Lecture Notes for 11/7/2023

6.2 General linear transformations
6.3 Isomorphisms
Review of 6.1:

o A transformatiowis called a linear transformation if it
satisfies the following conditions:

1. For any x, y e R", T(x+y) =T(x) + T(y);
i 2. For any scalar ¢ € R and any x € R", T'(¢x) = ¢T'(x).

o (Theorem.) T @ a linear transformation if and only if there
exists a matrix A of size 7 such that 7T'(x) = Ax for any vector x € R™.

e (Theorem.) If T : R" — RF is a linear transformation, then its
matrix A is given by A = (T(e1),...,T(en)). If B = {by,...,b,} is a non-
standard basis of R” and we know T(by), ..., T(by,), then A = megl where

C = (T(by),...,T(b,)) and Mg = (by, bs, ..., b,).

6.2 General linear transformations

e Let U and V be two general vector spaces. A transformation T' from U to
. . T . . . . o, . .
V' is a linear transformation if it satisfy the same two conditions as in the case
of Euclidean vector spaces:
1. Forany x, y e U, T(x+y)y=T(x) + T(y);

2. For any scalar ¢ € R and any x € U, T(cx) = ¢T'(x).

Theorem 6.2.1 (Standard matrix of a general linear transformation, strength-
ened). Let T: U — V be a transformation. Let B = {ei,es,...,e,} be the
standard basis for U and C = {f}, fs, ..., fx} be the standard basis for V. Then
T is a linear transformation if and only if exists a matrix A of size k x n such
that for any x € U, [T(x)]c = A[x]s. That is, the coordinate vector of T'(x) in
V with respect to C equals A[x|g, where [x]g is the coordinate vector of x in U

with respect to .
T(x)c
(e U => Txlg eV

yev = (4], [T o= A Ixlg
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Example 1. If T : Py — Ry is defined by

3ay 5 -
T(m: {2?1 +7aa22 81} ’

determine if T is a linear transformation. 7/
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Example 2. If T : Royo — P5 is defined by

T([i ; ):(1+2a_3d)+(2—3b+40)“f’+(“‘b+5d)$2’

determine if T is a linear transformation. N GT Q \\!\ e
NO |
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Quiz Question 1. Determine which of the following transformations is NOT
a linear transformation.

A. T : Py — Py defined by T(@ +a1z+ asx?) :@zQ; 1

\

B. T : Py — Py defined by T(ag + a1z + a22?) = (az — a1) + (ag + 2a1)7;

C.T: P; — Ps defined by T(ag + a12) = ap + a1 + aix2 + ?321_13;

D. T): Py — P defined by T(ag + arz + azx?) = (a3 + a?) — 2a1a2z +
(aT—"3as)x>. -


Yuanan Diao

Yuanan Diao

Yuanan Diao

Yuanan Diao

Yuanan Diao

Yuanan Diao

Yuanan Diao

Yuanan Diao


Example 3. Let T @e the transformation which is the derivative:

d
T(ao + a1z + axx® + azz®) = a(ao + a1z + agx? + azz®) = ay + 2a02 + 3aza?,

—

is T' a linear transformation? If so, what is the matrix of 77 /Y P
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Quiz Question 2. If T': Py — P; is the derivative:

d
T(ag + a1z + agx®) = . (ao + a1 + apx?) = a1 + 2axx

find the matrix A for T under the standard-basis {1,z} for P; and {1,z,2?}
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Example. Given that T : Roxs — P> is a linear transformation and that

(s s 7( e

L R ()

. . . 1 0] (0 1] [0 O] |0 O
Find the matrix A of T under the standard basis { [O 0] , [0 O] , L 0] , [0 1}}

for Rayxo and the standard basis {1, z, 22} for Ps.
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Quiz Question 3. If T [ Py|— P? is a linear transformation and T(1) =
2 — a3, T(x) =2—322, T(Z =14z + 2%+ 23, find the matrix A of T under—

‘the standard basis {1, z, 22} for P, and {1, z,22, 2} for Ps.
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D. There is nothing here, but you can choose this one to prove that you are
wide awake, just not paying attention though.
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Now let us discuss Section 6.3. T . V\Q " _—> Vﬂ{

Ax =0

A transformation T': U — V is 1 to 1 if for any x # y in U, we have
T(x) # T(y). (No two passen il be going to the same destination.) 7—(2( )

Note: An 1-1 transformation is also called an injective transformation.

A transformation T': U —— V is onto if for any z € V, there exists at
least one x € U such that T'(x) = z. (Every destination will have a passenger

arriving.)

Note: An onto transformation is also called a surjective transformation. A
transformation that is both 1-1 and onto is also called a bijective transformation /AK 9<
M XA nx

or just a bijection. )
—_ =
A linear transformation that is both 1-1 and onto is called an isomorphism. W\
/
How do we determine whether a linear transformation is 1-1, onto and/or
. o
an isomorphism? | oo 2 |
o I © ( !
c o | ~ \
This can be determined by examining the matrix A that is associate W%ch j
T. Let A be of dimension m X n. = 0

4 1A
e If rank(A) = n then T is 1-1, otherwise it is not 1-1.
T. R — K

e If rank(A) = m then T is onto, otherwise it is not onto. A ¢

N N
e T is an isomorphism if and only rank(4) = m = n, that is, when A is an
invertible matrix.

Example 1. If the matrix A associated with a linear transformation 7" is of
size 4 x 5, then T cannot possibly be 1-1 since its rank is at most 4, which is
less than 5. Similarly, if the matrix A associated with a linear transformation
T is of size 7 x 3, then T cannot possibly be onto since its rank is at most 3,
which is less than 7.

Example 2. The linear tranformation T : R? — R? defined by T’ ( [zl] ) =
2

—_—

{ 2 1} {xl} is an isomorphism.

-1 2 X9
< 3
T\ )R > LK , /Q,W\W
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Example 3. The linear tranformation 7" : 733® — R* defined by

—_—

ao
ay

2 3y _
T (ao + a1z + aza® + azz®) = o

as

is an isomorphism.
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Quiz Question 4. Which of the following transformations is an isomorphism?

A. T :R — R defined by T'(z) = 2% + 1.

M. .2
B.T:R2 — R? deﬁnedbyT( il > ””;}
2

)

C.T:R? — R? deﬁnedbyT( 1 ) _ L ‘1] [9“]
_2 —2 xT9

D.T:R? —s R? deﬁnedbyT( o ): 1 1} {ﬂ
2_

10



