
Lecture Notes for 11/9/2023

6.3 Isomorphisms, Part 2

6.4 Rank and nullity of a linear transformation

Let us first continue with Section 6.3. Recall:

• T : U −→ V is 1 to 1 if for any x 6= y in U , we have T (x) 6= T (y).

• T : U −→ V is onto if for any z ∈ V , there exists at least one x ∈ U such
that T (x) = z.

• A linear transformation that is both 1-1 and onto is called an isomorphism.

Let T : U −→ V be a linear transformation with Am×n being the matrix
associated with it (n = dim(U) and m = dim(V )) , then

• T is 1-1 if and only if rank(A) = n.

• T is onto if and only if rank(A) = m.

• T is an isomorphism if and only m = n and A is invertible.

Here are the proofs (for the special case U = Rn and V = Rm): If rank(A) =
n, then the equation system Ax = 0 has only the zero solution x = 0 since
there are n pivots in the reduced echelon form of A so the equation has no free
variables. Thus if x1 6= x2, then x1 − x2 6= 0, hence A(x1 − x2) 6= 0, that is,
T (x1) = Ax1 6= Ax2 = T (x2). That is, T is 1-1. On the other hand, if T is 1-1,
then if x 6= 0, T (x) 6= T (0). But T (0) = A0 = 0 so T (x) = Ax 6= 0 for any
x 6= 0. That means the equation system Ax = 0 can only have the zero vector
as the solution. Hence the reduced echelon form of A must have n pivots, which
means rank(A) = n.

If rank(A) = m, then A has m columns that are linearly independent, which
form a basis of Rm. It follows that every vector y ∈ Rm is a linear combination
of these vectors, hence a linear combination of the column vectors of A. Such
a linear combination can be written as Ax for some x ∈ Rn. That is, for any
y ∈ Rm, there exists an x ∈ Rn such that T (x) = Ax = y. This proves that T
is onto. On the other hand, if T is onto, then every vector y ∈ Rm is a linear
combination of the column vectors of A. That is, the column space of A is Rm,
which has dimension m. Since rank(A) is the dimension of Col(A), this proves
that rank(A) = m.
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Example 1. Let T : R4 −→ R3 be a linear transformation whose associated
matrix is A. Given that A has the following echelon form2 1 −1 0

0 0 −3 1
0 0 0 1

 .

Determine whether A is 1-1, onto, or an isomorphism.

Example 2. If the linear tranfsormation T : R3 −→ R3 is onto, is it then
also 1-1 hence is an isomorphism?

Example 3. What can we say about the linear transformation T : P3 −→ P2

defined by the derivative? Is it 1-1? onto? isomorphism?
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Quiz Question 1. Let T : R3 −→ R4 be a linear transformation whose
associated matrix has an echelon forms as show below. Identify the correct
statement. 

1 −3 2
0 1 4
0 0 0
0 0 0

 .

A. T is 1-1 only;

B. T is onto only;

C. T is an isomorphism;

D. T is neither 1-1 nor onto.
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Quiz Question 2. Let A be the matrix associated with a linear transformation
T . Given that A has an echelon form as given below

1 2 0 −3 1
0 0 1 2 −4
0 0 0 4 2
0 0 0 0 1

 ,

which of the following statements is correct about T?

A. T is 1-1 but not onto;

B. T is onto but not 1-1;

C. T is neither 1-1 nor onto;

D. T is both 1-1 and onto (hence it is an isomorphism).
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Let us now discuss Section 6.4.

Let T : U −→ V be a linear transformation. The rank of T is the dimension
of the range of T , which equals the rank of the matrix A associated with T .
Similarly, the nullity of T is the dimension of the null space of T (which is
defined as the solution set of the equation T (x) = 0, or Ax = 0 with A being
the matrix associated with T ), and it equals the nullity of the matrix A.

Note: The range of a linear transformation is also called the image of the
transformation, and the null space of a linear transformation is also called the
kernel of the transformation.

Example. Consider the situation in the last quiz question: Let A be the
matrix associated with a linear transformation T . Given that A has an echelon
form 

1 2 0 −3 1
0 0 1 2 −4
0 0 0 4 2
0 0 0 0 1

 ,

we see that rank(A) = 4 and nullity(A) = 1, thus the rank of T is 4 and the
nullity of T is 1.

T : R3 −→ P1 is defined by T

a1a2
a3

 = a1 + (a2 − a3)x. Find the null

space and the range of T (by specifying a basis for each of them), as well as its
rank and nullity.
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Quiz Question 3. The linear transformation T : P3 −→ P2 is defined by the
derivative T

(
a0 + a1x + a2x

2 + a3x
3
)

= a1+2a2x+3a3x
2. Since the coordinate

vector of a0+a1x+a2x
2+a3x

3 is


a0
a1
a2
a3

 under the standard basis {1, x, x2, x3} of

P3, and the coordinate vector of a1 +2a2x+3a3x
2 is

 a1
2a2
3a3

 under the standard

basis {1, x, x2} of P2, we see that the matrix A associated with T is

A =

0 1 0 0
0 0 2 0
0 0 0 3



Find the rank r and nullity n of T .

A. r = 3, n = 4; B. r = 1, n = 3; C. r = 2, n = 1; D. r = 3, n = 1.
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Q & A session on WebWork Assignment #6.

(Potential ones that you may find them difficult: #5, 6, 7, 17, 18, 21, 25)
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Quiz Question 4. Let V be a vector space, and T : V −→ V a linear
transformation. Let u and v be two vectors in V such that T (2u−5v) = u+3v
and T (−3u + 8v) = −2u + v. Solve for T (u) in terms of u and v.

A. −2u + 29v; B. 8u + 24v; C. 2u− 29v; D. −u + 11v.
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