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Preface

Thank	you	for	choosing	to	read	Zero	Trust	Networks!	Building	trusted	systems
in	hostile	networks	has	been	a	passion	of	ours	for	many	years.	In	building	and
designing	such	systems,	we	have	found	frustration	in	the	pace	of	progress
toward	solving	some	of	the	more	fundamental	security	problems	plaguing	our
industry.	We’d	very	much	like	to	see	the	industry	move	more	aggressively
toward	building	the	types	of	systems	which	strive	to	solve	these	problems.

To	that	end,	we	are	proposing	that	the	world	take	a	new	stance	toward	building
and	maintaining	secure	computer	networks.	Rather	than	being	something	which
is	layered	on	top,	considered	only	after	some	value	has	been	built,	security	must
be	fundamentally	infused	with	the	operation	of	the	system	itself.	It	must	be	ever-
present,	enabling	operation	rather	than	restricting	it.	As	such,	this	book	sets	forth
a	collection	of	design	patterns	and	considerations	which,	when	heeded,	can
produce	systems	that	are	resilient	to	the	vast	majority	of	modern-day	attack
vectors.

This	collection,	when	taken	as	a	whole,	is	known	as	the	zero	trust	model.	In	this
model,	nothing	is	taken	for	granted,	and	every	single	access	request—whether	it
be	made	by	a	client	in	a	coffee	shop	or	a	server	in	the	datacenter—is	rigorously
checked	and	proven	to	be	authorized.	Adopting	this	model	practically	eliminates
lateral	movement,	VPN	headaches,	and	centralized	firewall	management
overhead.	It	is	a	very	different	model	indeed;	one	that	we	believe	represents	the
future	of	network	and	infrastructure	security	design.

Security	is	a	complicated	and	ever-changing	field	of	engineering.	Working	on	it
requires	a	deep	understanding	of	many	layers	of	a	system	and	how	bugs	or
weaknesses	in	those	layers	can	allow	an	attacker	to	subvert	access	controls	and
protections.	While	this	makes	defending	a	system	challenging,	it’s	also	a	lot	of
fun	to	learn	about!	We	hope	you’ll	enjoy	learning	about	it	as	much	as	we	have!

Who	Should	Read	This	Book
Have	you	found	the	overhead	of	centralized	firewalls	to	be	restrictive?	Perhaps
you’ve	even	found	their	operation	to	be	ineffective?	Have	you	struggled	with



you’ve	even	found	their	operation	to	be	ineffective?	Have	you	struggled	with
VPN	headaches,	TLS	configuration	across	a	myriad	of	applications	and
languages,	or	compliance	and	auditing	hardships?	These	problems	represent	just
a	small	subset	of	those	addressed	by	the	zero	trust	model.	If	you	find	yourself
thinking	that	there	just	has	to	be	a	better	way,	then	you’re	in	luck—this	book	is
for	you.

Network	engineers,	security	engineers,	CTOs,	and	everyone	in	between	can
benefit	from	zero	trust	learnings.	Even	without	a	specialized	skillset,	many	of	the
principles	included	within	can	be	clearly	understood,	helping	leaders	make
decisions	that	get	them	closer	to	realizing	the	zero	trust	model,	improving	their
overall	security	posture	incrementally.

Additionally,	readers	with	experience	using	configuration	management	systems
will	see	the	opportunity	of	using	those	same	ideas	to	build	a	more	secure	and
operable	networked	system—one	in	which	resources	are	secure	by	default.	They
will	be	interested	in	how	automation	systems	can	enable	a	new	network	design
that	is	able	to	apply	fine-grained	security	controls	more	easily.

Finally,	this	book	also	explores	mature	zero	trust	design,	enabling	those	who
have	already	incorporated	the	basic	philosophies	to	further	the	robustness	of
their	security	systems.

Why	We	Wrote	This	Book
We	started	speaking	about	our	approach	to	system	and	network	design	at
industry	conferences	in	2014.	At	the	time,	we	were	using	configuration
management	systems	to	rigorously	define	the	system	state,	applying	changes
programmatically	as	a	reaction	to	topological	changes.	As	a	result	of	leveraging
automation	tools	for	this	purpose,	we	naturally	found	ourselves
programmatically	calculating	the	network	enforcement	details	instead	of
managing	such	configuration	by	hand.	We	found	that	using	automation	to
capture	the	system	design	in	this	way	was	enabling	us	to	deploy	and	manage
security	features,	including	access	control	and	encryption,	much	more	easily
than	in	systems	past.	Even	better,	doing	so	allowed	us	to	place	much	less	trust	in
the	network	than	other	systems	might	normally	do,	which	is	a	key	security
consideration	when	operating	in	and	across	public	clouds.



Around	that	same	time,	Google’s	first	BeyondCorp	paper	was	published,
describing	how	they	were	rethinking	system	and	network	design	to	remove	trust
from	the	network.	We	saw	a	lot	of	philosophical	similarities	in	how	Google	was
approaching	their	network	security,	and	how	we	approached	similar	problems	in
our	own	systems.	It	was	clear	that	reducing	trust	in	the	network	was	not	only	our
own	design	preference/opinion,	but	the	general	direction	the	industry	was
headed.	With	the	realizations	gained	from	comparing	the	BeyondCorp	paper	to
our	own	efforts,	we	started	sharing	broader	understandings	of	this	architecture
and	philosophy	at	various	conferences.

Attendees	were	engaged	and	interested	in	what	we	were	doing,	but	the	question
we	frequently	heard	was	“Where	can	I	learn	more	about	how	to	do	this	in	my
own	system?”	Unfortunately,	the	answer	was	typically	“Well,	there’s	not	a
whole	lot…come	see	me	afterward.”	The	lack	of	publicly	available	information
and	guidance	became	a	glaring	gap—one	we	wanted	to	correct.	This	book	aims
to	fill	that	gap.

While	writing	this	book,	we	spoke	to	individuals	from	dozens	of	companies	to
understand	their	perspective	on	network	security	designs.	We	found	that	many	of
those	companies	were	themselves	reducing	the	trust	of	their	internal	networks.
While	each	organization	took	a	slightly	different	approach	in	their	own	system,
it	was	clear	that	they	all	were	working	under	the	same	threat	model	and	were	as
a	result	building	solutions	that	shared	many	properties.

Our	goal	with	this	book	isn’t	to	present	one	or	two	particular	solutions	to
building	these	types	of	systems,	but	rather	to	define	a	system	model	that	places
no	trust	in	its	communication	network.	Therefore,	this	book	won’t	be	focused	on
using	specific	software	or	implementations,	but	rather	it	will	explore	the
concepts	and	philosophies	that	are	used	to	build	a	zero	trust	network.	We	hope
you	will	find	it	useful	to	have	a	clear	mental	model	for	how	to	construct	this	type
of	system	when	building	your	own	system,	or	even	better,	reusable	solutions	for
the	problems	described	herein.

Zero	Trust	Networks	Today
The	zero	trust	model	was	originally	conceived	by	Forrester’s	John	Kindervag	in
2010.	He	worked	for	many	years	to	set	forth	architectural	models	and	guidance
for	building	zero	trust	networks	and	has	advised	many	large	companies	on	how



for	building	zero	trust	networks	and	has	advised	many	large	companies	on	how
to	evolve	their	security	posture	in	order	to	attain	zero	trust	guarantees.	John	was,
and	still	is,	an	important	figure	in	the	field.	His	work	in	the	area	greatly	informed
our	understanding	of	the	state	of	the	union,	and	we	thank	him	for	popularizing
zero	trust	during	its	formative	years.

Today’s	zero	trust	networks	are	largely	built	using	off-the-shelf	software
components	with	custom	software	and	glue	to	integrate	the	components	in	novel
ways.	As	such,	when	reading	this	text,	please	be	aware	that	deploying	this	type
of	system	isn’t	as	easy	as	installing	and	configuring	some	ready-made	hardware
or	software...yet.

It	could	be	said	that	the	lack	of	easily	deployable	components	that	work	well
together	is	an	opportunity.	A	suite	of	open	source	tools	could	help	drive	adoption
of	zero	trust	networks.

Navigating	This	Book
This	book	is	organized	as	follows:

Chapters	1	and	2	discuss	the	fundamental	concepts	at	play	in	a	zero	trust
network.

Chapters	3	and	4	explore	the	new	concepts	typically	seen	in	mature	zero	trust
networks:	network	agents	and	trust	engines.

Chapters	5–8	detail	how	trust	is	established	among	the	actors	in	a	network.
Most	of	this	content	is	focused	on	existing	technology	that	could	be	useful
even	in	a	traditional	network	security	model.

Chapter	9	brings	all	this	content	together	to	discuss	how	you	could	begin
building	your	own	zero	trust	network	and	includes	two	case	studies.

Chapter	10	looks	at	the	zero	trust	model	from	an	adversarial	view.	It	explores
potential	weaknesses,	discussing	which	are	well	mitigated,	and	which	are	not.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:



Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant width bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant width italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

O’Reilly	Safari
Safari	(formerly	Safari	Books	Online)	is	a	membership-based	training	and
reference	platform	for	enterprise,	government,	educators,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	Learning	Paths,
interactive	tutorials,	and	curated	playlists	from	over	250	publishers,	including

http://oreilly.com/safari


interactive	tutorials,	and	curated	playlists	from	over	250	publishers,	including
O’Reilly	Media,	Harvard	Business	Review,	Prentice	Hall	Professional,	Addison-
Wesley	Professional,	Microsoft	Press,	Sams,	Que,	Peachpit	Press,	Adobe,	Focal
Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan	Kaufmann,	IBM
Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	and	Course	Technology,	among	others.

For	more	information,	please	visit	http://oreilly.com/safari.
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Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at
http://bit.ly/zeroTrustNetworks.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia
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Chapter	1.	Zero	Trust
Fundamentals

In	a	time	where	network	surveillance	is	ubiquitous,	we	find	ourselves	having	a
hard	time	knowing	who	to	trust.	Can	we	trust	that	our	internet	traffic	will	be	safe
from	eavesdropping?	Certainly	not!	What	about	that	provider	you	leased	your
fiber	from?	Or	that	contracted	technician	who	was	in	your	datacenter	yesterday
working	on	the	cabling?

Whistleblowers	like	Edward	Snowden	and	Mark	Klein	have	revealed	the
tenacity	of	government-backed	spy	rings.	The	world	was	shocked	at	the
revelation	that	they	had	managed	to	get	inside	the	datacenters	of	large
organizations.	But	why?	Isn’t	it	exactly	what	you	would	do	in	their	position?
Especially	if	you	knew	that	traffic	there	would	not	be	encrypted?

The	assumption	that	systems	and	traffic	within	a	datacenter	can	be	trusted	is
flawed.	Modern	networks	and	usage	patterns	no	longer	echo	those	that	made
perimeter	defense	make	sense	many	years	ago.	As	a	result,	moving	freely	within
a	“secure”	infrastructure	is	frequently	trivial	once	a	single	host	or	link	there	has
been	compromised.

Zero	trust	aims	to	solve	the	inherent	problems	in	placing	our	trust	in	the
network.	Instead,	it	is	possible	to	secure	network	communication	and	access	so
effectively	that	physical	security	of	the	transport	layer	can	be	reasonably
disregarded.	It	goes	without	saying	that	this	is	a	lofty	goal.	The	good	news	is	that
we’ve	got	pretty	good	crypto	these	days,	and	given	the	right	automation	systems,
this	vision	is	actually	attainable.

What	Is	a	Zero	Trust	Network?
A	zero	trust	network	is	built	upon	five	fundamental	assertions:

The	network	is	always	assumed	to	be	hostile.

External	and	internal	threats	exist	on	the	network	at	all	times.



Network	locality	is	not	sufficient	for	deciding	trust	in	a	network.

Every	device,	user,	and	network	flow	is	authenticated	and	authorized.

Policies	must	be	dynamic	and	calculated	from	as	many	sources	of	data	as
possible.

Traditional	network	security	architecture		breaks	different	networks	(or	pieces	of
a	single	network)	into	zones,	contained	by	one	or	more	firewalls.	Each	zone	is
granted	some	level	of	trust,	which	determines	the	network	resources	it	is
permitted	to	reach.	This	model	provides	very	strong	defense-in-depth.	For
example,	resources	deemed	more	risky,	such	as	web	servers	that	face	the	public
internet,	are	placed	in	an	exclusion	zone	(often	termed	a	“DMZ”),	where	traffic
can	be	tightly	monitored	and	controlled.	Such	an	approach	gives	rise	to	an
architecture	that	is	similar	to	some	you	might	have	seen	before,	such	as	the	one
shown	in	Figure	1-1.

Figure	1-1.	Traditional	network	security	architecture

The	zero	trust	model	turns	this	diagram	inside	out.	Placing	stopgaps	in	the



network	is	a	solid	step	forward	from	the	designs	of	yesteryear,	but	it	is
significantly	lacking	in	the	modern	cyberattack	landscape.	There	are	many
disadvantages:

Lack	of	intra-zone	traffic	inspection

Lack	of	flexibility	in	host	placement	(both	physical	and	logical)

Single	points	of	failure

It	should	be	noted	that,	should	network	locality	requirements	be	removed,	the
need	for	VPNs	is	also	removed.	A	VPN	(or	virtual	private	network)	allows	a
user	to	authenticate	in	order	to	receive	an	IP	address	on	a	remote	network.	The
traffic	is	then	tunneled	from	the	device	to	the	remote	network,	where	it	is
decapsulated	and	routed.	It’s	the	greatest	backdoor	that	no	one	ever	suspected.

If	we	instead	declare	that	network	location	has	no	value,	VPN	is	suddenly
rendered	obsolete,	along	with	several	other	modern	network	constructs.	Of
course,	this	mandate	necessitates	pushing	enforcement	as	far	toward	the	network
edge	as	possible,	but	at	the	same	time	relieves	the	core	from	such	responsibility.
Additionally,	stateful	firewalls	exist	in	all	major	operating	systems,	and
advances	in	switching	and	routing	have	opened	an	opportunity	to	install
advanced	capabilities	at	the	edge.	All	of	these	gains	come	together	to	form	one
conclusion:	the	time	is	right	for	a	paradigm	shift.

By	leveraging	distributed	policy	enforcement	and	applying	zero	trust	principles,
we	can	produce	a	design	similar	to	the	one	shown	in	Figure	1-2.



Figure	1-2.	Zero	trust	architecture

Introducing	the	Zero	Trust	Control	Plane
The	supporting	system	is	known	as	the	control	plane,	while	most	everything	else
is	referred	to	as	the	data	plane,	which	the	control	plane	coordinates	and
configures.	Requests	for	access	to	protected	resources	are	first	made	through	the
control	plane,	where	both	the	device	and	user	must	be	authenticated	and
authorized.	Fine-grained	policy	can	be	applied	at	this	layer,	perhaps	based	on
role	in	the	organization,	time	of	day,	or	type	of	device.	Access	to	more	secure
resources	can	additionally	mandate	stronger	authentication.

Once	the	control	plane	has	decided	that	the	request	will	be	allowed,	it
dynamically	configures	the	data	plane	to	accept	traffic	from	that	client	(and	that
client	only).	In	addition,	it	can	coordinate	the	details	of	an	encrypted	tunnel
between	the	requestor	and	the	resource.	This	can	include	temporary	one-time-
use	credentials,	keys,	and	ephemeral	port	numbers.

While	some	compromises	can	be	made	on	the	strength	of	these	measures,	the



basic	idea	is	that	an	authoritative	source,	or	trusted	third	party,	is	granted	the
ability	to	authenticate,	authorize,	and	coordinate	access	in	real	time,	based	on	a
variety	of	inputs.

Evolution	of	the	Perimeter	Model
The	traditional	architecture	described	in	this	book	is	often	referred	to	as	the
perimeter	model,	after	the	castle-wall	approach	used	in	physical	security.	This
approach	protects	sensitive	items	by	building	lines	of	defenses	that	an	intruder
must	penetrate	before	gaining	access.	Unfortunately,	this	approach	is
fundamentally	flawed	in	the	context	of	computer	networks	and	no	longer
suffices.	In	order	to	fully	understand	the	failure,	it	is	useful	to	recall	how	the
current	model	was	arrived	at.

Managing	the	Global	IP	Address	Space
The	journey	that	led	to	the	perimeter	model	began	with	address	assignment.
Networks	were	being	connected	at	an	ever-increasing	rate	during	the	days	of	the
early	internet.	If	it	wasn’t	being	connected	to	the	internet	(remember	the	internet
wasn’t	ubiquitous	at	the	time),	it	was	being	connected	to	another	business	unit,
another	company,	or	perhaps	a	research	network.	Of	course,	IP	addresses	must
be	unique	in	any	given	IP	network,	and	if	the	network	operators	were	unlucky
enough	to	have	overlapping	ranges,	they	would	have	a	lot	of	work	to	do	in
changing	them	all.	If	the	network	you	are	connecting	to	happens	to	be	the
internet,	then	your	addresses	must	be	globally	unique.	So	clearly	some
coordination	is	required	here.

The	Internet	Assigned	Numbers	Authority	(IANA),	formally	established	in
1998,	is	the	body	that	today	provides	that	coordination.	Prior	to	the
establishment	of	the	IANA,	this	responsibility	was	handled	by	Jon	Postel,	who
created	the	internet	map	shown	in	Figure	1-3.	He	was	the	authoritative	source	for
IP	address	ownership	records,	and	if	you	wanted	to	guarantee	that	your	IP
addresses	were	globally	unique,	you	would	register	with	him.	At	this	time,
everybody	was	encouraged	to	register	for	IP	address	space,	even	if	the	network
being	registered	was	not	going	to	be	connected	to	the	internet.	The	assumption
was	that	even	if	a	network	was	not	connected	now,	it	would	probably	be



connected	to	another	network	at	some	point.

Figure	1-3.	A	map	of	the	early	internet	created	by	Jon	Postel,	dated	February	1982



Birth	of	Private	IP	Address	Space
As	IP	adoption	grew	through	the	late	1980s	and	early	1990s,	frivolous	use	of
address	space	became	a	serious	concern.	Numerous	cases	of	truly	isolated
networks	with	large	IP	address	space	requirements	began	to	emerge.	Networks
connecting	ATMs	and	arrival/departure	displays	at	large	airports	were	touted	as
prime	examples.	These	networks	were	considered	truly	isolated	for	various
reasons.	Some	devices	might	be	isolated	to	meet	security	or	privacy
requirements	(e.g.,	networks	meant	for	ATMs).	Some	might	be	isolated	because
the	scope	of	their	function	was	so	limited	that	having	broader	network	access
was	seen	as	exceedingly	unlikely	(e.g.,	airport	arrival	and	departure	displays).
RFC	1597,	Address	Allocation	for	Private	Internets,	was	introduced	to	address
this	wasted	public	address	space	issue.

In	March	of	1994,	RFC	1597	announced	that	three	IP	network	ranges	had	been
reserved	with	IANA	for	general	use	in	private	networks:	10.0.0.0/8,
172.16.0.0/12,	and	192.168.0.0/16.	This	had	the	effect	of	slowing	address
depletion	by	ensuring	that	the	address	space	of	large	private	networks	never
grew	beyond	those	allocations.	It	also	enabled	network	operators	to	use	non-
globally	unique	addresses	where	and	when	they	saw	fit.	It	had	another
interesting	effect,	which	lingers	with	us	today:	networks	using	private	addresses
were	more	secure,	because	they	were	fundamentally	incapable	of	joining	other
networks,	particularly	the	internet.

At	the	time,	very	few	organizations	(relatively	speaking)	had	an	internet
connection	or	presence,	and	as	such,	internal	networks	were	frequently
numbered	with	the	reserved	ranges.	Additionally,	security	measures	were	weak
to	nonexistent	because	these	networks	were	typically	confined	by	the	walls	of	a
	single	organization.

Private	Networks	Connect	to	Public	Networks
The	number	of	interesting	things	on	the	internet	grew	fairly	quickly,	and	soon
most	organizations	wanted	at	least	some	sort	of	presence.	Email	was	one	of	the
earliest	examples	of	this.	People	wanted	to	be	able	to	send	and	receive	email,	but
that	meant	they	needed	a	publicly	accessible	mail	server,	which	of	course	meant
that	they	needed	to	connect	to	the	internet	somehow.

https://tools.ietf.org/html/rfc1597


With	established	private	networks,	it	was	often	the	case	that	this	mail	server
would	be	the	only	server	with	an	internet	connection.	It	would	have	one	network
interface	facing	the	internet,	and	one	facing	the	internal	network.	With	that,
systems	and	people	on	the	internal	private	network	got	the	ability	to	send	and
receive	internet	email	via	their	connected	mail	server.

It	was	quickly	realized	that	these	servers	had	opened	up	a	physical	internet	path
into	their	otherwise	secure	and	private	network.	If	one	was	compromised,	an
attacker	might	be	able	to	work	their	way	into	the	private	network,	since	hosts
there	can	communicate	with	it.	This	realization	prompted	strict	scrutiny	of	these
hosts	and	their	network	connections.	Network	operators	placed	firewalls	on	both
sides	of	them	to	restrict	communication	and	thwart	potential	attackers	attempting
to	access	internal	systems	from	the	internet,	as	shown	in	Figure	1-4.	With	this
step,	the	perimeter	model	was	born.	The	internal	network	became	the	“secure”
network,	and	the	tightly	controlled	pocket	that	the	external	hosts	laid	in	became
the	DMZ,	or	the	demilitarized	zone.

Figure	1-4.	Both	internet	and	private	resources	can	access	hosts	in	the	DMZ;	private	resources,	however,



cannot	reach	beyond	the	DMZ,	and	thus	do	not	gain	direct	internet	access

Birth	of	NAT
The	number	of	internet	resources	desired	to	be	accessed	from	internal	networks
was	growing	rapidly,	and	it	quickly	became	easier	to	grant	general	internet
access	to	internal	resources	than	it	was	to	maintain	intermediary	hosts	for	every
application	desired.	NAT,	or	network	address	translation,	solved	that	problem
nicely.

RFC	1631,	The	IP	Network	Address	Translator,	defines	a	standard	for	a	network
device	that	is	capable	of	performing	IP	address	translation	at	organizational
boundaries.	By	maintaining	a	table	that	maps	public	IPs	and	ports	to	private
ones,	it	enabled	devices	on	private	networks	to	access	arbitrary	internet
resources.	This	lightweight	mapping	is	application-agnostic,	which	meant	that
network	operators	no	longer	needed	to	support	internet	connectivity	for
particular	applications;	they	needed	only	to	support	internet	connectivity	in
general.

These	NAT	devices	had	an	interesting	property:	because	the	IP	mapping	was
many-to-one,	it	was	not	possible	for	incoming	connections	from	the	internet	to
access	internal	private	IPs	without	specifically	configuring	the	NAT	to	handle
this	special	case.	In	this	way,	the	devices	exhibited	the	same	properties	as	a
stateful	firewall.	Actual	firewalls	began	integrating	NAT	features	almost
instantaneously,	and	the	two	became	a	single	function,	largely	indistinguishable.
Supporting	both	network	compatibility	and	tight	security	controls	meant	that
eventually	you	could	find	one	of	these	devices	at	practically	every	organizational
boundary,	as	shown	in	Figure	1-5.

https://tools.ietf.org/html/rfc1631


Figure	1-5.	Typical	(and	simplified)	perimeter	firewall	design

The	Contemporary	Perimeter	Model
With	a	firewall/NAT	device	between	the	internal	network	and	the	internet,	the
security	zones	are	clearly	forming.	There	is	the	internal	“secure”	zone,	the	DMZ
(demilitarized	zone),	and	the	untrusted	zone	(aka	the	internet).	If	at	some	point
in	the	future,	this	organization	needed	to	interconnect	with	another,	a	device
would	be	placed	on	that	boundary	in	a	similar	manner.	The	neighboring
organization	is	likely	to	become	a	new	security	zone,	with	particular	rules	about
what	kind	of	traffic	can	go	from	one	to	the	other,	just	like	the	DMZ	or	the	secure
zone.

Looking	back,	the	progression	can	be	seen.	We	went	from	offline/private
networks	with	just	one	or	two	hosts	with	internet	access	to	highly	interconnected
networks	with	security	devices	around	the	perimeter.	It	is	not	hard	to	understand:
network	operators	can’t	afford	to	sacrifice	the	perfect	security	of	their	offline



network	because	they	had	to	open	doors	up	for	various	business	purposes.	Tight
security	controls	at	each	door	minimized	the	risk.

Evolution	of	the	Threat	Landscape
Even	before	the	public	internet,	communicating	with	a	remote	computer	system
was	highly	desirable.	This	was	commonly	done	over	the	public	telephone
system.	Users	and	computer	systems	could	dial	in	and,	by	encoding	data	into
audible	tones,	gain	connectivity	to	the	remote	machine.	These	dial-in	interfaces
were	the	most	common	attack	vector	of	the	day,	since	gaining	physical	access
was	much	more	difficult.

Once	organizations	had	internet-connected	hosts,	attacks	shifted	from	occurring
over	the	telephone	network	to	being	launched	over	the	internet.	This	triggered	a
change	in	most	attack	dynamics.	Incoming	calls	to	dial-in	interfaces	tied	up	a
phone	line,	and	were	a	notable	occurrence	when	compared	to	a	TCP	connection
coming	from	the	internet.	It	was	much	easier	to	have	a	covert	presence	on	an	IP
network	than	it	was	on	a	system	that	needed	to	be	dialed	into.	Exploitation	and
brute	force	attempts	could	be	carried	out	over	long	periods	of	time	without
raising	too	much	suspicion...though	an	additional	and	more	impactful	capability
rose	from	this	shift:	malicious	code	could	then	listen	for	internet	traffic.

By	the	late	1990s,	the	world’s	first	(software)	Trojan	horses	had	begun	to	make
their	rounds.	Typically,	a	user	would	be	tricked	into	installing	the	malware,
which	would	then	open	a	port	and	wait	for	incoming	connections.	The	attacker
could	then	connect	to	the	open	port	and	remotely	control	the	target	machine.

It	wasn’t	long	after	that	people	realized	it	would	be	a	good	idea	to	protect	those
internet-facing	hosts.	Hardware	firewalls	were	the	best	way	to	do	it	(most
operating	systems	had	no	concept	of	a	host-based	firewall	at	the	time).	They
provided	policy	enforcement,	ensuring	that	only	whitelisted	“safe”	traffic	was
allowed	in	from	the	internet.	If	an	administrator	inadvertently	installed
something	that	exposed	an	open	port	(like	a	Trojan	horse),	the	firewall	would
physically	block	connections	to	that	port	until	explicitly	configured	to	allow	it.
Likewise,	traffic	to	the	internet-facing	servers	from	inside	the	network	could	be
controlled,	ensuring	that	internal	users	could	speak	to	them,	but	not	vice	versa.
This	helped	prevent	movement	into	the	internal	network	by	a	potentially



compromised	DMZ	host.

DMZ	hosts	were	of	course	a	prime	target	(due	to	their	connectivity),	though	such
tight	controls	on	both	inbound	and	outbound	traffic	made	it	hard	to	reach	an
internal	network	through	a	DMZ.	An	attacker	would	first	have	to	compromise
the	firewalled	server,	then	abuse	the	application	in	such	a	way	that	it	could	be
used	for	covert	communication	(they	need	to	get	data	out	of	that	network,	after
all).	Dial-in	interfaces	remained	the	lowest	hanging	fruit	if	one	was	determined
to	gain	access	to	an	internal	network.

This	is	where	things	took	an	interesting	turn.	NAT	was	introduced	to	grant
internet	access	to	clients	on	internal	networks.	Due	in	some	part	to	NAT
mechanics	and	in	some	part	to	real	security	concerns,	there	was	still	tight	control
on	inbound	traffic,	though	internal	resources	wishing	to	consume	external
resources	might	freely	do	so.	There’s	an	important	distinction	to	be	made	when
considering	a	network	with	NAT’d	internet	access	against	a	network	without	it:
the	former	has	relaxed	(if	any)	outbound	network	policy.

This	significantly	transformed	the	network	security	model.	Hosts	on	the
“trusted”	internal	networks	could	then	communicate	directly	with	untrusted
internet	hosts,	and	the	untrusted	host	was	suddenly	in	a	position	to	abuse	the
client	attempting	to	speak	with	it.	Even	worse,	malicious	code	could	then	send
messages	to	internet	hosts	from	within	the	internal	network.	Today,	we	know
this	as	phoning	home.

Phoning	home	is	a	critical	component	of	most	modern	attacks.	It	allows	data	to
be	exfiltrated	from	otherwise-protected	networks;	but	more	importantly,	since
TCP	is	bidirectional,	it	allows	data	to	be	injected	as	well.

A	typical	attack	involves	several	steps,	as	shown	in	Figure	1-6.	First,	the	attacker
will	compromise	a	single	computer	on	the	internal	network	by	exploiting	the
user’s	browser	when	they	visit	a	particular	page,	by	sending	them	an	email	with
an	attachment	that	exploits	some	local	software,	for	example.	The	exploit	carries
a	very	small	payload,	just	enough	code	to	make	a	connection	out	to	a	remote
internet	host	and	execute	the	code	it	receives	in	the	response.	This	payload	is
sometimes	referred	to	as	a	dialer.

The	dialer	downloads	and	installs	the	real	malware,	which	more	often	than	not
will	attempt	to	make	an	additional	connection	to	a	remote	internet	host



controlled	by	the	attacker.	The	attacker	will	use	this	connection	to	send
commands	to	the	malware,	exfiltrate	sensitive	data,	or	even	to	obtain	an
interactive	session.	This	“patient	zero”	can	act	as	a	stepping	stone,	giving	the
attacker	a	host	on	the	internal	network	from	which	to	launch	additional	attacks.

Figure	1-6.		Client	initiates	all	attack-related	connections,	easily	traversing	perimeter	firewalls	with
relaxed	outbound	security

OUTBOUND	SECURITY
Outbound	network	security	is	a	very	effective	mitigation	measure	against	dialer-based	attacks,
as	the	phone	home	can	be	detected	and/or	blocked.	Oftentimes,	however,	the	phone	home	is
disguised	as	regular	web	traffic,	possibly	even	to	networks	that	are	seemingly	benign	or
“normal.”	Outbound	security	tight	enough	to	stop	these	attacks	will	oftentimes	cripple	web
usability	for	users.	This	is	a	more	realistic	prospect	for	back-office	systems.

The	ability	to	launch	attacks	from	hosts	within	an	internal	network	is	a	very



powerful	one.	These	hosts	almost	certainly	have	permission	to	talk	to	other	hosts
in	the	same	security	zone	(lateral	movement)	and	might	even	have	access	to	talk
to	hosts	in	zones	more	secure	than	their	own.	To	this	effect,	by	first
compromising	a	low-security	zone	on	the	internal	network,	an	attacker	can	move
through	the	network,	eventually	gaining	access	to	the	high-security	zones.

Taking	a	step	back	for	a	moment,	it	can	be	seen	that	this	pattern	very	effectively
undermines	the	perimeter	security	model.	The	critical	flaw	enabling	attack
progression	is	subtle,	yet	clear:	security	policies	are	defined	by	network
zones,	enforced	only	at	zone	boundaries,	using	nothing	more	than	the	source	and
destination	details.

Perimeter	Shortcomings
Even	though	the	perimeter	security	model	still	stands	as	the	most	prevalent
model	by	far,	it	is	increasingly	obvious	that	the	way	we	rely	on	it	is	flawed.
Complex	(and	successful)	attacks	against	networks	with	perfectly	good
perimeter	security	occur	every	day.	An	attacker	drops	a	remote	access	tool	(or
RAT)	into	your	network	through	one	of	a	myriad	of	methods,	gains	remote
access,	and	begins	moving	laterally.	Perimeter	firewalls	have	become	the
functional	equivalent	of	building	a	wall	around	a	city	to	keep	out	the	spies.

The	problem	comes	when	architecting	security	zones	into	the	network	itself.
Imagine	the	following	scenario:	you	run	a	small	ecommerce	company.	You	have
some	employees,	some	internal	systems	(payroll,	inventory,	etc.),	and	some
servers	to	power	your	website.	It	is	natural	to	begin	classifying	the	kind	of
access	these	groups	might	need:	employees	need	access	to	internal	systems,	web
servers	need	access	to	database	servers,	database	servers	don’t	need	internet
access	but	employees	do,	and	so	on.	Traditional	network	security	would	codify
these	groups	as	zones	and	then	define	which	zone	can	access	what,	as	shown	in
Figure	1-7.	Of	course,	you	need	to	actually	enforce	these	policies;	and	since	they
are	defined	on	a	zone-by-zone	basis,	it	makes	sense	to	enforce	them	wherever
one	zone	can	route	traffic	into	another.

As	you	might	imagine,	there	are	always	exceptions	to	these	generalized	rules...
they	are,	in	fact,	colloquially	known	as	firewall	exceptions.	These	exceptions	are
typically	as	tightly	scoped	as	possible.	For	instance,	your	web	developer	might



want	SSH	access	to	the	production	web	servers,	or	your	HR	representative	might
need	access	to	the	HR	software’s	database	in	order	to	perform	audits.	In	these
cases,	an	acceptable	approach	is	to	configure	a	firewall	exception	permitting
traffic	from	that	individual’s	IP	address	to	the	particular	server(s)	in	question.

Now	let’s	imagine	that	your	archnemesis	has	hired	a	team	of	hackers.	They	want
to	have	a	peek	at	your	inventory	and	sales	numbers.	The	hackers	send	emails	to
all	the	employee	email	addresses	they	can	find	on	the	internet,	masquerading	as
a	discount	code	for	a	restaurant	near	the	office.	Sure	enough,	one	of	them	clicks
the	link,	allowing	the	attackers	to	install	malware.	The	malware	phones	home
and	provides	the	attackers	with	a	session	on	the	now-compromised	employee’s
machine.	Luckily,	it’s	only	an	intern,	and	the	level	of	access	they	gain	is	limited.

Figure	1-7.	Corporate	network	interacting	with	the	production	network

They	begin	searching	the	network	and	find	that	the	company	is	using	file	sharing
software	on	its	network.	Out	of	all	the	employee	computers	on	the
network,	none	of	them	have	the	latest	version	and	are	vulnerable	to	an	attack	that



was	recently	publicized.	One	by	one,	the	hackers	begin	searching	for	a	computer
with	elevated	access	(this	process	of	course	can	be	more	targeted	if	the	attacker
has	advanced	knowledge).	Eventually	they	come	across	your	web	developer’s
machine.	A	keylogger	they	install	there	recovers	the	credentials	to	log	into	the
web	server.	They	SSH	to	the	server	using	the	credentials	they	gathered;	and
using	the	sudo	rights	of	the	web	developer,	they	read	the	database	password
from	disk	and	connect	to	the	database.	They	dump	the	contents	of	the	database,
download	it,	and	delete	all	the	log	files.	If	you’re	lucky,	you	might	actually
discover	that	this	breach	occurred.	They	accomplished	their	mission,	as	shown	in
Figure	1-8.

Wait,	what?	As	you	can	see,	many	failures	at	many	levels	led	to	this	breach,	and
while	you	might	think	that	this	is	a	particularly	contrived	case,	successful	attacks
just	like	this	one	are	staggeringly	common.	The	most	surprising	part	however
goes	unnoticed	all	too	often:	what	happened	to	all	that	network	security?
Firewalls	were	meticulously	placed,	policies	and	exceptions	were	tightly	scoped
and	very	limited,	everything	was	done	right	from	a	network	security	perspective.
So	what	gives?



Figure	1-8.	Attacker	movement	into	corporate	network,	and	subsequently	production	into	network

EXAMPLE	ATTACK	PROGRESSION

1.	 Employees	targeted	via	phishing	email

2.	 Corporate	machine	compromised,	shell	shoveled

3.	 Lateral	movement	through	corporate	network

4.	 Privileged	workstation	located

5.	 Local	privilege	escalation	on	workstation—keylogger	installed

6.	 Developer	password	stolen

7.	 Compromised	prod	app	host	from	privileged	workstation

8.	 Developer	password	used	to	elevate	privileges	on	prod	app	host

9.	 Database	credentials	stolen	from	app

10.	 Database	contents	exfiltrated	via	compromised	app	host



When	carefully	examined,	it	is	overwhelmingly	obvious	that	this	network
security	model	is	not	enough.	Bypassing	perimeter	security	is	trivial	with
malware	that	phones	home,	and	firewalls	between	zones	consider	nothing	more
than	source	and	destination	when	making	enforcement	decisions.	While
perimeters	can	still	provide	some	value	in	network	security,	their	role	as	the
primary	mechanism	by	which	a	network’s	security	stance	is	defined	needs	to	be
reconsidered.

The	first	step	of	course	is	to	search	for	existing	solutions.	Sure,	the	perimeter
model	is	the	accepted	approach	to	securing	a	network,	but	that	doesn’t	mean	we
haven’t	learned	better	elsewhere.	What	is	the	worst	possible	scenario	network
security-wise?	It	turns	out	that	there	is	actually	a	level	of	absoluteness	to	this
question,	and	the	crux	of	it	lies	in	trust.

Where	the	Trust	Lies
When	considering	options	beyond	the	perimeter	model,	one	must	have	a	firm
understanding	of	what	is	trusted	and	what	isn’t.	The	level	of	trust	defines	a	lower
limit	on	the	robustness	of	the	security	protocols	required.	Unfortunately,	it	is	rare
for	robustness	to	exceed	what	is	required,	so	it	is	wise	to	trust	as	little	as
possible.	Once	trust	is	built	into	a	system,	it	can	be	very	hard	to	remove.

A	zero	trust	network	is	just	as	it	sounds.	It	is	a	network	that	is	completely
untrusted.	Lucky	for	us,	we	interact	with	such	a	network	very	frequently:	the
internet.

The	internet	has	taught	us	some	valuable	security	lessons.	Certainly	an	operator
will	secure	an	internet-facing	server	much	differently	than	it	secures	its	locally
accessible	counterpart.	Why	is	that?	And	if	the	pains	associated	with	such	rigor
were	cured	(or	even	just	lessened),	would	the	security	sacrifice	still	be	worth	it?

The	zero	trust	model	dictates	that	all	hosts	be	treated	as	if	they’re	internet-facing.
The	networks	they	reside	in	must	be	considered	compromised	and	hostile.	Only
with	this	consideration	can	you	begin	to	build	secure	communication.	With	most
operators	having	built	or	maintained	internet-facing	systems	in	the	past,	we	have
at	least	some	idea	of	how	to	secure	IP	in	a	way	that	is	difficult	to	intercept	or
tamper	with	(and,	of	course,	how	to	secure	those	hosts).	Automation	enables	us
to	extend	this	level	of	security	to	all	of	the	systems	in	our	infrastructure.



Automation	as	an	Enabler
Zero	trust	networks	do	not	require	new	protocols	or	libraries.	They	do,	however,
use	existing	technologies	in	novel	ways.	Automation	systems	are	what	allow	a
zero	trust	network	to	be	built	and	operated.

Interactions	between	the	control	plane	and	the	data	plane	are	the	most	critical
points	requiring	automation.	If	policy	enforcement	cannot	be	dynamically
updated,	zero	trust	will	be	unattainable;	therefore	it	is	critical	that	this	process	be
automatic	and	rapid.

There	are	many	ways	that	this	automation	can	be	realized.	Purpose-built	systems
are	most	ideal,	though	more	mundane	systems	like	traditional	configuration
management	can	fit	here	as	well.	Widespread	adoption	of	configuration
management	represents	an	important	stepping	stone	for	a	zero	trust	network,	as
these	systems	often	maintain	device	inventories	and	are	capable	of	automating
network	enforcement	configuration	in	the	data	plane.

Due	to	the	fact	that	modern	configuration	management	systems	can	both
maintain	a	device	inventory	and	automate	the	data	plane	configuration,	they	are
well	positioned	to	be	a	first	step	toward	a	mature	zero	trust	network.

Perimeter	Versus	Zero	Trust
The	perimeter	and	zero	trust	models	are	fundamentally	different	from	each	other.
The	perimeter	model	attempts	to	build	a	wall	between	trusted	and	untrusted
resources	(i.e.,	local	network	and	the	internet).	On	the	other	hand,	the	zero	trust
model	basically	throws	the	towel	in,	and	accepts	the	reality	that	the	“bad	guys”
are	everywhere.	Rather	than	build	walls	to	protect	the	soft	bodies	inside,	it	turns
the	entire	population	into	a	militia.

The	current	approaches	to	perimeter	networks	assign	some	level	of	trust	to	the
protected	networks.	This	notion	violates	the	zero	trust	model	and	leads	to	some
bad	behavior.	Operators	tend	to	let	their	guard	down	a	bit	when	the	network	is
“trusted”	(they	are	human).	Rarely	are	hosts	that	share	a	trust	zone	protected
from	themselves.	Sharing	a	trust	zone,	after	all,	seems	to	imply	that	they	are
equally	trusted.	Over	time,	we	have	come	to	learn	that	this	assumption	is	false,
and	it	is	not	only	necessary	to	protect	your	hosts	from	the	outside,	but	it	is	also



necessary	to	protect	them	from	each	other.

Since	the	zero	trust	model	assumes	the	network	is	fully	compromised,	you	must
also	assume	that	an	attacker	can	communicate	using	any	arbitrary	IP	address.
Thus,	protecting	resources	by	using	IP	addresses	or	physical	location	as	an
identifier	is	not	enough.	All	hosts,	even	those	which	share	“trust	zones,”	must
provide	proper	identification.	Attackers	are	not	limited	to	active	attacks	though.
They	can	still	perform	passive	attacks	in	which	they	sniff	your	traffic	for
sensitive	information.	In	this	case,	even	host	identification	is	not	enough—strong
encryption	is	also	required.

There	are	three	key	components	in	a	zero	trust	network:	user/application
authentication,	device	authentication,	and	trust.	The	first	component	has	some
duality	in	it	due	to	the	fact	that	not	all	actions	are	taken	by	users.	So	in	the	case
of	automated	action	(inside	the	datacenter,	for	instance),	we	look	at	qualities	of
the	application	in	the	same	way	that	we	would	normally	look	at	qualities	of	the
user.

Authenticating	and	authorizing	the	device	is	just	as	important	as	doing	so	for	the
user/application.	This	is	a	feature	rarely	seen	in	services	and	resources	protected
by	perimeter	networks.	It	is	often	deployed	using	VPN	or	NAC	technology,
especially	in	more	mature	networks,	but	finding	it	between	endpoints	(as
opposed	to	network	intermediaries)	is	uncommon.

NAC	AS	A	PERIMETER	TECHNOLOGY
NAC,	or	Network	Access	Control,	represents	a	set	of	technologies	designed	to	strongly
authenticate	devices	in	order	to	gain	access	to	a	sensitive	network.	These	technologies,	which
include	protocols	like	802.1X	and	the	Trusted	Network	Connect	(TNC)	family,	focus	on
admittance	to	a	network	rather	than	admittance	to	a	service	and	as	such	are	independent	to	the
zero	trust	model.	An	approach	more	consistent	with	the	zero	trust	model	would	involve	similar
checks	as	close	to	the	service	being	accessed	as	possible	(something	which	TNC	can	address—
more	on	this	in	Chapter	5).	While	NAC	can	still	be	employed	in	a	zero	trust	network,	it	does
not	fulfill	the	zero	trust	device	authentication	requirement	due	to	its	distance	from	the	remote
endpoint.

Finally,	a	“trust	score”	is	computed,	and	the	application,	device,	and	score	are
bonded	to	form	an	agent.	Policy	is	then	applied	against	the	agent	in	order	to
authorize	the	request.	The	richness	of	information	contained	within	the	agent



allows	very	flexible	yet	fine-grained	access	control,	which	can	adapt	to	varying
conditions	by	including	the	score	component	in	your	policies.

If	the	request	is	authorized,	the	control	plane	signals	the	data	plane	to	accept	the
incoming	request.	This	action	can	configure	encryption	details	as	well.
Encryption	can	be	applied	at	the	device	level,	application	level,	or	both.	At	least
one	is	required	for	confidentiality.

With	these	authentication/authorization	components,	and	the	aide	of	the	control
plane	in	coordinating	encrypted	channels,	we	can	assert	that	every	single	flow	on
the	network	is	authenticated	and	expected.	Hosts	and	network	devices	drop
traffic	that	has	not	had	all	of	these	components	applied	to	it,	ensuring	sensitive
data	can	never	leak	out.	Additionally,	by	logging	each	of	the	control	plane
events	and	actions,	network	traffic	can	be	easily	audited	on	a	flow-by-flow	or
request-by-request	basis.

Perimeter	networks	can	be	found	which	have	similar	capability,	though	these
capabilities	are	enforced	at	the	perimeter	only.	VPN	famously	attempts	to
provide	these	qualities	in	order	to	secure	access	to	an	internal	network,	but	the
security	ends	as	soon	as	your	traffic	reaches	a	VPN	concentrator.	It	is	apparent
that	operators	know	what	internet-strength	security	is	supposed	to	look	like;	they
just	fail	to	implement	those	strong	measures	throughout.

If	one	can	imagine	a	network	that	applies	these	measures	homogeneously,	some
brief	thought	experiment	can	shed	a	lot	of	light	on	this	new	paradigm.	Identity
can	be	proven	cryptographically,	meaning	it	no	longer	matters	what	IP	address
any	given	connection	is	originating	from	(technically,	you	can	still	associate	risk
with	it—more	on	that	later).	With	automation	removing	the	technical	barriers,
VPN	is	essentially	obsoleted.	“Private”	networks	no	longer	mean	anything
special:	the	hosts	there	are	just	as	hardened	as	the	ones	on	the	internet.	Thinking
critically	about	NAT	and	private	address	space,	perhaps	zero	trust	makes	it	more
obvious	that	the	security	arguments	for	it	are	null	and	void.

Ultimately,	the	perimeter	model	flaw	is	lack	of	universal	protection	and
enforcement.	Secure	cells	with	soft	bodies	inside.	What	we’re	really	looking	for
is	hard	bodies,	bodies	that	know	how	to	check	IDs	and	speak	in	a	way	they	can’t
be	overheard.	Having	hard	bodies	doesn’t	necessarily	preclude	you	from	also
maintaining	the	security	cells.	In	very	sensitive	installations,	this	would	still	be
encouraged.	It	does,	however,	raise	the	security	bar	high	enough	that	it	wouldn’t



be	unreasonable	to	lessen	or	remove	those	cells.	Combined	with	the	fact	that	the
majority	of	the	zero	trust	function	can	be	done	with	transparency	to	the	end	user,
the	model	almost	seems	to	violate	the	security/convenience	trade-off:	stronger
security,	more	convenience.	Perhaps	the	convenience	problem	(or	lack	thereof)
has	been	pushed	onto	the	operators.

Applied	in	the	Cloud
There	are	many	challenges	in	deploying	infrastructure	into	the	cloud,	one	of	the
larger	being	security.	Zero	trust	is	a	perfect	fit	for	cloud	deployments	for	an
obvious	reason:	you	can’t	trust	the	network	in	a	public	cloud!	The	ability	to
authenticate	and	secure	communication	without	relying	on	IP	addresses	or	the
security	of	the	network	connecting	them	means	that	compute	resources	can	be
nearly	commoditized.

Since	zero	trust	advocates	that	every	packet	be	encrypted,	even	within	the	same
datacenter,	operators	need	not	worry	about	which	packets	traverse	the	internet
and	which	don’t.	This	advantage	is	often	understated.	Cognitive	load	associated
with	when,	where,	and	how	to	encrypt	traffic	can	be	quite	large,	particularly	for
developers	who	may	not	fully	understand	the	underlying	system.	By	eliminating
special	cases,	we	can	also	eliminate	the	human	error	associated	with	them.

Some	might	argue	that	intra-datacenter	encryption	is	overkill,	even	with	the
reduction	in	cognitive	load.	History	has	proven	otherwise.	At	large	cloud
providers	like	AWS,	a	single	“region”	consists	of	many	datacenters,	with	fiber
links	between	them.	To	the	end	user,	this	subtlety	is	often	obfuscated.	The	NSA
was	targeting	precisely	links	like	these	in	2013,	and	internet-backbone	links	even
earlier	in	rooms	like	the	one	shown	in	Figure	1-9.



Figure	1-9.	Room	641A—NSA	interception	facility	inside	an	AT&T	datacenter	in	San	Francisco

There	are	additionally	risks	in	the	network	implementation	of	the	provider	itself.
It	is	not	impossible	to	think	that	a	vulnerability	might	exist	in	which	neighbors
can	see	your	traffic.	A	more	likely	case	is	network	operators	inspecting	traffic
while	troubleshooting.	Perhaps	the	operator	is	honest,	but	how	about	the	person
who	stole	his/her	laptop	a	few	hours	later	with	your	captures	on	the	disk?	The
unfortunate	reality	is	that	we	can	no	longer	assume	that	our	traffic	is	protected
from	snooping	or	modification	while	in	the	datacenter.

Summary
This	chapter	explored	the	high-level	concepts	that	have	led	us	toward	the	zero
trust	model.	The	zero	trust	model	does	away	with	the	perimeter	model,	which
attempts	to	ensure	that	bad	actors	stay	out	of	the	trusted	internal	network.
Instead,	the	zero	trust	system	recognizes	that	this	approach	is	doomed	to	failure,
and	as	a	result,	starts	with	the	assumption	that	malicious	actors	are	within	the



internal	network	and	builds	up	security	mechanisms	to	guard	against	this	threat.

To	better	understand	why	the	perimeter	model	is	failing	us,	we	reviewed	how	the
perimeter	model	came	into	being.	Back	at	the	internet’s	beginning,	the	network
was	fully	routable.	As	the	system	evolved,	some	users	identified	areas	of	the
network	that	didn’t	have	a	credible	reason	to	be	routable	on	the	internet,	and	thus
the	concept	of	a	private	network	was	born.	Over	time,	this	idea	took	hold,	and
organizations	modeled	their	security	around	protecting	the	trusted	private
network.	Unfortunately,	these	private	networks	aren’t	nearly	as	isolated	as	the
original	private	networks	were.	The	end	result	is	a	very	porous	perimeter,	which
is	frequently	breached	in	regular	security	incidents.

With	the	shared	understanding	of	perimeter	networks,	we	are	able	to	contrast
that	design	against	the	zero	trust	design.	The	zero	trust	model	carefully	manages
trust	in	the	system.	These	types	of	networks	lean	on	automation	to	realistically
manage	the	security	control	systems	that	allow	us	to	create	a	more	dynamic	and
hardened	system.	We	introduced	some	key	concepts	like	the	authentication	of
users,	devices,	and	applications,	and	the	authorization	of	the	combination	of
those	components.	We	will	discuss	these	concepts	in	greater	detail	throughout
the	rest	of	this	book.

Finally,	we	talked	about	how	the	move	to	public	cloud	environments	and	the
pervasiveness	of	internet	connectivity	have	fundamentally	changed	the	threat
landscape.	“Internal”	networks	are	now	increasingly	shared	and	sufficiently
abstracted	away	in	such	a	way	that	end	users	don’t	have	as	clear	an
understanding	of	when	their	data	is	transiting	more	vulnerable	long-distance
network	links.	The	end	result	of	this	change	is	that	data	security	is	more
important	than	ever	when	constructing	new	systems.

The	next	chapter	will	discuss	the	high-level	concepts	that	need	to	be	understood
in	order	to	build	systems	that	can	safely	manage	trust.



Chapter	2.	Managing	Trust

Trust	management	is	perhaps	the	most	important	component	of	a	zero	trust
network.	We	are	all	familiar	with	trust	to	some	degree—you	probably	trust
members	of	your	family,	but	not	a	stranger	on	the	street,	and	certainly	not	a
stranger	who	looks	threatening	or	menacing.	Why	is	that?

For	starters,	you	actually	know	your	family	members.	You	know	what	they	look
like,	where	they	live;	perhaps	you’ve	even	known	them	your	whole	life.	There	is
no	question	of	who	they	are,	and	you	are	more	likely	to	trust	them	with
important	matters	than	others.

A	stranger,	on	the	other	hand,	is	someone	completely	unknown.	You	might	see
their	face,	and	be	able	to	tell	some	basic	things	about	them,	but	you	don’t	know
where	they	live,	and	you	don’t	know	their	history.	They	might	appear	perfectly
cromulent,	but	you	likely	wouldn’t	rely	on	one	for	important	matters.	Watch
your	stuff	for	you	while	you	run	to	the	bathroom?	Sure.	Make	a	quick	run	to	the
ATM	for	you?	Definitely	not.

At	the	end,	you	are	simply	taking	in	all	the	information	you	can	tell	about	the
situation,	a	person,	and	all	you	may	know	about	them,	and	deciding	how
trustworthy	they	are.	The	ATM	errand	requires	a	very	high	level	of	trust,	where
watching	your	stuff	needs	much	less,	but	not	zero.

You	may	not	even	trust	yourself	completely,	but	you	can	definitely	trust	that
actions	taken	by	you	were	taken	by	you.	In	this	way,	trust	in	a	zero	trust	network
always	originates	with	the	operator.	Trust	in	a	zero	trust	network	seems
contradictory,	though	it	is	important	to	understand	that	when	you	have
no	inherent	trust,	you	must	source	it	from	somewhere	and	manage	it	carefully.

There’s	a	small	wrinkle	though:	the	operator	won’t	always	be	available	to
authorize	and	grant	trust!	Plus,	the	operator	just	doesn’t	scale	:).	Luckily,	we
know	how	to	solve	that	problem—we	delegate	trust	as	shown	in	Figure	2-1.



Figure	2-1.	An	operator	declares	trust	in	a	particular	system,	which	can	in	turn	trust	another,	forming	a
trust	chain

Trust	delegation	is	important	because	it	allows	us	to	build	automated	systems
that	can	grow	to	large	scale	and	to	operate	in	a	secure	and	trusted	way	with
minimal	human	intervention.	The	trusted	operator	must	assign	some	level	of
trust	to	a	system,	enabling	it	to	take	actions	on	behalf	of	the	operator.	A	simple
example	of	this	is	auto-scaling.	You	want	your	servers	to	provision	themselves
as	needed,	but	how	do	you	know	a	new	server	is	one	of	yours	and	not	some	other
random	server?	The	operator	must	delegate	the	responsibility	to	a	provisioning
system,	granting	it	the	ability	to	assign	trust	to,	and	create,	new	hosts.	In	this
way,	we	can	say	that	we	trust	the	new	server	is	indeed	our	own,	because	the
provisioning	system	has	validated	that	it	has	taken	the	action	to	create	it,	and	the
provisioning	system	can	prove	that	the	operator	has	granted	it	the	ability	to	do



so.	This	flow	of	trust	back	to	the	operator	is	often	referred	to	as	a	trust	chain,
and	the	operator	can	be	referred	to	as	a	trust	anchor.

Threat	Models
Defining	threat	models	is	an	important	first	step	when	designing	a	security
architecture.	A	threat	model	enumerates	the	potential	attackers,	their	capabilities
and	resources,	and	their	intended	targets.	Threat	models	will	normally	define
which	attackers	are	in	scope,	rationally	choosing	to	mitigate	attacks	from	weaker
adversaries	before	moving	onto	more	difficult	adversaries.

A	well-defined	threat	model	can	be	a	useful	tool	to	focus	security	mitigation
efforts.	When	building	security	systems,	like	most	engineering	exercises,	there	is
a	tendency	to	focus	on	the	fancier	aspects	of	the	engineering	problem	to	the
detriment	of	the	more	boring	but	still	important	parts.	This	tendency	is	especially
worrisome	in	a	security	system,	since	the	weakest	link	in	the	system	is	where
attackers	will	quickly	focus	their	attention.	Therefore,	the	threat	model	serves	as
a	mechanism	for	focusing	our	attention	on	a	single	threat	and	fully	mitigating
their	attacks.

Threat	models	can	also	be	useful	when	prioritizing	security	initiatives.	Fighting
state-level	actors	is	pointless	if	a	system’s	security	measures	are	insufficient	to
defend	against	a	simple	brute	force	attack	on	a	user’s	poor	password.	As	such,	it
is	important	to	start	first	with	simpler	personas	when	building	a	threat	model.

Common	Threat	Models
There	are	many	different	techniques	for	threat	modeling	in	the	security	field.
Here	are	some	of	the	more	popular	ones:

STRIDE

DREAD

PASTA

Trike

VAST

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://www.owasp.org/index.php/Threat_Risk_Modeling#DREAD
http://bit.ly/2rQGNoa
http://octotrike.org/
http://threatmodeler.com/threat-modeling-methodology/


The	varying	threat	modeling	techniques	provide	different	frameworks	for
exploring	the	threat	space.	Each	of	them	is	after	the	same	goal:	to	enumerate
threats	to	the	system	and	further	enumerate	the	mitigating	systems	and	processes
for	those	threats.

Different	threat	models	approach	the	problem	from	different	angles.	Some
modeling	systems	might	focus	on	the	assets	that	an	attacker	would	be	targeting.
Others	might	look	at	each	software	component	in	isolation	and	enumerate	all	the
attacks	that	could	be	applied	to	that	system.	Finally,	some	models	might	look	at
the	system	as	a	whole	from	the	attacker’s	perspective:	as	an	attacker,	how	might
I	approach	penetrating	this	system.	Each	of	these	approaches	has	pros	and	cons.
For	a	well-diversified	mitigating	strategy,	a	blend	of	the	three	approaches	is
ideal.

If	we	were	to	look	at	the	attacker-based	threat	modeling	methodology,	we	are
able	to	categorize	attackers	into	a	list	of	increasing	capabilities	(ordered	from
least	to	most	threatening):

1.	Opportunistic	attackers

So-called	script	kiddies,	who	are	unsophisticated	attackers	taking	advantage
of	well-known	vulnerabilities	with	no	predetermined	target.

2.	Targeted	attackers

Attackers	who	craft	specialized	attacks	against	a	particular	target.	Spear
phishing	and	corporate	espionage	might	fall	under	this	bucket.

3.	Insider	threats

A	credentialed	but	everyday	user	of	a	system.	Contractors	and	unprivileged
employees	generally	fall	into	this	bucket.

4.	Trusted	insider

A	highly	trusted	administrator	of	a	system.

5.	State-level	actor

Attackers	backed	by	foreign	or	domestic	governments	and	assumed	to	have
vast	resources	and	positioning	capabilities	to	attack	a	target.

Categorizing	threats	like	this	is	a	useful	exercise	to	focus	discussion	around	a



particular	level	to	mitigate	against.	We	will	discuss	which	level	zero	trust	targets
in	the	next	section.

Zero	Trust’s	Threat	Model
In	RFC	3552,	the	Internet	Threat	Model	is	described.	Zero	trust	networks
generally	follow	the	Internet	Threat	Model	to	plan	their	security	stance.	While
reading	the	entire	RFC	is	recommended,	here	is	a	relevant	excerpt:

The	Internet	environment	has	a	fairly	well	understood	threat	model.	In
general,	we	assume	that	the	end-systems	engaging	in	a	protocol	exchange
have	not	themselves	been	compromised.	Protecting	against	an	attack	when
one	of	the	end-systems	has	been	compromised	is	extraordinarily	difficult.	It	is,
however,	possible	to	design	protocols	which	minimize	the	extent	of	the
damage	done	under	these	circumstances.

By	contrast,	we	assume	that	the	attacker	has	nearly	complete	control	of	the
communications	channel	over	which	the	end-systems	communicate.	This
means	that	the	attacker	can	read	any	PDU	(Protocol	Data	Unit)	on	the
network	and	undetectably	remove,	change,	or	inject	forged	packets	onto	the
wire.	This	includes	being	able	to	generate	packets	that	appear	to	be	from	a
trusted	machine.	Thus,	even	if	the	end-system	with	which	you	wish	to
communicate	is	itself	secure,	the	Internet	environment	provides	no	assurance
that	packets	which	claim	to	be	from	that	system	in	fact	are.

Zero	trust	networks,	as	a	result	of	their	control	over	endpoints	in	the	network,
expand	upon	the	Internet	Threat	Model	to	consider	compromises	at	the
endpoints.	The	response	to	these	threats	is	generally	to	first	harden	the	systems
proactively	against	compromised	peers,	and	then	facilitate	detection	of	those
compromises.	Detection	is	aided	by	scanning	of	devices	and	behavioral	analysis
of	the	activity	from	each	device.	Additionally,	mitigation	of	endpoint
compromise	is	achieved	by	frequent	upgrades	to	software	on	devices,	frequent
and	automated	credential	rotation,	and	in	some	cases	frequent	rotation	of	the
devices	themselves.

An	attacker	with	unlimited	resources	is	essentially	impossible	to	defend	against,
and	zero	trust	networks	recognize	that.	The	goal	of	a	zero	trust	network	isn’t	to
defend	against	all	adversaries,	but	rather	the	types	of	adversaries	that	are
commonly	seen	in	a	hostile	network.

https://tools.ietf.org/html/rfc3552#section-3


commonly	seen	in	a	hostile	network.

From	our	earlier	discussion	of	attacker	capabilities,	a	zero	trust	network	is
generally	attempting	to	mitigate	attacks	up	to	and	including	attacks	originating
from	a	“trusted	insider”	level	of	access.	Most	organizations	do	not	experience
attacks	that	exceed	this	level	of	sophistication.	Developing	mitigations	against
these	attackers	will	defend	against	the	vast	majority	of	compromises	and	would
be	a	dramatic	improvement	for	the	industry’s	security	stance.

Zero	trust	networks	generally	do	not	try	to	mitigate	all	state-level	actors,	though
they	do	attempt	to	mitigate	those	attempting	to	compromise	their	systems
remotely.	State-level	actors	are	assumed	to	have	vast	amounts	of	money,	so
many	attacks	that	would	be	infeasible	for	lesser	organizations	are	available	to
them.	Additionally,	local	governments	have	physical	and	legal	access	to	many	of
the	systems	that	organizations	depend	upon	for	securing	their	networks.

Defending	against	these	localized	threats	is	exceedingly	expensive,	requiring
dedicated	physical	hardware,	and	most	zero	trust	networks	consider	the	more
extreme	forms	of	attacks	(say	a	vulnerability	being	inserted	into	a	hypervisor
which	copies	memory	pages	out	of	a	VM)	out	of	scope	in	their	threat	models.
We	should	be	clear	that	while	security	best	practices	are	still	very	much
encouraged,	the	zero	trust	model	only	requires	the	safety	of	information	used	to
authenticate	and	authorize	actions,	such	as	on-disk	credentials.	Further
requirements	on	endpoints,	say	full	disk	encryption,	can	be	applied	via
additional	policy.

Strong	Authentication
Knowing	how	much	to	trust	someone	is	useless	without	being	able	to	associate	a
real-life	person	with	that	identity	you	know	to	trust.	Humans	have	many	senses
to	determine	if	the	person	in	front	of	them	is	who	they	think	they	are.	Turns	out,
combinations	of	senses	are	hard	to	fool.

Computer	systems,	however,	are	not	so	lucky.	It’s	more	like	talking	to	someone
on	the	phone.	You	can	listen	to	their	voice,	read	their	caller	ID,	ask	them
questions...but	you	can’t	see	them.	Thus	we	are	left	with	a	challenge:	how	can
one	be	reasonably	assured	that	the	person	(or	system)	on	the	other	end	of	the	line
is	in	fact	who	they	say	they	are?

Typically,	operators	examine	the	IP	address	of	the	remote	system	and	ask	for	a



Typically,	operators	examine	the	IP	address	of	the	remote	system	and	ask	for	a
password.	Unfortunately,	these	methods	alone	are	insufficient	for	a	zero	trust
network,	where	attackers	can	communicate	from	any	IP	they	please	and	insert
themselves	between	yourself	and	trusted	remote	host.	Therefore,	it	is	very
important	to	employ	strong	authentication	on	every	flow	in	a	zero	trust	network.

The	most	widely	accepted	method	to	accomplish	this	is	a	standard	named	X.509,
which	most	engineers	are	familiar	with.	It	defines	a	certificate	standard	that
allows	identity	to	be	verified	through	a	chain	of	trust.	It’s	popularly	deployed	as
the	primary	mechanism	for	authenticating	TLS	(formerly	SSL)	connections.

SSL	IS	ANONYMOUS
The	most	widely	consumed	TLS	configuration	validates	that	the	client	is	speaking	to	a	trusted
resource,	but	not	that	the	resource	is	speaking	to	a	trusted	client.	This	poses	an	obvious
problem	for	zero	trust	networks.	

TLS	additionally	supports	mutual	authentication,	in	which	the	resource	also	validates	the
client.	This	is	an	important	step	in	securing	private	resources;	otherwise,	the	client	device	will
go	unauthenticated.	More	on	zero	trust	TLS	configuration	in	“Mutually	Authenticated	TLS”.

Certificates	utilize	two	cryptographic	keys:	a	public	key	and	a	private	key.	The
public	key	is	distributed,	and	the	private	key	is	held	as	a	secret.	The	public	key
can	encrypt	data	that	the	private	key	can	decrypt,	and	vice	versa,	as	shown	in
Figure	2-2.	This	allows	one	to	prove	they	are	in	the	presence	of	the	private	key
by	correctly	decrypting	a	piece	of	data	that	was	encrypted	by	the	well-known
(and	verifiable)	public	key.	In	this	way,	identity	can	be	validated	without	ever
exposing	the	secret.

Certificate-based	authentication	lets	us	be	certain	that	the	person	on	the	other
end	of	the	line	has	the	private	key,	and	also	lets	us	be	certain	that	someone
listening	in	can’t	steal	the	key	and	reuse	it	in	the	future.	It	does,	however,	still
rely	on	a	secret,	something	that	can	be	stolen.	Not	necessarily	by	listening	in,	but
perhaps	by	a	malware	infection	or	physical	theft.

So	while	we	can	validate	that	credentials	are	legitimate,	we	might	not	trust	that
they	have	been	kept	a	secret.	For	this	reason,	it	is	desirable	to	use	multiple
secrets,	stored	in	different	places,	which	in	combination	grant	access.	With	this
approach,	a	potential	attacker	must	steal	multiple	components.



Figure	2-2.	Bob	can	use	Alice’s	well-known	public	key	to	encrypt	a	message	that	only	Alice	is	able	to
decrypt

While	having	multiple	components	goes	a	long	way	in	preventing	unauthorized
access,	it	is	still	conceivable	that	all	these	components	can	be
stolen.	Therefore,	it	is	critical	that	all	authentication	credentials	be	time-boxed.
Setting	an	expiration	on	credentials	helps	to	minimize	the	blast	radius	of	leaked
or	stolen	keys	and	gives	the	operator	an	opportunity	to	reassert	trust.	The	act	of
changing,	or	renewing,	keys/passwords	is	known	as	credential	rotation.

Credential	rotation	is	essential	for	validating	that	no	secrets	have	been	stolen,
and	revoking	them	when	required.	Systems	utilizing	keys/passwords	that	are
hard	or	impossible	to	rotate	should	be	avoided	at	all	cost,	and	when	building	new
systems	this	fact	should	be	taken	into	account	early	on	in	the	design	process.	The
rotation	frequency	of	a	particular	credential	is	often	inversely	proportional	to	the
cost	of	rotation.

EXAMPLES	OF	SECRETS	EXPENSIVE	TO	ROTATE

Certificates	requiring	external	coordination

Hand-configured	service	accounts



Database	passwords	requiring	downtime	to	reset

A	site-specific	salt	that	cannot	be	changed	without	invalidating	all	stored	hashes

Authenticating	Trust
We	spoke	a	little	bit	about	certificates	and	public	key	cryptography.	However,
certificates	alone	don’t	solve	the	authentication	issue.	For	instance,	you	can	be
assured	that	a	remote	entity	is	in	possession	of	a	private	key	by	making	an
assertion	using	its	public	key.	But	how	do	you	obtain	the	public	key	to	begin
with?	Sure,	public	keys	don’t	need	to	be	secret,	but	you	must	still	have	a	way	to
know	that	you	have	the	right	public	key.	Public	key	infrastructure,	or	PKI,
defines	a	set	of	roles	and	responsibilities	that	are	used	to	securely	distribute	and
validate	public	keys	in	untrusted	networks.

The	goal	of	a	PKI	is	to	allow	unprivileged	participants	to	validate	the
authenticity	of	their	peers	through	an	existing	trust	relationship	with	a	mutual
third	party.	A	PKI	leverages	what	is	known	as	a	registration	authority	(RA)	in
order	to	bind	an	identity	to	a	public	key.	This	binding	is	embedded	in	the
certificate,	which	is	cryptographically	signed	by	the	trusted	third	party.	The
signed	certificate	can	then	be	presented	in	order	to	“prove”	identity,	so	long	as
the	recipient	trusts	the	same	third	party.

There	are	many	types	of	PKI	providers.	The	most	popular	two	are	certificate
authorities	(CAs)	and	webs	of	trust	(WoTs).	The	former	relies	on	a	signature
chain	that	is	ultimately	rooted	in	the	mutually	trusted	party.	The	latter	allows
systems	to	assert	validity	of	their	peers,	forming	a	web	of	endorsements	rather
than	a	chain.	Trust	is	then	asserted	by	traversing	the	web	until	a	trusted
certificate	is	found.	While	this	approach	is	in	relatively	wide	use	with	Pretty
Good	Privacy	(PGP)	encryption,	this	book	will	focus	on	PKIs	that	employ	a	CA,
the	popularity	of	which	overshadows	the	WoT	provider.

What	Is	a	Certificate	Authority?
Certificate	authorities	act	as	the	trust	anchor	of	a	certificate	chain.	They	sign	and
publish	public	keys	and	their	bound	identities,	allowing	unprivileged	entities	to
assert	the	validity	of	the	binding	through	the	signature.



assert	the	validity	of	the	binding	through	the	signature.

CA	certificates	are	used	to	represent	the	identity	of	the	CA	itself,	and	it	is	the
private	key	of	the	CA	certificate	that	is	used	to	sign	client	certificates.	The	CA
certificate	is	well	known,	and	is	used	by	the	authenticating	entity	to	validate	the
signature	of	the	presented	client	certificate.	It	is	here	that	the	trusted	third-party
relationship	exists,	issuing	and	asserting	the	validity	of	digital	certificates	on
behalf	of	the	clients.

The	trusted	third-party	position	is	very	privileged.	The	CA	must	be	protected	at
all	costs,	since	its	subversion	would	be	catastrophic.	Digital	certificate	standards
like	X.509	allow	for	chaining	of	certificates,	which	enables	the	root	CA	to	be
kept	offline.	This	is	considered	standard	practice	in	CA-based	PKI	security.
We’ll	talk	more	about	X.509	security	in	Chapter	5.

Importance	of	PKI	in	Zero	Trust
All	zero	trust	networks	rely	on	PKI	to	prove	identity	throughout	the	network.	As
such,	it	acts	as	the	bedrock	of	identity	authentication	for	the	majority	of
operations.	Entities	that	might	be	authenticated	with	a	digital	certificate	include:

Devices

Users

Applications

BINDING	KEYS	TO	ENTITES
PKI	can	bind	an	identity	to	a	public	key,	but	what	about	a	private	key	to	the	entity	it	is	meant
to	identify?	After	all,	it	is	the	private	key	which	we	are	really	authenticating.	It	is	important	to
keep	the	private	key	as	close	to	the	entity	it	was	meant	to	represent	as	possible.	The	method	by
which	this	is	done	varies	by	the	type	of	entity.	For	instance,	a	user	might	store	a	private	key	on
a	smart	card	in	their	pocket,	where	a	device	might	store	a	private	key	in	an	on-board	security
chip.	We’ll	discuss	which	methods	best	fit	which	entities	in	Chapters	5,	6,	and	7.

Given	the	sheer	number	of	certificates	that	a	zero	trust	network	will	issue,	it	is
important	to	recognize	the	need	for	automation.	If	humans	are	required	in	order
to	process	certificate	signing	requests,	the	procedure	will	be	applied	sparingly,
weakening	the	overall	system.	That	being	said,	certificates	deemed	highly
sensitive	will	likely	wish	to	retain	a	human-based	approval	process.



sensitive	will	likely	wish	to	retain	a	human-based	approval	process.

Private	Versus	Public	PKI
PKI	is	perhaps	most	popularly	deployed	as	a	public	trust	system,	backing	X.509
certificates	in	use	on	the	public	internet.	In	this	mode,	the	trusted	third	party	is
publicly	trusted,	allowing	clients	to	authenticate	resources	that	belong	to	other
organizations.	While	public	PKI	is	trusted	by	the	internet	at	large,	it	is	not
recommended	for	use	in	a	zero	trust	network.

Some	might	wonder	why	this	is.	After	all,	public	PKI	has	some	defensible
strengths.	Factors	like	existing	utilities/tooling,	peer-reviewed	security	practices,
and	the	promise	of	a	better	time	to	market	are	all	attractive.	There	are,	however,
several	drawbacks	to	public	PKI	that	work	against	it.	The	first	is	cost.

The	public	PKI	system	relies	on	publicly	trusted	authorities	to	validate	digital
certificates.	These	authorities	are	businesses	of	their	own,	and	usually	charge	a
fee	for	signing	certificates.	Since	a	zero	trust	network	has	many	certificates,	the
signing	costs	associated	with	public	authorities	can	be	prohibitive,	especially
when	considering	rotation	policies.

Another	significant	drawback	to	public	PKI	is	the	fact	that	it’s	hard	to	fully	trust
the	public	authorities.	There	are	lots	of	publicly	trusted	CAs,	operating	in	many
countries.	In	a	zero	trust	network	leveraging	public	PKI,	any	one	of	these	CAs
can	cut	certificates	that	your	network	trusts.	Do	you	trust	the	laws	and	the
governments	associated	with	all	of	those	CAs	too?	Probably	not.	While	there	are
some	mitigation	methods	here,	like	certificate	pinning	or	installing	trust	in	a
single	public	CA,	it	remains	challenging	to	retain	trust	in	a	disjoint	organization.

Finally,	flexibility	and	programmability	can	suffer	when	leveraging	public	CAs.
Public	CAs	are	generally	interested	in	retaining	the	public’s	trust,	so	they	do
employ	good	security	measures.	This	might	include	policies	about	how
certificates	are	formed,	and	what	information	can	be	placed	where.	This	can
adversely	affect	zero	trust	authentication	in	that	it	is	often	desirable	to	store	site-
specific	metadata	in	the	certificate,	like	a	role	or	a	user	ID.	Additionally,	not	all
public	CAs	provide	programmable	interfaces,	making	automation	a	challenge.

Public	PKI	Strictly	Better	Than	None



While	the	drawbacks	associated	with	public	PKI	are	significant,	and	the	authors
heavily	discourage	its	use	within	a	zero	trust	network,	it	remains	superior	to	no
PKI	at	all.	A	well-automated	PKI	is	the	first	step,	and	work	will	be	required	in
this	area	no	matter	which	PKI	approach	you	choose.	The	good	news	is	that	if
you	choose	to	leverage	public	PKI	initially,	there	is	a	clear	path	to	switch	to
private	PKI	once	the	risk	becomes	too	great.	It	begs	the	question,	however,	if	it
is	even	worth	the	effort,	since	automation	of	those	resources	will	still	be
required.

Least	Privilege
The	principle	of	least	privilege	is	the	idea	that	an	entity	should	be	granted	only
the	privileges	it	needs	to	get	its	work	done.	By	granting	only	the	permissions	that
are	always	required,	as	opposed	to	sometimes	desired,	the	potential	for	abuse	or
misuse	by	a	user	or	application	is	greatly	reduced.

In	the	case	of	an	application,	that	usually	means	running	it	under	a	service
account,	in	a	container	or	jail,	etc.	In	the	case	of	a	human,	it	commonly
manifests	itself	as	policies	like	“only	engineers	are	allowed	access	to	the	source
code.”	Devices	must	also	be	considered	in	this	regard,	though	they	often	assume
the	same	policies	as	the	user	or	application	they	were	originally	assigned	to.

PRIVACY	AS	LEAST	PRIVILEGE
The	application	of	encryption	in	the	name	of	privacy	is	an	often-overlooked	application	of
least	privilege.	Who	really	needs	access	to	the	packet	payload?

Another	effect	of	this	principle	is	that	if	you	do	need	elevated	access,	that	you
retain	those	access	privileges	for	only	as	long	as	you	need	them.	It	is	important
to	understand	what	actions	require	which	privileges	so	that	they	may	be	granted
only	when	appropriate.	This	goes	one	step	beyond	simple	access	control
reviews.

This	means	that	human	users	should	spend	most	of	their	time	executing	actions
using	a	nonprivileged	user	account.	When	elevated	privileges	are	needed,	the
user	needs	to	execute	those	actions	under	a	separate	account	with	higher
privileges.



privileges.

On	a	single	machine,	elevating	one’s	privileges	is	usually	accomplished	by
taking	an	action	that	requires	the	user	to	authenticate	themselves.	For	example,
on	a	Unix	system,	invoking	a	command	using	the	sudo	command	will	prompt
the	user	to	enter	their	password	before	running	that	command	as	a	different	role.
In	GUI	environments,	a	dialog	box	might	appear	requiring	the	user’s	password
before	performing	the	risky	operation.	By	requiring	interaction	with	the	user,	the
potential	for	malicious	software	to	take	action	on	behalf	of	the	user	is
(potentially)	mitigated.

In	a	zero	trust	network,	users	should	similarly	operate	in	a	reduced	privilege
mode	on	the	network	most	of	the	time,	only	elevating	their	permissions	when
needed	to	perform	some	sensitive	operation.	For	example,	an	authenticated	user
might	freely	access	the	company’s	directory	or	interact	with	project	planning
software.	Accessing	a	critical	production	system,	however,	should	require
additional	confirmation	that	the	user	or	the	user’s	system	is	not	compromised.
For	relatively	low-risk	actions,	this	privilege	elevation	could	be	as	simple	as
reprompting	for	the	user’s	password,	requesting	a	second	factor	token,	or
sending	a	push	notification	to	the	user’s	phone.	For	high-risk	access,	one	might
choose	to	require	active	confirmation	from	a	peer	via	an	out-of-band	request.

HUMAN-DRIVEN	AUTHENTICATION
For	particularly	sensitive	operations,	an	operator	may	rely	on	the	coordination	of	multiple
humans,	requiring	a	number	of	people	to	be	actively	engaged	in	order	to	authenticate	a
particular	action.	Forcing	authentication	actions	into	the	real	world	is	a	good	way	to	ensure	a
compromised	system	can’t	interfere	with	them.	Be	careful,	however—these	methods	are
expensive	and	will	become	ineffective	if	employed	too	frequently.

Like	users,	applications	should	also	be	configured	to	have	the	fewest	privileges
necessary	to	operate	on	the	network.	Sadly,	applications	deployed	in	a	corporate
setting	are	often	given	fairly	wide	access	on	the	network.	Either	due	to	the
difficulty	of	defining	policies	to	rein	in	applications,	or	the	assumption	that
compromised	users	are	the	more	likely	target,	it’s	now	become	commonplace	for
the	first	step	in	setting	up	a	machine	to	be	disabling	the	application	security
frameworks	that	are	meant	to	secure	the	infrastructure.



Beyond	the	traditional	consideration	of	privilege	for	users	and	applications,	zero
trust	networks	also	consider	the	privilege	of	the	device	on	the	network.	It	is	the
combination	of	user	or	application	and	the	device	being	used	that	determines	the
privilege	level	granted.	By	joining	the	privilege	of	a	user	to	the	device	being
used	to	access	a	resource,	zero	trust	networks	are	able	to	mitigate	the	effects	of
lost	or	compromised	credentials.	Chapter	3	will	explore	how	this	marriage	of
devices	and	users	works	in	practice.

Privilege	in	a	zero	trust	network	is	more	dynamic	than	in	traditional	networks.
Traditional	networks	eventually	converge	on	policies	that	stay	relatively	static.	If
new	use	cases	appear	that	require	greater	privilege,	either	the	requestor	must
lobby	for	a	change	in	policy;	or,	perhaps	more	frequently,	they	ask	someone
with	greater	privilege	(a	sysadmin,	for	example)	to	perform	the	operation	for
them.	This	static	definition	of	policy	presents	two	problems.	First,	in	more
permissive	organizations,	privilege	will	grow	over	time,	lessening	the	benefit	of
least	privilege.	Second,	in	both	permissive	and	restrictive	organizations,	admins
are	given	greater	access,	which	has	resulted	in	malicious	actors	purposefully
targeting	sysadmins	for	phishing	attacks.

A	zero	trust	network,	by	contrast,	will	use	many	attributes	of	activity	on	the
network	to	determine	a	riskiness	factor	for	the	access	being	requested	currently.
These	attributes	could	be	temporal	(access	outside	of	the	normal	window	activity
for	that	user	is	more	suspicious),	geographical	(access	from	a	different	location
than	the	user	was	last	seen),	or	even	behavioral	(access	to	resources	the	user
does	not	normally	access).	By	considering	all	the	details	of	an	access	attempt,
the	determination	of	whether	the	action	is	authorized	or	not	can	be	more	granular
than	a	simple	binary	answer.	For	example,	access	to	a	database	by	a	given	user
from	their	normal	location	during	typical	working	hours	would	be	granted,	but
access	from	a	new	location	at	different	working	hours	might	require	the	user	to
authenticate	using	an	additional	factor.

The	ability	to	actively	adjust	access	based	on	the	riskiness	of	activity	on	a
network	is	one	of	the	several	features	that	make	zero	trust	networks	more	secure.
By	dynamically	adjusting	policies	and	access,	these	networks	are	able	to	respond
autonomously	to	known	and	unknown	attacks	by	malicious	actors.

Variable	Trust



Variable	Trust
Managing	trust	is	perhaps	the	most	difficult	aspect	of	running	a	secure	network.
Choosing	which	privileges	people	and	devices	are	allowed	on	the	network	is
time	consuming,	constantly	changing,	and	directly	affects	the	security	posture
the	network	presents.	Given	the	importance	of	trust	management,	it’s	surprising
how	under-deployed	network	trust	management	systems	are	today.

Defining	trust	policies	is	typically	left	as	a	manual	effort	for	security	engineers.
Cloud	systems	might	have	managed	policies,	but	those	policies	provide	only
basic	isolation	(e.g.,	super	user,	admin,	regular	user)	which	advanced	users
typically	outgrow.	Perhaps	in	part	due	to	the	difficulty	of	defining	and
maintaining	them,	requests	to	change	existing	policies	can	be	met	with
resistance.	Determining	the	impact	of	a	policy	change	can	be	difficult,	so
prudence	pushes	the	administrators	toward	the	status	quo,	which	can	frustrate
end	users	and	overwhelm	system	administrators	with	change	requests.

Policy	assignment	is	also	typically	a	manual	effort.	Users	are	granted	policies
based	on	their	responsibilities	in	the	organization.	This	role-based	policy	system
tends	to	produce	large	pools	of	trust	in	the	administrators	of	the	network,
weakening	the	overall	security	posture	of	the	network.	These	pools	of	trust	have
created	a	market	for	hackers	to	“hunt	sys	admins”,	seeking	out	and
compromising	system	administrators.	Perhaps	the	gold	standard	for	a	secure
network	is	one	without	highly	privileged	system	administrators.

These	pools	of	trust	underscore	the	fundamental	issue	with	how	trust	is	managed
in	traditional	networks:	policies	are	not	nearly	dynamic	enough	to	respond	to	the
threats	being	leveled	against	the	network.	Mature	organizations	will	have	some
sort	of	auditing	process	in	place	for	activity	on	their	network,	but	audits	can	be
done	too	infrequently,	and	are	frankly	so	tedious	that	doing	them	well	is	difficult
for	humans.	How	much	damage	could	a	rogue	sysadmin	do	on	a	network	before
an	audit	discovered	their	behavior	and	mitigated	it?	A	more	fruitful	path	might
be	to	rethink	the	actor/trust	relationship,	recognizing	that	trust	in	a	network	is
ever	evolving	and	based	on	the	previous	and	current	actions	of	an	actor	within
the	network.

This	model	of	trust,	considering	all	the	actions	of	an	actor	and	determining	their
trustworthiness,	is	not	novel.	Credit	agencies	have	been	performing	this	service
for	many	years.	Instead	of	requiring	organizations	like	retailers,	financial
institutions,	or	even	an	employer	to	independently	define	and	determine	one’s
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institutions,	or	even	an	employer	to	independently	define	and	determine	one’s
trustworthiness,	a	credit	agency	can	use	actions	in	the	real	world	to	score	and
gauge	the	trustworthiness	of	an	individual.	The	consuming	organizations	can
then	use	their	credit	score	to	decide	how	much	trust	to	grant	that	person.	In	the
case	of	a	mortgage	application,	an	individual	with	a	higher	credit	score	will
receive	a	better	interest	rate,	which	mitigates	the	risk	to	the	lender.	In	the	case	of
an	employer,	one’s	credit	score	might	be	used	as	a	signal	for	a	hiring	decision.
On	a	case-by-case	basis,	these	factors	can	feel	arbitrary	and	opaque,	but	they
serve	a	useful	purpose;	providing	a	mechanism	for	defending	a	system	against
arbitrary	threats	by	defining	policy	based	not	only	on	specifics,	but	also	on	an
ever-changing	and	evolving	score.

A	zero	trust	network	utilizes	this	insight	to	define	trust	within	the	network,	as
shown	in	Figure	2-3.	Instead	of	defining	binary	policy	decisions	assigned	to
specific	actors	in	the	network,	a	zero	trust	network	will	continuously	monitor	the
actions	of	an	actor	on	the	network	to	update	their	trust	score.	This	score	can	then
be	used	to	define	policy	in	the	network	based	on	the	severity	of	breach	of	that
trust	(Figure	2-4).	A	user	viewing	their	calendar	from	an	untrusted	network
might	require	a	relatively	low	trust	score.	However,	if	that	same	user	attempted
to	change	system	settings,	they	would	require	a	much	higher	score	and	would	be
denied	or	flagged	for	immediate	review.	Even	in	this	simple	example,	one	can
see	the	benefit	of	a	score:	we	can	make	fine-grained	determinations	on	the
checks	and	balances	needed	to	ensure	trust	is	maintained.



Figure	2-3.	Using	a	trust	score	allows	fewer	policies	to	provide	the	same	amount	of	access



Figure	2-4.	The	trust	engine	calculates	a	score	and	forms	an	agent,	which	is	then	compared	against	policy
in	order	to	authorize	a	request.	We’ll	talk	more	about	agents	in	Chapter	3.

MONITORING	ENCRYPTED	TRAFFIC
Since	practically	all	flows	in	a	zero	trust	network	are	encrypted,	traditional	traffic	inspection
methods	don’t	work	as	well	as	intended.	Instead,	we	are	limited	to	inspecting	what	we	can	see,
which	in	most	cases	is	the	IP	header	and	perhaps	the	next	protocol	header	(like	TCP	in	the	case
of	TLS).	If	a	load	balancer	or	proxy	is	in	the	request	path,	however,	there	is	an	opportunity	for
deeper	inspection	and	authorization,	since	the	application	data	will	be	exposed	for
examination.

Clients	begin	sessions	as	untrusted.	They	must	accumulate	trust	through	various
mechanisms,	eventually	accruing	enough	to	gain	access	to	the	service	they’re
requesting.	Strong	authentication	proving	that	a	device	is	company-owned,	for
instance,	might	accumulate	a	good	bit	of	trust,	but	not	enough	to	allow	access	to
the	billing	system.	Providing	the	correct	RSA	token	might	give	you	a	good	bit
more	trust,	enough	to	access	the	billing	system	when	combined	with	the	trust



inferred	from	successful	device	authentication.

STRONG	POLICY	AS	A	TRUST	BOOSTER
Things	like	score-based	policies,	which	can	affect	the	outcome	of	an	authorization	request
based	on	a	number	of	variables	like	historical	activity,	drastically	improve	a	network’s	security
stance	when	compared	to	static	policy.	Sessions	that	have	been	approved	by	these	mechanisms
can	be	trusted	more	than	those	that	haven’t.	In	turn,	we	can	rely	(a	little	bit)	less	on	user-based
authentication	methods	to	accrue	the	trust	necessary	to	access	a	resource,	improving	the	overall
user	experience.

Switching	to	a	trust	score	model	for	policies	isn’t	without	its	downsides.	The
first	hurdle	is	whether	a	single	score	is	sufficient	for	securing	all	sensitive
resources.	In	a	system	where	a	trust	score	can	decrease	based	on	user	activity,	a
user’s	score	can	also	increase	based	on	a	history	of	trustworthy	activity.	Could	it
be	possible	for	a	persistent	attacker	to	slowly	build	their	credibility	in	a	system
to	gain	more	access?

Perhaps	slowing	an	attacker’s	progress	by	requiring	an	extended	period	of
“normal”	behavior	would	be	sufficient	to	mitigate	that	concern,	given	that	an
external	audit	would	have	more	opportunity	to	discover	the	intruder.	Another
way	to	mitigate	that	concern	is	to	expose	multiple	pieces	of	information	to	the
control	plane	so	that	sensitive	operations	can	require	access	from	trusted
locations	and	persons.	Binding	a	trust	score	to	device	and	application	metadata
allows	for	flexible	policies	that	can	declare	absolute	requirements	yet	still
capture	the	unknown	unknowns	through	the	computed	trust	score.

Loosening	the	coupling	between	security	policy	and	a	user’s	organizational	role
can	cause	confusion	and	frustration	for	end	users.	How	can	the	system
communicate	to	users	that	they	are	denied	access	to	some	sensitive	resource
from	a	coffee	shop,	but	not	from	their	home	network?	Perhaps	we	present	them
with	increasingly	rigorous	authentication	requirements?	Should	new	members	be
required	to	live	with	lower	access	for	a	time	before	their	score	indicates	that	they
can	be	trusted	with	higher	access?	Maybe	we	can	accrue	additional	trust	by
having	the	user	visit	a	technical	support	office	with	the	device	in	question.	All	of
these	are	important	points	to	consider.	The	route	one	takes	will	vary	from
deployment	to	deployment.



Control	Plane	Versus	Data	Plane
The	distinction	between	the	control	plane	versus	the	data	plane	is	a	concept	that
is	commonly	referenced	in	network	systems.	The	basic	idea	is	that	a	network
device	has	two	logical	domains	with	a	clear	interface	between	those	domains.
The	data	plane	is	the	relatively	dumb	layer	that	manages	traffic	on	the	network.
Since	that	layer	is	handling	high	rates	of	traffic,	its	logic	is	kept	simple	and	often
pushed	to	specialized	hardware.	The	control	plane,	conversely,	could	be
considered	the	brains	of	the	network	device.	It	is	the	layer	that	system
administrators	apply	configuration	to,	and	as	a	result	is	more	frequently	changed
as	policy	evolves.

Since	the	control	plane	is	so	malleable,	it	is	unable	to	handle	the	high	rate	of
traffic	on	the	network.	Therefore,	the	interface	between	the	control	plane	and	the
data	plane	needs	to	be	defined	in	such	a	way	that	nearly	any	policy	behavior	can
be	implemented	at	the	data	layer	with	infrequent	requests	being	made	to	the
control	plane	(relative	to	the	rate	of	traffic).

A	zero	trust	network	also	defines	a	clear	separation	between	the	control	plane
and	data	plane.	The	data	plane	in	such	a	network	is	made	up	of	the	applications,
firewalls,	proxies,	and	routers	that	directly	process	all	traffic	on	the	network.
These	systems,	being	in	the	path	of	all	connections,	need	to	quickly	make	a
determination	of	whether	traffic	should	be	allowed.	When	viewing	the	data	plane
as	a	whole,	it	has	broad	access	and	exposure	throughout	the	system,	so	it	is
important	that	the	services	on	the	data	plane	cannot	be	used	to	gain	privilege	in
the	control	plane	and	thereby	move	laterally	within	the	network.	We’ll	discuss
control	plane	security	in	Chapter	4.

The	control	plane	in	a	zero	trust	network	is	made	up	of	components	that	receive
and	process	requests	from	data	plane	devices	that	wish	to	access	(or	grant	access
to)	network	resources,	as	shown	in	Figure	2-5.	These	components	will	inspect
data	about	the	requesting	system	to	make	a	determination	on	how	risky	the
action	is,	and	examine	relevant	policy	to	determine	how	much	trust	is	required.
Once	a	determination	is	made,	the	data	plane	systems	are	signaled	or
reconfigured	to	grant	the	requested	access.

The	mechanism	by	which	the	control	plane	affects	change	in	the	data	plane	is	of
critical	importance.	Since	the	data	plane	systems	are	often	the	entry	point	for
attackers	into	a	network,	the	interface	between	it	and	the	control	plane	must	be



attackers	into	a	network,	the	interface	between	it	and	the	control	plane	must	be
clear,	helping	to	ensure	that	it	cannot	be	subverted	to	move	laterally	within	the
network.	Requests	between	the	data	plane	and	control	plane	systems	must	be
encrypted	and	authenticated	using	a	non-public	PKI	system	to	ensure	that	the
receiving	system	is	trustworthy.	The	control/data	plane	interface	should
resemble	the	user/kernel	space	interface,	where	interactions	between	those	two
systems	are	heavily	isolated	to	prevent	privilege	escalation.

This	concern	with	the	interface	between	the	control	plane	and	the	data	plane
belies	another	fundamental	property	of	the	control	plane:	the	control	plane	is	the
trust	grantor	for	the	entire	network.	Due	to	its	far-reaching	control	of	the
network’s	behavior,	the	control	plane’s	trustworthiness	is	critical.	This	need	to
have	an	actor	on	the	network	with	a	highly	privileged	role	presents	a	number	of
interesting	design	requirements.

Figure	2-5.	A	zero	trust	client	interacting	with	the	control	plane	in	order	to	access	a	resource

The	first	requirement	is	that	the	trust	granted	by	the	control	plane	to	another
actor	in	the	data	plane	should	have	limited	real-time	value.	Trust	should	be
temporary,	requiring	regular	check-ins	between	the	truster	and	trustee	to	ensure
that	the	continued	trust	is	reasonable.	When	implementing	this	tenet,	leased
access	tokens	or	short	lifetime	certificates	are	the	most	appropriate	solution.



These	leased	access	tokens	should	be	validated	not	just	within	the	data	plane
(e.g.,	when	the	control	plane	grants	a	token	to	an	agent	to	move	through	the	data
plane),	but	also	between	the	interaction	between	the	data	plane	and	the	control
plane.	By	limiting	the	window	during	which	the	data	plane	and	control	plane	can
interact	with	a	particular	set	of	credentials,	the	possibility	for	physical	attacks
against	the	network	is	mitigated.

Summary
This	chapter	discussed	the	critical	systems	and	concepts	that	are	needed	to
manage	trust	in	a	zero	trust	network.	Many	of	these	ideas	are	common	in
traditional	network	security	architectures,	but	it	is	important	to	lay	the
foundation	of	how	trust	is	managed	in	a	network	without	any.

Trust	originates	from	humans	and	flows	into	other	systems	via	trust	mechanisms
that	a	computer	can	operate	against.	This	approach	makes	logical	sense:	a
system	can’t	be	considered	trusted	unless	the	humans	who	use	it	feel	confident
that	it	is	faithfully	executing	their	wishes.

Security	has	frequently	been	viewed	as	a	set	of	best	practices,	which	are	passed
down	from	one	generation	of	engineers	to	the	next.	Breaking	out	of	this	cycle	is
important,	since	each	system	is	unique,	and	so	we	discussed	the	idea	of	threat
models.	Threat	models	attempt	to	define	the	security	posture	of	a	system	by
enumerating	the	threats	against	the	system	and	then	defining	the	mitigating
systems	and	processes	which	anticipate	those	threats.	While	a	zero	trust	network
assumes	a	hostile	environment,	it	is	still	fundamentally	grounded	in	the	threat
model,	which	makes	sense	for	the	system.	We	enumerated	several	present-day
threatmodeling	techniques	so	that	readers	can	dig	deeper.	We	also	discussed	how
the	zero	trust	model	is	based	on	the	internet	threat	model	and	expands	its	scope
to	the	endpoints	that	are	under	the	control	of	zero	trust	system	administrators.

Having	trust	in	a	system	requires	the	use	of	strong	authentication	throughout	the
system.	We	discussed	the	importance	of	this	type	of	authentication	in	a	zero	trust
network.	We	also	briefly	talked	a	bit	about	how	strong	authentication	can	be
achieved	in	today’s	technology.	We	will	discuss	these	concepts	more	in	later
chapters.

In	order	to	effectively	manage	trust	in	a	network,	you	must	be	able	to	positively



identify	trusted	information,	particularly	in	the	case	of	authentication	and
identity.	Public	key	infrastructure	(or	PKI)	provides	the	best	methods	we	have
today	for	asserting	validity	and	trust	in	a	presented	identity.	We	discussed	why
PKI	is	important	in	a	zero	trust	network,	the	role	of	a	certificate	authority,	and
why	private	PKI	is	preferred	over	public	PKI.

Least	privilege	is	one	of	the	key	ideas	in	these	types	of	networks.	Instead	of
constructing	a	supposedly	safe	network	over	which	applications	can	freely
communicate,	the	zero	trust	model	assumes	that	the	network	is	untrustworthy,
and	as	a	result,	components	on	the	network	should	have	minimal	privileges
when	communicating.	We	explained	what	the	concept	of	least	privilege	is	and
how	it	is	similar	and	different	than	least	privilege	in	standalone	systems.

One	of	the	most	exciting	ideas	of	zero	trust	networks	is	the	idea	of	variable	trust.
Network	policy	has	traditionally	focused	on	which	systems	are	allowed	to
communicate	in	what	manner.	This	binary	policy	framework	results	in	policy
that	is	either	too	rigidly	defined	(creating	human	toil	to	continually	adjust)	or	too
loosely	defined	(resulting	in	security	systems	that	assert	very	little).
Additionally,	policy	that	is	defined	based	on	concrete	details	of	interactions	will
invariably	be	stuck	in	a	cat-and-mouse	game	of	adjusting	policy	based	on	past
threats.	The	zero	trust	model	leans	on	the	idea	of	variable	trust,	a	numeric	value
representing	the	level	of	trust	in	a	component.	Policy	can	then	be	written	against
this	number,	effectively	capturing	a	number	of	conditions	without	complicating
the	policy	with	edge	cases.	By	defining	policy	in	less	concrete	details,	and
considering	the	trust	score	while	making	an	authorization	decision,	the
authorization	systems	are	able	to	adjust	to	novel	threats.

Zero	trust	networks	make	a	clear	distinction	between	the	control	plane	systems
and	the	data	plane	systems.	We	discussed	at	a	high	level	how	these	two	systems
interact	with	each	other	to	allow	expected	communication	to	flow	through	the
network.	In	later	chapters	we	will	flesh	out	more	of	the	control	and	data	plane
systems	that	manage	communication	in	the	network.

The	next	chapter	digs	into	a	fundamental	entity	in	zero	trust	networks	that	is
used	to	authorize	actions	on	the	network.



Chapter	3.	Network	Agents

Imagine	you’re	in	a	security-conscious	organization.	Each	employee	is	given	a
highly	credentialed	laptop	to	do	their	work.	With	today’s	work	and	personal	life
blending	together,	some	also	want	to	view	their	email	and	calendar	on	their
phone.	In	this	hypothetical	organization,	the	security	team	applies	fine-grained
policy	decisions	based	on	which	device	the	user	is	using	to	access	a	particular
resource.

For	example,	perhaps	it	is	permissible	to	commit	code	from	the	employee’s
company-issued	laptop,	but	doing	so	from	their	phone	would	be	quite	a	strange
thing.	Since	source	code	access	from	a	mobile	device	is	decidedly	riskier	than
from	an	enrolled	laptop,	the	organization	blocks	such	access.

The	story	described	here	is	a	fairly	typical	application	of	zero	trust,	in	that
multiple	factors	of	authentication	and	authorization	take	place,	concerning	both
the	user	and	the	device.	In	this	example,	however,	it	is	clear	that	one	factor	has
influenced	the	other—a	user	which	might	“normally”	have	source	code	access
won’t	enjoy	such	access	from	their	mobile	device.	Additionally,	this
organization	does	not	want	authenticated	users	to	commit	code	from	just	any
trusted	device—they	expect	users	to	use	their	own	device.

This	marriage	of	user	and	device	is	a	new	concept	that	zero	trust	introduces,
which	we	are	calling	a	network	agent.	In	a	zero	trust	network,	it	is	insufficient	to
treat	the	user	and	device	separately,	because	policy	often	needs	to	consider	the
two	together	to	accurately	enforce	desired	behavior.	By	defining	a	network	agent
formally	in	the	system,	we	are	able	to	capture	this	relationship	and	use	it	to	drive
policy	decisions.

This	chapter	will	define	what	a	network	agent	is	and	how	it	is	used.	In	doing
that,	we	will	discuss	the	types	of	data	that	are	included	in	an	agent,	some	of
which	is	potentially	sensitive.	Given	the	nature	of	that	data,	we	will	discuss
when	and	how	an	agent	should	be	exposed	to	data	plane	systems.	A	network
agent,	being	a	new	concept,	could	benefit	from	standardization.	We	will	explore
the	benefits	of	standardizing	this	agent.



What	Is	an	Agent?
A	network	agent	is	the	term	given	to	the	combination	of	data	known	about	the
actors	in	a	network	request,	typically	containing	a	user,	application,	and	device.
Traditionally,	these	entities	have	been	authorized	separately,	but	zero	trust
networks	recognize	that	policy	is	best	captured	as	a	combination	of	all
participants	in	a	request.	By	authorizing	the	entire	context	of	a	request,	the
impact	of	credential	theft	is	greatly	mitigated.

It’s	best	to	think	of	a	network	agent	as	an	ephemeral	entity	that	is	formed	on
demand	to	evaluate	a	policy.	The	data	that	is	used	to	form	an	agent—user	or
device	information—will	typically	be	stored	in	persistent	storage	and	queried	to
form	an	agent.	When	this	data	is	queried,	the	union	of	the	data	at	that	point	in
time	is	what	we	call	an	agent.

Agent	Volatility
Some	fields	in	the	agent	are	made	available	specifically	to	mitigate	against
active	attacks,	and	are	therefore	expected	to	change	rapidly	relative	to	the
infrequent	changes	that	IT	organizations	normally	expect.	Trust	scores	are	an
example	of	this	type	of	dynamic	data.	Trust	score	systems	can	evaluate	each
request	in	the	network,	using	that	activity	feed	to	update	the	trust	scores	of	users,
applications,	and	devices.	Therefore,	in	order	for	a	trust	score	to	mitigate	a	novel
attack,	it	needs	to	be	updated	as	close	to	real	time	as	possible.

In	addition	to	rapidly	changing	data,	agents	will	frequently	have	sparse	data.	A
device	undergoing	bootstrapping	is	an	example	scenario	where	the	agent	will
have	less	data	when	compared	to	a	mature	device.	During	the	bootstrapping
process,	little	is	known	about	the	device,	yet	it	must	still	interact	with	corporate
infrastructure	to	perform	tasks	like	device	enrollment	and	software	installation.
In	this	case,	the	bootstrapping	device	is	not	yet	assigned	to	a	user	and	can	run
into	problems	if	policy	expects	an	assigned	user	to	be	present	in	the	agent.	This
scenario	should	be	expected	and	reflected	in	authorization	policy.

Sparse	data	isn’t	just	found	in	bootstrapping	scenarios.	Autonomous	systems	in	a
zero	trust	network	will	frequently	have	sparse	data	when	compared	to	human-
operated	systems.	These	systems,	for	example,	will	likely	not	authenticate	the
user	account	the	application	runs	under,	relying	instead	on	the	security	of	the
configuration	management	system	that	created	that	user.



configuration	management	system	that	created	that	user.

What’s	in	an	Agent?
The	granularity	of	data	contained	within	an	agent	can	vary	based	on	needs	and
maturity.	It	can	be	as	high	level	as	a	user’s	name	or	a	device’s	manufacturer,	or
as	low	level	as	serial	numbers	and	place	of	residence	or	issue.	It	should	be	noted
that	the	more	detailed	data	is	more	likely	to	have	data	cleanliness	issues,	which
must	be	dealt	with.

AGENT	DATA	FIELDS
The	type	of	data	stored	in	an	agent	can	greatly	vary	in	both	presence	and	granularity.	Here	are
some	examples	of	data	that	one	might	find	in	an	agent:

Agent	trust	score

User	trust	score

User	role	or	groups

User	place	of	residence

User	authentication	method

Device	trust	score

Device	manufacturer

TPM	manufacturer	and	version

Current	device	location

IP	address

Another	point	of	consideration	is	if	the	data	contained	in	the	agent	is	trusted	or
not.	For	instance,	device	data	populated	during	the	procurement	process	is	more
trusted	than	device	data	which	is	reported	back	from	an	agent	running	on	it.	This
difference	in	trust	arises	from	difficulties	in	ensuring	the	accuracy	and	integrity
of	the	reported	information	in	the	event	that	the	device	is	compromised.

How	Is	an	Agent	Used?



When	making	an	authorization	decision	in	a	zero	trust	network,	it	is	the	agent
that	is	in	fact	authorized.	While	it	is	tempting	to	authorize	the	device	and	user
separately,	this	approach	is	not	recommended.	Since	the	agent	is	the	entity	which
is	authorized,	it	is	also	the	thing	against	which	policy	is	written.

As	noted	in	the	previous	section,	the	agent	carries	many	pieces	of	information.
So	while	more	“traditional”	authorization	information	like	IP	address	can	still	be
used,	leveraging	the	agent	also	unlocks	the	use	of	“nontraditional”	authorization
information	like	device	type	or	city	of	residence.	As	such,	zero	trust	network
policy	is	written	against	the	agent	as	a	whole,	as	opposed	to	crafting	disjoint	user
and	device	policy.

Using	an	agent	to	drive	authorization	policy	encourages	authors	to	consider	the
totality	of	the	communication	context.	The	marriage	of	user	and	device	is	very
important	in	zero	trust	authorization	decisions,	and	colocating	the	data	in	an
agent	makes	it	difficult	to	ignore	one	or	the	other.	As	with	other	portions	of	the
zero	trust	architecture,	lowering	barrier	to	entry	is	key,	and	colocating	the	data	to
make	device/user	comparisons	easier	is	no	different.

An	agent,	being	the	primary	actor	in	the	network,	plays	an	additional	role	in	the
calculation	of	trust	scores.	The	trust	engine	can	use	recorded	actions,	in	addition
to	data	contained	within	the	agent	itself,	to	score	agents	for	their	trustworthiness.
This	trust	score	will	then	be	exposed	as	an	additional	attribute	on	the	agent
against	which	most	policy	should	be	defined.	We’ll	talk	more	about	how	the
trust	score	is	calculated	in	the	next	chapter.

Not	for	Authentication
It	is		important	to	understand	the	difference	between	authentication	and
authorization	in	the	context	of	an	agent.	Agents	serve	solely	as	authorization
components	and	do	not	play	any	part	in	authentication.	In	fact,	authentication	is
a	precursor	to	agent	formation	and	is	generally	performed	separately	for	user	and
device.	For	example,	devices	could	be	authenticated	with	X.509	certificates,
while	users	might	be	authenticated	through	a	traditional	multifactor	approach.

Following	successful	authentication,	the	canonical	identifiers	for	users	and
devices	can	be	used	to	form	an	agent	and	its	details.	A	device-specific	certificate
might	be	used	as	the	canonical	identifier	for	the	device	and	therefore	be	used	to
populate	information	like	device	type	or	device	owner.	Similarly,	a	username



populate	information	like	device	type	or	device	owner.	Similarly,	a	username
might	serve	as	the	lookup	key	to	populate	user	information	like	their	role	in	the
company.

Typically	authentication	is	session	oriented,	but	in	the	case	of	authorization,	it	is
best	to	be	request	oriented.	As	a	result,	caching	the	outcome	of	an	authentication
request	is	permissible,	but	caching	an	agent	or	the	result	of	an	authorization
request	is	ill	advised.	This	is	because	details	in	the	agent,	which	are	used	to
make	authorization	decisions,	can	change	rapidly	based	on	a	number	of	factors,
and	it	is	desirable	to	make	authorization	decisions	using	the	latest	data.	This	is	in
contrast	to	authentication	materials,	which	change	much	less	often	and	don’t
directly	affect	authorization	itself.

Finally,	the	act	of	generating	an	agent	should	be	as	lightweight	as	possible.	If
agent	generation	is	expensive,	it	will	discourage	frequent	authorization	requests
due	to	performance	reasons.	We	will	talk	more	about	how	performance	affects
authorization	in	the	next	chapter.

REVOKE	AUTHORIZATION	FIRST,	CREDENTIALS
SECOND

Successful	authentication	is	the	act	of	proving	one’s	identity	to	a	remote	system.	That	verified
identity	is	then	used	to	determine	if	the	user	actually	has	rights	to	access	the	resource	in
question	(the	authorization).	In	the	event	that	access	must	be	revoked,	updating	authorization	is
more	effective	than	changing	authentication	credentials.	This	is	doubly	so	when	considering
that	authentication	results	are	typically	cached	and	assigned	to	session	identifier.	The	act	of
validating	an	authenticated	session	is	really	an	authorization	decision.

How	to	Expose	an	Agent?
The	data	contained	in	a	network	agent	is	potentially	sensitive.	Personally
identifiable	user	information	(e.g.,	name,	address,	phone	number)	will	usually	be
present	on	the	agent	to	facilitate	detailed	authorization	decisions.	This	data
should	be	treated	with	care	to	protect	the	privacy	of	users.

The	sensitive	nature	of	the	data	extends	beyond	users,	however.	Device	details
can	also	be	sensitive	data	when	it	falls	into	the	hands	of	a	determined	attacker.
An	attacker	with	detailed	knowledge	of	a	user’s	device	could	use	that	data	to
craft	a	targeted	remote	attack,	or	even	learn	a	pattern	of	that	user’s	physical



craft	a	targeted	remote	attack,	or	even	learn	a	pattern	of	that	user’s	physical
location	to	steal	the	device.

To	adequately	secure	the	sensitive	agent	details,	the	entirety	of	the	agent
lifecycle	should	be	contained	to	trusted	control	plane	systems,	which	themselves
are	heavily	secured.	These	systems	should	be	logically	and	physically	separated
from	the	data	plane	systems,	have	clear	boundaries,	and	change	infrequently.

Most	policy	decisions	will	be	made	in	the	control	plane	systems,	since	the	agent
data	is	needed	to	make	those	decisions.	However,	it	will	often	be	the	case	that
the	authorization	engine	in	the	control	plane	is	not	in	the	best	position	to	enforce
application-centric	policy,	despite	its	ability	to	enforce	authorization	on	a
request-by-request	basis.	This	is	especially	so	in	user-facing	systems.	As	a	result,
some	agent	details	will	need	to	be	exposed	to	data	plane	systems.

Let’s	look	at	an	example.	An	administrative	application	stores	details	on	all	the
customers	of	a	particular	company.	This	system	exposes	that	data	to	employees
based	on	their	role	within	the	company.	A	search	feature	allows	employees	to
search	within	the	subset	of	data	that	they	are	allowed	to	access.	The	application
needs	to	implement	this	logic,	and	it	needs	access	to	the	role	of	the	user	in	order
to	do	so.

In	order	to	allow	applications	to	implement	their	own	fine-grained	authorization
logic,	agent	details	can	be	exposed	to	applications	via	a	trusted	communication
channel.	This	could	be	as	simple	as	injecting	headers	into	network	requests	that
flow	through	a	reverse	proxy.	The	proxy,	being	a	zero	trust	control	plane	system,
can	view	the	agent	to	enforce	its	own	authorization	decisions	and	expose	a
subset	of	the	data	to	the	downstream	application	for	further	authorization.

Exposing	agent	details	to	the	downstream	application	can	also	be	useful	to
enable	compatibility	with	pre-existing	applications	that	have	a	rich	authorization
system.	This	compatibility	goal	highlights	that	agent	details	should	be	exposed
to	the	application	in	a	format	that	is	is	preferred	by	the	application.	For	third-
party	applications,	the	format	of	the	agent	data	will	vary.	For	first-party
applications,	a	common	structure	for	the	agent	data	will	ease	management	of	the
system.

No	Standard	Exists



A	zero	trust	network	comprises	many	systems	that	concern	themselves	with	the
agent.	In	order	to	make	room	for	reusability	in	these	systems,	standardization	of
the	agent	must	occur.	At	the	time	of	this	writing,	most	zero	trust	networks
consist	of	systems	built	in-house;	and	while	those	systems	have	developed	their
own	agent	standards,	a	public	standard	would	unlock	the	control	plane,	allowing
components	to	be	mixed	and	matched.

Rigidity	and	Fluidity,	at	the	Same	Time
Knowing	the	format	of	an	agent,	and	where	to	find	particular	pieces	of	data
within	it,	is	very	important	when	considering	how	and	by	what	it	will	be
consumed.	The	“coordinates”	of	certain	pieces	of	data	must	be	fixed	and	well
known	in	order	to	ensure	consistency	across	control	plane	systems.	A	good
analogy	here	is	the	schema	of	a	relational	database,	which	applications	accessing
the	data	must	have	knowledge	of	in	order	to	extract	the	right	pieces	of
information.

This	data	compatibility	is	extremely	important	when	it	comes	to	implementing
and	maintaining	zero	trust	control	plane	systems.	Zero	trust	networks,
particularly	more	mature	ones,	are	likely	to	construct	an	agent	from	multiple
systems	and	data	sources.	Without	a	schema	of	sorts,	not	only	will	it	be	difficult
to	surface	the	data	in	a	consistent	manner,	but	it	will	also	contribute	negatively
to	the	amount	of	effort	required	to	introduce	new	control	plane	systems	or	agent
data,	something	which	is	considered	critical	for	a	maturing	zero	trust	network.

One	thing	to	keep	in	mind,	however,	is	that	agent	data	is	likely	to	be	fairly
sparse,	thanks	to	the	practically	unavoidable	data	cleanliness	issues	encountered
in	source	systems	like	device	inventories.	The	result	is	a	“best-effort”	agent,
where	many	fields	may	be	unpopulated	for	one	reason	or	another.	Rather	than
seeking	data	cleanliness	(a	problem	that	only	gets	harder	with	scale),	it	is	best	to
accept	reality	and	craft	policy	that	understands	that	not	all	data	may	be	present.
So	while	one	may	still	require	a	particular	piece	of	data	to	be	present	in	the
agent,	it	is	a	useful	thought	exercise	to	consider	alternative	pieces	of	data	in	its
absence.

Standardization	Desirable
One	might	wonder	how	it	would	be	possible	to	standardize	a	data	format	that	is



One	might	wonder	how	it	would	be	possible	to	standardize	a	data	format	that	is
so	seemingly	inextricably	tied	to	the	organization	consuming	it.	After	all,	an
agent	is	likely	to	contain	information	types	that	relate	to	business	logic	or	other
proprietary/local	information.	Is	standardization	even	feasible	in	such	a	case?

Luckily,	there	are	already	some	standards	out	there	defining	data	formats	that
behave	in	such	a	way.	One	of	the	best	examples	is	the	Simple	Network
Management	Protocol	(SNMP),	and	its	associated	management	information
base	(MIB).

SNMP	is	a	protocol	frequently	used	for	network	device	management,	allowing
devices	to	expose	data	to	operators	and	management	systems	in	a	standard	yet
flexible	way.	The	MIB	component	describes	the	format	of	the	data	itself,	which
is	a	collection	of	OIDs,	or	object	identifiers.	Each	OID	describes	(and	is	reserved
for)	a	particular	piece	of	data	and	is	registered	with	ISO,	a	global	standardization
body.	This	lends	itself	well	to	widely	accepted	“coordinates”	for	certain	pieces
of	data.

Let’s	look	at	an	example,	shown	in	Figure	3-1,	of	a	simplified	set	of	nodes	in	an
OID	tree.

Figure	3-1.	A	simplified	diagram	showing	the	organization	of	nodes	in	an	object	identifier	(OID)	tree

In	this	example,	the	“ip”	node	and	associated	data	would	be	addressed	as
1.3.6.1.1.1.4.	A	MIB	arranges	and	gives	color	to	a	set	of	OIDs.	For	example,	a



Cisco	MIB	might	provide	definitions	for	all	OIDs	under	the	1.3.6.1.4.1.9	portion
of	the	tree,	including	human-readable	descriptions.

Of	course,	this	registered	list	can	be	extended,	and	oftentimes	chunks	of	OID
space	are	carved	out	for	organizations	or	manufacturers.	In	this	way,	an	OID	can
be	compared	to	an	IP	address,	where	an	IP	address	globally	identifies	a	computer
system	and	an	OID	globally	identifies	a	piece	of	data.

Unfortunately,	there	is	no	good	OID	equivalent	of	private	IP	address	space,
which	would	be	useful	for	ad	hoc	or	site-specific	data.	The	best	available
compromise	is	to	register	for	a	Private	Enterprise	Number	with	IANA,	which
will	give	you	a	dedicated	OID	prefix	for	private	use.	Luckily,	such	registration	is
free	and	with	few	questions	asked.	There	have	been	some	efforts	to	create	a
private	range	similar	to	that	found	in	IP.	However,	such	efforts	have	been
unsuccessful.

Despite	the	lack	of	a	truly	free/private	OID	space	for	experimental	or	internal
use,	SNMP	remains	a	useful	analogy	to	make	when	considering	the
standardization	of	an	agent.	It	describes	the	format	and	packaging	of	a	set	of	data
—data	that	is	easily	found	and	identified	using	their	unique	OIDs—and	how	that
data	can	be	transmitted	and	understood	from	one	system	to	another.

In	the	Meantime?
At	the	time	of	this	writing,	zero	trust	networks	are	still	quite	new,	and	the	field	is
under	active	development.	As	such,	no	standard	describing	an	agent	exists	today,
and	it	will	be	some	time	before	one	can	be	ratified.	In	the	meantime,	agents	take
the	form	of	least	resistance,	given	the	needs	of	the	implementor.	Whether	it	be	a
JSON	blob	or	a	custom	binary	format,	it	is	recommended	to	ensure	that	the	data
contained	within	it	be	flexible	and	easily	extensible.	Loose	typing	or	no	typing
should	be	preferred	over	strong	typing,	as	the	latter	will	make	introducting	new
data	and	systems	more	difficult.	Pluggable	design	patterns	may	help	in	moving
to	a	standardized	agent	in	the	future.	However,	this	is	far	from	required,	and
should	not	be	pursued	if	they	impede	the	adoption	of	agent	authorization	in	your
network.

Summary
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This	chapter	introduced	the	concept	of	a	network	agent,	a	new	entity	in	a	zero
trust	network	against	which	authorization	decisions	are	made.	Adding	this
concept	is	critical	to	realizing	the	benefits	of	a	zero	trust	network.

We	explored	what	goes	into	creating	an	agent.	Agents	contain	rapidly	changing
data	and	frequently	have	data	that	is	unavailable	or	inconsistent.	Accepting	that
reality	is	important	for	success	when	introducing	the	agent	concept.

Agents	are	used	purely	for	making	authorization	decisions.	Authentication	is	a
separate	concern,	and	the	current	authentication	status	is	reflected	in	the
properties	of	an	agent.	Control	plane	systems	use	the	agent	to	authorize	requests.
These	systems	are	the	primary	enforcers	of	authorization	in	a	zero	trust	network,
but	sometimes	they	must	expose	agent	details	to	applications	that	are	better
positioned	to	implement	fine-grained	authorization	decisions.	We	explored	how
to	expose	this	data	to	applications	while	maintaining	privacy.

Zero	trust	network	administration	is	still	very	new,	and	as	a	result,	no	standard
yet	exists	for	network	agents.	Defining	a	standard	would	allow	for	better	reuse
and	interoperability	of	zero	trust	systems,	aiding	the	adoption	of	this	technology.
We	discussed	a	possible	approach	for	standardizing	the	definition	of	an	agent.

The	next	chapter	will	focus	on	the	systems	that	are	responsible	for	authorizing
all	requests	in	a	zero	trust	network.



Chapter	4.	Making	Authorization
Decisions

Authorization	is	arguably	the	most	important	process	occurring	within	a	zero
trust	network,	and	as	such,	making	an	authorization	decision	should	not	be	taken
lightly.	Every	flow	and/or	request	will	ultimately	require	a	decision	be	made.

The	databases	and	supporting	systems	we	will	discuss	here	are	the	key	systems
that	come	together	to	make	and	affect	those	decisions.	Together,	they	are
authoritative	for	access	control	and	thus	need	to	be	rigorously	isolated.	Careful
distinction	should	be	made	between	these	responsibilities,	particularly	when
deciding	whether	to	collapse	them	into	a	single	system,	which	should	generally
be	avoided	if	possible.

The	zero	trust	model	is	still	very	new,	and	this	area	is	undergoing	rapid
evolution.	Some	of	the	content	included	in	this	chapter	is	considered	state	of	the
art	at	the	time	of	this	writing.	Known	implementations	still	vary	wildly	in	their
approaches,	and	most	are	not	publicly	available.	That	being	said,	the	major
components	and	responsibilities	are	understood.

Taking	reality	into	account,	this	chapter	will	focus	on	high-level	architectural
arrangement	of	the	components	required	to	make	zero	trust	authorization
decisions,	as	well	as	how	they	fit	together	and	enforce	said	decisions.

Authorization	Architecture
The	zero	trust	authorization	architecture	comprises	four	main	components,	as
shown	in	Figure	4-1:

Enforcement

Policy	engine

Trust	engine

Data	stores



These	four	components	are	distinct	in	their	responsibilities,	and	as	a	result,	we
treat	them	as	separate	systems.	From	a	security	standpoint,	it	is	highly	desirable
that	these	components	be	isolated	from	each	other.	These	systems	represent	the
practical	crown	jewels	of	the	zero	trust	security	model,	so	special	care	should	be
taken	in	their	maintenance	and	security	posture.	Carefully	evaluate	any
proposals	that	suggest	collapsing	these	responsibilities	into	a	single	system.

Figure	4-1.	Zero	trust	authorization	systems

The	enforcement	component	will	exist	in	large	numbers	throughout	the	system
and	should	be	as	close	to	the	workload	as	possible.	It	is	the	one	that	actually
affects	the	outcome	of	the	authorization	decision.	It	is	typically	manifested	as	a
load	balancer,	proxy,	or	even	a	firewall.	This	component	interacts	with	the
policy	engine,	which	is	the	piece	that	we	use	to	make	the	actual	decision.	The
enforcement	component	ensures	that	clients	are	authenticated,	and	passes	the
context	of	each	flow/request	to	the	policy	engine.	The	policy	engine	compares
the	request	and	its	context	to	policy,	and	informs	the	enforcer	whether	the
request	will	be	permitted	or	not.

The	trust	engine	is	leveraged	by	the	policy	engine	for	risk	analysis	purposes.	It
leverages	multiple	data	sources	in	order	to	compute	a	risk	score,	similar	to	a
credit	score.	This	score	can	be	used	to	protect	against	unknown	unknowns,	and



helps	keep	policy	strong	and	robust	without	complicating	it	with	edge	cases	and
signatures.	It	is	used	by	the	policy	engine	as	an	additional	component	by	which
an	authorization	decision	can	be	made.	Google’s	BeyondCorp	is	widely
recognized	as	having	pioneered	this	technology.

Finally,	we	have	the	various	data	stores	that	represent	the	source	of	truth	for	the
data	being	used	to	inform	authorization.	This	data	is	used	to	paint	a	full
contextual	picture	of	a	particular	flow/request,	using	small	authenticated	bits	of
data	as	the	primary	lookup	keys	(i.e.,	a	username	or	a	device’s	serial	number).
These	data	stores,	be	they	user	data,	device	data,	or	otherwise,	are	heavily
leveraged	by	both	the	policy	engine	and	trust	engine,	and	represent	the	backing
against	which	all	decisions	are	measured.

Enforcement
The	enforcement	component	(depicted	in	Figure	4-2)	is	a	natural	place	to	start.	It
sits	on	the	“front	line”	of	the	authorization	flow	and	is	responsible	for	carrying
out	decisions	made	by	the	rest	of	the	authorization	system.

Figure	4-2.	An	agent	receives	a	pre-authorization	signal	to	grant	access	to	a	system	using	traditional
enforcement	mechanisms.	These	systems	together	form	the	enforcement	component.

Enforcement	can	be	broken	down	into	two	primary	responsibilities.	First,	an



Enforcement	can	be	broken	down	into	two	primary	responsibilities.	First,	an
interaction	with	the	policy	engine	must	occur.	This	is	generally	the	authorization
request	itself	(e.g.,	a	load	balancer	has	received	a	request	and	needs	to	know
whether	it	is	authorized	or	not).	The	second	is	the	actual	installation	and	ongoing
enforcement	of	the	decision.	While	these	two	responsibilities	represent	a	single
component	in	the	zero	trust	authorization	architecture,	you	can	choose	whether
they	are	fulfilled	together	or	separately.

The	way	you	choose	to	handle	this	will	likely	depend	on	your	use	case.	For
instance,	an	identity-aware	proxy	can	call	the	policy	engine	to	actively	authorize
a	request	it	has	received,	and	in	the	same	step	use	the	response	to	either	service
or	reject	the	request.	This	is	an	example	of	treating	the	concerns	as	unified.
Alternatively,	perhaps	a	pre-authorization	daemon	receives	a	request	for	access
to	a	particular	service,	which	then	calls	the	policy	engine	for	authorization.	Upon
successful	authorization,	the	daemon	can	manipulate	local	firewall	rules	to	allow
the	specific	request.	With	this	approach,	we	rely	on	“standard”	enforcement
mechanisms	that	are	informed/programmed	by	the	zero	trust	control	plane.	It
should	be	noted,	however,	that	this	approach	requires	a	client-side	hook	in	order
to	notify	the	control	plane	of	the	authorization	request.	This	may	or	may	not	be
acceptable,	depending	on	the	level	of	control	over	your	devices	and	applications.

Placement	of	the	enforcement	component	is	very	important.	Since	it	represents
our	control	point	within	the	data	plane,	we	must	ensure	that	enforcement
components	are	placed	as	close	to	the	endpoints	as	possible.	Otherwise,	trust	can
pool	“behind”	the	enforcement	component,	undermining	zero	trust	security.
Luckily,	the	enforcement	component	can	be	modeled	as	a	client	of	sorts	and
applied	liberally	throughout	the	system.	This	is	in	contrast	to	the	rest	of	the
authorization	components,	which	are	modeled	as	services.

Policy	Engine
The	policy	engine	is	the	component	that	has	the	power	to	make	a	decision.	It
compares	the	request	coming	from	the	enforcement	component	against	policy	in
order	to	determine	whether	the	request	is	authorized	or	not.	Once	determined,
the	result	is	returned	to	the	enforcement	piece	for	actual	realization.

The	arrangement	of	the	enforcement	layer	and	policy	engine	allows	for	dynamic,
point-in-time	decisions	to	be	made,	allowing	revocation	to	occur	rapidly.	As
such,	it	is	important	that	these	components	be	considered	separately	and



such,	it	is	important	that	these	components	be	considered	separately	and
independently.	That	is	not	to	say,	however,	that	they	cannot	be	co-located.

Depending	on	a	number	of	factors,	a	policy	engine	may	be	found	hosted	side	by
side	with	the	enforcement	mechanism.	An	example	of	this	might	be	a	load
balancer	that	authorizes	requests	through	inter-process	communication	(IPC)
instead	of	a	remote	call.	The	most	attractive	benefit	of	this	architecture	is	the
lower	latency	to	authorize	the	request.	A	low-latency	authorization	system
enables	fine-grained	and	comprehensive	authorization	of	network	activity;	for
example,	individual	HTTP	requests	could	be	authorized	instead	of	the	session-
level	authorization	that	commonly	is	deployed.

It	should	be	noted	that	it	is	best	to	maintain	process-level	isolation	between	the
policy	engine	and	enforcement	layer.	The	enforcement	layer,	being	in	the	user’s
data	path,	is	more	exposed;	therefore,	integrating	the	policy	engine	in	the	same
process	could	expose	it	to	unwanted	risk.	Deploying	the	policy	engine	as	its	own
process	goes	a	long	way	to	ensure	that	bugs	in	the	enforcement	layer	don’t	result
in	a	policy	engine	compromise.

WHAT	EVER	HAPPENED	TO	RADIUS?
The	relationship	between	the	policy	engine	and	the	enforcement	layer	is	a	familiar	one	for
most	network	engineers.	In	1997,	the	IETF	ratified	a	standard	describing	the	RADIUS	protocol,
which	provides	authentication,	authorization,	and	accounting	for	network	services.	RADIUS
stands	for	Remote	Authentication	Dial-In	User	Service—the	name	alone	shows	its	age.	While
the	protocol	itself	is	hopelessly	insecure	(it	uses	MD5	for	authenticity	assertions),	it	is
specifically	written	for	the	task	at	hand.	What	would	it	look	like	to	use	RADIUS	between	the
enforcement	layer	and	the	policy	engine?	RADIUS	could	be	protected	with	other	protocols
discussed	in	this	book,	but	that	feels	like	a	kludge.	Perhaps	there	is	an	opportunity	to	create	a
RADIUS-like	project,	which	takes	into	account	the	threat	reality	of	today’s	systems.

Policy	Storage
The	rules	referenced	by	the	policy	engine	need	to	be	stored.	These	policy	rules
are	ultimately	loaded	into	the	policy	engine,	but	it	is	strongly	recommended	that
the	rules	are	captured	outside	of	the	policy	engine	itself.	Storing	the	policy	rules
in	a	version	control	system	is	ideal	and	provides	several	benefits:

Changes	to	policy	can	be	tracked	over	time.



Rationale	for	changing	policy	is	tracked	in	the	version	control	system.

The	expected	current	policy	state	can	be	validated	against	the	actual
enforcement	mechanisms.

Many	of	these	benefits	have	historically	been	implemented	using	rigorous
change	management	procedures.	In	that	system,	changes	to	the	system’s
configuration	are	requested	and	approved	before	ultimately	being	applied.	The
resulting	change	management	log	can	be	used	to	determine	why	the	system	is	in
the	current	state.

Moving	policy	definitions	into	version	control	is	the	logical	conclusion	of
change	management	procedures	when	the	system	can	be	configured
programmatically.	Instead	of	relying	on	human	system	administrators	to	load
desired	policy	into	the	system,	we	can	instead	capture	the	policy	as	data	that	a
program	can	read	and	apply.	In	many	ways,	loading	policy	is	then	similar	to
deployable	software.	As	a	result,	system	administrators	can	use	standard
software	development	procedures	(namely	code	review	and	promotion	pipelines)
to	manage	the	changes	in	policy.

What	Makes	Good	Policy?
Policy	in	a	zero	trust	network	is	in	some	ways	similar	to	traditional	network
security,	and	in	other	ways	substantially	different.

ZERO	TRUST	POLICY	IS	STILL	NOT	STANDARDIZED
The	reality	today	is	that	zero	trust	policy	is	still	not	standardized	in	the	same	way	as	a	network-
oriented	policy.	As	a	result,	defining	the	standard	policy	language	used	in	a	zero	trust	network
is	a	great	opportunity.

Let’s	look	at	what’s	similar	first.	Good	policy	in	a	zero	trust	network	is	fine-
grained.	The	level	of	granularity	will	vary	based	on	the	maturity	of	the	network,
but	the	desired	goal	is	policy	that	is	scoped	to	the	individual	resource	being
secured.	This	is	not	very	different	than	a	traditional	network	security	model	that
aims	to	segment	the	network	to	decrease	attack	surface	area.

The	zero	trust	model	starts	to	diverge	from	traditional	network	security	in	the
control	mechanisms	that	are	used	to	define	policy.	Instead	of	defining	policy	in



control	mechanisms	that	are	used	to	define	policy.	Instead	of	defining	policy	in
terms	of	network	implementation	details	(IP	addresses	and	ranges),	policy	is	best
defined	in	terms	of	logical	components	in	the	network.	These	components	will
generally	consist	of:

Network	services

Device	endpoint	classes

User	roles

Defining	policy	from	logical	components	that	exist	in	the	network	allows	the
policy	engine	to	calculate	the	enforcement	decisions	based	on	its	knowledge	of
the	current	state	of	the	network.	To	put	this	in	concrete	terms,	a	web	service
running	on	one	server	today	might	be	on	a	different	server	tomorrow,	or	might
even	move	between	servers	automatically	as	directed	by	a	workload	scheduler.
The	policy	that	we	define	needs	to	be	divorced	from	these	implementation
details	to	adapt	to	this	reality.	An	example	of	this	style	of	policy	from	the
Kubernetes	project	is	shown	in	Figure	4-3.



Figure	4-3.	A	snippet	from	a	Kubernetes	network	policy.	These	policies	use	workload	labels,	computing	the
underlying	IP-based	enforcement	rules	when	and	where	necessary.

Policy	in	a	zero	trust	network	also	leans	on	trust	scores	to	anticipate	unknown
attack	vectors.	By	defining	policy	with	a	trust	score	component,	administrators
are	able	to	mitigate	risk	that	otherwise	can’t	be	captured	with	a	specific	policy.
Therefore,	most	policy	should	include	a	trust	score	component.	We’ll	talk	more
about	the	score	component	in	the	next	section.

NO	STANDARD	EXISTS
Currently,		mature	zero	trust	networks	implement	their	own	policy	language/format	on	a	case-
by-case	basis,	typically	being	developed	fully	in-house.	Simpler	zero	trust	networks	may
embed	policy	in	an	existing	structure,	such	as	in	Figure	4-3.	While	the	latter	is	generally
acceptable,	it	is	typically	outgrown	as	the	network	evolves	and	adds	features.	The	advantages
of	a	standardized/interoperable	policy	language	can	be	clearly	seen.	However,	such	work
remains	an	open	research	question.



Policy	should	not	rely	on	trust	score	alone.	Specific	characteristics	of	the	request
being	authorized	can	also	be	part	of	the	policy	definition.	An	example	of	this
might	be	certain	user	roles	should	only	have	access	to	a	particular	service.

Who	Defines	Policy?
Zero	trust	network	policy	should	be	fine-grained,	which	can	place	an
extraordinary	burden	on	system	administrators	to	keep	the	policy	up	to	date.	To
help	spread	the	load	of	this	configuration	burden,	most	organizations	decide	to
distribute	policy	definition	across	the	teams	so	they	can	help	maintain	policy	for
the	services	they	own.

Opening	up	policy	definition	to	an	entire	organization	can	present	certain	risks,
like	well-meaning	users	who	create	overly	broad	policies,	thereby	increasing	the
attack	surface	area	of	the	system	they	intended	to	constrain.	Zero	trust	systems
lean	on	two	organizational	workflows	to	counteract	this	exposure.

First,	since	policy	is	typically	stored	under	version	control,	having	another
person	review	changes	to	the	policy	helps	ensure	that	changes	are	well
considered.	Security	teams	can	additionally	review	the	changes	and	ask	probing
questions	to	ensure	that	the	policy	being	defined	is	as	tightly	scoped	as	possible.
Since	the	policy	is	defined	using	logical	intent	instead	of	physical	components,
the	policy	will	change	less	rapidly	than	if	it	was	defined	in	physical	terms.

The	second	organizational	measure	used	is	to	layer	broad	infrastructure	policy
on	top	of	fine-grained	policy.	For	example,	an	infrastructure	group	might	rightly
require	that	only	a	certain	set	of	roles	be	allowed	to	accept	traffic	from	the
internet.	The	infrastructure	team	will	therefore	define	policy	that	enforces	that
restriction,	and	no	user-defined	policy	will	be	allowed	to	circumvent	it.
Enforcing	this	constraint	could	take	several	forms:	an	automated	test	of	proposed
policy,	or	perhaps	a	policy	engine	that	will	simply	refuse	overly	broad	policy
assertions	from	untrusted	sources.	Such	enforcement	can	also	be	useful	for
compliance	and	regulatory	requirements.

Trust	Engine
The	trust	engine	is	the	system	in	a	zero	trust	network	that	performs	risk	analysis



against	a	particular	request	or	action.	This	system’s	responsibility	is	to	produce	a
numeric	assessment	of	the	riskiness	of	allowing	a	particular	request/action,
which	the	policy	engine	uses	to	make	an	ultimate	authorization	decision.

The	trust	engine	will	frequently	pull	from	data	contained	in	authoritative
inventory	systems	to	check	attributes	of	an	entity	when	computing	its	score.	A
device	inventory,	for	example,	could	provide	the	trust	engine	with	information
like	the	last	time	a	device	was	audited,	or	whether	it	has	a	particular	hardware
security	feature.

Creating	a	numeric	assessment	of	risk	is	a	difficult	task.	A	simple	approach
would	be	to	define	a	set	of	ad	hoc	rules	that	score	an	entity’s	riskiness.	For
example,	a	device	that	is	missing	the	latest	software	patches	could	have	its	score
reduced.	Similarly,	a	user	who	is	continually	failing	to	authenticate	could	have
their	trust	score	reduced.

While	ad	hoc	trust	scoring	might	be	simple	to	get	started	with,	a	set	of	statically
defined	rules	will	be	insufficient	to	meet	the	desired	goal	of	defending	against
unexpected	attacks.	As	a	result,	in	addition	to	using	static	rules,	mature	trust
engines	use	machine	learning	techniques	to	derive	a	scoring	function.

Machine	learning	derives	a	scoring	function	by	calculating	observable	facts	from
a	subset	of	activity	data	known	as	training	data.	The	training	data	is	raw
observations	that	have	been	associated	with	trusted	or	untrusted	entities.	From
this	data,	features	are	extracted	and	used	to	derive	a	computer-generated	scoring
function.	This	scoring	function,	a	model	in	machine	learning	terms,	is	then	run
against	a	set	of	data	that	is	in	the	same	format	as	the	training	data.	The	resulting
scores	are	compared	against	human-defined	risk	assessments,	and	the	model’s
quality	can	then	be	refined	based	on	its	ability	to	correctly	predict	risk	of	the
data	being	analyzed.	A	model	that	has	sufficient	accuracy	can	then	be	said	to	be
predictive	of	the	riskiness	of	yet	unseen	requests	in	the	network.

While	machine	learning	is	increasingly	used	to	solve	hard	computational
problems,	it	does	not	obviate	the	need	for	more	explicit	rules	in	the	trust	engine.
Whether	due	to	limitation	of	the	derived	scoring	models	or	for	desired
customization	of	the	scoring	function,	trust	engines	will	typically	use	a	mixture
of	ad	hoc	and	machine	learning	scoring	methods.

What	Entities	Are	Scored?



What	Entities	Are	Scored?
Deciding	which	components	of	a	zero	trust	network	should	be	scored	is	an
interesting	consideration.	Should	scores	be	calculated	for	each	individual	entity
(user,	device,	and	application),	for	the	network	agent	as	a	whole,	or	for	both?
Let’s	look	at	some	scenarios.

Imagine	a	user’s	credentials	are	being	brute	forced	by	a	malicious	third	party.
Some	systems	will	mitigate	this	threat	by	locking	the	user’s	account,	which	can
present	a	denial-of-service	attack	against	that	particular	user.	If	we	were	to	score
a	user	negatively	based	on	that	activity,	a	zero	trust	network	would	suffer	the
same	problem.	A	better	approach	is	to	realize	that	we’re	authenticating	the
network	agent,	and	so	the	attacker’s	network	agent	is	counteracted,	leaving	the
legitimate	user’s	network	agent	unharmed.	This	scenario	makes	a	case	that	the
network	agent	is	the	entity	that	should	be	scored.

But	just	scoring	the	network	agent	can	be	insufficient	against	other	attack
vectors.	Consider	a	device	that	has	been	associated	with	malicious	activity.	A
user’s	network	agent	on	that	device	may	be	showing	no	signs	of	malicious
behavior,	but	the	fact	that	the	agent	is	being	formed	with	a	suspected	device
should	clearly	have	an	impact	on	the	trust	score	for	all	requests	originating	from
that	device.	This	scenario	strongly	suggests	that	the	device	should	be	scored.

Finally,	consider	a	malicious	human	user	(the	infamous	internal	threat)	is	using
multiple	kiosk	devices	to	exfiltrate	trade	secrets.	We’d	like	the	trust	engine	to
recognize	this	behavior	as	the	user	hops	across	devices	and	to	reflect	the
decreasing	level	of	trust	in	their	trust	score	for	all	future	authorization	decisions.
Here	again,	we	see	that	scoring	the	network	agent	alone	is	insufficient	for
mitigating	common	threats.

Taken	as	a	whole,	it	seems	like	the	right	solution	is	to	score	both	the	network
agent	itself	and	the	underlying	entities	that	make	up	the	agent.	These	scores	can
be	exposed	to	the	policy	engine,	which	can	choose	the	correct	component(s)	to
authorize	based	on	the	policy	being	written.

Presenting	so	many	scores	for	consideration	when	writing	policy,	however,	can
make	the	task	of	crafting	policy	more	difficult	and	error	prone.	In	an	ideal	world,
a	single	score	would	be	sufficient,	but	that	approach	presents	extra	availability
requirements	on	the	trust	engine.	A	system	that	tries	to	create	a	single	score
would	likely	need	to	move	to	an	online	model,	where	the	trust	engine	is



interactively	queried	during	the	policy	decision	making.	The	engine	would	be
given	some	context	about	the	request	being	authorized	so	it	could	choose	the
best	scoring	function	for	that	particular	request.	This	design	is	clearly	more
complex	to	build	and	operate.	Additionally,	for	policy	where	a	system
administrator	specifically	wishes	to	target	a	particular	component	(say,	only
allow	deploys	from	devices	with	a	score	above	X),	it	seems	rather	roundabout.

Exposing	Scores	Considered	Risky
While	the	scores	assigned	to	entities	in	a	zero	trust	network	are	not	considered
confidential,	exposing	the	scores	to	end	users	of	the	system	should	be	avoided.
Seeing	one’s	score	could	be	a	signal	to	would-be	attackers	that	they	are
increasing	or	decreasing	their	trustworthiness	in	the	system.	This	desire	to
withhold	information	should	be	balanced	against	the	frustration	of	end	users’
ability	to	understand	how	their	actions	are	affecting	their	own	trust	in	the	system.
A	good	compromise	from	the	fraud	industry	is	to	show	users	their	scores
infrequently,	and	to	highlight	contributing	factors	to	their	score	determination.

Data	Stores
The	data	stores	used	to	make	authorization	decisions	are	very	simply	the	sources
of	truth	for	the	current	and	past	state	of	the	system.	Information	from	these	data
stores	flows	through	the	control	plane	systems,	providing	a	large	portion	of	the
basis	on	which	authorization	decisions	are	made,	as	demonstrated	in	Figure	4-4.

We	previously	spoke	about	the	trust	engine	leveraging	these	data	stores	in	order
to	produce	a	trust	score,	which	in	turn	is	considered	by	the	policy	engine.	In	this
way,	information	from	control	plane	data	stores	has	flowed	through	the
authorization	system,	finally	reaching	the	policy	engine	where	the	decision	was
made.	These	data	stores	are	used	by	the	policy	engine,	both	directly	and
indirectly,	but	they	can	be	useful	to	other	systems	that	need	authoritative	data
about	the	state	of	the	network.



Figure	4-4.	Authoritative	data	stores	are	used	by	the	policy	engine	both	directly	and	indirectly	through	the
trust	engine

Zero	trust	networks	tend	to	have	many	data	stores,	organized	by	function.	There
are	two	primary	types:	inventory	and	historical.	An	inventory	is	a	single
consistent	source	of	truth,	recording	the	current	state	of	the	resource(s)	it
represents.	An	example	is	a	user	inventory	that	stores	all	user	information,	or	a
device	inventory	that	records	information	about	devices	known	to	the	company.

In	an	inventory,	a	primary	key	exists	which	uniquely	represents	the	tracked
entity.	In	the	case	of	a	user,	the	likely	choice	is	the	username;	for	a	device,
perhaps	it’s	a	serial	number.	When	a	zero	trust	agent	undergoes	authentication,	it
is	authenticating	its	identity	against	this	primary	key	in	the	inventory.	Think
about	it	like	this:	a	user	authenticates	against	a	given	username.	The	policy
engine	gets	to	know	the	username,	and	that	the	user	was	successfully
authenticated.	The	username	is	then	used	as	the	primary	key	for	lookup	against
the	user	inventory.	Keeping	this	flow	and	purpose	in	mind	will	help	you	choose
the	right	primary	keys,	depending	on	your	particular	implementation	and
authentication	choices.



A	historical	data	store	is	a	little	bit	different.	Historical	data	stores	are	kept
primarily	for	risk	analysis	purposes.	They	are	useful	for	examining	recent/past
behavior	and	patterns	in	order	to	assess	risk	as	it	relates	to	a	particular	request	or
action.	Trust	engine	components	are	most	likely	to	be	consuming	this	data,	as
trust/risk	determinations	are	the	engine’s	primary	responsibility.

One	can	imagine	many	types	of	historical	data	stores,	and	when	it	comes	to	risk
analysis,	the	sky’s	the	limit.	Some	common	examples	include	user	accounting
records	and	sFlow	data.	Regardless	of	the	data	being	stored,	it	must	be	queryable
using	the	primary	key	from	one	of	the	inventory	systems.

We	will	talk	about	various	inventory	and	historical	data	stores	as	we	introduce
related	concepts	throughout	this	book.

Summary
This	chapter	focused	on	the	systems	that	are	responsible	for	making	the	ultimate
decision	of	whether	a	particular	request	should	be	authorized	in	a	zero	trust
network.	This	decision	is	a	critical	component	of	such	a	network,	and	therefore
should	be	carefully	designed	and	isolated	to	ensure	it	is	trustworthy.

We	broke	this	responsibility	down	into	four	key	systems:	enforcement,	policy
engine,	trust	engine,	and	data	stores.	These	components	are	logical	areas	of
responsibility.	While	they	could	be	collapsed	into	fewer	physical	systems,	the
authors	prefer	an	isolated	design.

The	enforcement	system	is	responsible	for	ensuring	that	the	policy	engine’s
authorization	decision	takes	effect.	This	system,	being	in	the	data	path	of	user
traffic,	is	best	implemented	in	a	manner	where	the	policy	decision	is	referenced
and	then	enforced.	Depending	on	the	architecture	chosen,	the	policy	engine
might	be	notified	before	a	request	occurs,	or	during	the	processing	of	that	same
request.

The	policy	engine	is	the	key	system	that	computes	the	authorization	decision
based	on	data	available	to	it	and	the	policy	definitions	that	have	been	crafted	by
the	system	administrators.	This	system	should	be	heavily	isolated.	The	policy
that	is	defined	should	ideally	be	stored	separately	from	the	engine	and	should
use	good	software	development	practices	to	ensure	that	changes	are	understood,



reviewed,	and	not	lost	as	the	policy	moves	from	being	proposed	to	being
implemented.	Furthermore,	since	zero	trust	networks	expect	to	have	much	finer-
grained	policy,	mature	organizations	choose	to	distribute	the	responsibility	of
defining	that	policy	into	the	organization	with	security	teams	reviewing	the
proposed	changes.

The	trust	engine	is	a	new	concept	in	security	systems.	This	engine	is	responsible
for	calculating	a	trust	score	of	components	of	the	system	using	static	and
inferred	algorithms	derived	from	past	behavior.	The	trust	score	is	a	numerical
determination	of	the	trustworthiness	of	a	component	and	allows	the	policy
writers	to	focus	on	the	level	of	trust	required	to	access	some	resource	instead	of
the	particular	details	of	what	actions	might	reduce	that	trust.

The	final	component	of	this	part	of	the	system	is	the	authoritative	data	sources
that	capture	current	and	historical	data	that	can	be	used	to	make	the	authorization
decision.	These	data	stores	should	focus	on	being	sources	of	truth.	The	policy
engine,	the	trust	engine,	and	perhaps	third-party	systems	can	leverage	this	data
so	the	collection	of	this	data	will	have	a	decent	return	on	investment	from
capturing	it.

The	next	chapter	will	dig	into	how	devices	gain	and	maintain	trust.



Chapter	5.	Trusting	Devices

Trusting	devices	in	a	zero	trust	network	is	extremely	critical;	it’s	also	an
exceedingly	difficult	problem.	Devices	are	the	battlegrounds	upon	which
security	is	won	or	lost.	Most	compromises	involve	a	malicious	actor	gaining
access	to	a	trusted	device;	and	once	that	access	is	obtained,	the	device	cannot	be
trusted	to	attest	to	its	own	security.

This	chapter	will	discuss	the	many	systems	and	processes	that	need	to	be	put	in
place	to	have	sufficient	trust	of	devices	deployed	in	the	network.	We	will	focus
on	the	role	that	each	of	these	systems	plays	in	the	larger	goal	of	truly	trusting	a
device.	Each	technology	is	complicated	in	its	own	right.	While	we	can’t	go	into
exhaustive	detail	on	each	protocol	or	system,	we	will	endeavor	to	give	enough
details	to	help	you	understand	the	technology	and	avoid	any	potential	pitfalls
when	using	it.

We	start	with	learning	how	devices	gain	trust	in	the	first	place.

Bootstrapping	Trust
When	a	new	device	arrives,	it	is	typically	assigned	an	equal	level	of	trust	as	that
of	the	manufacturer	and	distributor.	For	most	people,	that	is	a	fairly	high	level	of
trust	(whether	warranted	or	not).	This	inherited	trust	exists	purely	in	meatspace
though,	and	it	is	necessary	to	“inject”	this	trust	into	the	device	itself.

There	are	a	number	of	ways	to	inject	(and	keep)	this	trust	in	hardware.	Of
course,	the	device	ecosystem	is	massive,	and	the	exact	approach	will	differ	on	a
case-by-case	basis,	but	there	are	some	basic	principles	that	apply	across	the
board.	These	principles	reduce	most	differences	to	implementation	details.

The	first	of	those	principles	has	been	known	for	a	long	time:	golden	images.	No
matter	how	you	receive	your	devices,	you	should	always	load	a	known-good
image	on	them.	Software	can	be	hard	to	vet;	rather	than	doing	it	many	times
hastily	(or	not	at	all),	it	makes	good	sense	to	do	it	once	and	certify	an	image	for
distribution.

Loading	a	“clean”	image	onto	a	device	grants	it	a	great	deal	of	trust.	You	can	be



Loading	a	“clean”	image	onto	a	device	grants	it	a	great	deal	of	trust.	You	can	be
reasonably	sure	that	the	software	running	there	is	validated	by	you,	and	secure.
For	this	reason,	recording	the	last	time	a	device	was	imaged	is	a	great	way	to
determine	how	much	trust	it	gets	on	the	network.

SECURE	BOOT
There	are	of	course	ways	to	subvert	devices	in	a	manner	that	they	retain	the	implant	across
reimaging	and	other	low-level	operations,	as	the	implant	in	these	cases	are	usually	themselves
fairly	low	level.

Secure	Boot	is	one	way	to	help	fend	against	these	kinds	of	attacks.	It	involves	loading	a	public
key	into	the	device’s	firmware,	which	is	used	to	validate	driver	and	OS	loader	signatures	to
ensure	that	nothing	has	been	slipped	in	between.	While	effective,	support	is	limited	to	certain
devices	and	operating	systems.	More	on	this	later.

Being	able	to	certify	the	software	running	on	a	device	is	only	the	first	step.	The
device	still	needs	to	be	able	to	identify	itself	to	the	resources	that	it	is	attempting
to	access.	This	is	typically	done	by	generating	a	unique	device	certificate	that	is
signed	by	your	private	certificate	authority.	When	communicating	with	network
resources,	the	device	presents	its	signed	certificate.	This	certificate	proves	not
only	that	it	is	a	known	device,	but	it	also	provides	an	identification	method.
Using	details	embedded	in	the	certificate,	the	device	can	be	matched	with	data
from	the	device	inventory,	which	can	be	used	for	further	decision	making.

Generating	and	Securing	Identity
In	providing	a	signed	certificate	by	which	a	device	may	be	identified,	it	is
necessary	to	store	the	associated	private	key	in	a	secure	manner.	This	is	not	an
easy	task.	Theft	of	the	private	key	would	enable	an	attacker	to	masquerade	as	a
trusted	device.	This	is	the	worst	possible	scenario	for	device	authentication.

A	simple	yet	insecure	way	to	do	this	is	to	configure	access	rights	to	the	key	in
such	a	way	that	only	the	most	privileged	user	(root	or	administrator)	can	access
it.	This	is	the	least	desirable	storage	method,	as	an	attacker	who	gains	elevated
access	can	exfiltrate	the	unprotected	key.

Another	way	to	do	this	is	to	encrypt	the	private	key.	This	is	better	than	relying
on	simple	permissions,	though	it	presents	usability	issues	because	a	password	(or



other	secret	material)	must	be	furnished	in	order	to	decrypt	and	use	the	key.	This
may	not	pose	a	problem	for	an	end-user	device,	as	the	user	can	be	prompted	to
enter	the	password,	though	this	is	usually	not	feasible	for	server	deployments;
human	interaction	is	required	for	every	software	restart.

The	best	way	by	far	to	store	device	keys	is	through	the	use	of	secure
cryptoprocessors.	These	devices,	commonly	referred	to	as	a	hardware	security
module	(HSM)	or	a	trusted	platform	module	(TPM),	provide	a	secure	area	in
which	cryptographic	operations	can	be	performed.	They	provide	a	limited	API
that	can	be	used	to	generate	asymmetric	encryption	keys,	where	the	private	key
never	leaves	the	security	module.	Since	not	even	the	operating	system	can
directly	access	a	private	key	stored	by	a	security	module,	they	are	very	difficult
to	steal.

Identity	Security	in	Static	and	Dynamic	Systems
In	relatively	static	systems,	it	is	common	for	an	operator	to	be	involved	when
new	hosts	are	provisioned.	This	makes	the	injection	story	easy—the	trusted
human	can	directly	cut	the	new	keys	on	behalf	of	the	hosts.	Of	course,	as	the
infrastructure	grows,	this	overhead	will	become	problematic.

In	automating	the	provisioning	and	signing	process,	there	is	an	important
decision	to	make:	should	a	human	be	involved	when	signing	new	certificates?
The	answer	to	this	largely	depends	on	your	sensitivity.

A	signed	device	certificate	carries	quite	a	bit	of	power,	and	serves	to	identify
anything	with	the	private	key	as	an	authentic	and	trusted	device.	Just	as	we	go
through	measures	to	protect	their	theft	locally,	we	must	also	protect	against	their
frivolous	generation.	If	your	installation	is	particularly	sensitive,	you	might
choose	to	involve	a	human	every	time	a	new	certificate	is	signed.

PWNING	THE	SIGNING	SERVICE
In	2011,	a	company	named	DigiNotar	suffered	a	security	breach.	This	breach	was	significant
because	DigiNotar	was	a	publicly	trusted	certificate	authority.	The	attackers	managed	to
compromise	the	certificate	signing	infrastructure,	and	used	this	position	to	sign	certificates	of
their	choosing.	It	is	estimated	that	over	300,000	users	had	their	private	data	exposed	by	these
fraudulent	certificates.	DigiNotar’s	certificates	were	immediately	blacklisted	by	browsers
around	the	world,	and	the	company	declared	bankruptcy	not	long	after.	This	breach



underscores	the	importance	of	a	secure	signing	infrastructure	and	process.

If	provisioning	is	automated,	but	still	human-driven,	it	makes	a	lot	of	sense	to
allow	the	human	driving	that	action	to	also	authorize	the	associated	signing
request.	Having	a	human	involved	every	time	is	the	best	way	to	prevent
unauthorized	requests	from	being	approved.	Humans	are	not	perfect	though.
They	are	susceptible	to	fatigue	and	other	shortcomings.	For	this	reason,	it	is
recommended	that	they	be	responsible	for	approving	only	requests	that	they
themselves	have	initiated.

It	is	possible	to	accomplish	provisioning	and	signature	authorization	in	a	single
step	through	the	use	of	a	temporal	one-time	password	(TOTP).	The	TOTP	can
be	provided	along	with	the	provisioning	request	and	passed	through	to	the
signing	service	for	verification,	as	shown	in	Figure	5-1.	This	simple	yet	strong
mechanism	allows	for	human	control	over	the	signing	of	new	certificates	while
imposing	only	minimal	administrative	overhead.	Since	a	TOTP	can	only	be	used
once,	a	TOTP	verification	failure	is	an	important	security	event.



Figure	5-1.	A	human	providing	a	TOTP	can	safely	authorize	the	signature	of	a	certificate.

It	goes	without	saying	that	none	of	this	applies	if	you	want	to	fully	automate	the
provisioning	of	new	hosts.	Frequently	referred	to	as	“auto-scaling,”	systems	that
can	grow	and	shrink	themselves	are	commonly	found	in	large,	highly	automated
installations.	Allowing	a	system	to	scale	itself	decreases	the	amount	of	care	and
feeding	required,	significantly	reducing	administrative	overhead	and	cost.

Signing	a	certificate	is	an	operation	that	requires	a	great	deal	of	trust;	and	just	as
with	other	zero	trust	components,	this	trust	must	be	sourced	from	somewhere.
There	are	three	common	choices:

A	human

The	resource	manager

The	image	or	device

The	human	is	an	easy	and	secure	choice	for	relatively	static	infrastructure	or	end
user	devices,	but	is	an	obvious	nonstarter	for	automated	infrastructure.	In	this
case,	you	must	choose	the	resource	manager	or	the	image...or	both.

The	resource	manager	is	in	a	privileged	position.	It	has	the	ability	to	both	grow
and	shrink	the	infrastructure,	and	is	likely	able	to	influence	its	availability.	It
provides	a	good	analog	to	a	human	in	a	more	static	system.	It	is	in	a	position	to
assert,	“Yes,	I	turned	this	new	host	on,	and	here	is	everything	I	know	about	it.”	It
can	use	this	position	to	either	directly	or	indirectly	authorize	the	signing	of	a	new
certificate.

Depending	on	your	needs,	it	might	be	desirable	to	not	grant	this	ability	wholly	to
the	resource	manager.	In	this	case,	credentials	can	be	baked	into	an	image.	This
is	generally	not	advised	as	a	primary	mechanism,	as	it	places	too	much
responsibility	on	the	image	store;	and	protecting	and	rotating	images	can	be
fraught	with	peril.	In	a	similar	way,	HSMs	or	TPMs	can	be	leveraged	to	provide
a	device	certificate	that	is	tied	to	the	hardware.	This	is	better	than	baking
material	into	the	image,	though	requiring	a	TPM-backed	device	to	sign	a	new
certificate	is	still	not	ideal,	especially	when	considering	cloud-based
deployments.

One	good	way	to	mitigate	these	concerns	is	to	require	both	the	resource	manager



and	a	trusted	image/device.	Generic	authentication	material	baked	into	the	image
(or	a	registered	TPM	key)	can	be	used	to	secure	communication	with	the	signing
service	and	can	serve	as	a	component	in	a	multifaceted	authorization.	The
following	are	examples	of	components	for	authorization	consideration:

Registered	TPM	key	or	image	key

Correct	IP	address

Valid	TOTP	(generated	by	resource	manager)

Expected	certificate	properties	(i.e.,	expected	common	name)

By	validating	all	of	these	points,	the	certificate	signing	service	can	be	relatively
certain	that	the	request	is	legitimate.	The	resource	manager	alone	cannot	request
a	certificate,	and	since	it	does	not	have	access	to	the	hosts	it	provisions,	the	most
an	attacker	could	do	is	impact	availability.	Similarly,	a	stolen	image	alone
cannot	request	a	certificate,	as	it	requires	the	resource	manager	to	validate	that	it
has	provisioned	the	host	and	expects	the	request.

By	splitting	these	responsibilities	and	requiring	multiple	systems	to	assert
validity,	we	can	safely	(well,	as	safely	as	is	possible)	remove	humans	from	the
loop.

RESOURCE	MANAGERS	AND	CONTAINERS
Sometimes	it	all	comes	down	to	terminology.	In	host-centric	systems,	resource	managers
create	auto-scaling	systems,	making	decisions	about	when	and	where	capacity	is	needed.	In
containerized	environments,	the	same	decisions	are	made	and	executed	by	a	resource
scheduler.	For	the	purposes	of	zero	trust	application,	these	components	are	practically
identical,	and	the	principles	apply	equally	to	host-centric	and	container-centric	environments.

Authenticating	Devices	with	the	Control	Plane
Now	that	we	know	how	to	store	identity	in	a	new	device	or	host,	we	have	to
figure	out	how	to	validate	that	identity	over	the	network.	Luckily,	there	are	a
number	of	open	standards	and	technologies	available	through	which	to
accomplish	this.	Here,	we’ll	discuss	two	of	those	technologies	and	why	they	are



so	important	to	device	authentication:	first	we’ll	cover	X.509	before	moving	on
to	look	at	TPMs.

These	technologies	enjoy	widespread	deployment	and	support,	though	this	was
not	always	the	case.	While	we	discuss	real-world	approaches	to	securing	legacy
devices	in	Chapter	8,	we’ll	additionally	explore	here	what	the	future	might	hold
for	zero	trust	support	in	legacy	hardware.

X.509
X.509	is	perhaps	the	most	important	standard	we	have	when	it	comes	to	device
identity	and	authentication.	It	defines	the	format	for	public	key	certificates,
revocation	lists,	and	methods	through	which	to	validate	certification	chains.	The
framework	it	puts	forth	aids	in	the	formation	of	identity	used	for	secure	device
authentication	in	nearly	every	protocol	we’ll	discuss	in	this	book.

One	of	the	coolest	things	about	X.509	is	that	the	public/private	key	pairs	it	uses
to	prove	identity	can	also	be	used	to	bootstrap	encrypted	communication.	This	is
just	one	of	many	reasons	that	X.509	is	so	valuable	for	internet	security.

Certificate	chains	and	certification	authorities

For	a	certificate	to	mean	anything,	it	has	to	be	trusted.	A	certificate	can	be
created	by	anyone,	so	just	having	one	with	the	right	name	on	it	does	not	mean
much.	A	trusted	party	must	endorse	the	validity	of	the	certificate	by	digitally
signing	it.	A	certificate	without	a	“real”	signature	is	known	as	a	self-signed
certificate	and	is	typically	only	used	for	testing	purposes.

It	is	the	responsibility	of	the	registration	authority	(a	role	commonly	filled	by	the
certificate	authority)	to	ensure	that	the	details	of	the	certificate	are	accurate
before	allowing	it	to	be	signed.	In	signing	the	certificate,	a	verifiable	link	is
created	from	the	signed	certificate	to	the	parent.	If	the	signed	certificate	has	the
right	properties,	it	can	sign	further	certificates,	resulting	in	a	chain.	The
certificate	authority	lies	at	the	root	of	this	chain.

By	trusting	a	certificate	authority	(CA),	you	are	trusting	the	validity	of	all	the
certificates	signed	by	it.	This	is	quite	a	convenience,	because	it	allows	us	to
distribute	only	a	small	number	of	public	keys	in	advance—the	CA	public	keys,
namely.	All	certificates	furnished	from	there	on	can	be	linked	back	to	the	known



trusted	CA,	and	therefore	also	be	trusted.	We	spoke	more	about	the	CA	concept
and	PKI	in	general	in	Chapter	2.

Device	identity	and	X.509

The	primary	capability	of	an	X.509	certificate	is	to	prove	identity.	It	leverages
two	keys	instead	of	one:	a	public	key	and	a	private	key.	The	public	key	is
distributed,	and	the	private	key	is	held	by	the	owner	of	the	certificate.	The	owner
can	prove	they	are	in	presence	of	the	private	key	by	encrypting	a	small	piece	of
data,	which	can	only	be	decrypted	by	the	public	key.	This	is	known	as	public	key
cryptography,	or	asymmetric	cryptography.

The	X.509	certificate	itself	contains	a	wealth	of	configurable	information.	It	has
a	set	of	standard	fields,	along	with	a	relatively	healthy	ecosystem	of	extensions,
which	allow	it	to	carry	metadata	that	can	be	used	for	authorization	purposes.
Here	is	a	small	sample	of	typical	information	found	within	an	X.509	certificate:

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
            ea:78:b1:33:90:2e:2b:a0
        Signature Algorithm: sha1WithRSAEncryption
        Issuer: C=US, ST=California, L=San Francisco,
                O=production, OU=web, CN=web01.example.com
        Validity
            Not Before: Oct 27 23:33:33 2016 GMT
            Not After : Oct 27 23:33:33 2017 GMT
        Subject: C=US, ST=California, L=San Francisco,
                 O=production, OU=web, CN=web01.example.com
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
            RSA Public Key: (512 bit)
                Modulus (512 bit):
                    00:d1:e2:54:b1:26:b1:49:64:72:6d:eb:54:fe:0a:
                    fc:74:56:a8:86:f2:54:32:7e:09:fa:06:ae:94:2b:
                    de:a5:9d:3b:9d:c3:d9:ad:08:3b:ed:b8:96:a7:0d:
                    2f:65:61:49:7f:f0:b0:85:95:af:39:e2:64:82:4c:
                    ff:97:76:12:6b
                Exponent: 65537 (0x10001)
        X509v3 extensions:
            X509v3 Subject Key Identifier:
                DD:92:3E:9E:A8:28:F0:85:FC:A6:4D:C1:1A:2A:BE:35:2D:F7:7A:55
            X509v3 Authority Key Identifier:
                keyid:DD:92:3E:9E:A8:28:F0:85:FC:A6:4D:C1:1A:2A:BE:35:2D:F7:7A:55
                DirName:/C=US/ST=California/L=San Francisco/O=production/OU=web ...



                DirName:/C=US/ST=California/L=San Francisco/O=production/OU=web ...
                serial:EA:78:B1:33:90:2E:2B:A0
 
            X509v3 Basic Constraints:
                CA:TRUE
    Signature Algorithm: sha1WithRSAEncryption
        33:41:f4:22:72:aa:7b:e9:d2:07:a0:e7:aa:5d:21:89:66:84:
        8e:11:87:8f:1b:c1:b8:dd:6b:76:6d:24:55:eb:20:61:6d:89:
        15:90:78:8c:81:e1:48:e4:45:3d:fe:0e:fd:92:78:84:2c:bc:
        0c:6e:06:03:80:95:5f:5d:1b:41

One	of	the	fields	in	the	code	snippet	is	called	the	Subject	field.	The	Subject	field
stores	information	about	the	owner,	which	in	our	case	is	a	device	(or	host).
Traditionally,	fields	like	Organization	(O)	and	Organizational	Unit	(OU)	are
exactly	as	they	sound;	but	in	datacenter	applications,	they	can	be	repurposed	to
provide	richer	identity.

The	example	shows	one	approach,	where	O	is	mapped	to	the	environment,	and
OU	is	mapped	to	the	role	of	the	host.	Since	the	certificate	is	signed	and	trusted,
we	can	use	this	information	to	make	authorization	decisions.	Leveraging	X.509
fields	in	this	way	means	that	device	access	may	be	authorized	without	a	call	to
an	external	service,	so	long	as	the	server	knows	who/what	it	should	be
expecting.

Public	and	private	components

As	mentioned	earlier,	X.509	deals	with	key	pairs	rather	than	a	single	key.	While
it	is	overwhelmingly	common	that	these	are	RSA	key	pairs,	they	don’t
necessarily	have	to	be.	X.509	supports	many	types	of	key	pairs,	and	we	have
recently	begun	to	see	the	popularization	of	other	key	types	(such	as	ECDSA).

Private	key	storage

X.509	is	incredibly	useful	for	device	authentication,	but	it	doesn’t	solve	all	the
problems.	It	still	has	a	private	key,	and	that	private	key	must	be	protected.	If	the
private	key	is	compromised,	the	device’s	identity	and	privacy	will	be	vulnerable
as	well.	While	other	zero	trust	measures	help	guard	against	the	damage	this
might	cause	(like	user/application	authentication	or	authorization	risk	analysis),
this	is	considered	a	worst-case	scenario	and	should	be	avoided	at	all	costs.

Private	keys	can	be	encrypted	when	they	are	stored,	requiring	a	password	to
decrypt.	This	is	a	good	practice	because	it	would	require	more	than	just	disk



access	to	successfully	steal,	but	is	only	practical	for	user-facing	devices.	In	the
datacenter,	encrypting	the	private	key	doesn’t	solve	the	problem	because	you
still	have	to	store	the	password,	or	somehow	transmit	it	to	the	server,	at	which
point	the	password	becomes	just	as	cumbersome	as	the	private	key	itself.

Hardware	security	modules	(HSMs)	go	a	good	distance	in	attempting	to	protect
the	private	key.	They	contain	hardware	that	can	generate	a	public/private	key
pair	and	store	the	private	key	in	secure	memory.	It	is	not	possible	to	read	the
private	key	from	the	HSM.	It	is	only	possible	to	ask	the	HSM	to	do	an	operation
with	it	on	your	behalf.	In	this	way,	the	private	key	cannot	be	stolen	as	it	is
protected	in	hardware.	We’ll	talk	more	about	TPMs,	a	type	of	HSM,	in	the	next
section.

X.509	for	device	authentication

The	application	of	X.509	to	device	authentication	in	a	zero	trust	network	is
immense.	It	is	a	foundational	cornerstone	in	proving	device	identity	for	just
about	every	protocol	we	have	and	is	instrumental	in	enabling	end-to-end
encryption.	Every	single	device	in	a	zero	trust	network	should	have	an	X.509
certificate.

There	is	one	important	consideration	to	make,	however.	We	are	using	X.509	to
authenticate	a	device,	yet	the	heart	of	the	whole	scheme—the	private	key—is
decidedly	software-based.	If	the	private	key	is	stolen,	the	whole	device
authentication	thing	is	a	sham!

These	certificates	are	often	used	as	a	proxy	for	true	device	authentication
because	the	keys	are	so	long	and	unwieldy	that	you	would	never	write	one	down
or	memorize	one.	They	are	something	that	would	be	downloaded	and	installed,
and	because	of	that,	they	don’t	tend	to	follow	users	around—they	more	typically
follow	devices.

While	it	might	be	determined	that	the	risk	associated	with	the	private	key
problem	is	acceptable,	it	still	stands	as	a	serious	issue,	particularly	for	zero	trust.
Fortunately,	we	can	see	some	paths	forward,	and	by	leveraging	TPMs	it	is
possible	to	inextricably	marry	a	private	key	to	its	hardware.

TPMs



A	trusted	platform	module	(TPM)	is	a	special	chip	that	is	embedded	in	a
compute	device.	Called	a	cryptoprocessor,	these	chips	are	dedicated	to
performing	cryptographic	operations	in	a	trusted	and	secure	way.	They	include
their	own	firmware	and	are	often	thought	of	as	a	computer	on	a	chip.

This	design	enables	a	small	and	lean	hardware	API	that	is	easily	audited	and
analyzed	for	vulnerability.	By	providing	facilities	for	cryptographic	operations,
and	excluding	interfaces	for	retrieving	private	keys,	we	get	the	security	we	need
without	ever	exposing	secret	keys	to	the	operating	system.	Instead,	they	are
bound	to	the	hardware.

This	is	a	very	important	property	and	the	reason	that	TPMs	are	so	important	for
device	authentication	in	zero	trust	networks.	Great	software	frameworks	for
identity	and	authentication	(like	X.509)	do	a	lot	for	device	authentication.	But
without	a	way	to	bind	the	software	key	to	the	hardware	device	it	is	attempting	to
identify,	we	cannot	really	call	it	device	identity.	TPMs	solve	this	problem,
providing	the	necessary	binding.

Encrypting	data	using	a	TPM

TPMs	generate		and	store	what	is	known	as	a	storage	root	key,	or	an	SRK.	This
key	pair	represents	the	trust	root	for	the	TPM	device.	Data	encrypted	using	its
public	key	can	be	decrypted	by	the	originating	TPM	only.

The	astute	reader	might	question	the	usefulness	of	this	function	in	the
application	of	bulk	data	encryption.	We	know	asymmetric	cryptographic
operations	to	be	very	expensive,	and	thus	not	suitable	for	the	encryption	of
relatively	large	pieces	of	data.	Thus,	in	order	to	leverage	the	TPM	for	bulk	data
encryption,	we	must	reduce	the	amount	of	data	that	the	SRK	is	responsible	for
securing.

An	easy	way	to	do	this	is	to	generate	a	random	encryption	key,	encrypt	the	bulk
data	using	known-performant	symmetric	encryption	(i.e.,	AES),	and	then	use	the
SRK	to	encrypt	the	resulting	AES	key.	This	strategy,	shown	in	Figure	5-2,
ensures	that	the	encryption	key	cannot	be	recovered,	unless	in	the	presence	of
the	TPM	that	originally	protected	it.



Figure	5-2.	The	data	is	encrypted	with	an	AES	key,	which	in	turn	is	encrypted	by	the	TPM

Most	TPM	libraries	available	for	open	consumption	perform	these	steps	for	you,
through	the	use	of	helper	methods.	It	is	recommended	to	inspect	the	internal
operation	of	such	methods	before	using	them.

Intermediary	keys	and	passphrases

Many	TPM	libraries	(such	as	TrouSerS)	create	intermediary	keys	when
encrypting	data	using	the	TPM.	That	is,	they	ask	the	TPM	to	create
a	new	asymmetric	key	pair,	use	the	public	key	to	encrypt	the	AES	key,	and
finally	use	the	SRK	to	encrypt	the	private	key.	When	decrypting	the	data,	you
must	first	decrypt	the	intermediate	private	key,	use	it	to	decrypt	the	AES
key,	then	decrypt	the	original	data.

This	implementation	seems	strange,	but	there	are	some	relatively	sane	reasons
for	it.	One	reason	is	that	the	additional	level	of	indirection	allows	for	more
flexibility	in	the	distribution	of	secured	data.	Both	the	SRK	and	intermediate
keys	support	passphrases,	so	the	use	of	an	intermediary	key	enables	the	use	of	an
additional,	perhaps	more	widely	known,	passphrase.

This	may	or	may	not	make	sense	for	your	particular	deployment.	For	the
purposes	of	“This	key	should	only	be	decryptable	on	this	device	only,”	it	is	OK
(and	more	performant)	to	bypass	the	use	of	an	intermediary	key,	if	desired.

The	most	important	application	of	TPM-backed	secure	storage	is	in	protecting
the	device’s	X.509	private	key.	This	secret	key	serves	to	authoritatively	prove
device	identity,	and	if	stolen,	so	is	the	identity.	Encrypting	the	private	key	using
TPM	means	that	while	the	key	might	still	be	taken	from	disk,	it	will	not	be



recoverable	without	the	original	hardware.	

KEY	THEFT	IS	STILL	POSSIBLE
Encrypting	the	device’s	private	key	and	wrapping	the	key	with	the	SRK	does	not	solve	all	of
the	theft	vectors.	It	protects	the	key	from	being	directly	read	from	disk,	though	an	attacker	with
elevated	privileges	might	still	be	able	to	read	it	from	memory	or	simply	ask	the	TPM	to
perform	the	operation	for	them.

The	following	two	sections	provide	additional	information	on	how	to	further	validate	hardware
identity	(beyond	X.509	identity).

Platform	configuration	registers

Platform	configuration	registers	(PCRs)	are	an	important	TPM	feature.	They
provide	storage	slots	into	which	hashes	of	running	software	is	stored.	It	starts
with	the	hash	of	the	BIOS,	then	the	boot	record,	its	configuration,	and	so	on.
This	sequence	of	hashes	can	then	be	used	to	attest	that	the	system	is	in	an
approved	configuration	or	state.	Here	is	a	truncated	example	of	the	first	few
registers	stored	in	the	TPM:

PCR-00: A8 5A 84 B7 38 FC ...         # BIOS
PCR-01: 11 40 C1 7D 0D 25 ...         # BIOS Configuration
PCR-02: A3 82 9A 64 61 85 ...         # Option ROM
PCR-03: B2 A8 3B 0E BF 2F ...         # Option ROM Configuration
PCR-04: 78 93 CF 58 0E E1 ...         # MBR
PCR-05: 72 A7 A9 6C 96 39 ...         # MBR Configuration

This	is	useful	in	a	number	of	ways,	including	in	ensuring	that	only	authorized
software	configurations	are	allowed	to	decrypt	data.	This	can	be	done	by	passing
in	a	set	of	known-good	PCR	values	when	using	the	TPM	to	encrypt	some	data.
This	is	known	as	“sealing”	the	data.	Sealed	data	can	only	be	decrypted	by	the
TPM	which	sealed	it,	and	only	while	the	PCR	values	match.

Since	PCR	values	cannot	be	modified	or	rolled	back,	we	can	use	TPM	sealing	to
ensure	that	our	secret	data	is	not	only	locked	to	the	device,	but	also	locked	to	a
specific	software	configuration	and	version.	This	helps	to	prevent	attackers	from
using	device	access	to	obtain	the	private	key,	since	only	the	unmodified	and
approved	software	can	unlock	it.

Remote	attestation



Remote	attestation

We	have	learned	many	ways	we	can	use	embedded	device	security	to	protect
private	keys	and	other	sensitive	device-related	data.	The	unfortunate	truth	is	that
so	long	as	a	private	key	is	stored	outside	of	a	physical	TPM,	it	is	still	vulnerable
to	theft.	This	fact	remains	because	all	it	takes	to	recover	the	private	key	is	to
convince	the	TPM	to	unlock	it	once.	This	action	discloses	the	actual	private	key
—something	that	is	not	possible	when	it	is	stored	on	the	TPM.

Luckily,	the	TPM	provides	a	way	for	us	to	uniquely	identify	it.	It’s	another	key
pair	called	the	endorsement	key	(EK),	and	each	TPM	has	a	unique	one.	The
private	component	of	an	EK	only	ever	exists	on	the	TPM	itself,	and	thus	remains
completely	inaccessible	by	the	operating	system.

Remote	attestation	is	a	method	by	which	the	TPM	generates	something	called	a
“quote,”	which	is	then	securely	transmitted	to	a	remote	party.	The	quote	includes
a	list	of	current	PCR	values,	signed	using	the	EK.	A	remote	party	can	use	this	to
assert	both	host	identity	(since	the	EK	is	unique	to	the	TPM)	and	software
state/configuration	(since	PCRs	cannot	be	modified).	We’ll	talk	more	about	how
the	quote	can	be	transmitted	in	Chapter	8.

WHY	NOT	JUST	TPM?
You	may	find	yourself	wondering:	why	not	use	the	TPM	exclusively	for	device	identity	and
authentication,	and	why	include	X.509	at	all?

Currently,	TPM	access	is	cumbersome	and	non-performant.	It	can	provide	an	X.509	certificate
to	confirm	its	identity,	but	it	is	limited	in	its	interaction	with	the	private	key.	For	instance,	the
key	used	for	attestation	is	only	capable	of	signing	data	that	originates	in	the	TPM.	For	a
protocol	like	TLS,	this	is	a	deal-breaker.

There	have	been	some	attempts	to	coerce	the	TPM	attestation	protocols	into	a	more	flexible
form	(like	IETF	draft	draft-latze-tls-tpm-extns-02,	which	defines	a	TLS	extension	for	device
authentication	via	TPM),	though	none	of	them	have	gained	widespread	adoption	at	the	time	of
this	writing.

There	are	a	few	open	source	implementations	of	remote	attestation,	including
one	in	the	popular	IKE	daemon	strongSwan.	This	opens	the	doors	for	leveraging
TPM	data	to	not	only	authenticate	an	IPsec	connection,	but	also	authorize	it	by
using	PCR	data	to	validate	that	the	host	is	running	authentic	and	unmodified
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software.

TPMs	for	device	authentication

It	is		clear	that	TPMs	present	the	best	option	for	strong	device	authentication	in
mature	zero	trust	networks.	They	provide	the	linchpin	between	software	identity
and	physical	hardware.	There	are,	however,	a	couple	limitations.

Many	datacenter	workloads	are	heterogeneous	and	isolated,	like	virtual
machines	or	containers,	both	of	which	need	to	resort	to	TPM	virtualization	to
allow	the	isolated	workload	to	accomplish	similar	goals.	While	there	are
implementations	available	(such	as	vTPM	for	Xen),	trust	must	still	be	rooted	in	a
hardware	TPM,	and	designing	a	secure	TPM-based	system	that	is	capable	of	live
migration	is	challenging.

Additionally,	TPM	support	is	still	sparse	despite	its	many	uses	and	strengths.
While	TPM	use	would	be	expected	in	the	context	of	device	authentication	in
mature	zero	trust	networks,	it	should	not	be	considered	a	requirement.	Adopting
TPM	support	is	no	small	feat,	and	there	are	much	lower-hanging	fruits	in	terms
of	zero	trust	adoption	and	migration.

Hardware-Based	Zero	Trust	Supplicant?
The		most	common	approach	for	supporting	legacy	devices	in	a	zero	trust
network	is	to	use	an	authentication	proxy.	The	authentication	proxy	terminates
the	zero	trust	relationship	and	forwards	the	connection	to	the	legacy	host.

While	it	is	possible	to	enforce	policy	between	the	authentication	proxy	and	the
legacy	backend,	this	mode	of	operation	is	less	than	ideal	and	shares	a	handful	of
attack	vectors	with	traditional	perimeter	networks.	When	dealing	with	legacy
devices,	it	is	desirable	to	push	the	zero	trust	termination	point	as	close	to	the
device	as	possible.

At	the	time	of	this	writing,	an	authentication	proxy	is	likely	the	best	and	most
reasonable	option,	although	it	does	seem	that	there	is	some	room	for	a	dedicated
hardware	device.	This	device	can	act	as	a	zero	trust	supplicant,	carrying	a	TPM
chip,	and	plug	directly	into	a	legacy	device’s	Ethernet	port.	Pairing	the	two	in
your	inventory	management	system	can	allow	for	seamless	integration	between
legacy	devices	and	a	zero	trust	network.



There	are	many	applications	that	would	significantly	benefit	from	such	a	device.
SCADA	and	HVAC	systems,	for	instance,	come	to	mind.	While	such	a	device	is
admittedly	pure	fantasy	at	present,	it	remains	an	interesting	thought	experiment.

Inventory	Management
Authenticating	a	device’s	identity	and	integrity	goes	a	long	way	in	providing
strong	zero	trust	security,	but	being	able	to	identify	a	device	as	belonging	to	the
organization	is	only	part	of	the	challenge.	There	are	lots	of	other	pieces	of
information	we	need	in	order	to	calculate	policy	and	make	enforcement
decisions.

Inventory	management	involves	the	cataloging	of	devices	and	their	properties.
Maintaining	these	records	is	equally	important	for	both	servers	and	client
devices.	It	is	sometimes	more	helpful	to	think	of	these	as	network	entities	rather
than	physical	devices.	While	they	indeed	are	commonly	physical	devices,	they
might	also	be	logical	entities	on	the	network.

For	instance,	it	is	conceivable	that	a	virtual	machine	or	a	container	could	be
considered	a	“device,”	depending	on	your	needs.	They	have	lots	of	the	same
descriptive	properties	that	a	real	server	might	have,	after	all.	Lumping	all	of	the
virtual	machine	traffic	from	a	single	host	into	one	policy	gets	us	right	back	to	the
perimeter	model.	Instead,	the	zero	trust	model	advocates	that	the	workloads	be
tracked	in	order	to	drive	the	network	policies	they	require.	This	inventory	(or
workload)	database	in	this	case	can	be	specialized	in	order	to	accommodate	the
high	rates	of	change	that	virtualized/containerized	environments	experience.	So,
while	the	traditional	inventory	management	system	and	the	workload	scheduler
might	be	different	systems,	they	can	still	work	together;	for	the	purposes	of	this
book,	the	scheduler	service	may	act	as	an	inventory	management	system	of	sorts,
as	shown	in	Figure	5-3.

It	is	not	uncommon	to	have	more	than	one	inventory	management	system.	As	an
example,	many	companies	have	both	asset	management	and	configuration
management	software.	Both	of	these	store	device	metadata	that	is	useful	to	us;
they	just	store	different	sets,	collected	in	different	ways.

CONFIGURATION	MANAGEMENT	AS	AN	INVENTORY



CONFIGURATION	MANAGEMENT	AS	AN	INVENTORY
DATABASE

Many	configuration	management	systems,	such	as	Chef	or	Puppet,	offer	modes	in	which	data
about	the	nodes	they	run	on	get	persisted	into	a	centralized	database.	Name,	IP	address,	and	the
“kind”	of	server	are	examples	of	the	type	of	information	typically	found	in	a	CM-backed
database.	Using	configuration	management	in	this	way	is	an	easy	first	step	toward	developing
an	inventory	database	if	you	don’t	have	one	already.

Figure	5-3.	A	scheduler	and	a	configuration	management	database	serve	as	inventory	stores	for	the	control
plane

Knowing	What	to	Expect
One	of	the	great	powers	of	a	zero	trust	network	is	that	it	knows	what	to	expect.
Trusted	entities	can	push	expectations	into	the	system,	allowing	all	levels	of
access	to	be	denied	by	default—only	expected	actions/requests	are	permitted.

An	inventory	database	is	a	major	component	in	realizing	this	capability.	A	huge
amount	of	information	about	what	to	expect	can	be	generated	from	this	data;
things	like	which	user	or	application	should	be	running	on	it,	what	locations	we
might	expect	it	to	be	in,	or	even	the	kind	of	operating	system	are	all	pieces	of



might	expect	it	to	be	in,	or	even	the	kind	of	operating	system	are	all	pieces	of
information	that	can	be	used	to	set	expectations.

In	the	datacenter,	these	expectations	can	be	very	strong.	For	instance,	when
provisioning	a	new	server,	we	often	know	what	IP	address	it	will	be	assigned
and	what	purpose	it	will	serve.	We	can	use	that	information	to	drive	network
ACLs	and/or	host-based	firewalls,	poking	holes	for	that	specific	IP	address	only
where	necessary.	In	this	way,	we	can	have	all	traffic	denied,	allowing	only	the
very	specific	flows	we	are	expecting.	The	more	properties	that	can	be	expected,
the	better.

This	is	not	such	an	easy	prospect	for	client-facing	systems,	however.	Clients
operate	in	new	and	unexpected	ways	all	the	time,	and	knowing	exactly	what	to
expect	from	them	and	when	is	very	difficult.	Servers	in	the	datacenter	often	have
relatively	static	and	long-lived	connections	to	a	well-defined	set	of	hosts	or
services.	By	contrast,	clients	tend	to	make	many	short-lived	connections	to	a
variety	of	services,	the	timing,	frequency,	and	patterns	of	which	can	vary
organically.

In	order	to	address	the	wild	nature	of	client-facing	systems,	we	need	a	slightly
different	approach.	One	way	to	do	this	is	to	simply	allow	global	access	to	the
service	and	to	protect	it	with	mutually	authenticated	TLS,	forcing	the	client	to
provide	a	device	certificate	before	it	can	communicate	with	it.	The	device
certificate	can	be	used	to	look	the	device	up	in	the	inventory	database	and
determine	whether	or	not	to	authorize	it.	The	advantage	is	that	lots	of	systems
support	mutually	authenticated	TLS	already,	and	specialized	client	software	is
not	strictly	required.	One	can	provide	reasonably	strong	security	without	too
badly	hindering	accessibility	or	usability.

A	significant	drawback	to	this	approach,	however,	is	that	the	service	is	globally
reachable.	Requiring	client	certificates	is	a	great	way	to	mitigate	this	danger.
However,	we	have	seen	from	vulnerabilities	like	Heartbleed	that	the	attack
surface	of	a	TLS	server	is	relatively	large.	Additionally,	the	existence	of	the
resources	can	be	discovered	by	simply	scanning	for	them,	since	we	get	to	speak
TCP	to	the	resource	before	we	authenticate	with	it.

How	can	we	ensure	that	we	don’t	engage	clients	that	are	not	trusted?	There	has
to	be	some	untrusted	communication,	after	all.	What	comes	before	the
authentication?



Secure	Introduction
The	very	first	connection	from	a	new	device	is	a	precarious	one.	After	all,	these
packets	must	be	admitted	somewhere,	and	if	they	are	not	strongly	authenticated,
then	there	is	a	risk.	Therefore,	the	first	system	that	a	new	device	contacts	needs	a
mechanism	by	which	it	can	authenticate	this	initial	contact.

This	arrangement	is	commonly	known	as	secure	introduction.	It	is	the	process
through	which	a	new	entity	is	introduced	to	an	existing	one	in	a	way	that	trust	is
transferred	to	it.	There	are	many	ways	in	which	this	can	be	effected;	the	method
through	which	an	operator	passes	a	TOTP	code	to	a	provisioner	in	order	to
authorize	a	certificate	request	is	a	form	of	secure	introduction.

The	best	(and	perhaps	only)	way	to	do	secure	introduction	is	by	setting	an
expectation.	Secure	introduction	practically	always	involves	a	trusted	third	party.
This	is	a	system	that	is	already	introduced,	and	it	holds	the	ability	to	introduce
new	systems.	This	trusted	third	party	is	the	system	that	then
coordinates/validates	the	specifics	of	the	system	to	be	introduced	and	sets	the
appropriate	expectations.

SECURE	INTRODUCTION	FOR	CLIENT	SYSTEMS
Secure	introduction	of	client-facing	systems	can	be	difficult	due	to	the	hard-to-predict	nature
of	wild	clients.	When	publicly	exposing	a	client-facing	endpoint	is	considered	too	risky,	it	is
necessary	to	turn	to	more	complicated	schemes.	The	currently	accepted	approach	is	to	use	a
form	of	signaling	called	pre-authentication,	which	announces	a	client’s	intentions	just	prior	to
taking	action.	We’ll	talk	more	about	pre-authentication	in	Chapter	8.

What	Makes	a	Good	Secure	Introduction	System?

Single-use

Credentials	and	privileges	associated	with	the	introduction	should	be	single
use,	preventing	an	attacker	from	compromising	and	reusing	the	key.

Short-lived

Credentials	and	privileges	associated	with	the	introduction	should	be	short-
lived,	preventing	the	accumulation	of	valid	but	unused	keys.

Third-party



Third-party

Leveraging	a	third	party	for	introduction	allows	for	separation	of	duty,
prevents	the	introduction	of	poor	security	practice,	and	alleviates	operational
headaches.

While	these	requirements	might	at	first	seem	rigorous,	they	can	be	met	through
fairly	simple	means.	A	great	example	can	be	found	in	the	way	Chef	implements
host	introduction.	Originally,	there	was	a	single	secret	(deemed	the	“validation
certificate”)	which	was	qualified	to	admit	any	host	that	possessed	it	as	a	new
node.	Thus,	the	introduction	would	involve	copying	this	secret	to	the	target
machine	(or	baking	it	into	the	image),	using	it	to	register	the	new	node,	then
deleting	it.

This	approach	is	neither	single-use	nor	short-lived.	Should	the	secret	be
recovered,	it	could	be	used	by	a	malicious	actor	to	steer	application	traffic	to
attacker-controlled	hosts,	or	even	trigger	a	denial	of	service.

Modern	Chef	takes	a	new	approach.	Instead	of	having	a	static	validation
certificate,	the	provisioning	system	(via	Chef	client	utility	“knife”)
communicates	with	the	Chef	server	and	creates	a	new	client	and	associated	client
certificate.	It	then	creates	the	new	host,	and	passes	in	its	client	certificate.	In	this
way,	an	expectation	for	the	new	client	has	been	set.	While	these	credentials	are
not	short-lived,	it	remains	as	a	superior	approach.

Renewing	Device	Trust
It	is	important	to	accept	the	fact	that	no	level	of	security	is	perfect—not	even
yours.	Once	this	fact	is	acknowledged,	we	can	begin	to	mitigate	its
consequences.	The	natural	progression	is	that	the	longer	a	device	is	operating,
the	greater	its	chances	of	being	compromised.	This	is	why	device	age	is	a
heavily	weighted	trust	signal.

For	this	reason,	rotation	is	very	important.	We	earlier	spoke	at	length	about	the
importance	of	rotation,	and	devices	are	no	different.	Of	course,	this	“rotation”	is
manifested	in	different	ways	depending	on	your	definition	of	“device.”	If	your
infrastructure	is	run	in	a	cloud,	perhaps	a	“device”	is	a	host	instance.	In	this	case,
rotation	is	easy:	just	tear	down	the	instance	and	build	a	new	one	(you	are	using
configuration	management,	right?).	If	you’re	running	physical	hardware,



however,	this	prospect	is	a	little	more	difficult.

Reimaging	is	a	good	way	to	logically	rotate	a	device.	It	is	a	fairly	low-level
operation,	and	will	succeed	in	removing	the	majority	of	persistent	threats	seen	in
the	wild	today.	One	can	trust	a	freshly	reimaged	device	more	than	one	that	has
been	running	for	a	year.	While	reimaging	does	not	address	hardware	attacks	or
other	low-level	attacks	like	those	shown	in	Figure	5-4,	it	serves	as	a	reasonable
compromise	in	places	where	physical	rotation	is	more	difficult.	Datacenter	and
supply	chain	security	partially	mitigate	this	concern.

Figure	5-4.	A	disk	image	addresses	the	portions	that	house	the	vast	majority	of	malware,	but	it’s	certainly
not	the	whole	picture

When	it	comes	to	managing	client	devices,	the	story	changes	quite	a	bit.
Reimaging	a	client	device	is	extraordinarily	inconvenient	for	users.	They
customize	the	device	(and	its	contents)	over	time	in	ways	that	are	difficult	to
effectively	or	securely	preserve.	Oftentimes,	when	given	a	new	device,	they
want	to	transfer	the	old	image!	This	is	not	great	news	for	people	trying	to	secure
client	devices.



The	solution	largely	depends	on	your	use	case.	The	trade-off	between	security
and	convenience	will	be	very	clear	in	this	area.	Everyone	agrees	that	client
devices	should	be	rotated	and/or	reimaged	every	so	often,	but	the	frequency	is	up
to	you.	There	is	one	important	relationship	to	keep	in	mind:	the	less	often	a
device	is	rotated	or	reimaged,	the	more	rigorous	your	endpoint	security	must	be.

Without	the	relatively	strong	assurances	of	device	security	that	we	get	with
rotation,	we	must	look	for	other	methods	to	renew	trust	in	a	device	that	has	been
operating	for	a	long	time.	There	are	two	general	methods	through	which	this	can
be	done:	local	measurement	or	remote	measurement.

Local	Measurement
Local	measurement	can	be	one	of	two	types:	hardware-backed	or	software-
backed.	Hardware-backed	measurement	is	more	secure	and	reliable,	but	limited
in	capability.	Software-backed	measurement	is	much	less	secure	and	reliable,	but
practically	unlimited	in	its	measurement	capabilities.

One	good	option	for	hardware-backed	local	measurement	is	leveraging	the	TPM
for	remote	attestation.	Remote	attestation	uses	a	hardware	device	to	provide	a
signed	response	outlining	the	hashes	of	the	software	currently	running	on	that
machine.	The	response	is	highly	reliable	and	very	difficult	to	reproduce.
However,	it	generally	only	gives	a	picture	of	the	low-level	software	or
specifically	targeted	software.	If	an	attacker	has	managed	to	get	an	unauthorized
process	running	in	user	space,	the	TPM	will	not	be	very	useful	in	its	detection;
thus,	it	has	limited	capability.	See	“Remote	attestation”	for	more	information.

Software-backed	local	measurement	involves	some	sort	of	agent	installed	on	the
endpoint	which	is	used	to	report	health	and	state	measurements.	This	could	be
anything	from	a	managed	antivirus	client	to	policy	enforcement	agents.	These
agents	go	to	great	lengths	in	order	to	attest	and	prove	validity	of	the
measurements	they	report,	but	even	cursory	thought	quickly	reaches	the
conclusion	that	these	efforts	are	generally	futile.	Software-backed	measurements
lack	the	protection	provided	by	hardware	measurements,	and	an	attacker	with
sufficient	privilege	can	subvert	systems	like	this.

Remote	Measurement



Remote	measurement	is	the	best	of	the	two	options	for	one	simple	reason:	it
benefits	from	separation	of	duty.	A	compromised	host	can	report	whatever	it
wants	to,	possibly	falsifying	information	in	order	to	conceal	the	attacker.	This	is
not	possible	with	remote	or	passive	measurement,	since	a	completely	different
system	is	determining	the	health	of	the	host	in	question.

Traditionally,	remote	measurement	is	performed	as	a	simple	vulnerability	scan.
The	system	in	question	will	be	periodically	probed	by	a	scanning	device,	which
observes	the	response.	The	response	gives	some	information	away,	like	what
operating	system	might	be	running	on	that	device,	what	services	might	be	active
there,	and	maybe	even	what	version	of	those	services.

The	scan	results	can	be	cross-referenced	with	known-bad	signatures,	like
malicious	software	or	vulnerable	versions	of	legitimate	software,	producing	a
report	like	the	one	shown	in	Figure	5-5.	Detection	of	known-bad	signatures	can
then	influence	the	trust	of	the	device	appropriately.

Figure	5-5.	Greenbone	web	interface	for	OpenVAS	showing	three	“medium”	vulnerabilities	for	a	scan
target

https://www.flickr.com/photos/xmodulo/9499759166


There	are	a	number	of	open	source	and	commercial	options	available	in	the
vulnerability	scanning	arena,	including	OpenVAS,	Nessus,	and	Metasploit.
These	projects	are	all	fairly	mature	and	relied	on	by	many	organizations.

Unfortunately,	vulnerability	scanning	comes	with	the	same	fundamental	problem
as	local	measurement:	it	relies	on	interrogation	of	the	endpoint.	It’s	the
difference	between	asking	someone	if	they	robbed	a	bank,	and	watching	them
rob	a	bank.	Sure,	sometimes	you	can	get	the	robber	to	admit	that	they	did	it,	but
a	professional	would	never	fall	for	that.	Catching	them	in	the	act	is	much	more
effective.	See	“Network	Communication	Patterns”	for	more	about	how	to	solve
this	dilemma.

Software	Configuration	Management
Configuration	management	is	the	process	of	tightly	controlling	and	documenting
all	software	changes.	The	desired	configurations	are	typically	defined	as	code	or
data,	and	checked	into	a	revision	control	system,	allowing	changes	to	be	audited,
rolled	back,	and	so	on.	There	are	many	commercial	and	open	source	options
available,	the	most	popular	of	which	being	Chef,	Puppet,	Ansible,	and
CFEngine.

Configuration	management	software	is	useful	in	both	datacenter	and	client
deployments,	and	simply	becomes	required	beyond	a	certain	scale.	Leveraging
such	software	comes	with	many	security	wins,	such	as	the	ability	to	quickly
upgrade	packages	after	vulnerability	announcements	or	to	similarly	assert	that
there	are	no	vulnerable	packages	in	the	wild.

Beyond	auditing	and	strict	change	control,	configuration	management	can	also
be	used	as	an	agent	for	dynamic	policy	configuration.	If	a	node	can	get	a	reliable
and	trusted	view	of	the	world	(or	part	of	it,	at	least),	it	can	use	it	to	calculate
policy	and	install	it	locally.	This	functionality	is	practically	limited	to	the
datacenter	though,	since	while	dynamic,	datacenter-hosted	systems	are	decidedly
more	static	and	predictable	than	client	systems.	We’ll	talk	more	about	this	mode
of	zero	trust	operation	later	on.

CM-Based	Inventory



We	have	mentioned	several	times	the	idea	of	using	a	configuration	management
database	for	inventory	management	purposes.	This	is	a	great	first	step	toward	a
mature	inventory	management	system	and	can	provide	a	rich	source	of
information	about	the	various	hosts	and	software	running	in	your	infrastructure.

We	like	to	think	that	CM-based	inventory	management	is	a	“freebie”	in	that
configuration	management	is	typically	leveraged	for	the	bevy	of	other	benefits	it
brings.	Using	it	as	an	inventory	database	most	often	comes	about	out	of
convenience.

Maintaining	this	view	is	important:	configuration	management	systems	aren’t
designed	to	act	as	inventory	management	systems...they’re	designed	to	act	as
configuration	management	systems!	Using	it	as	such	will	surely	bring	a	few
rough	edges,	and	you	will	eventually	outgrow	it.	This	is	not	to	say	don’t	do	it.	It
is	better	to	actually	realize	a	zero	trust	network	by	leveraging	as	much	existing
technology	as	possible	than	it	is	to	never	get	there	due	to	high	barrier	to	entry.

Once	we	accept	this	fact,	we	can	begin	to	leverage	the	wealth	of	data	provided	to
us	by	the	CM	agents.	Using	Chef,	for	instance,	we	can	calculate	trust	score	and
write	policy	against	more	than	1,500	host	attributes.	Here	are	some	small
snippets	illustrating	the	kind	of	information	the	Chef	agent	collects	and	stores:

languages:
  c:
    gcc:
      description: gcc version 4.8.4 (Ubuntu 4.8.4-2ubuntu1~14.04)
      version:     4.8.4
  java:
    hotspot:
      build: 24.71-b01, mixed mode
      name:  Java HotSpot(TM) 64-Bit Server VM
    runtime:
      build: 1.7.0_71-b14
      name:  Java(TM) SE Runtime Environment
    version: 1.7.0_71
  perl:
... <SNIP> ...
dmi:
  bios:
    address:       0xE8000
    all_records:
      Address:                0xE8000
      BIOS Revision:          4.2



      ROM Size:               64 kB
      Release Date:           12/03/2014
      Runtime Size:           96 kB
      Vendor:                 Xen
      Version:                4.2.amazon
      application_identifier: BIOS Information
  chassis:
    all_records:
      Asset Tag:              Not Specified
      Boot-up State:          Safe
... <SNIP> ...
fqdn:              foo.bar
hostname:          foo
idletime:          2 days 09 hours 48 minutes 37 seconds
idletime_seconds:  208117
init_package:      init
ipaddress:         192.168.1.1
kernel:
  machine: x86_64
  modules:
    ablk_helper:
      refcount: 6
      size:     13597
... <SNIP> ...
network:
  default_gateway:   192.168.1.254
  default_interface: eth0
  interfaces:
    eth0:
      addresses:
        192.168.1.1:
          broadcast: 192.168.1.255
          family:    inet
          netmask:   255.255.255.0
          prefixlen: 24
          scope:     Global
        22:00:0A:1E:55:AD:
          family: lladdr
      arp:
        192.168.1.2: fe:ff:ff:ff:ff:ff
        192.168.1.3: fe:ff:ff:ff:ff:ff
        192.168.1.254: fe:ff:ff:ff:ff:ff
      encapsulation: Ethernet

Searchable	inventory

Some	CM	systems	centrally	store	the	data	generated	by	their	agents.	Typically,
this	data	store	is	searchable,	which	opens	lots	of	possibilities	for	young	zero	trust



networks.	For	instance,	the	agent	can	perform	a	search	to	retrieve	the	IP	address
of	all	web	servers	in	datacenter	A	and	use	the	results	to	configure	a	host-based
firewall.

Audits	and	report	generation	are	greatly	enhanced	through	searchable	inventory
as	well.	This	applies	not	only	to	datacenter	hosts,	but	also	to	clients.	By	storing
the	agent	data	and	making	it	searchable,	you	can	ensure	that	you	changed	the
CM	code	to	upgrade	that	vulnerable	package,	and	that	the	package	did	indeed
update	where	it	said	it	did.

Secure	Source	of	Truth
One	important	thing	to	remember	when	using	CM	systems	in	the	zero	trust
control	plane	is	that	the	vast	majority	of	the	data	available	to	CM	systems	is	self-
reported.	This	is	critical	to	understand,	since	a	compromised	machine	could
potentially	misrepresent	itself.	This	can	lead	to	complete	compromise	of	the	zero
trust	network	if	these	facts	are	not	considered	during	its	design.

Thinking	back	to	trust	management,	the	trusted	system	in	this	case	is	the
provisioner.	Whether	it	be	a	human	or	some	automated	system,	it	is	in	the	best
position	to	assert	the	critical	aspects	of	a	device,	which	include	the	following:

Device	type

Role

IP	address	(in	datacenter	systems)

Public	key

These	attributes	are	considered	critical	because	they	are	often	used	in	making
authorization	or	authentication	decisions.	If	an	attacker	can	update	the	device
role,	for	instance,	perhaps	they	can	coerce	the	network	to	expose	protected
services.

For	this	reason,	restricting	write	access	to	these	attributes	is	important.	Of
course,	you	can	still	use	self-reported	attributes	for	making	decisions,	but	they
should	not	be	considered	fact	under	any	circumstance.	It’s	useful	to	think	of	self-
reported	attributes	as	hints	rather	than	truth.



Using	Device	Data	for	User	Authorization
The	zero	trust	model	mandates	authentication	and	authorization	of	both	the
device	and	the	user	or	application.	Since	device	authentication	typically	comes
before	user	authentication,	it	must	be	done	without	information	gained	through
user	authentication.	This	is	not	the	case	for	user	authentication.

When	user	authentication	occurs,	device	authentication	has	already	succeeded,
and	the	network	has	knowledge	of	the	device	identity.	This	position	can	be
leveraged	for	all	kinds	of	useful	contextual	knowledge,	enabling	us	to	do	much
stronger	user	authentication	than	was	previously	attainable.

One	of	the	more	common	lookups	one	might	make	is	to	check	whether	we
would	expect	this	user,	given	the	type	of	device	or	place	of	issue.	For	instance,
you	are	unlikely	to	see	an	engineer’s	credentials	being	used	from	a	mobile
device	that	was	issued	to	HR.	So	while	the	HR	employee	can	freely	access	a
particular	resource	using	their	own	credentials,	user	authentication	attempts
using	other	credentials	might	be	blocked.

Another	good	signal	is	user	authentication	frequency.	If	you	have	not	seen	a	user
log	in	from	one	of	their	devices	in	over	a	year,	and	all	of	a	sudden	there	is	a
request	from	that	device	furnishing	the	user’s	credentials—well,	I	think	it’s	fair
to	be	a	bit	skeptical.	Could	it	have	been	stolen?

Of	course,	there	is	also	a	good	chance	that	the	request	is	legitimate.	In	a	case	like
this,	we	lower	the	trust	score	to	indicate	that	things	are	a	little	fishy.	The	lower
score	can	then	manifest	itself	in	many	ways,	like	still	being	trusted	enough	to
read	parts	of	the	internal	wiki,	but	not	enough	to	log	into	financial	systems.

Being	able	to	make	decisions	like	this	is	a	big	part	of	the	zero	trust	architecture
and	underscores	the	importance	of	a	robust	inventory	management	database.
While	inventory	management	is	strictly	required	for	device	authentication
reasons,	the	contextual	advantage	given	to	user	authentication	is	invaluable.

Trust	Signals
This	section	serves	as	a	reference	for	various	trust	signals	that	are	useful	in
calculating	device	trust	score	and	writing	policy.



Time	Since	Image
Over	time,	the	likelihood	that	a	device	has	been	compromised	increases
dramatically.	Endpoint	security	practices	aim	to	decrease	the	risk	associated	with
long-lived	or	long-running	devices.	Still,	these	practices	are	far	from	perfect.

Imaging	a	device	ensures	that	the	contents	of	the	hard	drive	match	a	known
good.	While	not	effective	against	some	lower-level	attacks,	it	provides	a
reasonably	strong	assurance	of	trust.	In	the	moments	immediately	following	the
image	restore,	a	tremendous	amount	of	trust	exists	in	the	device,	as	only	the
hardware	or	the	restore	system	itself	would	be	able	to	taint	the	process.	Over
time	though,	that	trust	wears	off	as	the	system	goes	through	prolonged	exposure.

Historical	Access
Device	authentication	patterns,	similar	to	user	authentication	patterns,	are
important	in	understanding	risk	and	act	as	a	nice	proxy	for	behavioral	filtering.
Devices	which	have	not	been	seen	in	a	while	are	more	suspicious	than	ones	that
come	and	go	frequently.	Maybe	suspicious	is	the	wrong	word,	but	it’s	certainly
unusual.

The	request	in	question	can	also	be	tied	to	a	resource,	and	it	is	wise	to	consider
the	device	and	the	resource	together	in	this	context.	For	instance,	a	months-old
device	requesting	access	to	a	new	resource	is	more	suspicious	than	a	request	to	a
resource	it	has	been	accessing	weekly	for	some	time.	This	stands	to	say	that	the
“first	few”	access	attempts	to	a	particular	resource	will	be	viewed	with	more
skepticism	than	subsequent	attempts.

Similarly,	frequency	can	be	analyzed	to	understand	if	a	resource	is	being
suspiciously	over-utilized.	A	request	from	a	device	that	has	made	100	requests	in
the	last	day,	but	only	104	over	the	last	month,	is	certainly	more	suspicious	than
one	with	0	in	the	last	day	and	4	in	the	last	month.

Location
While	network	location	is	typically	something	we	aim	to	not	make	strong
decisions	on	with	regard	to	the	zero	trust	model,	it	still	provides	reliable	trust
signaling	in	many	cases.

One	such	case	might	be	a	sudden	location	change.	Since	we	are	talking	about



One	such	case	might	be	a	sudden	location	change.	Since	we	are	talking	about
device	authentication,	we	can	set	some	reasonable	expectations	about	the	way
that	device	moves	around.	For	instance,	a	device	authentication	attempt	from
Europe	might	be	pretty	suspicious	if	we	have	authorized	that	same	device	in	the
US	office	just	a	couple	hours	prior.

It	should	be	noted	that	this	is	a	bit	of	a	slippery	slope	when	it	comes	to	the	zero
trust	model.	Zero	trust	aims	to	eliminate	positions	of	advantage	within	the
network,	so	using	network	location	to	determine	access	right	can	be	considered	a
little	contradictory.

The	authors	recognize	this	and	acknowledge	that	location-related	data	can	be
valuable	while	making	authorization	decisions.	That	said,	it	is	important	that	this
consideration	not	be	binary.	One	should	look	for	patterns	in	locations,	and	never
make	an	absolute	decision	based	solely	on	location.	For	instance,	a	policy	which
dictates	that	an	application	can	only	be	accessed	from	the	office	is	a	direct
violation	of	the	zero	trust	model.

Network	Communication	Patterns
For	devices	that	are	connected	to	networks	owned	by	the	operator,	there	is	an
opportunity	to	measure	communication	patterns	to	develop	a	norm.	Sudden
changes	from	this	norm	are	suspicious	and	can	affect	how	much	the	system
trusts	such	a	device.

Network	instrumentation	and	flow	collection	can	quickly	detect	intrusions	by
observing	them	on	the	network.	Making	authorization	decisions	informed	by	this
detection	is	very	powerful.	One	example	might	be	shutting	down	database	access
to	a	particular	web	server	because	that	web	server	began	making	DNS	queries
for	hosting	providers	on	another	continent.

The	same	applies	to	client	devices.	Consider	a	desktop	that	has	never	before
initiated	an	SSH	connection	but	is	now	frequently	SSHing	to	internet	hosts.	It	is
fair	to	say	that	this	change	in	behavior	is	suspicious	and	should	result	in	the
device	being	less	trusted	than	it	was		previously.

Summary
This	chapter	focused	on	how	a	system	can	trust	a	device.	This	is	a	surprisingly



hard	problem,	so	a	lot	of	different	technologies	and	practices	need	to	be	applied
to	ensure	that	trust	in	a	device	is	warranted.

We	started	with	looking	at	how	trust	is	injected	into	a	device	from	the	human
operators.	For	relatively	static	systems,	we	can	have	a	person	involved	in
providing	the	critical	credentials;	but	for	dynamic	infrastructure,	that	process
needs	to	be	delegated.	Those	credentials	are	incredibly	valuable,	and	so	we
discussed	how	to	safely	manage	them.

Devices		eventually	need	to	participate	in	the	network,	and	so	understanding
how	they	authenticate	themselves	is	important.	We	covered	several	technologies,
such	as	X.509	and	TPMs,	which	can	be	used	to	authenticate	a	device	on	the
network.	Using	these	technologies	along	with	databases	of	expected	inventory
can	go	a	long	way	toward	providing	the	checks	and	balances	that	give	devices
trust.

Trust	is	fleeting	and	degrades	over	time,	so	we	talked	about	the	mechanisms	for
renewing	trust.	Additionally,	we	discussed	the	many	signals	that	can	be
continually	used	to	gauge	the	trustworthiness	of	a	device	over	time.	Perhaps	the
most	important	lesson	is	that	a	device	starts	out	in	a	trusted	state	and	only	gets
worse	from	there.	The	rate	at	which	its	trust	declines	is	what	we’d	like	to	keep	a
handle	on.

The	next	chapter	looks	at	how	we	can	establish	trust	in	the	users	of	the	system.



Chapter	6.	Trusting	Users

It’s	tempting	to	conflate	user	trust	with	device	trust.	Security-conscious
organizations	might	deploy	X.509	certificates	to	users’	devices	to	gain	stronger
credentials	than	passwords	provide.	One	could	say	that	the	device	certificate
strongly	identifies	the	user,	but	does	it?	How	do	we	know	that	the	intended	user
is	actually	at	the	keyboard?	Perhaps	they	left	their	device	unlocked	and
unattended?

Conflating	user	identity	with	device	identity	also	runs	into	problems	when	users
have	multiple	devices,	which	is	increasingly	becoming	the	norm.	Credentials
need	to	be	copied	between	several	devices,	putting	them	at	increased	risk	of
exposure.	Devices	might	need	different	credentials	based	on	their	capabilities.	In
networks	that	have	kiosks,	this	problem	becomes	even	more	difficult.

Zero	trust	networks	identify	and	trust	users	separately	from	devices.	Sometimes
identifying	a	user	will	use	the	same	technology	that	is	used	to	identify	devices,
but	we	must	be	clear	that	these	are	two	separate	credentials.

This	chapter	will	explore	what	it	means	to	identify	a	user	and	store	their	identity.
We	will	discuss	when	and	how	to	authenticate	users.	User	trust	is	often	stronger
when	multiple	people	are	involved,	so	we	will	discuss	how	to	create	group	trust
and	how	to	build	a	culture	of	security.

Identity	Authority
Every	user	has	an	identity,	which	represents	how	they	are	known	in	a	larger
community.	In	the	case	of	a	networked	system,	the	identity	of	a	user	is	how	they
are	recognized	in	that	system.

Given	the	large	number	of	individuals	in	the	world,	identifying	a	user	can	be	a
surprisingly	hard	problem.	Let’s	explore	two	types	of	identity:

Informal	identity

Authoritative	identity



Informal	identity	is	how	groups	self-assemble	identity.	Consider	a	real-world
situation	where	you	meet	someone.	Based	on	how	they	look	and	act,	you	can
build	up	an	identity	for	that	person.	When	you	meet	them	later,	you	can
reasonably	assume	that	they	are	the	same	person	based	on	these	physical
characteristics.	You	might	even	be	able	to	identify	them	remotely—for	example,
by	hearing	their	voice.

Informal	identity	is	used	in	computer	systems.	Pseudonymous	accounts—
accounts	that	are	not	associated	with	one’s	real-world	name—are	common	in
online	communities.	While	the	actual	identity	of	an	individual	is	not	necessarily
known	in	these	communities,	through	repeated	interactions	an	informal	identity
is	created.

Informal	identity	works	in	small	groups,	where	trust	between	individuals	is	high
and	the	risks	are	relatively	low.	This	type	of	identity	has	clear	weaknesses	when
the	stakes	are	higher:

One	can	manufacture	a	fictitious	identity.

One	can	claim	the	identity	of	another	person.

One	can	create	several	identities.

Multiple	individuals	can	share	a	single	identity.

When	a	stronger	form	of	identity	is	required,	an	authority	needs	to	create
authoritative	identity	credentials	for	individuals.	In	the	real	world,	this	authority
often	falls	to	governments.	Government-issued	IDs	(e.g.,	a	driver’s	license	or
passport)	are	distributed	to	individuals	to	represent	their	identity	to	others.	For
low-risk	situations,	these	IDs	alone	are	sufficient	proof	of	one’s	identity.
However,	for	higher	risk	situations,	cross-checking	the	credentials	against	the
government	database	provides	a	better	guarantee.

Computer	systems	often	need	centralized	authority	for	user	identity	as	well.	Like
in	the	real	world,	users	are	granted	credentials	(of	varying	strength)	which
identify	them	in	the	system.	Based	on	the	degree	of	risk,	cross-checking	the
credentials	against	a	centralized	database	may	be	desired.	We	will	discuss	how
these	systems	should	function	later.

Credentials	can	be	lost	or	stolen,	so	it	is	important	that	an	identity	authority	have



mechanisms	for	individuals	to	regain	control	of	their	identity.	In	the	case	of
government-issued	identification,	a	person	often	needs	to	present	other
identifying	information	(e.g.,	a	birth	certificate	or	fingerprint)	to	a	government
authority	to	have	their	ID	reissued.	Computer	systems	similarly	need
mechanisms	for	a	user	to	regain	control	of	their	identity	in	the	case	of	lost	or
stolen	credentials.	These	systems	often	require	presenting	another	form	of
verification,	say	a	recovery	code	or	alternative	authentication	credential.	The
choice	of	required	material	to	reassert	one’s	identity	can	have	security
implications	which	we	will	discuss	later.

Bootstrapping	Identity	in	a	Private	System
Storing	and	authenticating	user	identity	is	one	thing,	but	how	do	you	generate
the	identity	to	begin	with?	Humans	interacting	with	computer	systems	need	a
way	to	digitally	represent	their	identity,	and	we	seek	to	bind	that	digital
representation	as	tightly	to	the	real-world	human	as	possible.

The	genesis	of	a	digital	identity,	and	its	initial	pairing	to	a	human,	is	a	very
sensitive	operation.	Controls	to	authenticate	the	human	outside	of	your	digital
system	must	be	strong	in	order	to	prevent	an	attacker	from	masquerading	as	a
new	employee,	for	instance.	Similar	controls	might	also	be	exercised	for	account
recovery	procedures	where	the	user	is	unable	to	provide	their	current	credentials.

ATTACKING	IDENTITY	RECOVERY	SYSTEMS
Users	occasionally	misplace	or	forget	authentication	material	such	as	passwords	or	smart
cards.	To	recover	the	factor	(i.e.,	reset	the	password),	the	user	must	be	authenticated	by
alternative	and	sometimes	untraditional	means.	Attacks	on	such	systems	are	frequent	and
successful.	For	example,	in	2012,	a	popular	journalist’s	Amazon	account	was	broken	into,	and
the	attacker	was	able	to	recover	the	last	four	digits	of	the	most	recent	credit	card	used.	With
this	information,	the	attacker	called	Apple	support	and	“proved”	his/her	identity	using	the
recovered	number.	Be	sure	to	carefully	evaluate	such	reset	processes—“secret”	information	is
often	less	secret	than	it	appears.

Given	the	sensitivity	of	this	operation,	it	is	important	to	put	good	thought	and
strong	policy	around	how	it	is	managed.	It	is	essentially	secure	introduction	for
humans,	and	the	good	news	is,	we	know	how	to	do	that	pretty	well!



Government-Issued	Identification
It	probably	comes	as	no	surprise	that	one	of	the	primary	recommendations	for
accomplishing	human	authentication	is	through	the	use	of	government-issued
identification.	After	all,	human	authentication	is	precisely	what	they	were
designed	for	in	the	first	place!

In	some	implementations,	it	may	even	be	desirable	to	request	multiple	forms	of
ID,	raising	the	bar	for	potential	forgers/imposters.	It	goes	without	saying	that
staff	must	be	properly	trained	in	validating	these	IDs,	lest	the	controls	be	easily
circumvented.

Nothing	Beats	Meatspace
Despite	our	best	efforts,	human-based	authentication	schemes	remain	stronger
than	their	digital	counterparts.	It’s	always	a	good	idea	to	bootstrap	a	human’s
new	digital	identity	in	person.	Email	or	other	“blind”	introductions	are	heavily
discouraged.	For	instance,	shipping	a	device	configured	to	trust	the	user	on	first
use	(sometimes	referred	to	as	TOFU)	is	not	uncommon.	However,	this	method
suffers	from	physical	weakness	since	the	package	is	vulnerable	to	interception	or
redirection.

Oftentimes,	the	creation	of	the	digital	identity	is	preceded	by	a	lengthy	human
process,	such	as	a	series	of	interviews	or	the	completion	of	a	business	contract.
The	result	is	that	the	individual	has	been	previously	exposed	to	already-trusted
individuals	who	have	learned	some	of	his/her	qualities	along	the	way.	This
knowledge	can	be	leveraged	for	further	human-based	authentication,	as	shown	in
Figure	6-1.



Figure	6-1.	A	trusted	administrator	relies	on	a	trusted	employee	and	a	valid	ID	to	add	a	new	user	to	an
inventory	system

For	instance,	a	hiring	manager	is	in	a	good	position	to	escort	a	new	hire	to
helpdesk	for	human	authentication,	since	the	hiring	manager	is	presumably
already	familiar	with	the	individual	and	can	attest	to	their	identity.	While	this
would	be	a	strong	signal	of	trust,	just	like	anything	else	in	a	zero	trust	network,	it
should	not	be	the	only	method	of	authentication.

Expectations	and	Stars



There	are	usually	many	pieces	of	information	available	prior	to	bootstrapping	a
digital	identity.	It	is	desirable	to	use	as	many	pieces	of	information	as	is
reasonable	to	assert	that	all	of	the	stars	line	up	as	expected.	These	expectations
are	similar	to	ones	set	in	a	typical	zero	trust	network;	they	are	simply	accrued
and	enforced	by	humans.

These	expectations	can	range	from	the	language(s)	they	speak	to	the	home
address	printed	on	their	ID,	with	many	other	creative	examples	in	between.	A
thorough	company	may	choose	to	even	use	information	learned	through	a
background	check	to	set	real-world	expectations.	Humans	use	methods	like	this
every	day	to	authenticate	each	other	(both	casually	and	officially),	and	as	a
result,	these	methods	are	mature	and	reliable.

Storing	Identity
Since	we	need	to	bridge	identity	from	the	physical	world	to	the	virtual	world,
identity	must	be	transformed	into	bits.	These	bits	are	highly	sensitive	and
oftentimes	need	to	be	stored	permanently.	Therefore,	we	will	discuss	how	to
store	this	data	to	ensure	its	safety.

User	Directories
To		trust	users,	systems	typically	need	centralized	records	of	those	users.	One’s
presence	in	such	a	directory	is	the	basis	by	which	all	future	authentication	will
occur.	Having	all	this	highly	sensitive	data	stored	centrally	is	a	challenge	which
unfortunately	cannot	be	avoided.

A	zero	trust	network	makes	use	of	rich	user	data	to	make	better	authentication
decisions.	Directories	will	store	traditional	information	like	usernames,	phone
numbers	and	organization	role,	and	also	extended	information	like	expected	user
location	or	the	public	key	of	an	X.509	certificate	they	have	been	issued.

Given	the	sensitive	nature	of	the	data	being	stored	on	users,	it’s	best	to	not	store
all	information	together	in	a	single	database.	Information	about	users	isn’t
typically	considered	secret,	but	becomes	sensitive	when	using	such	data	to	make
authorization	decisions.	Additionally,	having	broad	knowledge	of	all	users	in	a
system	can	be	a	privacy	risk.	For	example,	a	system	that	stores	the	last	known
location	of	all	users	could	be	used	to	spy	on	users.	Stored	user	data	can	also	be	a



location	of	all	users	could	be	used	to	spy	on	users.	Stored	user	data	can	also	be	a
security	risk,	if	that	data	can	be	leveraged	to	attack	another	system.	Consider
systems	that	ask	users	fact-based	information	as	a	means	to	further	validate	their
identity.

Instead	of	storing	all	user	information	in	a	single	database,	consider	splitting	the
data	into	several	isolated	databases.	These	databases	should	ideally	only	be
exposed	via	a	constrained	API,	which	limits	the	information	divulged.	In	the	best
case,	raw	data	is	never	divulged,	but	rather	assertions	can	be	made	about	a	user
by	the	application	that	has	access	to	the	data.	For	example,	a	system	that	stores	a
user’s	previous	known	location	could	expose	the	following	APIs:

Is	the	user	currently	or	likely	to	be	near	these	coordinates?

How	frequently	does	the	user	change	locations?

Directory	Maintenance
Keeping	user	directories	accurate	is	critical	for	the	safety	of	a	zero	trust	network.
Users	are	expected	to	come	and	go	over	the	lifetime	of	a	network	system,	so
good	onboarding	and	offboarding	procedures	should	be	created	to	keep	the
system	accurate.

As	much	as	possible,	it’s	best	to	integrate	technical	identity	systems	(LDAP	or
local	user	accounts)	into	organizational	systems.	For	example,	a	company	might
have	human	resource	systems	to	track	employees	that	are	joining	or	leaving	the
company.	It	is	expected	that	these	two	sources	of	data	are	consistent	with	each
other,	but	unless	there	is	a	system	that	has	integrated	the	two	or	is	checking	their
contents,	the	sets	of	data	will	quickly	diverge.	Creating	automated	processes	for
connecting	these	systems	is	an	effort	that	will	quickly	pay	dividends.

The	case	of	two	divergent	identity	systems	raises	an	important	point—which
system	is	authoritative?	Clearly	one	system	must	be	the	system	of	record	for
identity,	but	that	choice	should	be	made	based	on	the	needs	of	the	organization.
It	doesn’t	much	matter	which	system	is	chosen,	only	that	one	is	authoritative	and
all	other	identity	systems	derive	their	data	from	the	system	of	record.

MINIMIZING	DATA	STORED	CAN	BE	HELPFUL



A	system	of	record	for	identity	does	not	need	to	contain	all	identity	information.	Based	on	our
earlier	discussion,	it	can	be	better	to	purposefully	segment	user	data.	The	system	of	record
needs	to	only	store	the	information	that	is	critical	for	identifying	an	individual.	This	could	be
as	simple	as	storing	a	username	and	some	personal	information	for	the	user	to	recover	their
identity	should	they	forget	it.	Derivative	systems	can	use	this	authoritative	ID	to	store
additional	user	information.

When	to	Authenticate	Identity
Even	though	authentication	is	mandatory	in	a	zero	trust	network,	it	can	be
applied	in	clever	ways	to	significantly	bolster	security	while	at	the	same	time
working	to	minimize	user	inconvenience.

While	it	might	be	tempting	(and	even	logical)	to	adopt	a	position	of	“It’s	not
supposed	to	be	easy;	it’s	supposed	to	be	secure,”	user	convenience	is	among	one
of	the	most	important	factors	in	designing	a	zero	trust	network.	Security
technologies	that	present	a	poor	user	experience	are	often	systematically
weakened	and	undermined	by	their	own	users.	A	poor	experience	will
disincentivize	the	user	from	engaging	with	the	technology,	and	shortcuts	to
sidestep	enforcement	will	be	taken	more	often.

Authenticating	for	Trust
The	act	of	authenticating	a	user	is,	essentially,	the	system	seeking	to	validate	that
the	user	is	indeed	who	they	say	they	are.	As	you’ll	learn	in	the	next	section,
different	authentication	methods	have	different	levels	of	strength,	and	some	are
strongest	when	combined	with	others.	Due	to	the	fact	that	these	authentication
mechanisms	are	never	absolute,	we	can	assign	some	level	of	trust	to	the	outcome
of	the	operation.

For	instance,	you	may	need	only	a	password	to	log	into	a	subscription	music
service,	but	your	investment	account	probably	requires	a	password	and	an
additional	code.	This	is	because	investing	is	a	sensitive	operation:	the	system
must	trust	that	the	user	is	authentic.	The	music	service,	on	the	other	hand,	is	not
as	sensitive	and	chooses	to	not	require	an	additional	code,	because	doing	so
would	be	a	nuisance.

By	extension,	a	user	may	pass	additional	forms	of	authentication	in	order	to	raise
their	level	of	trust.	This	can	be	done	specifically	in	a	time	of	need.	A	user	whose



their	level	of	trust.	This	can	be	done	specifically	in	a	time	of	need.	A	user	whose
trust	score	has	eroded	below	the	requirements	for	a	particular	request	can	be
asked	for	additional	proof,	which	if	passed	will	raise	the	trust	to	acceptable
levels.

This	is	far	from	a	foreign	concept;	it	can	be	seen	in	common	use	today.
Requiring	users	to	enter	their	password	again	before	performing	a	sensitive
operation	is	a	prime	example	of	this	concept	in	action.	It	should	be	noted,
however,	that	the	amount	of	trust	one	can	gain	through	authentication
mechanisms	alone	should	not	be	unbound.	Without	it,	consequences	of	poor
device	security	and	other	undesirable	signals	can	be	washed	out.

Trust	as	the	Authentication	Driver
Since	authentication	derives	trust,	and	it	is	our	primary	goal	to	not	frivolously
drag	users	through	challenges,	it	makes	sense	to	use	trust	score	as	the
mechanism	that	mandates	authentication	requirements.	This	means	that	a	user
should	not	be	asked	to	further	authenticate	if	their	trust	score	is	sufficiently	high
and,	conversely,	that	a	user	should	be	asked	to	authenticate	when	their	score	is
too	low.	This	is	to	say	that,	rather	than	selecting	particular	actions	which	require
additional	authentication,	one	should	assign	a	required	score	and	allow	the	trust
score	itself	to	drive	the	authentication	flow	and	requirements.	This	gives	the
system	the	opportunity	to	choose	a	combination	of	methods	in	order	to	meet	the
goal,	possibly	reducing	the	invasiveness	by	having	context	about	the	level	of
sensitivity	and	knowledge	of	how	much	each	method	is	trusted.

This	approach	is	fundamentally	different	from	traditional	authentication	design
approaches,	which	seek	to	designate	the	most	sensitive	areas	and	actions	and
authenticate	them	the	heaviest,	perhaps	despite	previous	authentication	and	trust
accumulation.	In	some	ways,	the	traditional	approach	can	be	likened	to
perimeter	security,	in	which	sensitive	actions	must	pass	a	particular	test,	after
which	no	further	protections	are	present.	Instead,	leveraging	the	trust	score	to
drive	these	decisions	removes	arbitrary	authentication	requirements	and	installs
adaptive	authentication	and	authorization	that	is	only	encountered	when
necessary.

The	Use	of	Multiple	Channels



When	authenticating	and	authorizing	a	request,	using	multiple	channels	to	reach
the	requestor	can	be	very	effective.	One-time	codes	provide	an	additional	factor,
especially	when	the	code-generating	system	is	on	a	separate	device.	Push
notifications	provide	a	similar	capability	by	using	an	active	connection	to	a
mobile	device.	There	are	many	applications	of	this	idea,	and	they	can	take
different	forms.

Depending	on	the	use	case,	one	might	choose	to	leverage	multiple	channels	as	an
integral	part	of	a	digital	authentication	scheme.	Alternatively,	those	channels
might	be	used	purely	as	an	authorization	component,	where	a	requestor	might	be
prompted	to	approve	a	risky	operation.	Both	uses	are	effective	in	their	own	right,
though	user	experience	should	(as	always)	be	kept	in	mind	when	deciding	when
and	where	to	apply	them.

CHANNEL	SECURITY
Communication	channels	are	constructed	with	varying	degrees	of	authentication	and	trust.
When	leveraging	multiple	channels,	it	is	important	to	understand	how	much	trust	should	be
placed	on	the	channel	itself.	This	will	dictate	which	channels	are	selected	for	use	and	when.
For	instance,	physical	rotating	code	devices	are	only	as	secure	as	the	system	used	to	distribute
them	or	the	identification	check	required	to	physically	obtain	one	from	your	administrator.
Similarly,	a	prompt	via	a	corporate	chat	system	is	only	as	strong	as	the	credentials	required	to
sign	in	to	it.	Be	sure	to	use	a	different	channel	than	the	one	you	are	trying	to
authenticate/authorize	in	the	first	place.

Leveraging	multiple	channels	is	effective	not	because	compromising	a	channel	is
hard,	but	because	compromising	many	is	hard.	We	will	talk	more	about	these
points	in	the	next	section.

Caching	Identity	and	Trust
Session	caching	is	a	relatively	mature	technology	which	is	well	documented,	so
we	won’t	spend	too	much	time	talking	about	it,	but	it	is	important	to	highlight
some	design	choices	that	are	important	for	secure	operation	in	a	zero	trust
network.

Frequent	validation	of	the	client’s	authorization	is	critical.	This	is	one	of	the	only
mechanisms	allowing	the	control	plane	to	effect	changes	in	data	plane
applications	as	a	result	of	changes	in	trust.	The	more	frequently	this	can	be	done,



applications	as	a	result	of	changes	in	trust.	The	more	frequently	this	can	be	done,
the	better.	Some	implementations	authorize	every	request	with	the	control	plane.
While	this	is	ideal,	it	may	not	be	a	realistic	prospect,	depending	on	your
situation.

Many	applications	validate	SSO	tokens	only	at	the	beginning	of	a	session	and	set
their	own	tokens	after	that.	This	mode	of	operation	removes	session	control	from
the	control	plane	and	is	generally	undesirable.	Authorizing	requests	with	control
plane	tokens	rather	than	application	tokens	allows	us	to	easily	revoke	when	trust
levels	fluctuate	or	erode.

How	to	Authenticate	Identity
Now	that	we	know	when	to	authenticate,	let’s	dig	into	how	to	authenticate	a
user.	The	common	wisdom,	which	is	also	applicable	in	zero	trust	networks,	is
that	there	are	three	ways	to	identify	a	user:

Something	they	know

Knowledge	the	user	alone	has	(e.g.,	a	password).

Something	they	have

A	physical	credential	that	they	user	can	provide	(e.g.,	a	token	with	a	time-
sensitive	token).

Something	they	are

An	inherent	trait	of	the	user	(e.g.,	a	fingerprint	or	retina).

We	can	authenticate	a	user	using	one	or	more	of	these	methods.	Which	method
or	methods	chosen	will	depend	on	the	level	of	trust	required.	For	high-risk
operations,	which	request	multiple	authentication	factors,	it’s	best	to	choose
methods	that	are	not	in	the	same	grouping	of	something	you	know,	something
you	have,	or	something	you	are.	This	is	because	the	attack	vectors	are	generally
similar	within	a	particular	grouping.	For	example,	a	hardware	token	(something
you	have)	can	be	stolen	and	subsequently	used	by	anyone.	If	we	pair	that	token
with	a	second	token,	it’s	highly	likely	that	both	devices	will	be	near	each	other
and	stolen	together.

Which	factors	to	use	together	will	vary	based	on	the	device	that	the	user	is	using.
For	example,	on	a	desktop	computer,	a	password	(something	you	know)	and	a



For	example,	on	a	desktop	computer,	a	password	(something	you	know)	and	a
hardware	token	(something	you	have)	is	a	strong	combination	that	should
generally	be	preferred.	For	a	mobile	device,	however,	a	fingerprint	(something
you	are)	and	passphrase	(something	you	know)	might	be	preferred.

PHYSICAL	SAFETY	IS	A	REQUIREMENT	FOR
TRUSTING	USERS

This	section	focuses	on	technological	means	to	authenticate	the	identity	of	a	user,	but	it’s
important	to	recognize	that	users	can	be	coerced	to	thwart	those	mechanisms.	A	user	can	be
threatened	with	physical	harm	to	force	them	to	divulge	their	credentials	or	to	grant	someone
access	under	a	trusted	account.	Behavioral	analysis	and	historical	trending	can	help	to	mitigate
such	attempts,	though	they	remain	an	effective	attack	vector.

Something	You	Know:	Passwords
Passwords		are	the	most	common	form	of	authentication	used	in	computer
systems	today.	While	often	maligned	due	to	users’	tendency	to	choose	poor
passwords,	this	authentication	mechanism	provides	one	very	valuable	benefit:
when	done	well,	it	is	an	effective	method	for	asserting	that	a	user’s	mind	is
present.

A	good	password	has	the	following	characteristics:

It’s	long

A	recent	NIST	password	standard	states	a	minimum	of	8	characters,	but	20+
character	passwords	are	common	among	security-conscious	individuals.
Passphrases	are	often	encouraged	to	help	users	remember	a	longer	password.

It	is	difficult	to	guess

Users	tend	to	overestimate	their	ability	to	pick	truly	random	passwords,	so
generating	passwords	from	random	number	generators	can	be	a	good
mechanism	for	choosing	a	strong	password,	though	convenience	is	affected
if	it	cannot	be	easily	committed	to	memory

It	is	not	reused

Passwords	need	to	be	validated	against	some	stored	data	in	a	service.	When
passwords	are	reused,	the	confidentiality	of	that	password	is	only	as	strong
as	the	weakest	storage	in	use.



as	the	weakest	storage	in	use.

Choosing	long,	difficult-to-guess	passwords	for	every	service	or	application	a
user	interacts	with	is	a	high	bar	for	users	to	meet.	As	a	result,	users	are	well
served	to	make	use	of	a	password	manager	to	store	their	passwords.	Using	this
tool	will	allow	users	to	pick	much	harder-to-guess	passwords	and	thereby	limit
the	damage	of	a	data	breach.

When	building	a	service	that	authenticates	passwords,	it’s	important	to	follow
best	practices.	Passwords	should	never	be	directly	stored	or	logged.	Instead,	a
cryptographic	hash	of	the	password	should	be	stored.	The	cost	to	brute	force	a
password	(usually	expressed	in	time	and/or	memory	requirements)	is	determined
by	the	strength	of	the	hashing	algorithm.	The	NIST	periodically	releases
standards	documents	that	include	recommended	password	procedures.	As
computers	become	more	powerful,	the	current	recommendations	change,	so	it’s
best	to	consult	industry	best	practices	when	choosing	algorithms.

Something	You	Have:	TOTP
Time-based	one-time	password,	or	TOTP,	is	an	authentication	standard	where	a
constantly	changing	code	is	provided	by	the	user.	RFC	6238	defines	the	standard
implemented	in	hardware	devices	and	software	applications.	Mobile	applications
are	often	used	to	generate	the	code,	which	works	well,	since	users	tend	to	have
their	phones	close	by.

Whether	using	an	application	or	hardware	device,	TOTP	requires	sharing	a
random	secret	value	between	the	user	and	the	service.	This	secret	and	the	current
time	are	passed	through	a	cryptographic	hash	and	then	truncated	to	produce	the
code	to	be	entered.	As	long	as	the	device	and	the	server	roughly	agree	on	the
current	time,	a	matching	code	confirms	that	the	user	is	in	possession	of	the
shared	key.

The	storage	of	the	shared	key	is	critical,	both	on	the	device	and	on	the
authenticating	server.	Losing	control	of	that	secret	will	permanently	break	this
authentication	mechanism.	The	RFC	recommends	encrypting	the	key	using	a
hardware	device	like	a	TPM,	and	then	limiting	access	to	the	encrypted	data.

Exposing	the	shared	key	to	a	mobile	device	places	it	in	greater	danger	than	it	is
on	a	server.	The	device	could	connect	to	a	malicious	endpoint	that	might	be	able
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to	extract	the	key.	To	mitigate	this	vector,	an	alternative	to	TOTP	is	to	send	the
user’s	mobile	phone	a	random	code	over	an	encrypted	channel.	This	code	is	then
entered	on	another	device	to	authenticate	that	the	user	is	in	possession	of	their
mobile	phone.

SMS	IS	NOT	A	SECURE	COMMUNICATION	CHANNEL
Sending	the	user	a	random	code	for	authentication	requires	that	the	authentication	code	is
reliably	delivered	to	the	intended	device	and	is	not	exposed	during	transit.	Systems	have
previously	sent	random	codes	as	an	SMS	message,	but	the	SMS	system	does	make	sufficient
guarantees	to	protect	the	random	code	in	transit.	Using	SMS	for	this	system	is	therefore	not
recommended.

Something	You	Have:	Certificates
Another	method	to	authenticate	users	is	to	generate	per-user	X.509	certificates.
The	certificate	is	derived	from	a	strong	private	key	and	then	signed	using	the
private	key	of	the	organization	that	provided	the	certificate.	The	certificate
cannot	be	be	modified	without	invalidating	the	organization’s	signature,	so	the
certificate	can	be	used	as	a	credential	with	any	service	that	is	configured	to	trust
the	signature	of	the	organization.

Since	an	X.509	certificate	is	meant	for	consumption	by	a	computer,	not	by
humans,	it	can	provide	much	richer	details	when	presented	to	a	service	for
authentication.	As	an	example,	a	system	could	encode	metadata	about	the	user	in
the	certificate	and	then	trust	that	data	since	it	has	been	signed	by	a	trusted
organization.	This	can	alleviate	the	need	to	create	a	trusted	user	directory	in	less
mature	networks.

Using	certificates	to	identify	users	relies	heavily	on	those	certificates	being
securely	stored.	It	is	strongly	preferred	to	both	generate	and	store	the	private	key
component	on	dedicated	hardware	so	as	to	prevent	digital	theft.	We’ll	talk	more
about	that	in	the	next	section.

Something	You	Have:	Security	Tokens
Security	tokens	are	hardware	devices	that	are	used	primarily	for	user
authentication,	but	they	have	additional	applications.	These	devices	are	not	mass



storage	devices	storing	a	credential	that	was	provisioned	elsewhere.	Instead,	the
hardware	itself	generates	a	private	key.	This	credential	information	never	leaves
the	token.	The	user’s	device	interacts	with	the	hardware’s	APIs	to	perform
cryptographic	operations	on	behalf	of	the	user,	proving	that	they	are	in
possession	of	the	hardware.

As	the	security	industry	progresses,	organizations	are	increasingly	turning
toward	hardware	mechanisms	for	authenticating	user	identity.	Devices	like	smart
cards	or	Yubikeys	can	provide	a	1:1	assertion	of	a	particular	identity.	By	tying
identity	to	hardware,	the	risk	that	a	particular	user’s	credentials	can	be
duplicated	and	stolen	without	their	knowledge	is	greatly	mitigated,	as	physical
theft	would	be	required.

Storing	a	private	key	in	hardware	is	by	far	the	most	secure	storage	method	we
have	today.	The	stored	private	key	can	then	be	used	as	the	backing	for	many
different	types	of	authentication	schemes.	Traditionally,	they	are	used	in
conjunction	with	X.509,	but	a	new	protocol	called	Universal	2nd	Factor	(U2F)
is	gaining	rapid	adoption.	U2F	provides	an	alternative	to	full-blown	PKI,
offering	a	lightweight	challenge-response	protocol	that	is	designed	for	use	by
web	services.	Regardless	of	which	authentication	scheme	you	choose,	if	it	relies
on	asymmetric	cryptography,	you	should	probably	be	using	a	security	token.

While	these	hardware	tokens	can	provide	strong	protections	against	credential
theft,	they	cannot	guarantee	that	the	token	itself	isn’t	stolen	or	misused.
Therefore,	it’s	important	to	recognize	that	while	these	tokens	are	great	tools	in
building	a	secure	system,	they	cannot	be	a	complete	replacement	for	a	user
asserting	their	identity.	If	we	want	the	strongest	guarantee	that	a	particular	user
is	who	they	claim	to	be,	using	a	security	key	with	addtional	authentication
factors	(e.g.,	a	password	or	biometric	sensor)	is	still	strongly	recommended.

Something	You	Are:	Biometrics
Asserting	identity	by	recognizing	physical	characteristics	of	the	user	is	called
biometrics.	Biometrics	is	becoming	more	common	as	advanced	sensors	are
making	their	way	into	devices	we	use	every	day.	This	authentication	system
offers	better	convenience	and	potentially	a	more	secure	system,	if	biometric
signals,	such	as	the	following,	are	used	wisely.



Fingerprints

Handprints

Retina	scans

Voice	analysis

Face	recognition

Using	biometrics	might	seem	like	the	ideal	authentication	method.	After	all,
authenticating	a	user	is	validating	that	they	are	who	they	say	they	are.	What
could	be	better	than	measuring	physical	characteristics	of	a	user?	While
biometrics	is	a	useful	addition	to	system	security,	there	are	some	downsides	that
should	not	be	forgotten.

Authenticating	via	biometrics	relies	on	accurate	measurement	of	a	physical
characteristic.	If	an	attacker	is	able	to	trick	the	scanner,	they	are	able	to	gain
entry.	Fingerprints,	being	a	common	biometric,	are	left	on	everything	a	person
touches.	Attacks	against	fingerprint	readers	have	been	demonstrated—attackers
obtain	pictures	of	a	latent	fingerprint	and	then	3D	print	a	fake	one,	which	the
scanner	accepts.

Additionally,	biometric	credentials	cannot	be	rotated,	since	they’re	a	physical
characteristic.	They	can	also	present	an	accessibility	issue	if,	for	example,	an
individual	is	born	without	fingerprints	(a	condition	known	as	adermatoglyphia)
or	if	they	lost	their	fingers	in	an	accident.

Finally,	biometrics	can	present	surprising	legal	challenges	when	compared
against	other	authentication	mechanisms.	In	the	United	States,	for	example,	a
citizen	can	be	compelled	by	a	court	to	provide	their	fingerprint	to	authenticate	to
a	device,	but	they	cannot	be	compelled	to	divulge	their	password,	owing	to	their
Fifth	Amendment	right	against	self-incrimination.

Out-of-Band	Authentication
Out-of-band	authentication	purposefully	uses	a	separate	communication	channel
than	the	original	channel	the	user	used	to	authenticate	that	request.	For	example,
a	user	logging	into	a	website	for	the	first	time	on	a	device	might	receive	a	phone
call	to	validate	the	request.	By	using	an	out-of-band	check,	a	service	is	able	to



raise	the	difficulty	of	breaking	into	an	account,	since	the	attacker	would	need
control	of	the	out-of-band	communication	channel	as	well.

Out-of-band	checks	can	come	in	many	forms.	These	forms	should	be	chosen
based	on	the	desired	level	of	strength	needed	for	each	interaction:

A	passive	email	can	inform	users	of	potentially	sensitive	actions	that	have
recently	taken	place.

A	confirmation	can	be	required	before	a	request	is	completed.	Confirmation
could	be	a	simple	“yes,”	or	it	could	involve	entering	a	TOTP	code.

A	third	party	could	be	contacted	to	confirm	the	requested	action.

When	used	well,	out-of-band	authentication	can	be	a	useful	tool	to	increase	the
security	of	the	system.	As	with	all	authentication	mechanisms,	some	level	of
taste	is	required	to	choose	the	right	authentication	mechanism	and	frequency,
based	on	the	request	taking	place.

Single	Sign	On
Given	the	large	number	of	services	users	interact	with,	the	industry	would	prefer
to	decouple	authentication	from	end	services.	Having	authentication	decoupled
provides	benefits	to	both	the	service	and	the	user:

Users	only	need	to	authenticate	with	a	single	service.

Authentication	material	is	stored	in	a	dedicated	service,	which	can	have	more
stringent	security	standards.

Security	credentials	in	fewer	locations	means	less	risk	and	eased	rotations.

Single	sign-on	(SSO)	is	a	fairly	mature	concept.	Under	SSO,	users	authenticate
with	a	centralized	authority,	after	which	they	will	typically	be	granted	a	token	of
sorts.	This	token	is	then	used	in	further	communication	with	secured	services.
When	the	service	receives	a	request,	it	contacts	the	authentication	authority	over
a	secure	channel	to	validate	the	token	provided	by	the	client.

This	is	in	contrast	to	decentralized	authentication.	A	zero	trust	network
employing	decentralized	authentication	will	use	the	control	plane	to	push
credentials	and	access	policy	into	the	data	plane.	This	empowers	the	data	plane
to	carry	out	authentication	on	its	own,	whenever	and	wherever	necessary,	while



to	carry	out	authentication	on	its	own,	whenever	and	wherever	necessary,	while
still	being	backed	by	control	plane	policy	and	concern.	This	approach	is
sometimes	favored	over	a	more	mature	SSO-based	approach	since	it	does	not
require	running	an	additional	service,	though	it	introduces	enough	complexity
that	it	is	not	recommended.

SSO	tokens	should	be	validated	against	the	centralized	authority	as	often	as
possible.	Every	call	to	the	control	plane	to	authorize	an	SSO	token	provides	an
opportunity	to	revoke	access	or	alter	the	trust	level	(as	known	to	the	caller).

A	popular	mode	of	operation	involves	the	service	performing	its	own	sign	in,
backed	by	SSO	authentication.	The	primary	drawback	of	this	approach	is	that	it
allows	the	control	plane	to	authorize	the	request	only	once,	and	leaves	the
application	to	make	all	further	decisions.	Trust	variance	and	invalidation	is	a	key
aspect	of	a	zero	trust	network,	so	decisions	to	follow	this	pattern	should	not	be
taken	lightly.

EXISTING	OPTIONS
SSO	has	been	around	for	a	long	time,	and	as	such,	there	are	many	mature
protocols/technologies	to	support	it,	including	these	popular	ones:

SAML

Kerberos

CAS

It	is	critical	that	authentication	remain	a	control	plane	concern	in	a	zero	trust
network.	As	such,	when	designing	authentication	systems	in	a	zero	trust
network,	aim	for	as	much	control	plane	responsibility	as	possible,	and	validate
authorization	with	the	control	plane	as	often	as	is	reasonably	possible.

Moving	Toward	a	Local	Auth	Solution
Local	authentication	that	is	extended	out	into	remote	services	is	another
authentication	mechanism	that	is	increasingly	becoming	a	possibility.	In	this
system,	users	authenticate	their	presence	with	a	trusted	device,	and	then	the



device	is	able	to	attest	to	that	identity	with	a	remote	service.	Open	standards	like
the	FIDO	Alliance’s	UAF	standard	use	asymmetric	cryptography	and	local
device	authentication	systems	(e.g.,	passwords	and	biometrics)	to	move	trust
away	from	a	large	number	of	services	to	relatively	few	user-controlled
endpoints.

UAF,	in	a	way,	looks	a	lot	like	a	password	manager.	However,	instead	of	storing
passwords,	it	stores	private	keys.	The	authenticating	service	is	then	given	the
user’s	public	key	and	is	thereby	able	to	confirm	that	that	the	user	is	in	possession
of	the	private	key.

By	moving	authentication	into	a	smart	local	device,	a	number	of	benefits
emerge:

Replay	attacks	can	be	mitigated	via	a	challenge-and-response	system.

Man-in-the-middle	attacks	can	be	thwarted	by	having	the	authentication
service	refuse	to	sign	the	challenge	unless	it	originated	from	the	same	domain
the	user	is	visiting.

Credential	reuse	is	nonexistent,	since	per-service	credentials	can	be	trivially
generated.

Authenticating	and	Authorizing	a	Group
Nearly	every	system	has	a	small	set	of	actions	or	requests	that	must	be	closely
guarded.	The	amount	of	risk	one	is	willing	to	tolerate	in	this	area	will	vary	from
application	to	application,	though	there	is	practically	no	lower	limit.

One	of	the	risks	you	pass	as	you	approach	zero	is	the	amount	of	trust	in	any
single	human	being.	Just	like	in	real	life,	there	are	many	times	in	which	it	is
desirable	to	gain	the	consent	of	multiple	individuals	in	order	to	authorize	a
particularly	sensitive	action.	There	are	a	couple	ways	that	this	can	be	achieved	in
the	digital	realm,	and	the	cool	part	is,	we	can	cryptographically	guarantee	it!

Shamir’s	Secret	Sharing
Shamir’s	Secret	Sharing	is	a	scheme	for	distributing	a	single	secret	among	a
group	of	individuals.	The	algorithm	breaks	the	original	secret	into	n	parts,	which



can	then	be	distributed	(Figure	6-2).	Depending	on	how	the	algorithm	was
configured	when	the	parts	were	generated,	k	parts	are	needed	to	recalculate	the
original	secret	value.

When	protecting	large	amounts	of	data	using	Shamir’s	Secret	Sharing,	a
symmetric	encryption	key	is	usually	split	and	distributed	instead	of	using	the
algorithm	directly	on	data.	This	is	because	the	size	of	secret	that	is	being	split
needs	to	be	smaller	than	some	of	the	data	used	in	the	secret-sharing	algorithm.

Figure	6-2.	An	example	ssss	session

A	Unix/Linux	version	of	this	algorithm	is	called	ssss.	Similar	applications	and
libraries	exist	for	other	operating	systems	or	programming	languages.

Red	October
Cloudflare’s	Red	October	project	is	another	approach	to	implementing	group
authentication	to	access	shared	data.	This	web	service	uses	layered	asymmetric
cryptography	to	encrypt	data	such	that	a	certain	number	of	users	need	to	come
together	to	decrypt	the	data.	Encrypted	data	isn’t	actually	stored	on	the	server.
Instead,	only	user	public/private	key	pairs	(encrypted	with	a	user	chosen
password)	are	stored.

When	data	is	submitted	to	be	encrypted,	a	random	encryption	key	is	generated	to
encrypt	the	data.	This	encryption	key	is	then	itself	encrypted	using	unique
combinations	of	user-specific	encryption	keys,	based	on	an	unlock	policy	that
the	user	requests.	In	the	simplest	case,	a	user	might	encrypt	some	data	such	that
two	people	in	a	larger	group	need	to	collaborate	to	decrypt	the	data.	In	this
scenario,	the	original	encrypted	data’s	encryption	key	is	therefore	doubly
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scenario,	the	original	encrypted	data’s	encryption	key	is	therefore	doubly
encrypted	with	each	unique	pair	of	user	encryption	keys.

ABOUT	DNS	ROOT	ZONE	SIGNING

The	DNS	Root	Zone	Signing	Ceremony	is	an	interesting	example	of	a	group
authentication	procedure.	This	ceremony	is	used	to	generate	the	root	keys
upon	which	all	DNSSEC	trust	is	based	on.	If	the	root	key	is	compromised,
the	entire	DNSSEC	system’s	trustworthiness	would	be	compromised,	so	the
root	key	ceremony	is	built	specifically	to	mitigate	that	risk.

The	first	ceremony	occurred	on	June	16,	2010,	and	a	new	ceremony	occurs
every	quarter.	The	ceremony	utilizes	seven	actors,	each	with	a	different	role.
The	ceremony	mitigates	the	risk	of	compromise	to	a	one-in-a-million
chance,	assuming	a	dishonesty	rate	of	5%	among	the	actors	in	the	ceremony.
A	strict	procedural	document	is	generated	in	order	to	organize	the	ceremony.
HSMs,	biometric	scanners,	and	air-gapped	systems	are	used	to	protect	the
digital	key.	In	the	end,	a	new	public/private	key	pair	is	generated	and	signed,
continuing	the	internet’s	trust	anchor	for	another	quarter.

You	can	read	more	about	the	signing	ceremony	on	Cloudflare’s	website,	or
you	can	view	the	materials	for	each	ceremony	on	IANA’s	website.

See	Something,	Say	Something
Users	in	a	zero	trust	network,	like	devices,	need	to	be	active	participants	in	the
security	of	the	system.	Organizations	have	traditionally	formed	dedicated	teams
to	focus	on	the	security	of	the	system.	Those	teams,	more	often	than	not,	took
that	mandate	to	mean	that	they	were	solely	responsible	for	the	system’s	security.
Changes	needed	to	be	vetted	by	them	to	ensure	that	the	system’s	security	was
not	compromised.	This	approach	produces	an	antagonistic	relationship	between
the	security	team	and	the	rest	of	the	organization,	and	as	result,	reduces	security.

A	better	approach	is	to	build	a	culture	of	collaboration	toward	the	security	of	the
system.	Users	should	be	encouraged	to	speak	up	if	something	they	do	or	witness
looks	odd	or	dangerous,	even	if	it’s	small.	This	sharing	of	knowledge	will	give
much	better	context	on	the	threats	that	the	security	team	is	working	to	defend
against.	Reporting	phishing	emails,	even	when	users	did	not	interact	with	them,
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against.	Reporting	phishing	emails,	even	when	users	did	not	interact	with	them,
can	let	the	security	team	know	if	a	determined	attacker	is	attempting	to	infiltrate
the	network.

Devices	which	are	lost	or	stolen	should	be	reported	immediately.	Security	teams
might	consider	providing	ways	for	users	to	alert	them	day	or	night	in	the	event
that	their	device	has	gone	missing.

When	responding	to	tips	or	alerts	from	users,	security	teams	should	be	mindful
of	how	their	response	to	the	incident	affects	the	organization	more	broadly.	A
user	who	is	shamed	for	losing	a	device	will	be	less	willing	to	report	the	loss	in	a
timely	manner	in	the	future.	Similarly,	a	late-night	false	alarm	should	be	met
with	thanks	to	ensure	that	reporters	don’t	second-guess	themselves.	As	much	as
possible,	try	to	bias	the	organization	toward	over-reporting.

Trust	Signals
Historical	user	activity	is	a	rich	source	of	data	for	determining	the
trustworthiness	of	a	user’s	current	actions.	A	system	can	be	built	which	mines
user	activity	to	build	up	a	model	of	expected	behavior.	This	system	will	then
compare	current	behavior	against	that	model	as	a	method	for	calculating	a	trust
score	of	a	user.

Humans	tend	to	have	predictable	access	patterns.	Most	people	will	not	try	to
authenticate	multiple	times	a	second.	They	also	are	unlikely	to	try	to	authenticate
hundreds	of	times.	These	types	of	access	patterns	are	extremely	suspicious	and
are	often	mitigated	via	active	methods	like	CAPTCHAs	(automated	challenges
which	only	a	human	is	able	to	answer)	or	locked	accounts.	Reducing	false
positives	requires	setting	fairly	high	bars	to	be	actively	banned.	Including	this
activity	in	an	overall	threat	assessment	score	can	help	catch	suspicious,	but	not
obviously	bad,	behavior.

Looking	at	access	patterns	doesn’t	need	to	be	restricted	to	authentication
attempts.	Users’	application	usage	patterns	can	also	reveal	malicious	intent.
Most	users	tend	to	have	fairly	limited	roles	in	an	organization	and	therefore
might	only	need	to	access	a	subset	of	data	that	is	available	to	them.	In	an	attempt
to	increase	security,	organizations	will	begin	removing	access	rights	from
employees	unless	they	definitely	need	the	access	to	do	their	job.	However,	this
type	of	restrictive	access	control	can	impact	the	ability	of	the	organization	to



type	of	restrictive	access	control	can	impact	the	ability	of	the	organization	to
respond	quickly	to	unique	events.	System	administrators	are	a	class	of	users
which	are	given	broad	access,	thereby	weakening	this	approach	as	a	defense
mechanism.	Instead	of	choosing	between	these	two	extremes,	we	can	score	the
user’s	activity	in	aggregate	and	then	use	their	score	to	determine	if	they	are	still
trusted	to	access	a	particularly	sensitive	resource.	Having	hard	stops	in	the
system	is	still	important—it’s	the	less	clear	cases	where	the	system	should	trust
users,	but	verify	their	trustworthiness	via	logged	activity.

Lists	of	known	bad	traffic	sources,	like	the	one	provided	by	Spamhaus,	can	be
another	useful	signal	for	the	trustworthiness	of	a	user.	Traffic	that	is	originating
from	these	addresses	and	is	attempting	to	use	a	particular	user’s	identity	can
point	toward	a	potentially	compromised	user.

Geolocation	can	be	another	useful	signal	for	determining	trust	of	a	user.	We	can
compare	the	user’s	current	location	against	previously	visited	locations	to
determine	if	it	is	out	of	the	ordinary.	Has	the	user’s	device	suddenly	appeared	in
a	new	location	in	a	timeframe	that	they	couldn’t	reasonably	travel?	If	the	user
has	multiple	devices,	are	they	reporting	conflicting	locations?	Geolocation	can
be	wrong	or	misleading,	so	systems	shouldn’t	weight	it	too	strongly.	Sometimes
users	forget	devices	at	home	or	geolocation	databases	are	simply	incorrect.

Summary
This	chapter	focused	on	how	to	establish	trust	in	users	in	a	system.	We	talked
about	how	identity	is	defined	and	the	importance	of	having	an	authority	to
reference	when	checking	the	identity	of	a	user	in	the	system.	Users	need	to	be
entered	into	a	system	to	have	an	identity,	so	we	talked	about	some	ideal	ways	to
bootstrap	their	identity.

Identity	needs	to	be	stored	somewhere,	and	that	system	is	a	very	valuable	target
for	attackers.	We	talked	about	how	to	store	the	data	safely,	the	importance	of
limiting	the	breadth	of	data	being	stored	in	a	single	location,	and	how	to	keep
stored	identity	up	to	date	as	users	come	and	go.

With	authoritative	identity	defined	and	stored,	we	turned	our	attention	to
authenticating	users	that	claim	to	have	a	particular	identity.	Authentication	can
be	an	annoyance	for	users,	so	we	discussed	when	to	authenticate	users.	We	don’t



want	users	to	be	inundated	with	authentication	requests,	since	that	will	increase
the	likelihood	that	they	accidentally	authenticate	against	a	malicious	service.
Therefore,	finding	the	right	balance	is	critical.

There	are	many	ways	that	users	can	be	authenticated,	so	we	dug	into	the
fundamental	concepts.	We	discussed	several	authentication	mechanisms	that	are
in	use	today.	We	also	looked	at	some	authentication	mechanisms	that	are	on	the
horizon	as	system	security	practices	are	responding	to	threats.

Oftentimes,	increasing	trust	in	a	system	of	users	involves	creating	procedures
where	multiple	users	play	a	role	to	accomplish	a	goal.	We	discussed	group
authentication	and	authorization	systems	like	“two	person	rules,”	which	can	be
used	to	secure	extremely	sensitive	data.	We	also	talked	about	building	a	culture
of	awareness	in	an	organization	by	encouraging	users	to	report	any	suspicious
activity.

Finally,	zero	trust	networks	can	leverage	user	activity	logs	to	build	a	profile	of
users	to	compare	against	when	evaluating	new	actions.	We	enumerated	some
useful	signals	which	can	be	used	to	build	that	profile.

The	next	chapter	looks	at	how	trust	in	applications	can	be	built.



Chapter	7.	Trusting	Applications

Marc	Andreessen,	a	notable	Silicon	Valley	investor,	famously	declared	that
“software	is	eating	the	world.”	In	many	ways,	this	statement	has	never	been
truer.	It	is	the	software	running	in	your	datacenter	that	makes	all	of	the	magic
happen,	and	as	such,	it	is	no	secret	that	we	wish	to	trust	its	execution.

Code,	running	on	a	trusted	device,	will	be	faithfully	executed.	A	trusted	device
is	a	prerequisite	for	trusting	code,	which	we	covered	in	Chapter	5.	However,
even	with	our	execution	environment	secured,	we	still	have	more	work	to	do	to
trust	that	the	code	that’s	running	on	a	device	is	trustworthy.

As	such,	trusting	the	device	is	just	half	of	the	story.	One	must	also	trust	the	code
and	the	programmers	who	wrote	it.	With	the	goal	being	to	ensure	the	integrity	of
a	running	application,	we	must	find	ways	to	extend	this	human	trust	from	the
code	itself	all	the	way	to	its	actual	execution.

Establishing	trust	in	code	requires	that:

The	people	producing	the	code	are	themselves	trusted

The	code	was	faithfully	processed	to	produce	a	trustworthy	application

Trusted	applications	are	faithfully	deployed	to	the	infrastructure	to	be	run

Trusted	applications	are	continually	monitored	for	attempts	to	coerce	the
application	with	malicious	actions

This	chapter	will	discuss	approaches	to	securing	each	of	these	steps,	with	a	focus
on	the	inheritance	of	trust	from	human	to	production	application.

Understanding	the	Application	Pipeline
The	creation,	delivery,	and	execution	of	code	within	a	computer	system	is	a	very
sensitive	chain	of	events.	These	systems	are	an	attractive	target	for	adversaries
due	to	their	ability	to	gain	greater	access.	Attack	vectors	exist	at	every	step,	and
subversion	at	these	stages	can	be	very	difficult	to	detect.	Therefore,	we	must



work	to	ensure	that	every	link	of	this	chain	(shown	in	Figure	7-1)	is	secured	in	a
way	that	makes	subversion	detectable.

This	process	is	similar	to	supply	chain	security,	the	collective	efforts	of
governments	around	the	world	to	enhance	security.	Ensuring	that	military
equipment	is	securely	built/sourced	is	critical	in	ensuring	the	effectiveness	of	the
fighting	force,	and	software	creation	and	delivery	is	no	different.

SUPPLY	CHAIN	CRITICALITY
In	2007,	the	Israeli	government	conducted	an	airstrike	against	a	suspected	nuclear	facility	in
Syria.	One	of	many	mysteries	surrounding	this	strike	is	the	sudden	failure	of	Syrian	radar
systems,	providing	the	Israelis	with	cover.	The	failure	of	these	radar	systems,	which	were
supposedly	state	of	the	art,	is	now	widely	believed	to	be	attributable	to	a	hardware	kill	switch
hidden	in	a	commercial	chip	used	by	the	radar	equipment.	While	never	fully	verified,	stories
like	this	one	highlight	the	importance	of	secure	supply	chains,	whether	it	be	hardware	or
software.

In	support	of	a	secure	software	delivery	chain,	every	step	of	the	process	should
be	fully	auditable	with	cryptographic	validation	occurring	at	each	critical	point.
Generally	speaking,	these	steps	can	be	broken	down	into	four	distinct	phases:

Source	code

Build/compilation

Distribution

Execution

Let’s	start	with	trusting	the	source	code	itself.

https://en.wikipedia.org/wiki/Operation_Orchard


Figure	7-1.	A	build	pipeline	depends	on	both	the	security	of	the	engineers	creating	source	and	configuring
the	system,	as	well	as	the	security	of	the	components	of	the	pipeline

Trusting	Source
Source	code	is	the	first	step	in	running	any	piece	of	software.	To	put	it	very
simply,	it’s	difficult	to	trust	source	code	that	is	written	by	an	untrusted	human.
Even	with	careful	code	auditing,	it	is	still	possible	for	a	malicious	developer	to
purposefully	encode	(and	hide!)	a	vulnerability	in	plain	sight.	In	fact,	there	is
even	a	well-known	competition	dedicated	to	this	dark	art.	While	even	well-
meaning	developers	can	inadvertently	add	weakness	to	an	application,	a	zero
trust	network	will	focus	on	identifying	malicious	use	instead	of	removing	trust
from	those	users.

Setting	the	trusted	developer	problem	aside	for	a	minute,	we	still	face	the
problem	of	securely	storing	and	distributing	the	source	code	itself.	Typically,
source	code	is	stored	in	a	centralized	code	repository,	against	which	many
developers	interact	and	commit	work.	These	repositories	must	also	fall	under
tight	control,	particularly	if	they	are	being	used	directly	by	systems	that

http://www.underhanded-c.org/


tight	control,	particularly	if	they	are	being	used	directly	by	systems	that
build/compile	the	code	in	question.

Securing	the	Repository
Maintaining	traditional	security	approaches	when	it	comes	to	securing	a	software
repository	is	still	effective,	and	does	not	prohibit	the	addition	of	more	advanced
security	features.	This	includes	basic	principles	such	as	the	principle	of	least
access,	whereby	users	are	only	given	as	much	access	to	the	repository	as	is
required	to	complete	the	task	at	hand.	In	practice,	this	usually	manifests	itself	as
heavily	limited/restricted	write	access.

While	this	approach	is	still	valid	and	recommended,	the	story	has	changed	a	little
bit	with	the	introduction	of	distributed	source	control.	With	the	code	repository
living	in	multiple	places,	it	is	not	always	possible	to	secure	a	single,	centralized
entity.	In	this	circumstance,	however,	there	remains	an	analog	for	this
centralized	repository—the	system	storing	the	code	from	which	the	build	system
reads.

In	this	case,	it	is	still	highly	desirable	to	protect	this	system	through	traditional
means;	however,	the	problem	becomes	more	difficult	since	code	can	enter	the
distributed	repository	in	any	number	of	ways.	The	logical	extension,	then,	is	that
securing	the	build	source	repository	alone	is	not	enough.

Authentic	Code	and	the	Audit	Trail
Many	version	control	systems	(VCS),	particularly	those	which	are	distributed,
store	source	history	using	cryptographic	techniques.	This	approach,	called
content	addressable	storage,	uses	the	cryptographic	hash	of	the	content	being
stored	as	the	identifier	of	that	object	in	a	database,	rather	than	its	location	or
coordinates.	It’s	possible	to	see	how	a	source	file	could	be	hashed	and	stored	in
such	a	database,	thereby	ensuring	that	any	change	in	the	source	file	results	in	a
new	hash.	This	property	means	that	files	are	stored	immutably:	it’s	impossible	to
change	the	contents	of	the	files	once	stored.

Some	VCS	systems	take	this	storage	mechanism	a	step	further	by	storing	the
history	itself	as	an	object	in	the	content	addressable	database.	Git,	a	popular
distributed	VCS	project,	stores	the	history	of	commits	to	the	repository	as	a



directed	acyclic	graph	(DAG).	The	commits	are	objects	in	the	database,	storing
details	like	the	commit	time,	author,	and	identifiers	of	ancestor	commits.	By
storing	the	cryptographic	hashes	of	ancestor	commits	on	each	commit	itself,	we
form	a	Merkle	tree,	which	allows	one	to	cryptographically	validate	that	the	chain
of	commits	are	unmodified	(Figure	7-2).

If	a	commit	in	the	DAG	were	to	be	modified,	its	update	will	affect	all	the
descendant	commits	in	the	graph,	changing	each	commit’s	content,	and	by
extension,	its	identifier.	With	the	source	history	distributed	to	many	contributors,
the	system	gains	another	beneficial	property:	it’s	impossible	to	change	the
history	without	other	contributors	noticing.

Figure	7-2.	Git’s	database	makes	unwanted	changes	difficult,	since	objects	are	referenced	using	a	hash	of
their	contents

Storing	the	DAG	in	this	manner	gives	us	tamper-proof	history:	it’s	impossible	to
change	the	history	subversively.	However,	this	storage	does	nothing	to	ensure
that	new	commits	in	the	history	are	authorized	and	authentic.	Imagine	for	a
moment	that	a	trusted	developer	is	persuaded	to	pull	a	malicious	commit	into



their	local	repository	before	pushing	it	to	the	official	repository.	This	commit	is
now	in	the	repository	by	leaning	on	the	trusted	developer’s	push	access.	Even
more	concerning,	the	authorship	metadata	is	just	plain	text:	a	malicious
committer	can	put	whatever	details	they	want	in	that	field	(a	fact	that	was	used
amusingly	to	make	commits	appear	to	be	authored	by	Linus	Torvalds	on
GitHub).

To	guard	against	this	attack	vector,	Git	has	the	ability	for	commits	and	tags	to	be
signed	using	the	GPG	key	of	a	trusted	developer.	Tags,	which	point	to	the	head
commit	in	a	particular	history,	can	be	signed	using	a	GPG	key	to	ensure	the
authenticity	of	a	release.	Signed	commits	allow	one	to	go	a	step	further	and
authenticate	the	entire	Git	history,	making	it	impossible	for	an	attacker	to
impersonate	another	committer	without	first	stealing	that	committer’s	GPG	key.

Signed	source	code	clearly	provides	significant	benefit	and	should	be	used
wherever	possible.	It	provides	robust	code	authentication	not	only	to	just
humans,	but	machines	too.	This	is	especially	important	if	CI/CD	systems	build
and	deploy	the	code	automatically.	A	fully	signed	history	allows	build	systems
to	cryptographically	authenticate	the	code	as	trusted	before	compiling	it	for
deployment.

IN	THE	BEGINNING,	THERE	WAS	NOTHING
Many	repositories	begin	with	unsigned	commits,	transitioning	to	signed	commits	later	on.	In
this	brownfield	case,	the	first	commit	to	be	signed	is	essentially	endorsing	all	commits	that
came	before	it.	This	is	important	to	understand,	as	you	may	wish	to	perform	an	audit	at	this
time.	Having	said	that,	the	overhead	or	difficulty	of	performing	such	an	audit	should	not
dissuade	or	delay	the	transition	to	signed	code;	the	audit,	if	you	choose	to	do	one,	can	be
performed	in	due	time.

Code	Reviews
As	we	learned	in	Chapter	6,	it	can	be	dangerous	to	concentrate	powerful
capabilities	onto	a	single	user.	This	is	no	different	when	considering	source	code
contributions.	Signed	contributions	enable	us	to	authenticate	the	developer
committing	the	code,	but	does	not	ensure	that	the	code	being	committed	is
correct	or	safe.	Of	course,	we	do	place	a	nontrivial	amount	of	trust	in	the
developer,	though	this	does	not	mean	that	said	developer	should	unilaterally
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commit	code	to	sensitive	projects.

To	mitigate	this	risk,	most	mature	organizations	implement	a	code	review
process.	Under	code	review,	all	contributions	must	be	approved	by	one	or	more
additional	developers.	This	simple	process	drastically	improves	not	just	the
quality	of	the	software,	but	also	reduces	the	rate	at	which	vulnerabilities	are
introduced,	whether	they	be	intentional	or	accidental.

Trusting	Builds
Build	servers	are	frequently	targeted	by	persistent	threats,	and	for	good	reason.
They	have	elevated	access,	and	produce	code	that	is	executed	directly	in
production.	Detecting	artifacts	that	have	been	compromised	during	the	build
stage	can	be	very	difficult,	so	it	is	important	to	apply	strong	protections	to	these
services.

The	Risk
In	trusting	a	build	system,	there	are	generally	three	things	that	we	want	to	assert:

The	source	code	it	built	is	the	code	we	intended	to	build.

The	build	process/configuration	is	that	which	we	intended.

The	build	itself	was	performed	faithfully,	without	manipulation.

Build	systems	can	ingest	signed	code	and	produce	a	signed	output,	but	the
function(s)	applied	in	between	(i.e.,	the	build	itself)	is	generally	not	protected
cryptographically—this	is	where	the	most	significant	attack	vector	lies.

This	particular	vector	is	a	powerful	one,	as	shown	in	Figure	7-3.	Without	the
right	processes	and	validation,	subversion	of	this	kind	can	be	difficult	or
impossible	to	detect.	For	instance,	imagine	a	compromised	CI/CD	system	that
ingests	signed	C	code,	and	compiles	it	into	a	signed	binary,	which	is	then
distributed	and	run	in	production.	Production	systems	can	validate	that	the
binary	is	signed,	but	would	have	no	way	of	knowing	if	additional	malicious	code
has	been	compiled	in	during	the	build	process.	In	this	way,	a	seemingly	secure
system	can	successfully	run	malicious	code	in	production	without	detection.



Perhaps	even	worse,	the	consumers	are	fooled	into	thinking	the	output	is	safe.

Figure	7-3.	The	build	configuration	and	its	execution	is	not	protected	cryptographically,	in	contrast	to	the
source	code	and	the	generated	artifact.	This	break	in	the	chain	poses	great	threat,	and	is	a	powerful	attack

vector.

Due	to	the	sensitive	nature	of	the	build	process,	outsourcing	the	responsibility
should	be	carefully	evaluated.	Things	like	reproducible	builds	can	help	identify
compromises	in	this	area	(more	on	that	in	a	bit),	but	can’t	always	prevent	their
distribution.	Is	this	really	something	you	want	a	third-party	provider	to	do	for
you?	How	much	do	you	trust	them?	Their	security	posture	should	be	weighed
against	your	own	chance	of	being	a	high	value	target.

HOST	SECURITY	IS	STILL	IMPORTANT
This	section	focuses	on	securing	various	steps	of	the	software	build	process,	but	it	is	important
to	note	that	the	security	of	the	build	servers	themselves	is	still	important.	We	can	secure	the
input,	output,	and	configuration	of	the	build,	but	if	the	build	server	is	compromised	then	it	can
no	longer	be	trusted	to	faithfully	perform	its	duties.	Reproducible	builds,	immutable	hosts,	and
the	zero	trust	model	itself	can	help	in	this	regard.

Trusted	Input,	Trusted	Output
If	we	think	of	the	build	system	as	a	trusted	operation,	it’s	clear	that	we	need	to
trust	the	input	of	that	operation	in	order	to	produce	trusted	output.



Let’s	start	with	trusting	the	input	to	the	build	system.	We	discussed	mechanisms
for	trusting	the	source	control	systems	earlier.	The	build	system,	as	a	consumer
of	the	version	control	system,	is	responsible	for	validating	the	trustworthiness	of
the	source.	The	version	control	system	should	be	accessed	over	an	authenticated
channel,	commonly	TLS.	Additionally,	for	extra	security	guarantees,	tags	and/or
commits	should	be	signed	and	the	build	system	should	validate	those	signatures
—or	chain	of	signatures—before	starting	a	build.

The	build	configuration	is	another	important	input	to	the	build	system.	Attacking
the	build	configuration	could	allow	an	attacker	to	direct	the	build	system	to	link
against	a	malicious	library.	Even	seemingly	safe	optimization	flags	can	be
malicious	in	security	critical	code,	where	timing	attack	mitigation	code	can	be
accidentally	optimized	away.	Putting	this	configuration	under	source	control,
where	it	can	be	versioned	and	attested	to	via	signed	commits,	helps	to	ensure
that	the	build	configuration	is	also	a	trusted	input.

With	the	input	sufficiently	secured,	we	can	turn	our	attention	to	the	output	of	the
build	process.	The	build	system	needs	to	sign	the	generated	artifacts	so
downstream	systems	can	validate	their	authenticity.	Build	systems	typically	also
generate	cryptographic	hashes	of	the	build	artifacts	to	guard	against	corruption
or	malicious	attempts	to	replace	the	binaries	once	produced.	Securing	the	build
artifacts	and	hashes,	and	then	distributing	them	to	downstream	consumers,
completes	the	trusted	output	of	the	build	system.

Reproducible	Builds
Reproducible	builds	are	the	best	tool	we	have	in	guarding	against	subversion	of
the	build	pipeline.	In	short,	software	supporting	reproducible	builds	is	compiled
in	a	deterministic	way,	ensuring	that	the	resulting	binary	is	exactly	the	same	for
a	given	source	code,	no	matter	who	built	it.	This	is	a	very	powerful	property,	as
it	allows	multiple	parties	to	examine	the	source	code	and	produce	identical
builds,	thus	gaining	confidence	that	the	build	process	used	to	generate	a
particular	binary	was	not	tampered	with.

This	can	be	done	in	a	number	of	ways,	but	it	generally	involves	a	codified	build
process,	and	enables	developers	to	set	up	their	own	build	environment	to
produce	binaries	that	match	the	distributed	versions	bit-for-bit.	With
reproducible	builds,	one	can	“watch”	the	output	of	a	CI/CD	system,	and	compare
its	output	to	results	compiled	locally.	In	this	way,	malicious	interference	or	code
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its	output	to	results	compiled	locally.	In	this	way,	malicious	interference	or	code
injection	during	the	build	process	can	be	easily	detected.	When	combined	with
signed	source	code,	we	arrive	at	a	fairly	robust	process	that	is	able	to
authenticate	both	the	source	code	and	the	binary	produced	by	it.

VIRTUALIZED	BUILD	ENVIRONMENTS	ENABLE
REPRODUCIBLE	BUILDS

Having	reproducible	builds	sounds	easy	on	paper,	but	reproducing	a	built	binary	so	it’s	byte
for	byte	identical	is	a	very	hard	problem.	Distributions	have	historically	built	packages	inside	a
virtual	filesystem	(a	chroot	jail)	to	ensure	that	all	dependencies	of	the	build	are	captured	in	the
build	configuration.	Virtual	machines	or	containers	can	be	useful	tools	to	ensure	that	the	build
environment	is	fully	insulated	from	the	host	running	the	build.

Decoupling	Release	and	Artifact	Versions
Immutable	builds	are	critical	in	ensuring	the	security	of	a	build	and	release
system.	Without	it,	replacing	a	known	good	version	is	possible,	opening	up	the
door	for	attacks	that	target	the	underlying	build	artifact.	This	would	enable	an
attacker	to	masquerade	a	“bad”	version	as	a	“good”	version.	For	this	reason,
artifacts	generated	by	build	systems	should	have	Write	Once	Read	Many
semantics.

Given	the	immutable	artifact	requirement,	a	natural	tension	arises	with	the
versioning	of	those	artifacts.	Many	projects	prefer	to	use	meaningful	version
numbers	(e.g.,	semantic	versioning)	in	their	releases	to	communicate	the
potential	impact	to	downstream	consumers	with	an	upgrade	of	their	software.
This	desire	to	attach	meaning	to	the	version	number	can	be	difficult	to
incorporate	into	a	build	system	that	needs	to	ensure	that	every	version	is
immutable.

For	example,	when	working	toward	a	major	release,	a	project	might	have	a
misconfigured	build	that	causes	the	build	system	to	produce	incorrect	output.
The	maintainers	now	face	a	choice.	They	could	republish	the	release	using	a
patch-level	bump,	or	they	might	decide	to	bend	the	rules	and	republish	the	same
version	using	a	new	build	artifact.	Many	projects	choose	the	latter	option,
preferring	the	benefit	of	a	clearer	marketing	story	than	the	more	correct
reversion.	This	is	a	bad	habit	to	get	into	when	considering	the	masquerade	just
described.



described.

It’s	clear	from	this	example	that	in	either	case,	two	separate	build	artifacts	were
produced,	and	the	version	number	associated	with	the	build	artifact	is	a	separate
choice	for	the	project.	Therefore,	when	creating	a	build	system,	it’s	better	to
have	the	build	system	produce	immutable	versions	independent	of	the	publicly
communicated	version.	A	later	system	(the	distribution	system)	can	manage	the
mapping	of	release	versions	to	build	artifact	versions.	This	approach	enables	us
to	maintain	immutable	build	artifacts	without	sacrificing	usability	or	introducing
bad	security	practices.

Trusting	Distribution
The	process	of	choosing	which	build	artifacts	to	deliver	to	downstream
consumers	is	called	distribution.	The	build	system	produces	many	artifacts,	some
of	which	are	meant	for	downstream	consumption.	Therefore,	we	need	to	ensure
that	the	distribution	system	maintains	control	over	which	artifacts	are	ultimately
delivered.

Promoting	an	Artifact
Based		on	our	earlier	discussion	on	immutable	build	artifacts,	promotion	is	the
act	of	designating	a	build	artifact	as	the	authoritative	version	without	changing
the	contents	of	that	artifact.	This	act	itself	should	be	immutable:	once	a	version
is	assigned	and	released,	it	cannot	be	changed.	Instead,	a	new	artifact	needs	to	be
produced	and	released	under	an	incrementally	higher	version	number.

This	constraint	presents	a	chicken-and-egg	scenario.	Software	typically	includes
a	way	to	report	its	version	number	to	the	user,	but	if	the	version	number	isn’t
assigned	until	later	in	the	build	process,	how	does	one	add	that	version
information	without	changing	the	build	artifact?

A	naive	approach	would	be	to	subtly	change	the	artifact	during	the	promotion
process,	for	example,	by	having	the	version	number	stored	in	a	trivially	modified
location	in	the	build	artifact.	This	approach,	however,	is	not	preferred.	Instead,
release	engineers	should	make	a	clear	separation	between	the	publicly	released
version	number	and	the	build	number,	which	is	an	extra	component	of	the



release	information.	With	this	model,	many	build	artifacts	are	produced	which
use	the	same	public	release	version,	but	each	build	is	additionally	tagged	with	a
unique	build	number	(Figure	7-4).	The	act	of	releasing	that	version	is	therefore
choosing	the	build	artifact	that	will	be	signed	and	distributed.	Once	such	a
version	is	released,	all	new	builds	should	be	configured	to	use	the	next	target
version	number.

Figure	7-4.	This	Firefox	public	release	version	is	51.0.1,	but	the	package	name	retains	a	build	ID

Of	course,	this	promotion	must	be	communicated	to	the	consumer	in	a	way	that
they	can	validate	they	are	in	possession	of	the	promoted	build,	and	not	some
intermediary	and	potentially	flawed	build.	There	are	a	number	of	ways	to	do
this,	and	it	is	largely	a	solved	problem.	One	solution	is	to	sign	the	promoted
artifacts	with	a	release-only	key,	thus	communicating	to	the	consumers	that	they
have	a	promoted	build.	Another	way	to	do	this	is	to	publish	a	signed	manifest,
outlining	the	released	versions	and	their	cryptographic	hashes.	Many	popular
package	distribution	systems,	such	as	APT,	use	this	method	to	validate	builds
obtained	from	their	distribution	systems.

Distribution	Security
Software	distribution	is	similar	to	electricity	distribution,	where	electricity	is
generated	by	a	centralized	source,	and	carried	over	a	distribution	network	in
order	to	be	delivered	to	a	wide	consumer	base.	Unlike	electricity,	however,	the
integrity	of	the	produced	software	must	be	protected	while	it	transits	the
distribution	system,	and	allow	the	consumer	to	independently	validate	its
integrity.	There	are	a	number	of	widely	adopted	package	distribution	and
management	systems,	practically	all	of	which	have	implemented	protections
around	the	distribution	process	and	allow	consumers	to	validate	the	authenticity



of	packages	received	through	them.	Throughout	this	section,	we	will	use	the
popular	package	management	software	Advanced	Packaging	Tool	(APT)	as	an
example	of	how	certain	concepts	are	implemented	in	real	life,	though	it	is
important	to	keep	in	mind	that	there	are	many	options	available	to	you—APT	is
merely	one.

Integrity	and	Authenticity
There	are	two	primary	mechanisms	used	to	assert	integrity	and	authenticity	in
software	distribution	systems:	hashing	and	signing.	Hashing	a	software	release
involves	computing	and	distributing	a	cryptographic	hash	representing	the
binary	released,	which	the	consumer	can	validate	to	ensure	that	the	binary	has
not	been	changed	since	it	left	the	hands	of	the	developer.	Signing	a	release
involves	the	author	encrypting	the	hash	of	the	release	with	their	private	key,
allowing	consumers	to	validate	that	the	software	was	released	by	an	authorized
party.	Both	methods	are	effective,	and	are	not	necessarily	mutually	exclusive.	In
order	to	better	understand	how	these	methods	can	be	applied	in	a	distribution
system,	it	is	useful	to	look	at	the	structure	and	security	of	an	APT	repository.

An	APT	repository	contains	three	types	of	files:	a	Release	file,	a	Packages	file,
and	the	packages	themselves.	The	packages	file	acts	as	an	index	for	all	of	the
packages	in	the	repository.	It	stores	a	bit	of	metadata	on	every	package	the
repository	contains,	such	as	filenames,	descriptions,	and	checksums.	The
checksum	from	this	index	is	used	to	validate	the	integrity	of	the	downloaded
package	before	it	is	installed.	This	provides	integrity,	assuring	us	that	the
contents	have	not	changed	in	flight.	It	is,	however,	mostly	only	effective	against
corruption,	since	an	attacker	can	simply	modify	the	index	hashes	if	the	goal	is	to
deliver	modified	software.	This	is	where	the	Release	file	comes	in.

The	Release	file	contains	metadata	about	the	repo	itself	(as	opposed	to	the
Packages	file,	which	stores	metadata	about	the	packages	contained	within	it).
This	includes	things	like	the	name	and	version	of	the	OS	distribution	the	repo	is
meant	for.	It	also	includes	a	checksum	of	the	Packages	file,	allowing	the
consumer	to	validate	the	integrity	of	the	index,	which	in	turn	can	validate	the
integrity	of	the	packages	we	download.	That’s	great,	except	still	an	attacker	can
simply	modify	the	Release	file	with	the	updated	hash	of	the	Packages	file	and
be	on	their	way.



So,	we	introduce	cryptographic	signatures	(Figure	7-5).	A	signature	provides	not
only	integrity	for	the	contents	of	the	signed	file	(since	a	hash	is	included	in	the
signature),	but	also	authenticity,	since	successful	decryption	of	the	signature
proves	that	the	generating	party	was	in	the	presence	of	the	private	key.

Using	this	principle,	the	maintainer	of	the	software	repo	signs	the	Release	file
with	a	private	key,	to	which	there	is	a	well-known	and	well-distributed	public
key.	Any	time	the	repo	is	updated,	package	file	hashes	are	updated	in	the	index,
and	the	index’s	final	hash	is	updated	in	the	Release	file,	which	is	then	signed.
This	chain	of	hashes,	the	root	of	which	is	signed,	provides	the	consumer	with	the
ability	to	authenticate	the	software	they	are	about	to	install.

In	the	event	that	you’re	unable	to	sign	a	software	release	in	some	way,	it	is
essential	to	fall	back	to	standard	security	practices.	You	will	need	to	ensure	that
all	communication	is	mutually	authenticated—this	means	traffic	to,	from,	and	in
between	any	distribution	repository.	Additionally,	you’ll	need	to	ensure	that	the
storage	the	repository	leverages	is	adequately	secured,	be	it	AWS	S3	or
otherwise.



Figure	7-5.	The	maintainer	signs	the	Release	file,	which	contains	a	hash	of	the	Packages	index,	which
contains	hashes	of	the	packages	themselves

Trusting	a	Distribution	Network
When	distributing	software	with	a	large	or	geographically	disparate	consumer
base,	it	is	common	to	copy	the	software	to	multiple	locations	or	repositories	in
order	to	meet	scaling,	availability,	or	performance	challenges.	These	copies	are
often	referred	to	as	mirrors.	In	some	cases,	particularly	when	dealing	with
publicly	consumed	software,	the	servers	hosting	the	mirrors	are	not	under	the
control	of	the	organization	producing	the	software.	This	is	obviously	a	concern,
and	underscores	the	requirement	of	a	software	repo	to	be	authenticated	against
the	author	(and	not	the	repo	owner).

Referring	back	to	APT’s	hashing	and	signing	scheme,	it	can	be	seen	that	we	can,
in	fact,	authenticate	the	Release	file	against	the	author	using	its	signature.	This
means	that	for	every	mirror	we	access,	we	can	check	the	Release	signature	to
validate	that	the	mirror	is	in	fact	a	faithful	copy	of	the	original	release.



One	might	think	that	by	signing	the	Release	file,	software	can	be	distributed
through	untrusted	mirrors	safely.	Additionally,	repositories	are	often	hosted
without	TLS	under	the	assertion	that	the	signing	of	the	release	is	sufficient	for
protecting	the	distribution	network.	Unfortunately,	both	of	these	assertions	are
incorrect.

There	are	several	classes	of	attacks	that	open	up	when	connecting	to	an	untrusted
mirror,	despite	the	fact	that	the	artifact	you’re	obtaining	is	ultimately	signed.	For
instance,	a	downgrade	to	an	older	(signed)	version	can	be	forced,	as	the	artifact
served	will	still	be	legitimate.	Other	attack	vectors	can	include	targeting	the
package	management	client	itself.	In	the	interest	of	protecting	your	clients,
always	make	sure	they	are	connecting	to	a	trusted	distribution	mirror.

The	dearth	of	TLS-protected	repositories	presents	another	vulnerability	to	the
distribution	of	software.	Attackers	that	are	in	a	position	to	modify	the
unprotected	response	could	perform	the	same	attacks	that	an	untrusted	mirror
could.	Therefore,	the	best	solution	to	this	problem	is	moving	package
distribution	to	TLS-protected	mechanisms.	By	adding	TLS,	clients	can	validate
that	they	are	in	fact	connecting	to	a	trusted	repository	and	that	no	tampering	of
the	communication	can	occur.

Humans	in	the	Loop
With	a	secure	pipeline	crafted,	we	can	make	considered	decisions	on	where
humans	are	involved	in	that	pipeline.	By	limiting	human	involvement	only	to	a
few	key	points,	the	release	pipeline	stays	secure	while	also	ensuring	that
attackers	are	not	able	to	leverage	automation	in	the	pipeline	to	deliver	malicious
software.

The	ability	to	commit	code	to	the	version	control	system	is	a	clear	spot	where
humans	are	involved.	Depending	on	the	sensitivity	of	the	project,	requiring
humans	to	only	check	in	signed	commits	provides	strong	confidence	that	the
commit	is	authentic.

Once	committed,	humans	needn’t	be	involved	in	the	building	of	software
artifacts.	Those	artifacts	should	ideally	be	produced	automatically	in	a	secured
system.	Humans	should,	however,	be	involved	in	the	process	of	choosing	which
artifact	is	ultimately	distributed.	This	involvement	could	be	implemented	using



various	mechanisms:	copying	an	artifact	from	the	build	database	to	the	release
database	or	tagging	a	particular	commit	in	source	control,	for	example.	The
mechanism	by	which	humans	certify	a	releasable	binary	doesn’t	much	matter,	as
long	as	that	mechanism	is	secured.

It’s	tempting	when	building	secure	systems	to	apply	extreme	measures	to
mitigate	any	conceivable	threat,	but	the	burden	placed	on	humans	should	be
balanced	against	the	potential	risk.	In	the	case	of	software	that	is	widely
distributed,	the	private	signing	key	should	be	well	guarded,	since	the	effort	of
rotating	a	compromised	key	would	be	extreme.	Organizations	that	release
software	like	this	will	commonly	use	“code	signing	ceremonies,”	where	the
signing	key	is	stored	on	a	hardware	security	module	(HSM)	and	unlocked	using
authorization	from	multiple	parties,	as	a	mitigation	against	the	theft	of	this
highly	sensitive	key.	For	internal	use–only	software,	the	effort	to	rotate	a	key
might	be	reasonably	less,	so	more	lax	security	practices	are	reasonable.	An
organization	might	still	prefer	a	code	signing	ceremony	for	particularly	sensitive
internal	applications—a	system	that	stores	credit	card	details,	for	example.

HUMANS	AND	CODE	SIGNING	KEYS
Bit9	is	a	software	security	firm	that	develops	an	application	enabling	application	whitelisting.
They	had	many	high-profile	clients,	from	government	agencies	to	Fortune	100	companies.	In
2013,	an	attack	against	their	corporate	network	was	able	to	recover	one	of	Bit9’s	private	code
signing	keys,	which	was	then	used	to	sign	and	install	malware	into	a	handful	of	its	customers.
It	is	widely	believed	that	this	was	done	in	order	to	bypass	the	strong	security	provided	by
Bit9’s	software	itself,	and	underscores	the	importance	of	securing	code	signing	keys.	If	you
carry	high	risk,	as	Bit9	did,	it	might	be	a	good	idea	to	employ	a	code	signing	ceremony.

Trusting	an	Instance
Understanding	what	is	running	in	your	infrastructure	is	important	when
designing	a	zero	trust	network.	After	all,	how	can	you	know	what	to	expect	on
your	network	if	you	don’t	know	what	to	expect	on	your	hosts?	A	solid
understanding	of	the	software	(and	versions)	running	in	your	datacenter	will	go	a
long	way	in	both	breach	detection	and	vulnerability	mitigation.

Upgrade-Only	Policy



Upgrade-Only	Policy
Software	versions	are	important	constructs	in	determining	exactly	which	version
of	the	code	you	have	and	how	old	it	is.	Perhaps	most	importantly,	they	are	used
heavily	in	order	to	determine	what	vulnerabilities	one	might	be	exposed	to,
given	the	version	they	are	running.

Vulnerability	announcements/discoveries	are	typically	associated	with	a	version
number	(online	service	vulnerabilities	being	the	exception),	and	generally
include	the	version	numbers	in	which	the	vulnerability	was	fixed.	With	this	in
mind,	we	can	see	that	it	might	be	desirable	to	induce	a	version	downgrade	in
order	to	expose	a	known	vulnerability.	This	is	an	effective	attack	vector	as	the
software	being	coerced	to	run	is	frequently	authorized	and	trusted,	since	it	is	a
perfectly	valid	release,	albeit	an	older	one.

If	the	software	is	built	for	internal	distribution,	perhaps	the	distribution	system
serves	only	the	latest	copy.	Doing	this	prevents	a	compromised	or	misconfigured
system	from	pulling	down	an	old	version	that	may	contain	a	known
vulnerability.	It	is	also	possible	to	enforce	this	roll-forward	mentality	in
hardware.	Apple	iOS	famously	uses	a	hardware	security	chip	to	validate
software	updates	and	to	ensure	that	only	signed	software	built	after	the	currently
installed	software	can	be	loaded.

Authorized	Instances
The	importance	of	knowing	what’s	running	is	more	nuanced	than	simply
understanding	what	is	the	latest	version	to	have	been	deployed.	There	are	many
edge	cases	that	arise,	such	as	a	host	that	has	fallen	out	of	the	deployment	system;
one	that	has	been	previously	authorized	but	is	now	“rogue”	by	way	of	no	longer
receiving	updates.	In	order	to	guard	against	cases	like	this,	it’s	critical	that
running	instances	be	individually	authorized.

It	is	possible	to	use	techniques	described	in	Chapter	4	to	build	dynamic	network
policy	in	an	effort	to	authorize	application	instances,	but	network	policy	is	often
host/device	oriented	rather	than	application	oriented.	Instead,	we	can	leverage
something	much	more	application-centric	in	the	pursuit	of	authorizing	a	running
instance:	secrets.

Most	running	applications	require	some	sort	of	secret	in	order	to	do	their	job.
This	secret	can	manifest	itself	in	many	ways:	an	API	key,	an	X509	certificate,	or



even	credentials	to	a	message	queue	are	common	examples.	Applications	must
obtain	the	secret(s)	in	order	to	run,	and	furthermore,	the	secret	must	be	valid.
The	validity	of	a	secret	(as	obvious	as	it	sounds)	is	the	key	to	authorizing	a
running	application,	as	with	validation	comes	invalidation.

Attaching	a	lifetime	to	a	secret	is	extremely	effective	in	limiting	its	abuse.	By
creating	a	new	secret	for	every	deployed	instance	and	attaching	a	lifetime	to	the
secret,	we	can	assert	that	we	know	precisely	what	is	running,	since	we	know
precisely	how	many	secrets	we	have	generated,	whom	we	gave	them	to,	and
their	lifetimes.	Allowing	secrets	to	expire	mitigates	the	impact	of	“rogue”
instances	by	ensuring	they	will	not	operate	indefinitely.

Of	course,	someone	must	be	responsible	for	generating	and	injecting	these
secrets	at	runtime,	and	this	is	no	small	responsibility.	The	system	carrying	this
responsibility	is	ultimately	the	system	that	is	authorizing	the	instance	to	run.	As
such,	it	makes	sense	for	this	responsibility	to	fall	in	the	hands	of	the	deployment
system,	since	it	already	carries	similar	responsibility.

TRUSTED	THIRD	PARTIES	IN	INSTANCE	AUTHORIZATION

Rather	than	giving	your	deployment	system	direct	access	to	secrets,	it	is
possible	to	leverage	a	trusted	third	party,	allowing	the	deployment	system	to
instead	assign	policy	dictating	which	secrets	the	running	instance	can	access.
Hashicorp’s	Vault,	for	instance,	has	a	feature	called	response	wrapping	in
which	an	authorized	party	can	request	a	secret	to	be	generated	and	stored	for
later	retrieval.	In	the	context	of	a	deployment	system,	the	deploy	itself	could
contact	Vault	and	direct	the	creation	of	secrets	on	behalf	of	the	authorized
instances,	injecting	a	one-time-token	into	the	runtime	which	the	application
can	use	to	retrieve	the	generated	secrets,	as	shown	in	Figure	7-6.

In	such	a	system,	the	deployment	service	notifies	the	secret	management
service	of	the	impending	changes,	authorizing	the	new	application	instances.
During	the	deploy	itself,	the	deployment	service	injects	key(s),	which	the
new	instances	use	to	identify	themselves	to	the	secret	management	system,
which	is	expecting	their	request.	The	secret	management	system	then
provisions	unique	time-bound	credentials,	returns	them	to	the	application,
and	further	continues	to	manages	their	lifecycle.



Figure	7-6.	Example	flow	of	a	system	that	provisions	per-deployment	credentials

It	doesn’t	take	much	thought	to	realize	the	power	of	a	system	which	can	create
and	(potentially)	retrieve	secrets.	With	great	power	comes	great	responsibility.	If
allowing	an	autonomous	system	to	generate	and	distribute	secrets	comes	with
too	much	risk	for	your	organization,	you	might	consider	including	a	human	at
this	step.	Ideally,	this	would	manifest	as	a	human-approved	deployment	in	which
a	TOTP	or	other	authenticating	code	is	provided.	This	code	will,	in	turn,	be	used
to	authorize	the	creation/retrieval	of	the	secrets	by	the	deployment	system.

Runtime	Security
Trusting	that	an	application	instance	is	authorized/sanctioned	is	only	one	half	of
the	concern.	There	is	also	the	need	to	validate	that	it	can	run	safely	and	securely
through	its	lifecycle.	We	know	how	to	deploy	an	application	securely,	and
validate	that	its	deployment	is	authorized,	but	will	it	remain	an	authorized	and



trustworthy	deployment	for	the	entirety	of	its	life?

There	are	many	vectors	which	can	compromise	perfectly	authorized	application
instances,	and	it	might	be	no	surprise	to	learn	that	these	are	the	most	commonly
used	vectors.	For	instance,	it	is	typically	easier	to	corrupt	an	existing	government
agent	than	it	is	to	masquerade	as	one	or	attempt	to	become	one.	For	this	reason,
individuals	with	outstanding	debt	are	commonly	denied	security	clearance.	They
might	be	fully	trusted	at	the	time	they	are	granted	clearance,	but	how	susceptible
are	they	to	bribery	if	they	are	in	debt?	Can	they	be	trusted	in	this	case?

Secure	Coding	Practices
Most	(all?)	application-level	vulnerabilities	start	with	a	latent	bug,	which	an
attacker	can	leverage	to	coerce	the	trusted	application	to	perform	an	undesirable
action.	Fixing	each	bug	in	isolation	will	result	in	a	game	of	whack-a-mole,
where	developers	fix	one	security-impacting	bug	only	to	find	two	more.	Truly
mitigating	this	exposure	requires	a	shift	in	mindset	of	the	application	developers
to	secure	coding	practices.

Injection	attacks,	where	user-supplied	data	is	crafted	to	exploit	a	weakness	in	an
application	or	related	system,	commonly	occur	when	user	data	is	not	properly
validated	before	being	processed.	This	type	of	attack	is	mitigated	by	introducing
several	layers	of	defenses.	Application	libraries	will	carefully	construct	APIs
that	avoid	trusting	user-supplied	data.	Database	querying	libraries,	for	example,
will	provide	APIs	to	allow	the	programmer	to	separate	the	static	query	from
variables	that	are	provided	by	the	user.	By	instituting	a	clear	separation	between
logic	and	data,	the	potential	for	injection	attacks	is	greatly	reduced.

Having	clear	APIs	can	also	support	automated	scans	of	application	software.
Security-aware	organizations	are	increasingly	running	automated	analysis	tools
against	their	source	code	to	detect	and	warn	application	developers	of	insecure
coding	practices.	These	systems	warn	about	using	insecure	APIs,	for	example,
by	highlighting	database	queries	that	are	constructed	using	string	concatenation
instead	of	the	API	discussed	earlier.	Beyond	warning	about	insecure	APIs,
application	logic	can	be	traced	to	identify	missing	checks.	For	example,	these
tools	might	confirm	that	every	system	transaction	includes	some	authorization
check,	which	mitigates	vulnerabilities	that	allow	attackers	to	reference	data	that
they	should	not	be	allowed	to	access.	These	examples	represent	only	a	handful



of	the	capabilities	possessed	by	code	analysis	tools.

Proactively	identifying	known	vulnerabilities	is	useful,	but	some	vulnerabilities
are	too	subtle	to	deterministically	detect.	As	a	result,	another	mitigation
technique	in	use	is	fuzzing.	This	practice	sends	random	data	to	running
applications	to	detect	unexpected	errors.	These	errors,	when	exposed,	are	often
the	sort	of	weaknesses	that	attackers	use	to	gain	a	foothold	in	the	system.
Fuzzing	can	be	executed	as	part	of	a	functional	testing	suite	early	in	the	build
pipeline,	or	even	continuously	against	production	infrastructure.

There	are	entire	books	written	on	secure	coding	practices,	some	of	which	are
dependent	on	the	type	of	application	being	created.	Programmers	should
familiarize	themselves	with	the	appropriate	practices	to	improve	the	security	of
their	applications.	Many	organizations	choose	to	have	security	consultants
inspect	their	applications	and	development	practices	to	identify	problems.

Isolation
Isolating	deployed	applications	by	constraining	the	set	of	resources	they	can
access	is	important	in	a	zero	trust	network.	Applications	have	traditionally	been
executed	inside	a	shared	environment,	where	a	user’s	applications	are	running	in
an	execution	environment	with	very	few	constraints	on	how	those	applications
can	interact.	This	shared	environment	creates	a	large	amount	of	risk	should	an
application	be	compromised,	and	presents	challenges	similar	to	the	perimeter
model.

Application	isolation	seeks	to	constrain	the	damage	of	a	potentially
compromised	application	by	clearly	defining	the	resources	that	are	available	to
the	application.	Isolation	will	constrain	capabilities	and	resources	that	the
operating	system	provides:

CPU	time

Memory	access

Network	access

Filesystem	access

System	calls



When	implemented	at	its	best,	every	application	is	given	the	least	amount	of
access	necessary	to	complete	its	work.	A	well-constrained	application	that
becomes	compromised	will	quickly	find	that	no	additional	leverage	in	the	larger
system	is	gained.	As	a	result,	by	isolating	applications,	the	potential	damage
from	a	compromised	application	is	greatly	reduced.	In	a	multiprocess
environment	(e.g.,	a	server	running	several	services),	other	still-safe	services	are
protected	from	attempts	to	move	laterally	on	that	system.

Application	isolation	can	be	accomplished	using	a	number	of	different
technologies:

SELinux,	AppArmor

BSD	jails

Virtualization/containerization

Apple’s	App	Sandbox

Windows’	Isolated	Applications

Isolation	is	generally	seen	as	breaking	down	into	two	types:	virtualization	and
shared	kernel	environments.	Virtualization	is	often	considered	more	secure,
since	the	application	is	contained	inside	a	virtual	hardware	environment,	which
is	serviced	by	a	hypervisor	outside	the	VM’s	execution	environment.	Having	a
clear	boundary	between	the	hypervisor	and	the	virtual	machine	creates	the
smallest	surface	area	of	the	two.

Shared	kernel	environments,	like	those	used	in	containerized	or	application
policy	systems,	provide	some	isolation	guarantees,	but	not	to	the	same	degree	as
a	fully	virtualized	system.	A	shared	kernel	execution	environment	uses	fewer
resources	to	run	the	same	set	of	applications,	and	is	therefore	gaining	favor	in
cost-conscious	organizations.	As	virtualization	tries	to	address	the	resource-
efficiency	problem,	by	providing	more	direct	access	to	the	underlying	hardware,
the	security	benefits	of	the	virtualized	environment	begin	to	look	more	like	the
shared	kernel	environment.	Depending	on	your	threat	model,	you	may	choose	to
not	share	hardware	at	all.

Active	Monitoring



As	with	any	production	system,	careful	monitoring	and	logging	is	of	the	utmost
importance,	and	is	particularly	critical	in	the	context	of	security.	Traditional
security	models	focus	their	attention	on	external	attack	vectors.	Zero	trust
networks	encourage	the	same	level	of	rigor	for	internal	activity.	Early	detection
of	an	attack	could	be	the	difference	between	complete	compromise	and
prevention	altogether.

Apart	from	the	general	logging	of	security	events	throughout	the	infrastructure
such	as	failed	or	successful	logins,	which	is	considered	passive	monitoring,	there
exists	an	entire	class	of	active	monitoring	as	well.	For	instance,	the	fuzzing	scans
we	previously	discussed	can	take	time	to	turn	up	new	vulnerabilities—perhaps
more	time	than	you’re	willing	to	spend	early	on	in	the	release	pipeline.	An	active
monitoring	strategy	advocates	that	the	scans	also	be	run	against	production,
continuously.

DON’T	DO	THAT	IN	PRODUCTION!
Occasionally,	the	desire	to	take	certain	actions	in	production	can	be	met	with	resistance	for
fear	of	impacting	availability	or	stability	of	the	overall	system.	Security	scans	frequently	fall
into	this	bucket.	In	reality,	if	a	security	scan	can	destabilize	your	system,	then	there	is	a	greater
underlying	problem,	which	might	even	be	a	vulnerability	in	and	of	itself.	Rather	than	avoiding
potentially	dangerous	scans	in	production,	ask	why	they	might	be	risky,	and	work	to	ensure
that	they	can	be	run	safely	by	resolving	any	system	deficiencies	contributing	to	the	concern.

Of	course,	fuzzing	is	just	one	example.	Automated	scanning	can	be	a	useful	tool
for	ensuring	consistent	behavior	in	a	system.	For	example,	a	database	of
anticipated	listening	services	could	be	compared	against	an	automated	scan	of
actual	listening	services	so	deviations	can	be	addressed.	Not	all	scanning	will
result	in	such	clear	action,	however.	Scanning	of	installed	software,	for	example,
will	typically	be	used	to	drive	prioritization	of	upgrades	based	on	the	threats	a
network	is	exposed	to	or	expects	to	see.

Effective	system	scanning	requires	multiple	types	of	scanner,	each	of	which
inspects	the	system	in	a	slightly	different	manner:

Fuzzing	(i.e.,	afl-fuzz)

Injection	scanning	(i.e.,	sqlmap)



Network	port	scanning	(i.e.,	nmap)

Common	vulnerability	scanning	(i.e.,	nessus)

So,	what	to	do	when	all	this	monitoring	actually	discovers	something?	The
answer	typically	depends	on	the	strength	of	the	signal.	Traditionally,	suspicious
(but	not	critical)	events	get	dumped	into	reports	and	periodically	reviewed.	This
practice	is	by	far	the	least	effective,	as	it	can	lead	to	report	fatigue,	with	reports
going	unnoticed	for	weeks	at	a	time.	Alternatively,	important	events	can	page	a
human	for	active	investigation.	These	events	have	a	strong	enough	signal	to
warrant	waking	someone	up.	In	most	cases,	this	is	the	strongest	line	of	defense.

APPLICATIONS	MONITORING	APPLICATIONS
One	novel	idea	in	the	context	of	application	security	monitoring	is	the	idea	that	applications
participating	in	a	single	cluster	or	service	can	actively	monitor	the	health	of	their	peers,	and
gain	consensus	with	others	on	their	sanity.	This	might	manifest	itself	as	TPM	quotes,
behavioral	analysis,	and	everything	in	between.	By	allowing	applications	to	monitor	each
other,	you	gain	a	high	signal-to-noise	ratio	while	at	the	same	time	distributing	the
responsibility	throughout	the	infrastructure.	This	approach	most	effectively	guards	against
side-channel	attacks,	or	attacks	enabled	through	multi-tenancy,	since	these	vectors	are	less
likely	to	be	shared	across	the	entire	cluster.

In	highly	automated	environments,	however,	a	third	option	opens	up:	active
response.	Strong	signals	that	“something	is	wrong”	can	trigger	automated
actions	in	the	infrastructure.	This	could	mean	revoking	keys	belonging	to	the
suspicious	instance,	booting	it	out	of	cluster	membership,	or	even	signaling	to
datacenter	management	software	that	the	instance	should	be	moved	offline	and
isolated	for	forensics.

Of	course,	as	with	any	high-level	automation,	one	can	do	a	lot	of	damage	very
quickly	when	utilizing	active	responses.	It	is	possible	to	introduce	denial-of-
service	attacks	with	such	mechanisms,	or	perhaps	more	likely,	shut	down	a
service	as	a	result	of	operator	error.	When	designing	active	response	systems,	it
is	important	to	put	a	number	of	fail-safes	in	place.	For	instance,	an	active
response	that	ejects	a	host	from	a	cluster	should	not	fire	if	the	cluster	size	is
dangerously	low.	Being	thoughtful	about	building	active	response	limitations
such	as	this	goes	a	long	way	in	ensuring	the	sanity	of	the	active	response	process



itself.

Summary
This	chapter	dove	into	how	applications	in	a	zero	trust	network	are	secured.	It
might	seem	counter-intuitive	that	a	zero	trust	network	needs	to	be	concerned
with	application	security.	After	all,	the	network	is	untrusted	so	untrustworthy
applications	existing	on	the	network	should	be	expected.	However,	while	the
network	works	to	detect	and	identify	malicious	application	activity,	that	goal	is
made	impossible	if	deployed	applications	are	not	properly	vetted	before	being
authorized	to	run.	As	a	result,	most	of	this	chapter	focused	on	how	to	securely
develop,	build	and	deploy	applications	in	a	zero	trust	network,	and	then	monitor
the	running	instances	to	ensure	that	they	stay	trustworthy.

The	chapter	introduced	the	concept	of	a	trusted	application	pipeline,	which	is	the
mechanism	by	which	software	written	by	trusted	developers	is	transformed	into
built	applications	that	are	then	deployed	into	infrastructure.	This	pipeline	is	a
highly	valuable	target	for	would-be	attackers,	and	so	it	deserves	special
attention.	We	dug	into	secure	source	code	hosting	practices,	sound	practices	for
turning	source	code	into	trusted	artifacts,	and	securely	selecting	and	distributing
those	artifacts	to	downstream	consumers.	The	application	pipeline	can	be
visualized	as	a	series	of	immutable	transformations	on	input	from	earlier	in	the
pipeline,	so	we	explored	how	to	meet	the	goals	of	that	pipeline	without
introducing	too	much	friction	in	the	process.

Human	attention	is	a	scarce	but	important	resource	in	a	secure	system.	With	the
rate	of	software	releases	ever	increasing,	it’s	important	to	mindfully	consider
when	humans	are	best	introduced	in	the	proces.	We	discussed	where	to	put
humans	in	the	loop	to	ensure	that	the	pipeline	remains	secure.

Once	applications	are	built,	the	process	of	securing	their	continued	execution	in
a	production	environment	shifts	a	bit.	Old	trusted	applications	may	in	the	future
become	untrusted	as	vulnerabilities	are	discovered,	so	we	discussed	the
importance	of	an	upgrade-only	policy	when	running	applications.	Secrets
management	is	often	a	difficult	task	for	security	engineers,	where	changing
credentials	is	often	very	burdensome.	With	a	smooth	credential	provisioning
process,	however,	a	new	opportunity	emerges	to	frequently	rotate	credentials,



using	the	credentialing	process	itself	as	a	mechanism	for	ensuring	only
authorized	applications	continue	to	run	in	a	production	environment.

We	ended	the	chapter	with	a	section	discussing	good	application	security
hygiene.	Learning	secure	coding	practices,	deploying	applications	in	isolated
environments,	and	then	monitoring	them	aggressively	is	the	final	leg	in	a
trustworthy	production	environment.

With	all	the	components	of	a	zero	trust	network	explored,	the	next	chapter
focuses	on	how	network	communication	itself	is	secured.



Chapter	8.	Trusting	the	Traffic

Authenticating	and	authorizing	network	flows	is	a	critical	aspect	of	a	zero	trust
network.	In	this	chapter,	we’re	going	to	discuss	how	encryption	fits	into	the
picture,	how	to	bootstrap	flow	trust	by	way	of	secure	introduction,	and	where	in
your	network	these	security	protocols	best	fit.

Zero	trust	is	not	a	complete	departure	from	everything	we	know.	Traditional
network	filtering	still	plays	a	significant	role	in	zero	trust	networks,	though	its
application	is	nontraditional.	We’ll	explore	the	role	filtering	plays	in	these
networks	toward	the	end	of	this	chapter.

Encryption	Versus	Authentication
Encryption	and	authenticity	often	go	hand	in	hand,	yet	serve	distinctly	separate
purposes.	Encryption	ensures	confidentiality—the	promise	that	only	the	receiver
can	read	the	data	you	send.	Authentication	enables	a	receiver	to	validate	that	the
message	was	sent	by	the	thing	it	is	claiming	to	be.

Authentication	comes	with	another	interesting	property.	In	order	to	ensure	that	a
message	is	in	fact	authentic,	you	must	be	able	to	validate	the	sender	and	that	the
message	is	unaltered.	Referred	to	as	integrity,	this	is	an	essential	property	of
message	authentication.

Encryption	is	possible	without	authentication,	though	this	is	considered	a	poor
security	practice.	Without	validation	of	the	sender,	an	attacker	is	free	to	forge
messages,	possibly	replaying	previous	“good”	messages.	An	attacker	could
change	the	ciphertext,	and	the	receiver	would	have	no	way	of	knowing.	There
are	a	number	of	vectors	opened	by	the	omission	of	authentication,	so	the
recommendation	is	pretty	much	the	same	across	the	board:	use	it.

Authenticity	Without	Encryption?
Message	authenticity	is	a	stated	requirement	of	a	zero	trust	network,	and	it	is	not
possible	to	build	one	without	it.	But	what	about	encryption?

Encryption	brings	confidentiality,	but	it	can	also	be	an	occasional	nuisance.



Encryption	brings	confidentiality,	but	it	can	also	be	an	occasional	nuisance.
Troubleshooting	becomes	harder	when	you	can’t	read	packet	captures	without
complicated	decryption	processes.	Intrusion	detection	becomes	difficult	to
impossible	if	the	network	traffic	can’t	be	inspected.	There	are,	in	fact,	some
legitimate	reasons	to	avoid	encryption.

That	said,	be	absolutely	certain	that	you	do	not	care	about	data	confidentiality	if
you	choose	to	not	use	encryption.	While	keeping	data	unencrypted	is	convenient
for	administrators,	it	is	never	legitimate	if	the	data	actually	requires
confidentiality.	For	instance,	consider	the	scenario	shown	in	Figure	8-1.

Figure	8-1.	Confidentiality	within	the	datacenter	is	just	as	important	as	outside	the	datacenter

This	is	an	exceedingly	common	architecture.	Note	that	it	only	encrypts	traffic	in
certain	areas,	leaving	the	rest	open	(perhaps	for	the	benefit	of	system
administrators).	Clearly,	however,	this	data	requires	confidentiality,	as	it	is
encrypted	in	transit	between	sites.

This	is	a	direct	contradiction	of	the	zero	trust	architecture,	as	it	creates	privileged



This	is	a	direct	contradiction	of	the	zero	trust	architecture,	as	it	creates	privileged
zones	in	the	network.	Thus,	citing	good	reasons	to	not	encrypt	traffic	is	a	very
slippery	slope.	In	practice,	systems	that	truly	do	not	require	confidentiality	are
rare.

In	addition	to	all	of	this,	authentication	is	still	required.	There	are	few	network
protocols	which	provide	strong	authentication	but	not	encryption,	and	all	of	the
transport	protocols	we	discuss	in	this	book	provide	authentication	as	well	as
encryption.	If	you	look	at	it	this	way,	encryption	is	attained	“for	free,”	leaving
few	good	reasons	to	exclude	it.

Bootstrapping	Trust:	The	First	Packet
The	first	packet	in	a	flow	is	oftentimes	an	onerous	one.	Depending	on	the	type	of
connection,	or	point	of	the	device	lifecycle,	this	packet	can	carry	with	it	very
little	trust.

We	generally	know	what	flows	to	expect	inside	the	datacenter,	but	in	client-
facing	systems,	it’s	anyone’s	guess.	These	systems	must	be	widely	reachable,
which	greatly	increases	risk.	We	can	use	protocols	like	mutually	authenticated
TLS	to	authenticate	the	device	before	it	is	allowed	to	access	the	service;
however,	the	attack	surface	in	this	scenario	is	still	considerable,	and	the
resources	are	also	publicly	discoverable.

So	how	do	you	allow	only	trusted	connections,	silently	dropping	all	others,
without	answering	a	single	unauthenticated	packet?	This	is	known	as	the	first
packet	problem,	and	it	is	mitigated	through	a	method	called	pre-authentication
(Figure	8-2).

Pre-authentication	can	be	thought	of	as	the	authorizing	of	an	authentication
request	by	setting	an	expectation	for	it.	It	is	often	accomplished	by	encrypting
and/or	signing	a	small	piece	of	data	and	sending	it	to	the	resource	as	a	UDP
packet.	The	use	of	UDP	for	pre-authentication	is	important	because	UDP	packets
do	not	receive	a	response	by	default.	This	property	allows	us	to	“hide,”	exposing
ourselves	only	once	we	passively	receive	a	packet	encrypted	with	the	right	key.

Upon	the	passive	receipt	of	a	properly	encrypted	pre-authentication	packet,	we
know	we	can	expect	the	sender	to	begin	authentication	with	us,	and	we	can	poke



granular	firewall	holes	allowing	only	the	sender	the	ability	to	speak	with	our
TLS	server.	This	mode	of	pre-authentication	operation	is	also	known	as	Single
Packet	Authorization	(SPA).

SPA	is	not	a	fully	suited	device	authentication	protocol.	It	merely	helps	to
mitigate	the	first	packet	problem.	Without	downplaying	the	importance	of	the
properties	we	gain	by	using	pre-authentication,	it	must	not	be	substituted	for	a
more	robust	mutually	authenticating	protocol	like	TLS	or	IKE.

Figure	8-2.	A	client	in	possession	of	the	pre-authorization	key	can	send	a	signed	packet	in	order	to	set	an
expectation	for	a	TCP	connection.	Without	it,	no	acknowledgments	are	sent.

fwknop
fwknop	is	a	popular	open	source	SPA	implementation.	It	supports	a	wide	variety
of	operating	systems,	and	integrates	directly	with	host	firewalls	to	coordinate	the
creation	of	tightly	scoped	and	short-lived	exceptions.

Short-lived	exceptions

When	fwknop	receives	a	valid	SPA	packet,	its	contents	are	decrypted	and
inspected.	The	decrypted	payload	includes	protocol	and	port	numbers	which	the
sender	is	requesting	access	to.	fwknop	uses	this	to	create	firewall	rules

http://www.cipherdyne.org/fwknop/


sender	is	requesting	access	to.	fwknop	uses	this	to	create	firewall	rules
permitting	traffic	from	the	sender	to	those	particular	ports—rules	that	are
removed	after	a	configurable	period	of	time.	The	default	value	is	30	seconds,	but
in	practice,	you	may	only	need	just	a	few	seconds.

As	mentioned,	the	rule	which	fwknop	creates	is	tightly	scoped.	It	permits	only
the	sender’s	IP	address	and	only	the	destination	ports	requested	by	the	sender.
The	destination	ports	which	may	be	requested	can	be	restricted	via	policy	on	a
user-by-user	basis.	Additionally,	it	is	possible	for	the	sender	to	specify	a	source
port,	restricting	the	scope	of	the	rule	even	further.

SPA	payload

The	fwknop	SPA	implementation	has	seven	mandatory	fields	and	three	optional
fields	included	in	its	payload.	Among	these	are	a	username,	the	access	request
itself	(which	port,	etc.),	a	timestamp,	and	a	checksum:

16	bytes	of	random	data

Local	username

Local	timestamp

fwknop	version

SPA	message	type

Access	request

SPA	message	digest	(SHA-256	by	default)

Once	the	client	has	generated	the	payload,	it	is	encrypted,	an	optional	HMAC	is
added,	and	the	SPA	packet	is	formed	and	transmitted.

Payload	encryption

Two	modes	of	encryption	are	supported:	AES	and	GnuPG.	The	former	being
symmetric	and	the	latter	being	asymmetric,	two	options	are	provided	in	order	to
cater	to	multiple	use	cases	and	preferences.

Personal	applications	or	small	installations	might	prefer	AES	since	it	does	not
require	any	GnuPG	tooling.	AES	is	also	more	performant	with	regard	to	data
volume	and	computational	overhead.	It	does	have	some	downsides	though,



volume	and	computational	overhead.	It	does	have	some	downsides	though,
practically	all	of	which	originate	from	the	fact	that	it	is	a	symmetric	algorithm.

Symmetric	encryption	comes	with	difficult	key	distribution	problems,	and
beyond	a	certain	scale,	these	challenges	can	grow	to	be	untenable.	Leveraging
the	GnuPG	encryption	mode	solves	most	of	these	problems	and	is	the
recommended	mode	of	operation,	despite	being	less	performant	than	its
counterpart.

HMAC

fwknop	can	be	configured	to	add	an	HMAC	to	the	end	of	its	payload.	A	hashed
message	authentication	code	(HMAC)	prevents	tampering	by	guaranteeing	that
the	message	is	authentic.	This	is	important	because	otherwise	an	attacker	could
arbitrarily	modify	the	ciphertext,	and	the	receiver	would	be	forced	to	process	it.

You	may	have	noticed	that	there	is	a	message	digest	which	is	calculated	and
stored	along	with	the	plain	text.	This	digest	helps	to	mitigate	attacks	in	which	the
ciphertext	is	modified,	but	is	also	less	than	ideal,	as	this	method	(known	as
authenticate-then-encrypt	or	AtE)	is	vulnerable	to	a	few	niche	classes	of	attacks.
Adding	an	HMAC	to	the	encrypted	payload	prevents	these	attacks	from	being
effective.

In	addition,	decryption	routines	are	generally	much	more	complex	than	HMAC
routines,	meaning	they	are	more	likely	to	suffer	from	a	vulnerability.	Applying
an	HMAC	to	the	ciphertext	allows	the	receiver	to	perform	a	lightweight	integrity
check,	helping	to	ensure	that	we	are	only	sending	trusted	data	to	the	decryption
routines.

It	is	strongly	recommended	to	configure	fwknop	to	use	HMAC.

A	Brief	Introduction	to	Network	Models
Networking	stacks	have	many	different	responsibilities	in	transmitting	data	over
a	network.	As	such,	it	would	be	easy	for	a	networking	stack	to	become	a
jumbled	mess	of	code.	Therefore,	the	industry	long	ago	decided	to	spend	the
effort	to	clearly	define	a	set	of	standardized	layers	in	a	networking	stack.	Each
layer	is	responsible	for	some	portion	of	the	job	of	transmitting	data	over	the
wire.	Lower	layers	deliver	functionality	and	guarantees	to	higher	layers	in	the



stack.

Building	up	these	layers	isn’t	just	useful	for	organizing	code.	These	layer
definitions	are	often	used	to	describe	where	new	technology	operates	in	the
stack.	For	example,	you	might	have	heard	of	a	layer	7	or	layer	4	load	balancer.	A
load	balancer	distributes	traffic	load	across	a	set	of	backend	machines,	but	the
layer	at	which	it	operates	greatly	determines	its	capabilities.	A	layer	7	load
balancer,	for	example,	can	make	decisions	about	where	to	route	traffic	based	on
details	in	an	HTTP	request	like	the	requested	path	or	a	particular	header.	HTTP
operates	at	layer	7,	so	this	data	is	available	to	inspect.	A	layer	4	load	balancer,
by	contrast,	does	not	consider	layer	7	data	and	therefore	can	only	pass	traffic
based	on	simpler	connection	details	like	the	source	IP	and	port.

There	are	many	different	network	models.	Most	of	these	models	can	be	roughly
mapped	to	equivalents	in	other	network	models,	but	sometimes	the	boundaries
can	be	a	bit	fuzzy.	For	this	book,	we	will	only	focus	on	two	network	models:	the
OSI	network	model	and	the	TCP/IP	network	model.	Understanding	the
boundaries	of	these	two	models	will	help	in	later	discussions	about	where	zero
trust	responsibilities	should	be	handled	in	the	network	model.

Network	Layers,	Visually
The	idea	of	a	layer	might	be	strange	at	first,	though	a	simplistic	way	to
understand	the	concept	is	by	comparing	them	to	Russian	nesting	dolls.	Each
layer	typically	contains	the	next,	encapsulated	by	it	in	a	section	known	as	the
payload	(Figure	8-3).



Figure	8-3.	Lower	network	layers	transport	higher-layer	traffic	in	their	payload	fields,	creating	a	nested
structure	inside	a	single	packet

OSI	Network	Model
The	OSI	network	model	was	published	in	1984	after	being	merged	from	two
separate	documents	started	several	years	earlier.	The	model	is	published	by	two
separate	standards	bodies:	the	International	Organization	for	Standardization
(ISO)	published	ISO	7498,	while	the	Telecommunications	Standardization
Sector	of	the	International	Telecommunication	Union	(ITU-T)	published	X.200.

The	model	itself	is	extracted	from	the	experiences	building	several	networks	at
the	time,	ARPANET	being	the	most	well	known.	The	model	defines	seven
distinct	layers	(explained	in	the	following	sections),	each	of	which	owns	a
portion	of	the	responsibilities	for	transmitting	data.

Layer	1—Physical	Layer

The	physical	layer	is	defined	as	the	interface	between	a	network	device	and	the
physical	medium	over	which	network	transmission	occurs.	This	can	include
things	like	pin	layout,	line	impedance,	voltage,	and	frequency.	The	parameters	of



the	physical	layer	(sometimes	referred	to	as	a	PHY)	depend	on	the	kind	of
medium	used.	Twisted	pair,	coaxial	cabling,	and	radio	waves	are	examples	of
mediums	in	common	use	today.

Layer	2—Data	Link	Layer

The	data	link	layer	is	responsible	for	the	transmission	of	data	over	the	physical
layer.	This	layer	only	considers	data	transmission	between	directly	connected
nodes.	There	is	no	concept	of	transmission	between	interconnected	networks.
Ethernet	(802.3)	is	the	most	well-known	protocol	operating	at	this	layer.

Layer	3—Network	Layer

The	network	layer	is	responsible	for	transmitting	data	packets	between	two
interconnected	nodes.	At	this	layer,	packets	might	need	to	transverse	multiple
layer	2	segments	to	reach	their	destination,	so	this	includes	concepts	to	allow
routing	data	to	its	destination	by	inspecting	a	destination	address.	IP	is	often	said
to	operate	at	this	layer,	but	the	boundaries	can	be	a	bit	fuzzy,	as	we	will	explore
later.

Layer	4—Transport	Layer

The	transport	layer	builds	upon	the	simple	packet	transmission	capabilities	of
layer	3,	usually	as	an	intermediary	protocol	designed	to	augment	layer	3	with
many	desirable	services:

Stateful	connections

Multiplexing

Ordered	delivery

Flow	control

Retransmission

These	services	might	look	similar	to	the	services	that	a	protocol	like	TCP
provides.	In	fact,	TCP	is	a	layer	4	protocol;	however,	in	a	way	similar	to	IP,	this
association	can	be	a	bit	awkward.

Not	all	of	these	services	need	to	be	provided	by	a	protocol	operating	at	this	level.
UDP,	for	example,	is	a	layer	4	protocol	which	offers	only	one	of	these	services



UDP,	for	example,	is	a	layer	4	protocol	which	offers	only	one	of	these	services
(multiplexing).	It	remains	a	layer	4	protocol	because	it	is	an	intermediary
protocol	which	is	directly	encapsulated	by	layer	3.

Layer	5—Session	Layer

The	session	layer	isn’t	commonly	discussed	in	most	networks.	This	layer
provides	an	additional	layer	of	state	over	connections,	allowing	for	a
communication	resumption	and	communication	through	an	intermediary.
Several	VPN	(PPTP,	L2TP)	and	proxy	protocols	(SOCKS)	operate	at	this	layer.

Layer	6—Presentation	Layer

The	presentation	layer	is	the	layer	that	application	developers	will	most
commonly	interact	with.	This	layer	is	responsible	for	handling	the	translation
between	application	data	(often	represented	as	structural	data)	and	transmittable
data	streams.	In	addition	to	this	serialization	responsibility,	this	layer	is	often
responsible	for	cross-cutting	concerns	like	encryption	and	compression.	TLS	is	a
well-known	protocol	operating	at	this	layer,	though	it	operates	at	layer	6	only
after	the	session	is	established	(which	happens	at	layer	5—the	process	of
changing	from	a	lower	layer	to	a	higher	layer	is	sometimes	referred	to	as	an
upgrade).

Layer	7—Application	Layer

The	application	layer	is	the	highest	layer	in	the	OSI	model.	This	layer	provides
the	high-level	communication	protocols	that	an	application	uses	to	communicate
on	the	network.	Some	common	protocols	at	this	layer	are	DNS,	HTTP,	and	SSH.

TCP/IP	Network	Model
The	TCP/IP	network	model	is	another	important	network	model.	This	model
deals	with	the	protocols	most	often	found	on	the	internet	today.

Unlike	the	OSI	model,	the	TCP/IP	model	does	not	try	to	define	strict	layers	with
clear	boundaries.	In	fact,	RFC	3439,	which	documents	the	“philosophical
guidelines”	that	internet	architects	use	has	a	section	entitled	“Layering
Considered	Harmful.”	Still,	the	model	is	said	to	define	the	following	rough
layers,	from	lowest	to	highest:

https://www.ietf.org/rfc/rfc3439.txt


Link	layer

Internet	layer

Transport	layer

Application	layer

These	layers	can	be	roughly	mapped	to	the	OSI	model,	but	the	mappings	are
only	best	effort.	The	application	layer	roughly	covers	layers	5–7	in	the	OSI
model.	The	transport	layer	roughly	maps	to	layer	4,	though	its	introduction	of
the	concept	of	a	port	gives	it	some	layer	5	characteristics.	The	internet	layer	is
similarly	generally	associated	with	layer	3.	The	abstraction	is	leaky,	however,	as
higher-level	protocols	like	ICMP	(which	are	transmitted	via	IP)	concern
themselves	with	details	of	how	traffic	is	routed	around	the	internet.

Where	Should	Zero	Trust	Be	in	the	Network
Model?
With	a	better	understanding	of	network	layer	models,	we	can	now	take	a	look	at
where	to	best	apply	zero	trust	controls	in	the	network	stack.

There	are	two	predominant	network	security	suites:	TLS	and	IPsec.	TLS
(Transport	Layer	Security,	to	which	SSL	is	a	predecessor)	is	the	most	common
of	the	two.	Many	application	layer	protocols	support	TLS	to	secure	traffic.	IPsec
is	an	alternative	protocol,	more	commonly	used	to	secure	things	like	VPNs.

Despite	having	“transport”	in	its	name,	TLS	does	not	live	in	the	transport	layer
of	the	TCP/IP	model.	It	is	found	in	the	application	layer	(somewhere	between
layer	5	and	6	in	the	OSI	model),	and	as	such,	is	largely	an	application	concern.

TLS	AS	AN	INFRASTRUCTURE	CONCERN
Perimeter	networks	frequently	abstract	TLS	away	from	applications,	shifting	the	responsibility
from	the	application	to	the	infrastructure.	In	this	mode,	TLS	is	“terminated”	by	a	dedicated
device	at	the	perimeter,	forwarding	the	decrypted	traffic	to	a	backend	service.	While	this	mode
of	operation	is	not	possible	in	a	zero	trust	network,	there	remain	a	handful	of	strategies	for
deploying	TLS	as	an	infrastructure	concern	while	still	conforming	to	the	zero	trust	model.
More	on	that	later.



IPsec,	by	contrast,	is	generally	considered	part	of	the	internet	layer	in	the	TCP/IP
model	(layer	3	or	4	in	the	OSI	model,	depending	on	interpretation).	Being
further	down	the	stack,	IPsec	is	usually	implemented	in	a	host’s	kernel.	IPsec
was	developed	for	the	IPv6	specification.	It	was	originally	a	requirement	for
IPv6,	but	was	eventually	downgraded	to	a	recommended	status.

With	two	alternatives	to	secure	network	transit,	the	question	becomes,	is	one
preferred	over	the	other?	Zero	trust’s	goal	is	secure	communication	for	all
traffic.	The	best	way	to	accomplish	this	goal	is	to	build	systems	that	provide
secure	communication	by	default.	IPsec,	being	a	low-level	service,	is	well
positioned	to	provide	this	service.

Using	IPsec,	host-to-host	communication	can	be	definitively	secured.	Being
integrated	deep	in	the	network	stack,	IPsec	can	be	configured	to	only	allow
packet	transmission	once	a	secure	communication	channel	has	been	established.
Furthermore,	the	receiving	side	can	be	configured	to	only	process	packets	that
have	been	sent	securely.	In	this	system,	we	have	essentially	created	a	“secure
virtual	wire”	between	two	hosts	over	which	only	secured	traffic	can	flow.	This	is
a	huge	benefit	over	traditional	security	initiatives	that	add	secure	communication
one	application	at	a	time.

Simply	securing	communications	between	two	devices	is	not	sufficient	to	build	a
zero	trust	network.	We	need	to	ensure	that	each	individual	network	flow	is
authorized.	There	are	several	options	for	meeting	this	need:

IPsec	can	use	a	unique	security	association	(SA)	per	application	(see	RFC
4301,	section	4.4.1.1).	Only	authorized	flows	are	then	allowed	to	construct
these	security	policies.

Filtering	systems	(software	firewalls)	can	be	layered	on	top	of	IPsec.	We	will
discuss	the	role	of	filtering	in	zero	trust	later	in	this	chapter.

Application-level	authorization	should	be	used	to	ensure	that	communications
are	authorized.	This	could	use	standard	authorization	techniques,	such	as
access	tokens	or	X.509	certificates,	while	delegating	strong	encryption	and
authentication	responsibilities	to	the	IPsec	stack.

For	a	truly	“belt	and	suspenders”	system,	mutually	authenticated	TLS	could
be	layered	on	top	of	the	existing	IPsec	layer.	This	defense-in-depth	approach

https://tools.ietf.org/html/rfc4301#section-4.4.1.1


provides	two	layers	of	encryption	(mTLS	and	IPsec),	protecting
communication	should	one	of	them	being	compromised,	at	the	expense	of
complexity	and	increased		overhead.

Client	and	Server	Split
While	IPsec	has	a	number	of	beneficial	properties,	its	lack	of	popularity	presents
real-world	obstacles	for	its	use	in	systems	today.	The	issues	one	will	see	can	be
broken	down	into	three	areas:

Network	support	issues

Device	support	issues

Application	support	issues

Network	support	issues

Network	support	can	hamper	the	use	of	IPsec	in	the	wild.	IPsec	introduces
several	new	protocols,	two	of	which	(ESP	and	AH)	are	new	IP	protocols.	While
these	protocols	are	fully	supported	in	simple	LAN	networks,	on	some	networks,
getting	these	packets	transmitted	can	be	quite	a	challenge.	This	could	be	due	to
misconfigured	firewalls,	NAT	traversal,	or	routers	being	purposefully	configured
to	not	allow	traffic	to	flow.	For	example,	Amazon	Web	Services,	a	large	public
cloud	provider,	does	not	allow	ESP	or	AH	traffic	to	be	transmitted	on	its
networks.	Public	hotspots	like	those	found	at	businesses	or	libraries	also	often
have	spotty	support	for	IPsec	traffic.

To	mitigate	these	issues,	IPsec	includes	support	for	encapsulating	traffic	in	a
UDP	frame	(depicted	in	Figure	8-4).	This	encapsulation	allows	an	inhospitable
network	to	transmit	the	traffic,	but	it	adds	extra	complexity	to	the	system.



Figure	8-4.	IPsec	supports	encapsulating	ESP	packets	in	a	UDP	packet,	making	it	look	like	normal	UDP
traffic

Device	support	issues

Device	support	can	also	be	a	major	factor	in	rolling	out	an	IPsec-protected
network.	The	IPsec	standard	is	complex,	with	many	configuration	options	and
cipher	suites.	Both	hosts	in	the	relationship	need	to	agree	to	a	common	protocol
and	cipher	suite	before	communication	can	flow.	Cipher	suites	in	particular
frequently	need	to	be	adjusted	as	compromises	are	revealed.	Finding	that	a
stronger	cipher	suite	has	not	been	implemented	is	a	real	issue	in	IPsec	systems.
To	be	fair,	TLS	needs	to	handle	these	same	issues;	but	due	to	the	nature	of
having	IPsec	implemented	in	the	system’s	kernel,	progress	on	newer	protocols
and	cipher	suites	is	naturally	slower.

IPsec	also	requires	active	configuration	of	the	devices	in	the	relationship.	In	a
client/server	system	with	varying	device	capabilities,	configuring	the	client
devices	can	be	rather	challenging.	Desktop	operating	systems	can	usually	be
configured	to	support	the	less	popular	protocol.	Mobile	operating	systems,



configured	to	support	the	less	popular	protocol.	Mobile	operating	systems,
however,	are	less	likely	to	fully	support	IPsec	in	a	way	that	conforms	to	the	zero
trust	model.

Application	support	issues

IPsec	places	additional	requirements	on	the	system	configuration	versus	typical
TLS-based	security.	A	system	wanting	to	make	use	of	IPsec	needs	to	configure
IPsec	policy,	enable	kernel	support	for	the	desired	cipher	suites,	and	run	an	IKE
daemon	to	facilitate	the	negotiation	of	IPsec	security	associations.	When
compared	to	a	library-based	approach	for	TLS,	this	extra	complexity	can	be
daunting.	This	is	doubly	so	when	many	applications	already	come	with	built-in
TLS	support,	which	seemingly	offers	a	turnkey	solution	for	network	security.

It	should	be	noted	that	while	the	library	approach	seems	more	attractive	on	first
glance,	in	practice	it	presents	quite	a	bit	of	hidden	complexity.	Being	a	library,
applications	need	to	expose	configuration	controls	to	the	TLS	library.
Applications	frequently	support	the	more	common	server	TLS,	but	neglect	to
expose	configuration	for	presenting	a	client	certificate	that	is	required	to	create	a
mutually	authenticated	TLS	connection.	Additionally,	system	administrators
may	need	to	adjust	configuration	in	reaction	to	recently	exposed	vulnerability.
With	a	large	set	of	applications,	finding	the	application-specific	configuration
that	needs	to	be	adjusted	can	hamper	the	rollout	of	a	critical	fix.

The	web	browser	is	frequently	the	common	access	point	into	organizational
systems.	Its	support	for	modern	TLS	is	generally	very	good	(assuming
organizations	stay	up	to	date	on	the	latest	browser	versions).	This	common
access	point	mitigates	the	issue	of	configuration,	as	there	is	a	small	set	of	target
applications	that	need	to	be	adjusted.

On	the	server	side,	many	organizations	are	turning	toward	a	model	where
network	communication	is	secured	via	a	local	daemon.	This	approach	centralizes
configuration	in	a	single	application	and	allows	for	a	base	layer	of	network
security	to	be	supplied	by	the	system	administrator.	In	a	way,	it	looks	very
similar	to	the	IPsec	model,	but	implemented	using	TLS	instead.

A	pragmatic	approach

Given	all	the	pluses	and	minuses	of	the	two	approaches,	a	pragmatic	solution
seems	available	to	system	administrators.



seems	available	to	system	administrators.

For	client/server	interactions,	mutually	authenticated	TLS	seems	to	be	the	most
reasonable	approach	to	network	security.	This	approach	would	typically	involve
configuring	a	browser	to	present	client	certificates	to	server-side	access	proxies
which	will	ensure	that	the	connection	is	authenticated	and	authorized.	Of	course,
this	restricts	the	use	of	zero	trust	to	browser-based	applications.

For	server/server	interactions,	IPsec	seems	more	approachable.	The	server	fleet
is	generally	under	more	controlled	configuration,	and	the	network	environment
is	more	well	known.	For	networks	which	don’t	support	IPsec,	UDP
encapsulation	can	be	used	to	avoid	network	transit	issues.

MICROSOFT	SERVER	ISOLATION
For	environments	which	fully	employ	Microsoft	Windows	with	Active	Directory,	a	feature
called	server	isolation	is	particularly	attractive.	By	leveraging	Windows	Firewall,	Network
Policy,	and	Group	Policy,	server	isolation	provides	a	framework	through	which	IPsec
configuration	can	be	automated.	Furthermore,	server	isolation	can	be	tied	to	Active	Directory
security	groups,	providing	fine-grained	access	control	which	is	backed	by	strong	IPsec
authentication.

While	complications	surrounding	IPsec	transit	over	public	networks	still	exist,	server	isolation
is	perhaps	the	most	pragmatic	approach	for	obtaining	zero	trust	semantics	in	a	Windows-based
environment.

Since	the	IPv6	standard	includes	IPsec,	the	authors	hope	that	it	will	become	a
more	viable	solution	for	both	types	of	network	communication	as	network
adoption	progresses.

The	Protocols
We	learned	about	mutually	authenticated	TLS	and	IPsec	in	the	previous	section,
as	well	as	when	you	might	use	one	versus	the	other.	In	this	section,	we’ll	discuss
the	two	protocols	in	detail.	It	is	very	important	to	understand	the	inner	workings
of	these	protocols	as	you	deploy	them,	since	there	are	many	configuration
controls	in	them.	Both	are	complicated	in	their	own	right,	and	insecure
configurations	are	common.

IKE/IPsec



IKE/IPsec
Internet	Key	Exchange	(IKE)	is	a	protocol	which	performs	the	authentication
and	key	exchange	components	of	IPsec.	It	is	typically	implemented	as	a	daemon
and	uses	a	pre-shared	key	or	an	X.509	certificate	to	authenticate	a	peer	and
create	a	secure	session.	Inside	this	secure	session,	another	key	exchange	is	made.
The	results	of	this	second	key	exchange	are	then	used	to	set	up	an	IPsec	security
association,	the	parameters	of	which	are	leveraged	for	bulk	data	transfer.	Let’s
take	a	closer	look.

IKEV1	VERSUS	IKEV2
There	are	two	versions	of	IKE,	and	most	software	suites	support	both.	For	all	new
deployments,	it	is	strongly	recommended	to	use	IKEv2.	It	is	both	more	flexible	and	more
reliable	than	its	predecessor,	which	was	overly	complicated	and	less	performant.	For	the
purposes	of	this	book,	we	will	be	talking	about	IKEv2	exclusively.

IKE	and	IPsec

There	is	frequent	confusion	around	the	relationship	between	IKE	and	IPsec.	The
reality	is	that	IPsec	is	not	a	single	protocol;	it	is	a	collection	of	protocols.	IKE	is
often	considered	part	of	the	IPsec	protocol	suite,	though	its	design	makes	it	feel
complimentary	as	opposed	to	a	core	component.	IKE	can	be	thought	of	as	the
control	plane	of	IPsec.	It	handles	session	negotiation	and	authentication,	using
the	results	of	the	negotiation	to	configure	the	endpoints	with	session	keys	and
encryption	algorithms.

Since	the	core	IPsec	protocols	are	embedded	in	the	IP	stack,	IPsec
implementations	are	typically	found	in	the	kernel.	With	key	exchange	being	a
relatively	complex	mechanism,	IKE	is	implemented	as	a	user	space	daemon.	The
kernel	holds	state	defining	active	IPsec	security	associations,	and	traffic
selectors	defining	which	packets	IPsec	policy	should	be	applied	to.	The	IKE
daemon	handles	everything	else,	including	the	negotiation	of	the	IPsec	security
association	(SA)	itself	(which	is	subsequently	installed	into	the	kernel	for	use).

Authentication	credentials

IKEv2	supports	both	pre-shared	keys	and	X.509	public/private	key	pairs.	In
addition,	it	supports	the	Extensible	Authentication	Protocol	(EAP).	Supporting



EAP	means	that	IKEv2	supports	a	bevy	of	other	authentication	methods
(including	support	for	multifactor	authentication)	by	proxy.	We	will	avoid
analyzing	EAP	directly,	however,	as	the	ecosystem	is	very	large.

It	goes	without	saying	that	X.509	certificates	are	the	preferred	method	of
authentication	for	IKE.	While	pre-shared	keys	are	supported,	we	strongly
recommend	against	them.	They	present	major	distribution	and	generation
challenges,	but	most	importantly,	they	are	meant	for	humans	to	remember.

X.509	certificates	are	not	meant	for	humans;	they’re	meant	for	devices.	They
carry	with	them	not	only	proof	of	trust,	but	also	signed	metadata	and	a	way	to
strongly	encrypt	data	using	its	identity.	These	are	powerful	properties,	and	the
reason	certificates	are	the	undisputed	champion	of	device	authentication
credentials.

IKE	SA_INIT	and	AUTH

All	IKEv2	exchanges	begin	with	a	pair	of	packets	named	IKE_SA_INIT.	This
initial	exchange	handles	cryptographic	suite	selection,	as	well	as	a	Diffie–
Hellman	exchange.	The	Diffie–Hellman	key	exchange	provides	a	method	for
two	systems	to	negotiate	a	session	key	without	ever	transmitting	it.

The	resulting	session	key	is	used	to	encrypt	fields	in	the	next	pair	of	messages:
the	IKE_AUTH	packets.	In	this	step,	the	endpoints	exchange	certificates	and
generate	what	is	known	as	a	CHILD_SA.	The	CHILD_SA	contains	the	IPsec
parameters	for	a	security	association	between	the	two	endpoints,	and	the	IKE
daemon	then	programs	these	parameters	into	the	kernel.	From	this	point	forward,
the	kernel	will	encrypt	all	traffic	matching	the	selectors.

Cipher	suite	selection

Cipher	choice	with	IPsec	is	slightly	less	trivial	than	TLS.	This	is	because	IPsec
is	implemented	in	the	kernel,	making	cipher	support	a	little	more	stringent	than	it
would	be	if	it	were	simply	a	software	package.	As	a	result,	a	wide	variety	of
devices	and	operating	system	versions	will	complicate	IPsec	deployments.

RFC	6379	sets	forth	what	is	known	as	the	Suite	B	Cryptographic	Suite.	It	was
authored	by	the	US	National	Security	Agency,	and	is	(at	the	time	of	this
writing)	a	widely	accepted	standard	when	it	comes	to	selecting	IPsec	cipher
suites.

https://tools.ietf.org/html/rfc6379


Much	like	TLS,	IKE	cipher	suites	include	algorithms	for	key	exchange,	bulk
encryption,	and	integrity.	Unlike	TLS,	it	does	not	include	authentication,	as	IKE
takes	care	of	that	outside	of	the	crypto	suite	selection.

RFC	6379	is	fairly	prescriptive	with	regard	to	these	choices.	All	of	the	suites
defined	in	Suite	B	leverage	varying	strengths	of	the	AES	encryption	algorithm
and	the	ECDH	key	agreement	protocol.	They	leverage	GCM	and	SHA	for
integrity.	For	the	majority	of	use	cases,	Suite	B	is	recommended.

There	are	a	couple	instances	in	which	Suite	B	might	not	be	appropriate.	The	first
is	that	not	all	IPsec	implementations	support	elliptic	curve	cryptography,	which
is	mandated.	The	second	is	concern	around	the	security	of	popularized	elliptic
curve	implementations,	as	many	believe	that	state	actors	have	interfered	with
them	in	order	to	subvert	the	security	they	aim	to	provide.

In	consideration	of	either	of	these	cases,	equivalent-strength	DH	is
recommended	as	a	good	alternative.

IPsec	security	associations

IPsec	security	associations	(SAs)	are	the	end	result	of	an	IKE	negotiation	and
describe	what	is	sometimes	referred	to	as	a	“relationship”	with	the	remote
endpoint.	They	are	unidirectional,	so	for	a	relationship	between	two	endpoints,
you	will	normally	find	two	SAs	(inbound	and	outbound).

An	IPsec	SA	is	uniquely	identified	by	an	SPI	(Security	Parameter	Index,	not	to
be	confused	with	an	IKE	SPI)	and	has	a	limited	lifetime.	As	traffic	traverses	the
IP	stack,	the	kernel	finds	packets	matching	the	selector(s)	and	checks	to	see	if
there	is	an	active	security	association	for	the	selector	in	question.	If	there	is	an
entry,	the	kernel	encrypts	the	packet	according	to	the	parameters	defined	in	the
SA,	and	transmits	it.	If	there	is	no	entry,	the	kernel	will	signal	the	IKE	daemon
to	negotiate	one.

An	IPsec	SA	has	four	distinct	states	in	its	lifecycle:	larval,	mature,	dying,	and
dead.

A	larval	SA	is	one	that	is	still	being	negotiated	by	the	IKE	daemon	and	has	only
part	of	its	state	installed.	Once	the	negotiation	is	complete,	the	SA	progresses	to
the	mature	state,	in	which	it	begins	encrypting	traffic.	As	the	SA	nears	the	end	of
its	lifetime,	a	new	SA	is	negotiated	and	installed	with	the	same	policy.	The



original	SA	progresses	to	the	dying	state,	and	all	relevant	traffic	switches	over	to
the	new	SA.	After	some	time,	the	old	SA	expires	and	is	marked	as	dead.

IPsec	tunnel	mode	versus	transport	mode

IPsec	supports	two	modes	of	operation,	tunnel	mode	and	transport	mode
(Figure	8-5).	Tunnel	mode	is	by	far	the	most	widely	deployed	variant.	When
IPsec	operates	in	tunnel	mode,	an	SA	is	formed	with	the	remote	endpoint	which
is	used	to	encapsulate	IP	packets	and	secure	it	en	route	to	the	endpoint.	This
encapsulation	covers	the	entirety	of	the	IP	packet,	including	the	IP	header.	This
means	that	in	tunnel	mode,	the	IPsec	endpoint	can	be	different	than	the	endpoint
for	which	the	IP	traffic	is	destined,	since	a	new	IP	header	will	be	exposed	once
the	protected	traffic	is	unpacked.

Figure	8-5.	IPsec	tunnel	mode	allows	traffic	from	one	network	to	be	tunneled	into	another

This	is	why	it	is	called	tunnel	mode.	It	is	frequently	used	in	VPNs,	where	one
wishes	to	make	a	secure	connection	to	a	remote	network,	enabling	administrators
to	tunnel	flows	destined	for	that	network	through	the	secure	channel.	This	brings
an	interesting	realization	though	in	the	world	of	zero	trust	networks:	tunnel



mode,	by	its	very	nature,	strongly	implies	that	the	traffic	will
become	unprotected	at	some	point	in	time.	Security	is	ensured	between	the
sender	and	a	network	intermediary,	but	after	that	all	bets	are	off.	It	is	the	opinion
of	the	authors	that,	for	this	reason,	the	use	of	tunnel	mode	contradicts	the	zero
trust	architecture.

Transport	mode,	on	the	other	hand,	offers	practically	identical	security
guarantees,	just	minus	the	tunnel	part.	Instead	of	encapsulating	an	entire	IP
packet,	it	encapsulates	only	the	IP	payload.	This	is	useful	for	direct	host-to-host
IP	communication.	Rather	than	establishing	a	security	association	with	an
intermediary	network	device,	transport	mode	establishes	a	security	association
directly	with	the	endpoint	to	which	the	traffic	is	addressed,	ensuring	security	is
applied	end	to	end.	This	property	allows	transport	mode	to	fit	nicely	into	the
zero	trust	model.

While	transport	mode	is	the	obvious	choice	for	a	full-blown	zero	trust	datacenter
architecture,	it	is	important	to	remain	realistic.	Zero	trust	migrations	are	difficult,
and	IPsec	tunnel	mode	is	still	a	tool	which	can	be	leveraged	along	the	journey	to
a	homogeneous	zero	trust	architecture.

IKE/IPsec	for	device	authentication

When	it	comes	to	device	security	in	a	zero	trust	network,	we	are	looking	to
provide	not	only	authentication	for	the	device,	but	also	device-to-device
transport	security.	This	is	exactly	what	IPsec	is	designed	to	do,	and	the	reason
that	it	is	perhaps	the	best	protocol	for	the	job.

Since	IPsec	is	implemented	directly	on	top	of	IP,	it	can	handle	most	application
traffic,	not	just	TCP	or	UDP.	Additionally,	since	it	is	implemented	in	the	kernel,
the	applications	being	protected	need	no	knowledge	of	the	underlying	security.
They	simply	run	as	they	would	normally,	and	the	traffic	gets	encrypted	“for
free.”

This	encryption	and	authenticity	may	come	“for	free”	from	the	perspective	of	the
application,	but	that	is	certainly	not	the	case	for	the	device!	As	you	can	see,	the
configuration	of	IPsec	is	nontrivial,	and	managing	the	multitude	of	policies	can
be	challenging	(or	impossible	without	automation).

Another	consideration	is	how	widely	supported	IPsec	is	as	a	network	protocol.



Not	all	public	networks	(e.g.,	coffee	shops)	support	IPsec	and	may	even	actively
block	it.	Difficulty	in	configuration	and	lack	of	universal	support	make	IPsec
less	desirable	for	client-side	zero	trust	networks.	However,	those	pain	points
don’t	typically	exist	inside	the	datacenter,	where	IPsec	remains	a	front	contender
with	regard	to	device	security	protocols.

Mutually	Authenticated	TLS
Commonly	referred	to	by	the	name	of	its	predecessor,	Transport	Layer	Security
(TLS)	is	the	protocol	most	commonly	used	to	secure	web	traffic.	It	is	a	mature
and	well-understood	protocol,	is	widely	deployed	and	supported,	and	is	already
trusted	with	some	of	the	most	sensitive	tasks,	like	banking	transactions.	It	is	the
“S”	in	HTTPS.

When	TLS	is	used	to	secure	web	sessions,	the	client	validates	that	the	server
certificate	is	valid,	but	the	server	rarely	validates	the	client.	In	fact,	the	client
rarely	presents	a	certificate	at	all!	The	“mutual”	prefix	for	TLS	is	meant	to
denote	a	TLS	configuration	in	which	client	certificate	validation	is	required	(and
thus,	mutually	authenticated).

While	a	lack	of	client	authentication	may	be	acceptable	for	services	that	are
being	published	to	the	general	public,	it	is	not	acceptable	for	any	other	use	case.
Mutual	authentication	is	a	requirement	for	security	protocols	conforming	to	the
zero	trust	model,	and	TLS	is	no	exception.

The	basics	of	a	TLS	handshake	are	fairly	straightforward,	as	shown	in	Figure	8-
6.	A	client	initiates	the	session	with	a	ClientHello	message	sent	to	the	server,
which	includes	a	compatibility	list	for	things	like	cipher	suites	and	compression
methods.	The	server	chooses	parameters	from	the	compatibility	list	and	replies
with	a	ServerHello	defining	the	selections	it	made,	followed	by	the	server’s
X.509	certificate.	It	also	requests	the	client’s	certificate	at	this	time.

The	client	then	generates	a	secret	key	and	uses	the	server’s	public	key	to	encrypt
it.	It	sends	the	server	this	encrypted	secret	key,	as	well	as	its	client	certificate,
and	a	small	bit	of	proof	that	it	is	in	fact	the	owner	of	that	certificate.	The	secret
key	generated	by	the	client	is	ultimately	used	to	derive	several	additional	keys,
including	one	which	acts	as	a	symmetric	session	key.	So,	once	the	client	sends
these	details	off,	it	has	enough	information	to	set	up	its	side	of	the	encrypted
session.	It	signals	the	server	that	it	is	switching	to	session	encryption,	the	server



session.	It	signals	the	server	that	it	is	switching	to	session	encryption,	the	server
validates	the	client,	sends	a	similar	message	in	return,	and	the	session	is	fully
upgraded.

Figure	8-6.	A	simplified	diagram	showing	a	mutually	authenticated	TLS	handshake	using	RSA	key
exchange

Cipher	suite	negotiation	and	selection

TLS	supports	many	different	kinds	of	authentication	and	encryption.	A	cipher
suite	is	a	named	combination	of	these	components.	There	are	four	primary
components	in	a	TLS	cipher	suite:

Key	exchange

Authentication



Bulk	encryption

Message	authenticity

Choosing	the	right	set	of	supported	cipher	suites	is	important	in	ensuring	your
TLS	deployments	remain	secure.	Many	cipher	suites	are	known	to	be	weak.	At
the	same	time,	the	strongest	cipher	suites	are	poorly	supported	among	clients	in
the	wild.

Who	gets	to	say

During	the	TLS	handshake,	the	client	presents	its	list	of	supported	cipher	suites
in	order	of	preference.	The	server	gets	to	choose	one	from	this	list,	assuming	that
there	is	shared	support	at	all,	in	which	case	the	session	will	fail	to	establish.
While	the	client	gets	to	communicate	its	cipher	preferences	to	the	server,	it	is
ultimately	the	server	which	is	allowed	to	choose.	This	is	important	because	it
preserves	the	client/server,	consumer/operator	relationship.

With	this,	the	overall	security	of	the	system	is	limited	to	the	strongest	negotiable
cipher	suite	of	the	weakest	client.	Historically,	many	online	resources	support
weak	cipher	suites	in	a	bid	to	maintain	backward	compatibility	with	older
clients.	Knowing	this,	there	have	been	many	attacks	against	cipher	suite
negotiation,	including	downgrade	attacks	which	enable	an	attacker	to	actively
weaken	the	encryption	algorithm	used	by	a	client.

As	a	result,	it	is	recommended	that	servers	support	only	the	strongest	set	of
cipher	suites	that	is	reasonable.	In	the	case	of	datacenter	deployments,	this	list
might	be	limited	to	only	a	few	approved	suites,	as	there	is	strict	control	over	the
“clients.”	This	is	not	always	reasonable	for	true	client-facing	deployments,
however.

NEGOTIATION	AS	A	WEAKNESS
Cipher	suite	negotiation	is,	for	the	stated	reasons,	considered	an	anti-pattern	in	modern
cryptographic	protocols.	Newer	protocols	and	frameworks	such	as	Noise	aim	to	eliminate
protocol	negotiation.	Work	in	this	area	is	highly	active	at	the	time	of	this	writing,	and	the
authors	look	forward	to	widespread	adoption	of	cryptographic	protocols	which	lack
weaknesses	such	as	this	one.

Key	exchange



Key	exchange

The	TLS	key	exchange	describes	the	process	for	securely	generating	an
encryption	key	over	an	insecure	channel.	Sometimes	described	as	a	key
agreement	or	exchange	protocols,	these	protocols	use	mathematical	functions	to
agree	on	keys	without	ever	transmitting	them	in	the	clear	(or	in	most	cases,	at
all).

There	are	three	primary	key	exchange/agreement	protocols	in	popular	use	with
TLS.	They	are,	in	rough	order	of	preference:	ECDHE,	DHE,	and	RSA.

ECDHE	is	based	on	a	Diffie–Hellman	exchange,	using	elliptic	curves	to	agree
on	a	key.	Elliptic	curve	cryptography	is	very	strong,	efficient,	and	is	based	on	a
mathematical	problem	which	remains	difficult	to	solve.	It	is	the	ideal	choice	for
security	and	performance	considerations.

DHE	is	also	based	on	a	Diffie–Hellman	exchange,	except	it	uses	modular
arithmetic	to	agree	on	a	key,	rather	than	elliptic	curves.	In	order	for	these
exchanges	to	be	strong,	they	require	larger	keys	than	ECDHE.	This	is	because
the	math	involved	for	regular	DHE	is	well	solved,	and	we	are	getting	better	and
better	at	solving	those	problems.	So,	while	DHE	can	provide	security	similar	to
that	of	ECDHE,	it	is	less	performant	in	doing	so.

RSA	key	exchange	is	based	on	the	same	asymmetric	operations	that	prove
identity	for	digital	signatures	(e.g.,	X.509	certificates).	It	uses	the	public	key	of
the	server	to	encrypt	the	shared	secret	for	transmission.	This	key	exchange
protocol	is	widely	supported,	although	it	has	two	primary	limitations:	it	requires
use	of	RSA-based	authentication,	and	it	does	not	provide	perfect	forward
secrecy.

QUANTUM	VULNERABILITY
The	security	of	practically	all	public	key	cryptography	in	popular	use	today	is	based	on	the
assumption	that	factoring	large	numbers	is	a	hard,	computationally	expensive	problem.	This
assumption,	however,	is	invalid	when	considering	quantum	computation.	Classical	computing
must	rely	on	a	technique	known	as	the	general	number	field	sieve	in	order	to	derive	the	factors
of	large	numbers.	It’s	an	algorithm	that	is	relatively	inefficient.	Shor’s	algorithm,	on	the	other
hand,	is	a	quantum	algorithm	that	is	exponentially	more	efficient	than	the	general	number	field
sieve.	It	can	be	used	to	rapidly	break	most	asymmetric	key	exchanges,	given	a	sufficiently
powerful	quantum	computer.

Quantum-resistant	protocols	are	under	active	development	at	the	time	of	this	writing.	While



none	is	quite	ready	for	production,	the	looming	quantum	threat	should	not	deter	one	from
implementing	public	key	cryptography	today.	It	remains	the	best	tool	we	have,	and
cryptographers	are	working	hard	to	define	a	clear	path	forward.	For	more	information,	check
out	the	Post-Quantum	Cryptography	conference.

Perfect	Forward	Secrecy

PFS,	or	perfect	forward	secrecy,	is	a	cryptographic	property	in	which	the
disclosure	of	a	private	key	does	not	result	in	the	compromise	of	previously
negotiated	sessions.	This	is	a	valuable	property	because	it	ensures	that	an
eavesdropper	cannot	record	your	session	data	for	later	decryption.	The	RSA	key
exchange	does	not	support	PFS	because	the	session	key	is	directly	encrypted	and
transmitted	using	the	private	key.	DHE	or	ECDHE	must	be	used	in	order	to
obtain	PFS.

Mind	Your	Curves

Cryptography	experts	have	called	into	question	the	security	of	many	elliptic
curve-based	key	agreement	implementations.	While	the	math	and	fundamental
principles	are	sound,	a	standardized	set	of	curves	are	typically	used	as	the	input
for	these	functions.	These	standard	curves	rely	on	a	set	of	constants,	which	must
remain	secure	in	order	to	maintain	the	integrity	of	cryptographic	operations
performed	with	the	resulting	curves.

It	is	these	constants	which	have	been	questioned.	It	is	believed	by	some	of	the
brightest	minds	in	the	industry	that	the	constants	which	are	widely	available	for
these	purposes	have	been	manipulated	by	state	actors	and	are	compromised.	If
this	is	true,	it	stands	to	reason	that	any	elliptic	curve	crypto	implementation
leveraging	these	well-known	constants	has	in	fact	been	secretly	subverted.

For	this	reason,	some	experts	recommend	use	of	DHE	key	agreement	over
ECDHE,	despite	its	better	math	and	performance	properties.	This	is	problematic
in	some	places,	since	not	all	clients	fully	support	DHE	(most	famously,	Internet
Explorer	does	not	support	DHE	in	combination	with	RSA	authentication).	The
recommended	course	of	action	in	this	case	is	to	curate	server-side	cipher	suites
to	prefer	DHE	negotiation	where	available,	falling	back	to	ECDHE	when
necessary.

Authentication

https://pqcrypto.org/


There	are	three	common	authentication	methods,	one	of	which	is	on	it’s	way	out:
RSA,	DSA,	and	ECDSA.

RSA	authentication	is	overwhelmingly	the	most	common,	in	use	in	over	99%	of
web-based	TLS	resources.	Generally	speaking,	RSA	is	a	safe	bet	so	long	as	a
sufficiently-sized	key	is	used.	This	caveat	raises	the	concern	that	the	we	are
getting	better	at	solving	the	mathematical	problem	at	the	heart	of	the	RSA
algorithm,	requiring	key	sizes	to	increase	in	order	to	keep	up	with	advances.
Despite	this,	RSA	remains	the	most	popular	and	most	often	recommended
authentication	method.

DSA	authentication	is	no	longer	recommended.	While	it	is	(for	the	most	part)	a
sound	technology	at	its	core,	a	series	of	other	problems	have	artificially
weakened	it,	including	adoption	and	opinionated	standardization.	ECDSA,	on
the	other	hand,	is	the	newer	cousin	of	DSA	and	uses	elliptic	curves	to	facilitate
public/private	key	pairs.

ECDSA	is	frequently	touted	as	the	future.	It	applies	all	the	benefits	of	elliptic
curve	cryptography	to	the	authentication	component,	including	smaller	key	size
and	better	performance	and	mathematical	properties.	It	is	presumed,	however,
that	ECDSA	authentication	is	susceptible	to	the	use	of	malicious	elliptic	curves,
as	described	in	“Mind	Your	Curves”.

When	making	a	decision	between	RSA	and	ECDSA	authentication,	the
brokenness	of	widely	published	elliptic	curves	should	be	carefully	considered.
Identity	compromise	can	be	catastrophic.	Additionally,	ECDSA	is	not	nearly	as
widely	supported	as	RSA	is.	With	the	acknowledgment	of	these	two	points,	it	is
fair	to	say	that	RSA	authentication	is	still	a	good	choice	at	the	time	of	this
writing,	despite	the	existence	of	a	technologically	superior	algorithm	(ECDSA).

Separation	of	duty

For	the	purposes	of	a	zero	trust	network,	it	is	a	good	idea	to	separate	the
encryption	duties	from	the	application	itself	(Figure	8-7).	The	resource	we	are
securing	in	this	case	is	the	device,	and	as	such,	it	makes	a	lot	of	sense	for	this
piece	to	be	independent	of	the	workload	itself.

Doing	this	also	alleviates	a	number	of	pain	points,	including	zero-day	mitigation,
performance	penalties,	and	auditing.	For	protocols	like	IPsec,	this	separation	of
duty	is	part	of	the	design,	but	this	is	not	the	case	for	TLS.	Historically,



duty	is	part	of	the	design,	but	this	is	not	the	case	for	TLS.	Historically,
applications	speak	TLS	directly,	loading	and	configuring	shared	TLS	libraries
for	remote	communication.

We	have	seen	this	pattern’s	rough	spots	time	and	time	again.	Shared	libraries
become	littered	throughout	the	infrastructure,	being	consumed	by	a	multitude	of
projects,	all	with	independent	versions	and	configurations.	Some	languages	have
more	flexible	libraries	than	others,	limiting	your	ability	to	enforce	the	latest	and
greatest.	Above	all,	it	is	very	difficult	to	ensure	that	all	these	applications	are
indeed	consuming	TLS	the	right	way,	and	remain	up	to	date	with	regard	to
known	vulnerabilities.

Figure	8-7.	Traditional	applications	include	TLS	libraries	and	perform	those	duties	themselves.	Using	a
local	TLS	daemon	instead	means	better	control	and	consistent	performance.

To	address	the	problem,	it	is	useful	to	move	the	handling	of	TLS	configuration
to	the	control	plane.	Connections	to	the	service	are	brokered	by	the	TLS	daemon
then	locally	forwarded	to	the	application.	The	TLS	daemon	is	configured	with
system	certificates,	trust	authorities,	and	endpoint	information—that’s	about	it.



In	this	way,	we	can	ensure	that	all	software	receives	device	authentication	and
security	with	TLS,	regardless	of	its	support	for	it.	Additionally,	since	zero	trust
networks	whitelist	flows,	we	can	ensure	that	application	traffic	is	protected	by
limiting	whitelisted	flows	to	known	TLS	endpoints.

Bulk	encryption

All	the	TLS	intricacies	and	components	discussed	up	to	this	point	apply
primarily	to	the	initial	TLS	handshake.	The	TLS	handshake	serves	two	primary
purposes:	authentication	and	the	creation	of	session	keys.

TLS	handshakes	are	computationally	expensive	due	to	the	mathematical
operations	required	to	make	and	validate	them.	This	is	a	distinct	trade-off
between	security	and	performance.	While	we	strongly	desire	this	level	of
security,	the	performance	impact	is	prohibitively	expensive	if	we	apply	these
operations	to	all	communications.

Asymmetric	cryptography	is	extraordinarily	important	in	the	process	of	secure
introduction	and	authentication,	but	its	strength	can	be	matched	by	symmetric
cryptography	so	long	as	identity	or	authentication	is	not	a	concern.	Symmetric
encryption	uses	a	single	secret	key	instead	of	a	public/private	key	pair,	and	is
less	computationally	expensive	than	asymmetric	cryptography	by	orders	of
magnitude.	This	is	where	the	concept	of	a	TLS	handshake	and	session	keys
comes	in.

Some	very	smart	mathematicians	and	cryptographers	realized	that	we	can	use
the	strong	yet	expensive	operations	to	securely	generate	a	single	secret—one
which	can	be	shared	between	the	parties	(Figure	8-8).	The	key	exchange
component	of	TLS	is	that	which	generates	this	shared	key	and	ensures	that	both
parties	have	knowledge	of	it.



Figure	8-8.	TLS	handshake	generates	a	symmetric	encryption	key	for	bulk	transfer.	IPsec	uses	a	similar
mechanism.

This	shared	key	is	then	used	as	the	input	for	a	symmetric	encryption	algorithm,
which	is	applied	to	all	session	traffic	following	the	handshake.	This
methodology	ensures	that	the	entire	session	benefits	from	the	strength	of
asymmetric	cryptography	without	inheriting	any	of	the	performance	implications
associated	with	asymmetric	encryption	schemes.

When	it	comes	to	choices	for	bulk	encryption	algorithms,	TLS	supports	many,
but	the	recommendation	is	pretty	well	aligned	across	the	board:	just	use	AES.	It
checks	all	the	desirable	boxes,	including	the	fact	that	it	is	unpatented,	widely
implemented	in	hardware,	and	practically	universally	implemented	in	software.
It	is	very	performant,	heavily	vetted/scrutinized,	and	remains	unbroken	to	the
best	of	public	knowledge.	Many	people	say	“AES	is	good	enough,”	and	while
that	might	be	a	tough	pill	to	swallow	when	it	comes	to	security	protocols,	such	a
statement	has	never	been	so	close	to	the	truth.

Message	authenticity

When	communicating	securely,	message	authenticity	is	an	important	if	not
required	property.	Encryption	provides	confidentiality,	but	without	message
authenticity,	how	do	you	ensure	the	integrity	of	that	message?	Without	an	error
during	decryption,	it	is	difficult	or	impossible	to	distinguish	a	tampered	message
from	an	authentic	one.

Some	encryption	modes	(such	as	AES-GCM)	provide	message	confidentiality
and	authenticity	guarantees	simultaneously.	However,	these	guarantees	are	only
applicable	during	bulk	encryption;	there	are	several	TLS	exchanges	which	are
not	protected	by	the	bulk	transfer	specifications,	and	the	message	authenticity



not	protected	by	the	bulk	transfer	specifications,	and	the	message	authenticity
scheme	protects	those	as	well.

EXPLICIT	AUTHENTICITY	SOMETIMES	REQUIRED
Since	some	bulk	encryption	algorithms	provide	message	integrity	assurances,	it	is	not	always
necessary	to	perform	explicit	authenticity	checks	on	every	packet.	Instead,	TLS	will	prefer
built-in	assurances	for	bulk	transfers	and	rely	on	explicit	authenticity	checks	for	all	packets	not
associated	with	the	bulk	transfer	(for	instance,	TLS	control	messages).

As	far	as	choice	goes,	the	options	are	limited	to	MD5	and	the	SHA	family	of
hashes.	The	former	has	been	cryptographically	broken	for	quite	some	time	now,
leaving	the	SHA	family	as	the	only	reasonable	choice	for	ensuring	message
integrity	under	TLS.	There	are	even	concerns	when	using	the	weaker	SHA
variant,	SHA-1,	as	it	is	now	considered	vulnerable	in	the	face	of	ever-increasing
compute	power.	As	such,	it	is	recommended	to	choose	the	strongest	SHA	hash
which	can	be	reasonably	deployed,	given	hardware	and	software	constraints.

It	is	additionally	recommended	to	use	bulk	encryption	with	built-in	authenticity
wherever	possible,	as	it	is	generally	more	performant	and	secure	than	relying	on
a	disjoint	authenticity	mechanism.	TLS	version	1.3	mandates	the	use	of
authenticated	encryption.

Mutually	authenticated	TLS	for	device	authentication

Just	like	any	other	protocol	used	for	device	authentication,	TLS	comes	with	its
ups	and	downs.

The	first	is	that,	due	to	its	position	in	the	network	stack,	TLS	is	protocol-
dependent.	It	is	most	commonly	implemented	as	a	TCP-based	protocol,	though	a
UDP-based	variant	dubbed	DTLS	is	also	available.	The	presence	of	DTLS
highlights	the	deficiency	of	the	position	of	TLS	in	the	stack.	With	this,	TLS
suffers	diminishing	returns	when	used	to	secure	IP	protocols	other	than	those
which	it	natively	supports,	like	TCP	or	UDP.

Another	thing	to	consider	is	the	automation	requirement.	TLS	is	commonly
deployed	as	an	infrastructure	service	in	perimeter	networks	by	leveraging
intermediaries	which	are	typically	positioned	at	the	perimeter.	This	mode	of
operation,	however,	is	unsuitable	for	a	zero	trust	network	as	long	as	the
intermediary	and	the	upstream	endpoint	are	separated	by	a	computer	network.	In



intermediary	and	the	upstream	endpoint	are	separated	by	a	computer	network.	In
a	zero	trust	network,	applications	leveraging	a	TLS-speaking	intermediary	must
be	on	the	same	host	as	the	intermediary	itself.	As	a	result,	protecting	datacenter
zero	trust	networks	with	TLS	requires	additional	automation	to	configure
applications	to	speak	through	this	layer	of	external	security.	It	does	not	come
“for	free”	like	other	protocols	such	as	IPsec.

All	of	that	said,	it	remains	today’s	best	choice	for	protecting	client-facing	zero
trust	networks.	TLS	is	very	widely	supported	in	both	software	and	transit	(i.e.,
intermediary	networks	worldwide),	and	can	be	relied	upon	for	straightforward
and	trustworthy	operation.	Most	web	browsers	support	mutually	authenticated
TLS	natively,	which	means	that	resources	can	be	protected	using	zero	trust
principles	without	the	immediate	need	for	specialized	client-side	software.

Filtering
Filtering	is	the	process	by	which	packets	are	admitted	or	rejected	by	systems	on
a	network.	When	most	people	think	of	filtering,	they	typically	envision	a
firewall,	a	service	or	device	which	sits	between	the	network	and	application	to
filter	traffic	going	to	or	coming	from	that	device.	Firewalls	do	provide	filtering,
but	they	can	provide	other	services	like	network	address	translation	(NAT),
traffic	shaping,	and	VPN	tunnel	services.	Filtering	can	be	provided	by	other
systems	not	traditionally	considered,	like	routers	or	managed	switches.	It’s
important	to	remember	that	filtering	is	a	simple	service	which	can	be	applied	at
many	points	in	a	networked	system.

Filtering	can	be	quite	frustrating	for	users	without	a	security	mindset	since	it
blocks	desired	network	communication.	Wouldn’t	it	be	better	to	get	rid	of	that
nuisance	and	assume	the	user	knows	what	they	want?	Unfortunately,	well-
meaning	users	can	trivially	expose	services	that	on	further	inspection	they	would
rather	not	expose.	During	the	early	days	of	always-on	internet	connections,
users’	computers	routinely	made	the	accident	of	exposing	file	sharing	and	chat
services	on	the	public	internet.	Filtering	provides	a	type	of	checks	and	balances
for	network	communication,	forcing	users	to	consider	whether	a	particular
connection	should	really	cross	a	sensitive	boundary.

Many	of	the	zero	trust	concepts	so	far	have	focused	on	advanced	encryption	and
authentication	systems.	This	is	because	these	aspects	of	network	security	are	not



authentication	systems.	This	is	because	these	aspects	of	network	security	are	not
nearly	as	pervasive	in	network	designs	as	they	should	be.	However,	we	should
not	downplay	the	importance	of	network	filtering.	It	is	still	a	critical	component
of	a	zero	trust	architecture,	and	so	we	will	explore	it	in	three	parts:

Host	filtering

Filtering	of	traffic	at	the	host

Bookended	filtering

Filtering	of	traffic	by	a	peer	host	in	the	network

Intermediary	filtering

Filtering	of	traffic	by	devices	in	between	two	hosts

Host	Filtering
Host	filtering	deputizes	a	network	endpoint	to	be	an	active	participant	in	its	own
security.	The	goal	is	to	ensure	that	every	host	is	configured	to	filter	its	own
network	traffic.	This	is	different	than	traditional	network	design,	where	filtering
is	delegated	to	a	centralized	system	away	from	the	host.

Centralized	filtering	is	most	often	implemented	using	a	hardware	firewall.	These
firewalls	make	use	of	application-specific	integrated	circuits	(ASICs)	to
efficiently	process	packets	flowing	through	the	device.	Since	the	device	is	often
a	shared	resource	for	many	backend	systems,	these	ASICs	are	critical	for	it	to
accomplish	the	task	of	filtering	the	aggregate	traffic	of	all	those	systems.	Using
ASICs	brings	raw	performance	at	the	expense	of	flexibility.

Software	firewalls,	like	those	found	in	modern	operating	systems,	are	much
more	flexible	than	their	hardware	counterparts.	They	offer	a	rich	set	of	services
like	defining	policies	based	on	time	of	day	and	arbitrary	offset	value.	Many	of
these	software	firewalls	can	be	further	extended	with	new	modules	to	offer
additional	services.

Unlike	the	early	days	of	the	internet,	all	modern	desktop	and	server	operating
systems	now	offer	some	form	of	network	filtering	via	a	host-based	firewall:

Linux

IPtables



BSD	systems

Berkley	Packet	Filter	(BPF)

macOS

Application	firewall	and	additional	host	firewalls	available	via	the	command
line

Windows

Windows	Firewall	service

Perhaps	surprisingly,	neither	iOS	nor	Android	ships	with	a	host-based	firewall.
Apple’s	iOS	Security	Guide	notes	that	it	considers	a	firewall	unnecessary	since
the	attack	surface	area	is	reduced	on	iOS	“by	limiting	listening	ports	and
removing	unnecessary	network	utilities	such	as	telnet,	shells,	or	a	web	server.”
Google	does	not	publish	an	official	security	guide.	Android,	perhaps	owing	to	its
ability	to	run	non-Play	Store	approved	software,	does	have	third-party	firewalls
available	to	install	if	a	user	chooses	to	do	so.

Zero	trust	systems	assume	the	network	is	hostile.	As	a	result,	they	filter	network
traffic	at	every	point	possible,	often	using	on-host	firewalls.	Adding	an	on-host
firewall	reduces	the	attack	surface	of	a	host	by	filtering	out	undesirable	network
traffic.	While	software-based	firewalls	don’t	have	the	same	throughput
capabilities	as	hardware-based	systems,	the	fact	that	the	filtering	is	distributed
across	the	system	(and	therefore	sees	a	portion	of	the	aggregate	traffic)	often
results	in	little	performance	degradation	in	practice.

Using	on-host	filtering	is	simple	to	get	started	with.	Configuration	management
systems	have	very	good	support	for	managing	on-host	firewalls.	When	writing
the	logic	to	install	services,	it’s	easiest	to	capture	the	allowed	connections	right
alongside	its	installation	and	configuration	routines.	Filtering	in	a	remote	system,
conversely,	is	more	difficult	since	the	exceptions	are	separated	from	the
application	that	needs	them.

On-host	firewalls	also	offer	opportunities	for	novel	uses	of	programmable
filtering.	Single	packet	authorization	(SPA),	which	we	discussed	earlier	in	this
chapter,	is	a	great	example	of	this	idea.	SPA	programmatically	manages	the	on-
host	firewall	to	reduce	the	attack	surface	of	a	service	on	a	host.	This	is
advantageous	because	on	occasion,	carefully	crafted	malicious	packets	can	be



advantageous	because	on	occasion,	carefully	crafted	malicious	packets	can	be
constructed	to	exploit	a	weakness	in	network	services.	For	example,	a	service
might	require	authentication	and	authorization	before	processing	a	request,	but
the	authentication	logic	could	have	a	buffer	overflow	error	which	an	attacker	can
use	to	implement	a	remote	code	execution	vulnerability.	By	introducing	a
filtering	layer,	we	can	hide	the	more	complex	service	interface	behind	a	simpler
system	which	manages	firewall	rules.

There	are	of	course	issues	when	using	on-host	firewalls	exclusively	for	network
filtering.	One	such	issue	is	the	chance	for	a	co-located	firewall	to	be	rendered
meaningless	should	a	host	become	compromised.	An	attacker	who	is	able	to	gain
access	to	a	host	and	elevate	their	privilege	could	remove	the	on-host	firewall	or
adjust	its	configuration.	Needless	to	say,	this	is	a	big	deal,	as	it	removes	a	layer
of	defense	in	the	system.	This	concern	is	why	filtering	has	traditionally	been
handled	by	a	separate	device,	away	from	potentially	risky	hosts.

This	approach	highlights	the	benefits	of	isolation	in	security	design,	which	on-
host	filtering	could	benefit	from.	As	the	industry	moves	toward	isolation
techniques	like	virtualization	and	containerization,	it	becomes	clear	that	these
technologies	present	an	opportunity	to	further	isolate	on-host	filtering.	Without
these	technologies,	the	only	form	of	isolation	that	is	available	is	local	user
privilege.	On	a	Unix-based	system,	for	example,	only	the	root	user	is	able	to
make	adjustments	to	the	firewall	configuration.	In	a	virtualized	system,	however,
one	could	implement	filtering	outside	the	virtual	machine,	which	provides	strong
guarantees	against	attacks	on	the	filtering	system.	In	fact,	this	is	how	Amazon’s
security	group	feature	is	implemented,	as	shown	in	Figure	8-9.



Figure	8-9.	EC2	Security	Groups	move	filtering	outside	the	virtual	machine	to	improve	isolation

Another	issue	with	on-host	filtering	is	the	cost	associated	with	pushing	filtering
deep	into	the	network.	Imagine	a	scenario	where	a	large	percentage	of	traffic	is
filtered	away	by	on-host	filtering.	By	applying	filtering	nearest	to	the	destination
system,	the	network	incurs	extra	cost	to	transmit	those	packets,	only	for	them	to
be	ultimately	thrown	away.	This	situation	also	raises	the	possibility	of	a	denial-
of-service	attack	forcing	internal	network	infrastructure	to	route	large	volumes
of	useless	traffic,	as	well	as	overwhelming	the	comparatively	weaker	software
firewalls.	For	this	reason,	while	on-host	firewalls	are	the	best	place	to	start
thinking	about	filtering,	they	present	a	risk	if	they	are	the	only	place	filtering
occurs.	We	will	discuss	ways	to	push	filtering	out	into	the	network	in
“Intermediary	Filtering”.

Bookended	Filtering
Bookended	filtering	is	the	act	of	applying	policy	not	just	on	the	receipt	of	a



packet,	but	while	sending	them	too.	This	mode	of	filtering	is	not	commonly
found	in	traditional	networks.	It	brings	some	interesting	advantages	to	network
design,	which	we	will	now	explore.

Egress	(the	opposite	of	ingress)	is	a	term	used	to	describe	network	traffic	that	is
leaving	a	host.	This	type	of	filtering	is	commonly	used	to	manage
communication	from	a	private	network	out	to	public	networks,	but	it	is	rarely
used	within	a	private	network.	There	are	a	few	reasons	this	is	the	case:

Ingress	filtering	is	easier	to	reason	about,	since	listening	services	can	be
enumerated	when	building	firewall	rules.	Egress	filtering	requires	more
bookkeeping	to	capture	how	hosts	intend	to	communicate.

Ingress	filtering	is	generally	considered	good	enough	to	stop	undesirable
communication	in	the	network.

Egress	filtering	requires	knowledge	of	every	expected	flow,	something	not
usually	found	in	traditional	networks.

Bookended	filtering	uses	egress	filtering	within	the	zero	trust	network	to	further
harden	the	system.	We	can	see	how	this	hardening	is	beneficial	with	the	example
shown	in	Figure	8-10.	Let’s	consider	a	system	where	a	database	server	has
ingress	filter	rules	set	up	to	allow	access	from	application	servers.	A	well-
meaning	administrator	is	investigating	some	network	connectivity	issues.	In	the
process	of	their	investigation,	the	admin	loosens	the	database’s	ingress	filtering
to	rule	out	the	possibility	that	it	was	causing	the	issue.	Crucially,	this
administrator	forgets	to	revert	their	change	after	disproving	that	theory.	This
error	removes	a	layer	of	defense	in	the	system	for	some	time.	Worse	yet,
discovering	this	lost	defense	can	be	difficult	because	the	expected
communication	(from	the	app	servers	to	the	database	server)	continues	to	work.



Figure	8-10.	Bookended	filtering	can	provide	protection	in	unexpected	circumstances

In	this	scenario,	a	network	that	has	pervasive	bookended	filtering	is	protected
even	when	this	critical	misconfiguration	is	in	the	system.	In	a	way,	it’s	similar	to
herd	immunity—the	collective	benefit	that	a	community	provides	to
unvaccinated	members	when	the	vast	majority	of	members	are	vaccinated
against	a	disease.	Instead	of	preventing	illness,	bookended	filtering	protects
misconfigured	systems	from	the	potential	impact	of	that	misconfiguration.

Building	bookended	filtering	into	a	system	isn’t	as	hard	as	it	might	seem,	given
the	right	conditions.	Communication	flows	need	to	be	captured	in	a	way	that	can
be	consumed	programmatically.	The	best	way	to	capture	these	flows	is	by
defining	fine-grained	ingress	rules.	These	ingress	rules	should	allow	access	to	a
service	based	on	each	client’s	server	role	instead	of	broadly	opening	access	to	a
service.	By	capturing	this	detail,	we	have	constructed	a	dependency	graph	from
which	egress	rules	can	be	calculated	and	applied	throughout	the	system.

Like	we	discussed	in	host	filtering,	egress	filtering	is	best	applied	when	it	is
isolated	from	the	applications	running	within	the	system.	The	same	insights
apply	here:	prefer	implementing	filtering	on	the	other	side	of	a	virtualized	or
containerized	environment	to	have	the	most	robust	filtering	mechanisms.
Looking	beyond	the	filtering	implementation,	it’s	important	to	consider	the
isolation	of	the	data	used	to	build	egress	filtering	rules.	It	might	seem	attractive
to	calculate	that	data	from	a	dynamic	data	source	such	as	a	service	discovery
system,	but	bookended	filtering	is	most	effective	when	the	flow	database	is



isolated	from	the	running	system.	Instead	use	a	slowly	changing	database,
especially	one	that	requires	a	human	to	review	changes.

PROJECT	CALICO

Project	Calico	is	a	virtual	network	system	for	dynamically	scheduled
workloads.	A	workload	is	a	generic	term	that	applies	to	any	application
which	needs	to	be	run	in	a	datacenter.	This	application	could	be	inside	a
container	or	a	virtual	machine.	Calico	takes	the	lessons	learned	in	operating
the	internet	and	brings	them	into	the	datacenter	to	create	a	simpler	network
which	can	scale	efficiently	as	the	size	of	one’s	network	grows.

Calico	is	not	a	full	zero	trust	solution,	but	it	does	echo	some	of	the	ideas	of
zero	trust	networks.	Calico	distributes	filtering	throughout	the	network,
which	is	enforced	on	the	host	machines.	These	hosts	are	dynamically
reconfigured	based	on	changes	in	a	database	which	describes	the	entire
network.	This	design	looks	very	similar	to	the	host	filtering	we	discussed
earlier.

Calico	also	includes	the	bookended	filtering	concepts	we	discussed.	This
means	that	hosts	on	both	ends	of	a	connection	are	filtering	traffic	based	on
their	knowledge	of	which	connections	should	be	allowed.	This	double
enforcement	of	network	communication	is	seen	as	a	secondary	defense	in	the
network	fabric.

Intermediary	Filtering
Intermediary	filtering	is	the	idea	that	devices	other	than	the	sender	or	receiver
can	and	should	participate	in	filtering	traffic	in	a	zero	trust	network.	This	at	a
minimum	means	perimeter	filtering	can	play	a	role	in	a	zero	trust	network,	and
at	the	maximum,	intermediary	devices	within	the	network’s	fabric.

As	we	discussed	in	“Host	Filtering”,	filtering	traffic	only	at	the	destination
incurs	an	extra	cost	on	the	network	when	the	ratio	of	undesirable	traffic	is	very
high.	High	throughput	filtered	traffic	will	most	often	originate	from	internet
ingress	traffic.	Ideally,	we	want	to	filter	traffic	as	soon	as	possible	to	reduce	the
impact	and	the	cost	of	filtering.	For	this	application,	filtering	at	the	perimeter
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systems	that	sit	between	the	zero	trust	network	and	the	internet	is	ideal.	These
devices	typically	need	to	be	hardware	based	to	efficiently	filter	the	packets
coming	into	the	system.

Perimeter	filters	can	also	be	an	important	check	and	balance	in	a	zero	trust
network.	The	perimeter	filters	should	be	a	combination	of	global	rules	and
coarse-grained	host	policy.	By	keeping	global	rules	separate	from	host	policy,
invariants	about	the	external	network	configuration	are	defined.

Exceptions	to	this	policy	should	be	traceable	back	to	host	infrastructure	that
relies	on	those	exceptions,	and	the	actions	taken	to	instantiate	them.	The	best
implementation	derives	these	exceptions	from	the	host	policies	themselves.	By
tying	the	host	policy	to	the	exception	policy,	the	system	will	be	more	consistent
as	hosts	come	and	go	from	the	network.	These	exceptions,	however,	must	be
verified	to	be	as	narrowly	scoped	as	possible.	A	review	process	should	be
exercised	for	all	policy	changes	in	order	to	guard	against	overly	broad
exceptions	which	can	compromise	the	system’s	security.

UPNP	CONSIDERED	HARMFUL
Deriving	perimeter	policies	from	host	policies	should	not	be	conflated	with	UPnP,	a
technology	used	to	reconfigure	consumer	firewalls.	UPnP	is	rightly	criticized	because	any
application	on	the	network	can	reconfigure	the	perimeter.	In	the	zero	trust	model,	there	is	a
chain	of	trust	between	the	host	policies	and	the	exceptions	that	are	created	at	the	perimeter.

It	might	seem	odd	that	we’re	discussing	perimeter	filtering	in	such	a	positive
light,	given	the	failings	of	the	perimeter	model.	The	key	detail	to	understand
here	is	that	zero	trust	networks	don’t	throw	out	all	perimeter	concepts.	Instead,
they	encourage	administrators	to	start	at	the	host	and	work	their	way	outward.
Perimeter	devices	eventually	play	a	role	in	this	way,	with	denial-of-service
mitigation	being	by	far	the	most	notable	application.

An	exciting	idea	in	zero	trust	networks	is	to	use	the	host	policy	database	to
dynamically	program	the	network	fabric	itself.	This	would	result	in	a	software-
defined	network	(SDN)	that	does	not	blindly	route	packets	to	the	destination,	but
actively	manages	switching	and	routing	policy	based	on	which	flows	are
expected	and	allowed.	This	results	in	a	few	benefits:



Potentially	malicious	traffic	is	kept	away	from	hosts,	reducing	the	attack
surface.

Software	firewalls	on	the	hosts	are	augmented	by	the	network	itself,	adding
additional	layers	of	defense	in	the	network.

Like	the	perimeter	filtering	discussed	earlier,	filtering	in	the	network	fabric
should	be	seen	as	an	enhancement	to	the	base	layer	of	host-based	filtering.	It
must	not	act	as	a	replacement	for	it.

FORWARDING	AND	ROUTING	AUTHORIZATION

As	we	discuss	filtering,	there	is	a	theme	that	arises—zero	trust	networks
leverage	relatively	slowly	changing	details	of	the	network	to	distribute
enforcement,	resulting	in	a	network	that	is	more	secure.	This	observation
opens	up	an	interesting	opportunity:	can	we	propagate	enforcement	into	the
network	infrastructure,	effectively	elevating	those	pipes	from	a	simple
packet	transmitting	system	to	a	smart	network	fabric?

Imagine	an	SDN	controller	which	only	installed	flow	instructions	based	on
the	result	of	a	strong	authentication	and	authorization	process.	A	client
wishing	to	access	a	network	resource	can	signal	the	control	plane,	providing
the	network	access	request	along	with	the	appropriate	credentials.	After
successful	request	authorization,	the	network	is	installed	and	available,	but
only	for	the	specific	flow	which	was	authorized.

Summary
This	chapter	focused	on	how	traffic	gains	trust	in	a	zero	trust	network.	We
teased	apart	the	distinctions	between	encryption	and	authenticity—two	concepts
that	are	related	but	distinct.	Zero	trust	networks	require	authenticity	in
communication,	and	most	networks	also	gain	value	in	having	their	traffic
encrypted.

We	explored	the	first	packet	problem	in	network	communications.	Modern
authentication	systems	are	fairly	complicated	systems,	which	results	in	a	large
surface	area	for	attacks.	We	talked	about	hiding	those	services	behind	a	single



packet	authorization	system,	which	is	a	relatively	simple	service	that	can	be	used
to	hide	a	more	complex	authentication	system	like	TLS.

We	then	talked	about	two	competing	protocols	for	encryption	and	authentication
of	network	traffic:	TLS	and	IPsec.	We	discussed	how	these	systems	differ	and
gave	clear	guidance	that	mutually	authenticated	TLS	is	best	suited	for
client/server	interactions	or	in	heterogeneous	environments,	while	IPsec	seems
well	suited	inside	the	datacenter	(particularly	so	when	Network	Address
Translation	is	not	present).

Zero	trust	networks	still	need	packet		filtering	capabilities,	which	they	deploy
throughout	the	network.	We	described	three	types	of	filtering	that	can	be
deployed	in	such	a	network:	host,	bookended,	and	intermediary	filtering.	Each
type	of	filtering	adds	additional	robustness	to	the	network	and	can	be	deployed
in	the	network	using	system	automation	and	a	shared	database	of	expected
network	communication.

The	next	chapter	takes	all	the	concepts	we	have	learned	thus	far	and	lays	out	a
plan	for	creating	your	own	zero	trust	network.



Chapter	9.	Realizing	a	Zero	Trust
Network

This	chapter	will	help	readers	develop	a	strategy	for	taking	the	knowledge	in
previous	chapters	and	applying	it	to	their	system.	Zero	trust	networks	are	very
likely	to	be	built	around	existing	systems,	so	this	chapter	will	focus	on	how	to
make	that	transition	successfully.

It’s	important	to	remember	that	zero	trust	is	not	a	product	that	can	be	bolted	onto
the	network.	It	is	a	set	of	architectural	principles	which	are	applied	based	on	the
needs	and	constraints	of	the	network.	Therefore,	this	chapter	cannot	provide	a
checklist	of	changes	to	be	made,	but	rather	a	framework	for	how	to	approach
realizing	in	a	zero	trust	network	in	your	own	system.

Choosing	Scope
Before	setting	out	to	build	a	zero	trust	network,	it	is	important	to	choose	the
proper	scope	for	the	effort.	A	very	mature	zero	trust	network	will	have	many
interacting	systems.	For	a	large	organization,	constructing	these	systems	might
be	feasible,	but	for	smaller	organizations,	the	number	and	complexity	of	those
systems	may	make	a	zero	trust	network	seem	out	of	reach.

It’s	important	to	remember	that	the	zero	trust	architecture	is	an	ideal	to	work
toward	instead	of	a	list	of	requirements	that	must	be	met	completely	from	day
one.	This	is	no	different	than	perimeter-based	networks.	Less	mature	networks
may	initially	choose	a	simple	network	design	to	reduce	the	complexity	of
administration.	As	the	network	matures	and	the	risk	of	a	breach	increases,	the
network	will	need	to	be	redesigned	to	further	isolate	systems.

While	the	zero	trust	network	design	is	an	ideal,	not	all	features	of	the	design
have	equal	value.	Determining	which	components	are	required	and	which	are
nice	to	have	will	go	a	long	way	in	ensuring	the	success	of	a	zero	trust
implementation.



What’s	Actually	Required?
Limiting	the	scope	of	a	zero	trust	network	necessarily	requires	prioritizing	the
set	of	properties	that	were	presented	earlier	in	this	book.	This	RFC-style
prioritization	list	is	the	authors’	opinion	on	how	that	work	should	be	prioritized:

All	network	flows	MUST	be	authenticated	before	being	processed.

All	network	flows	SHOULD	be	encrypted	before	being	transmitted.

Authentication	and	encryption	MUST	be	performed	by	the	endpoints	in	the
network.

All	network	flows	MUST	be	enumerated	so	that	access	can	be	enforced	by
the	system.

The	strongest	authentication	and	encryption	suites	SHOULD	be	used	within
the	network.

Authentication	SHOULD	NOT	rely	on	public	PKI	providers.	Private	PKI
systems	should	be	used	instead.

Devices	SHOULD	be	regularly	scanned,	patched,	and	rotated.

RFC-STYLE	PRIORITIZED	LISTS

RFC	documents	are	the	lingua	franca	of	proposed	changes	to	internet
infrastructure.	In	these	documents,	language	and	structure	is	clearly	defined
to	allow	readers	to	more	quickly	understand	the	changes	proposed	in	this
document.

One	aspect	of	that	language	which	is	very	useful	in	prioritization	discussion
is	the	standard	terms	defined	in	RFC	2119.	This	RFC	defines	a	set	of	terms
(MUST/MUST	NOT,	SHOULD/SHOULD	NOT,	MAY/MAY	NOT)	which,
when	used,	carry	greater	weight	than	their	normal	usage	in	common
literature.

This	book’s	prioritized	list	uses	these	terms	with	a	similar	intention	to	their
definitions	in	RFC	2119.	While	architectural	characteristics	don’t	have	quite
the	same	requirements	as	protocol	designs,	the	use	of	these	standard	terms	is
intended	to	echo	the	usage	presented	in	that	RFC.

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


For	completeness,	here	are	the	intended	definitions	of	these	standard	terms
when	used	in	this	book:

MUST

This	term	is	used	for	a	requirement	that	is	required	for	the	implemented
system	to	be	considered	compatible	with	the	zero	trust	design.

MUST	NOT

This	is	the	opposite	of	MUST.	A	system	intending	to	implement	the	zero
trust	design	is	required	to	not	have	this	characteristic.

SHOULD

This	term	denotes	an	architectural	characteristic	that	is	desired	in	a	zero
trust	network,	but	given	cost	constraints	can	be	deprioritized.	When
deprioritizing	this	feature,	system	administrators	should	be	aware	that
they	are	trading	the	security	of	their	systems	for	reduced	cost	in
implementing	them.	When	at	all	possible,	system	administrators	should
avoid	compromising	on	these	characteristics	because	the	benefit	of	not
compromising	on	them	is	considered	worth	the	upfront	cost	of	their
implementation.

SHOULD	NOT

This	is	the	opposite	of	SHOULD.

MAY

This	term	is	used	for	architectural	characteristics	of	a	zero	trust	network
that	bring	value,	but	are	considered	nice-to-haves.	System	administrators
should	plan	on	implementing	these	aspects	once	they	have	built	a	system
that	satisfies	the	MUST	and	SHOULD	definitions.	It	is	important	to	note
that	these	additional	features	bring	additional	value	to	the	network	by
hardening	it,	so	they	should	not	be	considered	a	net	loss.

With	this	prioritized	list	of	design	requirements	for	building	a	zero	trust	network,
let’s	dig	into	why	particular	requirements	were	categorized	the	way	they	were.

All	network	flows	MUST	be	authenticated	before	being	processed



In	a	zero	trust	network,	all	packets	received	by	the	system	are	immediately
suspicious.	As	such,	they	must	be	rigorously	inspected	before	allowing	the	data
within	them	to	be	processed.	Strong	authentication	is	the	primary	mechanism	by
which	we	accomplish	this.

Authentication	is	absolutely	required	in	order	to	gain	confidence	about	the
provenance	of	network	data.	It	is,	perhaps,	the	single	most	important	component
of	a	zero	trust	network.	Without	it	we	have	nothing,	and	are	forced	to	place	trust
in	the	network.

All	network	flows	SHOULD	be	encrypted	before	being	transmitted

A	key	lesson	of	this	book	is	that	a	network	link	cannot	be	trusted	to	reliably
convey	data	or	signals	from	one	system	to	another.	The	physical	accessibility	of
a	network	link	to	unsafe	actors	makes	it	trivial	for	that	network	to	be
compromised.	Moreover,	even	in	a	physically	secure	network,	bad	actors	can
digitally	infiltrate	a	system	and	passively	probe	the	network	for	valuable	data.

By	encrypting	data	on	a	device	before	transmitting	it	on	the	network,	we	reduce
the	attack	surface	of	that	communication	to	the	trustworthiness	of	the	device
itself,	namely	application	and	physical	device	security.

Authentication	and	encryption	MUST	be	performed	by	the
application-layer	endpoints

Since	zero	trust	networks	recognize	the	threat	that	trusting	network	links	pose	to
the	security	of	a	system,	it	is	important	that	secure	communications	be
established	between	application-layer	endpoints.	Adding	middleware
components	that	handle	these	responsibilities	(like	VPN	concentrators	or	TLS-
terminating	load	balancers)	can	leave	upstream	network	communications
exposed	to	physical	and	virtual	threats.

As	a	result,	a	system	that	claims	to	be	zero	trust	is	required	to	implement
encryption	and	authentication	at	every	application-layer	endpoint	on	the
network.

All	network	flows	MUST	be	enumerated	so	that	access	can	be
enforced	by	the	system

Zero	trust	networks	depend	on	data	that	defines	the	expected	characteristics	of



the	network.	Therefore,	defining	every	expected	network	flow	is	critical	to
safeguarding	the	network.

We	should	be	careful	to	note	that	enumerating	flows	does	not	require	onerous
change	management	controls	to	provide	value.	A	simple	process	for	defining
expected	flows	brings	enormous	value	in	terms	of	network	enforcement	and
change	auditing.

Without	the	list	of	expected	network	flows,	zero	trust	systems	are	unable	to
highlight	unexpected	communications	which	need	attention	from	administrators
or	should	be	denied.

It	is	the	strongly	held	opinion	of	the	authors	that	deferring	the	effort	to
enumerate	flows	will	ultimately	result	in	a	task	list	that	is	considered	infeasible.
The	authors	feel	that	the	best	way	to	keep	this	database	of	expected	flows	up	to
date	is	to	distribute	the	responsibility	of	defining	those	flows	into	the
organization.	When	distributing	this	responsibility,	organizations	should	take
caution	to	educate	teams	on	best	practices	for	change	management	to	guard
against	internal	threats	to	the	system.	One	such	threat	is	allowing	a	single	person
to	update	the	flow	database	without	any	oversight.	A	simple	review	system	can
mitigate	this	threat.

FLOW	DATA	AS	THE	SOURCE	OF	TRUTH
Building	a	database	of	expected	flows	is	best	accomplished	by	making	the	flow	database	the
data	source	for	allowing	that	access.	By	setting	up	this	dependency	(and	disallowing	external
modification),	the	flow	database	will	be	consistent	with	the	actual	allowed	access.

When	capturing	flows,	following	these	rules	will	improve	the	quality	of	the	data:

Capture	the	intended	use	of	a	flow	along	with	the	policy	details	(e.g.,	LB	access—from	LB
hosts	to	web	application).

Prefer	narrowly	defined	flows	over	broad	access.

The	strongest	authentication	and	encryption	suites	available
SHOULD	be	used	within	the	network

Zero	trust	networks	assume	a	hostile	network	environment,	so	strong
authentication	and	encryption	suites	are	an	important	component	in	the	security
of	a	zero	trust	network.



of	a	zero	trust	network.

Which	suites	offer	strong	security	unfortunately	changes,	so	this	book	cannot
offer	specific	choices	that	will	stand	the	test	of	time.	Readers	should	refer	to
security	standards	like	the	NIST	encryption	guidelines	to	pick	strong	cipher
suites.

System	administrators	should	always	aim	for	the	strongest	suites	possible,	but
device	and	application	capabilities	might	limit	the	types	of	suites	that	are
available.	In	these	cases,	administrators	should	be	aware	that	by	reducing	the
strength	of	these	suites,	security	is	being	compromised	in	their	network.

Authentication	SHOULD	NOT	rely	on	public	PKI	providers—private
PKI	systems	should	be	used	instead

Public	PKI	systems	provide	trust	assurances	to	unmanaged	endpoints	in	a	secure
communication.	A	certificate	authority	signs	certificates	used	in	establishing
secure	communications.	The	endpoint	receiving	that	signed	certificate	is	able	to
verify	its	authenticity	by	comparing	the	signing	material	against	the	list	of
trusted	certificate	authorities	already	present	on	the	system.	By	seeding	systems
with	a	list	of	trusted	public	certificate	authorities,	endpoints	can	establish	secure
communication	channels	with	systems	they	have	not	previously	communicated
with.

Given	the	benefit	that	the	public	PKI	system	provides	to	build	secure
communication	channels,	why	do	zero	trust	networks	prefer	private	PKI
systems?	The	reason,	perhaps	unsurprisingly	given	zero	trust’s	focus	on
managing	trust,	is	that	trusting	a	third	party	places	the	system	at	increased	risk.
There	are	several	risks	that	the	public	PKI	system	brings	to	a	zero	trust	network.

One	concern	is	the	number	of	public	certificate	authorities	that	are	considered
trusted.	As	internet	traffic	has	grown,	the	number	of	trusted	public	CAs	has
grown	with	it.	Each	one	of	those	trusted	CAs	has	the	ability	to	sign	a	fraudulent
certificate	that	incorrectly	asserts	the	trustworthiness	of	a	malicious	system.
Certificate	pinning	can	help	with	this	risk	by	giving	an	endpoint	the	knowledge
of	which	certificate	to	expect	for	a	given	endpoint,	but	certificate	pinning
requires	that	the	endpoint	have	prior	knowledge	of	the	expected	certificate,
which	presents	a	new	challenge.

Using	a	public	CA	also	presents	another	threat.	State	actors	have	become	more
aggressive	in	using	judicial	powers	to	force	organizations	to	act	against	the	trust



aggressive	in	using	judicial	powers	to	force	organizations	to	act	against	the	trust
guarantees	that	they	provide	to	their	customers.	These	requests	have	increasingly
used	laws	which	prohibit	involved	parties	from	disclosing	their	actions.	Given
this	aggressive	stance,	allowing	state	actors	into	the	trust	mechanisms	of	a	zero
trust	network	should	give	system	administrators	pause.

Based	on	these	concerns,	zero	trust	networks	should	prefer	privately	held	PKI
systems.	Endpoints	should	be	configured	to	only	allow	certificates	signed	by	the
private	PKI	system.	We	discussed	PKI	in	greater	detail	in	Chapter	2.

Devices	SHOULD	be	regularly	scanned,	patched,	and	rotated

We	learned	in	Chapter	5	that	the	security	of	devices	is	critical	for	building	a	zero
trust	network.	Administrators	need	to	build	with	the	assumption	that	trusted
devices	on	the	network	are	compromised,	and	therefore	build	defenses	into
device	management	to	mitigate	this	threat.

To	that	end,	devices	should	be	regularly	scanned	to	capture	the	software	that’s
running	or	installed	on	the	device	at	a	given	point	in	time.	Scanning	can	be	used
to	discover	and	prevent	known	malicious	software	from	running	on	the	device,
but	administrators	should	operate	under	the	assumption	that	malware	prevention
software	(e.g.,	antivirus	software)	will	always	be	imperfect.	Rather	than	focusing
all	energy	on	stopping	malicious	software	from	running,	administrators	should
focus	on	building	forensics	capabilities	so	they	can	analyze	the	impact	of	an
inevitable	malware	attack.

Keeping	devices	fresh	is	also	very	important.	System	administrators	should	have
a	plan	for	regularly	installing	the	latest	security	patches.	Additionally,	a	regular
device	rotation	policy	will	help	ensure	that	devices	don’t	accrue	cruft,	which	can
compromise	the	security	of	that	system.

PREFER	REIMAGING	OVER	LONG-TERM	SCANNING
AND	PATCHING

Device	trustworthiness	degrades	over	time	due	to	the	increased	risk	that	a	device	could	have
been	compromised.	Regularly	reimaging	devices,	while	disruptive,	ensures	that	the	trust	in	the
fleet	remains	high.	Aim	to	reimage	servers	once	a	quarter	and	personal	devices	every	two
years.



Building	a	System	Diagram
Building	a	system	diagram	is	an	important	first	step	toward	realizing	a	zero	trust
network.	Having	a	clear	picture	of	how	both	internal	and	external	network
communication	is	occurring	will	be	useful	when	designing	system
communication	channels.

System	diagrams,	such	as	the	one	shown	in	Figure	9-1,	are	often	maligned	for
being	horribly	out	of	date.	These	diagrams	are	typically	built	by	hand,	which
requires	a	large	amount	of	human	effort.	Given	the	speed	at	which	the	diagrams
fall	out	of	date,	there	is	a	commonly	held	opinion	that	system	diagrams	simply
aren’t	worth	the	investment.	This	viewpoint,	however,	misses	the	benefit	of
having	a	human-focused	view	of	how	the	system	should	be	constructed.	While
an	engineer	could	read	code	or	interrogate	existing	systems	to	determine	how	the
system	is	constructed,	this	doesn’t	give	any	insight	into	whether	that	state	was
desired	or	accidental.



Figure	9-1.	A	diagram	like	this	is	a	good	starting	point	for	building	a	zero	trust	network.	Directionality	is
important.

So	if	system	diagrams	are	useful,	but	often	out	of	date,	the	natural	question	is
how	much	time	and	effort	should	we	put	into	their	creation.	A	good	path	forward
for	an	existing	network	is	to	first	observe	the	communication	that	is	flowing
through	the	network.	You	can	capture	this	communication	using	tools	that	log
flows.	Once	flow	information	is	captured,	producing	a	system	diagram	will	be	an
exercise	in	categorizing	classes	of	communication.

In	the	next	section,	we	will	talk	about	tools	for	capturing	and	categorizing
network	flows,	as	well	as	a	strategy	for	breaking	down	this	large	effort	into
smaller	chunks	of	work.



Understanding	Your	Flows
A	network	flow	is	a	time-bound	communication	between	a	source	system	and	a
destination.	A	single	flow	could	be	be	directly	mapped	to	an	entire	conversation
when	using	a	bidirectional	transport	protocol	(e.g.,	TCP).	For	unidirectional
transport	protocols	(e.g.,	UDP),	a	single	flow	might	only	capture	half	of	a
network	conversation.	This	is	because	while	two	UDP	flows	might	be	logically
related,	an	observer	on	the	network	may	be	unable	to	make	that	association
without	a	deep	understanding	of	the	application	data.

Capturing	all	the	flow	activity	in	an	existing	production	network	is	a	logical	first
step	for	a	system	that	wants	to	move	to	a	zero	trust	model.	Logging	flows	in	a
network	over	a	long	period	of	time	is	a	noninvasive	way	to	discover	what
network	connections	exist	and	should	be	considered	in	the	new	security	model.
Without	this	upfront	information	gathering,	efforts	to	move	to	a	zero	trust	model
will	result	in	frequent	network	communication	issues,	causing	the	project	to	be
deemed	too	invasive	and	disruptive.

WAYS	TO	DISCOVER	FLOWS

There	are	many	different	mechanisms	for	logging	and	analyzing	network
flows.	Which	system	is	used	will	largely	depend	on	the	type	of	network
being	run	(physical	or	virtual)	and	the	level	of	access	that	an	administrator
has	over	the	endpoints.

Physical	networks	have	rich	capabilities	for	accessing	the	raw	packets	that
are	flowing	over	the	network.	Business-class	switches	will	generally	have
the	ability	to	mirror	packets	to	a	second	port	on	the	switch	(known	as	a
SPAN	or	mirror	port).	This	approach	is	relatively	safe	to	enable	on	a	lightly
loaded	switch,	but	it	will	mask	some	types	of	errors	in	the	network.	TAP
devices,	which	are	placed	inline	in	the	network	link,	will	guarantee	that	all
data	is	transmitted	to	a	monitoring	device.	For	the	purposes	of	discovering
logical	flows	in	the	network,	either	approach	will	work.

Virtualized	networks	might	have	the	ability	to	inspect	network	traffic,	but
they	generally	operate	on	a	coarser	level.	Amazon	Web	Services,	for
example,	has	a	feature	that	logs	every	flow	in	a	network,	which	can	be	used
to	analyze	traffic	on	its	systems	(Figure	9-2).



Figure	9-2.	Some	cloud	providers	have	flow	logging	features	built	in;	this	is	a	screenshot	of	the	AWS
flow	log	feature	(used	with	permission	from	Roy	Feintuch)

While	discovering	flows	via	the	network	fabric	gives	perfect	visibility	into
the	traffic	that	is	flowing,	tying	that	analysis	back	to	individual	applications
is	difficult	without	some	endpoint	monitoring	system.	In	the	case	where
control	of	endpoints	is	feasible,	discovering	network	flows	on	the	endpoints
themselves	can	provide	a	more	detailed	view	of	the	source	of	traffic	in	the
system.	Software	firewalls	operating	in	log-only	mode	can	be	a	useful	tool	to
discover	flows	in	the	system	without	impacting	communication.

On	Linux	endpoints,	there	are	several	approaches	to	discovering	and
cataloging	network	flows,	which	Harald	Welte’s	paper	“Flow-based	network
accounting	with	Linux”	captures.

With	all	network	flows	logged,	the	next	goal	is	to	categorize	flows	based	on
higher-level	system	connections.	These	connections	should	be	defined	at	the
logical	systems	level	instead	of	the	individual	IP/port	level.	The	connections
being	defined	with	this	exercise	are	very	valuable	data.	With	the	definitions	in
hand,	one	is	able	to	better	enforce	known	connections	and	gain	awareness	of
changes	to	the	communication	patterns	within	a	network.	Since	many	operations
of	secure	network	can	be	derived	from	this	database	of	connections,	it’s	clear
that	capturing	this	mapping	is	very	useful.

For	a	very	large	network,	capturing	and	categorizing	all	network	flows	could	be
an	enormous	undertaking.	The	natural	question	is	whether	capturing	all	network
connections	is	a	requirement	for	transitioning	to	a	zero	trust	network.
Fortunately,	a	zero	trust	network	can	be	incrementally	realized	within	an	existing
perimeter-based	system.	One	can	leverage	the	existing	perimeter	or	network
boundaries	to	build	a	zero	trust	network	on	either	side	of	the	boundary.	The	zero

http://bit.ly/aws-feintuch
https://www.kernel.org/doc/ols/2005/ols2005v2-pages-273-278.pdf


trust	model	can	then	spread	from	zone	to	zone	as	in	Figure	9-3,	enhancing	the
network	security	of	the	existing	system	while	maintaining	the	operational
security	measures	already	in	place.

Figure	9-3.	Zero	trust	adoption	can	move	zone	by	zone,	giving	an	easy	migration	path	away	from	the
traditional	perimeter	architecture

Controller-Less	Architecture
A	fully	mature	zero	trust	network	will	have	at	its	core	several	control	plane
systems	which	provide	critical	security	services.	While	having	these	systems	is
ideal,	it	is	possible	to	iterate	toward	the	idealized	deployment	while	using
common	infrastructure	systems	initially.	We	will	explore	some	of	these	systems
now.

“Cheating”	with	Configuration	Management
Many	operationally	mature	organizations	use	configuration	management	tools	to



manage	their	infrastructure.	When	using	these	systems,	the	desired	configuration
state	is	captured	and	version	controlled.	After	examining	the	current	state	of	the
system,	the	configuration	management	system	uses	this	desired	configuration	to
calculate	modifications	that	will	bring	the	system	to	the	desired	state.	Using	a
configuration	management	tool	brings	a	number	of	benefits	over	planned
changes	executed	by	humans:

Changes	to	the	system	are	applied	consistently	across	the	entire	fleet.

The	configuration	data	can	be	stored	in	a	version	control	system,	which
provides	a	useful	record	of	what	changes	were	made	and	why.

Configuration	drift	is	less	likely	to	occur,	since	its	state	is	policed	by	the
configuration	management	system.

The	first	way	that	configuration	management	is	often	deployed	is	to	manage	the
configuration	of	individual	computers.	The	systems	are	started	from	a	known
blank	slate	(usually	just	the	initial	installation	of	the	operation	system)	and	then
reconfigured	to	the	desired	state	based	on	that	machine’s	role	in	the
infrastructure.	Having	this	process	automated	makes	it	easy	to	replace
infrastructure.

While	using	configuration	management	for	this	task	brings	a	lot	of	value,	these
tools	can	also	be	used	as	a	general-purpose	automation	framework.	For	instance,
they	can	be	used	to	configure	cryptographic	primitives	between	infrastructure
hosts,	or	to	poke	tightly	scoped	holes	in	host-based	firewalls.	In	this	way,
configuration	management	(or	CM)	systems	can	be	used	to	drive	a	subset	of	the
functions	that	are	normally	offered	by	a	mature	zero	trust	control	plane.

Similarly,	CM	systems	can	also	be	used	to	build	up	useful	abstractions	in	the
network.	Most	CM	tools	support	mechanisms	for	extending	the	set	of	available
resources	or	actions.	Using	this	extension	point,	it’s	possible	to	build	more
complex	resources	into	the	system.	For	example,	one	could	define	the	concept	of
a	service	resource	which	would	capture	all	the	standard	infrastructure	that	should
be	used	to	make	the	service	available	on	the	network.

CM	IS	A	TEMPORARY	STEPPING	STONE
Configuration	management	systems	are	best	deployed	in	a	manner	where	the	system	reaches	a



stable	configuration.	With	this	ideal	in	mind,	using	a	configuration	management	system	to
make	frequent	changes	to	the	system	would	seem	counterproductive.	We	shouldn’t	dismiss
this	concern,	as	it	has	some	validity	to	it.	Instead,	we	should	be	mindful	that	leveraging	a
configuration	management	system	to	build	a	zero	trust	network	is	just	a	stepping	stone	to	the
ideal	solution,	which	would	move	those	responsibilities	to	a	dedicated	controller.

Application	Authentication	and	Authorization
A	typical	organization	makes	use	of	many	services,	the	client-side	delivery	of
which	is	increasingly	browser-based.	Since	a	zero	trust	network	does	not	infer
trust	based	on	the	network	address	of	a	connection,	every	service	needs	to	handle
authentication	and	authorization.

A	simple	solution	is	to	to	store	username	and	passwords	in	each	application.
This	approach,	however,	is	heavily	discouraged,	primarily	due	to	management
complexity.

Instead	of	having	each	application	implement	its	own	authentication	systems,	it
is	far	better	to	have	applications	integrate	with	an	identity	provider	system	which
can	provide	centralized	authentication	and	authorization	checks.	SAML
(Security	Assertion	Markup	Language)	is	one	technology	that	can	be	used	to
integrate	an	application	with	an	identity	provider.	OAuth2	is	another.

This	is	not	to	say	that	an	application	should	have	no	authorization
responsibilities	at	all.	To	the	contrary,	it	is	expected	that	some	application-level
authorization	exist,	particularly	when	considering	things	like	varying	user
permissions.	The	overhead	of	account	management,	user	authentication,	and
high-level	authorization/access	can	be	offloaded	while	still	allowing	room	for
application-centric	authorization.

When	authenticating	with	an	identity	provider,	multifactor	authentication	must
be	used	to	ensure	that	the	user	credentials	cannot	be	easily	stolen.	We	discussed
multifactor	authentication	in	Chapter	6.

Authenticating	Load	Balancers	and	Proxies
Many	service	architectures	call	for	the	use	of	a	load	balancer	to	distribute
requests	to	a	set	of	backend	hosts.	Oftentimes	these	load	balancers	represent	the
boundary	between	a	client-facing	system	and	a	datacenter	system.	This	can



create	confusion	around	how	to	properly	apply	zero	trust	controls	in	such	a
system,	since	client-facing	zero	trust	semantics	can	be	fairly	different	than
server-side	systems.

In	Chapter	7,	we	spoke	about	how	to	manage	application	authentication	and
authorization	as	an	analog	to	user	authentication	and	authorization.	In	backend
systems,	the	best	way	to	authorize	an	application	is	to	inject	ephemeral
credentials	at	runtime,	whether	that	be	an	API	key,	short-lived	certificate,	or
otherwise.	Each	credential	uniquely	represents	a	running	application	instance.

In	a	load-balanced	system,	the	load-balancing	software	itself	can	be	viewed	as	a
server-side	application.	Each	software	instance	is	started	with	ephemeral
credentials	identifying	the	instance	to	upstream	hosts.	This	is	in	addition	to
device	authentication,	which	occurs	between	the	load	balancer	and	upstream
system	using	techniques	discussed	in	Chapter	5.

With	this	architecture,	the	load	balancer	can	then	handle	user	and	client	device
authentication	and	authorization	responsibilities,	leveraging	identity	providers	if
desired.	Information	from	the	resulting	authentication	and	authorization	process
(such	as	username)	can	then	be	sent	along	with	the	original	request	to	the
backend	hosts.	In	this	way,	the	zero	trust	architecture	can	be	preserved	as	data
crosses	client-server	boundaries	and	enters	the	datacenter.

PREFER	SECURITY	TOKENS	OVER	TOTP
When		multifactor	authentication	was	first	deployed	in	organizations,	users	were	given	simple
devices	which	continuously	generated	time-based	tokens.	With	the	prevalence	of	today’s	smart
phones,	most	users	prefer	to	use	a	multifactor	application	on	their	smart	phone	to	generate
codes.

Protocols	which	use	security	tokens,	like	U2F,	are	increasingly	prefered	over	time-based	token
systems	due	to	their	protection	against	phishing	attacks.	It’s	a	bonus	that	these	systems	are
generally	also	easier	for	users	to	work	with.	When	possible,	prefer	security	tokens	over	TOTP
systems.	We	discussed	these	technologies	in	Chapter	6.

Relationship-Oriented	Policy
Zero	trust	advocates	for	a	control	plane	that	injects	the	results	of	authorization
decisions	into	the	network	to	allow	trusted	communication	to	occur.	In	that



model,	each	network	flow	is	individually	authenticated	and	authorized.
Enforcement	is	obtained	by	reconfiguring	or	signaling	the	network	fabric	to
allow	authorized	communication.

In	a	scaled-down	zero	trust	network,	which	lacks	these	control	plane	systems,	we
are	forced	to	scale	back	that	ambition.	Instead	of	building	a	network	that	uses
dynamic	injection	and	signaling,	we	can	build	a	system	that	defines	policies	at
the	relationship	level.

In	relationship-oriented	network	policy,	communication	between	two	devices	is
defined	and	controlled	via	traditional	network	filtering	mechanisms	like
firewalls	and	required	TLS	connections.	These	policy	enforcement	mechanisms
can	seem	very	similar	to	a	perimeter-based	model.	The	key	difference	in	the
relationship-oriented	model	is	that	the	policy	is	tightly	scoped	to	communicating
devices	instead	of	communicating	network	segments.	This	approach	is
sometimes	referred	to	as	microperimeterization.

By	capturing	and	enforcing	which	devices	should	be	communicating	with	each
other,	we	build	a	database	of	expected	communication	which	will	be	of	great
value	in	the	future	when	dynamic	policy	systems	are	deciding	whether	to	allow	a
network	flow.

Policy	Distribution
Distributing	policy	(as	opposed	to	just	enforcement)	throughout	the	network	is	a
common	characteristic	of	a	scaled-down	version	of	zero	trust.	Given	the	fine-
grained	policy	decisions	we	expect	in	the	network,	automation	is	critical	to
making	the	network	operable.

In	a	mature	zero	trust	network,	policy	interpretation	is	fully	handled	by	control
plane	systems,	which	can	dynamically	reconfigure	network	infrastructure	and
devices,	or	give	authorization	responses	to	signaling	enforcement	components.

In	a	controller-less	deployment,	however,	we	must	use	a	different	mechanism.
Configuration	management	systems	can	be	used	to	fill	this	void	in	the	network
control	plane.

Devices	can	be	dynamically	configured	to	implement	their	own	enforcement	of
expected	network	communication.	Configuring	an	on-host	software	firewall
which	is	calculated	from	the	relationship	policy	database	can	provide	per-host



which	is	calculated	from	the	relationship	policy	database	can	provide	per-host
enforcement	that	is	less	difficult	to	operate	than	a	centralized,	physical	firewall.
Communications	can	be	similarly	authorized	by	hosts	via	mechanisms	like
mutually	authenticated	TLS,	again	controlled	by	configuration	management
software.

The	key	realization	here	is	that	by	using	existing	configuration	management
systems,	we	are	able	to	build	a	virtual	control	plane	which	can	distribute
enforcement	responsibilities	into	the	network	fabric.	While	this	approach	is
pragmatic,	it	isn’t	without	its	downsides:

Requiring	hosts	to	enforce	policy	risks	having	that	policy	removed	or	altered
should	the	host	be	compromised.	In	compatible	environments,	pushing	this
responsibility	across	an	isolation	boundary	(e.g.,	a	hypervisor,	the	host	OS	in
containerized	systems,	or	network	security	groups)	provides	better	protection.

Changes	via	configuration	management	systems	often	have	a	longer	period	of
inconsistency	while	policy	is	being	rolled	out	into	the	system.

Defining	and	Installing	Policy
Security	policies	need	to	be	captured	in	a	format	that’s	separate	from	the
individual	devices	that	are	used	to	implement	those	policies.	There	are	a	few
reasons	for	storing	this	data	outside	the	implementing	systems:

Having	the	policy	captured	separately	allows	for	auditing	of	the
implementation	against	the	desired	policy.

The	policy	definitions	can	be	reused	when	switching	underlying	enforcement
systems.	For	example,	configuring	a	new	vendor’s	system	is	made	easier	if
the	policy	is	captured	in	a	non–vendor-specific	format.

A	separate	database	that	captures	intended	policy	can	quickly	fall	out	of	date
unless	mechanisms	are	put	in	place	to	ensure	that	it	is	consistent	with	the
implementation.	The	best	way	to	ensure	this	happens	is	to	generate
implementation	configuration	from	this	policy	database	using	configuration
management	systems.

Some	system	administrators	may	choose	to	capture	policy	directly	in
configuration	management	code.	In	less	mature	networks,	this	approach	is



considered	sufficient,	since	the	configuration	management	system	will
consistently	apply	the	policies	defined	on	the	target	devices.	As	the	network
matures,	administrators	may	find	that	moving	the	definitions	out	to	data	allows
for	them	to	be	used	in	more	locations.	For	example,	host-based	and	managed
network	firewalls	could	be	configured	from	a	shared	policy	database	if	that	data
is	extracted	from	configuration	management	code.

Defining	variable	trust	policies	is	too	difficult	to	attempt	in	less	mature
networks.	System	administrators	should	instead	focus	on	defining	and	capturing
known	policies.

When	building	up	policies,	especially	in	an	existing	network,	it	is	helpful	to	have
mechanisms	for	testing	proposed	policies.	The	gold	standard	is	a	system	which
can	take	proposed	policy	changes	and	report	on	traffic	which	would	be	denied
by	the	enforcement	of	those	policy	changes.	Building	up	this	policy	preview
system	requires	quite	a	few	components:	a	database	of	logged	production	flows,
a	policy	simulator,	and	a	system	to	identify	differences	in	current	production
policy	and	proposed	policy.	For	many	organizations,	that	level	of	sophisticated
policy	simulation	is	simply	out	of	reach.

A	simpler	approach	to	safely	introducing	policy	changes	can	be	achieved	using
the	following	rollout	procedure:

1.	 Take	a	subset	of	the	desired	policy,	which	we	will	call	the	proposed	policy.

2.	 Deploy	the	proposed	policy	in	a	logging-only	fashion.

3.	 Collect	production	traffic	over	a	sufficient	period	of	time.

4.	 Investigate	traffic	which	would	be	rejected	should	the	proposed	policy	be
enforced.

5.	 Enforce	the	proposed	policy.

6.	 Repeat	this	process	until	all	desired	policy	has	been	deployed.

7.	 When	all	the	desired	policy	is	in	place,	enable	a	policy	which	rejects	traffic
by	default.

This	“log	then	enforce”	procedure	will	provide	ample	time	to	discover
unforeseen	issues	in	the	production	environment.	In	addition	to	this	approach,	a



phased	rollout,	where	policy	is	enforced	over	a	subset	of	the	production
footprint,	can	also	help	identify	issues	without	affecting	the	entire	production
system.

Zero	Trust	Proxies
Zero	trust	proxies	are	application-level	proxy	servers	which	can	be	used	to
secure	a	zero	trust	network.	Proxies	are	deployed	as	infrastructure	to	handle
authentication,	authorization,	and	encryption	responsibilities.	The	manner	in
which	these	proxies	are	deployed	is	critical	to	ensure	the	safety	of	a	zero	trust
network.

Zero	trust	proxies	can	operate	in	two	different	modes:	reverse	proxy	or	forward
proxy.	Depending	on	the	situation,	one	or	both	of	these	proxy	modes	may	be
used,	as	shown	in	Figure	9-4.

In	reverse	proxy	mode,	the	proxy	is	receiving	connection	requests	from	zero
trust-enabled	clients.	The	proxy	receives	the	initial	connection,	validates	that	the
connection	should	be	allowed,	and	then	passes	the	request	to	the	application	for
processing.

In	forward	proxy	mode,	a	non-zero–trust-aware	component	needs	to	make	a
network	request	to	another	zero	trust	system	on	the	network.	Since	the	non-zero–
trust-aware	component	is	unable	to	work	with	the	control	plane	to	initiate	the
request	properly,	it	communicates	through	the	authentication	proxy	to	handle
that	responsibility.



Figure	9-4.	Co-located	forward	proxies	can	be	used	to	connect	to	zero	trust	resources	from	legacy	systems,
while	co-located	or	centralized	reverse	proxies	can	allow	access	to	legacy	services	by	zero	trust	clients.

Proxies	can	be	used	to	build	a	zero	trust	network,	but	the	proxies	should	be
deployed	on	the	same	device	that	the	workload	is	running	on.	When	a	zero	trust
network	is	built	in	this	manner,	all	workload	communication	is	forcibly	routed
through	the	proxy	before	being	emitted	on	the	network.	Isolating	this
responsibility	in	a	proxy	brings	advantages	over	incorporating	it	in	individual
applications,	which	we	covered	in	Chapter	8.

Placing	proxies	on	dedicated	devices	is	not	recommended	for	building	a	zero
trust	network.	Trying	to	isolate	zero	trust	responsibilities	in	an	external	proxy
goes	against	the	model	which	seeks	to	secure	all	traffic,	including	traffic
between	proxies/load	balancers	and	backend	services.

Building	a	zero	trust	network	can	be	especially	difficult	for	system
administrators	who	do	not	have	complete	control	of	all	devices	or	services	on	the
network.	For	example,	a	network	might	have	vendor-supplied	components
which	need	to	be	secured	without	changing	the	device	itself.

Zero	trust	proxies	can	help	bridge	the	gap	in	this	situation.	Placing	such	a	proxy
between	the	unmodifiable	component	and	the	zero	trust	network	can	allow	that



between	the	unmodifiable	component	and	the	zero	trust	network	can	allow	that
component	to	participate	in	the	network,	though	with	a	lesser	guarantee	of	its
security.

It	is	critical	that	the	non-zero–trust-aware	component	be	completely	isolated.
This	isolation	must	ensure	that	all	network	communication	to	and	from	that
component	can	only	occur	through	its	authentication	proxy.	If	possible,	direct
mechanical	connection	should	be	preferred.

Client-Side	Versus	Server-Side	Migrations
When	realizing	a	zero	trust	network,	deciding	on	whether	client-to-server
interactions	or	server-to-server	interactions	should	be	undertaken	first	is
ultimately	dependent	on	the	needs	of	the	organization	and	the	level	of	effort
required	to	meet	the	goal.

Client-to-server	interactions	are	usually	the	first	to	be	focused	on.	Oftentimes,
the	clients	are	physically	mobile	and	accessing	services	from	uncontrolled
networks.	Additionally,	with	these	devices	being	mobile,	the	physical	security	of
the	device	is	reasonably	called	into	question.	Building	zero	trust	capabilities	at
this	access	point	therefore	brings	a	lot	of	value.

There	are,	however,	real	hurdles	to	building	zero	trust	at	the	client/server	layer.
Organizations	don’t	necessarily	have	existing	automation	systems	installed	on
client	machines	to	allow	the	zero	trust	network	to	be	built.	Additionally,	the
types	of	devices	in	use	on	the	clients	can	be	much	more	diverse,	which	means
that	the	required	automation	has	to	be	compatible	with	more	systems.

Server-to-server	interactions	can	be	an	easier	initial	target	for	zero	trust
networks.	These	systems	frequently	have	existing	automation	tools	installed.
They	also	tend	to	have	a	less	diverse	set	of	providers	in	use.	Finally,	they	are
often	the	systems	which	are	housing	sensitive	data,	and	so	are	an	attractive	target
for	would-be	attackers.

Ultimately,	the	decision	of	where	to	start	should	focus	on	which	target	is	the
weakest	link	in	the	system’s	network	defenses.	Building	a	threat	model	can	help
determine	which	systems	are	the	most	exposed.	With	that	knowledge,	choosing
where	to	invest	time	and	resources	is	easier.



Case	Studies
Since	the	exact	architecture	of	a	zero	trust	network	is	dependent	on	the	details	of
a	particular	organization’s	network,	it	can	be	hard	to	see	how	all	the	pieces	fit
together.	To	help	visualize	how	these	principles	manifest	themselves	in	different
situations,	we	are	going	to	explore	the	experiences	of	a	couple	organizations	that
have	successfully	transitioned	to	a	zero	trust	model.

Google’s	BeyondCorp	effort	focused	on	bringing	zero	trust	architecture	to	the
client-to-server	interactions	that	their	highly	distributed	and	mobile	workforce
uses	every	day.

PagerDuty’s	Cloud	Agnostic	Network	focuses	on	server-to-server	and	cross-
cloud	interactions	which	needed	to	be	secured	from	both	external	and	internal
threats.

Case	Study:	Google	BeyondCorp
Betsy	Beyer

Starting	in	November	2014,	Google	published	a	series	of	articles	in	;login:
describing	a	new	and	groundbreaking	security	model	it	was	deploying	to	its
entire	corporate	network.	The	following	case	study	is	based	on	excerpts	from
those	three	articles,	with	permission	from	Google	and	:login;.

We	encourage	you	to	read	the	original	source	material	to	learn	more	details:

“BeyondCorp:	A	New	Approach	to	Enterprise	Security”

“BeyondCorp:	Design	to	Deployment	at	Google”

“Beyond	Corp:	The	Access	Proxy”

By	the	early	2010s,	Google	was	increasingly	uncomfortable	with	the	perimeter
model	of	network	defense.	Creating	high,	impregnable	“castle	walls”	was	not
going	to	protect	us	when	tens	of	thousands	of	our	employees	performed	much	of
their	work	while	physically	outside	our	offices,	while	on	any	given	day	we
invited	thousands	of	people	inside.	At	the	same	time,	as	the	critical	role	Google
plays	in	the	lives	of	billions	of	users	continued	to	increase,	so	did	the	almost
incalculable	value	we	place	on	the	user	data	entrusted	to	us.

https://research.google.com/pubs/pub43231.html
https://research.google.com/pubs/pub44860.html
https://research.google.com/pubs/pub45728.html


In	light	of	the	scope	and	scale	of	our	employee	base	and	our	corporate	network,
and	the	variety	of	ways	in	which	our	employees	interact	with	corporate	resources
(as	a	mobile	workforce	using	cloud	services	and	a	variety	of	client	devices),	it
became	obvious	that	the	castle-wall	metaphor	was	unsustainable.We	needed	a
strategy	much	more	akin	to	a	modern	city	than	a	medieval	castle:	a	system	that
mediates	access	to	applications,	data,	and	services	according	to	who	you	are,	not
which	network	you	use.

With	this	security	imperative	in	mind,	Google	revisited	the	state	of	the	enterprise
with	a	fresh	set	of	eyes.	We	knew	that	we	could	do	better	than	any	of	the
conventional	network	security	models	deployed	across	the	industry,	so	we	took
the	radical	step	of	redesigning	our	entire	approach.

Starting	from	square	one	in	re-envisioning	internal	network	security,	we	invested
over	four	years	of	design	and	iteration	in	creating	a	robust	implementation	of	the
zero	trust	model.	While	most	enterprises	assume	that	the	internal	network	is	a
safe	environment	in	which	to	expose	corporate	applications,	we	assume	that	an
internal	network	is	as	fraught	with	danger	as	the	public	internet.

This	new	model	dispenses	with	a	privileged	corporate	network	entirely.	Instead,
access	depends	solely	on	device	and	user	credentials,	regardless	of	a	user’s
network	location—be	it	an	enterprise	location,	a	home	network,	or	a	hotel	or
coffee	shop.	All	access	to	enterprise	resources	is	fully	authenticated,	fully
authorized,	and	fully	encrypted	based	upon	device	state	and	user	credentials.	We
can	enforce	fine-grained	access	to	different	parts	of	enterprise	resources.	As	a
result,	all	Google	employees	can	work	successfully	from	any	network,	and
without	the	need	for	a	traditional	VPN	connection	into	the	privileged	network.
The	user	experience	between	local	and	remote	access	to	enterprise	resources	is
effectively	identical,	apart	from	potential	differences	in	latency.

When	reading	the	following	case	study,	keep	in	mind	that	we’re	well	aware	that
Google	is	unique	both	in	terms	of	its	scale	and	in	the	amount	of	resources	we
were	able	to	devote	to	this	problem	space.	Because	we	weren’t	constrained	by
resources,	we	could	act	more	or	less	purely	motivated	by	ambitious	goals	that
did	away	with	the	conventional	network	security	paradigm.

Fast-forward	from	BeyondCorp’s	inception	to	2017:	hacking	tools	have
advanced	in	sophistication	and	dropped	massively	in	cost.	Malicious	efforts	that
might	once	have	been	worthwhile	only	when	turned	against	Google-scale	targets



might	once	have	been	worthwhile	only	when	turned	against	Google-scale	targets
are	now	applicable	to	much	smaller	enterprises.	While	the	risk	profile	of	small-
to	medium-sized	organizations	has	increased,	so	too	have	their	options	to	protect
themselves:	the	commercial	network	security	industry	has	likewise	matured.
While	Google	had	to	build	its	security	infrastructure	from	scratch,	today	there
actually	are	enterprise	network	security	offerings	your	organization	can	employ
in	moving	away	from	the	perimeter	model.	Regardless	of	individual	components
you’re	considering	in	this	space,	keep	the	core	design	principles	and	objectives
that	motivated	Google	in	mind	as	you	develop	a	strategy.

While	technical	and	implementation	details	of	BeyondCorp	may	have	varying
degrees	of	direct	applicability	to	your	enterprise	or	organization,	many	of	the
risk	factors	we	designed	to	protect	against	are	widely	germane,	and	the
fundamental	design	principles	we	employed	should	be	directly	relevant	to	all.

The	Major	Components	of	BeyondCorp
As	shown	in	Figure	9-5,	BeyondCorp	consists	of	many	cooperating	components
to	ensure	that	only	appropriately	authenticated	devices	and	users	are	authorized
to	access	the	requisite	enterprise	applications.	The	following	sections	describe
individual	components	of	BeyondCorp.

Figure	9-5.	BeyondCorp	components	and	access	flow



Securely	identifying	the	device

BeyondCorp	securely	identifies	and	tracks	all	managed	devices	using	a	master
Device	Inventory	Database	and	device	certificates.

Device	inventory	database

BeyondCorp	uses	the	concept	of	a	“managed	device,”	which	is	a	device	that	is
procured	and	actively	managed	by	the	enterprise.	Only	managed	devices	can
access	corporate	applications.	A	device	tracking	and	procurement	process
revolving	around	our	Device	Inventory	Database	is	one	cornerstone	of	this
model.

As	a	device	progresses	through	its	lifecycle,	Google	keeps	track	of	changes
made	to	the	device.	This	information	is	monitored,	analyzed,	and	made	available
to	other	parts	of	BeyondCorp.	Because	Google	has	multiple	inventory	databases,
we	use	a	meta-inventory	database	to	amalgamate	and	normalize	device
information	from	these	multiple	sources,	and	to	make	the	information	available
to	downstream	components	of	BeyondCorp.	With	this	meta-inventory	in	place,
we	have	knowledge	of	all	devices	that	need	to	access	our	enterprise.

Device	identity

All	managed	devices	need	to	be	uniquely	identified	in	a	way	that	references	the
record	in	the	Device	Inventory	Database.	One	way	to	accomplish	this	unique
identification	is	to	use	a	device	certificate	that	is	specific	to	each	device.

To	receive	a	certificate,	a	device	must	be	both	present	and	correct	in	the	Device
Inventory	Database.	We	store	the	certificate	on	a	hardware	or	software	Trusted
Platform	Module	(TPM)	or	a	qualified	certificate	store.	A	device	qualification
process	validates	the	effectiveness	of	the	certificate	store,	and	only	a	device
deemed	sufficiently	secure	can	be	classed	as	a	managed	device.	These	checks
are	also	enforced	as	certificates	and	are	renewed	periodically.	Once	installed,	the
certificate	is	used	in	all	communications	to	enterprise	services.	While	the
certificate	uniquely	identifies	the	device,	it	does	not	single-handedly	grant	access
privileges.	Instead,	it	is	used	as	a	key	to	a	set	of	information	regarding	the
device.

Securely	identifying	the	user

BeyondCorp	also	tracks	and	manages	all	users	in	a	User	Database	and	a	Group



BeyondCorp	also	tracks	and	manages	all	users	in	a	User	Database	and	a	Group
Database.	This	database	system	tightly	integrates	with	Google’s	HR	processes
that	manage	job	categorization,	usernames,	and	group	memberships	for	all	users.

An	externalized,	single	sign-on	(SSO)	system	is	a	centralized	user	authentication
portal	that	validates	primary	and	second-factor	credentials	for	users	requesting
access	to	our	enterprise	resources.	After	validating	against	the	User	Database
and	Group	Database,	the	SSO	system	generates	short-lived	tokens	that	can	be
used	as	part	of	the	authorization	process	for	specific	resources.

Externalizing	applications	and	workflows:	The	access	proxy

All	enterprise	applications	at	Google	are	exposed	to	external	and	internal	clients
via	an	internet-facing	access	proxy	that	enforces	encryption	between	the	client
and	the	application.	The	Access	Proxy	is	configured	for	each	application	and
provides	common	features	such	as	global	reachability,	load	balancing,	access
control	checks,	application	health	checks,	and	denial-of-service	protection.	This
proxy	delegates	requests	as	appropriate	to	the	backend	application	after	the
access	control	checks	(described	in	the	next	section)	complete.	See	“Leveraging
and	Extending	the	GFE”	for	more	details	about	AP	features.

Implementing	inventory-based	access	control

The	level	of	access	given	to	a	single	user	and/or	a	single	device	can	change	over
time.	By	interrogating	multiple	data	sources,	we	are	able	to	dynamically	infer	the
level	of	trust	to	assign	to	a	device	or	user.	The	Access	Control	Engine	(described
in	more	detail	next)	can	then	use	this	trust	level	as	part	of	its	decision	process,	as
in	the	following	examples:

A	device	that	has	not	been	updated	with	a	recent	OS	patch	might	be	relegated
to	a	reduced	level	of	trust.

A	particular	class	of	device,	such	as	a	specific	model	of	phone	or	tablet,
might	be	assigned	a	particular	trust	level.

A	user	accessing	applications	from	a	new	location	might	be	assigned	a
different	trust	level.

We	use	both	static	rules	and	heuristics	to	ascertain	these	levels	of	trust.

An	Access	Control	Engine	within	the	Access	Proxy	provides	service-level
authorization	to	enterprise	applications	on	a	per-request	basis.	The	authorization



authorization	to	enterprise	applications	on	a	per-request	basis.	The	authorization
decision	takes	several	factors	into	account:

Information	about	the	user,	the	groups	to	which	the	user	belongs,	the	device
certificate,	and	artifacts	of	the	device,	as	reported	by	the	Device	Inventory
Database

The	inferred	level	of	trust	in	the	user	and	the	device

If	necessary,	the	Access	Control	Engine	can	also	enforce	location-based
access	control

For	example,	the	following	policies	are	possible	with	the	Access	Control	Engine:

Restrict	access	to	Google’s	bug	tracking	system	to	fulltime	engineers	using
an	engineering	device.

Restrict	access	to	a	finance	application	to	fulltime	and	part-time	employees	in
the	finance	operations	group	using	managed	non-engineering	devices.

The	Access	Control	Engine	can	also	restrict	parts	of	an	application	in	different
ways.	For	example,	viewing	an	entry	in	our	bug	tracking	system	might	require
less	strict	access	control	than	updating	or	searching	the	same	bug	tracking
system.

Leveraging	and	Extending	the	GFE
A	conventional	approach	might	integrate	each	backend	with	the	device	trust
inference	service	in	order	to	evaluate	applicable	policies;	however,	this	approach
would	significantly	slow	the	rate	at	which	we’re	able	to	launch	and	change
products.	Instead,	Google	implemented	a	centralized	policy	enforcement
frontend	Access	Proxy	(AP)	to	handle	coarse-grained	company	policies.

BeyondCorp	leverages	the	existing	Google	Front	End	(GFE)	infrastructure	as	a
logically	centralized	point	of	access	policy	enforcement.	Funneling	requests	in
this	manner	led	us	to	naturally	extend	the	GFE	to	provide	other	features,
including	self-service	provisioning,	authentication,	authorization,	and	centralized
logging.	The	resulting	extended	GFE	is	called	the	Access	Proxy	(AP).	The
following	section	details	the	features	of	the	AP	that	are	particularly	pertinent	to
this	case	study.	For	details	about	its	other	features,	see	“Beyond	Corp:	The

https://research.google.com/pubs/pub45728.html


Access	Proxy”.

The	GFE	provides	some	built-in	benefits,	such	as	load	balancing	for	the
backends	and	TLS	management,	that	weren’t	designed	specifically	for
BeyondCorp.	The	AP	extends	the	GFE	by	introducing	authentication	and
authorization	policies.

User	authentication

In	order	to	properly	authorize	a	request,	the	AP	needs	to	identify	the	user	and	the
device	making	the	request.	Authenticating	the	device	poses	a	number	of
challenges	in	a	multiplatform	context,	which	we	address	in	“Challenges	with
Multiplatform	Authentication”.

The	AP	verifies	user	identities	by	integrating	with	Google’s	Identity	Provider
(IdP).	Because	it	isn’t	scalable	to	require	backend	services	to	change	their
authentication	mechanisms	in	order	to	use	the	AP	mechanism,	the	AP	needs	to
support	a	range	of	authentication	options:	OpenID	Connect,	OAuth,	and	some
custom	protocols.

The	AP	also	needs	to	handle	requests	without	user	credentials,	for	example,	a
software	management	system	attempting	to	download	the	latest	security	updates.
In	these	cases,	the	AP	can	disable	user	authentication.

When	the	AP	authenticates	the	user,	it	strips	the	credential	before	sending	the
request	to	the	backend.	Doing	so	is	essential	for	two	reasons:

The	backend	can’t	replay	the	request	(or	the	credential)	through	the	Access
Proxy.

The	proxy	is	transparent	to	the	backends.	As	a	result,	the	backends	can
implement	their	own	authentication	flows	on	top	of	the	Access	Proxy’s	flow,
and	won’t	observe	any	unexpected	cookies	or	credentials.

Authorization

Two	design	choices	drove	our	implementation	of	the	authorization	mechanism:

A	centralized	access	control	list	(ACL)	engine	queryable	via	remote
procedure	calls	(RPCs)



A	domain-specific	language	to	express	the	ACLs	that	is	both	readable	and
extensible

Providing	ACL	evaluation	as	a	service	enables	us	to	guarantee	consistency
across	multiple	frontend	gateways	(e.g.,	the	RADIUS	network	access	control
infrastructure,	the	AP,	and	SSH	proxies).	We	chose	to	combine	coarse-grained,
centralized	authorization	at	the	AP	with	fine-grained	authorization	at	the
backend.

Mutual	authentication	between	the	proxy	and	the	backend

Because	the	backend	delegates	access	control	to	the	frontend,	it’s	imperative	that
the	backend	can	trust	that	the	traffic	it	receives	has	been	authenticated	and
authorized	by	the	frontend.	This	is	especially	important	since	the	AP	terminates
the	TLS	handshake,	and	the	backend	receives	an	HTTP	request	over	an
encrypted	channel.

Meeting	this	condition	requires	a	mutual	authentication	scheme	capable	of
establishing	encrypted	channels—for	example,	you	might	implement	mutually
authenticated	TLS	authentication	and	a	corporate	public	key	infrastructure.	Our
solution	is	an	internally	developed	authentication	and	encryption	framework
called	LOAS	(Low	Overhead	Authentication	System)	that	bidirectionally
authenticates	and	encrypts	all	communication	from	the	proxy	to	the	backends.

One	benefit	of	mutual	authentication	and	encryption	between	the	frontend	and
backend	is	that	the	backend	can	trust	any	additional	metadata	inserted	by	the	AP
(usually	in	the	form	of	extra	HTTP	headers).	While	adding	metadata	and	using	a
custom	protocol	between	the	reverse	proxy	and	the	backends	isn’t	a	novel
approach	(for	example,	see	Apache	JServe	Protocol),	the	mutual	authentication
scheme	between	the	AP	ensures	that	the	metadata	is	not	spoofable.

As	an	added	benefit,	we	can	also	incrementally	deploy	new	features	at	the	AP,
which	means	that	consenting	backends	can	opt	in	by	simply	parsing	the
corresponding	headers.	We	use	this	functionality	to	propagate	the	device	trust
level	to	the	backends,	which	can	then	adjust	the	level	of	detail	served	in	the
response.

Challenges	with	Multiplatform	Authentication



At	minimum,	performing	proper	device	identification	requires	two	components:

Some	form	of	device	identifier

An	inventory	database	tracking	the	latest	known	state	of	any	given	device

Because	BeyondCorp	replaces	trust	in	the	network	with	an	appropriate	level	of
trust	in	the	device,	each	device	must	have	a	consistent,	non-cloneable	identifier,
while	information	about	the	software,	users,	and	location	of	the	device	must	be
integrated	in	the	inventory	database.

Desktops	and	laptops

Desktops	and	laptops	use	an	X.509	machine	certificate	and	a	corresponding
private	key	stored	in	the	system	certificate	store.	Key	storage,	a	standard	feature
of	modern	operating	systems,	ensures	that	command-line	tools	(and	daemons)
that	communicate	with	servers	via	the	AP	can	be	consistently	matched	against
the	correct	device	identifier.	Since	TLS	requires	the	client	to	present	a
cryptographic	proof	of	private	key	possession,	this	implementation	makes	the
identifier	non-spoofable	and	non-cloneable,	assuming	it’s	stored	in	secure
hardware	such	as	a	Trusted	Platform	Module	(TPM).

Mobile	devices

Instead	of	relying	on	certificates,	we	use	a	strong	device	identifier	natively
provided	by	the	mobile	operating	systems.	For	iOS	devices,	we	use	the
identifierForVendor,	while	Android	devices	use	the	device	ID	reported	by	the
Enterprise	Mobility	Management	application.

Migrating	to	BeyondCorp
Like	virtually	every	other	enterprise	in	the	world,	Google	maintained	a
privileged	network	for	its	clients	and	applications	for	many	years.	This	paradigm
gave	rise	to	significant	infrastructure	that	is	critical	to	the	day-to-day	workings
of	the	company.	While	all	components	of	the	company	will	migrate	to
BeyondCorp,	moving	every	network	user	and	every	application	to	the
BeyondCorp	environment	in	one	fell	swoop	would	be	incredibly	risky	to
business	continuity.	For	that	reason,	Google	has	invested	heavily	in	a	phased
migration	that	has	successfully	moved	large	groups	of	network	users	to
BeyondCorp	with	zero	effect	on	their	productivity.



BeyondCorp	with	zero	effect	on	their	productivity.

Deploying	an	unprivileged	network

To	equate	local	and	remote	access,	BeyondCorp	defines	and	deploys	an
unprivileged	network	that	very	closely	resembles	an	external	network,	although
within	a	private	address	space.	The	unprivileged	network	only	connects	to	the
internet,	limited	infrastructure	services	(e.g.,	DNS,	DHCP,	and	NTP),	and
configuration	management	systems	such	as	Puppet.	All	client	devices	are
assigned	to	this	network	while	physically	located	in	a	Google	building.	There	is
a	strictly	managed	access	control	list	(ACL)	between	this	network	and	other
parts	of	Google’s	network.

Workflow	qualification

All	the	applications	used	at	Google	are	required	to	work	through	the	Access
Proxy.	The	BeyondCorp	initiative	examined	and	qualified	all	applications,
which	accomplish	tasks	ranging	from	the	simple	(e.g.,	supporting	HTTPS
traffic)	to	the	more	difficult	(e.g.,	SSO	integration).	Each	application	required	an
AP	configuration	and,	in	many	cases,	a	specific	stanza	in	the	Access	Control
Engine.	Each	application	went	through	the	following	phases:

1.	 Available	directly	from	the	privileged	network	and	via	a	VPN	connection
externally.

2.	 Available	directly	from	the	privileged	network	and	via	the	AP	from	external
and	unprivileged	networks.	In	this	case,	we	used	split	DNS.	The	internal
name	server	pointed	directly	at	the	application,	and	the	external	name	pointed
at	the	AP.

3.	 Available	via	the	AP	from	external,	privileged,	and	unprivileged	networks.

Cutting	back	on	VPN	usage

As	more	and	more	applications	became	available	via	the	Access	Proxy,	we
started	actively	discouraging	users	from	using	the	VPN,	employing	the
following	strategy:

1.	 We	restricted	VPN	access	to	users	with	a	proven	need.

2.	 We	monitored	use	of	the	VPN	and	removed	access	rights	from	users	who	did



not	use	VPN	over	a	well-defined	period.

3.	 We	monitored	the	VPN	usage	for	active	VPN	users.	If	all	of	their	workflows
were	available	through	the	AP,	we	strongly	encouraged	users	to	give	up	their
VPN	access	rights.

Traffic	analysis	pipeline

It	was	very	important	that	we	moved	users	to	the	unprivileged	network	only
when	we	were	certain	(or	very	close	to	certain)	that	all	of	their	workflows	were
available	from	this	network.	To	establish	a	relative	degree	of	certainty,	we	built
a	traffic	analysis	pipeline.	Our	analysis	proceeded	as	follows:

1.	 As	input	to	this	pipeline,	we	captured	sampled	netflow	data	from	every
switch	in	the	company.

2.	 We	analyzed	this	data	against	the	canonical	ACL	between	the	unprivileged
network	and	the	rest	of	the	company’s	network.	This	analysis	allowed	us	to
identify	the	total	traffic	that	would	have	passed	the	ACL,	plus	an	ordered	list
of	traffic	that	would	not	have	passed	the	ACL.

3.	 We	could	now	attach	the	nonpassing	traffic	to	specific	workflows	and/or
specific	users	and/or	specific	devices.

4.	 We	progressively	worked	through	the	list	of	nonpassing	traffic	to	make	it
function	in	the	BeyondCorp	environment.

Unprivileged	network	simulation

To	augment	the	traffic	analysis	pipeline,	we	also	simulated	unprivileged	network
behavior	across	the	company	via	a	traffic	monitor	that	we	installed	on	all	user
devices	attached	to	Google’s	network.	The	traffic	monitor	examined	all
incoming	and	outgoing	traffic	on	a	per-device	basis,	validated	this	traffic	against
the	canonical	ACL	between	the	unprivileged	network	and	the	rest	of	the
company’s	network,	and	logged	the	traffic	that	did	not	pass	the	validations.	The
monitor	had	two	modes:

Logging	mode

Captured	the	ineligible	traffic,	but	still	permitted	said	traffic	to	leave	the
device



Enforcement	mode

Captured	and	dropped	the	ineligible	traffic

Migration	strategy

With	the	traffic	analysis	pipeline	and	the	unprivileged	simulation	in	place,	we
defined	and	began	implementing	a	phased	migration	strategy	that	entails	the
following:

1.	 Identifying	potential	sets	of	candidates	by	job	function	and/or	workflow
and/or	location.

2.	 Operating	the	simulator	in	logging	mode,	identifying	users	and	devices	that
have	>99.9%	eligible	traffic	for	a	contiguous	30-day	period.

3.	 Activating	simulator	enforcement	mode	for	users	and	devices	that	have
>99.99%	eligible	traffic	for	that	period.	If	necessary,	users	can	revert	the
simulator	to	logging	mode.

4.	 After	operating	the	simulator	in	enforcement	mode	successfully	for	30	days,
recording	this	fact	in	the	device	inventory.

5.	 Along	with	inclusion	in	the	candidate	set,	successful	operation	in	the
simulator’s	enforcement	mode	for	30	days	provides	a	very	strong	signal	that
the	device	should	be	assigned	to	the	unprivileged	network.

Exemption	handling

In	addition	to	automating	the	migration	of	users	and	devices	from	our	privileged
to	our	new	unprivileged	network	as	much	as	possible,	we	also	implemented	a
simple	process	for	users	to	request	temporary	exemptions	from	this	migration:

We	maintained	a	known	list	of	workflows	that	were	not	yet	qualified	for
BeyondCorp.

Users	could	search	through	these	workflows,	and	with	the	correct	approval
levels,	mark	themselves	and	their	devices	as	active	users	of	a	certain
workflow.

When	the	workflow	was	eventually	qualified,	its	users	were	notified	and	were



again	eligible	to	be	selected	for	migration.

Lessons	Learned
The	migration	to	BeyondCorp	came	with	a	set	of	challenges	and	kinks	to	be
ironed	out	along	the	way.	Hopefully	the	following	lessons	can	save	some	time
and	headaches	for	other	organizations	seeking	to	implement	a	similar	model.

Communication

Fundamental	changes	to	the	security	infrastructure	can	potentially	adversely
affect	the	productivity	of	the	entire	company’s	workforce.	It’s	important	to
communicate	the	impact,	symptoms,	and	available	remediation	options	to	users,
but	it	can	be	difficult	to	find	the	balance	between	over-communication	and
under-communication.

Under-communication	results	in	the	following	problems:

Surprised	and	confused	users

Inefficient	remediation

Untenable	operational	load	on	the	IT	support	staff

Over-communication	is	also	problematic:

Change-resistant	users	tend	to	overestimate	the	impact	of	changes	and
attempt	to	seek	unnecessary	exemptions.

Users	can	become	inured	to	potentially	impactful	changes.

As	Google’s	corporate	infrastructure	is	evolving	in	many	unrelated	ways,	it’s
easy	for	users	to	conflate	access	issues	with	other	ongoing	efforts,	which	also
slows	remediation	efforts	and	increases	the	operational	load	on	support	staff.

Engineers	need	support

Transitioning	to	a	new	network	security	paradigm	doesn’t	happen	overnight,	and
requires	coordination	and	interaction	among	multiple	teams.	At	large	enterprise
scale,	it’s	impossible	to	delegate	the	entire	transition	to	a	single	team.	The
migration	will	likely	involve	some	backward-incompatible	changes	that	need
sufficient	management	support.



sufficient	management	support.

In	our	experience,	the	success	of	the	transition	largely	depended	on	how	easy	it
was	for	teams	to	successfully	set	up	their	service	behind	the	Access	Proxy.
Making	the	lives	of	developers	easier	should	be	a	primary	goal,	so	keep	the
number	of	surprises	to	a	minimum.	Provide	sane	defaults,	create	walkthrough
guides	for	the	most	common	use	cases,	and	invest	in	documentation.	Provide
sandboxes	for	the	more	advanced	and	complicated	changes—for	example,	you
can	set	up	separate	instances	of	the	Access	Proxy	that	the	load	balancer
intentionally	ignores	but	that	developers	can	reach	(e.g.,	temporarily	overriding
their	DNS	configuration).	Sandboxes	have	proven	extremely	useful	in	numerous
cases,	like	when	we	needed	to	make	sure	that	clients	would	be	able	to	handle
TLS	connections	after	major	changes	to	the	X.509	certificates	or	to	the
underlying	TLS	library.

Data	quality	and	correlation

Poor	data	quality	in	asset	management	can	cause	devices	to	unintentionally	lose
access	to	corporate	resources.	Typos,	transposed	identifiers,	and	missing
information	are	common.	Such	mistakes	may	happen	when	procurement	teams
receive	asset	shipments	and	add	the	assets	to	our	systems,	or	may	be	due	to
errors	in	a	manufacturer’s	workflow.	Data	quality	problems	also	originate	quite
frequently	during	device	repairs,	when	physical	parts	or	components	of	a	device
are	replaced	or	moved	between	devices.	Such	issues	can	corrupt	device	records
in	ways	that	are	difficult	to	fix	without	manually	inspecting	the	device.

The	most	effective	solutions	in	this	arena	have	been	to	find	local	workflow
improvements	and	automated	input	validation	that	can	catch	or	mitigate	human
error	at	input	time.	Double-entry	accounting	helps,	but	doesn’t	catch	all	cases.
However,	the	need	for	highly	accurate	inventory	data	in	order	to	make	correct
trust	evaluations	forces	a	renewed	focus	on	inventory	data	quality.	The	accuracy
of	our	data	is	at	previously	unseen	levels,	and	this	precision	has	had	secondary
security	benefits.	For	example,	the	percentage	of	our	fleet	that	is	updated	with
the	latest	security	patches	has	increased.

Sparse	data	sets

Upstream	data	sources	don’t	necessarily	share	overlapping	device	identifiers.	To
enumerate	a	few	potential	scenarios:



New	devices	might	have	asset	tags	but	no	hostnames.

The	hard	drive	serial	might	be	associated	with	different	motherboard	serials
at	different	stages	in	the	device	lifecycle.

MAC	addresses	might	collide.

A	reasonably	small	set	of	heuristics	can	correlate	the	majority	of	deltas	from	a
subset	of	data	sources.	However,	in	order	to	drive	accuracy	closer	to	100%,	you
need	an	extremely	complex	set	of	heuristics	to	account	for	a	seemingly	endless
number	of	edge	cases.	A	tiny	fraction	of	devices	with	mismatched	data	can
potentially	lock	hundreds	or	even	thousands	of	employees	out	of	applications
they	need	to	be	productive.

Conclusion
What	began	as	an	ambitious	and	long-term	goal	in	late	2010	is	in	its	final	stages
of	completion,	and	the	majority	of	Google	employees	now	work	completely
within	BeyondCorp.	This	process	was	an	uphill	battle	at	times,	and	its	success
entailed	a	large	amount	of	time	and	resources.

Fortunately,	an	organization	seeking	to	implement	a	zero	trust	network	strategy
today	does	have	resources	at	hand	to	bootstrap	this	process.	While	this	journey
will	by	no	means	be	trivial,	there	are	a	number	of	enterprise	and	commercial
solutions	available	in	this	arena,	and	we	hope	that	the	rough	blueprint	outlined	in
this	case	study	is	helpful	as	you	contemplate	potential	approaches.	Keep	the	core
motivations	and	design	principles	outlined	here	in	mind	while	weighing	your
options	and	choosing	the	optimal	security	strategy	for	your	needs.

Case	Study:	PagerDuty’s	Cloud	Agnostic
Network
Evan	Gilman	and	Doug	Barth

PagerDuty	began	building	a	zero	trust	network	in	2013,	and	completed	it	in
2014.	It	has	continued	to	evolve,	and	remains	in	production	as	of	this	writing.
The	authors	would	like	to	thank	PagerDuty	for	its	permission	to	use	its	name
and	describe	some	of	the	details	behind	its	zero	trust	implementation.	All



opinions	are	those	of	the	authors,	and	PagerDuty	is	not	at	fault	for	errors	or
inaccuracies	contained	herein.

PagerDuty	is	a	platform	that	organizations	use	to	power	their	incident	response.
Users	are	able	to	integrate	their	existing	tools	like	monitoring,	ticketing,	and
reporting	systems	using	PagerDuty’s	API.	Most	users	first	configure	their
monitoring	systems	to	route	alerts	through	PagerDuty	so	PagerDuty	can	manage
on-call	rotations	and	escalations.	Given	the	critical	nature	of	the	service	being
provided,	a	zero	trust	network	was	ideal	to	meet	both	the	reliability	and	data
privacy	requirements	of	that	system.

PagerDuty’s	zero	trust	network	primarily	deals	with	server-to-server	interactions
purely	within	a	multiprovider	public	cloud	environment.	Cloud	providers	have
varying	network	control	plane	capabilities.	Some	providers	give	none	of	the
controls	that	are	normally	required	for	a	traditional	perimeter	system	like	a
stateful	firewall,	private	addressing,	network	ACLs.	In	the	most	extreme	case,
hosts	are	placed	onto	the	public	internet	and	the	host	needs	to	secure	itself.	This
disparity	in	provider	capabilities	makes	running	a	provider-agnostic	network
exceptionally	difficult	using	traditional	perimeter	concepts.

PagerDuty’s	system	also	makes	heavy	use	of	WAN	communication	in	its	normal
operation.	Business-critical	systems	are	deployed	across	three	separate	regions
with	the	goal	of	surviving	the	loss	of	an	entire	region	without	impacting	normal
business	operations.	Relying	on	the	WAN	for	normal	application	operation
places	some	heavy	requirements	on	the	system.	The	internet	is	generally	a
challenging	network	environment	with	the	potential	for	unexpected	high	latency
and	packet	loss.	In	addition,	communications	need	to	be	encrypted	and
authenticated	to	ensure	data	privacy	and	integrity.	By	deploying	a	perimeterless
zero	trust	network,	failure	isolation	is	achieved	since	each	node	in	the	cluster	is
responsible	for	just	its	own	communication.

Configuration	Management	as	an	Automation	Platform
The	key	asset	used	to	construct	PagerDuty’s	zero	trust	network	is	its
configuration	management	tool,	Chef.	Chef	was	already	being	used	to	configure
every	virtual	machine	in	the	system,	and	so	it	is	a	readily	available	automation
layer	which	could	be	leveraged	to	build	a	zero	trust	network.	With	configuration
management,	policy	can	be	centrally	managed	in	code	while	distributing	the
enforcement	into	the	entire	fleet.



enforcement	into	the	entire	fleet.

This	approach	has	a	number	of	benefits:

Network	compute	power	scales	as	the	number	of	instances	increases.	This
scaling	property	removes	the	need	to	buy	ever	larger	shared	hardware	as	the
network	grows.

Failures	tend	to	be	more	isolated.	Instead	of	having	“the	firewall,”	the	system
ends	up	having	many	smaller	firewalls.	A	failure	of	a	single	firewall	affects	a
much	smaller	set	of	traffic	and	oftentimes	can	be	routed	around.

Distributing	policy	throughout	the	network	isn’t	without	its	downsides:

Constant	validation	of	expected	policy	state	is	required	to	ensure	that	all
nodes	are	correctly	enforcing	the	expected	policy.

Changes	to	policy	are	eventually	consistent	across	the	fleet.	This	can	be	a	bit
jarring	if	a	system	administrator	expects	to	be	able	to	make	a	change	and	see
it	take	effect	immediately.

While	configuration	management	was	an	ideal	place	to	quickly	iterate	on	the
zero	trust	ideas,	it	is	not	an	ideal	long-term	solution.	As	these	systems	have
become	more	mature,	they	have	graduated	out	of	Chef	and	into	their	own
systems,	which	can	be	deployed	and	tuned	for	optimal	performance.

Dynamically	Calculated	Local	Firewalls
Without	a	consistent	provider-supplied	firewall	solution,	PagerDuty	found	it
needed	to	ensure	that	each	host	was	secured	without	relying	on	provider
systems.	To	meet	that	need,	Chef	was	taught	how	to	generate	IPtables
configuration	based	on	its	existing	knowledge	of	the	system.

Servers	in	the	system	are	categorized	by	their	role,	which	captures	the	set	of
services	and	expected	communication	patterns	that	should	exist	for	that	role.
Each	server	of	a	given	role	is	identical	in	its	configuration.

IPtables	chains	are	constructed	on	each	individual	host	that	enumerates	the	IP
addresses	for	servers	of	a	particular	role.	These	chains	are	then	used	to	define	the
rules	which	allow	expected	access	by	role.	If	a	flow	does	not	match	the
whitelisted	rules,	its	packets	are	dropped.



whitelisted	rules,	its	packets	are	dropped.

Here’s	an	example	of	an	IPtables	configuration	representing	this	arrangement:

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
target   prot in  out  source         destination
ACCEPT   all  lo      0.0.0.0/0      0.0.0.0/0
ACCEPT   all         0.0.0.0/0      0.0.0.0/0   state RELATED,ESTABLISHED
bastion  tcp         0.0.0.0/0      0.0.0.0/0   tcp dpt:22
lb       tcp         0.0.0.0/0      0.0.0.0/0   tcp dpt:80
lb       tcp         0.0.0.0/0      0.0.0.0/0   tcp dpt:443
LOG      all         0.0.0.0/0      0.0.0.0/0   limit: avg 10/min burst 5...
DROP     all         0.0.0.0/0      0.0.0.0/0

Chain bastion (1 references)
target   prot in  out  source         destination
ACCEPT   all          192.168.0.55  0.0.0.0/0
ACCEPT   all          192.168.5.4   0.0.0.0/0
ACCEPT   all          10.0.2.78     0.0.0.0/0
ACCEPT   all          172.16.0.132  0.0.0.0/0

Chain lb (2 references)
target   prot in  out  source         destination
ACCEPT   all         192.168.1.221  0.0.0.0/0
ACCEPT   all      *   192.688.1.222  0.0.0.0/0

Distributed	Traffic	Encryption
For	network	encryption	and	authentication,	PagerDuty	decided	to	implement	an
IPsec	host-to-host	mesh	network.	This	network	architecture	has	a	number	of
benefits:

All	packets	are	encrypted	and	authenticated	by	every	node	in	the	system.

Since	encryption	and	authentication	is	distributed	throughout	the	system,	as
the	number	of	hosts	grows,	the	capacity	to	provide	this	critical	function	grows
as	well.

Network	encryption	and	authentication	is	normally	viewed	as	an	application-
level	concern,	but	requiring	every	application	to	provide	these	safety	controls
results	in	a	less	secure	or	less	operable	system.	Application	encryption	can	have
issues	with	correctly	implementing	the	encryption	specification,	lack	the
configuration	controls	to	respond	to	security	vulnerabilities,	or	introduce
performance	regressions	into	the	system.	For	these	reasons,	PagerDuty	decided
to	rely	on	the	kernel’s	IPsec	stack	to	provide	this	bit	of	critical	infrastructure.



to	rely	on	the	kernel’s	IPsec	stack	to	provide	this	bit	of	critical	infrastructure.

A	system	utilizing	mutually	authenticated	TLS	could	provide	similar	benefits	to
an	IPsec-based	network.	In	order	to	provide	the	same	guarantees,	system
administrators	should	separate	the	TLS	infrastructure	from	the	application.

OUT-OF-PROCESS	ENCRYPTION	IS	INCREASINGLY
BECOMING	THE	STANDARD

In	many	systems,	encryption	and	authentication	is	considered	an	application	concern,	and
applications	usually	provide	this	functionality	using	standard	libraries.	As	the	number	of
applications	in	a	system	has	grown,	systems	are	increasingly	using	out-of-process	mechanisms
for	securing	network	communication.

By	moving	the	encryption	logic	into	a	separate	process,	administrators	gain	a	standard	set	of
controls	to	use	to	respond	to	security	vulnerabilities.	In	addition,	having	a	separate	process
controlling	the	sensitive	encryption	process	reduces	the	surface	area	for	attacks	that	might
want	to	expose	secret	data.

PagerDuty’s	network	uses	IPsec	in	transport	mode.	The	phase	1	and	phase	2
cipher	suites	use	the	strongest	possible	configuration	available	at	the	time.	When
choosing	the	cipher	suites,	RFC	6379	was	referenced	to	ensure	that	the
algorithms	chosen	were	recommended	to	be	used	together.

IPsec	communication	is	normally	transmitted	using	ESP	packets.	Since	some
cloud	provider’s	networks	do	not	route	ESP	packets,	all	IPsec	traffic	is
encapsulated	in	UDP	packets.

PagerDuty’s	experience	with	operating	an	IPsec	mesh	network	in	production	has
been	a	bit	mixed.	The	network	has	handled	production	throughput,	and	has
grown	with	the	fleet.	During	the	initial	rollout,	communication	failures	did
occur,	often	due	to	inconsistent	state	on	either	side	of	the	IPsec	relationship.
Having	metrics	and	logging	to	surface	these	issues	was	critical	to	operating	the
network.	While	having	these	failures	was	certainly	frustrating,	with	a	mesh
network	these	failures	were	isolated	to	pairs	of	hosts,	which	often	reduced	the
impact	of	the	failure.

PagerDuty’s	initial	rollout	of	the	IPsec	network	utilized	Chef	and	some	simple
scripts	to	configure	pre-existing	IPsec	packages.	As	the	network	grew,	the
configuration	of	the	system	has	moved	out	of	Chef	and	into	a	dedicated	service
that	can	handle	the	sole	responsibility	of	configuring	this	aspect	of	the	system.

https://tools.ietf.org/html/rfc6379


Moving	the	logic	into	its	own	system	was	done	to	lessen	the	convergence	time
for	deploying	a	change	to	the	network.	The	Chef-based	system	required	running
an	entire	Chef	convergence	run	to	update	all	relevant	hosts	in	the	network—a
heavyweight	operation	that	handles	more	than	just	the	network	configuration.

Decentralized	User	Management
PagerDuty’s	user	access	control	is	deployed	in	a	centralized	fashion,	much	like
the	networking	systems	previously	discussed.	Instead	of	relying	on	a	centralized
LDAP	system,	local	users	and	groups	are	programmatically	constructed	on	each
host	in	the	network.	This	approach	removes	a	dependency	on	the	network,	which
helps	the	system	continue	to	operate	even	during	challenging	periods.

While	the	enforcement	of	user	access	control	is	distributed	into	the	network,	the
definitions	of	which	users	and	groups	should	be	created	is	centralized.	This
information	could	be	captured	in	an	LDAP	server	or	some	other	database.	In
PagerDuty’s	case,	it	used	Chef	databags	to	define	users	and	groups.	Server	roles
are	marked	with	the	set	of	groups	that	should	be	created	on	that	role.	Chef	uses
this	data	to	only	create	the	users	and	groups	on	a	particular	server	that	need
access	to	that	infrastructure.

Rollout
PagerDuty’s	network,	like	most	networks,	is	an	ever-evolving	system.	The
network	transitioned	from	a	traditional	design	to	a	zero	trust	network	over	time,
while	production	traffic	was	flowing.

Changing	a	network	architecture	while	critical	production	traffic	is	flowing	can
be	difficult,	so	it	was	important	that	the	rollout	was	planned	to	reduce	risk.
PagerDuty	followed	a	slow	rollout	pattern:

1.	 New	policies	are	defined.

2.	 Policies	are	deployed	in	a	manner	that	does	not	affect	the	production	system,
but	instead	collects	useful	metrics	or	logs.

3.	 The	metrics/logs	are	inspected	over	a	long	period	of	time	to	ensure	that	the
behavior	is	desired.



4.	 The	policy	is	slowly	enabled	across	the	fleet,	growing	from	a	small
percentage	to	100%	coverage.

This	simple	procedure	can	be	used	to	reduce	the	risk	of	most	production
changes.	It	is	much	better	than	the	common	approach	of	using	a	scheduled
maintenance	window.

The	slow	rollout	pattern	is	used	to	deploy	most	changes	in	PagerDuty’s	systems.
For	the	distributed	firewall	project,	all	hosts	were	initially	configured	to	log
packets	which	would	be	dropped	at	a	later	date.	Firewall	rules	were	created	to
classify	traffic	flows,	which	could	be	deployed	without	the	risk	of	blocking	any
production	traffic.	With	the	rules	deployed,	the	logged	traffic	was	reduced;	and
once	enough	time	had	passed,	the	system	was	reconfigured	to	drop	all	non-
whitelisted	traffic.

The	distributed	traffic	encryption	followed	the	same	rollout	procedure.	IPsec
policies	were	first	deployed	into	the	fleet	in	a	no-op	configuration.	These
policies	control	whether	a	particular	traffic	flow	should	use	IPsec	for
communication.	IPsec	supports	three	different	states:

None

IPsec	will	not	be	used.

Use

IPsec	will	be	optimistically	used	if	a	relationship	can	be	negotiated.

Required

IPsec	must	be	used	for	traffic	to	be	processed.

The	initial	set	of	policies	were	deployed	in	the	none	state.	The	end	goal	was	to
get	the	entire	system	to	the	required	state	by	stepping	through	the	use	state.
Based	on	testing	of	the	failure	modes	of	the	use	state,	it	was	determined	that
intermediate	stateful	firewalls	would	block	communication	if	the	IPsec
relationship	were	broken,	as	packets	would	fall	back	to	a	none	policy.	These
packets	would	not	be	associated	with	an	expected	flow	(remember	that
previously	they	were	encrypted	and	wrapped	in	a	UDP	encapsulation	packet)
and	so	would	be	dropped.

Instead	of	configuring	the	entire	network	to	a	use	state,	smaller	portions	of	the



network	were	transitioned	to	a	use	state	and	then	reconfigured	to	a	required
state.	This	phased	approach	minimized	the	amount	of	time	the	network	was	in
the	potentially	risky	use	state	while	still	allowing	hosts	to	communicate	as	they
reconfigured	themselves.	Chef	calculated	the	minimum	policy	between	a	pair	of
hosts	based	on	their	preferred	state.

Value	of	a	Provider-Agnostic	System
It	goes	without	saying	that	building	a	provider-agnostic	system	requires
significant	engineering	effort.	For	many	system,	this	effort	may	not	be	justified.
In	PagerDuty’s	case,	the	business	requirements	determined	that	the	effort	was
justified.

Having	this	provider-agnostic	network	in	place	provided	a	significant	return	on
investment	when	PagerDuty	decided	to	move	off	one	of	its	cloud	providers.
Normally	an	effort	like	this	would	be	a	several	month	effort	with	many	high-risk
change	windows.

In	PagerDuty’s	case,	this	change	was	relatively	straightforward.	It	took	roughly
six	weeks	from	making	the	decision	to	having	all	production	traffic	moved	over.
The	bulk	of	that	time	was	spent	researching	new	providers,	testing	the	new
provider’s	systems,	and	reworking	the	Chef	automation.	The	actual	changes
were	deployed	to	production	in	one	week	during	normal	business	hours	without
any	customer	impact.

Summary
This	chapter	focused	on	the	considerations	that	an	organization	that	wants	to
move	to	a	zero	trust	network	needs	to	decide	on.	Where	possible,	it	gave	real-
world	recommendations	to	help	readers	through	making	these	decisions.

It	spent	time	discussing	the	importance	of	understanding	the	state	of	the	system
using	system	diagrams	and	capturing	network	flows	from	real	production	traffic.
Building	all	the	zero	trust	control	plane	systems	as	standalone	services	can	be	a
large	upfront	investment,	so	practical	alternatives	were	explored.

The	most	important	detail	to	remember	is	that	zero	trust	is	an	architectural	ideal,
so	this	chapter	discussed	how	to	get	started	down	the	path	by	defining	and
capturing	policy	in	a	manner	which	can	be	later	reused.	It	explored	putting	in



capturing	policy	in	a	manner	which	can	be	later	reused.	It	explored	putting	in
place	authentication	proxies	which	can	incorporate	systems	that	aren’t	directly
compatible	with	zero	trust.	It	also	explored	whether	organizations	should	start
with	client/server	interactions	or	server/server	interactions.

Finally,	to	help	readers	see	how	this	type	of	endeavor	played	out	in	other
organizations’	systems,	this	chapter	explored	two	concrete	case	studies.	These
case	studies	explore	the	particular	approaches	and	trade-offs	that	were	made	to
make	zero	trust	a	reality	in	existing	production	networks.

The	next	chapter	focuses	on	how	a	hypothetical	attacker	might	try	to	thwart	a
zero	trust	network.



Chapter	10.	The	Adversarial	View

Most	formal	proposals	in	the	technology	industry	include	a	section	commonly
known	as	“security	considerations.”	In	fact,	the	IETF	mandates	a	security
consideration	section	for	all	submitted	RFCs.

This	section	is	crucial	for	many	reasons.	First,	it	clearly	communicates	potential
pitfalls,	dangers,	and	caveats.	This	is	extraordinarily	important	during	the
implementation	and	deployment	phases,	as	it	will	help	to	ensure	that	the	operator
arrives	at	a	design	which	retains	the	security	properties	that	the	system	was
originally	designed	for.

Second,	it	demonstrates	that	the	authors	have	put	good	thought	into	the	ways	in
which	the	system	can	be	attacked.	It	is	far	too	easy	to	design	a	seemingly	secure
system	which	harbors	a	major	vulnerability	just	under	the	surface.	And	finally,	it
sets	the	stage	for	discussion	on	how	to	best	approach	and	manage	the	security
risks	presented.	As	a	result,	including	a	security	considerations	section	is
generally	considered	best	practice.	Some	might	even	view	the	work	as	deceptive
without	such	a	section,	since	it	might	indicate	that	the	authors	are	trying	to	push
a	known-weak	technology.

Even	the	strongest	proposals	will	have	some	security	considerations.	For
instance,	the	latest	RFC	for	the	TLS	protocol	has	12	pages	worth.	It	is	important
to	understand	that	a	system	is	not	inherently	insecure	simply	because	there	are
security	considerations	associated	with	it;	rather,	it	should	be	a	sign	that	the
system	as	a	whole	is	more	secure.

In	this	chapter,	we	will	discuss	the	potential	pitfalls,	dangers,	and	attack	vectors
associated	with	the	zero	trust	model.	If	you	were	trying	to	penetrate	a	zero	trust
network,	how	might	you	do	it?

Identity	Theft
Practically	all	of	the	decisions	and	operations	performed	within	a	zero	trust
network	are	made	on	the	basis	of	authenticated	identity.	In	Chapter	6,	we

https://tools.ietf.org/html/rfc7322#section-4.8.5


discussed	the	difference	between	informal	and	authoritative	identity,	such	as	the
difference	between	your	“human”	identity	and	your	government	identity.
Computer	systems	implement	authoritative	identity	similar	to	the	way
governments	do—and	similar	to	the	way	your	government	identity	can	be	stolen,
so	can	your	identity	within	a	computer	system.

If	your	identity	is	stolen	or	compromised,	it	might	be	possible	for	an	attacker	to
masquerade	their	way	through	the	zero	trust	authentication	and	authorization
checks.	This	is,	of	course,	extremely	undesirable.	Since	identity	in	a	computer
system	is	typically	tied	to	some	sort	of	“secret”	which	is	used	to	prove	said
identity,	it	is	extraordinarily	important	to	protect	those	secrets	as	well	as	we	can.

These	secrets	can	be	protected	in	different	ways,	based	on	the	type	of	component
the	identity	belongs	to.	Careful	consideration	should	go	into	choosing	which
methods	to	use	for	which	components.	We	spoke	about	different	ways	to
approach	this	problem	in	previous	chapters.

Since	a	zero	trust	network	authenticates	both	the	device	and	the	user/application,
it	is	necessary	for	an	attacker	to	steal	at	least	two	identities	in	order	to	gain
access	to	resources	within	it,	raising	the	bar	when	compared	to	traditional
approaches	in	use	today.	These	concerns	can	be	additionally	mitigated	through
the	use	of	trust	engine	behavioral	analysis.

While	securing	identity	is	a	widespread	industry	concern,	and	is	not	specific	to
zero	trust,	its	importance	is	large	enough	to	justify	calling	it	out	as	something
which	should	be	carefully	handled,	despite	the	fact	that	the	zero	trust	model
works	to	naturally	mitigate	this	threat.

Distributed	Denial	of	Service
A	zero	trust	network	is	primarily	concerned	with	authentication,	authorization,
and	confidentiality,	generally	affected	by	tightly	controlling	access	to	all
network	resources.	While	the	architecture	strives	to	authenticate	and	authorize
just	about	everything	on	the	network,	it	does	not	provide	good	mitigation	against
denial-of-service	(DoS)	attacks	on	its	own.	Distributed	DoS	(DDoS)	attacks	that
are	volumetric	in	nature	can	be	particularly	troublesome.

Just	about	any	system	which	can	receive	packets	is	vulnerable	to	volumetric



DDoS,	even	those	employing	the	zero	trust	architecture.	Some	implementations
“darken”	internet-facing	endpoints	through	the	use	of	pre-authentication
protocols.	We	spoke	a	little	about	these	in	“Bootstrapping	Trust:	The	First
Packet”,	the	basic	premise	being	to	hide	those	endpoints	behind	a	deny-all	rule,
adding	narrow	exceptions	based	only	on	signaling.	While	this	method	goes	a
long	way	in	helping	to	keep	the	endpoint	addresses	obscured,	it	does	not
fundamentally	mitigate	DDoS	attacks.

Zero	trust	networks,	by	nature,	retain	a	great	deal	of	information	about	what	to
expect	on	the	network.	This	information	can	be	used	to	calculate	policy	for	more
traditional	traffic	filtering	defenses	far	upstream.	For	instance,	perhaps	only	a
few	systems	in	the	network	actually	communicate	with	the	internet.	In	this	case,
we	can	use	the	policy	to	calculate	coarse	enforcement	rules	from	the	perspective
of	an	upstream	device,	applying	very	broad	enforcement	with	few	exceptions.
The	advantages	of	this	approach	over	the	typical	approach	are	two-fold:

The	configuration	is	fully	automated.

The	traffic	filtering	mechanisms	can	remain	stateless.

The	second	advantage	is	quite	a	large	one,	since	it	obviates	the	need	for
expensive	hardware	and	complicated	state	replication	schemes.	In	this	way,
these	filtering	devices	act	more	like	scrubbers	than	firewalls.	Of	course,	this	only
makes	sense	if	you	operate	a	large	network.	If	you	have	a	few	racks	in	a
colocation	facility,	or	are	cloud	native,	you	might	prefer	to	leverage	an	online
DDoS-prevention	service.

The	short	of	it	is,	DDoS	is	still	a	problem	in	the	zero	trust	world,	and	while	we
might	have	a	few	new	clever	ways	to	address	it,	it	will	still	require	special
attention.

Endpoint	Enumeration
The	zero	trust	model	lends	itself	naturally	to	perimeterless	networks,	since	a
perimeter	makes	much	less	sense	when	the	internal	network	is	untrusted.	The
peer-to-peer	nature	of	perimeterless	networks	make	them	generally	easier	to
maintain	than	perimeter	networks,	which	frequently	include	network	gateways
and	tunnels	like	VPNs	which	pose	scaling,	performance,	and	availability



challenges.

As	a	result	of	this	architecture,	it	is	possible	for	an	adversary	to	build	a	system
diagram	by	observing	which	systems	talk	to	which	endpoints.	This	is	in	contrast
to	architectures	which	leverage	network	gateways	like	VPNs,	since	an	adversary
observing	VPN	traffic	can’t	see	conversations	with	endpoints	beyond	the	VPN
gateway.	It	should	be	noted	that	this	advantage	is	lost	as	soon	as	the	traffic
crosses	the	gateway—a	classic	property	of	the	perimeter	model.

It	is	here	that	we	make	a	distinction	between	privacy	and	confidentiality.	The
zero	trust	model	guarantees	network	confidentiality,	but	not	privacy.	That	is,
ongoing	conversations	can	be	observed	and	asserted	to	exist;	however,	the
contents	of	the	conversation	are	protected.	Systems	that	provide	network	privacy
attempt	to	obscure	the	fact	that	the	conversation	happened	at	all.	Tor	is	a	popular
example	of	a	system	which	provides	network	privacy.	This	is	a	wholly	different
problem	space	and	is	considered	out	of	scope	for	the	zero	trust	model.

If	a	limited	form	of	privacy	over	public	networks	is	desired,	tunneling	traffic
through	site-to-site	tunnels	is	still	an	option	in	zero	trust	networks.	This
deployment	will	make	it	more	difficult	to	see	which	individual	hosts	are
communicating	on	either	side	of	the	tunnel.	We	should	be	clear	that	this
additional	privacy	protection	should	not	be	considered	critical	in	the	network’s
security.	In	fact,	in	some	ways	it	undermines	the	zero	trust	model	itself,	as
hiding	information	in	one	part	of	the	network	and	not	another	suggests	that	one
is	more	trusted	than	the	other.

Untrusted	Computing	Platform
We	covered	this	in	Chapter	5,	but	it’s	important	to	reiterate	that	zero	trust
networks	require	the	underlying	computing	platform	to	be	a	trustworthy	system.
There’s	a	distinction	to	be	made	here	between	the	computing	platform	itself
(think	cloud	hardware,	virtual	machine	hypervisor)	being	trusted	and	the
“device”	being	trusted.	Oftentimes	these	two	systems	are	conflated,	but	the
attacks	against	each	are	subtly	different	due	to	their	differing	privilege	levels.

Totally	defending	against	untrustworthy	computing	platforms	is	practically
impossible.	Consider	a	system	which	used	hardware	that	purposefully	generated
weak	random	numbers	(which	encryption	systems	depend	on).	Defending
against	that	type	of	attacker	would	first	involve	detecting	the	problem,	though



against	that	type	of	attacker	would	first	involve	detecting	the	problem,	though
this	alone	might	be	impossible	if	the	attacker	hides	their	capability	most	of	the
time.

Despite	our	inability	to	guard	against	a	truly	malicious	computer	platform,	zero
trust	systems	can	still	guard	against	simpler	attacks	against	the	platform.
Encrypting	persistent	data	and	swapped-out	memory	pages	will	mitigate	simpler
attacks	by	malicious	peers	on	the	computing	platform.	It	will	also	remove	some
small	amount	of	trust	in	the	platform’s	operators	and	therefore	is	recommended.

Social	Engineering
Social	engineering	attacks,	which	trick	trusted	humans	into	taking	action	on	a
trusted	device,	are	still	very	much	a	concern	in	zero	trust	networks.	Whether
they	be	phishing	attacks,	which	craft	written	communication	that	is	not
obviously	malicious,	or	via	face-to-face	communications	like	those	that
customer	service	departments	have	had	to	deal	with,	a	zero	trust	network	can
only	do	so	much	to	defend	against	attacks	enabled	by	an	unwitting	participant.

For	less	sensitive	resources,	behavioral	analysis	of	internal	activity	is	the
mechanism	that	is	used	to	guard	against	this	threat.	That	analysis	is	coupled	with
end	user	training	that	teaches	users	to	think	like	an	adversary	and	be	suspicious
of	requests	which	are	out	of	the	ordinary.

For	more	sensitive	resources,	group	authentication/authorization	schemes	like
Shamir’s	Secret	Sharing	can	help	mitigate	the	effects	of	a	single	member	of	the
group	causing	unintended	actions	to	occur.	This	scheme	can	be	very	burdensome
on	a	day-to-day	basis,	so	the	best	plan	is	to	save	it	for	the	truly	critical	assets.

Chapter	6	has	more	details	on	these	mechanisms	for	defending	against	social
engineering	attacks.

Physical	Coercion
Zero	trust	networks	effectively	mitigate	many	threats	in	the	virtual	world,	but
threats	in	the	real	world	are	another	beast	entirely.	Valid	users	and	devices	can
be	effectively	coerced	to	aid	an	attacker	to	gain	access	to	a	system	that	they



shouldn’t	have	access	to.	Border	crossing	can	often	be	a	place	where
government	entities	have	substantial	power	over	an	individual	who	just	wants	to
get	to	their	destination.	And	someone	with	a	blunt	instrument	can	force	even	the
most	honest	individuals	to	aid	them	(as	demonstrated	in	Figure	10-1).

Figure	10-1.	The	reality	of	threats	in	a	system	(cartoon	by	XKCD:	https://xkcd.com/538/)

The	reality	is	that	defending	against	these	types	of	compromises	is	ill-advised.
No	security	professional	would	ever	tell	someone	in	this	situation	to	risk	their
physical	well-being	to	protect	the	information	that	they	have	access	to.
Therefore,	the	best	we	can	work	toward	as	an	industry	is	to	keep	only	the	least
sensitive	data	and	systems	vulnerable	to	the	compromise	of	a	single	individual.
For	higher-value	targets,	group	authorization	is	an	effective	mitigation	against
these	threats.

Subtler	physical	attacks	against	individuals	(say	someone	is	able	to	insert	a	USB
device	into	an	unguarded	laptop)	are	best	mitigated	by	a	consistent	process	of
cycling	both	devices	and	credentials.	Scanning	of	unrotated	devices	can	also
help	to	mitigate	these	types	of	attacks.

If	someone	has	physical	access	to	your	device,	they	can	do	a	lot	of	damage.
However,	that	statement	should	not	be	license	to	throw	our	hands	up	in	the	air
and	not	at	least	try	to	mitigate	these	threats,	particularly	when	it	comes	to
securing	data	used	for	zero	trust	authentication/authorization.	There	are	clear
steps	that	can	be	taken	to	lessen	the	impact	and	duration	of	compromise	even	if
someone	has	physical	access	to	a	device,	and	zero	trust	networks	add	those
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steps.	You	can	read	more	about	physical	device	security	in	Chapter	5.

Invalidation
Invalidation	is	a	hard	problem	in	computer	science.	In	the	context	of	a	zero	trust
network,	invalidation	applies	chiefly	to	long-running	actions	that	were
previously	authorized	but	are	no	longer.

The	definition	of	an	action	is	largely	dependent	on	your	chosen	authorization
processes.	For	instance,	if	you	authorize	access	on	a	request-by-request	basis,	an
action	would	be	considered	as	a	single	application-level	request/operation.	If,	on
the	other	hand,	you	authorize	network	flows	(like	a	TCP	session)	instead	of
application	requests,	an	action	would	be	considered	to	be	a	single	network
session.

How	quickly	and	effectively	ongoing	actions	can	be	invalidated	deeply	affects
security	response.	It	is	important	to	gauge	how	much	risk	you’re	willing	to
tolerate	in	this	area	as	you	design	your	zero	trust	network,	since	the	answer	has
the	potential	to	significantly	affect	how	you	might	approach	certain	problems.
For	instance,	if	a	new	TCP	session	is	the	action	being	authorized,	and	some
services	maintain	TCP	sessions	for	multiple	days	on	end,	is	it	acceptable	to	say
that	an	entity	with	revoked	credentials	might	retain	access	for	that	long?	Maybe
not.

Luckily,	we	have	some	tools	in	our	chest	to	address	this	problem.	First,	and
perhaps	most	obvious,	is	to	perform	more	granular	authorizations	on	actions	that
are	short-lived.	Perhaps	this	means	that	the	enforcement	component	authorizes
application-level	requests	instead	of	new	network	sessions.	While	it	is	still
possible	to	have	long-running	application	requests,	they	are	in	practice	less
frequent	than	long-running	network	sessions.

Another	approach,	though	somewhat	naive,	is	to	periodically	reset	network
sessions,	enforcing	a	maximum	lifetime.	When	the	application/client	reconnects,
it	will	be	forced	back	through	the	authorization	process.

The	best	approach	though	is	to	teach	the	enforcement	component	to	track
ongoing	actions,	and	rather	than	reset	them	after	a	period	of	time,	send	another
authorization	request	to	the	policy	engine.	If	the	policy	engine	decides	that	the
action	is	now	unauthorized,	the	enforcement	component	can	forcibly	reset	it.



action	is	now	unauthorized,	the	enforcement	component	can	forcibly	reset	it.

As	you	can	see,	these	mechanisms	still	rely	on	a	“pull”	model,	in	which	the
enforcement	component	is	forced	to	periodically	reauthorize.	As	a	result,
sessions	can	only	be	invalidated	as	fast	as	the	longest	polling	period	configured
in	the	enforcement	component.	While	invalidation	is	best	done	as	a	push	or
event-based	model,	those	approaches	come	with	additional	complexities	and
challenges	which	perhaps	outweigh	the	benefits.	Regardless,	it	can	be	seen	that
the	problem	is	(at	the	very	least)	addressable.

Control	Plane	Security
We	discussed	many	control	plane	services	throughout	this	book,	responsible	for
things	like	policy	authorization	and	tracking	inventory.	Depending	on	needs,	a
zero	trust	control	plane	can	comprise	a	nontrivial	number	of	services,	all	of
which	play	a	crucial	role	in	ensuring	authorization	security	throughout	the
network.	A	natural	question	follows:	how	can	you	protect	your	zero	trust	control
plane	systems,	and	what	happens	if	one	is	compromised?

Well,	it’s	not	good,	that’s	for	sure!	It	is	possible	to	completely	undermine	the
zero	trust	architecture	if	a	control	plane	compromise	is	pervasive	enough.	As
such,	it	is	absolutely	critical	to	ensure	the	security	of	these	systems.	This	is	not	a
weakness	unique	to	the	zero	trust	model—it	exists	even	today	in	perimeter
networks.	If	your	perimeter	firewall	is	compromised,	what	is	the	impact?
Nevertheless,	the	concern	is	great	enough	to	warrant	a	discussion.

Control	plane	security	can	begin	through	traditional	means,	providing	very
limited	network	connectivity	and	strict	access	control.	Some	control	plane
systems	are	more	sensitive	than	others.	For	instance,	compromising	a	data	store
housing	historical	access	data	is	strictly	less	useful	to	an	attacker	than
compromising	the	policy	engine.	In	the	former,	an	attacker	may	be	able	to
artificially	raise	their	level	of	trust	by	falsifying	access	patterns,	where	the	latter
leads	to	a	complete	compromise	of	zero	trust	authorization,	allowing	the	attacker
to	authorize	anything	they	please.

For	the	most	sensitive	systems	(i.e.,	the	policy	engine),	rigorous	controls	should
be	applied	from	the	beginning.	Requiring	group	authentication	and	authorization
in	order	to	make	changes	to	these	systems	is	a	real	option	and	should	be	heavily
considered.	Changes	should	be	infrequent	and	should	generate	broadly	seen



considered.	Changes	should	be	infrequent	and	should	generate	broadly	seen
messages	or	alerts.	It	should	not	be	possible	for	a	control	plane	change	to	go
unnoticed.

Another	good	practice	is	to	keep	the	control	plane	systems	isolated	from	an
administrative	standpoint.	Perhaps	that	means	they	live	in	a	dedicated	cloud
provider	account	or	are	kept	in	a	part	of	the	datacenter	that	has	more	rigorous
access	control.	Doing	this	allows	access	to	be	more	carefully	audited	and
minimizes	the	risk	presented	to	control	plane	systems	by	their	administrative
facilities.	Isolating	these	systems	administratively	does	not	mean	that	they	are
logically	isolated	from	the	rest	of	the	network.	Despite	administrative	isolation,
it	is	important	that	control	plane	systems	participate	in	the	network	just	as	any
other	service	does.	Attempts	to	isolate	them	can	quickly	lead	back	to	a
perimeterized	design,	which	can	be	considered	the	worst-case	scenario	for	zero
trust	control	plane	security.

As	the	network	matures,	zero	trust	enforcement	can	be	slowly	applied	to	the
control	plane	systems	themselves.	Kind	of	like	rewriting	the	C	compiler	in	C,
backing	zero	trust	enforcement	into	the	control	plane	ensures	that	tight	security
is	applied	homogeneously	throughout	the	network	and	that	there	are	no	special
cases.	The	propensity	to	introduce	a	chicken-and-egg	problem	should	not	deter
you	from	this	approach.	Such	problems	are	manageable	and	can	usually	be
worked	through	if	sufficient	thought	is	put	into	them.	The	alternative	(putting
control	plane	systems	in	a	perimeter	network)	would	leave	these	systems	the
least	protected	of	all,	and	is	generally	unacceptable	in	the	context	of	a	zero	trust
network.

Summary
This	chapter	attempts	to	approach	the	zero	trust	network	from	the	opposite
perspective	of	the	administrators	of	the	system.	By	putting	ourselves	into	the
mindset	of	a	would-be	attacker,	we	can	evaluate	the	system	as	an	adversary	who
has	vast	knowledge	of	how	it	is	put	together.

Some	of	the	attacks	against	zero	trust	networks	are	well	mitigated,	while	for
others	we	are	only	able	to	detect	the	attack,	at	best.	Even	a	zero	trust	network
can	be	compromised	by	a	determined	adversary,	as	the	inconvenience	of
defending	against	any	theoretical	attack	is	simply	too	high	a	price	to	pay	in	the
day-to-day	operation	of	such	a	network.



day-to-day	operation	of	such	a	network.

The	reality	is	that	every	system	is	susceptible	to	an	attacker	with	sufficient
resources.	When	faced	with	the	most	advanced	attacks,	the	best	we	can	hope	for
is	efficient	and	accurate	detection.	Starting	from	the	assertion	that	a	system	has
been	compromised	and	working	our	way	backward	toward	limiting	the	damage
is	sage	advice	that	might	allow	us	to	sleep	soundly.

While	the	zero	trust	model	certainly	introduces	some	new	consideration	points
with	regard	to	networked	system	security,	it	at	the	same	time	resolves	many
more.	By	applying	the	power	of	automation	to	tried-and-true	security	primitives
and	protocols,	the	authors	are	confident	that	the	zero	trust	model	will	rise	to
replace	the	perimeter	model	as	a	more	effective,	scalable,	and	secure	solution	to
the	computer	network	security	problem.
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