

Lecture Notes for 11/9/2023

6.3 Isomorphisms, Part 2

6.4 Rank and nullity of a linear transformation

Let us first continue with Section 6.3. Recall:

- $T : U \rightarrow V$ is 1 to 1 if for any $\mathbf{x} \neq \mathbf{y}$ in U , we have $T(\mathbf{x}) \neq T(\mathbf{y})$.

- $T : U \rightarrow V$ is onto if for any $\mathbf{z} \in V$, there exists at least one $\mathbf{x} \in U$ such that $T(\mathbf{x}) = \mathbf{z}$.

- A linear transformation that is both 1-1 and onto is called an *isomorphism*.

Let $T : U \rightarrow V$ be a linear transformation with $A_{m \times n}$ being the matrix associated with it ($n = \dim(U)$ and $m = \dim(V)$), then

- T is 1-1 if and only if $\text{rank}(A) = n$.
- T is onto if and only if $\text{rank}(A) = m$.
- T is an isomorphism if and only if $m = n$ and A is invertible.

$T(\mathbf{x})$ is 1-1: $T(\mathbf{x}) \neq T(\mathbf{y})$ if $\mathbf{x} \neq \mathbf{y}$ if $\mathbf{y} \neq \mathbf{x}$, then

Here are the proofs (for the special case $U = \mathbb{R}^n$ and $V = \mathbb{R}^m$): If $\text{rank}(A) = n$, then the equation system $A\mathbf{x} = \mathbf{0}$ has only the zero solution $\mathbf{x} = \mathbf{0}$ since there are n pivots in the reduced echelon form of A so the equation has no free variables. Thus if $\mathbf{x}_1 \neq \mathbf{x}_2$, then $\mathbf{x}_1 - \mathbf{x}_2 \neq \mathbf{0}$, hence $A(\mathbf{x}_1 - \mathbf{x}_2) \neq \mathbf{0}$, that is, $T(\mathbf{x}_1) = A\mathbf{x}_1 \neq A\mathbf{x}_2 = T(\mathbf{x}_2)$. That is, T is 1-1. On the other hand, if T is 1-1, then if $\mathbf{x} \neq \mathbf{0}$, $T(\mathbf{x}) \neq T(\mathbf{0})$. But $T(\mathbf{0}) = A\mathbf{0} = \mathbf{0}$ so $T(\mathbf{x}) = A\mathbf{x} \neq \mathbf{0}$ for any $\mathbf{x} \neq \mathbf{0}$. That means the equation system $A\mathbf{x} = \mathbf{0}$ can only have the zero vector as the solution. Hence the reduced echelon form of A must have n pivots, which means $\text{rank}(A) = n$.

If $\text{rank}(A) = m$, then A has m columns that are linearly independent, which form a basis of \mathbb{R}^m . It follows that every vector $\mathbf{y} \in \mathbb{R}^m$ is a linear combination of these vectors, hence a linear combination of the column vectors of A . Such a linear combination can be written as $A\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$. That is, for any $\mathbf{y} \in \mathbb{R}^m$, there exists an $\mathbf{x} \in \mathbb{R}^n$ such that $T(\mathbf{x}) = A\mathbf{x} = \mathbf{y}$. This proves that T is onto. On the other hand, if T is onto, then every vector $\mathbf{y} \in \mathbb{R}^m$ is a linear combination of the column vectors of A . That is, the column space of A is \mathbb{R}^m , which has dimension m . Since $\text{rank}(A)$ is the dimension of $\text{Col}(A)$, this proves that $\text{rank}(A) = m$.

Example 1. Let $T : \mathbb{R}^4 \rightarrow \mathbb{R}^3$ be a linear transformation whose associated matrix is A . Given that A has the following echelon form

$$A \longrightarrow \begin{bmatrix} 2 & 1 & -1 & 0 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \quad T(x) = Ax$$

Determine whether A is 1-1, onto, or an isomorphism.

T is not 1-1

T is onto

not isomorphism.

Example 2. If the linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is onto, is it then also 1-1 hence is an isomorphism? yes.

$$A_{3 \times 3} \longrightarrow \begin{bmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix}$$

Example 3. What can we say about the linear transformation $T : \mathcal{P}_3 \rightarrow \mathcal{P}_2$ defined by the derivative? Is it 1-1? onto? isomorphism?

$$A = \begin{bmatrix} C + 2x + \frac{x^2}{2} + \frac{x^3}{3} \end{bmatrix}$$

$$\frac{d}{dx} (a_0 + a_1 x + a_2 x^2 + a_3 x^3) = \begin{bmatrix} a_1 + 2a_2 x + 3a_3 x^2 \end{bmatrix}$$

$$2 + x + x^2$$

$$5 + x + x^2$$

$$7 + x + x^2$$

$$2 \begin{bmatrix} a_1 \\ 2a_2 \\ 3a_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Quiz Question 1. Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^4$ be a linear transformation whose associated matrix has an echelon form as shown below. Identify the correct statement.

$$\begin{array}{c} \text{A} \rightarrow \\ \hline \end{array} \begin{bmatrix} 1 & -3 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- A. T is 1-1 only;
- B. T is onto only;
- C. T is an isomorphism;
- D. T is neither 1-1 nor onto.

Quiz Question 2. Let A be the matrix associated with a linear transformation T . Given that A has an echelon form as given below

$$\begin{bmatrix} 1 & 2 & 0 & -3 & 1 \\ 0 & 0 & 1 & 2 & -4 \\ 0 & 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

which of the following statements is correct about T ?

- A. T is 1-1 but not onto;
- B. T is onto but not 1-1;
- C. T is neither 1-1 nor onto;
- D. T is both 1-1 and onto (hence it is an isomorphism).

Let us now discuss Section 6.4.

kernel

$$Ax = 0$$

— ↑

$$T(x) = Ax$$

↑
11

$$x_1v_1 + x_2v_2 + \dots + x_nv_n$$

Let $T : U \rightarrow V$ be a linear transformation. The rank of T is the dimension of the range of T , which equals the rank of the matrix A associated with T . Similarly, the nullity of T is the dimension of the null space of T (which is defined as the solution set of the equation $T(x) = 0$, or $Ax = 0$ with A being the matrix associated with T), and it equals the nullity of the matrix A .

Note: The range of a linear transformation is also called the *image* of the transformation, and the null space of a linear transformation is also called the *kernel* of the transformation.

Example. Consider the situation in the last quiz question: Let A be the matrix associated with a linear transformation T . Given that A has an echelon form

$$\left[\begin{array}{ccccc} 1 & 2 & 0 & -3 & 0 \\ 0 & 0 & 1 & 2 & -4 \\ 0 & 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right], \quad \left[\begin{array}{ccccc} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right]$$

we see that $\text{rank}(A) = 4$ and $\text{nullity}(A) = 1$, thus the rank of T is 4 and the nullity of T is 1.

$$\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array} \right] = \left[\begin{array}{c} -2x_2 \\ x_2 \\ 0 \\ 0 \\ 0 \end{array} \right] = x_2 \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} \right]$$

$T : \mathbb{R}^3 \rightarrow \mathcal{P}_1$ is defined by $T \left(\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \right) = a_1 + (a_2 - a_3)x$. Find the null

space and the range of T (by specifying a basis for each of them), as well as its rank and nullity.

$$\text{nullity}(T) = 1 \quad \text{rank}(T) = 2$$

$$\left[\begin{array}{c} a_1 \\ a_2 - a_3 \\ a_3 \end{array} \right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -1 \end{array} \right] \left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right] \quad x_2 - x_3 = 0$$

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -1 \end{array} \right] \quad T \text{ is onto} \Rightarrow \text{range}(T) = \mathcal{P}_1$$

$$\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] = \left[\begin{array}{c} 0 \\ x_3 \\ x_3 \end{array} \right] = x_3 \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right]$$

5

$$\Rightarrow \text{span} \left\{ \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right] \right\}$$

Quiz Question 3. The linear transformation $T : \mathcal{P}_3 \rightarrow \mathcal{P}_2$ is defined by the derivative $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + 2a_2x + 3a_3x^2$. Since the coordinate vector of $a_0 + a_1x + a_2x^2 + a_3x^3$ is $\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$ under the standard basis $\{1, x, x^2, x^3\}$ of \mathcal{P}^3 , and the coordinate vector of $a_1 + 2a_2x + 3a_3x^2$ is $\begin{bmatrix} a_1 \\ 2a_2 \\ 3a_3 \end{bmatrix}$ under the standard basis $\{1, x, x^2\}$ of \mathcal{P}^2 , we see that the matrix A associated with T is

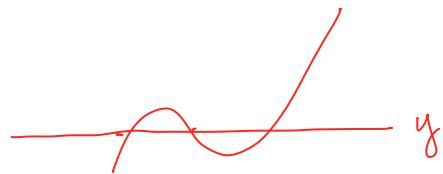
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Find the rank r and nullity n of T .

A. $r = 3, n = 4$; B. $r = 1, n = 3$; C. $r = 2, n = 1$; D. $r = 3, n = 1$.

Q & A session on WebWork Assignment #6.

(Potential ones that you may find them difficult: #5, 6, 7, 17, 18, 21, 25)



$$\underline{T(2v_1 - 3v_2)} = v_1 + v_2 \Rightarrow T(v_1) = ?$$

$$\underline{T(3v_1 - 5v_2)} = -2v_1 + 3v_2 \Rightarrow T(v_2) = ?$$

$$T(2v_1) + T(-3v_2) = 2\underline{T(v_1)} - 3\underline{T(v_2)} = v_1 + v_2$$

$$3\underline{T(v_1)} - 5\underline{T(v_2)} = -2v_1 + 3v_2$$

$$2x_1 - 3x_2 = a+b \quad x_1 = \frac{\det(A_1)}{\det(A)}$$

$$3x_1 - 5x_2 = -2a+3b$$

$$A = \begin{bmatrix} 2 & -3 \\ 3 & -5 \end{bmatrix} \det(A) = -10 + 9 = -1$$

$$A_1 = \begin{bmatrix} a+b & -3 \\ -2a+3b & -5 \end{bmatrix} \det(A_1) =$$

$$\#17. \quad T(M) = \begin{bmatrix} 2 & -7 \\ 0 & 7 \end{bmatrix} M$$

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 2 & -7 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$= \begin{bmatrix} 2a-7c & 2b-7d \\ 7c & 7d \end{bmatrix}$$

$$\begin{bmatrix} 2a-7c \\ 2b-7d \\ 7c \\ 7d \end{bmatrix} = \underbrace{\begin{bmatrix} 2 & 0 & -7 & 0 \\ 0 & 2 & 0 & -7 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 7 \end{bmatrix}}_A \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$\#8. \quad T(a+bx+cx^2) = f(x) = \underbrace{a+8b+64c}_{+0 \cdot x^2} + 0 \cdot x$$

$$f \begin{bmatrix} 1 & 8 & 64 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Quiz Question 4. Let V be a vector space, and $T : V \rightarrow V$ a linear transformation. Let \mathbf{u} and \mathbf{v} be two vectors in V such that $T(2\mathbf{u} - 5\mathbf{v}) = \mathbf{u} + 3\mathbf{v}$ and $T(-3\mathbf{u} + 8\mathbf{v}) = -2\mathbf{u} + \mathbf{v}$. Solve for $T(\mathbf{u})$ in terms of \mathbf{u} and \mathbf{v} .

A. $-2\mathbf{u} + 29\mathbf{v}$; B. $8\mathbf{u} + 24\mathbf{v}$; C. $2\mathbf{u} - 29\mathbf{v}$; D. $-\mathbf{u} + 11\mathbf{v}$.