
Lecture Notes for 11/7/2023

6.2 General linear transformations

6.3 Isomorphisms

Review of 6.1:

• A transformation T : Rn −→ Rk is called a linear transformation if it
satisfies the following conditions:

1. For any x, y ∈ Rn, T (x + y) = T (x) + T (y);

2. For any scalar c ∈ R and any x ∈ Rn, T (cx) = cT (x).

• (Theorem.) T : Rn −→ Rk is a linear transformation if and only if there
exists a matrix A of size k × n such that T (x) = Ax for any vector x ∈ Rn.

• (Theorem.) If T : Rn −→ Rk is a linear transformation, then its
matrix A is given by A = (T (e1), ..., T (en)). If B = {b1, ...,bn} is a non-
standard basis of Rn and we know T (b1), ..., T (bn), then A = CM−1B where
C = (T (b1), ..., T (bn)) and MB = (b1,b2, ...,bn).

6.2 General linear transformations

• Let U and V be two general vector spaces. A transformation T from U to
V is a linear transformation if it satisfy the same two conditions as in the case
of Euclidean vector spaces:

1. For any x, y ∈ U , T (x + y) = T (x) + T (y);

2. For any scalar c ∈ R and any x ∈ U , T (cx) = cT (x).

Theorem 6.2.1 (Standard matrix of a general linear transformation, strength-
ened). Let T : U −→ V be a transformation. Let B = {e1, e2, ..., en} be the
standard basis for U and C = {f1, f2, ..., fk} be the standard basis for V . Then
T is a linear transformation if and only if exists a matrix A of size k × n such
that for any x ∈ U , [T (x)]C = A[x]B. That is, the coordinate vector of T (x) in
V with respect to C equals A[x]B, where [x]B is the coordinate vector of x in U
with respect to B.
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Example 1. If T : P2 −→ R2×2 is defined by

T (a0 + a1x + a2x
2) =

[
a0 − 3a2 5a1
2a1 + 7a2 0

]
,

determine if T is a linear transformation.

Example 2. If T : R2×2 −→ P2 is defined by

T

([
a b
c d

])
= (1 + 2a− 3d) + (2− 3b + 4c)x + (a− b + 5d)x2,

determine if T is a linear transformation.
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Quiz Question 1. Determine which of the following transformations is NOT
a linear transformation.

A. T : P2 −→ P2 defined by T (a0 + a1x + a2x
2) = a0x

2;

B. T : P2 −→ P1 defined by T (a0 + a1x + a2x
2) = (a2 − a1) + (a0 + 2a1)x;

C. T : P1 −→ P3 defined by T (a0 + a1x) = a0 + a1x + a0x
2 + 3a1x

3;

D. T : P2 −→ P2 defined by T (a0 + a1x + a2x
2) = (a20 + a21) − 2a1a2x +

(a1 − 3a2)x2.
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Example 3. Let T : P3 −→ P2 be the transformation which is the derivative:

T (a0 + a1x + a2x
2 + a3x

3) =
d

dx
(a0 + a1x + a2x

2 + a3x
3) = a1 + 2a2x + 3a3x

2,

is T a linear transformation? If so, what is the matrix of T?
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Quiz Question 2. If T : P2 −→ P1 is the derivative:

T (a0 + a1x + a2x
2) =

d

dx
(a0 + a1x + a2x

2) = a1 + 2a2x

find the matrix A for T under the standard basis {1, x} for P1 and {1, x, x2}
for P2.

A.

[
0 1 0
0 0 2

]
B.

[
1 0
0 2

]
C.

[
1 0
0 1

]
D.

[
1 0 0
0 2 0

]
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Example. Given that T : R2×2 −→ P2 is a linear transformation and that

T

([
1 0
0 0

])
= 3− 2x + x2, T

([
0 1
0 0

])
= 4x− 2x2

T

([
0 0
1 0

])
= 1 + 4x− x2, T

([
0 0
0 1

])
= −3 + x.

Find the matrix A of T under the standard basis

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
for R2×2 and the standard basis {1, x, x2} for P2.
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Quiz Question 3. If T : P2 −→ P3 is a linear transformation and T (1) =
2x− x3, T (x) = 2− 3x2, T (x2) = 1 + x+ x2 + x3, find the matrix A of T under
the standard basis {1, x, x2} for P2 and {1, x, x2, x3} for P3.

A.

0 2 0 −1
2 0 −3 0
1 1 1 1

 B.


0 2 1
2 0 1
0 −3 1
−1 0 1

 C.


2 −1
2 −3
1 1
1 1


D. There is nothing here, but you can choose this one to prove that you are

wide awake, just not paying attention though.
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Now let us discuss Section 6.3.

A transformation T : U −→ V is 1 to 1 if for any x 6= y in U , we have
T (x) 6= T (y). (No two passengers will be going to the same destination.)

Note: An 1-1 transformation is also called an injective transformation.

A transformation T : U −→ V is onto if for any z ∈ V , there exists at
least one x ∈ U such that T (x) = z. (Every destination will have a passenger
arriving.)

Note: An onto transformation is also called a surjective transformation. A
transformation that is both 1-1 and onto is also called a bijective transformation
or just a bijection.

A linear transformation that is both 1-1 and onto is called an isomorphism.

How do we determine whether a linear transformation is 1-1, onto and/or
an isomorphism?

This can be determined by examining the matrix A that is associated with
T . Let A be of dimension m× n.

• If rank(A) = n then T is 1-1, otherwise it is not 1-1.

• If rank(A) = m then T is onto, otherwise it is not onto.

• T is an isomorphism if and only rank(A) = m = n, that is, when A is an
invertible matrix.

Example 1. If the matrix A associated with a linear transformation T is of
size 4 × 5, then T cannot possibly be 1-1 since its rank is at most 4, which is
less than 5. Similarly, if the matrix A associated with a linear transformation
T is of size 7 × 3, then T cannot possibly be onto since its rank is at most 3,
which is less than 7.

Example 2. The linear tranformation T : R2 −→ R2 defined by T

([
x1

x2

])
=[

2 1
−1 2

] [
x1

x2

]
is an isomorphism.
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Example 3. The linear tranformation T : P3 −→ R4 defined by

T
(
a0 + a1x + a2x

2 + a3x
3
)

=


a0
a1
a2
a3


is an isomorphism.
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Quiz Question 4. Which of the following transformations is an isomorphism?

A. T : R −→ R defined by T (x) = x4 + 1.

B. T : R2 −→ R2 defined by T

([
x1

x2

])
=

[
x2
1

x2
2

]
.

C. T : R2 −→ R2 defined by T

([
x1

x2

])
=

[
1 −1
2 −2

] [
x1

x2

]
.

D. T : R2 −→ R2 defined by T

([
x1

x2

])
=

[
1 −1
1 1

] [
x1

x2

]
.
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