

Lecture Notes for 10/19/2023

5.3 Coordinatization (Continued)

5.4 Four fundamental subspaces

Continue from 5.3: Consider the basis

$$\mathcal{B} = \underbrace{\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\}}$$

for \mathbb{R}^3 . Since this is also a basis, we can also write $\mathbf{v} = \begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix}$ as a (unique) linear combination of the vectors $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\}$:

$$\underbrace{x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}}_{\mathcal{M}_{\mathcal{B}} \mathbf{x}} = \begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix}$$

The matrix form of this equation system is $M_{\mathcal{B}} \mathbf{x} = \mathbf{v}$, where

$$M_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix}.$$

The matrix $M_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ is invertible: $M_{\mathcal{B}}^{-1} = \underbrace{\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}}_{\frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}}$ so

$$\underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{[\mathbf{v}]_{\mathcal{B}}} = \underbrace{\frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}}_{\mathcal{M}_{\mathcal{B}}^{-1}} \underbrace{\begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix}}_{\mathbf{v}} = \underbrace{\begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}}_{\mathcal{B}}$$

We call this vector the *coordinate vector* of $\mathbf{v} = \begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix}$ under the basis \mathcal{B} and denote it by $[\mathbf{v}]_{\mathcal{B}}$:

$$[\mathbf{v}]_{\mathcal{B}} = \underbrace{M_{\mathcal{B}}^{-1} \mathbf{v}}_{\mathcal{M}_{\mathcal{B}}^{-1} \mathbf{v}} = \underbrace{\begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}}_{[\mathbf{v}]_{\mathcal{B}}} \quad \mathcal{M}_{\mathcal{B}}^{-1} \xrightarrow{\text{transformation}}$$

Now let us find $[\mathbf{u}]_{\mathcal{B}}$ for $\mathbf{u} = \begin{bmatrix} -4 \\ 0 \\ 6 \end{bmatrix}$ and $[\mathbf{w}]_{\mathcal{B}}$ for $\mathbf{w} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$:

$$[\mathbf{u}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1} \mathbf{u} = \underbrace{\frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}}_{\mathcal{B}} \begin{bmatrix} -4 \\ 0 \\ 6 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -8 \\ 6 \\ 6 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -4 \\ 3 \\ 3 \end{bmatrix}_{\mathcal{B}}$$

$$[\mathbf{w}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1} \mathbf{w} = \underbrace{\frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}}_{\mathcal{B}} \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}_{\mathcal{B}}$$

We can generalize this concept to an arbitrary basis of \mathbb{R}^n :

Let $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a basis of \mathbb{R}^n with the vectors in it given a fixed order as shown. Keep in mind each \mathbf{u}_j in the basis is an $n \times 1$ column matrix. Since \mathcal{B} is a basis, it is a spanning set of \mathbb{R}^n hence every vector \mathbf{v} in \mathbb{R}^n can be written as a linear combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$:

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_n\mathbf{u}_n = \mathbf{v}. \quad M_{\mathcal{B}} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$$

We shall call the vector $\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ the *coordinate vector* of \mathbf{v} with respect to the basis \mathcal{B} and will use the notation $[\mathbf{v}]_{\mathcal{B}}$ for it.

$$M_{\mathcal{B}}^{-1}$$

Note that to find the coordinate vector $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ of \mathbf{v} means to solve the equation

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_n\mathbf{u}_n = \mathbf{v},$$

which has the matrix form $M_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = \mathbf{v}$, where $M_{\mathcal{B}}$ is the matrix with $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ as its columns (in that order) and $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$.

$$M_{\mathcal{B}} \text{ is invertible (why?),}$$

so

$$[\mathbf{v}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1}\mathbf{v}.$$

Keep in mind that $M_{\mathcal{B}}$ is the matrix with the vectors in \mathcal{B} as its columns, which is why we denote it by $M_{\mathcal{B}}$.

Example 1. Let $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \begin{bmatrix} -3 \\ 5 \end{bmatrix} \right\}$ be a basis of \mathbb{R}^2 . Find $M_{\mathcal{B}}$ and $M_{\mathcal{B}}^{-1}$, then use that to find $[\mathbf{v}]_{\mathcal{B}}$ where $\mathbf{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$.

$$M_{\mathcal{B}} = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix}, \quad M_{\mathcal{B}}^{-1} = \frac{1}{1} \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$

$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 17 \\ 11 \end{bmatrix}_{\mathcal{B}}$$

$$\begin{bmatrix} 1 \\ 4 \end{bmatrix} = 17 \begin{bmatrix} 2 \\ -3 \end{bmatrix} + 11 \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

Example 2. Repeat Example 1 for $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$.

$$M_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \\ 0 & 2 & -1 \end{bmatrix}, \text{ and } M_{\mathcal{B}}^{-1} = \frac{1}{5} \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 2 \\ 4 & 2 & -1 \end{bmatrix} \quad | -2 + 2 = 1$$

$$[\mathbf{v}]_{\mathcal{B}} = \frac{1}{5} \underbrace{\begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 2 \\ 4 & 2 & -1 \end{bmatrix}}_{\text{row } 1} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 \\ 7 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \\ 4 \end{bmatrix}_{\mathcal{B}}$$

$$2 \cdot 1 + 1 \cdot 1 + 2 \cdot 2$$

$$2 + 1 + 4$$

$$4 \cdot 1 + 2 \cdot 1 + (1 \cdot 2) = 4 + 2 + 2 = 4$$

Quiz Question 1. Repeat the last example with the same basis \mathcal{B} , but we are looking for the coordinate vector $[\mathbf{u}]_{\mathcal{B}}$ for a different vector $\mathbf{u} = \underbrace{\begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}}_{\mathbf{u}}$.

A. $[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$; B. $[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 5 \\ 10 \\ 5 \end{bmatrix}$; C. $[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 5 \\ 2 \\ 5 \end{bmatrix}$; D. $[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$

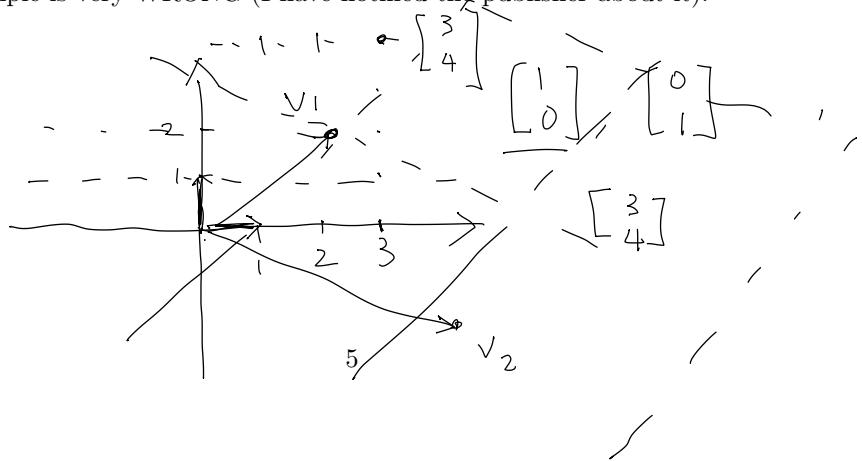
$$M_{\mathcal{B}} = \underbrace{\begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \\ 0 & 2 & -1 \end{bmatrix}}_{M_{\mathcal{B}}}, M_{\mathcal{B}}^{-1} = \underbrace{\frac{1}{5} \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 2 \\ 4 & 2 & -1 \end{bmatrix}}_{M_{\mathcal{B}}^{-1}}$$

We see the advantage of this approach from this quiz question: once we find the inverse matrix $M_{\mathcal{B}}^{-1}$ (which we only need to do it one time), finding the coordinate vector of any vector \mathbf{u} in the future is just a simple matrix multiplication:

$$[\mathbf{u}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1} \mathbf{u} \quad M_{\mathcal{B}}^{-1} \quad P_{\mathcal{B}}$$

In our textbook, the inverse matrix $M_{\mathcal{B}}^{-1}$ is denoted by another notation $P_{\mathcal{B}}$ and is referred to as the *transition matrix* from the standard basis \mathcal{E} to the basis \mathcal{B} .

The geometric meaning of basis change is to change from the rectangular coordinate system (grid) to one that may no longer be rectangular. See the example 5.3.1: Understanding coordinate systems in the book. **HOWEVER**, this example is very **WRONG** (I have notified the publisher about it).



In the above, we know the coordinate vector of a vector \mathbf{u} relative to the standard basis \mathcal{E} and the formula $[\mathbf{u}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1}\mathbf{u}$ allows us to obtain the coordinate vector $[\mathbf{u}]_{\mathcal{B}}$ of \mathbf{u} relative to \mathcal{B} . Sometimes, however, we already know the coordinate vector $[\mathbf{u}]_{\mathcal{B}}$ of \mathbf{u} relative to \mathcal{B} to begin with, and we need to switch to yet another basis $\mathcal{C} = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ so we need to find $[\mathbf{u}]_{\mathcal{C}}$. How do we do that?

$P_{\mathcal{B} \rightarrow \mathcal{C}}$

$[\mathbf{u}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1}\mathbf{u}$, $[\mathbf{u}]_{\mathcal{C}} = M_{\mathcal{C}}^{-1}\mathbf{u}$, so $\mathbf{u} = M_{\mathcal{B}}[\mathbf{u}]_{\mathcal{B}}$ and $[\mathbf{u}]_{\mathcal{C}} = M_{\mathcal{C}}^{-1}M_{\mathcal{B}}[\mathbf{u}]_{\mathcal{B}}$: we know $[\mathbf{u}]_{\mathcal{B}}$ to begin with, and we know $M_{\mathcal{B}}$ and $M_{\mathcal{C}}$ (matrices obtained by using vectors in \mathcal{B} and \mathcal{C} as columns), so this only involves finding the inverse of $M_{\mathcal{C}}$ followed by a matrix multiplication $M_{\mathcal{C}}^{-1}M_{\mathcal{B}} = P_{\mathcal{B} \rightarrow \mathcal{C}}$ is called the change of coordinates matrix. It may help to remember that if we are changing from basis \mathcal{B} to basis \mathcal{C} , then in the basis change formula, $M_{\mathcal{C}}^{-1}$ is the inverse of the matrix formed by the vectors in the basis we are changing to.

$$\mathbf{u} \xrightarrow{M_{\mathcal{B}}^{-1} \cdot \mathbf{u}} [\mathbf{u}]_{\mathcal{B}} \quad \mathcal{B} \rightarrow \mathcal{C} \quad ?$$

$$M_{\mathcal{C}}^{-1} \cdot \mathbf{u} = [\mathbf{u}]_{\mathcal{C}}$$

$$\mathbf{u} = M_{\mathcal{B}}[\mathbf{u}]_{\mathcal{B}}$$

$$\mathbf{u} \xrightarrow{[\mathbf{u}]_{\mathcal{C}}} M_{\mathcal{C}}^{-1} \cdot \mathbf{u}$$

Example. Given that $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 5 \\ 3 \end{bmatrix} \right\}$ are both bases of \mathbb{R}^2 . Find the change of coordinates matrix from basis \mathcal{B} to basis \mathcal{C} .

The matrix is

$$\underline{M_{\mathcal{C}}^{-1}M_{\mathcal{B}}} = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 13 \\ 3 & 8 \end{bmatrix}$$

$$\text{So if we have } \underline{[\mathbf{u}]_{\mathcal{B}}} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}_{\mathcal{B}}, \text{ then } \underline{[\mathbf{u}]_{\mathcal{C}}} = \begin{bmatrix} 5 & 13 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -34 \\ -21 \end{bmatrix}_{\mathcal{C}}$$

$$1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = -34 \begin{bmatrix} 2 \\ -3 \end{bmatrix} + (-21) \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

Quiz Question 2. Given that $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ are both bases of \mathbb{R}^2 . Find the change of coordinates matrix from \mathcal{B} to \mathcal{C} .

A. $\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$ B. $\begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$ C. $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ $\underline{\underline{M_C^{-1} M_B}}$

$$\underbrace{\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}}_{-1}^{-1} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

Let us now consider the same question, but for general vector spaces.

Here, finding $[\mathbf{v}]_{\mathcal{B}}$ is just solving the equation $\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \cdots + a_k \mathbf{v}_k$ where $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$. We can write down a basis change formula as before: $[\mathbf{v}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1} \mathbf{v}$ with the understanding that all the vectors here are the coordinate vectors under a standard basis.

Example. Find the transition matrix from the standard basis $\{1, x, x^2\}$ of \mathcal{P}_2 to the basis $\mathcal{B} = \{1 - x, x + x^2, 2x - x^2\}$. Using it to find the coordinate vector for the vector $\mathbf{v} = 1 + 9x + x^2$ under \mathcal{B} .

$$M_{\mathcal{B}} = \left[\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} \right], \quad M_{\mathcal{B}}^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix}.$$

So

$$[\mathbf{v}]_{\mathcal{B}} = \frac{1}{3} \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}.$$

$$1 + 9x + x^2 = 1 \cdot (1 - x) + 4(x + x^2) + 3(2x - x^2)$$

Quiz Question 3. Find the transition matrix from the standard basis $\{1, x\}$ of \mathcal{P}_1 to the basis $\mathcal{B} = \{2 + 3x, 1 + 2x\}$.

$M_{\mathcal{B}}$

$M_{\mathcal{B}}^{-1}$

A. $\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ B. $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ C. $\begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$ D. $\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$

Section 5.4.

$A_{m \times n}$

$v_1 \in \mathbb{R}^m$

left null

Let $A_{m \times n}$ be the matrix whose columns are v_1, \dots, v_n . Then we call the span of v_1, \dots, v_n the column space of A and write it as $\text{col}(A)$. This is just a different name for $\text{Span}(v_1, \dots, v_n)$. Furthermore, a linear combination

rank(A)

$$\dim(\text{col}(A)) + \dim(\text{null}(A)) = n$$

can be written as Ax with $A = (v_1 \ v_2 \ \dots \ v_n)$ and $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$

$$\text{rank}(A^T) = \text{rank}(A)$$

$$\text{rank}(A^T) + \dim(\text{null}(A)) = m$$

$\dim(\text{col}(A))$ is also defined as the rank of A and written as $\text{rank}(A)$.

$$\boxed{Ax = 0} \quad m$$

$$\boxed{\text{col}(A^T)}$$

We can find $\text{rank}(A)$ by using row operations to find an echelon form of A and then count the number of pivots. Another vector space is the null space of A , denoted by $\text{null}(A)$, which is the set containing all solutions of the homogeneous equation $Ax = \mathbf{0}$. The dimension of $\text{null}(A)$ equals the number of free variables. Thus $\dim(\text{col}(A)) + \dim(\text{null}(A)) = n$ (the number of columns in A).

Similarly we can define the row space of A , which is the span of the columns of A^T , and the left null space of A , which is the solution set of the equation $A^T x = \mathbf{0}$. $\dim(\text{col}(A^T)) + \dim(\text{null}(A^T)) = m$. Additionally, we have

$$\dim(\text{col}(A)) = \dim(\text{col}(A^T)) \quad (\text{or } \text{rank}(A) = \text{rank}(A^T)).$$

$$n = 5$$

Example. If the matrix A reduced to the echelon form

$$\begin{bmatrix} 1 & 1 & 3 & -1 & 4 \\ 0 & 0 & 2 & 7 & -3 \\ 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

find $\dim(\text{col}(A))$, $\dim(\text{col}(A^T))$, $\dim(\text{null}(A))$, $\dim(\text{null}(A^T))$

$$\dim(\text{col}(A)) = 3$$

$$1$$

$A_{9 \times 7}$

$$\text{rank}(A) = 3$$

$$\text{rank}(\text{col}(A^T)) = 3$$

$$\dim(\text{null}(A)) = 4$$

$$\dim(\text{null}(A^T)) = 6$$

Quiz Question 4. Given that A has size 7×5 and that the rank of A is 3, then what is the dimension of $\text{null}(A)$ and what is the dimension of $\text{null}(A^T)$?

- A. $\dim(\text{null}(A)) = 2$ and $\dim(\text{null}(A^T)) = 4$;
- B. $\dim(\text{null}(A)) = 3$ and $\dim(\text{null}(A^T)) = 5$;
- C. $\dim(\text{null}(A)) = 5$ and $\dim(\text{null}(A^T)) = 7$;
- D. $\dim(\text{null}(A)) = 2$ and $\dim(\text{null}(A^T)) = 2$.