the systems that are responsible for making the ultimate
decision of whether a particular request should be authorized in a zero trust
network. This decision is a critical component of such a network, and therefore
should be carefully designed and isolated to ensure it is trustworthy.

We broke this responsibility down into four key systems: enforcement, policy
engine, trust engine, and data stores. These components are logical areas of
responsibility. While they could be collapsed into fewer physical systems, the
authors prefer an isolated design.

The enforcement system is responsible for ensuring that the policy engine’s
authorization decision takes effect. This system, being in the data path of user
traffic, is best implemented in a manner where the policy decision is referenced
and then enforced. Depending on the architecture chosen, the policy engine
might be notified before a request occurs, or during the processing of that same
request.

The policy engine is the key system that computes the authorization decision
based on data available to it and the policy definitions that have been crafted by
the system administrators. This system should be heavily isolated. The policy
that is defined should ideally be stored separately from the engine and should
use good software development practices to ensure that changes are understood,



reviewed, and not lost as the policy moves from being proposed to being
implemented. Furthermore, since zero trust networks expect to have much finer-
grained policy, mature organizations choose to distribute the responsibility of
defining that policy into the organization with security teams reviewing the
proposed changes.

The trust engine is a new concept in security systems. This engine is responsible
for calculating a trust score of components of the system using static and
inferred algorithms derived from past behavior. The trust score is a numerical
determination of the trustworthiness of a component and allows the policy
writers to focus on the level of trust required to access some resource instead of
the particular details of what actions might reduce that trust.

The final component of this part of the system is the authoritative data sources
that capture current and historical data that can be used to make the authorization
decision. These data stores should focus on being sources of truth. The policy
engine, the trust engine, and perhaps third-party systems can leverage this data
so the collection of this data will have a decent return on investment from
capturing it.

The next chapter will dig into how devices gain and maintain trust.



Chapter 5. Trusting Devices

Trusting devices in a zero trust network is extremely critical; it’s also an
exceedingly difficult problem. Devices are the battlegrounds upon which
security is won or lost. Most compromises involve a malicious actor gaining
access to a trusted device; and once that access is obtained, the device cannot be
trusted to attest to its own security.

This chapter will discuss the many systems and processes that need to be put in
place to have sufficient trust of devices deployed in the network. We will focus
on the role that each of these systems plays in the larger goal of truly trusting a
device. Each technology is complicated in its own right. While we can’t go into
exhaustive detail on each protocol or system, we will endeavor to give enough
details to help you understand the technology and avoid any potential pitfalls
when using it.

We start with learning how devices gain trust in the first place.

Bootstrapping Trust

When a new device arrives, it is typically assigned an equal level of trust as that
of the manufacturer and distributor. For most people, that is a fairly high level of
trust (whether warranted or not). This inherited trust exists purely in meatspace
though, and it is necessary to “inject” this trust into the device itself.

There are a number of ways to inject (and keep) this trust in hardware. Of
course, the device ecosystem is massive, and the exact approach will differ on a
case-by-case basis, but there are some basic principles that apply across the
board. These principles reduce most differences to implementation details.

The first of those principles has been known for a long time: golden images. No
matter how you receive your devices, you should always load a known-good
image on them. Software can be hard to vet; rather than doing it many times
hastily (or not at all), it makes good sense to do it once and certify an image for
distribution.
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Loading a “clean” 1mage onto a device grants 1t a great deal ot trust. You can be
reasonably sure that the software running there is validated by you, and secure.
For this reason, recording the last time a device was imaged is a great way to
determine how much trust it gets on the network.

SECURE BOOT

There are of course ways to subvert devices in a manner that they retain the implant across
reimaging and other low-level operations, as the implant in these cases are usually themselves
fairly low level.

Secure Boot is one way to help fend against these kinds of attacks. It involves loading a public
key into the device’s firmware, which is used to validate driver and OS loader signatures to
ensure that nothing has been slipped in between. While effective, support is limited to certain
devices and operating systems. More on this later.

Being able to certify the software running on a device is only the first step. The
device still needs to be able to identify itself to the resources that it is attempting
to access. This is typically done by generating a unique device certificate that is
signed by your private certificate authority. When communicating with network
resources, the device presents its signed certificate. This certificate proves not
only that it is a known device, but it also provides an identification method.
Using details embedded in the certificate, the device can be matched with data
from the device inventory, which can be used for further decision making.

Generating and Securing Identity

In providing a signed certificate by which a device may be identified, it is
necessary to store the associated private key in a secure manner. This is not an
easy task. Theft of the private key would enable an attacker to masquerade as a
trusted device. This is the worst possible scenario for device authentication.

A simple yet insecure way to do this is to configure access rights to the key in
such a way that only the most privileged user (root or administrator) can access
it. This is the least desirable storage method, as an attacker who gains elevated
access can exfiltrate the unprotected key.

Another way to do this is to encrypt the private key. This is better than relying
on simple permissions, though it presents usability issues because a password (or



other secret material) must be furnished in order to decrypt and use the key. This
may not pose a problem for an end-user device, as the user can be prompted to
enter the password, though this is usually not feasible for server deployments;
human interaction is required for every software restart.

The best way by far to store device keys is through the use of secure
cryptoprocessors. These devices, commonly referred to as a hardware security
module (HSM) or a trusted platform module (TPM), provide a secure area in
which cryptographic operations can be performed. They provide a limited API
that can be used to generate asymmetric encryption keys, where the private key
never leaves the security module. Since not even the operating system can
directly access a private key stored by a security module, they are very difficult
to steal.

Identity Security in Static and Dynamic Systems

In relatively static systems, it is common for an operator to be involved when
new hosts are provisioned. This makes the injection story easy—the trusted
human can directly cut the new keys on behalf of the hosts. Of course, as the
infrastructure grows, this overhead will become problematic.

In automating the provisioning and signing process, there is an important
decision to make: should a human be involved when signing new certificates?
The answer to this largely depends on your sensitivity.

A signed device certificate carries quite a bit of power, and serves to identify
anything with the private key as an authentic and trusted device. Just as we go
through measures to protect their theft locally, we must also protect against their
frivolous generation. If your installation is particularly sensitive, you might
choose to involve a human every time a new certificate is signed.

PWNING THE SIGNING SERVICE

In 2011, a company named DigiNotar suffered a security breach. This breach was significant
because DigiNotar was a publicly trusted certificate authority. The attackers managed to
compromise the certificate signing infrastructure, and used this position to sign certificates of
their choosing. It is estimated that over 300,000 users had their private data exposed by these
fraudulent certificates. DigiNotar’s certificates were immediately blacklisted by browsers
around the world, and the company declared bankruptcy not long after. This breach



underscores the importance of a secure signing infrastructure and process.

If provisioning is automated, but still human-driven, it makes a lot of sense to
allow the human driving that action to also authorize the associated signing
request. Having a human involved every time is the best way to prevent
unauthorized requests from being approved. Humans are not perfect though.
They are susceptible to fatigue and other shortcomings. For this reason, it is
recommended that they be responsible for approving only requests that they
themselves have initiated.

It is possible to accomplish provisioning and signature authorization in a single
step through the use of a temporal one-time password (TOTP). The TOTP can
be provided along with the provisioning request and passed through to the
signing service for verification, as shown in Figure 5-1. This simple yet strong
mechanism allows for human control over the signing of new certificates while
imposing only minimal administrative overhead. Since a TOTP can only be used
once, a TOTP verification failure is an important security event.
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Figure 5-1. A human providing a TOTP can safely authorize the signature of a certificate.

It goes without saying that none of this applies if you want to fully automate the

provisioning of new hosts. Frequently referred to as “auto-scaling,” systems that
can grow and shrink themselves are commonly found in large, highly automated
installations. Allowing a system to scale itself decreases the amount of care and

feeding required, significantly reducing administrative overhead and cost.

Signing a certificate is an operation that requires a great deal of trust; and just as
with other zero trust components, this trust must be sourced from somewhere.
There are three common choices:

e A human
e The resource manager

e The image or device

The human is an easy and secure choice for relatively static infrastructure or end
user devices, but is an obvious nonstarter for automated infrastructure. In this
case, you must choose the resource manager or the image...or both.

The resource manager is in a privileged position. It has the ability to both grow
and shrink the infrastructure, and is likely able to influence its availability. It
provides a good analog to a human in a more static system. It is in a position to
assert, “Yes, I turned this new host on, and here is everything I know about it.” It
can use this position to either directly or indirectly authorize the signing of a new
certificate.

Depending on your needs, it might be desirable to not grant this ability wholly to
the resource manager. In this case, credentials can be baked into an image. This
is generally not advised as a primary mechanism, as it places too much
responsibility on the image store; and protecting and rotating images can be
fraught with peril. In a similar way, HSMs or TPMs can be leveraged to provide
a device certificate that is tied to the hardware. This is better than baking
material into the image, though requiring a TPM-backed device to sign a new
certificate is still not ideal, especially when considering cloud-based
deployments.

One good way to mitigate these concerns is to require both the resource manager



and a trusted image/device. Generic authentication material baked into the image
(or a registered TPM key) can be used to secure communication with the signing
service and can serve as a component in a multifaceted authorization. The
following are examples of components for authorization consideration:

e Registered TPM key or image key

e Correct IP address

e Valid TOTP (generated by resource manager)

e Expected certificate properties (i.e., expected common name)

By validating all of these points, the certificate signing service can be relatively
certain that the request is legitimate. The resource manager alone cannot request
a certificate, and since it does not have access to the hosts it provisions, the most
an attacker could do is impact availability. Similarly, a stolen image alone
cannot request a certificate, as it requires the resource manager to validate that it
has provisioned the host and expects the request.

By splitting these responsibilities and requiring multiple systems to assert
validity, we can safely (well, as safely as is possible) remove humans from the
loop.

RESOURCE MANAGERS AND CONTAINERS

Sometimes it all comes down to terminology. In host-centric systems, resource managers
create auto-scaling systems, making decisions about when and where capacity is needed. In
containerized environments, the same decisions are made and executed by a resource
scheduler. For the purposes of zero trust application, these components are practically
identical, and the principles apply equally to host-centric and container-centric environments.

Authenticating Devices with the Control Plane

Now that we know how to store identity in a new device or host, we have to
figure out how to validate that identity over the network. Luckily, there are a
number of open standards and technologies available through which to
accomplish this. Here, we’ll discuss two of those technologies and why they are



so important to device authentication: first we’ll cover X.509 before moving on
to look at TPMs.

These technologies enjoy widespread deployment and support, though this was
not always the case. While we discuss real-world approaches to securing legacy
devices in Chapter 8, we’ll additionally explore here what the future might hold
for zero trust support in legacy hardware.

X.509

X.509 is perhaps the most important standard we have when it comes to device
identity and authentication. It defines the format for public key certificates,
revocation lists, and methods through which to validate certification chains. The
framework it puts forth aids in the formation of identity used for secure device
authentication in nearly every protocol we’ll discuss in this book.

One of the coolest things about X.509 is that the public/private key pairs it uses
to prove identity can also be used to bootstrap encrypted communication. This is
just one of many reasons that X.509 is so valuable for internet security.

Certificate chains and certification authorities

For a certificate to mean anything, it has to be trusted. A certificate can be
created by anyone, so just having one with the right name on it does not mean
much. A trusted party must endorse the validity of the certificate by digitally
signing it. A certificate without a “real” signature is known as a self-signed
certificate and is typically only used for testing purposes.

It is the responsibility of the registration authority (a role commonly filled by the
certificate authority) to ensure that the details of the certificate are accurate
before allowing it to be signed. In signing the certificate, a verifiable link is
created from the signed certificate to the parent. If the signed certificate has the
right properties, it can sign further certificates, resulting in a chain. The
certificate authority lies at the root of this chain.

By trusting a certificate authority (CA), you are trusting the validity of all the
certificates signed by it. This is quite a convenience, because it allows us to
distribute only a small number of public keys in advance—the CA public keys,
namely. All certificates furnished from there on can be linked back to the known



trusted CA, and therefore also be trusted. We spoke more about the CA concept
and PKI in general in Chapter 2.

Device identity and X.509

The primary capability of an X.509 certificate is to prove identity. It leverages
two keys instead of one: a public key and a private key. The public key is
distributed, and the private key is held by the owner of the certificate. The owner
can prove they are in presence of the private key by encrypting a small piece of
data, which can only be decrypted by the public key. This is known as public key
cryptography, or asymmetric cryptography.

The X.509 certificate itself contains a wealth of configurable information. It has
a set of standard fields, along with a relatively healthy ecosystem of extensions,
which allow it to carry metadata that can be used for authorization purposes.

Here is a small sample of typical information found within an X.509 certificate:

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
€a:78:b1:33:90:2e:2b:ald
Signature Algorithm: shalWithRSAEncryption
Issuer: C=US, ST=California, L=San Francisco,
O=production, OU=web, CN=web01.example.com
Validity
Not Before: Oct 27 23:33:33 2016 GMT
Not After : Oct 27 23:33:33 2017 GMT
Subject: C=US, ST=California, L=San Francisco,
O=production, OU=web, CN=web01.example.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (512 bit)

Modulus (512 bit):
00:d1:e2:54:b1:26:b1:49:64:72:6d:eb:54:fe:0a:
fc:74:56:a8:86:2:54:32:7e:09:fa:06:3e:94:2b:
de:a5:9d:3b:9d:c3:d9:ad:08:3b:ed:b8:96:a7:0d:
2f:65:61:49:7f:f0:b0:85:95:af:39:e2:64:82:4c:
ff:97:76:12:6b

Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Subject Key Identifier:

DD:92:3E:9E:A8:28:F0:85:FC:A6:4D:C1:1A:2A:BE:35:2D:F7:7A:55

X509v3 Authority Key Identifier:
keyid:DD:92:3E:9E:A8:28:F0:85:FC:A6:4D:C1:1A:2A:BE:35:2D:F7:7A:55
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DirName:/C=US/SI=Calitornia/L=5an Francisco/U=production/0U=web ...
serial:EA:78:B1:33:90:2E:2B:A0

X509v3 Basic Constraints:
CA:TRUE
Signature Algorithm: shalWithRSAEncryption
33:41:f4:22:72:33:7b:e9:d2:07:a0:e7:aa:5d:21:89:66:84:
8e:11:87:8f:1b:c1:b8:dd:6b:76:6d:24:55:eb:20:61:6d:89:
15:90:78:8c:81:e1:48:e4:45:3d:fe:0e:fd:92:78:84:2c:bc:
0c:6€:06:03:80:95:5f:5d:1b:41

One of the fields in the code snippet is called the Subject field. The Subject field
stores information about the owner, which in our case is a device (or host).
Traditionally, fields like Organization (O) and Organizational Unit (OU) are
exactly as they sound; but in datacenter applications, they can be repurposed to
provide richer identity.

The example shows one approach, where O is mapped to the environment, and
OU is mapped to the role of the host. Since the certificate is signed and trusted,
we can use this information to make authorization decisions. Leveraging X.509
fields in this way means that device access may be authorized without a call to
an external service, so long as the server knows who/what it should be
expecting.

Public and private components

As mentioned earlier, X.509 deals with key pairs rather than a single key. While
it is overwhelmingly common that these are RSA key pairs, they don’t
necessarily have to be. X.509 supports many types of key pairs, and we have
recently begun to see the popularization of other key types (such as ECDSA).

Private key storage

X.509 is incredibly useful for device authentication, but it doesn’t solve all the
problems. It still has a private key, and that private key must be protected. If the
private key is compromised, the device’s identity and privacy will be vulnerable
as well. While other zero trust measures help guard against the damage this
might cause (like user/application authentication or authorization risk analysis),
this is considered a worst-case scenario and should be avoided at all costs.

Private keys can be encrypted when they are stored, requiring a password to
decrypt. This is a good practice because it would require more than just disk



access to successfully steal, but is only practical for user-facing devices. In the
datacenter, encrypting the private key doesn’t solve the problem because you
still have to store the password, or somehow transmit it to the server, at which
point the password becomes just as cuambersome as the private key itself.

Hardware security modules (HSMs) go a good distance in attempting to protect
the private key. They contain hardware that can generate a public/private key
pair and store the private key in secure memory. It is not possible to read the
private key from the HSM. It is only possible to ask the HSM to do an operation
with it on your behalf. In this way, the private key cannot be stolen as it is
protected in hardware. We’ll talk more about TPMs, a type of HSM, in the next
section.

X.509 for device authentication

The application of X.509 to device authentication in a zero trust network is
immense. It is a foundational cornerstone in proving device identity for just
about every protocol we have and is instrumental in enabling end-to-end
encryption. Every single device in a zero trust network should have an X.509
certificate.

There is one important consideration to make, however. We are using X.509 to
authenticate a device, yet the heart of the whole scheme—the private key—is
decidedly software-based. If the private key is stolen, the whole device
authentication thing is a sham!

These certificates are often used as a proxy for true device authentication
because the keys are so long and unwieldy that you would never write one down
or memorize one. They are something that would be downloaded and installed,
and because of that, they don’t tend to follow users around—they more typically
follow devices.

While it might be determined that the risk associated with the private key
problem is acceptable, it still stands as a serious issue, particularly for zero trust.
Fortunately, we can see some paths forward, and by leveraging TPMs it is
possible to inextricably marry a private key to its hardware.

TPMs



A trusted platform module (TPM) is a special chip that is embedded in a
compute device. Called a cryptoprocessor, these chips are dedicated to
performing cryptographic operations in a trusted and secure way. They include
their own firmware and are often thought of as a computer on a chip.

This design enables a small and lean hardware API that is easily audited and
analyzed for vulnerability. By providing facilities for cryptographic operations,
and excluding interfaces for retrieving private keys, we get the security we need
without ever exposing secret keys to the operating system. Instead, they are
bound to the hardware.

This is a very important property and the reason that TPMs are so important for
device authentication in zero trust networks. Great software frameworks for
identity and authentication (like X.509) do a lot for device authentication. But
without a way to bind the software key to the hardware device it is attempting to
identify, we cannot really call it device identity. TPMs solve this problem,
providing the necessary binding.

Encrypting data using a TPM

TPMs generate and store what is known as a storage root key, or an SRK. This
key pair represents the trust root for the TPM device. Data encrypted using its
public key can be decrypted by the originating TPM only.

The astute reader might question the usefulness of this function in the
application of bulk data encryption. We know asymmetric cryptographic
operations to be very expensive, and thus not suitable for the encryption of
relatively large pieces of data. Thus, in order to leverage the TPM for bulk data
encryption, we must reduce the amount of data that the SRK is responsible for
securing.

An easy way to do this is to generate a random encryption key, encrypt the bulk
data using known-performant symmetric encryption (i.e., AES), and then use the
SRK to encrypt the resulting AES key. This strategy, shown in Figure 5-2,
ensures that the encryption key cannot be recovered, unless in the presence of
the TPM that originally protected it.
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Figure 5-2. The data is encrypted with an AES key, which in turn is encrypted by the TPM

Most TPM libraries available for open consumption perform these steps for you,
through the use of helper methods. It is recommended to inspect the internal
operation of such methods before using them.

Intermediary keys and passphrases

Many TPM libraries (such as TrouSerS) create intermediary keys when
encrypting data using the TPM. That is, they ask the TPM to create

a new asymmetric key pair, use the public key to encrypt the AES key, and
finally use the SRK to encrypt the private key. When decrypting the data, you
must first decrypt the intermediate private key, use it to decrypt the AES

key, then decrypt the original data.

This implementation seems strange, but there are some relatively sane reasons
for it. One reason is that the additional level of indirection allows for more
flexibility in the distribution of secured data. Both the SRK and intermediate
keys support passphrases, so the use of an intermediary key enables the use of an
additional, perhaps more widely known, passphrase.

This may or may not make sense for your particular deployment. For the
purposes of “This key should only be decryptable on this device only,” it is OK
(and more performant) to bypass the use of an intermediary key, if desired.

The most important application of TPM-backed secure storage is in protecting
the device’s X.509 private key. This secret key serves to authoritatively prove
device identity, and if stolen, so is the identity. Encrypting the private key using
TPM means that while the key might still be taken from disk, it will not be



recoverable without the original hardware.

KEY THEFT IS STILL POSSIBLE

Encrypting the device’s private key and wrapping the key with the SRK does not solve all of
the theft vectors. It protects the key from being directly read from disk, though an attacker with
elevated privileges might still be able to read it from memory or simply ask the TPM to
perform the operation for them.

The following two sections provide additional information on how to further validate hardware
identity (beyond X.509 identity).

Platform configuration registers

Platform configuration registers (PCRs) are an important TPM feature. They
provide storage slots into which hashes of running software is stored. It starts
with the hash of the BIOS, then the boot record, its configuration, and so on.
This sequence of hashes can then be used to attest that the system is in an
approved configuration or state. Here is a truncated example of the first few
registers stored in the TPM:

PCR-00: A8 5A 84 B7 38 FC ... # BIOS

PCR-01: 11 40 C1 7D OD 25 ... # BIOS Configuration
PCR-02: A3 82 9A 64 61 85 ... # Option ROM

PCR-03: B2 A8 3B OE BF 2F ... # Option ROM Configuration
PCR-04: 78 93 CF 58 OE E1 ... # MBR

PCR-05: 72 A7 A9 6C 96 39 ... # MBR Configuration

This is useful in a number of ways, including in ensuring that only authorized
software configurations are allowed to decrypt data. This can be done by passing
in a set of known-good PCR values when using the TPM to encrypt some data.
This is known as “sealing” the data. Sealed data can only be decrypted by the
TPM which sealed it, and only while the PCR values match.

Since PCR values cannot be modified or rolled back, we can use TPM sealing to
ensure that our secret data is not only locked to the device, but also locked to a
specific software configuration and version. This helps to prevent attackers from
using device access to obtain the private key, since only the unmodified and
approved software can unlock it.



Remote attestation

We have learned many ways we can use embedded device security to protect
private keys and other sensitive device-related data. The unfortunate truth is that
so long as a private key is stored outside of a physical TPM, it is still vulnerable
to theft. This fact remains because all it takes to recover the private key is to
convince the TPM to unlock it once. This action discloses the actual private key
—something that is not possible when it is stored on the TPM.

Luckily, the TPM provides a way for us to uniquely identify it. It’s another key
pair called the endorsement key (EK), and each TPM has a unique one. The
private component of an EK only ever exists on the TPM itself, and thus remains
completely inaccessible by the operating system.

Remote attestation is a method by which the TPM generates something called a
“quote,” which is then securely transmitted to a remote party. The quote includes
a list of current PCR values, signed using the EK. A remote party can use this to
assert both host identity (since the EK is unique to the TPM) and software
state/configuration (since PCRs cannot be modified). We’ll talk more about how
the quote can be transmitted in Chapter 8.

WHY NOT JUST TPM?

You may find yourself wondering: why not use the TPM exclusively for device identity and
authentication, and why include X.509 at all?

Currently, TPM access is cambersome and non-performant. It can provide an X.509 certificate
to confirm its identity, but it is limited in its interaction with the private key. For instance, the
key used for attestation is only capable of signing data that originates in the TPM. For a
protocol like TLS, this is a deal-breaker.

There have been some attempts to coerce the TPM attestation protocols into a more flexible
form (like IETF draft draft-latze-tls-tpm-extns-02, which defines a TLS extension for device
authentication via TPM), though none of them have gained widespread adoption at the time of
this writing.

There are a few open source implementations of remote attestation, including
one in the popular IKE daemon strongSwan. This opens the doors for leveraging
TPM data to not only authenticate an IPsec connection, but also authorize it by
using PCR data to validate that the host is running authentic and unmodified
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software.

TPMs for device authentication

It is clear that TPMs present the best option for strong device authentication in
mature zero trust networks. They provide the linchpin between software identity
and physical hardware. There are, however, a couple limitations.

Many datacenter workloads are heterogeneous and isolated, like virtual
machines or containers, both of which need to resort to TPM virtualization to
allow the isolated workload to accomplish similar goals. While there are
implementations available (such as vIPM for Xen), trust must still be rooted in a
hardware TPM, and designing a secure TPM-based system that is capable of live
migration is challenging.

Additionally, TPM support is still sparse despite its many uses and strengths.
While TPM use would be expected in the context of device authentication in
mature zero trust networks, it should not be considered a requirement. Adopting
TPM support is no small feat, and there are much lower-hanging fruits in terms
of zero trust adoption and migration.

Hardware-Based Zero Trust Supplicant?

The most common approach for supporting legacy devices in a zero trust
network is to use an authentication proxy. The authentication proxy terminates
the zero trust relationship and forwards the connection to the legacy host.

While it is possible to enforce policy between the authentication proxy and the
legacy backend, this mode of operation is less than ideal and shares a handful of
attack vectors with traditional perimeter networks. When dealing with legacy
devices, it is desirable to push the zero trust termination point as close to the
device as possible.

At the time of this writing, an authentication proxy is likely the best and most
reasonable option, although it does seem that there is some room for a dedicated
hardware device. This device can act as a zero trust supplicant, carrying a TPM
chip, and plug directly into a legacy device’s Ethernet port. Pairing the two in
your inventory management system can allow for seamless integration between
legacy devices and a zero trust network.



There are many applications that would significantly benefit from such a device.
SCADA and HVAC systems, for instance, come to mind. While such a device is
admittedly pure fantasy at present, it remains an interesting thought experiment.

Inventory Management

Authenticating a device’s identity and integrity goes a long way in providing
strong zero trust security, but being able to identify a device as belonging to the
organization is only part of the challenge. There are lots of other pieces of
information we need in order to calculate policy and make enforcement
decisions.

Inventory management involves the cataloging of devices and their properties.
Maintaining these records is equally important for both servers and client
devices. It is sometimes more helpful to think of these as network entities rather
than physical devices. While they indeed are commonly physical devices, they
might also be logical entities on the network.

For instance, it is conceivable that a virtual machine or a container could be
considered a “device,” depending on your needs. They have lots of the same
descriptive properties that a real server might have, after all. Lumping all of the
virtual machine traffic from a single host into one policy gets us right back to the
perimeter model. Instead, the zero trust model advocates that the workloads be
tracked in order to drive the network policies they require. This inventory (or
workload) database in this case can be specialized in order to accommodate the
high rates of change that virtualized/containerized environments experience. So,
while the traditional inventory management system and the workload scheduler
might be different systems, they can still work together; for the purposes of this
book, the scheduler service may act as an inventory management system of sorts,
as shown in Figure 5-3.

It is not uncommon to have more than one inventory management system. As an
example, many companies have both asset management and configuration
management software. Both of these store device metadata that is useful to us;
they just store different sets, collected in different ways.

CONFIGURATION MANAGFMENT AS AN INVENTORY



DATABASE

Many configuration management systems, such as Chef or Puppet, offer modes in which data
about the nodes they run on get persisted into a centralized database. Name, IP address, and the
“kind” of server are examples of the type of information typically found in a CM-backed
database. Using configuration management in this way is an easy first step toward developing
an inventory database if you don’t have one already.

Inventory data sources
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Figure 5-3. A scheduler and a configuration management database serve as inventory stores for the control
plane

Knowing What to Expect

One of the great powers of a zero trust network is that it knows what to expect.
Trusted entities can push expectations into the system, allowing all levels of
access to be denied by default—only expected actions/requests are permitted.

An inventory database is a major component in realizing this capability. A huge
amount of information about what to expect can be generated from this data;
things like which user or application should be running on it, what locations we



might expect it to be in, or even the kind of operating system are all pieces of
information that can be used to set expectations.

In the datacenter, these expectations can be very strong. For instance, when
provisioning a new server, we often know what IP address it will be assigned
and what purpose it will serve. We can use that information to drive network
ACLs and/or host-based firewalls, poking holes for that specific IP address only
where necessary. In this way, we can have all traffic denied, allowing only the
very specific flows we are expecting. The more properties that can be expected,
the better.

This is not such an easy prospect for client-facing systems, however. Clients
operate in new and unexpected ways all the time, and knowing exactly what to
expect from them and when is very difficult. Servers in the datacenter often have
relatively static and long-lived connections to a well-defined set of hosts or
services. By contrast, clients tend to make many short-lived connections to a
variety of services, the timing, frequency, and patterns of which can vary
organically.

In order to address the wild nature of client-facing systems, we need a slightly
different approach. One way to do this is to simply allow global access to the
service and to protect it with mutually authenticated TLS, forcing the client to
provide a device certificate before it can communicate with it. The device
certificate can be used to look the device up in the inventory database and
determine whether or not to authorize it. The advantage is that lots of systems
support mutually authenticated TLS already, and specialized client software is
not strictly required. One can provide reasonably strong security without too
badly hindering accessibility or usability.

A significant drawback to this approach, however, is that the service is globally
reachable. Requiring client certificates is a great way to mitigate this danger.
However, we have seen from vulnerabilities like Heartbleed that the attack
surface of a TLS server is relatively large. Additionally, the existence of the
resources can be discovered by simply scanning for them, since we get to speak
TCP to the resource before we authenticate with it.

How can we ensure that we don’t engage clients that are not trusted? There has
to be some untrusted communication, after all. What comes before the
authentication?



Secure Introduction

The very first connection from a new device is a precarious one. After all, these
packets must be admitted somewhere, and if they are not strongly authenticated,
then there is a risk. Therefore, the first system that a new device contacts needs a
mechanism by which it can authenticate this initial contact.

This arrangement is commonly known as secure introduction. It is the process
through which a new entity is introduced to an existing one in a way that trust is
transferred to it. There are many ways in which this can be effected; the method
through which an operator passes a TOTP code to a provisioner in order to
authorize a certificate request is a form of secure introduction.

The best (and perhaps only) way to do secure introduction is by setting an
expectation. Secure introduction practically always involves a trusted third party.
This is a system that is already introduced, and it holds the ability to introduce
new systems. This trusted third party is the system that then
coordinates/validates the specifics of the system to be introduced and sets the
appropriate expectations.

SECURE INTRODUCTION FOR CLIENT SYSTEMS

Secure introduction of client-facing systems can be difficult due to the hard-to-predict nature
of wild clients. When publicly exposing a client-facing endpoint is considered too risky, it is
necessary to turn to more complicated schemes. The currently accepted approach is to use a
form of signaling called pre-authentication, which announces a client’s intentions just prior to
taking action. We’ll talk more about pre-authentication in Chapter 8.

What Makes a Good Secure Introduction System?
Single-use

Credentials and privileges associated with the introduction should be single
use, preventing an attacker from compromising and reusing the key.

Short-lived

Credentials and privileges associated with the introduction should be short-
lived, preventing the accumulation of valid but unused keys.

1. 1



L hira-party

Leveraging a third party for introduction allows for separation of duty,
prevents the introduction of poor security practice, and alleviates operational
headaches.

While these requirements might at first seem rigorous, they can be met through
fairly simple means. A great example can be found in the way Chef implements
host introduction. Originally, there was a single secret (deemed the “validation
certificate™) which was qualified to admit any host that possessed it as a new
node. Thus, the introduction would involve copying this secret to the target
machine (or baking it into the image), using it to register the new node, then
deleting it.

This approach is neither single-use nor short-lived. Should the secret be
recovered, it could be used by a malicious actor to steer application traffic to
attacker-controlled hosts, or even trigger a denial of service.

Modern Chef takes a new approach. Instead of having a static validation
certificate, the provisioning system (via Chef client utility “knife”)
communicates with the Chef server and creates a new client and associated client
certificate. It then creates the new host, and passes in its client certificate. In this
way, an expectation for the new client has been set. While these credentials are
not short-lived, it remains as a superior approach.

Renewing Device Trust

It is important to accept the fact that no level of security is perfect—not even
yours. Once this fact is acknowledged, we can begin to mitigate its
consequences. The natural progression is that the longer a device is operating,
the greater its chances of being compromised. This is why device age is a
heavily weighted trust signal.

For this reason, rotation is very important. We earlier spoke at length about the
importance of rotation, and devices are no different. Of course, this “rotation” is
manifested in different ways depending on your definition of “device.” If your
infrastructure is run in a cloud, perhaps a “device” is a host instance. In this case,
rotation is easy: just tear down the instance and build a new one (you are using
configuration management, right?). If you’re running physical hardware,



however, this prospect is a little more difficult.

Reimaging is a good way to logically rotate a device. It is a fairly low-level
operation, and will succeed in removing the majority of persistent threats seen in
the wild today. One can trust a freshly reimaged device more than one that has
been running for a year. While reimaging does not address hardware attacks or
other low-level attacks like those shown in Figure 5-4, it serves as a reasonable
compromise in places where physical rotation is more difficult. Datacenter and
supply chain security partially mitigate this concern.
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Figure 5-4. A disk image addresses the portions that house the vast majority of malware, but it’s certainly
not the whole picture

When it comes to managing client devices, the story changes quite a bit.
Reimaging a client device is extraordinarily inconvenient for users. They
customize the device (and its contents) over time in ways that are difficult to
effectively or securely preserve. Oftentimes, when given a new device, they
want to transfer the old image! This is not great news for people trying to secure
client devices.



The solution largely depends on your use case. The trade-off between security
and convenience will be very clear in this area. Everyone agrees that client
devices should be rotated and/or reimaged every so often, but the frequency is up
to you. There is one important relationship to keep in mind: the less often a
device is rotated or reimaged, the more rigorous your endpoint security must be.

Without the relatively strong assurances of device security that we get with
rotation, we must look for other methods to renew trust in a device that has been
operating for a long time. There are two general methods through which this can
be done: local measurement or remote measurement.

Local Measurement

Local measurement can be one of two types: hardware-backed or software-
backed. Hardware-backed measurement is more secure and reliable, but limited
in capability. Software-backed measurement is much less secure and reliable, but
practically unlimited in its measurement capabilities.

One good option for hardware-backed local measurement is leveraging the TPM
for remote attestation. Remote attestation uses a hardware device to provide a
signed response outlining the hashes of the software currently running on that
machine. The response is highly reliable and very difficult to reproduce.
However, it generally only gives a picture of the low-level software or
specifically targeted software. If an attacker has managed to get an unauthorized
process running in user space, the TPM will not be very useful in its detection;
thus, it has limited capability. See “Remote attestation” for more information.

Software-backed local measurement involves some sort of agent installed on the
endpoint which is used to report health and state measurements. This could be
anything from a managed antivirus client to policy enforcement agents. These
agents go to great lengths in order to attest and prove validity of the
measurements they report, but even cursory thought quickly reaches the
conclusion that these efforts are generally futile. Software-backed measurements
lack the protection provided by hardware measurements, and an attacker with
sufficient privilege can subvert systems like this.

Remote Measurement



Remote measurement is the best of the two options for one simple reason: it
benefits from separation of duty. A compromised host can report whatever it
wants to, possibly falsifying information in order to conceal the attacker. This is
not possible with remote or passive measurement, since a completely different
system is determining the health of the host in question.

Traditionally, remote measurement is performed as a simple vulnerability scan.
The system in question will be periodically probed by a scanning device, which
observes the response. The response gives some information away, like what
operating system might be running on that device, what services might be active
there, and maybe even what version of those services.

The scan results can be cross-referenced with known-bad signatures, like
malicious software or vulnerable versions of legitimate software, producing a
report like the one shown in Figure 5-5. Detection of known-bad signatures can
then influence the trust of the device appropriately.

192.168.1.8 {ubuntu32.domain.home) &*] Aug 13, 00:58:46 Aug 13, 01:15:47 0
Total: 1 0 3 o 0 0 3

Port summary for 192.168.1.8

Service (Port)
general/tcp Medium
http (80/tcp) Medium

Security Issues reported for 192.168.1.8

Overview: The host is running TCP services and is prone to denial of service
vulnerability.

Vulnerability Insight:

The flaw is triggered when spoofed TCP Reset packets are received by the
targeted TCP stack and will result in loss of availability for the attacked
TCP services.

Impact:

Successful exploitation will allow remote attackers to guess sequence numbers
and cause a denial of service to persistent TCP connections by repeatedly
injecting a TCP RST packet.

Impact Level: System

Affected Software/0S:
TCP

Fix: Please see the referenced advisories for more information on obtaining

| and applying fixes.

Figure 5-5. Greenbone web interface for OpenVAS showing three “medium” vulnerabilities for a scan
target


https://www.flickr.com/photos/xmodulo/9499759166

There are a number of open source and commercial options available in the
vulnerability scanning arena, including OpenVAS, Nessus, and Metasploit.
These projects are all fairly mature and relied on by many organizations.

Unfortunately, vulnerability scanning comes with the same fundamental problem
as local measurement: it relies on interrogation of the endpoint. It’s the
difference between asking someone if they robbed a bank, and watching them
rob a bank. Sure, sometimes you can get the robber to admit that they did it, but
a professional would never fall for that. Catching them in the act is much more
effective. See “Network Communication Patterns” for more about how to solve
this dilemma.

Software Configuration Management

Configuration management is the process of tightly controlling and documenting
all software changes. The desired configurations are typically defined as code or
data, and checked into a revision control system, allowing changes to be audited,
rolled back, and so on. There are many commercial and open source options
available, the most popular of which being Chef, Puppet, Ansible, and
CFEngine.

Configuration management software is useful in both datacenter and client
deployments, and simply becomes required beyond a certain scale. Leveraging
such software comes with many security wins, such as the ability to quickly
upgrade packages after vulnerability announcements or to similarly assert that
there are no vulnerable packages in the wild.

Beyond auditing and strict change control, configuration management can also
be used as an agent for dynamic policy configuration. If a node can get a reliable
and trusted view of the world (or part of it, at least), it can use it to calculate
policy and install it locally. This functionality is practically limited to the
datacenter though, since while dynamic, datacenter-hosted systems are decidedly
more static and predictable than client systems. We’ll talk more about this mode
of zero trust operation later on.

CM-Based Inventory



We have mentioned several times the idea of using a configuration management
database for inventory management purposes. This is a great first step toward a
mature inventory management system and can provide a rich source of
information about the various hosts and software running in your infrastructure.

We like to think that CM-based inventory management is a “freebie” in that
configuration management is typically leveraged for the bevy of other benefits it
brings. Using it as an inventory database most often comes about out of
convenience.

Maintaining this view is important: configuration management systems aren’t
designed to act as inventory management systems...they’re designed to act as
configuration management systems! Using it as such will surely bring a few
rough edges, and you will eventually outgrow it. This is not to say don’t do it. It
is better to actually realize a zero trust network by leveraging as much existing
technology as possible than it is to never get there due to high barrier to entry.

Once we accept this fact, we can begin to leverage the wealth of data provided to
us by the CM agents. Using Chef, for instance, we can calculate trust score and
write policy against more than 1,500 host attributes. Here are some small
snippets illustrating the kind of information the Chef agent collects and stores:

languages:
c:
gcc:
description: gcc version 4.8.4 (Ubuntu 4.8.4-2ubuntul~14.04)
version: 4.8.4
java:
hotspot:

build: 24.71-b01, mixed mode
name: Java HotSpot(TM) 64-Bit Server VM
runtime:
build: 1.7.0_71-b14
name: Java(TM) SE Runtime Environment
version: 1.7.0_71
perl:
. <SNIP> ...
dmi:
bios:
address: 0xE8000
all_records:
Address: 0xE8000
BIOS Revision: 4.2



ROM Size: 64 kB

Release Date: 12/03/2014
Runtime Size: 96 kB
Vendor: Xen
Version: 4.2.amazon
application_identifier: BIOS Information
chassis:
all_records:
Asset Tag: Not Specified
Boot-up State: Safe
. <SNIP> ...
fqdn: foo.bar
hostname: foo
idletime: 2 days 09 hours 48 minutes 37 seconds
idletime_seconds: 208117
init_package: init
ipaddress: 192.168.1.1
kernel:
machine: x86_64
modules:

ablk_helper:
refcount: 6
size: 13597
. <SNIP> ...
network:
default_gateway: 192.168.1.254
default_interface: eth@
interfaces:
etho:
addresses:
192.168.1.1:
broadcast: 192.168.1.255
family: inet
netmask: 255.255.255.0
prefixlen: 24
scope: Global
22:00:0A:1E:55:AD:
family: 1laddr
arp:
192.168.1.2: fe:ff:ff:ff:ff:ff
192.168.1.3: fe:ff:ff:ff:ff:ff
192.168.1.254: fe:ff:ff:ff:ff:ff
encapsulation: Ethernet

Searchable inventory

Some CM systems centrally store the data generated by their agents. Typically,
this data store is searchable, which opens lots of possibilities for young zero trust



networks. For instance, the agent can perform a search to retrieve the IP address
of all web servers in datacenter A and use the results to configure a host-based
firewall.

Audits and report generation are greatly enhanced through searchable inventory
as well. This applies not only to datacenter hosts, but also to clients. By storing
the agent data and making it searchable, you can ensure that you changed the
CM code to upgrade that vulnerable package, and that the package did indeed
update where it said it did.

Secure Source of Truth

One important thing to remember when using CM systems in the zero trust
control plane is that the vast majority of the data available to CM systems is self-
reported. This is critical to understand, since a compromised machine could
potentially misrepresent itself. This can lead to complete compromise of the zero
trust network if these facts are not considered during its design.

Thinking back to trust management, the trusted system in this case is the
provisioner. Whether it be a human or some automated system, it is in the best
position to assert the critical aspects of a device, which include the following:

e Device type
e Role
e [P address (in datacenter systems)

e Public key

These attributes are considered critical because they are often used in making
authorization or authentication decisions. If an attacker can update the device
role, for instance, perhaps they can coerce the network to expose protected
services.

For this reason, restricting write access to these attributes is important. Of
course, you can still use self-reported attributes for making decisions, but they
should not be considered fact under any circumstance. It’s useful to think of self-
reported attributes as hints rather than truth.



Using Device Data for User Authorization

The zero trust model mandates authentication and authorization of both the
device and the user or application. Since device authentication typically comes
before user authentication, it must be done without information gained through
user authentication. This is not the case for user authentication.

When user authentication occurs, device authentication has already succeeded,
and the network has knowledge of the device identity. This position can be
leveraged for all kinds of useful contextual knowledge, enabling us to do much
stronger user authentication than was previously attainable.

One of the more common lookups one might make is to check whether we
would expect this user, given the type of device or place of issue. For instance,
you are unlikely to see an engineer’s credentials being used from a mobile
device that was issued to HR. So while the HR employee can freely access a
particular resource using their own credentials, user authentication attempts
using other credentials might be blocked.

Another good signal is user authentication frequency. If you have not seen a user
log in from one of their devices in over a year, and all of a sudden there is a
request from that device furnishing the user’s credentials—well, I think it’s fair
to be a bit skeptical. Could it have been stolen?

Of course, there is also a good chance that the request is legitimate. In a case like
this, we lower the trust score to indicate that things are a little fishy. The lower
score can then manifest itself in many ways, like still being trusted enough to
read parts of the internal wiki, but not enough to log into financial systems.

Being able to make decisions like this is a big part of the zero trust architecture
and underscores the importance of a robust inventory management database.
While inventory management is strictly required for device authentication
reasons, the contextual advantage given to user authentication is invaluable.

Trust Signals

This section serves as a reference for various trust signals that are useful in
calculating device trust score and writing policy.



Time Since Image

Over time, the likelihood that a device has been compromised increases
dramatically. Endpoint security practices aim to decrease the risk associated with
long-lived or long-running devices. Still, these practices are far from perfect.

Imaging a device ensures that the contents of the hard drive match a known
good. While not effective against some lower-level attacks, it provides a
reasonably strong assurance of trust. In the moments immediately following the
image restore, a tremendous amount of trust exists in the device, as only the
hardware or the restore system itself would be able to taint the process. Over
time though, that trust wears off as the system goes through prolonged exposure.

Historical Access

Device authentication patterns, similar to user authentication patterns, are
important in understanding risk and act as a nice proxy for behavioral filtering.
Devices which have not been seen in a while are more suspicious than ones that
come and go frequently. Maybe suspicious is the wrong word, but it’s certainly
unusual.

The request in question can also be tied to a resource, and it is wise to consider
the device and the resource together in this context. For instance, a months-old
device requesting access to a new resource is more suspicious than a request to a
resource it has been accessing weekly for some time. This stands to say that the
“first few” access attempts to a particular resource will be viewed with more
skepticism than subsequent attempts.

Similarly, frequency can be analyzed to understand if a resource is being
suspiciously over-utilized. A request from a device that has made 100 requests in
the last day, but only 104 over the last month, is certainly more suspicious than
one with 0 in the last day and 4 in the last month.

Location

While network location is typically something we aim to not make strong
decisions on with regard to the zero trust model, it still provides reliable trust
signaling in many cases.
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device authentication, we can set some reasonable expectations about the way
that device moves around. For instance, a device authentication attempt from
Europe might be pretty suspicious if we have authorized that same device in the
US office just a couple hours prior.

It should be noted that this is a bit of a slippery slope when it comes to the zero
trust model. Zero trust aims to eliminate positions of advantage within the
network, so using network location to determine access right can be considered a
little contradictory.

The authors recognize this and acknowledge that location-related data can be
valuable while making authorization decisions. That said, it is important that this
consideration not be binary. One should look for patterns in locations, and never
make an absolute decision based solely on location. For instance, a policy which
dictates that an application can only be accessed from the office is a direct
violation of the zero trust model.

Network Communication Patterns

For devices that are connected to networks owned by the operator, there is an
opportunity to measure communication patterns to develop a norm. Sudden
changes from this norm are suspicious and can affect how much the system
trusts such a device.

Network instrumentation and flow collection can quickly detect intrusions by
observing them on the network. Making authorization decisions informed by this
detection is very powerful. One example might be shutting down database access
to a particular web server because that web server began making DNS queries
for hosting providers on another continent.

The same applies to client devices. Consider a desktop that has never before
initiated an SSH connection but is now frequently SSHing to internet hosts. It is
fair to say that this change in behavior is suspicious and should result in the
device being less trusted than it was previously.

Summary

This chapter focused on how a system can trust a device. This is a surprisingly



hard problem, so a lot of different technologies and practices need to be applied
to ensure that trust in a device is warranted.

We started with looking at how trust is injected into a device from the human
operators. For relatively static systems, we can have a person involved in
providing the critical credentials; but for dynamic infrastructure, that process
needs to be delegated. Those credentials are incredibly valuable, and so we
discussed how to safely manage them.

Devices eventually need to participate in the network, and so understanding
how they authenticate themselves is important. We covered several technologies,
such as X.509 and TPMs, which can be used to authenticate a device on the
network. Using these technologies along with databases of expected inventory
can go a long way toward providing the checks and balances that give devices
trust.

Trust is fleeting and degrades over time, so we talked about the mechanisms for
renewing trust. Additionally, we discussed the many signals that can be
continually used to gauge the trustworthiness of a device over time. Perhaps the
most important lesson is that a device starts out in a trusted state and only gets
worse from there. The rate at which its trust declines is what we’d like to keep a
handle on.

The next chapter looks at how we can establish trust in the users of the system.



Chapter 6. Trusting Users

It’s tempting to conflate user trust with device trust. Security-conscious
organizations might deploy X.509 certificates to users’ devices to gain stronger
credentials than passwords provide. One could say that the device certificate
strongly identifies the user, but does it? How do we know that the intended user
is actually at the keyboard? Perhaps they left their device unlocked and
unattended?

Conflating user identity with device identity also runs into problems when users
have multiple devices, which is increasingly becoming the norm. Credentials
need to be copied between several devices, putting them at increased risk of
exposure. Devices might need different credentials based on their capabilities. In
networks that have kiosks, this problem becomes even more difficult.

Zero trust networks identify and trust users separately from devices. Sometimes
identifying a user will use the same technology that is used to identify devices,
but we must be clear that these are two separate credentials.

This chapter will explore what it means to identify a user and store their identity.
We will discuss when and how to authenticate users. User trust is often stronger

when multiple people are involved, so we will discuss how to create group trust

and how to build a culture of security.

Identity Authority

Every user has an identity, which represents how they are known in a larger
community. In the case of a networked system, the identity of a user is how they
are recognized in that system.

Given the large number of individuals in the world, identifying a user can be a
surprisingly hard problem. Let’s explore two types of identity:

¢ Informal identity

¢ Authoritative identity



Informal identity is how groups self-assemble identity. Consider a real-world
situation where you meet someone. Based on how they look and act, you can
build up an identity for that person. When you meet them later, you can
reasonably assume that they are the same person based on these physical
characteristics. You might even be able to identify them remotely—for example,
by hearing their voice.

Informal identity is used in computer systems. Pseudonymous accounts—
accounts that are not associated with one’s real-world name—are common in
online communities. While the actual identity of an individual is not necessarily
known in these communities, through repeated interactions an informal identity
is created.

Informal identity works in small groups, where trust between individuals is high
and the risks are relatively low. This type of identity has clear weaknesses when
the stakes are higher:

¢ One can manufacture a fictitious identity.

¢ One can claim the identity of another person.

¢ One can create several identities.

e Multiple individuals can share a single identity.

When a stronger form of identity is required, an authority needs to create
authoritative identity credentials for individuals. In the real world, this authority
often falls to governments. Government-issued IDs (e.g., a driver’s license or
passport) are distributed to individuals to represent their identity to others. For
low-risk situations, these IDs alone are sufficient proof of one’s identity.
However, for higher risk situations, cross-checking the credentials against the
government database provides a better guarantee.

Computer systems often need centralized authority for user identity as well. Like
in the real world, users are granted credentials (of varying strength) which
identify them in the system. Based on the degree of risk, cross-checking the
credentials against a centralized database may be desired. We will discuss how
these systems should function later.

Credentials can be lost or stolen, so it is important that an identity authority have



mechanisms for individuals to regain control of their identity. In the case of
government-issued identification, a person often needs to present other
identifying information (e.g., a birth certificate or fingerprint) to a government
authority to have their ID reissued. Computer systems similarly need
mechanisms for a user to regain control of their identity in the case of lost or
stolen credentials. These systems often require presenting another form of
verification, say a recovery code or alternative authentication credential. The
choice of required material to reassert one’s identity can have security
implications which we will discuss later.

Bootstrapping Identity in a Private System

Storing and authenticating user identity is one thing, but how do you generate
the identity to begin with? Humans interacting with computer systems need a
way to digitally represent their identity, and we seek to bind that digital
representation as tightly to the real-world human as possible.

The genesis of a digital identity, and its initial pairing to a human, is a very
sensitive operation. Controls to authenticate the human outside of your digital
system must be strong in order to prevent an attacker from masquerading as a
new employee, for instance. Similar controls might also be exercised for account
recovery procedures where the user is unable to provide their current credentials.

ATTACKING IDENTITY RECOVERY SYSTEMS

Users occasionally misplace or forget authentication material such as passwords or smart
cards. To recover the factor (i.e., reset the password), the user must be authenticated by
alternative and sometimes untraditional means. Attacks on such systems are frequent and
successful. For example, in 2012, a popular journalist’s Amazon account was broken into, and
the attacker was able to recover the last four digits of the most recent credit card used. With
this information, the attacker called Apple support and “proved” his/her identity using the
recovered number. Be sure to carefully evaluate such reset processes—*“secret” information is
often less secret than it appears.

Given the sensitivity of this operation, it is important to put good thought and
strong policy around how it is managed. It is essentially secure introduction for
humans, and the good news is, we know how to do that pretty well!



Government-Issued Identification

It probably comes as no surprise that one of the primary recommendations for
accomplishing human authentication is through the use of government-issued
identification. After all, human authentication is precisely what they were
designed for in the first place!

In some implementations, it may even be desirable to request multiple forms of
ID, raising the bar for potential forgers/imposters. It goes without saying that
staff must be properly trained in validating these IDs, lest the controls be easily
circumvented.

Nothing Beats Meatspace

Despite our best efforts, human-based authentication schemes remain stronger
than their digital counterparts. It’s always a good idea to bootstrap a human’s
new digital identity in person. Email or other “blind” introductions are heavily
discouraged. For instance, shipping a device configured to trust the user on first
use (sometimes referred to as TOFU) is not uncommon. However, this method
suffers from physical weakness since the package is vulnerable to interception or
redirection.

Oftentimes, the creation of the digital identity is preceded by a lengthy human
process, such as a series of interviews or the completion of a business contract.
The result is that the individual has been previously exposed to already-trusted
individuals who have learned some of his/her qualities along the way. This
knowledge can be leveraged for further human-based authentication, as shown in
Figure 6-1.
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Figure 6-1. A trusted administrator relies on a trusted employee and a valid ID to add a new user to an
inventory system

For instance, a hiring manager is in a good position to escort a new hire to
helpdesk for human authentication, since the hiring manager is presumably
already familiar with the individual and can attest to their identity. While this
would be a strong signal of trust, just like anything else in a zero trust network, it
should not be the only method of authentication.

Expectations and Stars



There are usually many pieces of information available prior to bootstrapping a
digital identity. It is desirable to use as many pieces of information as is
reasonable to assert that all of the stars line up as expected. These expectations
are similar to ones set in a typical zero trust network; they are simply accrued
and enforced by humans.

These expectations can range from the language(s) they speak to the home
address printed on their ID, with many other creative examples in between. A
thorough company may choose to even use information learned through a
background check to set real-world expectations. Humans use methods like this
every day to authenticate each other (both casually and officially), and as a
result, these methods are mature and reliable.

Storing Identity

Since we need to bridge identity from the physical world to the virtual world,
identity must be transformed into bits. These bits are highly sensitive and
oftentimes need to be stored permanently. Therefore, we will discuss how to
store this data to ensure its safety.

User Directories

To trust users, systems typically need centralized records of those users. One’s
presence in such a directory is the basis by which all future authentication will
occur. Having all this highly sensitive data stored centrally is a challenge which
unfortunately cannot be avoided.

A zero trust network makes use of rich user data to make better authentication
decisions. Directories will store traditional information like usernames, phone
numbers and organization role, and also extended information like expected user
location or the public key of an X.509 certificate they have been issued.

Given the sensitive nature of the data being stored on users, it’s best to not store
all information together in a single database. Information about users isn’t
typically considered secret, but becomes sensitive when using such data to make
authorization decisions. Additionally, having broad knowledge of all users in a
system can be a privacy risk. For example, a system that stores the last known
location of all users could be used to spv on users. Stored user data can also be a
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security risk, if that data can be leveraged to attack another system. Consider
systems that ask users fact-based information as a means to further validate their
identity.

Instead of storing all user information in a single database, consider splitting the
data into several isolated databases. These databases should ideally only be
exposed via a constrained API, which limits the information divulged. In the best
case, raw data is never divulged, but rather assertions can be made about a user
by the application that has access to the data. For example, a system that stores a
user’s previous known location could expose the following APIs:

e Is the user currently or likely to be near these coordinates?

e How frequently does the user change locations?

Directory Maintenance

Keeping user directories accurate is critical for the safety of a zero trust network.
Users are expected to come and go over the lifetime of a network system, so
good onboarding and offboarding procedures should be created to keep the
system accurate.

As much as possible, it’s best to integrate technical identity systems (LDAP or
local user accounts) into organizational systems. For example, a company might
have human resource systems to track employees that are joining or leaving the
company. It is expected that these two sources of data are consistent with each
other, but unless there is a system that has integrated the two or is checking their
contents, the sets of data will quickly diverge. Creating automated processes for
connecting these systems is an effort that will quickly pay dividends.

The case of two divergent identity systems raises an important point—which
system is authoritative? Clearly one system must be the system of record for
identity, but that choice should be made based on the needs of the organization.
It doesn’t much matter which system is chosen, only that one is authoritative and
all other identity systems derive their data from the system of record.

MINIMIZING DATA STORED CAN BE HELPFUL



A system of record for identity does not need to contain all identity information. Based on our
earlier discussion, it can be better to purposefully segment user data. The system of record
needs to only store the information that is critical for identifying an individual. This could be
as simple as storing a username and some personal information for the user to recover their
identity should they forget it. Derivative systems can use this authoritative ID to store
additional user information.

When to Authenticate Identity

Even though authentication is mandatory in a zero trust network, it can be
applied in clever ways to significantly bolster security while at the same time
working to minimize user inconvenience.

While it might be tempting (and even logical) to adopt a position of “It’s not
supposed to be easy; it’s supposed to be secure,” user convenience is among one
of the most important factors in designing a zero trust network. Security
technologies that present a poor user experience are often systematically
weakened and undermined by their own users. A poor experience will
disincentivize the user from engaging with the technology, and shortcuts to
sidestep enforcement will be taken more often.

Authenticating for Trust

The act of authenticating a user is, essentially, the system seeking to validate that
the user is indeed who they say they are. As you’ll learn in the next section,
different authentication methods have different levels of strength, and some are
strongest when combined with others. Due to the fact that these authentication
mechanisms are never absolute, we can assign some level of trust to the outcome
of the operation.

For instance, you may need only a password to log into a subscription music
service, but your investment account probably requires a password and an
additional code. This is because investing is a sensitive operation: the system
must trust that the user is authentic. The music service, on the other hand, is not
as sensitive and chooses to not require an additional code, because doing so
would be a nuisance.

By extension, a user may pass additional forms of authentication in order to raise
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trust score has eroded below the requirements for a particular request can be
asked for additional proof, which if passed will raise the trust to acceptable
levels.

This is far from a foreign concept; it can be seen in common use today.
Requiring users to enter their password again before performing a sensitive
operation is a prime example of this concept in action. It should be noted,
however, that the amount of trust one can gain through authentication
mechanisms alone should not be unbound. Without it, consequences of poor
device security and other undesirable signals can be washed out.

Trust as the Authentication Driver

Since authentication derives trust, and it is our primary goal to not frivolously
drag users through challenges, it makes sense to use trust score as the
mechanism that mandates authentication requirements. This means that a user
should not be asked to further authenticate if their trust score is sufficiently high
and, conversely, that a user should be asked to authenticate when their score is
too low. This is to say that, rather than selecting particular actions which require
additional authentication, one should assign a required score and allow the trust
score itself to drive the authentication flow and requirements. This gives the
system the opportunity to choose a combination of methods in order to meet the
goal, possibly reducing the invasiveness by having context about the level of
sensitivity and knowledge of how much each method is trusted.

This approach is fundamentally different from traditional authentication design
approaches, which seek to designate the most sensitive areas and actions and
authenticate them the heaviest, perhaps despite previous authentication and trust
accumulation. In some ways, the traditional approach can be likened to
perimeter security, in which sensitive actions must pass a particular test, after
which no further protections are present. Instead, leveraging the trust score to
drive these decisions removes arbitrary authentication requirements and installs
adaptive authentication and authorization that is only encountered when
necessary.

The Use of Multiple Channels



When authenticating and authorizing a request, using multiple channels to reach
the requestor can be very effective. One-time codes provide an additional factor,
especially when the code-generating system is on a separate device. Push
notifications provide a similar capability by using an active connection to a
mobile device. There are many applications of this idea, and they can take
different forms.

Depending on the use case, one might choose to leverage multiple channels as an
integral part of a digital authentication scheme. Alternatively, those channels
might be used purely as an authorization component, where a requestor might be
prompted to approve a risky operation. Both uses are effective in their own right,
though user experience should (as always) be kept in mind when deciding when
and where to apply them.

CHANNEL SECURITY

Communication channels are constructed with varying degrees of authentication and trust.
When leveraging multiple channels, it is important to understand how much trust should be
placed on the channel itself. This will dictate which channels are selected for use and when.
For instance, physical rotating code devices are only as secure as the system used to distribute
them or the identification check required to physically obtain one from your administrator.
Similarly, a prompt via a corporate chat system is only as strong as the credentials required to
sign in to it. Be sure to use a different channel than the one you are trying to
authenticate/authorize in the first place.

Leveraging multiple channels is effective not because compromising a channel is
hard, but because compromising many is hard. We will talk more about these
points in the next section.

Caching Identity and Trust

Session caching is a relatively mature technology which is well documented, so
we won’t spend too much time talking about it, but it is important to highlight
some design choices that are important for secure operation in a zero trust
network.

Frequent validation of the client’s authorization is critical. This is one of the only
mechanisms allowing the control plane to effect changes in data plane
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the better. Some implementations authorize every request with the control plane.
While this is ideal, it may not be a realistic prospect, depending on your
situation.

Many applications validate SSO tokens only at the beginning of a session and set
their own tokens after that. This mode of operation removes session control from
the control plane and is generally undesirable. Authorizing requests with control

plane tokens rather than application tokens allows us to easily revoke when trust

levels fluctuate or erode.

How to Authenticate Identity

Now that we know when to authenticate, let’s dig into how to authenticate a
user. The common wisdom, which is also applicable in zero trust networks, is
that there are three ways to identify a user:

Something they know

Knowledge the user alone has (e.g., a password).

Something they have

A physical credential that they user can provide (e.g., a token with a time-
sensitive token).

Something they are
An inherent trait of the user (e.g., a fingerprint or retina).

We can authenticate a user using one or more of these methods. Which method
or methods chosen will depend on the level of trust required. For high-risk
operations, which request multiple authentication factors, it’s best to choose
methods that are not in the same grouping of something you know, something
you have, or something you are. This is because the attack vectors are generally
similar within a particular grouping. For example, a hardware token (something
you have) can be stolen and subsequently used by anyone. If we pair that token
with a second token, it’s highly likely that both devices will be near each other
and stolen together.

Which factors to use together will vary based on the device that the user is using.
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ror example, on a desKtop computer, a password (sometning you know) and a
hardware token (something you have) is a strong combination that should
generally be preferred. For a mobile device, however, a fingerprint (something
you are) and passphrase (something you know) might be preferred.

PHYSICAL SAFETY IS A REQUIREMENT FOR
TRUSTING USERS

This section focuses on technological means to authenticate the identity of a user, but it’s
important to recognize that users can be coerced to thwart those mechanisms. A user can be
threatened with physical harm to force them to divulge their credentials or to grant someone
access under a trusted account. Behavioral analysis and historical trending can help to mitigate
such attempts, though they remain an effective attack vector.

Something You Know: Passwords

Passwords are the most common form of authentication used in computer
systems today. While often maligned due to users’ tendency to choose poor
passwords, this authentication mechanism provides one very valuable benefit:
when done well, it is an effective method for asserting that a user’s mind is
present.

A good password has the following characteristics:
It’s long

A recent NIST password standard states a minimum of 8 characters, but 20+
character passwords are common among security-conscious individuals.
Passphrases are often encouraged to help users remember a longer password.

It is difficult to guess

Users tend to overestimate their ability to pick truly random passwords, so
generating passwords from random number generators can be a good
mechanism for choosing a strong password, though convenience is affected
if it cannot be easily committed to memory

It is not reused

Passwords need to be validated against some stored data in a service. When
passwords are reused, the confidentiality of that password is only as strong



as the weakest storage in use.

Choosing long, difficult-to-guess passwords for every service or application a
user interacts with is a high bar for users to meet. As a result, users are well
served to make use of a password manager to store their passwords. Using this
tool will allow users to pick much harder-to-guess passwords and thereby limit
the damage of a data breach.

When building a service that authenticates passwords, it’s important to follow
best practices. Passwords should never be directly stored or logged. Instead, a
cryptographic hash of the password should be stored. The cost to brute force a
password (usually expressed in time and/or memory requirements) is determined
by the strength of the hashing algorithm. The NIST periodically releases
standards documents that include recommended password procedures. As
computers become more powerful, the current recommendations change, so it’s
best to consult industry best practices when choosing algorithms.

Something You Have: TOTP

Time-based one-time password, or TOTP, is an authentication standard where a
constantly changing code is provided by the user. RFC 6238 defines the standard
implemented in hardware devices and software applications. Mobile applications
are often used to generate the code, which works well, since users tend to have
their phones close by.

Whether using an application or hardware device, TOTP requires sharing a
random secret value between the user and the service. This secret and the current
time are passed through a cryptographic hash and then truncated to produce the
code to be entered. As long as the device and the server roughly agree on the
current time, a matching code confirms that the user is in possession of the
shared key.

The storage of the shared key is critical, both on the device and on the
authenticating server. Losing control of that secret will permanently break this
authentication mechanism. The RFC recommends encrypting the key using a
hardware device like a TPM, and then limiting access to the encrypted data.

Exposing the shared key to a mobile device places it in greater danger than it is
on a server. The device could connect to a malicious endpoint that might be able
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to extract the key. To mitigate this vector, an alternative to TOTP is to send the
user’s mobile phone a random code over an encrypted channel. This code is then
entered on another device to authenticate that the user is in possession of their
mobile phone.

Sending the user a random code for authentication requires that the authentication code is
reliably delivered to the intended device and is not exposed during transit. Systems have
previously sent random codes as an SMS message, but the SMS system does make sufficient
guarantees to protect the random code in transit. Using SMS for this system is therefore not
recommended.

Something You Have: Certificates

Another method to authenticate users is to generate per-user X.509 certificates.
The certificate is derived from a strong private key and then signed using the
private key of the organization that provided the certificate. The certificate
cannot be be modified without invalidating the organization’s signature, so the
certificate can be used as a credential with any service that is configured to trust
the signature of the organization.

Since an X.509 certificate is meant for consumption by a computer, not by
humans, it can provide much richer details when presented to a service for
authentication. As an example, a system could encode metadata about the user in
the certificate and then trust that data since it has been signed by a trusted
organization. This can alleviate the need to create a trusted user directory in less
mature networks.

Using certificates to identify users relies heavily on those certificates being
securely stored. It is strongly preferred to both generate and store the private key
component on dedicated hardware so as to prevent digital theft. We’ll talk more
about that in the next section.

Something You Have: Security Tokens

Security tokens are hardware devices that are used primarily for user
authentication, but they have additional applications. These devices are not mass



storage devices storing a credential that was provisioned elsewhere. Instead, the
hardware itself generates a private key. This credential information never leaves
the token. The user’s device interacts with the hardware’s APIs to perform
cryptographic operations on behalf of the user, proving that they are in
possession of the hardware.

As the security industry progresses, organizations are increasingly turning
toward hardware mechanisms for authenticating user identity. Devices like smart
cards or Yubikeys can provide a 1:1 assertion of a particular identity. By tying
identity to hardware, the risk that a particular user’s credentials can be
duplicated and stolen without their knowledge is greatly mitigated, as physical
theft would be required.

Storing a private key in hardware is by far the most secure storage method we
have today. The stored private key can then be used as the backing for many
different types of authentication schemes. Traditionally, they are used in
conjunction with X.509, but a new protocol called Universal 2nd Factor (U2F)
is gaining rapid adoption. U2F provides an alternative to full-blown PKI,
offering a lightweight challenge-response protocol that is designed for use by
web services. Regardless of which authentication scheme you choose, if it relies
on asymmetric cryptography, you should probably be using a security token.

While these hardware tokens can provide strong protections against credential
theft, they cannot guarantee that the token itself isn’t stolen or misused.
Therefore, it’s important to recognize that while these tokens are great tools in
building a secure system, they cannot be a complete replacement for a user
asserting their identity. If we want the strongest guarantee that a particular user
is who they claim to be, using a security key with addtional authentication
factors (e.g., a password or biometric sensor) is still strongly recommended.

Something You Are: Biometrics

Asserting identity by recognizing physical characteristics of the user is called
biometrics. Biometrics is becoming more common as advanced sensors are
making their way into devices we use every day. This authentication system
offers better convenience and potentially a more secure system, if biometric
signals, such as the following, are used wisely.



Fingerprints

Handprints

Retina scans

Voice analysis
e Face recognition

Using biometrics might seem like the ideal authentication method. After all,
authenticating a user is validating that they are who they say they are. What
could be better than measuring physical characteristics of a user? While
biometrics is a useful addition to system security, there are some downsides that
should not be forgotten.

Authenticating via biometrics relies on accurate measurement of a physical
characteristic. If an attacker is able to trick the scanner, they are able to gain
entry. Fingerprints, being a common biometric, are left on everything a person
touches. Attacks against fingerprint readers have been demonstrated—attackers
obtain pictures of a latent fingerprint and then 3D print a fake one, which the
scanner accepts.

Additionally, biometric credentials cannot be rotated, since they’re a physical
characteristic. They can also present an accessibility issue if, for example, an
individual is born without fingerprints (a condition known as adermatoglyphia)
or if they lost their fingers in an accident.

Finally, biometrics can present surprising legal challenges when compared
against other authentication mechanisms. In the United States, for example, a
citizen can be compelled by a court to provide their fingerprint to authenticate to
a device, but they cannot be compelled to divulge their password, owing to their
Fifth Amendment right against self-incrimination.

Out-of-Band Authentication

Out-of-band authentication purposefully uses a separate communication channel
than the original channel the user used to authenticate that request. For example,
a user logging into a website for the first time on a device might receive a phone
call to validate the request. By using an out-of-band check, a service is able to



raise the difficulty of breaking into an account, since the attacker would need
control of the out-of-band communication channel as well.

Out-of-band checks can come in many forms. These forms should be chosen
based on the desired level of strength needed for each interaction:

e A passive email can inform users of potentially sensitive actions that have
recently taken place.

¢ A confirmation can be required before a request is completed. Confirmation
could be a simple “yes,” or it could involve entering a TOTP code.

¢ A third party could be contacted to confirm the requested action.

When used well, out-of-band authentication can be a useful tool to increase the
security of the system. As with all authentication mechanisms, some level of
taste is required to choose the right authentication mechanism and frequency,
based on the request taking place.

Single Sign On

Given the large number of services users interact with, the industry would prefer
to decouple authentication from end services. Having authentication decoupled
provides benefits to both the service and the user:

e Users only need to authenticate with a single service.

e Authentication material is stored in a dedicated service, which can have more
stringent security standards.

e Security credentials in fewer locations means less risk and eased rotations.

Single sign-on (SSO) is a fairly mature concept. Under SSO, users authenticate
with a centralized authority, after which they will typically be granted a token of
sorts. This token is then used in further communication with secured services.
When the service receives a request, it contacts the authentication authority over
a secure channel to validate the token provided by the client.

This is in contrast to decentralized authentication. A zero trust network
employing decentralized authentication will use the control plane to push
credentials and access policy into the data plane. This empowers the data plane



to carry out authentication on its own, whenever and wherever necessary, while
still being backed by control plane policy and concern. This approach is
sometimes favored over a more mature SSO-based approach since it does not
require running an additional service, though it introduces enough complexity
that it is not recommended.

SSO tokens should be validated against the centralized authority as often as
possible. Every call to the control plane to authorize an SSO token provides an
opportunity to revoke access or alter the trust level (as known to the caller).

A popular mode of operation involves the service performing its own sign in,
backed by SSO authentication. The primary drawback of this approach is that it
allows the control plane to authorize the request only once, and leaves the
application to make all further decisions. Trust variance and invalidation is a key
aspect of a zero trust network, so decisions to follow this pattern should not be
taken lightly.

EXISTING OPTIONS

SSO has been around for a long time, and as such, there are many mature
protocols/technologies to support it, including these popular ones:

e SAML
e Kerberos

e CAS

It is critical that authentication remain a control plane concern in a zero trust
network. As such, when designing authentication systems in a zero trust
network, aim for as much control plane responsibility as possible, and validate
authorization with the control plane as often as is reasonably possible.

Moving Toward a Local Auth Solution

Local authentication that is extended out into remote services is another
authentication mechanism that is increasingly becoming a possibility. In this
system, users authenticate their presence with a trusted device, and then the



device is able to attest to that identity with a remote service. Open standards like
the FIDO Alliance’s UAF standard use asymmetric cryptography and local
device authentication systems (e.g., passwords and biometrics) to move trust
away from a large number of services to relatively few user-controlled
endpoints.

UAF, in a way, looks a lot like a password manager. However, instead of storing
passwords, it stores private keys. The authenticating service is then given the
user’s public key and is thereby able to confirm that that the user is in possession
of the private key.

By moving authentication into a smart local device, a number of benefits
emerge:

e Replay attacks can be mitigated via a challenge-and-response system.

¢ Man-in-the-middle attacks can be thwarted by having the authentication
service refuse to sign the challenge unless it originated from the same domain
the user is visiting.

e Credential reuse is nonexistent, since per-service credentials can be trivially
generated.

Authenticating and Authorizing a Group

Nearly every system has a small set of actions or requests that must be closely
guarded. The amount of risk one is willing to tolerate in this area will vary from
application to application, though there is practically no lower limit.

One of the risks you pass as you approach zero is the amount of trust in any
single human being. Just like in real life, there are many times in which it is
desirable to gain the consent of multiple individuals in order to authorize a
particularly sensitive action. There are a couple ways that this can be achieved in
the digital realm, and the cool part is, we can cryptographically guarantee it!

Shamir’s Secret Sharing

Shamir’s Secret Sharing is a scheme for distributing a single secret among a
group of individuals. The algorithm breaks the original secret into n parts, which



can then be distributed (Figure 6-2). Depending on how the algorithm was
configured when the parts were generated, k parts are needed to recalculate the
original secret value.

When protecting large amounts of data using Shamir’s Secret Sharing, a
symmetric encryption key is usually split and distributed instead of using the
algorithm directly on data. This is because the size of secret that is being split
needs to be smaller than some of the data used in the secret-sharing algorithm.

Figure 6-2. An example ssss session

A Unix/Linux version of this algorithm is called ssss. Similar applications and
libraries exist for other operating systems or programming languages.

Red October

Cloudflare’s Red October project is another approach to implementing group
authentication to access shared data. This web service uses layered asymmetric
cryptography to encrypt data such that a certain number of users need to come
together to decrypt the data. Encrypted data isn’t actually stored on the server.
Instead, only user public/private key pairs (encrypted with a user chosen
password) are stored.

When data is submitted to be encrypted, a random encryption key is generated to
encrypt the data. This encryption key is then itself encrypted using unique
combinations of user-specific encryption keys, based on an unlock policy that
the user requests. In the simplest case, a user might encrypt some data such that
two people in a larger group need to collaborate to decrypt the data. In this
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scenario, the original encrypted data’s encryption key is theretore doubly
encrypted with each unique pair of user encryption keys.

ABOUT DNS ROOT ZONE SIGNING

The DNS Root Zone Signing Ceremony is an interesting example of a group
authentication procedure. This ceremony is used to generate the root keys
upon which all DNSSEC trust is based on. If the root key is compromised,
the entire DNSSEC system’s trustworthiness would be compromised, so the
root key ceremony is built specifically to mitigate that risk.

The first ceremony occurred on June 16, 2010, and a new ceremony occurs
every quarter. The ceremony utilizes seven actors, each with a different role.
The ceremony mitigates the risk of compromise to a one-in-a-million
chance, assuming a dishonesty rate of 5% among the actors in the ceremony.
A strict procedural document is generated in order to organize the ceremony.
HSMs, biometric scanners, and air-gapped systems are used to protect the
digital key. In the end, a new public/private key pair is generated and signed,
continuing the internet’s trust anchor for another quarter.

You can read more about the signing ceremony on Cloudflare’s website, or
you can view the materials for each ceremony on IANA’s website.

See Something, Say Something

Users in a zero trust network, like devices, need to be active participants in the
security of the system. Organizations have traditionally formed dedicated teams
to focus on the security of the system. Those teams, more often than not, took
that mandate to mean that they were solely responsible for the system’s security.
Changes needed to be vetted by them to ensure that the system’s security was
not compromised. This approach produces an antagonistic relationship between
the security team and the rest of the organization, and as result, reduces security.

A better approach is to build a culture of collaboration toward the security of the
system. Users should be encouraged to speak up if something they do or witness
looks odd or dangerous, even if it’s small. This sharing of knowledge will give
much better context on the threats that the security team is working to defend
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against. Reporting phishing emails, even when users did not interact with them,
can let the security team know if a determined attacker is attempting to infiltrate
the network.

Devices which are lost or stolen should be reported immediately. Security teams
might consider providing ways for users to alert them day or night in the event
that their device has gone missing.

When responding to tips or alerts from users, security teams should be mindful
of how their response to the incident affects the organization more broadly. A
user who is shamed for losing a device will be less willing to report the loss in a
timely manner in the future. Similarly, a late-night false alarm should be met
with thanks to ensure that reporters don’t second-guess themselves. As much as
possible, try to bias the organization toward over-reporting.

Trust Signals

Historical user activity is a rich source of data for determining the
trustworthiness of a user’s current actions. A system can be built which mines
user activity to build up a model of expected behavior. This system will then
compare current behavior against that model as a method for calculating a trust
score of a user.

Humans tend to have predictable access patterns. Most people will not try to
authenticate multiple times a second. They also are unlikely to try to authenticate
hundreds of times. These types of access patterns are extremely suspicious and
are often mitigated via active methods like CAPTCHAs (automated challenges
which only a human is able to answer) or locked accounts. Reducing false
positives requires setting fairly high bars to be actively banned. Including this
activity in an overall threat assessment score can help catch suspicious, but not
obviously bad, behavior.

Looking at access patterns doesn’t need to be restricted to authentication
attempts. Users’ application usage patterns can also reveal malicious intent.
Most users tend to have fairly limited roles in an organization and therefore
might only need to access a subset of data that is available to them. In an attempt
to increase security, organizations will begin removing access rights from
employees unless they definitely need the access to do their job. However, this
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respond quickly to unique events. System administrators are a class of users
which are given broad access, thereby weakening this approach as a defense
mechanism. Instead of choosing between these two extremes, we can score the
user’s activity in aggregate and then use their score to determine if they are still
trusted to access a particularly sensitive resource. Having hard stops in the
system is still important—it’s the less clear cases where the system should trust
users, but verify their trustworthiness via logged activity.

Lists of known bad traffic sources, like the one provided by Spamhaus, can be
another useful signal for the trustworthiness of a user. Traffic that is originating
from these addresses and is attempting to use a particular user’s identity can
point toward a potentially compromised user.

Geolocation can be another useful signal for determining trust of a user. We can
compare the user’s current location against previously visited locations to
determine if it is out of the ordinary. Has the user’s device suddenly appeared in
a new location in a timeframe that they couldn’t reasonably travel? If the user
has multiple devices, are they reporting conflicting locations? Geolocation can
be wrong or misleading, so systems shouldn’t weight it too strongly. Sometimes
users forget devices at home or geolocation databases are simply incorrect.

Summary

This chapter focused on how to establish trust in users in a system. We talked
about how identity is defined and the importance of having an authority to
reference when checking the identity of a user in the system. Users need to be
entered into a system to have an identity, so we talked about some ideal ways to
bootstrap their identity.

Identity needs to be stored somewhere, and that system is a very valuable target
for attackers. We talked about how to store the data safely, the importance of
limiting the breadth of data being stored in a single location, and how to keep
stored identity up to date as users come and go.

With authoritative identity defined and stored, we turned our attention to
authenticating users that claim to have a particular identity. Authentication can
be an annoyance for users, so we discussed when to authenticate users. We don’t



want users to be inundated with authentication requests, since that will increase
the likelihood that they accidentally authenticate against a malicious service.
Therefore, finding the right balance is critical.

There are many ways that users can be authenticated, so we dug into the
fundamental concepts. We discussed several authentication mechanisms that are
in use today. We also looked at some authentication mechanisms that are on the
horizon as system security practices are responding to threats.

Oftentimes, increasing trust in a system of users involves creating procedures
where multiple users play a role to accomplish a goal. We discussed group
authentication and authorization systems like “two person rules,” which can be
used to secure extremely sensitive data. We also talked about building a culture
of awareness in an organization by encouraging users to report any suspicious
activity.

Finally, zero trust networks can leverage user activity logs to build a profile of
users to compare against when evaluating new actions. We enumerated some
useful signals which can be used to build that profile.

The next chapter looks at how trust in applications can be built.



Chapter 7. Trusting Applications

Marc Andreessen, a notable Silicon Valley investor, famously declared that
“software is eating the world.” In many ways, this statement has never been
truer. It is the software running in your datacenter that makes all of the magic
happen, and as such, it is no secret that we wish to trust its execution.

Code, running on a trusted device, will be faithfully executed. A trusted device
is a prerequisite for trusting code, which we covered in Chapter 5. However,
even with our execution environment secured, we still have more work to do to
trust that the code that’s running on a device is trustworthy.

As such, trusting the device is just half of the story. One must also trust the code
and the programmers who wrote it. With the goal being to ensure the integrity of
a running application, we must find ways to extend this human trust from the
code itself all the way to its actual execution.

Establishing trust in code requires that:

e The people producing the code are themselves trusted

e The code was faithfully processed to produce a trustworthy application

e Trusted applications are faithfully deployed to the infrastructure to be run

e Trusted applications are continually monitored for attempts to coerce the
application with malicious actions

This chapter will discuss approaches to securing each of these steps, with a focus
on the inheritance of trust from human to production application.

Understanding the Application Pipeline

The creation, delivery, and execution of code within a computer system is a very
sensitive chain of events. These systems are an attractive target for adversaries
due to their ability to gain greater access. Attack vectors exist at every step, and
subversion at these stages can be very difficult to detect. Therefore, we must



work to ensure that every link of this chain (shown in Figure 7-1) is secured in a
way that makes subversion detectable.

This process is similar to supply chain security, the collective efforts of
governments around the world to enhance security. Ensuring that military
equipment is securely built/sourced is critical in ensuring the effectiveness of the
fighting force, and software creation and delivery is no different.

SUPPLY CHAIN CRITICALITY

In 2007, the Israeli government conducted an airstrike against a suspected nuclear facility in
Syria. One of many mysteries surrounding this strike is the sudden failure of Syrian radar
systems, providing the Israelis with cover. The failure of these radar systems, which were
supposedly state of the art, is now widely believed to be attributable to a hardware kill switch
hidden in a commercial chip used by the radar equipment. While never fully verified, stories
like this one highlight the importance of secure supply chains, whether it be hardware or
software.

In support of a secure software delivery chain, every step of the process should
be fully auditable with cryptographic validation occurring at each critical point.
Generally speaking, these steps can be broken down into four distinct phases:

e Source code

e Build/compilation
e Distribution

e Execution

Let’s start with trusting the source code itself.
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Figure 7-1. A build pipeline depends on both the security of the engineers creating source and configuring
the system, as well as the security of the components of the pipeline

Trusting Source

Source code is the first step in running any piece of software. To put it very
simply, it’s difficult to trust source code that is written by an untrusted human.
Even with careful code auditing, it is still possible for a malicious developer to
purposefully encode (and hide!) a vulnerability in plain sight. In fact, there is
even a well-known competition dedicated to this dark art. While even well-
meaning developers can inadvertently add weakness to an application, a zero
trust network will focus on identifying malicious use instead of removing trust
from those users.

Setting the trusted developer problem aside for a minute, we still face the
problem of securely storing and distributing the source code itself. Typically,
source code is stored in a centralized code repository, against which many
developers interact and commit work. These repositories must also fall under
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tight control, particularly if they are being used directly by systems that
build/compile the code in question.

Securing the Repository

Maintaining traditional security approaches when it comes to securing a software
repository is still effective, and does not prohibit the addition of more advanced
security features. This includes basic principles such as the principle of least
access, whereby users are only given as much access to the repository as is
required to complete the task at hand. In practice, this usually manifests itself as
heavily limited/restricted write access.

While this approach is still valid and recommended, the story has changed a little
bit with the introduction of distributed source control. With the code repository
living in multiple places, it is not always possible to secure a single, centralized
entity. In this circumstance, however, there remains an analog for this
centralized repository—the system storing the code from which the build system
reads.

In this case, it is still highly desirable to protect this system through traditional
means; however, the problem becomes more difficult since code can enter the
distributed repository in any number of ways. The logical extension, then, is that
securing the build source repository alone is not enough.

Authentic Code and the Audit Trail

Many version control systems (VCS), particularly those which are distributed,
store source history using cryptographic techniques. This approach, called
content addressable storage, uses the cryptographic hash of the content being
stored as the identifier of that object in a database, rather than its location or
coordinates. It’s possible to see how a source file could be hashed and stored in
such a database, thereby ensuring that any change in the source file results in a
new hash. This property means that files are stored immutably: it’s impossible to
change the contents of the files once stored.

Some VCS systems take this storage mechanism a step further by storing the
history itself as an object in the content addressable database. Git, a popular
distributed VCS project, stores the history of commits to the repository as a



directed acyclic graph (DAG). The commits are objects in the database, storing
details like the commit time, author, and identifiers of ancestor commits. By
storing the cryptographic hashes of ancestor commits on each commit itself, we
form a Merkle tree, which allows one to cryptographically validate that the chain
of commits are unmodified (Figure 7-2).

If a commit in the DAG were to be modified, its update will affect all the
descendant commits in the graph, changing each commit’s content, and by
extension, its identifier. With the source history distributed to many contributors,
the system gains another beneficial property: it’s impossible to change the
history without other contributors noticing.

 #include <stdio.h=>
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Figure 7-2. Git’s database makes unwanted changes difficult, since objects are referenced using a hash of
their contents

Storing the DAG in this manner gives us tamper-proof history: it’s impossible to
change the history subversively. However, this storage does nothing to ensure
that new commits in the history are authorized and authentic. Imagine for a
moment that a trusted developer is persuaded to pull a malicious commit into



their local repository before pushing it to the official repository. This commit is
now in the repository by leaning on the trusted developer’s push access. Even
more concerning, the authorship metadata is just plain text: a malicious
committer can put whatever details they want in that field (a fact that was used
amusingly to make commits appear to be authored by Linus Torvalds on
GitHub).

To guard against this attack vector, Git has the ability for commits and tags to be
signed using the GPG key of a trusted developer. Tags, which point to the head
commit in a particular history, can be signed using a GPG key to ensure the
authenticity of a release. Signed commits allow one to go a step further and
authenticate the entire Git history, making it impossible for an attacker to
impersonate another committer without first stealing that committer’s GPG key.

Signed source code clearly provides significant benefit and should be used
wherever possible. It provides robust code authentication not only to just
humans, but machines too. This is especially important if CI/CD systems build
and deploy the code automatically. A fully signed history allows build systems
to cryptographically authenticate the code as trusted before compiling it for
deployment.

IN THE BEGINNING, THERE WAS NOTHING

Many repositories begin with unsigned commits, transitioning to signed commits later on. In
this brownfield case, the first commit to be signed is essentially endorsing all commits that
came before it. This is important to understand, as you may wish to perform an audit at this
time. Having said that, the overhead or difficulty of performing such an audit should not
dissuade or delay the transition to signed code; the audit, if you choose to do one, can be
performed in due time.

Code Reviews

As we learned in Chapter 6, it can be dangerous to concentrate powerful
capabilities onto a single user. This is no different when considering source code
contributions. Signed contributions enable us to authenticate the developer
committing the code, but does not ensure that the code being committed is
correct or safe. Of course, we do place a nontrivial amount of trust in the
developer, though this does not mean that said developer should unilaterally
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commit code to sensitive projects.

To mitigate this risk, most mature organizations implement a code review
process. Under code review, all contributions must be approved by one or more
additional developers. This simple process drastically improves not just the
quality of the software, but also reduces the rate at which vulnerabilities are
introduced, whether they be intentional or accidental.

Trusting Builds

Build servers are frequently targeted by persistent threats, and for good reason.
They have elevated access, and produce code that is executed directly in
production. Detecting artifacts that have been compromised during the build
stage can be very difficult, so it is important to apply strong protections to these
services.

The Risk

In trusting a build system, there are generally three things that we want to assert:

e The source code it built is the code we intended to build.
e The build process/configuration is that which we intended.
e The build itself was performed faithfully, without manipulation.

Build systems can ingest signed code and produce a signed output, but the
function(s) applied in between (i.e., the build itself) is generally not protected
cryptographically—this is where the most significant attack vector lies.

This particular vector is a powerful one, as shown in Figure 7-3. Without the
right processes and validation, subversion of this kind can be difficult or
impossible to detect. For instance, imagine a compromised CI/CD system that
ingests signed C code, and compiles it into a signed binary, which is then
distributed and run in production. Production systems can validate that the
binary is signed, but would have no way of knowing if additional malicious code
has been compiled in during the build process. In this way, a seemingly secure
system can successfully run malicious code in production without detection.



Perhaps even worse, the consumers are fooled into thinking the output is safe.
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Figure 7-3. The build configuration and its execution is not protected cryptographically, in contrast to the
source code and the generated artifact. This break in the chain poses great threat, and is a powerful attack
vector.

Due to the sensitive nature of the build process, outsourcing the responsibility
should be carefully evaluated. Things like reproducible builds can help identify
compromises in this area (more on that in a bit), but can’t always prevent their
distribution. Is this really something you want a third-party provider to do for
you? How much do you trust them? Their security posture should be weighed
against your own chance of being a high value target.

HOST SECURITY IS STILL IMPORTANT

This section focuses on securing various steps of the software build process, but it is important
to note that the security of the build servers themselves is still important. We can secure the
input, output, and configuration of the build, but if the build server is compromised then it can
no longer be trusted to faithfully perform its duties. Reproducible builds, immutable hosts, and
the zero trust model itself can help in this regard.

Trusted Input, Trusted Output

If we think of the build system as a trusted operation, it’s clear that we need to
trust the input of that operation in order to produce trusted output.



Let’s start with trusting the input to the build system. We discussed mechanisms
for trusting the source control systems earlier. The build system, as a consumer
of the version control system, is responsible for validating the trustworthiness of
the source. The version control system should be accessed over an authenticated
channel, commonly TLS. Additionally, for extra security guarantees, tags and/or
commits should be signed and the build system should validate those signatures
—or chain of signatures—before starting a build.

The build configuration is another important input to the build system. Attacking
the build configuration could allow an attacker to direct the build system to link
against a malicious library. Even seemingly safe optimization flags can be
malicious in security critical code, where timing attack mitigation code can be
accidentally optimized away. Putting this configuration under source control,
where it can be versioned and attested to via signed commits, helps to ensure
that the build configuration is also a trusted input.

With the input sufficiently secured, we can turn our attention to the output of the
build process. The build system needs to sign the generated artifacts so
downstream systems can validate their authenticity. Build systems typically also
generate cryptographic hashes of the build artifacts to guard against corruption
or malicious attempts to replace the binaries once produced. Securing the build
artifacts and hashes, and then distributing them to downstream consumers,
completes the trusted output of the build system.

Reproducible Builds

Reproducible builds are the best tool we have in guarding against subversion of
the build pipeline. In short, software supporting reproducible builds is compiled
in a deterministic way, ensuring that the resulting binary is exactly the same for
a given source code, no matter who built it. This is a very powerful property, as
it allows multiple parties to examine the source code and produce identical
builds, thus gaining confidence that the build process used to generate a
particular binary was not tampered with.

This can be done in a number of ways, but it generally involves a codified build
process, and enables developers to set up their own build environment to
produce binaries that match the distributed versions bit-for-bit. With
reproducible builds, one can “watch” the output of a CI/CD system, and compare
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its output to results compiled locally. In this way, malicious interference or code
injection during the build process can be easily detected. When combined with
signed source code, we arrive at a fairly robust process that is able to
authenticate both the source code and the binary produced by it.

VIRTUALIZED BUILD ENVIRONMENTS ENABLE
REPRODUCIBLE BUILDS

Having reproducible builds sounds easy on paper, but reproducing a built binary so it’s byte
for byte identical is a very hard problem. Distributions have historically built packages inside a
virtual filesystem (a chroot jail) to ensure that all dependencies of the build are captured in the
build configuration. Virtual machines or containers can be useful tools to ensure that the build
environment is fully insulated from the host running the build.

Decoupling Release and Artifact Versions

Immutable builds are critical in ensuring the security of a build and release
system. Without it, replacing a known good version is possible, opening up the
door for attacks that target the underlying build artifact. This would enable an
attacker to masquerade a “bad” version as a “good” version. For this reason,
artifacts generated by build systems should have Write Once Read Many
semantics.

Given the immutable artifact requirement, a natural tension arises with the
versioning of those artifacts. Many projects prefer to use meaningful version
numbers (e.g., semantic versioning) in their releases to communicate the
potential impact to downstream consumers with an upgrade of their software.
This desire to attach meaning to the version number can be difficult to
incorporate into a build system that needs to ensure that every version is
immutable.

For example, when working toward a major release, a project might have a
misconfigured build that causes the build system to produce incorrect output.
The maintainers now face a choice. They could republish the release using a
patch-level bump, or they might decide to bend the rules and republish the same
version using a new build artifact. Many projects choose the latter option,
preferring the benefit of a clearer marketing story than the more correct
reversion. This is a bad habit to get into when considering the masquerade just



described.

It’s clear from this example that in either case, two separate build artifacts were
produced, and the version number associated with the build artifact is a separate
choice for the project. Therefore, when creating a build system, it’s better to
have the build system produce immutable versions independent of the publicly
communicated version. A later system (the distribution system) can manage the
mapping of release versions to build artifact versions. This approach enables us
to maintain immutable build artifacts without sacrificing usability or introducing
bad security practices.

Trusting Distribution

The process of choosing which build artifacts to deliver to downstream
consumers is called distribution. The build system produces many artifacts, some
of which are meant for downstream consumption. Therefore, we need to ensure
that the distribution system maintains control over which artifacts are ultimately
delivered.

Promoting an Artifact

Based on our earlier discussion on immutable build artifacts, promotion is the
act of designating a build artifact as the authoritative version without changing
the contents of that artifact. This act itself should be immutable: once a version
is assigned and released, it cannot be changed. Instead, a new artifact needs to be
produced and released under an incrementally higher version number.

This constraint presents a chicken-and-egg scenario. Software typically includes
a way to report its version number to the user, but if the version number isn’t
assigned until later in the build process, how does one add that version
information without changing the build artifact?

A naive approach would be to subtly change the artifact during the promotion
process, for example, by having the version number stored in a trivially modified
location in the build artifact. This approach, however, is not preferred. Instead,
release engineers should make a clear separation between the publicly released
version number and the build number, which is an extra component of the



release information. With this model, many build artifacts are produced which
use the same public release version, but each build is additionally tagged with a
unique build number (Figure 7-4). The act of releasing that version is therefore
choosing the build artifact that will be signed and distributed. Once such a
version is released, all new builds should be configured to use the next target
version number.

51.0.1 (64-bit)

Version: 51.0.1+build2-0ubuntu0.16.04.2

Figure 7-4. This Firefox public release version is 51.0.1, but the package name retains a build ID

Of course, this promotion must be communicated to the consumer in a way that
they can validate they are in possession of the promoted build, and not some
intermediary and potentially flawed build. There are a number of ways to do
this, and it is largely a solved problem. One solution is to sign the promoted
artifacts with a release-only key, thus communicating to the consumers that they
have a promoted build. Another way to do this is to publish a signed manifest,
outlining the released versions and their cryptographic hashes. Many popular
package distribution systems, such as APT, use this method to validate builds
obtained from their distribution systems.

Distribution Security

Software distribution is similar to electricity distribution, where electricity is
generated by a centralized source, and carried over a distribution network in
order to be delivered to a wide consumer base. Unlike electricity, however, the
integrity of the produced software must be protected while it transits the
distribution system, and allow the consumer to independently validate its
integrity. There are a number of widely adopted package distribution and
management systems, practically all of which have implemented protections
around the distribution process and allow consumers to validate the authenticity



of packages received through them. Throughout this section, we will use the
popular package management software Advanced Packaging Tool (APT) as an
example of how certain concepts are implemented in real life, though it is
important to keep in mind that there are many options available to you—APT is
merely one.

Integrity and Authenticity

There are two primary mechanisms used to assert integrity and authenticity in
software distribution systems: hashing and signing. Hashing a software release
involves computing and distributing a cryptographic hash representing the
binary released, which the consumer can validate to ensure that the binary has
not been changed since it left the hands of the developer. Signing a release
involves the author encrypting the hash of the release with their private key,
allowing consumers to validate that the software was released by an authorized
party. Both methods are effective, and are not necessarily mutually exclusive. In
order to better understand how these methods can be applied in a distribution
system, it is useful to look at the structure and security of an APT repository.

An APT repository contains three types of files: a Release file, a Packages file,
and the packages themselves. The packages file acts as an index for all of the
packages in the repository. It stores a bit of metadata on every package the
repository contains, such as filenames, descriptions, and checksums. The
checksum from this index is used to validate the integrity of the downloaded
package before it is installed. This provides integrity, assuring us that the
contents have not changed in flight. It is, however, mostly only effective against
corruption, since an attacker can simply modify the index hashes if the goal is to
deliver modified software. This is where the Release file comes in.

The Release file contains metadata about the repo itself (as opposed to the
Packages file, which stores metadata about the packages contained within it).
This includes things like the name and version of the OS distribution the repo is
meant for. It also includes a checksum of the Packages file, allowing the
consumer to validate the integrity of the index, which in turn can validate the
integrity of the packages we download. That’s great, except still an attacker can
simply modify the Release file with the updated hash of the Packages file and
be on their way.



So, we introduce cryptographic signatures (Figure 7-5). A signature provides not
only integrity for the contents of the signed file (since a hash is included in the
signature), but also authenticity, since successful decryption of the signature
proves that the generating party was in the presence of the private key.

Using this principle, the maintainer of the software repo signs the Re'lease file
with a private key, to which there is a well-known and well-distributed public
key. Any time the repo is updated, package file hashes are updated in the index,
and the index’s final hash is updated in the Release file, which is then signed.
This chain of hashes, the root of which is signed, provides the consumer with the
ability to authenticate the software they are about to install.

In the event that you’re unable to sign a software release in some way, it is
essential to fall back to standard security practices. You will need to ensure that
all communication is mutually authenticated—this means traffic to, from, and in
between any distribution repository. Additionally, you’ll need to ensure that the
storage the repository leverages is adequately secured, be it AWS S3 or
otherwise.
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Figure 7-5. The maintainer signs the Release file, which contains a hash of the Packages index, which
contains hashes of the packages themselves

Trusting a Distribution Network

When distributing software with a large or geographically disparate consumer
base, it is common to copy the software to multiple locations or repositories in
order to meet scaling, availability, or performance challenges. These copies are
often referred to as mirrors. In some cases, particularly when dealing with
publicly consumed software, the servers hosting the mirrors are not under the
control of the organization producing the software. This is obviously a concern,
and underscores the requirement of a software repo to be authenticated against
the author (and not the repo owner).

Referring back to APT’s hashing and signing scheme, it can be seen that we can,
in fact, authenticate the Release file against the author using its signature. This

means that for every mirror we access, we can check the Release signature to
validate that the mirror is in fact a faithful copy of the original release.



One might think that by signing the Release file, software can be distributed
through untrusted mirrors safely. Additionally, repositories are often hosted
without TLS under the assertion that the signing of the release is sufficient for
protecting the distribution network. Unfortunately, both of these assertions are
incorrect.

There are several classes of attacks that open up when connecting to an untrusted
mirror, despite the fact that the artifact you’re obtaining is ultimately signed. For
instance, a downgrade to an older (signed) version can be forced, as the artifact
served will still be legitimate. Other attack vectors can include targeting the
package management client itself. In the interest of protecting your clients,
always make sure they are connecting to a trusted distribution mirror.

The dearth of TLS-protected repositories presents another vulnerability to the
distribution of software. Attackers that are in a position to modify the
unprotected response could perform the same attacks that an untrusted mirror
could. Therefore, the best solution to this problem is moving package
distribution to TLS-protected mechanisms. By adding TLS, clients can validate
that they are in fact connecting to a trusted repository and that no tampering of
the communication can occur.

Humans in the Loop

With a secure pipeline crafted, we can make considered decisions on where
humans are involved in that pipeline. By limiting human involvement only to a
few key points, the release pipeline stays secure while also ensuring that
attackers are not able to leverage automation in the pipeline to deliver malicious
software.

The ability to commit code to the version control system is a clear spot where
humans are involved. Depending on the sensitivity of the project, requiring
humans to only check in signed commits provides strong confidence that the
commit is authentic.

Once committed, humans needn’t be involved in the building of software
artifacts. Those artifacts should ideally be produced automatically in a secured
system. Humans should, however, be involved in the process of choosing which
artifact is ultimately distributed. This involvement could be implemented using



various mechanisms: copying an artifact from the build database to the release
database or tagging a particular commit in source control, for example. The
mechanism by which humans certify a releasable binary doesn’t much matter, as
long as that mechanism is secured.

It’s tempting when building secure systems to apply extreme measures to
mitigate any conceivable threat, but the burden placed on humans should be
balanced against the potential risk. In the case of software that is widely
distributed, the private signing key should be well guarded, since the effort of
rotating a compromised key would be extreme. Organizations that release
software like this will commonly use “code signing ceremonies,” where the
signing key is stored on a hardware security module (HSM) and unlocked using
authorization from multiple parties, as a mitigation against the theft of this
highly sensitive key. For internal use—only software, the effort to rotate a key
might be reasonably less, so more lax security practices are reasonable. An
organization might still prefer a code signing ceremony for particularly sensitive
internal applications—a system that stores credit card details, for example.

HUMANS AND CODE SIGNING KEYS

Bit9 is a software security firm that develops an application enabling application whitelisting.
They had many high-profile clients, from government agencies to Fortune 100 companies. In
2013, an attack against their corporate network was able to recover one of Bit9’s private code
signing keys, which was then used to sign and install malware into a handful of its customers.
It is widely believed that this was done in order to bypass the strong security provided by
Bit9’s software itself, and underscores the importance of securing code signing keys. If you
carry high risk, as Bit9 did, it might be a good idea to employ a code signing ceremony.

Trusting an Instance

Understanding what is running in your infrastructure is important when
designing a zero trust network. After all, how can you know what to expect on
your network if you don’t know what to expect on your hosts? A solid
understanding of the software (and versions) running in your datacenter will go a
long way in both breach detection and vulnerability mitigation.

Upgrade-Only Policy



Software versions are important constructs in determining exactly which version
of the code you have and how old it is. Perhaps most importantly, they are used
heavily in order to determine what vulnerabilities one might be exposed to,
given the version they are running.

Vulnerability announcements/discoveries are typically associated with a version
number (online service vulnerabilities being the exception), and generally
include the version numbers in which the vulnerability was fixed. With this in
mind, we can see that it might be desirable to induce a version downgrade in
order to expose a known vulnerability. This is an effective attack vector as the
software being coerced to run is frequently authorized and trusted, since it is a
perfectly valid release, albeit an older one.

If the software is built for internal distribution, perhaps the distribution system
serves only the latest copy. Doing this prevents a compromised or misconfigured
system from pulling down an old version that may contain a known
vulnerability. It is also possible to enforce this roll-forward mentality in
hardware. Apple iOS famously uses a hardware security chip to validate
software updates and to ensure that only signed software built after the currently
installed software can be loaded.

Authorized Instances

The importance of knowing what’s running is more nuanced than simply
understanding what is the latest version to have been deployed. There are many
edge cases that arise, such as a host that has fallen out of the deployment system;
one that has been previously authorized but is now “rogue” by way of no longer
receiving updates. In order to guard against cases like this, it’s critical that
running instances be individually authorized.

It is possible to use techniques described in Chapter 4 to build dynamic network
policy in an effort to authorize application instances, but network policy is often
host/device oriented rather than application oriented. Instead, we can leverage
something much more application-centric in the pursuit of authorizing a running
instance: secrets.

Most running applications require some sort of secret in order to do their job.
This secret can manifest itself in many ways: an API key, an X509 certificate, or



even credentials to a message queue are common examples. Applications must
obtain the secret(s) in order to run, and furthermore, the secret must be valid.
The validity of a secret (as obvious as it sounds) is the key to authorizing a
running application, as with validation comes invalidation.

Attaching a lifetime to a secret is extremely effective in limiting its abuse. By
creating a new secret for every deployed instance and attaching a lifetime to the
secret, we can assert that we know precisely what is running, since we know
precisely how many secrets we have generated, whom we gave them to, and
their lifetimes. Allowing secrets to expire mitigates the impact of “rogue”
instances by ensuring they will not operate indefinitely.

Of course, someone must be responsible for generating and injecting these
secrets at runtime, and this is no small responsibility. The system carrying this
responsibility is ultimately the system that is authorizing the instance to run. As
such, it makes sense for this responsibility to fall in the hands of the deployment
system, since it already carries similar responsibility.

TRUSTED THIRD PARTIES IN INSTANCE AUTHORIZATION

Rather than giving your deployment system direct access to secrets, it is
possible to leverage a trusted third party, allowing the deployment system to
instead assign policy dictating which secrets the running instance can access.
Hashicorp’s Vault, for instance, has a feature called response wrapping in
which an authorized party can request a secret to be generated and stored for
later retrieval. In the context of a deployment system, the deploy itself could
contact Vault and direct the creation of secrets on behalf of the authorized
instances, injecting a one-time-token into the runtime which the application
can use to retrieve the generated secrets, as shown in Figure 7-6.

In such a system, the deployment service notifies the secret management
service of the impending changes, authorizing the new application instances.
During the deploy itself, the deployment service injects key(s), which the
new instances use to identify themselves to the secret management system,
which is expecting their request. The secret management system then
provisions unique time-bound credentials, returns them to the application,
and further continues to manages their lifecycle.
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Figure 7-6. Example flow of a system that provisions per-deployment credentials

It doesn’t take much thought to realize the power of a system which can create
and (potentially) retrieve secrets. With great power comes great responsibility. If
allowing an autonomous system to generate and distribute secrets comes with
too much risk for your organization, you might consider including a human at
this step. Ideally, this would manifest as a human-approved deployment in which
a TOTP or other authenticating code is provided. This code will, in turn, be used
to authorize the creation/retrieval of the secrets by the deployment system.

Runtime Security

Trusting that an application instance is authorized/sanctioned is only one half of
the concern. There is also the need to validate that it can run safely and securely
through its lifecycle. We know how to deploy an application securely, and
validate that its deployment is authorized, but will it remain an authorized and



trustworthy deployment for the entirety of its life?

There are many vectors which can compromise perfectly authorized application
instances, and it might be no surprise to learn that these are the most commonly
used vectors. For instance, it is typically easier to corrupt an existing government
agent than it is to masquerade as one or attempt to become one. For this reason,
individuals with outstanding debt are commonly denied security clearance. They
might be fully trusted at the time they are granted clearance, but how susceptible
are they to bribery if they are in debt? Can they be trusted in this case?

Secure Coding Practices

Most (all?) application-level vulnerabilities start with a latent bug, which an
attacker can leverage to coerce the trusted application to perform an undesirable
action. Fixing each bug in isolation will result in a game of whack-a-mole,
where developers fix one security-impacting bug only to find two more. Truly
mitigating this exposure requires a shift in mindset of the application developers
to secure coding practices.

Injection attacks, where user-supplied data is crafted to exploit a weakness in an
application or related system, commonly occur when user data is not properly
validated before being processed. This type of attack is mitigated by introducing
several layers of defenses. Application libraries will carefully construct APIs
that avoid trusting user-supplied data. Database querying libraries, for example,
will provide APIs to allow the programmer to separate the static query from
variables that are provided by the user. By instituting a clear separation between
logic and data, the potential for injection attacks is greatly reduced.

Having clear APIs can also support automated scans of application software.
Security-aware organizations are increasingly running automated analysis tools
against their source code to detect and warn application developers of insecure
coding practices. These systems warn about using insecure APIs, for example,
by highlighting database queries that are constructed using string concatenation
instead of the API discussed earlier. Beyond warning about insecure APIs,
application logic can be traced to identify missing checks. For example, these
tools might confirm that every system transaction includes some authorization
check, which mitigates vulnerabilities that allow attackers to reference data that
they should not be allowed to access. These examples represent only a handful



of the capabilities possessed by code analysis tools.

Proactively identifying known vulnerabilities is useful, but some vulnerabilities
are too subtle to deterministically detect. As a result, another mitigation
technique in use is fuzzing. This practice sends random data to running
applications to detect unexpected errors. These errors, when exposed, are often
the sort of weaknesses that attackers use to gain a foothold in the system.
Fuzzing can be executed as part of a functional testing suite early in the build
pipeline, or even continuously against production infrastructure.

There are entire books written on secure coding practices, some of which are
dependent on the type of application being created. Programmers should
familiarize themselves with the appropriate practices to improve the security of
their applications. Many organizations choose to have security consultants
inspect their applications and development practices to identify problems.

Isolation

Isolating deployed applications by constraining the set of resources they can
access is important in a zero trust network. Applications have traditionally been
executed inside a shared environment, where a user’s applications are running in
an execution environment with very few constraints on how those applications
can interact. This shared environment creates a large amount of risk should an
application be compromised, and presents challenges similar to the perimeter
model.

Application isolation seeks to constrain the damage of a potentially
compromised application by clearly defining the resources that are available to
the application. Isolation will constrain capabilities and resources that the
operating system provides:

e CPU time
e Memory access

Network access

Filesystem access

System calls



When implemented at its best, every application is given the least amount of
access necessary to complete its work. A well-constrained application that
becomes compromised will quickly find that no additional leverage in the larger
system is gained. As a result, by isolating applications, the potential damage
from a compromised application is greatly reduced. In a multiprocess
environment (e.g., a server running several services), other still-safe services are
protected from attempts to move laterally on that system.

Application isolation can be accomplished using a number of different
technologies:

e SELinux, AppArmor

e BSD jails

e Virtualization/containerization
e Apple’s App Sandbox

e Windows’ Isolated Applications

Isolation is generally seen as breaking down into two types: virtualization and
shared kernel environments. Virtualization is often considered more secure,
since the application is contained inside a virtual hardware environment, which
is serviced by a hypervisor outside the VM’s execution environment. Having a
clear boundary between the hypervisor and the virtual machine creates the
smallest surface area of the two.

Shared kernel environments, like those used in containerized or application
policy systems, provide some isolation guarantees, but not to the same degree as
a fully virtualized system. A shared kernel execution environment uses fewer
resources to run the same set of applications, and is therefore gaining favor in
cost-conscious organizations. As virtualization tries to address the resource-
efficiency problem, by providing more direct access to the underlying hardware,
the security benefits of the virtualized environment begin to look more like the
shared kernel environment. Depending on your threat model, you may choose to
not share hardware at all.

Active Monitoring



As with any production system, careful monitoring and logging is of the utmost
importance, and is particularly critical in the context of security. Traditional
security models focus their attention on external attack vectors. Zero trust
networks encourage the same level of rigor for internal activity. Early detection
of an attack could be the difference between complete compromise and
prevention altogether.

Apart from the general logging of security events throughout the infrastructure
such as failed or successful logins, which is considered passive monitoring, there
exists an entire class of active monitoring as well. For instance, the fuzzing scans
we previously discussed can take time to turn up new vulnerabilities—perhaps
more time than you’re willing to spend early on in the release pipeline. An active
monitoring strategy advocates that the scans also be run against production,
continuously.

DON’T DO THAT IN PRODUCTION!

Occasionally, the desire to take certain actions in production can be met with resistance for
fear of impacting availability or stability of the overall system. Security scans frequently fall
into this bucket. In reality, if a security scan can destabilize your system, then there is a greater
underlying problem, which might even be a vulnerability in and of itself. Rather than avoiding
potentially dangerous scans in production, ask why they might be risky, and work to ensure
that they can be run safely by resolving any system deficiencies contributing to the concern.

Of course, fuzzing is just one example. Automated scanning can be a useful tool
for ensuring consistent behavior in a system. For example, a database of
anticipated listening services could be compared against an automated scan of
actual listening services so deviations can be addressed. Not all scanning will
result in such clear action, however. Scanning of installed software, for example,
will typically be used to drive prioritization of upgrades based on the threats a
network is exposed to or expects to see.

Effective system scanning requires multiple types of scanner, each of which
inspects the system in a slightly different manner:

e Fuzzing (i.e., afl-fuzz)

¢ Injection scanning (i.e., sqlmap)



e Network port scanning (i.e., nmap)
e Common vulnerability scanning (i.e., nessus)

So, what to do when all this monitoring actually discovers something? The
answer typically depends on the strength of the signal. Traditionally, suspicious
(but not critical) events get dumped into reports and periodically reviewed. This
practice is by far the least effective, as it can lead to report fatigue, with reports
going unnoticed for weeks at a time. Alternatively, important events can page a
human for active investigation. These events have a strong enough signal to
warrant waking someone up. In most cases, this is the strongest line of defense.

APPLICATIONS MONITORING APPLICATIONS

One novel idea in the context of application security monitoring is the idea that applications
participating in a single cluster or service can actively monitor the health of their peers, and
gain consensus with others on their sanity. This might manifest itself as TPM quotes,
behavioral analysis, and everything in between. By allowing applications to monitor each
other, you gain a high signal-to-noise ratio while at the same time distributing the
responsibility throughout the infrastructure. This approach most effectively guards against
side-channel attacks, or attacks enabled through multi-tenancy, since these vectors are less
likely to be shared across the entire cluster.

In highly automated environments, however, a third option opens up: active
response. Strong signals that “something is wrong” can trigger automated
actions in the infrastructure. This could mean revoking keys belonging to the
suspicious instance, booting it out of cluster membership, or even signaling to
datacenter management software that the instance should be moved offline and
isolated for forensics.

Of course, as with any high-level automation, one can do a lot of damage very
quickly when utilizing active responses. It is possible to introduce denial-of-
service attacks with such mechanisms, or perhaps more likely, shut down a
service as a result of operator error. When designing active response systems, it
is important to put a number of fail-safes in place. For instance, an active
response that ejects a host from a cluster should not fire if the cluster size is
dangerously low. Being thoughtful about building active response limitations
such as this goes a long way in ensuring the sanity of the active response process



itself.

Summary

This chapter dove into how applications in a zero trust network are secured. It
might seem counter-intuitive that a zero trust network needs to be concerned
with application security. After all, the network is untrusted so untrustworthy
applications existing on the network should be expected. However, while the
network works to detect and identify malicious application activity, that goal is
made impossible if deployed applications are not properly vetted before being
authorized to run. As a result, most of this chapter focused on how to securely
develop, build and deploy applications in a zero trust network, and then monitor
the running instances to ensure that they stay trustworthy.

The chapter introduced the concept of a trusted application pipeline, which is the
mechanism by which software written by trusted developers is transformed into
built applications that are then deployed into infrastructure. This pipeline is a
highly valuable target for would-be attackers, and so it deserves special
attention. We dug into secure source code hosting practices, sound practices for
turning source code into trusted artifacts, and securely selecting and distributing
those artifacts to downstream consumers. The application pipeline can be
visualized as a series of immutable transformations on input from earlier in the
pipeline, so we explored how to meet the goals of that pipeline without
introducing too much friction in the process.

Human attention is a scarce but important resource in a secure system. With the
rate of software releases ever increasing, it’s important to mindfully consider
when humans are best introduced in the proces. We discussed where to put
humans in the loop to ensure that the pipeline remains secure.

Once applications are built, the process of securing their continued execution in
a production environment shifts a bit. Old trusted applications may in the future
become untrusted as vulnerabilities are discovered, so we discussed the
importance of an upgrade-only policy when running applications. Secrets
management is often a difficult task for security engineers, where changing
credentials is often very burdensome. With a smooth credential provisioning
process, however, a new opportunity emerges to frequently rotate credentials,



using the credentialing process itself as a mechanism for ensuring only
authorized applications continue to run in a production environment.

We ended the chapter with a section discussing good application security
hygiene. Learning secure coding practices, deploying applications in isolated
environments, and then monitoring them aggressively is the final leg in a
trustworthy production environment.

With all the components of a zero trust network explored, the next chapter
focuses on how network communication itself is secured.



Chapter 8. Trusting the Traffic

Authenticating and authorizing network flows is a critical aspect of a zero trust
network. In this chapter, we’re going to discuss how encryption fits into the
picture, how to bootstrap flow trust by way of secure introduction, and where in
your network these security protocols best fit.

Zero trust is not a complete departure from everything we know. Traditional
network filtering still plays a significant role in zero trust networks, though its
application is nontraditional. We’ll explore the role filtering plays in these
networks toward the end of this chapter.

Encryption Versus Authentication

Encryption and authenticity often go hand in hand, yet serve distinctly separate
purposes. Encryption ensures confidentiality—the promise that only the receiver
can read the data you send. Authentication enables a receiver to validate that the
message was sent by the thing it is claiming to be.

Authentication comes with another interesting property. In order to ensure that a
message is in fact authentic, you must be able to validate the sender and that the
message is unaltered. Referred to as integrity, this is an essential property of
message authentication.

Encryption is possible without authentication, though this is considered a poor
security practice. Without validation of the sender, an attacker is free to forge
messages, possibly replaying previous “good” messages. An attacker could
change the ciphertext, and the receiver would have no way of knowing. There
are a number of vectors opened by the omission of authentication, so the
recommendation is pretty much the same across the board: use it.

Authenticity Without Encryption?

Message authenticity is a stated requirement of a zero trust network, and it is not
possible to build one without it. But what about encryption?



Encryption brings confidentiality, but it can also be an occasional nuisance.
Troubleshooting becomes harder when you can’t read packet captures without
complicated decryption processes. Intrusion detection becomes difficult to
impossible if the network traffic can’t be inspected. There are, in fact, some
legitimate reasons to avoid encryption.

That said, be absolutely certain that you do not care about data confidentiality if
you choose to not use encryption. While keeping data unencrypted is convenient
for administrators, it is never legitimate if the data actually requires
confidentiality. For instance, consider the scenario shown in Figure 8-1.
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Figure 8-1. Confidentiality within the datacenter is just as important as outside the datacenter

This is an exceedingly common architecture. Note that it only encrypts traffic in
certain areas, leaving the rest open (perhaps for the benefit of system
administrators). Clearly, however, this data requires confidentiality, as it is
encrypted in transit between sites.



'I'his 1s a direct contradiction of the zero trust architecture, as it creates privileged
zones in the network. Thus, citing good reasons to not encrypt traffic is a very
slippery slope. In practice, systems that truly do not require confidentiality are
rare.

In addition to all of this, authentication is still required. There are few network
protocols which provide strong authentication but not encryption, and all of the
transport protocols we discuss in this book provide authentication as well as
encryption. If you look at it this way, encryption is attained “for free,” leaving
few good reasons to exclude it.

Bootstrapping Trust: The First Packet

The first packet in a flow is oftentimes an onerous one. Depending on the type of
connection, or point of the device lifecycle, this packet can carry with it very
little trust.

We generally know what flows to expect inside the datacenter, but in client-
facing systems, it’s anyone’s guess. These systems must be widely reachable,
which greatly increases risk. We can use protocols like mutually authenticated
TLS to authenticate the device before it is allowed to access the service;
however, the attack surface in this scenario is still considerable, and the
resources are also publicly discoverable.

So how do you allow only trusted connections, silently dropping all others,
without answering a single unauthenticated packet? This is known as the first
packet problem, and it is mitigated through a method called pre-authentication
(Figure 8-2).

Pre-authentication can be thought of as the authorizing of an authentication
request by setting an expectation for it. It is often accomplished by encrypting
and/or signing a small piece of data and sending it to the resource as a UDP
packet. The use of UDP for pre-authentication is important because UDP packets
do not receive a response by default. This property allows us to “hide,” exposing
ourselves only once we passively receive a packet encrypted with the right key.

Upon the passive receipt of a properly encrypted pre-authentication packet, we
know we can expect the sender to begin authentication with us, and we can poke



granular firewall holes allowing only the sender the ability to speak with our
TLS server. This mode of pre-authentication operation is also known as Single
Packet Authorization (SPA).

SPA is not a fully suited device authentication protocol. It merely helps to
mitigate the first packet problem. Without downplaying the importance of the
properties we gain by using pre-authentication, it must not be substituted for a
more robust mutually authenticating protocol like TLS or IKE.

1. SPA packet

2. SYN/ACK

Authorized i Unknown
client 5 client

|

Figure 8-2. A client in possession of the pre-authorization key can send a signed packet in order to set an
expectation for a TCP connection. Without it, no acknowledgments are sent.

fwknop

fwknop is a popular open source SPA implementation. It supports a wide variety
of operating systems, and integrates directly with host firewalls to coordinate the
creation of tightly scoped and short-lived exceptions.

Short-lived exceptions

When fwknop receives a valid SPA packet, its contents are decrypted and
inspected. The decrypted payload includes protocol and port numbers which the
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sender is requesting access to. fwknop uses this to create firewall rules
permitting traffic from the sender to those particular ports—rules that are
removed after a configurable period of time. The default value is 30 seconds, but
in practice, you may only need just a few seconds.

As mentioned, the rule which fwknop creates is tightly scoped. It permits only
the sender’s IP address and only the destination ports requested by the sender.
The destination ports which may be requested can be restricted via policy on a
user-by-user basis. Additionally, it is possible for the sender to specify a source
port, restricting the scope of the rule even further.

SPA payload

The fwknop SPA implementation has seven mandatory fields and three optional
fields included in its payload. Among these are a username, the access request
itself (which port, etc.), a timestamp, and a checksum:

¢ 16 bytes of random data
e Local username

e [ocal timestamp

e fwknop version

e SPA message type

e Access request

e SPA message digest (SHA-256 by default)

Once the client has generated the payload, it is encrypted, an optional HMAC is
added, and the SPA packet is formed and transmitted.

Payload encryption

Two modes of encryption are supported: AES and GnuPG. The former being
symmetric and the latter being asymmetric, two options are provided in order to
cater to multiple use cases and preferences.

Personal applications or small installations might prefer AES since it does not
require any GnuPG tooling. AES is also more performant with regard to data
volume and computational overhead. It does have some downsides though.



practically all of which originate from the fact that it is a symmetric algorithm.
Symmetric encryption comes with difficult key distribution problems, and
beyond a certain scale, these challenges can grow to be untenable. Leveraging
the GnuPG encryption mode solves most of these problems and is the
recommended mode of operation, despite being less performant than its
counterpart.

HMAC

fwknop can be configured to add an HMAC to the end of its payload. A hashed
message authentication code (HMAC) prevents tampering by guaranteeing that
the message is authentic. This is important because otherwise an attacker could
arbitrarily modify the ciphertext, and the receiver would be forced to process it.

You may have noticed that there is a message digest which is calculated and
stored along with the plain text. This digest helps to mitigate attacks in which the
ciphertext is modified, but is also less than ideal, as this method (known as
authenticate-then-encrypt or AtE) is vulnerable to a few niche classes of attacks.
Adding an HMAC to the encrypted payload prevents these attacks from being
effective.

In addition, decryption routines are generally much more complex than HMAC
routines, meaning they are more likely to suffer from a vulnerability. Applying
an HMAC to the ciphertext allows the receiver to perform a lightweight integrity
check, helping to ensure that we are only sending trusted data to the decryption
routines.

It is strongly recommended to configure fwknop to use HMAC.

A Brief Introduction to Network Models

Networking stacks have many different responsibilities in transmitting data over
a network. As such, it would be easy for a networking stack to become a
jumbled mess of code. Therefore, the industry long ago decided to spend the
effort to clearly define a set of standardized layers in a networking stack. Each
layer is responsible for some portion of the job of transmitting data over the
wire. Lower layers deliver functionality and guarantees to higher layers in the



stack.

Building up these layers isn’t just useful for organizing code. These layer
definitions are often used to describe where new technology operates in the
stack. For example, you might have heard of a layer 7 or layer 4 load balancer. A
load balancer distributes traffic load across a set of backend machines, but the
layer at which it operates greatly determines its capabilities. A layer 7 load
balancer, for example, can make decisions about where to route traffic based on
details in an HTTP request like the requested path or a particular header. HTTP
operates at layer 7, so this data is available to inspect. A layer 4 load balancer,
by contrast, does not consider layer 7 data and therefore can only pass traffic
based on simpler connection details like the source IP and port.

There are many different network models. Most of these models can be roughly
mapped to equivalents in other network models, but sometimes the boundaries
can be a bit fuzzy. For this book, we will only focus on two network models: the
OSI network model and the TCP/IP network model. Understanding the
boundaries of these two models will help in later discussions about where zero
trust responsibilities should be handled in the network model.

Network Layers, Visually

The idea of a layer might be strange at first, though a simplistic way to
understand the concept is by comparing them to Russian nesting dolls. Each
layer typically contains the next, encapsulated by it in a section known as the
payload (Figure 8-3).
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Figure 8-3. Lower network layers transport higher-layer traffic in their payload fields, creating a nested
structure inside a single packet

OSI Network Model

The OSI network model was published in 1984 after being merged from two
separate documents started several years earlier. The model is published by two
separate standards bodies: the International Organization for Standardization
(ISO) published ISO 7498, while the Telecommunications Standardization
Sector of the International Telecommunication Union (ITU-T) published X.200.

The model itself is extracted from the experiences building several networks at
the time, ARPANET being the most well known. The model defines seven
distinct layers (explained in the following sections), each of which owns a
portion of the responsibilities for transmitting data.

Layer 1—Physical Layer

The physical layer is defined as the interface between a network device and the
physical medium over which network transmission occurs. This can include
things like pin layout, line impedance, voltage, and frequency. The parameters of



the physical layer (sometimes referred to as a PHY) depend on the kind of
medium used. Twisted pair, coaxial cabling, and radio waves are examples of
mediums in common use today.

Layer 2—Data Link Layer

The data link layer is responsible for the transmission of data over the physical
layer. This layer only considers data transmission between directly connected
nodes. There is no concept of transmission between interconnected networks.
Ethernet (802.3) is the most well-known protocol operating at this layer.

Layer 3—Network Layer

The network layer is responsible for transmitting data packets between two
interconnected nodes. At this layer, packets might need to transverse multiple
layer 2 segments to reach their destination, so this includes concepts to allow
routing data to its destination by inspecting a destination address. IP is often said
to operate at this layer, but the boundaries can be a bit fuzzy, as we will explore
later.

Layer 4—Transport Layer

The transport layer builds upon the simple packet transmission capabilities of
layer 3, usually as an intermediary protocol designed to augment layer 3 with
many desirable services:

e Stateful connections
e Multiplexing

¢ Ordered delivery

¢ Flow control

e Retransmission

These services might look similar to the services that a protocol like TCP
provides. In fact, TCP is a layer 4 protocol; however, in a way similar to IP, this
association can be a bit awkward.

Not all of these services need to be provided by a protocol operating at this level.
UDP, for example, is a layer 4 protocol which offers only one of these services



(mulﬁplexing)ilt remains a layLer 4 protocol because it is an intermediary
protocol which is directly encapsulated by layer 3.

Layer 5—Session Layer

The session layer isn’t commonly discussed in most networks. This layer
provides an additional layer of state over connections, allowing for a
communication resumption and communication through an intermediary.
Several VPN (PPTP, L2TP) and proxy protocols (SOCKS) operate at this layer.

Layer 6—Presentation Layer

The presentation layer is the layer that application developers will most
commonly interact with. This layer is responsible for handling the translation
between application data (often represented as structural data) and transmittable
data streams. In addition to this serialization responsibility, this layer is often
responsible for cross-cutting concerns like encryption and compression. TLS is a
well-known protocol operating at this layer, though it operates at layer 6 only
after the session is established (which happens at layer 5—the process of
changing from a lower layer to a higher layer is sometimes referred to as an
upgrade).

Layer 7—Application Layer

The application layer is the highest layer in the OSI model. This layer provides
the high-level communication protocols that an application uses to communicate
on the network. Some common protocols at this layer are DNS, HTTP, and SSH.

TCPIIP Network Model

The TCP/IP network model is another important network model. This model
deals with the protocols most often found on the internet today.

Unlike the OSI model, the TCP/IP model does not try to define strict layers with
clear boundaries. In fact, RFC 3439, which documents the “philosophical
guidelines” that internet architects use has a section entitled “Layering
Considered Harmful.” Still, the model is said to define the following rough
layers, from lowest to highest:
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e Link layer

¢ Internet layer

e Transport layer
e Application layer

These layers can be roughly mapped to the OSI model, but the mappings are
only best effort. The application layer roughly covers layers 5-7 in the OSI
model. The transport layer roughly maps to layer 4, though its introduction of
the concept of a port gives it some layer 5 characteristics. The internet layer is
similarly generally associated with layer 3. The abstraction is leaky, however, as
higher-level protocols like ICMP (which are transmitted via IP) concern
themselves with details of how traffic is routed around the internet.

Where Should Zero Trust Be in the Network
Model?

With a better understanding of network layer models, we can now take a look at
where to best apply zero trust controls in the network stack.

There are two predominant network security suites: TLS and IPsec. TLS
(Transport Layer Security, to which SSL is a predecessor) is the most common
of the two. Many application layer protocols support TLS to secure traffic. [Psec
is an alternative protocol, more commonly used to secure things like VPNs.

Despite having “transport” in its name, TLS does not live in the transport layer
of the TCP/IP model. It is found in the application layer (somewhere between
layer 5 and 6 in the OSI model), and as such, is largely an application concern.

TLS AS AN INFRASTRUCTURE CONCERN

Perimeter networks frequently abstract TLS away from applications, shifting the responsibility
from the application to the infrastructure. In this mode, TLS is “terminated” by a dedicated
device at the perimeter, forwarding the decrypted traffic to a backend service. While this mode
of operation is not possible in a zero trust network, there remain a handful of strategies for
deploying TLS as an infrastructure concern while still conforming to the zero trust model.
More on that later.



[Psec, by contrast, is generally considered part of the internet layer in the TCP/IP
model (layer 3 or 4 in the OSI model, depending on interpretation). Being
further down the stack, IPsec is usually implemented in a host’s kernel. IPsec
was developed for the IPv6 specification. It was originally a requirement for
[Pv6, but was eventually downgraded to a recommended status.

With two alternatives to secure network transit, the question becomes, is one
preferred over the other? Zero trust’s goal is secure communication for all
traffic. The best way to accomplish this goal is to build systems that provide
secure communication by default. IPsec, being a low-level service, is well
positioned to provide this service.

Using IPsec, host-to-host communication can be definitively secured. Being
integrated deep in the network stack, IPsec can be configured to only allow
packet transmission once a secure communication channel has been established.
Furthermore, the receiving side can be configured to only process packets that
have been sent securely. In this system, we have essentially created a “secure
virtual wire” between two hosts over which only secured traffic can flow. This is
a huge benefit over traditional security initiatives that add secure communication
one application at a time.

Simply securing communications between two devices is not sufficient to build a
zero trust network. We need to ensure that each individual network flow is
authorized. There are several options for meeting this need:

e [Psec can use a unique security association (SA) per application (see RFC
4301, section 4.4.1.1). Only authorized flows are then allowed to construct
these security policies.

o Filtering systems (software firewalls) can be layered on top of [Psec. We will
discuss the role of filtering in zero trust later in this chapter.

¢ Application-level authorization should be used to ensure that communications
are authorized. This could use standard authorization techniques, such as
access tokens or X.509 certificates, while delegating strong encryption and
authentication responsibilities to the IPsec stack.

e For a truly “belt and suspenders” system, mutually authenticated TLS could
be layered on top of the existing IPsec layer. This defense-in-depth approach


https://tools.ietf.org/html/rfc4301#section-4.4.1.1

provides two layers of encryption (mTLS and IPsec), protecting
communication should one of them being compromised, at the expense of
complexity and increased overhead.

Client and Server Split

While IPsec has a number of beneficial properties, its lack of popularity presents
real-world obstacles for its use in systems today. The issues one will see can be
broken down into three areas:

e Network support issues
e Device support issues

e Application support issues

Network support issues

Network support can hamper the use of IPsec in the wild. IPsec introduces
several new protocols, two of which (ESP and AH) are new IP protocols. While
these protocols are fully supported in simple LAN networks, on some networks,
getting these packets transmitted can be quite a challenge. This could be due to
misconfigured firewalls, NAT traversal, or routers being purposefully configured
to not allow traffic to flow. For example, Amazon Web Services, a large public
cloud provider, does not allow ESP or AH traffic to be transmitted on its
networks. Public hotspots like those found at businesses or libraries also often
have spotty support for IPsec traffic.

To mitigate these issues, IPsec includes support for encapsulating traffic in a
UDP frame (depicted in Figure 8-4). This encapsulation allows an inhospitable
network to transmit the traffic, but it adds extra complexity to the system.
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Device support issues

Device support can also be a major factor in rolling out an IPsec-protected
network. The IPsec standard is complex, with many configuration options and
cipher suites. Both hosts in the relationship need to agree to a common protocol
and cipher suite before communication can flow. Cipher suites in particular
frequently need to be adjusted as compromises are revealed. Finding that a
stronger cipher suite has not been implemented is a real issue in IPsec systems.
To be fair, TLS needs to handle these same issues; but due to the nature of
having IPsec implemented in the system’s kernel, progress on newer protocols
and cipher suites is naturally slower.

[Psec also requires active configuration of the devices in the relationship. In a
client/server system with varying device capabilities, configuring the client
devices can be rather challenging. Desktop operating systems can usually be
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however, are less likely to fully support IPsec in a way that conforms to the zero
trust model.

Application support issues

[Psec places additional requirements on the system configuration versus typical
TLS-based security. A system wanting to make use of IPsec needs to configure
[Psec policy, enable kernel support for the desired cipher suites, and run an IKE
daemon to facilitate the negotiation of IPsec security associations. When
compared to a library-based approach for TLS, this extra complexity can be
daunting. This is doubly so when many applications already come with built-in
TLS support, which seemingly offers a turnkey solution for network security.

It should be noted that while the library approach seems more attractive on first
glance, in practice it presents quite a bit of hidden complexity. Being a library,
applications need to expose configuration controls to the TLS library.
Applications frequently support the more common server TLS, but neglect to
expose configuration for presenting a client certificate that is required to create a
mutually authenticated TLS connection. Additionally, system administrators
may need to adjust configuration in reaction to recently exposed vulnerability.
With a large set of applications, finding the application-specific configuration
that needs to be adjusted can hamper the rollout of a critical fix.

The web browser is frequently the common access point into organizational
systems. Its support for modern TLS is generally very good (assuming
organizations stay up to date on the latest browser versions). This common
access point mitigates the issue of configuration, as there is a small set of target
applications that need to be adjusted.

On the server side, many organizations are turning toward a model where
network communication is secured via a local daemon. This approach centralizes
configuration in a single application and allows for a base layer of network
security to be supplied by the system administrator. In a way, it looks very
similar to the IPsec model, but implemented using TLS instead.

A pragmatic approach

Given all the pluses and minuses of the two approaches, a pragmatic solution
seems available to system administrators.



For client/server interactions, mutually authenticated TLS seems to be the most
reasonable approach to network security. This approach would typically involve
configuring a browser to present client certificates to server-side access proxies
which will ensure that the connection is authenticated and authorized. Of course,
this restricts the use of zero trust to browser-based applications.

For server/server interactions, IPsec seems more approachable. The server fleet
is generally under more controlled configuration, and the network environment
is more well known. For networks which don’t support IPsec, UDP
encapsulation can be used to avoid network transit issues.

MICROSOFT SERVER ISOLATION

For environments which fully employ Microsoft Windows with Active Directory, a feature
called server isolation is particularly attractive. By leveraging Windows Firewall, Network
Policy, and Group Policy, server isolation provides a framework through which IPsec
configuration can be automated. Furthermore, server isolation can be tied to Active Directory
security groups, providing fine-grained access control which is backed by strong IPsec
authentication.

While complications surrounding IPsec transit over public networks still exist, server isolation
is perhaps the most pragmatic approach for obtaining zero trust semantics in a Windows-based
environment.

Since the IPv6 standard includes IPsec, the authors hope that it will become a
more viable solution for both types of network communication as network
adoption progresses.

The Protocols

We learned about mutually authenticated TLS and IPsec in the previous section,
as well as when you might use one versus the other. In this section, we’ll discuss
the two protocols in detail. It is very important to understand the inner workings
of these protocols as you deploy them, since there are many configuration
controls in them. Both are complicated in their own right, and insecure
configurations are common.

IWCNDear
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Internet Key Exchange (IKE) is a protocol which performs the authentication
and key exchange components of IPsec. It is typically implemented as a daemon
and uses a pre-shared key or an X.509 certificate to authenticate a peer and
create a secure session. Inside this secure session, another key exchange is made.
The results of this second key exchange are then used to set up an IPsec security
association, the parameters of which are leveraged for bulk data transfer. Let’s
take a closer look.

IKEV1 VERSUS IKEV2

There are two versions of IKE, and most software suites support both. For all new
deployments, it is strongly recommended to use IKEv2. It is both more flexible and more
reliable than its predecessor, which was overly complicated and less performant. For the
purposes of this book, we will be talking about IKEv2 exclusively.

IKE and IPsec

There is frequent confusion around the relationship between IKE and IPsec. The
reality is that IPsec is not a single protocol; it is a collection of protocols. IKE is
often considered part of the IPsec protocol suite, though its design makes it feel
complimentary as opposed to a core component. IKE can be thought of as the
control plane of IPsec. It handles session negotiation and authentication, using
the results of the negotiation to configure the endpoints with session keys and
encryption algorithms.

Since the core IPsec protocols are embedded in the IP stack, IPsec
implementations are typically found in the kernel. With key exchange being a
relatively complex mechanism, IKE is implemented as a user space daemon. The
kernel holds state defining active IPsec security associations, and traffic
selectors defining which packets IPsec policy should be applied to. The IKE
daemon handles everything else, including the negotiation of the IPsec security
association (SA) itself (which is subsequently installed into the kernel for use).

Authentication credentials

IKEv2 supports both pre-shared keys and X.509 public/private key pairs. In
addition, it supports the Extensible Authentication Protocol (EAP). Supporting



EAP means that IKEv2 supports a bevy of other authentication methods
(including support for multifactor authentication) by proxy. We will avoid
analyzing EAP directly, however, as the ecosystem is very large.

It goes without saying that X.509 certificates are the preferred method of
authentication for IKE. While pre-shared keys are supported, we strongly
recommend against them. They present major distribution and generation
challenges, but most importantly, they are meant for humans to remember.

X.509 certificates are not meant for humans; they’re meant for devices. They
carry with them not only proof of trust, but also signed metadata and a way to
strongly encrypt data using its identity. These are powerful properties, and the
reason certificates are the undisputed champion of device authentication
credentials.

IKE SA_INIT and AUTH

All IKEv2 exchanges begin with a pair of packets named IKE_SA_INIT. This
initial exchange handles cryptographic suite selection, as well as a Diffie—
Hellman exchange. The Diffie—-Hellman key exchange provides a method for
two systems to negotiate a session key without ever transmitting it.

The resulting session key is used to encrypt fields in the next pair of messages:
the IKE_AUTH packets. In this step, the endpoints exchange certificates and
generate what is known as a CHILD_SA. The CHILD_SA contains the IPsec
parameters for a security association between the two endpoints, and the IKE
daemon then programs these parameters into the kernel. From this point forward,
the kernel will encrypt all traffic matching the selectors.

Cipher suite selection

Cipher choice with IPsec is slightly less trivial than TLS. This is because IPsec
is implemented in the kernel, making cipher support a little more stringent than it
would be if it were simply a software package. As a result, a wide variety of
devices and operating system versions will complicate IPsec deployments.

RFC 6379 sets forth what is known as the Suite B Cryptographic Suite. It was
authored by the US National Security Agency, and is (at the time of this
writing) a widely accepted standard when it comes to selecting IPsec cipher
suites.
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Much like TLS, IKE cipher suites include algorithms for key exchange, bulk
encryption, and integrity. Unlike TLS, it does not include authentication, as IKE
takes care of that outside of the crypto suite selection.

RFC 6379 is fairly prescriptive with regard to these choices. All of the suites
defined in Suite B leverage varying strengths of the AES encryption algorithm
and the ECDH key agreement protocol. They leverage GCM and SHA for
integrity. For the majority of use cases, Suite B is recommended.

There are a couple instances in which Suite B might not be appropriate. The first
is that not all IPsec implementations support elliptic curve cryptography, which
is mandated. The second is concern around the security of popularized elliptic
curve implementations, as many believe that state actors have interfered with
them in order to subvert the security they aim to provide.

In consideration of either of these cases, equivalent-strength DH is
recommended as a good alternative.

IPsec security associations

[Psec security associations (SAs) are the end result of an IKE negotiation and
describe what is sometimes referred to as a “relationship” with the remote
endpoint. They are unidirectional, so for a relationship between two endpoints,
you will normally find two SAs (inbound and outbound).

An IPsec SA is uniquely identified by an SPI (Security Parameter Index, not to
be confused with an IKE SPI) and has a limited lifetime. As traffic traverses the
IP stack, the kernel finds packets matching the selector(s) and checks to see if
there is an active security association for the selector in question. If there is an
entry, the kernel encrypts the packet according to the parameters defined in the
SA, and transmits it. If there is no entry, the kernel will signal the IKE daemon
to negotiate one.

An IPsec SA has four distinct states in its lifecycle: larval, mature, dying, and
dead.

A larval SA is one that is still being negotiated by the IKE daemon and has only
part of its state installed. Once the negotiation is complete, the SA progresses to
the mature state, in which it begins encrypting traffic. As the SA nears the end of
its lifetime, a new SA is negotiated and installed with the same policy. The



original SA progresses to the dying state, and all relevant traffic switches over to
the new SA. After some time, the old SA expires and is marked as dead.

IPsec tunnel mode versus transport mode

[Psec supports two modes of operation, tunnel mode and transport mode
(Figure 8-5). Tunnel mode is by far the most widely deployed variant. When
[Psec operates in tunnel mode, an SA is formed with the remote endpoint which
is used to encapsulate IP packets and secure it en route to the endpoint. This
encapsulation covers the entirety of the IP packet, including the IP header. This
means that in tunnel mode, the IPsec endpoint can be different than the endpoint
for which the IP traffic is destined, since a new IP header will be exposed once
the protected traffic is unpacked.
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Figure 8-5. IPsec tunnel mode allows traffic from one network to be tunneled into another

This is why it is called tunnel mode. It is frequently used in VPNs, where one
wishes to make a secure connection to a remote network, enabling administrators
to tunnel flows destined for that network through the secure channel. This brings
an interesting realization though in the world of zero trust networks: tunnel



mode, by its very nature, strongly implies that the traffic will

become unprotected at some point in time. Security is ensured between the
sender and a network intermediary, but after that all bets are off. It is the opinion
of the authors that, for this reason, the use of tunnel mode contradicts the zero
trust architecture.

Transport mode, on the other hand, offers practically identical security
guarantees, just minus the tunnel part. Instead of encapsulating an entire IP
packet, it encapsulates only the IP payload. This is useful for direct host-to-host
[P communication. Rather than establishing a security association with an
intermediary network device, transport mode establishes a security association
directly with the endpoint to which the traffic is addressed, ensuring security is
applied end to end. This property allows transport mode to fit nicely into the
zero trust model.

While transport mode is the obvious choice for a full-blown zero trust datacenter
architecture, it is important to remain realistic. Zero trust migrations are difficult,
and IPsec tunnel mode is still a tool which can be leveraged along the journey to
a homogeneous zero trust architecture.

IKE/IPsec for device authentication

When it comes to device security in a zero trust network, we are looking to
provide not only authentication for the device, but also device-to-device
transport security. This is exactly what IPsec is designed to do, and the reason
that it is perhaps the best protocol for the job.

Since IPsec is implemented directly on top of IP, it can handle most application
traffic, not just TCP or UDP. Additionally, since it is implemented in the kernel,
the applications being protected need no knowledge of the underlying security.
They simply run as they would normally, and the traffic gets encrypted “for
free.”

This encryption and authenticity may come “for free” from the perspective of the
application, but that is certainly not the case for the device! As you can see, the
configuration of IPsec is nontrivial, and managing the multitude of policies can
be challenging (or impossible without automation).

Another consideration is how widely supported IPsec is as a network protocol.



Not all public networks (e.g., coffee shops) support IPsec and may even actively
block it. Difficulty in configuration and lack of universal support make IPsec
less desirable for client-side zero trust networks. However, those pain points
don’t typically exist inside the datacenter, where IPsec remains a front contender
with regard to device security protocols.

Mutually Authenticated TLS

Commonly referred to by the name of its predecessor, Transport Layer Security
(TLS) is the protocol most commonly used to secure web traffic. It is a mature
and well-understood protocol, is widely deployed and supported, and is already
trusted with some of the most sensitive tasks, like banking transactions. It is the
“S” in HTTPS.

When TLS is used to secure web sessions, the client validates that the server
certificate is valid, but the server rarely validates the client. In fact, the client
rarely presents a certificate at all! The “mutual” prefix for TLS is meant to
denote a TLS configuration in which client certificate validation is required (and
thus, mutually authenticated).

While a lack of client authentication may be acceptable for services that are
being published to the general public, it is not acceptable for any other use case.
Mutual authentication is a requirement for security protocols conforming to the
zero trust model, and TLS is no exception.

The basics of a TLS handshake are fairly straightforward, as shown in Figure 8-
6. A client initiates the session with a ClientHello message sent to the server,
which includes a compatibility list for things like cipher suites and compression
methods. The server chooses parameters from the compatibility list and replies
with a ServerHello defining the selections it made, followed by the server’s
X.509 certificate. It also requests the client’s certificate at this time.

The client then generates a secret key and uses the server’s public key to encrypt
it. It sends the server this encrypted secret key, as well as its client certificate,
and a small bit of proof that it is in fact the owner of that certificate. The secret
key generated by the client is ultimately used to derive several additional keys,
including one which acts as a symmetric session key. So, once the client sends
these details off, it has enough information to set up its side of the encrypted
session. Tt signals the server that it is switching to session encrvntion. the server
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validates the client, sends a similar message in return, and the session is fully
upgraded.
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Figure 8-6. A simplified diagram showing a mutually authenticated TLS handshake using RSA key
exchange

Cipher suite negotiation and selection

TLS supports many different kinds of authentication and encryption. A cipher
suite is a named combination of these components. There are four primary
components in a TLS cipher suite:

e Key exchange

e Authentication



e Bulk encryption
e Message authenticity

Choosing the right set of supported cipher suites is important in ensuring your
TLS deployments remain secure. Many cipher suites are known to be weak. At
the same time, the strongest cipher suites are poorly supported among clients in
the wild.

Who gets to say

During the TLS handshake, the client presents its list of supported cipher suites
in order of preference. The server gets to choose one from this list, assuming that
there is shared support at all, in which case the session will fail to establish.
While the client gets to communicate its cipher preferences to the server, it is
ultimately the server which is allowed to choose. This is important because it
preserves the client/server, consumer/operator relationship.

With this, the overall security of the system is limited to the strongest negotiable
cipher suite of the weakest client. Historically, many online resources support
weak cipher suites in a bid to maintain backward compatibility with older
clients. Knowing this, there have been many attacks against cipher suite
negotiation, including downgrade attacks which enable an attacker to actively
weaken the encryption algorithm used by a client.

As a result, it is recommended that servers support only the strongest set of
cipher suites that is reasonable. In the case of datacenter deployments, this list
might be limited to only a few approved suites, as there is strict control over the
“clients.” This is not always reasonable for true client-facing deployments,
however.

NEGOTIATION AS A WEAKNESS

Cipher suite negotiation is, for the stated reasons, considered an anti-pattern in modern
cryptographic protocols. Newer protocols and frameworks such as Noise aim to eliminate
protocol negotiation. Work in this area is highly active at the time of this writing, and the
authors look forward to widespread adoption of cryptographic protocols which lack
weaknesses such as this one.



Key exchange

The TLS key exchange describes the process for securely generating an
encryption key over an insecure channel. Sometimes described as a key
agreement or exchange protocols, these protocols use mathematical functions to
agree on keys without ever transmitting them in the clear (or in most cases, at
all).

There are three primary key exchange/agreement protocols in popular use with
TLS. They are, in rough order of preference: ECDHE, DHE, and RSA.

ECDHE is based on a Diffie-Hellman exchange, using elliptic curves to agree
on a key. Elliptic curve cryptography is very strong, efficient, and is based on a
mathematical problem which remains difficult to solve. It is the ideal choice for
security and performance considerations.

DHE is also based on a Diffie—-Hellman exchange, except it uses modular
arithmetic to agree on a key, rather than elliptic curves. In order for these
exchanges to be strong, they require larger keys than ECDHE. This is because
the math involved for regular DHE is well solved, and we are getting better and
better at solving those problems. So, while DHE can provide security similar to
that of ECDHE, it is less performant in doing so.

RSA key exchange is based on the same asymmetric operations that prove
identity for digital signatures (e.g., X.509 certificates). It uses the public key of
the server to encrypt the shared secret for transmission. This key exchange
protocol is widely supported, although it has two primary limitations: it requires
use of RSA-based authentication, and it does not provide perfect forward
secrecy.

The security of practically all public key cryptography in popular use today is based on the
assumption that factoring large numbers is a hard, computationally expensive problem. This
assumption, however, is invalid when considering quantum computation. Classical computing
must rely on a technique known as the general number field sieve in order to derive the factors
of large numbers. It’s an algorithm that is relatively inefficient. Shor’s algorithm, on the other
hand, is a quantum algorithm that is exponentially more efficient than the general number field
sieve. It can be used to rapidly break most asymmetric key exchanges, given a sufficiently
powerful quantum computer.

Quantum-resistant protocols are under active development at the time of this writing. While



none is quite ready for production, the looming quantum threat should not deter one from
implementing public key cryptography today. It remains the best tool we have, and
cryptographers are working hard to define a clear path forward. For more information, check
out the Post-Quantum Cryptography conference.

Perfect Forward Secrecy

PFS, or perfect forward secrecy, is a cryptographic property in which the
disclosure of a private key does not result in the compromise of previously
negotiated sessions. This is a valuable property because it ensures that an
eavesdropper cannot record your session data for later decryption. The RSA key
exchange does not support PFS because the session key is directly encrypted and
transmitted using the private key. DHE or ECDHE must be used in order to
obtain PFS.

Mind Your Curves

Cryptography experts have called into question the security of many elliptic
curve-based key agreement implementations. While the math and fundamental
principles are sound, a standardized set of curves are typically used as the input
for these functions. These standard curves rely on a set of constants, which must
remain secure in order to maintain the integrity of cryptographic operations
performed with the resulting curves.

It is these constants which have been questioned. It is believed by some of the
brightest minds in the industry that the constants which are widely available for
these purposes have been manipulated by state actors and are compromised. If
this is true, it stands to reason that any elliptic curve crypto implementation
leveraging these well-known constants has in fact been secretly subverted.

For this reason, some experts recommend use of DHE key agreement over
ECDHE, despite its better math and performance properties. This is problematic
in some places, since not all clients fully support DHE (most famously, Internet
Explorer does not support DHE in combination with RSA authentication). The
recommended course of action in this case is to curate server-side cipher suites
to prefer DHE negotiation where available, falling back to ECDHE when
necessary.

Authentication
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There are three common authentication methods, one of which is on it’s way out:
RSA, DSA, and ECDSA.

RSA authentication is overwhelmingly the most common, in use in over 99% of
web-based TLS resources. Generally speaking, RSA is a safe bet so long as a
sufficiently-sized key is used. This caveat raises the concern that the we are
getting better at solving the mathematical problem at the heart of the RSA
algorithm, requiring key sizes to increase in order to keep up with advances.
Despite this, RSA remains the most popular and most often recommended
authentication method.

DSA authentication is no longer recommended. While it is (for the most part) a
sound technology at its core, a series of other problems have artificially
weakened it, including adoption and opinionated standardization. ECDSA, on
the other hand, is the newer cousin of DSA and uses elliptic curves to facilitate
public/private key pairs.

ECDSA is frequently touted as the future. It applies all the benefits of elliptic
curve cryptography to the authentication component, including smaller key size
and better performance and mathematical properties. It is presumed, however,
that ECDSA authentication is susceptible to the use of malicious elliptic curves,
as described in “Mind Your Curves”.

When making a decision between RSA and ECDSA authentication, the
brokenness of widely published elliptic curves should be carefully considered.
Identity compromise can be catastrophic. Additionally, ECDSA is not nearly as
widely supported as RSA is. With the acknowledgment of these two points, it is
fair to say that RSA authentication is still a good choice at the time of this
writing, despite the existence of a technologically superior algorithm (ECDSA).

Separation of duty

For the purposes of a zero trust network, it is a good idea to separate the
encryption duties from the application itself (Figure 8-7). The resource we are
securing in this case is the device, and as such, it makes a lot of sense for this
piece to be independent of the workload itself.

Doing this also alleviates a number of pain points, including zero-day mitigation,
performance penalties, and auditing. For protocols like IPsec, this separation of
duty is part of the design, but this is not the case for TLS. Historically,



applications speak TLS directly, loading and configuring shared TLS libraries
for remote communication.

We have seen this pattern’s rough spots time and time again. Shared libraries
become littered throughout the infrastructure, being consumed by a multitude of
projects, all with independent versions and configurations. Some languages have
more flexible libraries than others, limiting your ability to enforce the latest and
greatest. Above all, it is very difficult to ensure that all these applications are
indeed consuming TLS the right way, and remain up to date with regard to
known vulnerabilities.
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Figure 8-7. Traditional applications include TLS libraries and perform those duties themselves. Using a
local TLS daemon instead means better control and consistent performance.

To address the problem, it is useful to move the handling of TLS configuration
to the control plane. Connections to the service are brokered by the TLS daemon
then locally forwarded to the application. The TLS daemon is configured with
system certificates, trust authorities, and endpoint information—that’s about it.



In this way, we can ensure that all software receives device authentication and
security with TLS, regardless of its support for it. Additionally, since zero trust
networks whitelist flows, we can ensure that application traffic is protected by
limiting whitelisted flows to known TLS endpoints.

Bulk encryption

All the TLS intricacies and components discussed up to this point apply
primarily to the initial TLS handshake. The TLS handshake serves two primary
purposes: authentication and the creation of session keys.

TLS handshakes are computationally expensive due to the mathematical
operations required to make and validate them. This is a distinct trade-off
between security and performance. While we strongly desire this level of
security, the performance impact is prohibitively expensive if we apply these
operations to all communications.

Asymmetric cryptography is extraordinarily important in the process of secure
introduction and authentication, but its strength can be matched by symmetric
cryptography so long as identity or authentication is not a concern. Symmetric
encryption uses a single secret key instead of a public/private key pair, and is
less computationally expensive than asymmetric cryptography by orders of
magnitude. This is where the concept of a TLS handshake and session keys
comes in.

Some very smart mathematicians and cryptographers realized that we can use
the strong yet expensive operations to securely generate a single secret—one
which can be shared between the parties (Figure 8-8). The key exchange
component of TLS is that which generates this shared key and ensures that both
parties have knowledge of it.
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Figure 8-8. TLS handshake generates a symmetric encryption key for bulk transfer. IPsec uses a similar
mechanism.

This shared key is then used as the input for a symmetric encryption algorithm,
which is applied to all session traffic following the handshake. This
methodology ensures that the entire session benefits from the strength of
asymmetric cryptography without inheriting any of the performance implications
associated with asymmetric encryption schemes.

When it comes to choices for bulk encryption algorithms, TLS supports many,
but the recommendation is pretty well aligned across the board: just use AES. It
checks all the desirable boxes, including the fact that it is unpatented, widely
implemented in hardware, and practically universally implemented in software.
It is very performant, heavily vetted/scrutinized, and remains unbroken to the
best of public knowledge. Many people say “AES is good enough,” and while
that might be a tough pill to swallow when it comes to security protocols, such a
statement has never been so close to the truth.

Message authenticity

When communicating securely, message authenticity is an important if not
required property. Encryption provides confidentiality, but without message
authenticity, how do you ensure the integrity of that message? Without an error
during decryption, it is difficult or impossible to distinguish a tampered message
from an authentic one.

Some encryption modes (such as AES-GCM) provide message confidentiality
and authenticity guarantees simultaneously. However, these guarantees are only
applicable during bulk encryption; there are several TLS exchanges which are
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scheme protects those as well.

EXPLICIT AUTHENTICITY SOMETIMES REQUIRED

Since some bulk encryption algorithms provide message integrity assurances, it is not always
necessary to perform explicit authenticity checks on every packet. Instead, TLS will prefer
built-in assurances for bulk transfers and rely on explicit authenticity checks for all packets not
associated with the bulk transfer (for instance, TLS control messages).

As far as choice goes, the options are limited to MD5 and the SHA family of
hashes. The former has been cryptographically broken for quite some time now,
leaving the SHA family as the only reasonable choice for ensuring message
integrity under TLS. There are even concerns when using the weaker SHA
variant, SHA-1, as it is now considered vulnerable in the face of ever-increasing
compute power. As such, it is recommended to choose the strongest SHA hash
which can be reasonably deployed, given hardware and software constraints.

It is additionally recommended to use bulk encryption with built-in authenticity
wherever possible, as it is generally more performant and secure than relying on
a disjoint authenticity mechanism. TLS version 1.3 mandates the use of
authenticated encryption.

Mutually authenticated TLS for device authentication

Just like any other protocol used for device authentication, TLS comes with its
ups and downs.

The first is that, due to its position in the network stack, TLS is protocol-
dependent. It is most commonly implemented as a TCP-based protocol, though a
UDP-based variant dubbed DTLS is also available. The presence of DTLS
highlights the deficiency of the position of TLS in the stack. With this, TLS
suffers diminishing returns when used to secure IP protocols other than those
which it natively supports, like TCP or UDP.

Another thing to consider is the automation requirement. TLS is commonly
deployed as an infrastructure service in perimeter networks by leveraging
intermediaries which are typically positioned at the perimeter. This mode of
operation, however, is unsuitable for a zero trust network as long as the



intermediary and the upstream endpoint are separated by a computer network. In
a zero trust network, applications leveraging a TLS-speaking intermediary must
be on the same host as the intermediary itself. As a result, protecting datacenter
zero trust networks with TLS requires additional automation to configure
applications to speak through this layer of external security. It does not come
“for free” like other protocols such as IPsec.

All of that said, it remains today’s best choice for protecting client-facing zero
trust networks. TLS is very widely supported in both software and transit (i.e.,
intermediary networks worldwide), and can be relied upon for straightforward
and trustworthy operation. Most web browsers support mutually authenticated
TLS natively, which means that resources can be protected using zero trust
principles without the immediate need for specialized client-side software.

Filtering

Filtering is the process by which packets are admitted or rejected by systems on
a network. When most people think of filtering, they typically envision a
firewall, a service or device which sits between the network and application to
filter traffic going to or coming from that device. Firewalls do provide filtering,
but they can provide other services like network address translation (NAT),
traffic shaping, and VPN tunnel services. Filtering can be provided by other
systems not traditionally considered, like routers or managed switches. It’s
important to remember that filtering is a simple service which can be applied at
many points in a networked system.

Filtering can be quite frustrating for users without a security mindset since it
blocks desired network communication. Wouldn’t it be better to get rid of that
nuisance and assume the user knows what they want? Unfortunately, well-
meaning users can trivially expose services that on further inspection they would
rather not expose. During the early days of always-on internet connections,
users’ computers routinely made the accident of exposing file sharing and chat
services on the public internet. Filtering provides a type of checks and balances
for network communication, forcing users to consider whether a particular
connection should really cross a sensitive boundary.

Many of the zero trust concepts so far have focused on advanced encryption and
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nearly as pervasive in network designs as they should be. However, we should
not downplay the importance of network filtering. It is still a critical component
of a zero trust architecture, and so we will explore it in three parts:

Host filtering

Filtering of traffic at the host

Bookended filtering

Filtering of traffic by a peer host in the network

Intermediary filtering

Filtering of traffic by devices in between two hosts

Host Filtering

Host filtering deputizes a network endpoint to be an active participant in its own
security. The goal is to ensure that every host is configured to filter its own
network traffic. This is different than traditional network design, where filtering
is delegated to a centralized system away from the host.

Centralized filtering is most often implemented using a hardware firewall. These
firewalls make use of application-specific integrated circuits (ASICs) to
efficiently process packets flowing through the device. Since the device is often
a shared resource for many backend systems, these ASICs are critical for it to
accomplish the task of filtering the aggregate traffic of all those systems. Using
ASICs brings raw performance at the expense of flexibility.

Software firewalls, like those found in modern operating systems, are much
more flexible than their hardware counterparts. They offer a rich set of services
like defining policies based on time of day and arbitrary offset value. Many of
these software firewalls can be further extended with new modules to offer
additional services.

Unlike the early days of the internet, all modern desktop and server operating
systems now offer some form of network filtering via a host-based firewall:

Linux

[Ptables



BSD systems
Berkley Packet Filter (BPF)

macOS

Application firewall and additional host firewalls available via the command
line

Windows
Windows Firewall service

Perhaps surprisingly, neither iOS nor Android ships with a host-based firewall.
Apple’s iOS Security Guide notes that it considers a firewall unnecessary since
the attack surface area is reduced on iOS “by limiting listening ports and
removing unnecessary network utilities such as telnet, shells, or a web server.”
Google does not publish an official security guide. Android, perhaps owing to its
ability to run non-Play Store approved software, does have third-party firewalls
available to install if a user chooses to do so.

Zero trust systems assume the network is hostile. As a result, they filter network
traffic at every point possible, often using on-host firewalls. Adding an on-host
firewall reduces the attack surface of a host by filtering out undesirable network
traffic. While software-based firewalls don’t have the same throughput
capabilities as hardware-based systems, the fact that the filtering is distributed
across the system (and therefore sees a portion of the aggregate traffic) often
results in little performance degradation in practice.

Using on-host filtering is simple to get started with. Configuration management
systems have very good support for managing on-host firewalls. When writing
the logic to install services, it’s easiest to capture the allowed connections right
alongside its installation and configuration routines. Filtering in a remote system,
conversely, is more difficult since the exceptions are separated from the
application that needs them.

On-host firewalls also offer opportunities for novel uses of programmable
filtering. Single packet authorization (SPA), which we discussed earlier in this
chapter, is a great example of this idea. SPA programmatically manages the on-
host firewall to reduce the attack surface of a service on a host. This is
advantageous because on occasion, carefullv crafted malicious packets can be
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constructed to exploit a weakness in network services. For example, a service
might require authentication and authorization before processing a request, but
the authentication logic could have a buffer overflow error which an attacker can
use to implement a remote code execution vulnerability. By introducing a
filtering layer, we can hide the more complex service interface behind a simpler
system which manages firewall rules.

There are of course issues when using on-host firewalls exclusively for network
filtering. One such issue is the chance for a co-located firewall to be rendered
meaningless should a host become compromised. An attacker who is able to gain
access to a host and elevate their privilege could remove the on-host firewall or
adjust its configuration. Needless to say, this is a big deal, as it removes a layer
of defense in the system. This concern is why filtering has traditionally been
handled by a separate device, away from potentially risky hosts.

This approach highlights the benefits of isolation in security design, which on-
host filtering could benefit from. As the industry moves toward isolation
techniques like virtualization and containerization, it becomes clear that these
technologies present an opportunity to further isolate on-host filtering. Without
these technologies, the only form of isolation that is available is local user
privilege. On a Unix-based system, for example, only the root user is able to
make adjustments to the firewall configuration. In a virtualized system, however,
one could implement filtering outside the virtual machine, which provides strong
guarantees against attacks on the filtering system. In fact, this is how Amazon’s
security group feature is implemented, as shown in Figure 8-9.
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Figure 8-9. EC2 Security Groups move filtering outside the virtual machine to improve isolation

Another issue with on-host filtering is the cost associated with pushing filtering
deep into the network. Imagine a scenario where a large percentage of traffic is
filtered away by on-host filtering. By applying filtering nearest to the destination
system, the network incurs extra cost to transmit those packets, only for them to
be ultimately thrown away. This situation also raises the possibility of a denial-
of-service attack forcing internal network infrastructure to route large volumes
of useless traffic, as well as overwhelming the comparatively weaker software
firewalls. For this reason, while on-host firewalls are the best place to start
thinking about filtering, they present a risk if they are the only place filtering
occurs. We will discuss ways to push filtering out into the network in
“Intermediary Filtering”.

Bookended Filtering

Bookended filtering is the act of applying policy not just on the receipt of a



packet, but while sending them too. This mode of filtering is not commonly
found in traditional networks. It brings some interesting advantages to network
design, which we will now explore.

Egress (the opposite of ingress) is a term used to describe network traffic that is
leaving a host. This type of filtering is commonly used to manage
communication from a private network out to public networks, but it is rarely
used within a private network. There are a few reasons this is the case:

o Ingress filtering is easier to reason about, since listening services can be
enumerated when building firewall rules. Egress filtering requires more
bookkeeping to capture how hosts intend to communicate.

e Ingress filtering is generally considered good enough to stop undesirable
communication in the network.

e Egress filtering requires knowledge of every expected flow, something not
usually found in traditional networks.

Bookended filtering uses egress filtering within the zero trust network to further
harden the system. We can see how this hardening is beneficial with the example
shown in Figure 8-10. Let’s consider a system where a database server has
ingress filter rules set up to allow access from application servers. A well-
meaning administrator is investigating some network connectivity issues. In the
process of their investigation, the admin loosens the database’s ingress filtering
to rule out the possibility that it was causing the issue. Crucially, this
administrator forgets to revert their change after disproving that theory. This
error removes a layer of defense in the system for some time. Worse yet,
discovering this lost defense can be difficult because the expected
communication (from the app servers to the database server) continues to work.
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Figure 8-10. Bookended filtering can provide protection in unexpected circumstances

In this scenario, a network that has pervasive bookended filtering is protected
even when this critical misconfiguration is in the system. In a way, it’s similar to
herd immunity—the collective benefit that a community provides to
unvaccinated members when the vast majority of members are vaccinated
against a disease. Instead of preventing illness, bookended filtering protects
misconfigured systems from the potential impact of that misconfiguration.

Building bookended filtering into a system isn’t as hard as it might seem, given
the right conditions. Communication flows need to be captured in a way that can
be consumed programmatically. The best way to capture these flows is by
defining fine-grained ingress rules. These ingress rules should allow access to a
service based on each client’s server role instead of broadly opening access to a
service. By capturing this detail, we have constructed a dependency graph from
which egress rules can be calculated and applied throughout the system.

Like we discussed in host filtering, egress filtering is best applied when it is
isolated from the applications running within the system. The same insights
apply here: prefer implementing filtering on the other side of a virtualized or
containerized environment to have the most robust filtering mechanisms.
Looking beyond the filtering implementation, it’s important to consider the
isolation of the data used to build egress filtering rules. It might seem attractive
to calculate that data from a dynamic data source such as a service discovery
system, but bookended filtering is most effective when the flow database is



isolated from the running system. Instead use a slowly changing database,
especially one that requires a human to review changes.

PROJECT CALICO

Project Calico is a virtual network system for dynamically scheduled
workloads. A workload is a generic term that applies to any application
which needs to be run in a datacenter. This application could be inside a
container or a virtual machine. Calico takes the lessons learned in operating
the internet and brings them into the datacenter to create a simpler network
which can scale efficiently as the size of one’s network grows.

Calico is not a full zero trust solution, but it does echo some of the ideas of
zero trust networks. Calico distributes filtering throughout the network,
which is enforced on the host machines. These hosts are dynamically
reconfigured based on changes in a database which describes the entire
network. This design looks very similar to the host filtering we discussed
earlier.

Calico also includes the bookended filtering concepts we discussed. This
means that hosts on both ends of a connection are filtering traffic based on
their knowledge of which connections should be allowed. This double
enforcement of network communication is seen as a secondary defense in the
network fabric.

Intermediary Filtering

Intermediary filtering is the idea that devices other than the sender or receiver
can and should participate in filtering traffic in a zero trust network. This at a
minimum means perimeter filtering can play a role in a zero trust network, and
at the maximum, intermediary devices within the network’s fabric.

As we discussed in “Host Filtering”, filtering traffic only at the destination
incurs an extra cost on the network when the ratio of undesirable traffic is very
high. High throughput filtered traffic will most often originate from internet
ingress traffic. Ideally, we want to filter traffic as soon as possible to reduce the
impact and the cost of filtering. For this application, filtering at the perimeter
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systems that sit between the zero trust network and the internet is ideal. These
devices typically need to be hardware based to efficiently filter the packets
coming into the system.

Perimeter filters can also be an important check and balance in a zero trust
network. The perimeter filters should be a combination of global rules and
coarse-grained host policy. By keeping global rules separate from host policy,
invariants about the external network configuration are defined.

Exceptions to this policy should be traceable back to host infrastructure that
relies on those exceptions, and the actions taken to instantiate them. The best
implementation derives these exceptions from the host policies themselves. By
tying the host policy to the exception policy, the system will be more consistent
as hosts come and go from the network. These exceptions, however, must be
verified to be as narrowly scoped as possible. A review process should be
exercised for all policy changes in order to guard against overly broad
exceptions which can compromise the system’s security.

Deriving perimeter policies from host policies should not be conflated with UPnP, a
technology used to reconfigure consumer firewalls. UPnP is rightly criticized because any
application on the network can reconfigure the perimeter. In the zero trust model, there is a
chain of trust between the host policies and the exceptions that are created at the perimeter.

It might seem odd that we’re discussing perimeter filtering in such a positive
light, given the failings of the perimeter model. The key detail to understand
here is that zero trust networks don’t throw out all perimeter concepts. Instead,
they encourage administrators to start at the host and work their way outward.
Perimeter devices eventually play a role in this way, with denial-of-service
mitigation being by far the most notable application.

An exciting idea in zero trust networks is to use the host policy database to
dynamically program the network fabric itself. This would result in a software-
defined network (SDN) that does not blindly route packets to the destination, but
actively manages switching and routing policy based on which flows are
expected and allowed. This results in a few benefits:



e Potentially malicious traffic is kept away from hosts, reducing the attack
surface.

e Software firewalls on the hosts are augmented by the network itself, adding
additional layers of defense in the network.

Like the perimeter filtering discussed earlier, filtering in the network fabric
should be seen as an enhancement to the base layer of host-based filtering. It
must not act as a replacement for it.

FORWARDING AND ROUTING AUTHORIZATION

As we discuss filtering, there is a theme that arises—zero trust networks
leverage relatively slowly changing details of the network to distribute
enforcement, resulting in a network that is more secure. This observation
opens up an interesting opportunity: can we propagate enforcement into the
network infrastructure, effectively elevating those pipes from a simple
packet transmitting system to a smart network fabric?

Imagine an SDN controller which only installed flow instructions based on
the result of a strong authentication and authorization process. A client
wishing to access a network resource can signal the control plane, providing
the network access request along with the appropriate credentials. After
successful request authorization, the network is installed and available, but
only for the specific flow which was authorized.

Summary

This chapter focused on how traffic gains trust in a zero trust network. We
teased apart the distinctions between encryption and authenticity—two concepts
that are related but distinct. Zero trust networks require authenticity in
communication, and most networks also gain value in having their traffic
encrypted.

We explored the first packet problem in network communications. Modern
authentication systems are fairly complicated systems, which results in a large
surface area for attacks. We talked about hiding those services behind a single



packet authorization system, which is a relatively simple service that can be used
to hide a more complex authentication system like TLS.

We then talked about two competing protocols for encryption and authentication
of network traffic: TLS and IPsec. We discussed how these systems differ and
gave clear guidance that mutually authenticated TLS is best suited for
client/server interactions or in heterogeneous environments, while IPsec seems
well suited inside the datacenter (particularly so when Network Address
Translation is not present).

Zero trust networks still need packet filtering capabilities, which they deploy
throughout the network. We described three types of filtering that can be
deployed in such a network: host, bookended, and intermediary filtering. Each
type of filtering adds additional robustness to the network and can be deployed
in the network using system automation and a shared database of expected
network communication.

The next chapter takes all the concepts we have learned thus far and lays out a
plan for creating your own zero trust network.



Chapter 9. Realizing a Zero Trust
Network

This chapter will help readers develop a strategy for taking the knowledge in
previous chapters and applying it to their system. Zero trust networks are very
likely to be built around existing systems, so this chapter will focus on how to
make that transition successfully.

It’s important to remember that zero trust is not a product that can be bolted onto
the network. It is a set of architectural principles which are applied based on the
needs and constraints of the network. Therefore, this chapter cannot provide a
checklist of changes to be made, but rather a framework for how to approach
realizing in a zero trust network in your own system.

Choosing Scope

Before setting out to build a zero trust network, it is important to choose the
proper scope for the effort. A very mature zero trust network will have many
interacting systems. For a large organization, constructing these systems might
be feasible, but for smaller organizations, the number and complexity of those
systems may make a zero trust network seem out of reach.

It’s important to remember that the zero trust architecture is an ideal to work
toward instead of a list of requirements that must be met completely from day
one. This is no different than perimeter-based networks. Less mature networks
may initially choose a simple network design to reduce the complexity of
administration. As the network matures and the risk of a breach increases, the
network will need to be redesigned to further isolate systems.

While the zero trust network design is an ideal, not all features of the design
have equal value. Determining which components are required and which are
nice to have will go a long way in ensuring the success of a zero trust
implementation.



What’s Actually Required?

Limiting the scope of a zero trust network necessarily requires prioritizing the
set of properties that were presented earlier in this book. This RFC-style
prioritization list is the authors’ opinion on how that work should be prioritized:

e All network flows MUST be authenticated before being processed.
e All network flows SHOULD be encrypted before being transmitted.

e Authentication and encryption MUST be performed by the endpoints in the
network.

e All network flows MUST be enumerated so that access can be enforced by
the system.

e The strongest authentication and encryption suites SHOULD be used within
the network.

e Authentication SHOULD NOT rely on public PKI providers. Private PKI
systems should be used instead.

e Devices SHOULD be regularly scanned, patched, and rotated.

RFC-STYLE PRIORITIZED LISTS

RFC documents are the lingua franca of proposed changes to internet
infrastructure. In these documents, language and structure is clearly defined
to allow readers to more quickly understand the changes proposed in this
document.

One aspect of that language which is very useful in prioritization discussion
is the standard terms defined in RFC 2119. This RFC defines a set of terms
(MUST/MUST NOT, SHOULD/SHOULD NOT, MAY/MAY NOT) which,
when used, carry greater weight than their normal usage in common
literature.

This book’s prioritized list uses these terms with a similar intention to their
definitions in RFC 2119. While architectural characteristics don’t have quite
the same requirements as protocol designs, the use of these standard terms is
intended to echo the usage presented in that RFC.
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For completeness, here are the intended definitions of these standard terms
when used in this book:

MUST

This term is used for a requirement that is required for the implemented
system to be considered compatible with the zero trust design.

MUST NOT

This is the opposite of MUST. A system intending to implement the zero
trust design is required to not have this characteristic.

SHOULD

This term denotes an architectural characteristic that is desired in a zero
trust network, but given cost constraints can be deprioritized. When
deprioritizing this feature, system administrators should be aware that
they are trading the security of their systems for reduced cost in
implementing them. When at all possible, system administrators should
avoid compromising on these characteristics because the benefit of not
compromising on them is considered worth the upfront cost of their
implementation.

SHOULD NOT
This is the opposite of SHOULD.

MAY

This term is used for architectural characteristics of a zero trust network
that bring value, but are considered nice-to-haves. System administrators
should plan on implementing these aspects once they have built a system
that satisfies the MUST and SHOULD definitions. It is important to note
that these additional features bring additional value to the network by
hardening it, so they should not be considered a net loss.

With this prioritized list of design requirements for building a zero trust network,
let’s dig into why particular requirements were categorized the way they were.

All network flows MUST be authenticated before being processed



In a zero trust network, all packets received by the system are immediately
suspicious. As such, they must be rigorously inspected before allowing the data
within them to be processed. Strong authentication is the primary mechanism by
which we accomplish this.

Authentication is absolutely required in order to gain confidence about the
provenance of network data. It is, perhaps, the single most important component
of a zero trust network. Without it we have nothing, and are forced to place trust
in the network.

All network flows SHOULD be encrypted before being transmitted

A key lesson of this book is that a network link cannot be trusted to reliably
convey data or signals from one system to another. The physical accessibility of
a network link to unsafe actors makes it trivial for that network to be
compromised. Moreover, even in a physically secure network, bad actors can
digitally infiltrate a system and passively probe the network for valuable data.

By encrypting data on a device before transmitting it on the network, we reduce
the attack surface of that communication to the trustworthiness of the device
itself, namely application and physical device security.

Authentication and encryption MUST be performed by the
application-layer endpoints

Since zero trust networks recognize the threat that trusting network links pose to
the security of a system, it is important that secure communications be
established between application-layer endpoints. Adding middleware
components that handle these responsibilities (like VPN concentrators or TLS-
terminating load balancers) can leave upstream network communications
exposed to physical and virtual threats.

As a result, a system that claims to be zero trust is required to implement
encryption and authentication at every application-layer endpoint on the
network.

All network flows MUST be enumerated so that access can be
enforced by the system

Zero trust networks depend on data that defines the expected characteristics of



the network. Therefore, defining every expected network flow is critical to
safeguarding the network.

We should be careful to note that enumerating flows does not require onerous
change management controls to provide value. A simple process for defining
expected flows brings enormous value in terms of network enforcement and
change auditing.

Without the list of expected network flows, zero trust systems are unable to
highlight unexpected communications which need attention from administrators
or should be denied.

It is the strongly held opinion of the authors that deferring the effort to
enumerate flows will ultimately result in a task list that is considered infeasible.
The authors feel that the best way to keep this database of expected flows up to
date is to distribute the responsibility of defining those flows into the
organization. When distributing this responsibility, organizations should take
caution to educate teams on best practices for change management to guard
against internal threats to the system. One such threat is allowing a single person
to update the flow database without any oversight. A simple review system can
mitigate this threat.

FLOW DATA AS THE SOURCE OF TRUTH

Building a database of expected flows is best accomplished by making the flow database the
data source for allowing that access. By setting up this dependency (and disallowing external
modification), the flow database will be consistent with the actual allowed access.

When capturing flows, following these rules will improve the quality of the data:

e Capture the intended use of a flow along with the policy details (e.g., LB access—from LB
hosts to web application).

e Prefer narrowly defined flows over broad access.

The strongest authentication and encryption suites available
SHOULD be used within the network

Zero trust networks assume a hostile network environment, so strong
authentication and encryption suites are an important component in the security



of a zero trust network.

Which suites offer strong security unfortunately changes, so this book cannot
offer specific choices that will stand the test of time. Readers should refer to
security standards like the NIST encryption guidelines to pick strong cipher
suites.

System administrators should always aim for the strongest suites possible, but
device and application capabilities might limit the types of suites that are
available. In these cases, administrators should be aware that by reducing the
strength of these suites, security is being compromised in their network.

Authentication SHOULD NOT rely on public PKI providers—private
PKI systems should be used instead

Public PKI systems provide trust assurances to unmanaged endpoints in a secure
communication. A certificate authority signs certificates used in establishing
secure communications. The endpoint receiving that signed certificate is able to
verify its authenticity by comparing the signing material against the list of
trusted certificate authorities already present on the system. By seeding systems
with a list of trusted public certificate authorities, endpoints can establish secure
communication channels with systems they have not previously communicated
with.

Given the benefit that the public PKI system provides to build secure
communication channels, why do zero trust networks prefer private PKI
systems? The reason, perhaps unsurprisingly given zero trust’s focus on
managing trust, is that trusting a third party places the system at increased risk.
There are several risks that the public PKI system brings to a zero trust network.

One concern is the number of public certificate authorities that are considered
trusted. As internet traffic has grown, the number of trusted public CAs has
grown with it. Each one of those trusted CAs has the ability to sign a fraudulent
certificate that incorrectly asserts the trustworthiness of a malicious system.
Certificate pinning can help with this risk by giving an endpoint the knowledge
of which certificate to expect for a given endpoint, but certificate pinning
requires that the endpoint have prior knowledge of the expected certificate,
which presents a new challenge.

Using a public CA also presents another threat. State actors have become more



aggressive in using judicial powers to force organizations to act against the trust
guarantees that they provide to their customers. These requests have increasingly
used laws which prohibit involved parties from disclosing their actions. Given
this aggressive stance, allowing state actors into the trust mechanisms of a zero
trust network should give system administrators pause.

Based on these concerns, zero trust networks should prefer privately held PKI
systems. Endpoints should be configured to only allow certificates signed by the
private PKI system. We discussed PKI in greater detail in Chapter 2.

Devices SHOULD be regularly scanned, patched, and rotated

We learned in Chapter 5 that the security of devices is critical for building a zero
trust network. Administrators need to build with the assumption that trusted
devices on the network are compromised, and therefore build defenses into
device management to mitigate this threat.

To that end, devices should be regularly scanned to capture the software that’s
running or installed on the device at a given point in time. Scanning can be used
to discover and prevent known malicious software from running on the device,
but administrators should operate under the assumption that malware prevention
software (e.g., antivirus software) will always be imperfect. Rather than focusing
all energy on stopping malicious software from running, administrators should
focus on building forensics capabilities so they can analyze the impact of an
inevitable malware attack.

Keeping devices fresh is also very important. System administrators should have
a plan for regularly installing the latest security patches. Additionally, a regular
device rotation policy will help ensure that devices don’t accrue cruft, which can
compromise the security of that system.

PREFER REIMAGING OVER LONG-TERM SCANNING
AND PATCHING

Device trustworthiness degrades over time due to the increased risk that a device could have
been compromised. Regularly reimaging devices, while disruptive, ensures that the trust in the
fleet remains high. Aim to reimage servers once a quarter and personal devices every two
years.



Building a System Diagram

Building a system diagram is an important first step toward realizing a zero trust
network. Having a clear picture of how both internal and external network
communication is occurring will be useful when designing system
communication channels.

System diagrams, such as the one shown in Figure 9-1, are often maligned for
being horribly out of date. These diagrams are typically built by hand, which
requires a large amount of human effort. Given the speed at which the diagrams
fall out of date, there is a commonly held opinion that system diagrams simply
aren’t worth the investment. This viewpoint, however, misses the benefit of
having a human-focused view of how the system should be constructed. While
an engineer could read code or interrogate existing systems to determine how the
system is constructed, this doesn’t give any insight into whether that state was
desired or accidental.
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Figure 9-1. A diagram like this is a good starting point for building a zero trust network. Directionality is
important.

So if system diagrams are useful, but often out of date, the natural question is
how much time and effort should we put into their creation. A good path forward
for an existing network is to first observe the communication that is flowing
through the network. You can capture this communication using tools that log
flows. Once flow information is captured, producing a system diagram will be an
exercise in categorizing classes of communication.

In the next section, we will talk about tools for capturing and categorizing
network flows, as well as a strategy for breaking down this large effort into
smaller chunks of work.



Understanding Your Flows

A network flow is a time-bound communication between a source system and a
destination. A single flow could be be directly mapped to an entire conversation
when using a bidirectional transport protocol (e.g., TCP). For unidirectional
transport protocols (e.g., UDP), a single flow might only capture half of a
network conversation. This is because while two UDP flows might be logically
related, an observer on the network may be unable to make that association
without a deep understanding of the application data.

Capturing all the flow activity in an existing production network is a logical first
step for a system that wants to move to a zero trust model. Logging flows in a
network over a long period of time is a noninvasive way to discover what
network connections exist and should be considered in the new security model.
Without this upfront information gathering, efforts to move to a zero trust model
will result in frequent network communication issues, causing the project to be
deemed too invasive and disruptive.

WAYS TO DISCOVER FLOWS

There are many different mechanisms for logging and analyzing network
flows. Which system is used will largely depend on the type of network
being run (physical or virtual) and the level of access that an administrator
has over the endpoints.

Physical networks have rich capabilities for accessing the raw packets that
are flowing over the network. Business-class switches will generally have
the ability to mirror packets to a second port on the switch (known as a
SPAN or mirror port). This approach is relatively safe to enable on a lightly
loaded switch, but it will mask some types of errors in the network. TAP
devices, which are placed inline in the network link, will guarantee that all
data is transmitted to a monitoring device. For the purposes of discovering
logical flows in the network, either approach will work.

Virtualized networks might have the ability to inspect network traffic, but
they generally operate on a coarser level. Amazon Web Services, for
example, has a feature that logs every flow in a network, which can be used
to analyze traffic on its systems (Figure 9-2).
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Figure 9-2. Some cloud providers have flow logging features built in; this is a screenshot of the AWS
flow log feature (used with permission from Roy Feintuch)

While discovering flows via the network fabric gives perfect visibility into
the traffic that is flowing, tying that analysis back to individual applications
is difficult without some endpoint monitoring system. In the case where
control of endpoints is feasible, discovering network flows on the endpoints
themselves can provide a more detailed view of the source of traffic in the
system. Software firewalls operating in log-only mode can be a useful tool to
discover flows in the system without impacting communication.

On Linux endpoints, there are several approaches to discovering and
cataloging network flows, which Harald Welte’s paper “Flow-based network
accounting with Linux” captures.

With all network flows logged, the next goal is to categorize flows based on
higher-level system connections. These connections should be defined at the
logical systems level instead of the individual IP/port level. The connections
being defined with this exercise are very valuable data. With the definitions in
hand, one is able to better enforce known connections and gain awareness of
changes to the communication patterns within a network. Since many operations
of secure network can be derived from this database of connections, it’s clear
that capturing this mapping is very useful.

For a very large network, capturing and categorizing all network flows could be
an enormous undertaking. The natural question is whether capturing all network
connections is a requirement for transitioning to a zero trust network.
Fortunately, a zero trust network can be incrementally realized within an existing
perimeter-based system. One can leverage the existing perimeter or network
boundaries to build a zero trust network on either side of the boundary. The zero
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trust model can then spread from zone to zone as in Figure 9-3, enhancing the
network security of the existing system while maintaining the operational
security measures already in place.
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Figure 9-3. Zero trust adoption can move zone by zone, giving an easy migration path away from the
traditional perimeter architecture

Controller-Less Architecture

A fully mature zero trust network will have at its core several control plane
systems which provide critical security services. While having these systems is
ideal, it is possible to iterate toward the idealized deployment while using
common infrastructure systems initially. We will explore some of these systems
now.

“Cheating” with Configuration Management

Many operationally mature organizations use configuration management tools to



manage their infrastructure. When using these systems, the desired configuration
state is captured and version controlled. After examining the current state of the
system, the configuration management system uses this desired configuration to
calculate modifications that will bring the system to the desired state. Using a
configuration management tool brings a number of benefits over planned
changes executed by humans:

e Changes to the system are applied consistently across the entire fleet.

e The configuration data can be stored in a version control system, which
provides a useful record of what changes were made and why.

e Configuration drift is less likely to occur, since its state is policed by the
configuration management system.

The first way that configuration management is often deployed is to manage the
configuration of individual computers. The systems are started from a known
blank slate (usually just the initial installation of the operation system) and then
reconfigured to the desired state based on that machine’s role in the
infrastructure. Having this process automated makes it easy to replace
infrastructure.

While using configuration management for this task brings a lot of value, these
tools can also be used as a general-purpose automation framework. For instance,
they can be used to configure cryptographic primitives between infrastructure
hosts, or to poke tightly scoped holes in host-based firewalls. In this way,
configuration management (or CM) systems can be used to drive a subset of the
functions that are normally offered by a mature zero trust control plane.

Similarly, CM systems can also be used to build up useful abstractions in the
network. Most CM tools support mechanisms for extending the set of available
resources or actions. Using this extension point, it’s possible to build more
complex resources into the system. For example, one could define the concept of
a service resource which would capture all the standard infrastructure that should
be used to make the service available on the network.

CM IS A TEMPORARY STEPPING STONE

Configuration management systems are best deployed in a manner where the system reaches a



stable configuration. With this ideal in mind, using a configuration management system to
make frequent changes to the system would seem counterproductive. We shouldn’t dismiss
this concern, as it has some validity to it. Instead, we should be mindful that leveraging a
configuration management system to build a zero trust network is just a stepping stone to the
ideal solution, which would move those responsibilities to a dedicated controller.

Application Authentication and Authorization

A typical organization makes use of many services, the client-side delivery of
which is increasingly browser-based. Since a zero trust network does not infer
trust based on the network address of a connection, every service needs to handle
authentication and authorization.

A simple solution is to to store username and passwords in each application.
This approach, however, is heavily discouraged, primarily due to management
complexity.

Instead of having each application implement its own authentication systems, it
is far better to have applications integrate with an identity provider system which
can provide centralized authentication and authorization checks. SAML
(Security Assertion Markup Language) is one technology that can be used to
integrate an application with an identity provider. OAuth2 is another.

This is not to say that an application should have no authorization
responsibilities at all. To the contrary, it is expected that some application-level
authorization exist, particularly when considering things like varying user
permissions. The overhead of account management, user authentication, and
high-level authorization/access can be offloaded while still allowing room for
application-centric authorization.

When authenticating with an identity provider, multifactor authentication must
be used to ensure that the user credentials cannot be easily stolen. We discussed
multifactor authentication in Chapter 6.

Authenticating Load Balancers and Proxies

Many service architectures call for the use of a load balancer to distribute
requests to a set of backend hosts. Oftentimes these load balancers represent the
boundary between a client-facing system and a datacenter system. This can



create confusion around how to properly apply zero trust controls in such a
system, since client-facing zero trust semantics can be fairly different than
server-side systems.

In Chapter 7, we spoke about how to manage application authentication and
authorization as an analog to user authentication and authorization. In backend
systems, the best way to authorize an application is to inject ephemeral
credentials at runtime, whether that be an API key, short-lived certificate, or
otherwise. Each credential uniquely represents a running application instance.

In a load-balanced system, the load-balancing software itself can be viewed as a
server-side application. Each software instance is started with ephemeral
credentials identifying the instance to upstream hosts. This is in addition to
device authentication, which occurs between the load balancer and upstream
system using techniques discussed in Chapter 5.

With this architecture, the load balancer can then handle user and client device
authentication and authorization responsibilities, leveraging identity providers if
desired. Information from the resulting authentication and authorization process
(such as username) can then be sent along with the original request to the
backend hosts. In this way, the zero trust architecture can be preserved as data
crosses client-server boundaries and enters the datacenter.

PREFER SECURITY TOKENS OVER TOTP

When multifactor authentication was first deployed in organizations, users were given simple
devices which continuously generated time-based tokens. With the prevalence of today’s smart
phones, most users prefer to use a multifactor application on their smart phone to generate
codes.

Protocols which use security tokens, like U2F, are increasingly prefered over time-based token
systems due to their protection against phishing attacks. It’s a bonus that these systems are
generally also easier for users to work with. When possible, prefer security tokens over TOTP
systems. We discussed these technologies in Chapter 6.

Relationship-Oriented Policy

Zero trust advocates for a control plane that injects the results of authorization
decisions into the network to allow trusted communication to occur. In that



model, each network flow is individually authenticated and authorized.
Enforcement is obtained by reconfiguring or signaling the network fabric to
allow authorized communication.

In a scaled-down zero trust network, which lacks these control plane systems, we
are forced to scale back that ambition. Instead of building a network that uses
dynamic injection and signaling, we can build a system that defines policies at
the relationship level.

In relationship-oriented network policy, communication between two devices is
defined and controlled via traditional network filtering mechanisms like
firewalls and required TLS connections. These policy enforcement mechanisms
can seem very similar to a perimeter-based model. The key difference in the
relationship-oriented model is that the policy is tightly scoped to communicating
devices instead of communicating network segments. This approach is
sometimes referred to as microperimeterization.

By capturing and enforcing which devices should be communicating with each
other, we build a database of expected communication which will be of great
value in the future when dynamic policy systems are deciding whether to allow a
network flow.

Policy Distribution

Distributing policy (as opposed to just enforcement) throughout the network is a
common characteristic of a scaled-down version of zero trust. Given the fine-
grained policy decisions we expect in the network, automation is critical to
making the network operable.

In a mature zero trust network, policy interpretation is fully handled by control
plane systems, which can dynamically reconfigure network infrastructure and
devices, or give authorization responses to signaling enforcement components.

In a controller-less deployment, however, we must use a different mechanism.
Configuration management systems can be used to fill this void in the network
control plane.

Devices can be dynamically configured to implement their own enforcement of
expected network communication. Configuring an on-host software firewall
which is calculated from the relationship policy database can provide per-host



enforcement that is less difficult to operate than a centralized, physical firewall.
Communications can be similarly authorized by hosts via mechanisms like
mutually authenticated TLS, again controlled by configuration management
software.

The key realization here is that by using existing configuration management
systems, we are able to build a virtual control plane which can distribute
enforcement responsibilities into the network fabric. While this approach is
pragmatic, it isn’t without its downsides:

e Requiring hosts to enforce policy risks having that policy removed or altered
should the host be compromised. In compatible environments, pushing this
responsibility across an isolation boundary (e.g., a hypervisor, the host OS in
containerized systems, or network security groups) provides better protection.

e Changes via configuration management systems often have a longer period of
inconsistency while policy is being rolled out into the system.

Defining and Installing Policy

Security policies need to be captured in a format that’s separate from the
individual devices that are used to implement those policies. There are a few
reasons for storing this data outside the implementing systems:

e Having the policy captured separately allows for auditing of the
implementation against the desired policy.

e The policy definitions can be reused when switching underlying enforcement
systems. For example, configuring a new vendor’s system is made easier if
the policy is captured in a non—vendor-specific format.

A separate database that captures intended policy can quickly fall out of date
unless mechanisms are put in place to ensure that it is consistent with the
implementation. The best way to ensure this happens is to generate
implementation configuration from this policy database using configuration
management systems.

Some system administrators may choose to capture policy directly in
configuration management code. In less mature networks, this approach is



considered sufficient, since the configuration management system will
consistently apply the policies defined on the target devices. As the network
matures, administrators may find that moving the definitions out to data allows
for them to be used in more locations. For example, host-based and managed
network firewalls could be configured from a shared policy database if that data
is extracted from configuration management code.

Defining variable trust policies is too difficult to attempt in less mature
networks. System administrators should instead focus on defining and capturing
known policies.

When building up policies, especially in an existing network, it is helpful to have
mechanisms for testing proposed policies. The gold standard is a system which
can take proposed policy changes and report on traffic which would be denied
by the enforcement of those policy changes. Building up this policy preview
system requires quite a few components: a database of logged production flows,
a policy simulator, and a system to identify differences in current production
policy and proposed policy. For many organizations, that level of sophisticated
policy simulation is simply out of reach.

A simpler approach to safely introducing policy changes can be achieved using
the following rollout procedure:

1. Take a subset of the desired policy, which we will call the proposed policy.
Deploy the proposed policy in a logging-only fashion.

Collect production traffic over a sufficient period of time.

A W

Investigate traffic which would be rejected should the proposed policy be
enforced.

i

Enforce the proposed policy.
6. Repeat this process until all desired policy has been deployed.

7. When all the desired policy is in place, enable a policy which rejects traffic
by default.

This “log then enforce” procedure will provide ample time to discover
unforeseen issues in the production environment. In addition to this approach, a



phased rollout, where policy is enforced over a subset of the production
footprint, can also help identify issues without affecting the entire production
system.

Zero Trust Proxies

Zero trust proxies are application-level proxy servers which can be used to
secure a zero trust network. Proxies are deployed as infrastructure to handle
authentication, authorization, and encryption responsibilities. The manner in
which these proxies are deployed is critical to ensure the safety of a zero trust
network.

Zero trust proxies can operate in two different modes: reverse proxy or forward
proxy. Depending on the situation, one or both of these proxy modes may be
used, as shown in Figure 9-4.

In reverse proxy mode, the proxy is receiving connection requests from zero
trust-enabled clients. The proxy receives the initial connection, validates that the
connection should be allowed, and then passes the request to the application for
processing.

In forward proxy mode, a non-zero—trust-aware component needs to make a
network request to another zero trust system on the network. Since the non-zero—
trust-aware component is unable to work with the control plane to initiate the
request properly, it communicates through the authentication proxy to handle
that responsibility.
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Figure 9-4. Co-located forward proxies can be used to connect to zero trust resources from legacy systems,
while co-located or centralized reverse proxies can allow access to legacy services by zero trust clients.

Proxies can be used to build a zero trust network, but the proxies should be
deployed on the same device that the workload is running on. When a zero trust
network is built in this manner, all workload communication is forcibly routed
through the proxy before being emitted on the network. Isolating this
responsibility in a proxy brings advantages over incorporating it in individual
applications, which we covered in Chapter 8.

Placing proxies on dedicated devices is not recommended for building a zero
trust network. Trying to isolate zero trust responsibilities in an external proxy
goes against the model which seeks to secure all traffic, including traffic
between proxies/load balancers and backend services.

Building a zero trust network can be especially difficult for system
administrators who do not have complete control of all devices or services on the
network. For example, a network might have vendor-supplied components
which need to be secured without changing the device itself.

Zero trust proxies can help bridge the gap in this situation. Placing such a proxy



between the unmodifiable component and the zero trust network can allow that
component to participate in the network, though with a lesser guarantee of its
security.

It is critical that the non-zero—trust-aware component be completely isolated.
This isolation must ensure that all network communication to and from that
component can only occur through its authentication proxy. If possible, direct
mechanical connection should be preferred.

Client-Side Versus Server-Side Migrations

When realizing a zero trust network, deciding on whether client-to-server
interactions or server-to-server interactions should be undertaken first is
ultimately dependent on the needs of the organization and the level of effort
required to meet the goal.

Client-to-server interactions are usually the first to be focused on. Oftentimes,
the clients are physically mobile and accessing services from uncontrolled
networks. Additionally, with these devices being mobile, the physical security of
the device is reasonably called into question. Building zero trust capabilities at
this access point therefore brings a lot of value.

There are, however, real hurdles to building zero trust at the client/server layer.
Organizations don’t necessarily have existing automation systems installed on
client machines to allow the zero trust network to be built. Additionally, the
types of devices in use on the clients can be much more diverse, which means
that the required automation has to be compatible with more systems.

Server-to-server interactions can be an easier initial target for zero trust
networks. These systems frequently have existing automation tools installed.
They also tend to have a less diverse set of providers in use. Finally, they are
often the systems which are housing sensitive data, and so are an attractive target
for would-be attackers.

Ultimately, the decision of where to start should focus on which target is the
weakest link in the system’s network defenses. Building a threat model can help
determine which systems are the most exposed. With that knowledge, choosing
where to invest time and resources is easier.



Case Studies

Since the exact architecture of a zero trust network is dependent on the details of
a particular organization’s network, it can be hard to see how all the pieces fit
together. To help visualize how these principles manifest themselves in different
situations, we are going to explore the experiences of a couple organizations that
have successfully transitioned to a zero trust model.

Google’s BeyondCorp effort focused on bringing zero trust architecture to the
client-to-server interactions that their highly distributed and mobile workforce
uses every day.

PagerDuty’s Cloud Agnostic Network focuses on server-to-server and cross-
cloud interactions which needed to be secured from both external and internal
threats.

Case Study: Google BeyondCorp
Betsy Beyer

Starting in November 2014, Google published a series of articles in ;login:
describing a new and groundbreaking security model it was deploying to its
entire corporate network. The following case study is based on excerpts from
those three articles, with permission from Google and :login;.

We encourage you to read the original source material to learn more details:

e “BeyondCorp: A New Approach to Enterprise Security”
e “BeyondCorp: Design to Deployment at Google”
e “Beyond Corp: The Access Proxy”

By the early 2010s, Google was increasingly uncomfortable with the perimeter
model of network defense. Creating high, impregnable “castle walls” was not
going to protect us when tens of thousands of our employees performed much of
their work while physically outside our offices, while on any given day we
invited thousands of people inside. At the same time, as the critical role Google
plays in the lives of billions of users continued to increase, so did the almost
incalculable value we place on the user data entrusted to us.


https://research.google.com/pubs/pub43231.html
https://research.google.com/pubs/pub44860.html
https://research.google.com/pubs/pub45728.html

In light of the scope and scale of our employee base and our corporate network,
and the variety of ways in which our employees interact with corporate resources
(as a mobile workforce using cloud services and a variety of client devices), it
became obvious that the castle-wall metaphor was unsustainable.We needed a
strategy much more akin to a modern city than a medieval castle: a system that
mediates access to applications, data, and services according to who you are, not
which network you use.

With this security imperative in mind, Google revisited the state of the enterprise
with a fresh set of eyes. We knew that we could do better than any of the
conventional network security models deployed across the industry, so we took
the radical step of redesigning our entire approach.

Starting from square one in re-envisioning internal network security, we invested
over four years of design and iteration in creating a robust implementation of the
zero trust model. While most enterprises assume that the internal network is a
safe environment in which to expose corporate applications, we assume that an
internal network is as fraught with danger as the public internet.

This new model dispenses with a privileged corporate network entirely. Instead,
access depends solely on device and user credentials, regardless of a user’s
network location—be it an enterprise location, a home network, or a hotel or
coffee shop. All access to enterprise resources is fully authenticated, fully
authorized, and fully encrypted based upon device state and user credentials. We
can enforce fine-grained access to different parts of enterprise resources. As a
result, all Google employees can work successfully from any network, and
without the need for a traditional VPN connection into the privileged network.
The user experience between local and remote access to enterprise resources is
effectively identical, apart from potential differences in latency.

When reading the following case study, keep in mind that we’re well aware that
Google is unique both in terms of its scale and in the amount of resources we
were able to devote to this problem space. Because we weren’t constrained by
resources, we could act more or less purely motivated by ambitious goals that
did away with the conventional network security paradigm.

Fast-forward from BeyondCorp’s inception to 2017: hacking tools have
advanced in sophistication and dropped massively in cost. Malicious efforts that
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are now applicable to much smaller enterprises. While the risk profile of small-
to medium-sized organizations has increased, so too have their options to protect
themselves: the commercial network security industry has likewise matured.
While Google had to build its security infrastructure from scratch, today there
actually are enterprise network security offerings your organization can employ
in moving away from the perimeter model. Regardless of individual components
you’re considering in this space, keep the core design principles and objectives
that motivated Google in mind as you develop a strategy.

While technical and implementation details of BeyondCorp may have varying
degrees of direct applicability to your enterprise or organization, many of the
risk factors we designed to protect against are widely germane, and the
fundamental design principles we employed should be directly relevant to all.

The Major Components of BeyondCorp

As shown in Figure 9-5, BeyondCorp consists of many cooperating components
to ensure that only appropriately authenticated devices and users are authorized
to access the requisite enterprise applications. The following sections describe
individual components of BeyondCorp.
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Figure 9-5. BeyondCorp components and access flow



Securely identifying the device

BeyondCorp securely identifies and tracks all managed devices using a master
Device Inventory Database and device certificates.

Device inventory database

BeyondCorp uses the concept of a “managed device,” which is a device that is
procured and actively managed by the enterprise. Only managed devices can
access corporate applications. A device tracking and procurement process
revolving around our Device Inventory Database is one cornerstone of this
model.

As a device progresses through its lifecycle, Google keeps track of changes
made to the device. This information is monitored, analyzed, and made available
to other parts of BeyondCorp. Because Google has multiple inventory databases,
we use a meta-inventory database to amalgamate and normalize device
information from these multiple sources, and to make the information available
to downstream components of BeyondCorp. With this meta-inventory in place,
we have knowledge of all devices that need to access our enterprise.

Device identity

All managed devices need to be uniquely identified in a way that references the
record in the Device Inventory Database. One way to accomplish this unique
identification is to use a device certificate that is specific to each device.

To receive a certificate, a device must be both present and correct in the Device
Inventory Database. We store the certificate on a hardware or software Trusted
Platform Module (TPM) or a qualified certificate store. A device qualification
process validates the effectiveness of the certificate store, and only a device
deemed sufficiently secure can be classed as a managed device. These checks
are also enforced as certificates and are renewed periodically. Once installed, the
certificate is used in all communications to enterprise services. While the
certificate uniquely identifies the device, it does not single-handedly grant access
privileges. Instead, it is used as a key to a set of information regarding the
device.

Securely identifying the user

BevondCorp also tracks and manages all users in a User Database and a Groubp



Database. This database system tightly integrates with Google’s HR processes
that manage job categorization, usernames, and group memberships for all users.
An externalized, single sign-on (SSO) system is a centralized user authentication
portal that validates primary and second-factor credentials for users requesting
access to our enterprise resources. After validating against the User Database

and Group Database, the SSO system generates short-lived tokens that can be
used as part of the authorization process for specific resources.

Externalizing applications and workflows: The access proxy

All enterprise applications at Google are exposed to external and internal clients
via an internet-facing access proxy that enforces encryption between the client
and the application. The Access Proxy is configured for each application and
provides common features such as global reachability, load balancing, access
control checks, application health checks, and denial-of-service protection. This
proxy delegates requests as appropriate to the backend application after the
access control checks (described in the next section) complete. See “Leveraging
and Extending the GFE” for more details about AP features.

Implementing inventory-based access control

The level of access given to a single user and/or a single device can change over

time. By interrogating multiple data sources, we are able to dynamically infer the
level of trust to assign to a device or user. The Access Control Engine (described
in more detail next) can then use this trust level as part of its decision process, as
in the following examples:

¢ A device that has not been updated with a recent OS patch might be relegated
to a reduced level of trust.

e A particular class of device, such as a specific model of phone or tablet,
might be assigned a particular trust level.

e A user accessing applications from a new location might be assigned a
different trust level.

We use both static rules and heuristics to ascertain these levels of trust.

An Access Control Engme within the Access Proxy provides service-level
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autnorizarton 10 enterprise applications on a per-request basis. 1Ne autnorizauon
decision takes several factors into account:

¢ Information about the user, the groups to which the user belongs, the device
certificate, and artifacts of the device, as reported by the Device Inventory
Database

e The inferred level of trust in the user and the device

o If necessary, the Access Control Engine can also enforce location-based
access control

For example, the following policies are possible with the Access Control Engine:

e Restrict access to Google’s bug tracking system to fulltime engineers using
an engineering device.

e Restrict access to a finance application to fulltime and part-time employees in
the finance operations group using managed non-engineering devices.

The Access Control Engine can also restrict parts of an application in different
ways. For example, viewing an entry in our bug tracking system might require
less strict access control than updating or searching the same bug tracking
system.

Leveraging and Extending the GFE

A conventional approach might integrate each backend with the device trust
inference service in order to evaluate applicable policies; however, this approach
would significantly slow the rate at which we’re able to launch and change
products. Instead, Google implemented a centralized policy enforcement
frontend Access Proxy (AP) to handle coarse-grained company policies.

BeyondCorp leverages the existing Google Front End (GFE) infrastructure as a
logically centralized point of access policy enforcement. Funneling requests in
this manner led us to naturally extend the GFE to provide other features,
including self-service provisioning, authentication, authorization, and centralized
logging. The resulting extended GFE is called the Access Proxy (AP). The
following section details the features of the AP that are particularly pertinent to
this case study. For details about its other features, see “Beyond Corp: The
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Access Proxy”.

The GFE provides some built-in benefits, such as load balancing for the
backends and TLS management, that weren’t designed specifically for
BeyondCorp. The AP extends the GFE by introducing authentication and
authorization policies.

User authentication

In order to properly authorize a request, the AP needs to identify the user and the
device making the request. Authenticating the device poses a number of
challenges in a multiplatform context, which we address in “Challenges with
Multiplatform Authentication”.

The AP verifies user identities by integrating with Google’s Identity Provider
(IdP). Because it isn’t scalable to require backend services to change their
authentication mechanisms in order to use the AP mechanism, the AP needs to
support a range of authentication options: OpenID Connect, OAuth, and some
custom protocols.

The AP also needs to handle requests without user credentials, for example, a
software management system attempting to download the latest security updates.
In these cases, the AP can disable user authentication.

When the AP authenticates the user, it strips the credential before sending the
request to the backend. Doing so is essential for two reasons:

e The backend can’t replay the request (or the credential) through the Access
Proxy.

e The proxy is transparent to the backends. As a result, the backends can
implement their own authentication flows on top of the Access Proxy’s flow,
and won’t observe any unexpected cookies or credentials.

Authorization

Two design choices drove our implementation of the authorization mechanism:

e A centralized access control list (ACL) engine queryable via remote
procedure calls (RPCs)



¢ A domain-specific language to express the ACLs that is both readable and
extensible

Providing ACL evaluation as a service enables us to guarantee consistency
across multiple frontend gateways (e.g., the RADIUS network access control
infrastructure, the AP, and SSH proxies). We chose to combine coarse-grained,
centralized authorization at the AP with fine-grained authorization at the
backend.

Mutual authentication between the proxy and the backend

Because the backend delegates access control to the frontend, it’s imperative that
the backend can trust that the traffic it receives has been authenticated and
authorized by the frontend. This is especially important since the AP terminates
the TLS handshake, and the backend receives an HTTP request over an
encrypted channel.

Meeting this condition requires a mutual authentication scheme capable of
establishing encrypted channels—for example, you might implement mutually
authenticated TLS authentication and a corporate public key infrastructure. Our
solution is an internally developed authentication and encryption framework
called LOAS (Low Overhead Authentication System) that bidirectionally
authenticates and encrypts all communication from the proxy to the backends.

One benefit of mutual authentication and encryption between the frontend and
backend is that the backend can trust any additional metadata inserted by the AP
(usually in the form of extra HTTP headers). While adding metadata and using a
custom protocol between the reverse proxy and the backends isn’t a novel
approach (for example, see Apache JServe Protocol), the mutual authentication
scheme between the AP ensures that the metadata is not spoofable.

As an added benefit, we can also incrementally deploy new features at the AP,
which means that consenting backends can opt in by simply parsing the
corresponding headers. We use this functionality to propagate the device trust
level to the backends, which can then adjust the level of detail served in the
response.

Challenges with Multiplatform Authentication



At minimum, performing proper device identification requires two components:
e Some form of device identifier
¢ An inventory database tracking the latest known state of any given device

Because BeyondCorp replaces trust in the network with an appropriate level of

trust in the device, each device must have a consistent, non-cloneable identifier,
while information about the software, users, and location of the device must be

integrated in the inventory database.

Desktops and laptops

Desktops and laptops use an X.509 machine certificate and a corresponding
private key stored in the system certificate store. Key storage, a standard feature
of modern operating systems, ensures that command-line tools (and daemons)
that communicate with servers via the AP can be consistently matched against
the correct device identifier. Since TLS requires the client to present a
cryptographic proof of private key possession, this implementation makes the
identifier non-spoofable and non-cloneable, assuming it’s stored in secure
hardware such as a Trusted Platform Module (TPM).

Mobile devices

Instead of relying on certificates, we use a strong device identifier natively
provided by the mobile operating systems. For iOS devices, we use the
identifierForVendor, while Android devices use the device ID reported by the
Enterprise Mobility Management application.

Migrating to BeyondCorp

Like virtually every other enterprise in the world, Google maintained a
privileged network for its clients and applications for many years. This paradigm
gave rise to significant infrastructure that is critical to the day-to-day workings
of the company. While all components of the company will migrate to
BeyondCorp, moving every network user and every application to the
BeyondCorp environment in one fell swoop would be incredibly risky to
business continuity. For that reason, Google has invested heavily in a phased
migration that has successfully moved large groups of network users to



BeyondCorp with zero ettect on their productivity.

Deploying an unprivileged network

To equate local and remote access, BeyondCorp defines and deploys an
unprivileged network that very closely resembles an external network, although
within a private address space. The unprivileged network only connects to the
internet, limited infrastructure services (e.g., DNS, DHCP, and NTP), and
configuration management systems such as Puppet. All client devices are
assigned to this network while physically located in a Google building. There is
a strictly managed access control list (ACL) between this network and other
parts of Google’s network.

Workflow qualification

All the applications used at Google are required to work through the Access
Proxy. The BeyondCorp initiative examined and qualified all applications,
which accomplish tasks ranging from the simple (e.g., supporting HTTPS
traffic) to the more difficult (e.g., SSO integration). Each application required an
AP configuration and, in many cases, a specific stanza in the Access Control
Engine. Each application went through the following phases:

1. Available directly from the privileged network and via a VPN connection
externally.

2. Auvailable directly from the privileged network and via the AP from external
and unprivileged networks. In this case, we used split DNS. The internal
name server pointed directly at the application, and the external name pointed
at the AP.

3. Awvailable via the AP from external, privileged, and unprivileged networks.

Cutting back on VPN usage

As more and more applications became available via the Access Proxy, we
started actively discouraging users from using the VPN, employing the
following strategy:

1. We restricted VPN access to users with a proven need.

2. We monitored use of the VPN and removed access rights from users who did



not use VPN over a well-defined period.

3. We monitored the VPN usage for active VPN users. If all of their workflows
were available through the AP, we strongly encouraged users to give up their
VPN access rights.

Traffic analysis pipeline

It was very important that we moved users to the unprivileged network only
when we were certain (or very close to certain) that all of their workflows were
available from this network. To establish a relative degree of certainty, we built
a traffic analysis pipeline. Our analysis proceeded as follows:

1. As input to this pipeline, we captured sampled netflow data from every
switch in the company.

2. We analyzed this data against the canonical ACL between the unprivileged
network and the rest of the company’s network. This analysis allowed us to
identify the total traffic that would have passed the ACL, plus an ordered list
of traffic that would not have passed the ACL.

3. We could now attach the nonpassing traffic to specific workflows and/or
specific users and/or specific devices.

4. We progressively worked through the list of nonpassing traffic to make it
function in the BeyondCorp environment.

Unprivileged network simulation

To augment the traffic analysis pipeline, we also simulated unprivileged network
behavior across the company via a traffic monitor that we installed on all user
devices attached to Google’s network. The traffic monitor examined all
incoming and outgoing traffic on a per-device basis, validated this traffic against
the canonical ACL between the unprivileged network and the rest of the
company’s network, and logged the traffic that did not pass the validations. The
monitor had two modes:

Logging mode

Captured the ineligible traffic, but still permitted said traffic to leave the
device



Enforcement mode

Captured and dropped the ineligible traffic

Migration strategy

With the traffic analysis pipeline and the unprivileged simulation in place, we
defined and began implementing a phased migration strategy that entails the
following:

1.

Identifying potential sets of candidates by job function and/or workflow
and/or location.

Operating the simulator in logging mode, identifying users and devices that
have >99.9% eligible traffic for a contiguous 30-day period.

Activating simulator enforcement mode for users and devices that have
>99.99% eligible traffic for that period. If necessary, users can revert the
simulator to logging mode.

After operating the simulator in enforcement mode successfully for 30 days,
recording this fact in the device inventory.

Along with inclusion in the candidate set, successful operation in the
simulator’s enforcement mode for 30 days provides a very strong signal that
the device should be assigned to the unprivileged network.

Exemption handling

In addition to automating the migration of users and devices from our privileged
to our new unprivileged network as much as possible, we also implemented a
simple process for users to request temporary exemptions from this migration:

¢ We maintained a known list of workflows that were not yet qualified for

BeyondCorp.

e Users could search through these workflows, and with the correct approval

levels, mark themselves and their devices as active users of a certain
workflow.

e When the workflow was eventually qualified, its users were notified and were



again eligible to be selected for migration.

Lessons Learned

The migration to BeyondCorp came with a set of challenges and kinks to be
ironed out along the way. Hopefully the following lessons can save some time
and headaches for other organizations seeking to implement a similar model.

Communication

Fundamental changes to the security infrastructure can potentially adversely
affect the productivity of the entire company’s workforce. It’s important to
communicate the impact, symptoms, and available remediation options to users,
but it can be difficult to find the balance between over-communication and
under-communication.

Under-communication results in the following problems:
e Surprised and confused users
¢ Inefficient remediation

e Untenable operational load on the IT support staff
Over-communication is also problematic:

e Change-resistant users tend to overestimate the impact of changes and
attempt to seek unnecessary exemptions.

e Users can become inured to potentially impactful changes.

e As Google’s corporate infrastructure is evolving in many unrelated ways, it’s
easy for users to conflate access issues with other ongoing efforts, which also
slows remediation efforts and increases the operational load on support staff.

Engineers need support

Transitioning to a new network security paradigm doesn’t happen overnight, and
requires coordination and interaction among multiple teams. At large enterprise
scale, it’s impossible to delegate the entire transition to a single team. The
migration will likely involve some backward-incompatible changes that need
sufficient management sunnort.
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In our experience, the success of the transition largely depended on how easy it
was for teams to successfully set up their service behind the Access Proxy.
Making the lives of developers easier should be a primary goal, so keep the
number of surprises to a minimum. Provide sane defaults, create walkthrough
guides for the most common use cases, and invest in documentation. Provide
sandboxes for the more advanced and complicated changes—for example, you
can set up separate instances of the Access Proxy that the load balancer
intentionally ignores but that developers can reach (e.g., temporarily overriding
their DNS configuration). Sandboxes have proven extremely useful in numerous
cases, like when we needed to make sure that clients would be able to handle
TLS connections after major changes to the X.509 certificates or to the
underlying TLS library.

Data quality and correlation

Poor data quality in asset management can cause devices to unintentionally lose
access to corporate resources. Typos, transposed identifiers, and missing
information are common. Such mistakes may happen when procurement teams
receive asset shipments and add the assets to our systems, or may be due to
errors in a manufacturer’s workflow. Data quality problems also originate quite
frequently during device repairs, when physical parts or components of a device
are replaced or moved between devices. Such issues can corrupt device records
in ways that are difficult to fix without manually inspecting the device.

The most effective solutions in this arena have been to find local workflow
improvements and automated input validation that can catch or mitigate human
error at input time. Double-entry accounting helps, but doesn’t catch all cases.
However, the need for highly accurate inventory data in order to make correct
trust evaluations forces a renewed focus on inventory data quality. The accuracy
of our data is at previously unseen levels, and this precision has had secondary
security benefits. For example, the percentage of our fleet that is updated with
the latest security patches has increased.

Sparse data sets

Upstream data sources don’t necessarily share overlapping device identifiers. To
enumerate a few potential scenarios:



e New devices might have asset tags but no hostnames.

e The hard drive serial might be associated with different motherboard serials
at different stages in the device lifecycle.

e MAC addresses might collide.

A reasonably small set of heuristics can correlate the majority of deltas from a
subset of data sources. However, in order to drive accuracy closer to 100%, you
need an extremely complex set of heuristics to account for a seemingly endless
number of edge cases. A tiny fraction of devices with mismatched data can
potentially lock hundreds or even thousands of employees out of applications
they need to be productive.

Conclusion

What began as an ambitious and long-term goal in late 2010 is in its final stages
of completion, and the majority of Google employees now work completely
within BeyondCorp. This process was an uphill battle at times, and its success
entailed a large amount of time and resources.

Fortunately, an organization seeking to implement a zero trust network strategy
today does have resources at hand to bootstrap this process. While this journey
will by no means be trivial, there are a number of enterprise and commercial
solutions available in this arena, and we hope that the rough blueprint outlined in
this case study is helpful as you contemplate potential approaches. Keep the core
motivations and design principles outlined here in mind while weighing your
options and choosing the optimal security strategy for your needs.

Case Study: PagerDuty’s Cloud Agnostic

Network
Evan Gilman and Doug Barth

PagerDuty began building a zero trust network in 2013, and completed it in
2014. It has continued to evolve, and remains in production as of this writing.
The authors would like to thank PagerDuty for its permission to use its name
and describe some of the details behind its zero trust implementation. All



opinions are those of the authors, and PagerDuty is not at fault for errors or
inaccuracies contained herein.

PagerDuty is a platform that organizations use to power their incident response.
Users are able to integrate their existing tools like monitoring, ticketing, and
reporting systems using PagerDuty’s API. Most users first configure their
monitoring systems to route alerts through PagerDuty so PagerDuty can manage
on-call rotations and escalations. Given the critical nature of the service being
provided, a zero trust network was ideal to meet both the reliability and data
privacy requirements of that system.

PagerDuty’s zero trust network primarily deals with server-to-server interactions
purely within a multiprovider public cloud environment. Cloud providers have
varying network control plane capabilities. Some providers give none of the
controls that are normally required for a traditional perimeter system like a
stateful firewall, private addressing, network ACLs. In the most extreme case,
hosts are placed onto the public internet and the host needs to secure itself. This
disparity in provider capabilities makes running a provider-agnostic network
exceptionally difficult using traditional perimeter concepts.

PagerDuty’s system also makes heavy use of WAN communication in its normal
operation. Business-critical systems are deployed across three separate regions
with the goal of surviving the loss of an entire region without impacting normal
business operations. Relying on the WAN for normal application operation
places some heavy requirements on the system. The internet is generally a
challenging network environment with the potential for unexpected high latency
and packet loss. In addition, communications need to be encrypted and
authenticated to ensure data privacy and integrity. By deploying a perimeterless
zero trust network, failure isolation is achieved since each node in the cluster is
responsible for just its own communication.

Configuration Management as an Automation Platform

The key asset used to construct PagerDuty’s zero trust network is its
configuration management tool, Chef. Chef was already being used to configure
every virtual machine in the system, and so it is a readily available automation
layer which could be leveraged to build a zero trust network. With configuration
management, policy can be centrally managed in code while distributing the



enforcement into the entire fleet.

This approach has a number of benefits:

e Network compute power scales as the number of instances increases. This
scaling property removes the need to buy ever larger shared hardware as the
network grows.

e Failures tend to be more isolated. Instead of having “the firewall,” the system
ends up having many smaller firewalls. A failure of a single firewall affects a
much smaller set of traffic and oftentimes can be routed around.

Distributing policy throughout the network isn’t without its downsides:

e Constant validation of expected policy state is required to ensure that all
nodes are correctly enforcing the expected policy.

e Changes to policy are eventually consistent across the fleet. This can be a bit
jarring if a system administrator expects to be able to make a change and see
it take effect immediately.

While configuration management was an ideal place to quickly iterate on the
zero trust ideas, it is not an ideal long-term solution. As these systems have
become more mature, they have graduated out of Chef and into their own
systems, which can be deployed and tuned for optimal performance.

Dynamically Calculated Local Firewalls

Without a consistent provider-supplied firewall solution, PagerDuty found it
needed to ensure that each host was secured without relying on provider
systems. To meet that need, Chef was taught how to generate IPtables
configuration based on its existing knowledge of the system.

Servers in the system are categorized by their role, which captures the set of
services and expected communication patterns that should exist for that role.
Each server of a given role is identical in its configuration.

[Ptables chains are constructed on each individual host that enumerates the IP
addresses for servers of a particular role. These chains are then used to define the
rules which allow expected access by role. If a flow does not match the
whitelisted rules. its packets are dropped.
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Here’s an example of an IPtables configuration representing this arrangement:

Chain INPUT (policy ACCEPT O packets, 0 bytes)

target prot in out source destination

ACCEPT all 1o 0.0.0.0/0 0.0.0.0/0

ACCEPT all 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
bastion tcp 0.0.0.0/0 0.0.0.0/0  tcp dpt:22

b tcp 0.0.0.0/0 0.0.0.0/0  tcp dpt:80

1b tcp 0.0.0.0/0 0.0.0.0/0  tcp dpt:443

LOG all 0.0.0.0/0 0.0.0.0/0 1limit: avg 10/min burst 5...
DROP all 0.0.0.0/0 0.0.0.0/0

Chain bastion (1 references)

target prot in out source destination

ACCEPT all 192.168.0.55 0.0.0.0/0

ACCEPT all 192.168.5.4 0.0.0.0/0

ACCEPT all 10.0.2.78 0.0.0.0/0

ACCEPT all 172.16.0.132 0.0.0.0/0

Chain 1b (2 references)

target prot in out source destination

ACCEPT all 192.168.1.221 0.0.0.0/0

ACCEPT all * 192.688.1.222 0.0.0.0/0

Distributed Traffic Encryption

For network encryption and authentication, PagerDuty decided to implement an
IPsec host-to-host mesh network. This network architecture has a number of
benefits:

e All packets are encrypted and authenticated by every node in the system.

e Since encryption and authentication is distributed throughout the system, as
the number of hosts grows, the capacity to provide this critical function grows
as well.

Network encryption and authentication is normally viewed as an application-
level concern, but requiring every application to provide these safety controls
results in a less secure or less operable system. Application encryption can have
issues with correctly implementing the encryption specification, lack the
configuration controls to respond to security vulnerabilities, or introduce
performance regressions into the system. For these reasons, PagerDuty decided
to rely on the kernel’s IPsec stack to provide this bit of critical infrastructure.



A system utilizing mutually authenticated TLS could provide similar benefits to
an IPsec-based network. In order to provide the same guarantees, system
administrators should separate the TLS infrastructure from the application.

OUT-OF-PROCESS ENCRYPTION IS INCREASINGLY
BECOMING THE STANDARD

In many systems, encryption and authentication is considered an application concern, and
applications usually provide this functionality using standard libraries. As the number of
applications in a system has grown, systems are increasingly using out-of-process mechanisms
for securing network communication.

By moving the encryption logic into a separate process, administrators gain a standard set of
controls to use to respond to security vulnerabilities. In addition, having a separate process
controlling the sensitive encryption process reduces the surface area for attacks that might
want to expose secret data.

PagerDuty’s network uses IPsec in transport mode. The phase 1 and phase 2
cipher suites use the strongest possible configuration available at the time. When
choosing the cipher suites, RFC 6379 was referenced to ensure that the
algorithms chosen were recommended to be used together.

[Psec communication is normally transmitted using ESP packets. Since some
cloud provider’s networks do not route ESP packets, all IPsec traffic is
encapsulated in UDP packets.

PagerDuty’s experience with operating an I[Psec mesh network in production has
been a bit mixed. The network has handled production throughput, and has
grown with the fleet. During the initial rollout, communication failures did
occur, often due to inconsistent state on either side of the IPsec relationship.
Having metrics and logging to surface these issues was critical to operating the
network. While having these failures was certainly frustrating, with a mesh
network these failures were isolated to pairs of hosts, which often reduced the
impact of the failure.

PagerDuty’s initial rollout of the IPsec network utilized Chef and some simple
scripts to configure pre-existing IPsec packages. As the network grew, the
configuration of the system has moved out of Chef and into a dedicated service
that can handle the sole responsibility of configuring this aspect of the system.
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Moving the logic into its own system was done to lessen the convergence time
for deploying a change to the network. The Chef-based system required running
an entire Chef convergence run to update all relevant hosts in the network—a
heavyweight operation that handles more than just the network configuration.

Decentralized User Management

PagerDuty’s user access control is deployed in a centralized fashion, much like
the networking systems previously discussed. Instead of relying on a centralized
LDAP system, local users and groups are programmatically constructed on each
host in the network. This approach removes a dependency on the network, which
helps the system continue to operate even during challenging periods.

While the enforcement of user access control is distributed into the network, the
definitions of which users and groups should be created is centralized. This
information could be captured in an LDAP server or some other database. In
PagerDuty’s case, it used Chef databags to define users and groups. Server roles
are marked with the set of groups that should be created on that role. Chef uses
this data to only create the users and groups on a particular server that need
access to that infrastructure.

Rollout

PagerDuty’s network, like most networks, is an ever-evolving system. The
network transitioned from a traditional design to a zero trust network over time,
while production traffic was flowing.

Changing a network architecture while critical production traffic is flowing can
be difficult, so it was important that the rollout was planned to reduce risk.
PagerDuty followed a slow rollout pattern:

1. New policies are defined.

2. Policies are deployed in a manner that does not affect the production system,
but instead collects useful metrics or logs.

3. The metrics/logs are inspected over a long period of time to ensure that the
behavior is desired.



4. The policy is slowly enabled across the fleet, growing from a small
percentage to 100% coverage.

This simple procedure can be used to reduce the risk of most production
changes. It is much better than the common approach of using a scheduled
maintenance window.

The slow rollout pattern is used to deploy most changes in PagerDuty’s systems.
For the distributed firewall project, all hosts were initially configured to log
packets which would be dropped at a later date. Firewall rules were created to
classify traffic flows, which could be deployed without the risk of blocking any
production traffic. With the rules deployed, the logged traffic was reduced; and
once enough time had passed, the system was reconfigured to drop all non-
whitelisted traffic.

The distributed traffic encryption followed the same rollout procedure. IPsec
policies were first deployed into the fleet in a no-op configuration. These
policies control whether a particular traffic flow should use IPsec for
communication. IPsec supports three different states:

None

IPsec will not be used.

Use

[Psec will be optimistically used if a relationship can be negotiated.
Required

[Psec must be used for traffic to be processed.

The initial set of policies were deployed in the none state. The end goal was to
get the entire system to the required state by stepping through the use state.
Based on testing of the failure modes of the use state, it was determined that
intermediate stateful firewalls would block communication if the IPsec
relationship were broken, as packets would fall back to a none policy. These
packets would not be associated with an expected flow (remember that
previously they were encrypted and wrapped in a UDP encapsulation packet)
and so would be dropped.

Instead of configuring the entire network to a use state, smaller portions of the



network were transitioned to a use state and then reconfigured to a required
state. This phased approach minimized the amount of time the network was in
the potentially risky use state while still allowing hosts to communicate as they
reconfigured themselves. Chef calculated the minimum policy between a pair of
hosts based on their preferred state.

Value of a Provider-Agnostic System

It goes without saying that building a provider-agnostic system requires
significant engineering effort. For many system, this effort may not be justified.
In PagerDuty’s case, the business requirements determined that the effort was
justified.

Having this provider-agnostic network in place provided a significant return on
investment when PagerDuty decided to move off one of its cloud providers.
Normally an effort like this would be a several month effort with many high-risk
change windows.

In PagerDuty’s case, this change was relatively straightforward. It took roughly
six weeks from making the decision to having all production traffic moved over.
The bulk of that time was spent researching new providers, testing the new
provider’s systems, and reworking the Chef automation. The actual changes
were deployed to production in one week during normal business hours without
any customer impact.

Summary

This chapter focused on the considerations that an organization that wants to
move to a zero trust network needs to decide on. Where possible, it gave real-
world recommendations to help readers through making these decisions.

It spent time discussing the importance of understanding the state of the system
using system diagrams and capturing network flows from real production traffic.
Building all the zero trust control plane systems as standalone services can be a
large upfront investment, so practical alternatives were explored.

The most important detail to remember is that zero trust is an architectural ideal,
so this chapter discussed how to get started down the path by defining and
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capruring poliCcy 1n a manner wnicn can e later reused. It exXplorea puting in
place authentication proxies which can incorporate systems that aren’t directly
compatible with zero trust. It also explored whether organizations should start
with client/server interactions or server/server interactions.

Finally, to help readers see how this type of endeavor played out in other
organizations’ systems, this chapter explored two concrete case studies. These
case studies explore the particular approaches and trade-offs that were made to
make zero trust a reality in existing production networks.

The next chapter focuses on how a hypothetical attacker might try to thwart a
zero trust network.



Chapter 10. The Adversarial View

Most formal proposals in the technology industry include a section commonly
known as “security considerations.” In fact, the IETF mandates a security
consideration section for all submitted RFCs.

This section is crucial for many reasons. First, it clearly communicates potential
pitfalls, dangers, and caveats. This is extraordinarily important during the
implementation and deployment phases, as it will help to ensure that the operator
arrives at a design which retains the security properties that the system was
originally designed for.

Second, it demonstrates that the authors have put good thought into the ways in
which the system can be attacked. It is far too easy to design a seemingly secure
system which harbors a major vulnerability just under the surface. And finally, it
sets the stage for discussion on how to best approach and manage the security
risks presented. As a result, including a security considerations section is
generally considered best practice. Some might even view the work as deceptive
without such a section, since it might indicate that the authors are trying to push
a known-weak technology.

Even the strongest proposals will have some security considerations. For
instance, the latest RFC for the TLS protocol has 12 pages worth. It is important
to understand that a system is not inherently insecure simply because there are
security considerations associated with it; rather, it should be a sign that the
system as a whole is more secure.

In this chapter, we will discuss the potential pitfalls, dangers, and attack vectors
associated with the zero trust model. If you were trying to penetrate a zero trust
network, how might you do it?

Identity Theft

Practically all of the decisions and operations performed within a zero trust
network are made on the basis of authenticated identity. In Chapter 6, we
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discussed the difference between informal and authoritative identity, such as the
difference between your “human” identity and your government identity.
Computer systems implement authoritative identity similar to the way
governments do—and similar to the way your government identity can be stolen,
so can your identity within a computer system.

If your identity is stolen or compromised, it might be possible for an attacker to
masquerade their way through the zero trust authentication and authorization
checks. This is, of course, extremely undesirable. Since identity in a computer
system is typically tied to some sort of “secret” which is used to prove said
identity, it is extraordinarily important to protect those secrets as well as we can.

These secrets can be protected in different ways, based on the type of component
the identity belongs to. Careful consideration should go into choosing which
methods to use for which components. We spoke about different ways to
approach this problem in previous chapters.

Since a zero trust network authenticates both the device and the user/application,
it is necessary for an attacker to steal at least two identities in order to gain
access to resources within it, raising the bar when compared to traditional
approaches in use today. These concerns can be additionally mitigated through
the use of trust engine behavioral analysis.

While securing identity is a widespread industry concern, and is not specific to
zero trust, its importance is large enough to justify calling it out as something
which should be carefully handled, despite the fact that the zero trust model
works to naturally mitigate this threat.

Distributed Denial of Service

A zero trust network is primarily concerned with authentication, authorization,
and confidentiality, generally affected by tightly controlling access to all
network resources. While the architecture strives to authenticate and authorize
just about everything on the network, it does not provide good mitigation against
denial-of-service (DoS) attacks on its own. Distributed DoS (DDoS) attacks that
are volumetric in nature can be particularly troublesome.

Just about any system which can receive packets is vulnerable to volumetric



DDoS, even those employing the zero trust architecture. Some implementations
“darken” internet-facing endpoints through the use of pre-authentication
protocols. We spoke a little about these in “Bootstrapping Trust: The First
Packet”, the basic premise being to hide those endpoints behind a deny-all rule,
adding narrow exceptions based only on signaling. While this method goes a
long way in helping to keep the endpoint addresses obscured, it does not
fundamentally mitigate DDoS attacks.

Zero trust networks, by nature, retain a great deal of information about what to
expect on the network. This information can be used to calculate policy for more
traditional traffic filtering defenses far upstream. For instance, perhaps only a
few systems in the network actually communicate with the internet. In this case,
we can use the policy to calculate coarse enforcement rules from the perspective
of an upstream device, applying very broad enforcement with few exceptions.
The advantages of this approach over the typical approach are two-fold:

e The configuration is fully automated.

e The traffic filtering mechanisms can remain stateless.

The second advantage is quite a large one, since it obviates the need for
expensive hardware and complicated state replication schemes. In this way,
these filtering devices act more like scrubbers than firewalls. Of course, this only
makes sense if you operate a large network. If you have a few racks in a
colocation facility, or are cloud native, you might prefer to leverage an online
DDoS-prevention service.

The short of it is, DDoS is still a problem in the zero trust world, and while we
might have a few new clever ways to address it, it will still require special
attention.

Endpoint Enumeration

The zero trust model lends itself naturally to perimeterless networks, since a
perimeter makes much less sense when the internal network is untrusted. The
peer-to-peer nature of perimeterless networks make them generally easier to
maintain than perimeter networks, which frequently include network gateways
and tunnels like VPNs which pose scaling, performance, and availability



challenges.

As a result of this architecture, it is possible for an adversary to build a system
diagram by observing which systems talk to which endpoints. This is in contrast
to architectures which leverage network gateways like VPNs, since an adversary
observing VPN traffic can’t see conversations with endpoints beyond the VPN
gateway. It should be noted that this advantage is lost as soon as the traffic
crosses the gateway—a classic property of the perimeter model.

It is here that we make a distinction between privacy and confidentiality. The
zero trust model guarantees network confidentiality, but not privacy. That is,
ongoing conversations can be observed and asserted to exist; however, the
contents of the conversation are protected. Systems that provide network privacy
attempt to obscure the fact that the conversation happened at all. Tor is a popular
example of a system which provides network privacy. This is a wholly different
problem space and is considered out of scope for the zero trust model.

If a limited form of privacy over public networks is desired, tunneling traffic
through site-to-site tunnels is still an option in zero trust networks. This
deployment will make it more difficult to see which individual hosts are
communicating on either side of the tunnel. We should be clear that this
additional privacy protection should not be considered critical in the network’s
security. In fact, in some ways it undermines the zero trust model itself, as
hiding information in one part of the network and not another suggests that one
is more trusted than the other.

Untrusted Computing Platform

We covered this in Chapter 5, but it’s important to reiterate that zero trust
networks require the underlying computing platform to be a trustworthy system.
There’s a distinction to be made here between the computing platform itself
(think cloud hardware, virtual machine hypervisor) being trusted and the
“device” being trusted. Oftentimes these two systems are conflated, but the
attacks against each are subtly different due to their differing privilege levels.

Totally defending against untrustworthy computing platforms is practically
impossible. Consider a system which used hardware that purposefully generated
weak random numbers (which encryption systems depend on). Defending



against that type of attacker would first involve detecting the problem, though
this alone might be impossible if the attacker hides their capability most of the
time.

Despite our inability to guard against a truly malicious computer platform, zero
trust systems can still guard against simpler attacks against the platform.
Encrypting persistent data and swapped-out memory pages will mitigate simpler
attacks by malicious peers on the computing platform. It will also remove some
small amount of trust in the platform’s operators and therefore is recommended.

Social Engineering

Social engineering attacks, which trick trusted humans into taking action on a
trusted device, are still very much a concern in zero trust networks. Whether
they be phishing attacks, which craft written communication that is not
obviously malicious, or via face-to-face communications like those that
customer service departments have had to deal with, a zero trust network can
only do so much to defend against attacks enabled by an unwitting participant.

For less sensitive resources, behavioral analysis of internal activity is the
mechanism that is used to guard against this threat. That analysis is coupled with
end user training that teaches users to think like an adversary and be suspicious
of requests which are out of the ordinary.

For more sensitive resources, group authentication/authorization schemes like
Shamir’s Secret Sharing can help mitigate the effects of a single member of the
group causing unintended actions to occur. This scheme can be very burdensome
on a day-to-day basis, so the best plan is to save it for the truly critical assets.

Chapter 6 has more details on these mechanisms for defending against social
engineering attacks.

Physical Coercion

Zero trust networks effectively mitigate many threats in the virtual world, but
threats in the real world are another beast entirely. Valid users and devices can
be effectively coerced to aid an attacker to gain access to a system that they



shouldn’t have access to. Border crossing can often be a place where
government entities have substantial power over an individual who just wants to
get to their destination. And someone with a blunt instrument can force even the
most honest individuals to aid them (as demonstrated in Figure 10-1).
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Figure 10-1. The reality of threats in a system (cartoon by XKCD: https://xkcd.com/538/)

The reality is that defending against these types of compromises is ill-advised.
No security professional would ever tell someone in this situation to risk their
physical well-being to protect the information that they have access to.
Therefore, the best we can work toward as an industry is to keep only the least
sensitive data and systems vulnerable to the compromise of a single individual.
For higher-value targets, group authorization is an effective mitigation against
these threats.

Subtler physical attacks against individuals (say someone is able to insert a USB
device into an unguarded laptop) are best mitigated by a consistent process of
cycling both devices and credentials. Scanning of unrotated devices can also
help to mitigate these types of attacks.

If someone has physical access to your device, they can do a lot of damage.
However, that statement should not be license to throw our hands up in the air
and not at least try to mitigate these threats, particularly when it comes to
securing data used for zero trust authentication/authorization. There are clear
steps that can be taken to lessen the impact and duration of compromise even if
someone has physical access to a device, and zero trust networks add those
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steps. You can read more about physical device security in Chapter 5.

Invalidation

Invalidation is a hard problem in computer science. In the context of a zero trust
network, invalidation applies chiefly to long-running actions that were
previously authorized but are no longer.

The definition of an action is largely dependent on your chosen authorization
processes. For instance, if you authorize access on a request-by-request basis, an
action would be considered as a single application-level request/operation. If, on
the other hand, you authorize network flows (like a TCP session) instead of
application requests, an action would be considered to be a single network
session.

How quickly and effectively ongoing actions can be invalidated deeply affects
security response. It is important to gauge how much risk you’re willing to
tolerate in this area as you design your zero trust network, since the answer has
the potential to significantly affect how you might approach certain problems.
For instance, if a new TCP session is the action being authorized, and some
services maintain TCP sessions for multiple days on end, is it acceptable to say
that an entity with revoked credentials might retain access for that long? Maybe
not.

Luckily, we have some tools in our chest to address this problem. First, and
perhaps most obvious, is to perform more granular authorizations on actions that
are short-lived. Perhaps this means that the enforcement component authorizes
application-level requests instead of new network sessions. While it is still
possible to have long-running application requests, they are in practice less
frequent than long-running network sessions.

Another approach, though somewhat naive, is to periodically reset network
sessions, enforcing a maximum lifetime. When the application/client reconnects,
it will be forced back through the authorization process.

The best approach though is to teach the enforcement component to track
ongoing actions, and rather than reset them after a period of time, send another

authorization request to the policy engine. If the policy engine decides that the
action ic now nanthorized the enforcement comnonent can forcihlv re<et it



As you can see, these mechanisms still rely on a “pull” model, in which the
enforcement component is forced to periodically reauthorize. As a result,
sessions can only be invalidated as fast as the longest polling period configured
in the enforcement component. While invalidation is best done as a push or
event-based model, those approaches come with additional complexities and
challenges which perhaps outweigh the benefits. Regardless, it can be seen that
the problem is (at the very least) addressable.

Control Plane Security

We discussed many control plane services throughout this book, responsible for
things like policy authorization and tracking inventory. Depending on needs, a
zero trust control plane can comprise a nontrivial number of services, all of
which play a crucial role in ensuring authorization security throughout the
network. A natural question follows: how can you protect your zero trust control
plane systems, and what happens if one is compromised?

Well, it’s not good, that’s for sure! It is possible to completely undermine the
zero trust architecture if a control plane compromise is pervasive enough. As
such, it is absolutely critical to ensure the security of these systems. This is not a
weakness unique to the zero trust model—it exists even today in perimeter
networks. If your perimeter firewall is compromised, what is the impact?
Nevertheless, the concern is great enough to warrant a discussion.

Control plane security can begin through traditional means, providing very
limited network connectivity and strict access control. Some control plane
systems are more sensitive than others. For instance, compromising a data store
housing historical access data is strictly less useful to an attacker than
compromising the policy engine. In the former, an attacker may be able to
artificially raise their level of trust by falsifying access patterns, where the latter
leads to a complete compromise of zero trust authorization, allowing the attacker
to authorize anything they please.

For the most sensitive systems (i.e., the policy engine), rigorous controls should
be applied from the beginning. Requiring group authentication and authorization
in order to make changes to these systems is a real option and should be heavily
considered. Changes should be infreauent and should generate broadlv seen
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messages or alerts. It should not be possible for a control plane change to go
unnoticed.
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Another good practice is to keep the control plane systems isolated from an
administrative standpoint. Perhaps that means they live in a dedicated cloud
provider account or are kept in a part of the datacenter that has more rigorous
access control. Doing this allows access to be more carefully audited and
minimizes the risk presented to control plane systems by their administrative
facilities. Isolating these systems administratively does not mean that they are
logically isolated from the rest of the network. Despite administrative isolation,
it is important that control plane systems participate in the network just as any
other service does. Attempts to isolate them can quickly lead back to a
perimeterized design, which can be considered the worst-case scenario for zero
trust control plane security.

As the network matures, zero trust enforcement can be slowly applied to the
control plane systems themselves. Kind of like rewriting the C compiler in C,
backing zero trust enforcement into the control plane ensures that tight security
is applied homogeneously throughout the network and that there are no special
cases. The propensity to introduce a chicken-and-egg problem should not deter
you from this approach. Such problems are manageable and can usually be
worked through if sufficient thought is put into them. The alternative (putting
control plane systems in a perimeter network) would leave these systems the
least protected of all, and is generally unacceptable in the context of a zero trust
network.

Summary

This chapter attempts to approach the zero trust network from the opposite
perspective of the administrators of the system. By putting ourselves into the
mindset of a would-be attacker, we can evaluate the system as an adversary who
has vast knowledge of how it is put together.

Some of the attacks against zero trust networks are well mitigated, while for
others we are only able to detect the attack, at best. Even a zero trust network
can be compromised by a determined adversary, as the inconvenience of
defending against any theoretical attack is simply too high a price to pay in the



day-to-day operation ot such a network.

The reality is that every system is susceptible to an attacker with sufficient
resources. When faced with the most advanced attacks, the best we can hope for
is efficient and accurate detection. Starting from the assertion that a system has
been compromised and working our way backward toward limiting the damage
is sage advice that might allow us to sleep soundly.

While the zero trust model certainly introduces some new consideration points
with regard to networked system security, it at the same time resolves many
more. By applying the power of automation to tried-and-true security primitives
and protocols, the authors are confident that the zero trust model will rise to
replace the perimeter model as a more effective, scalable, and secure solution to
the computer network security problem.
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