Lecture Notes for 11/9/2023

6.3 Isomorphisms, Part 2

6.4 Rank and nullity of a linear transformation

Let us first continue with Section 6.3. Recall:

oT: U—Visltolifforany x #y in U, we have T'(x) # T(y).

o T : U — Visonto if for any z € V, there exists at least one x € U such
that T'(x) = z.

e A linear transformation that is both 1-1 and onto is called an isomorphism.
Let T': U — V be a linear transformation with A,,«, being the matrix

associated with it (n = dim(U) and m = dim(V)) , then

e T is 1-1if and only if rank(A) =

-

s

]

e T is onto if and only if rank(A) = m.

e T is an isomorphism if and only m = n and A is invertible. .
_ . T\ L X o VEx , Thea
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Here are the proofs (for the special case U = R™ and V = R™): % 7/ -X o
n, then the equation system Ax = 0 has only the zero solution x = 0 since
there are n pivots in the reduced echelon form of A so the equation has no free T( \/j) !: 0
variables. Thus if x; # Xo, then x; — x2 # 0, hence A(x; — x2) # 0, that is, =
T(x1) = Axy # Axg = T(x3). That is, T is 1-1. On the other hand, if T' is 1-1, T(O ) = A
then if x # 0, T'(x) # T(0). But T(0) = A0 = 0 so T'(x) = Ax # 0 for any )
x # 0. That means the equation system Ax = 0 can only have the zero vector =D
as the solution. Hence the reduced echelon form of A must have n pivots, which TL}/) - TC)( )

means rank(A) = n.
XD

If rank(A) = m, then A has m columns that are linearly independent, which
form a basis of R™. It follows that every vector y € R™ is a linear combination T( X ) = O
of these vectors, hence a linear combination of the column vectors of A. Such
a linear combination can be written as Ax for some x € R™. That is, for any —~—, —
y € R™, there exists an x € R" such that T'(x) = Ax = y. This proves that T “A X = ®)
is onto. On the other hand, if T is onto, then every vector y € R™ is a linear
combination of the column vectors of A. That is, the column space of A is R™, \’\—J
which has dimension m. Since rank(A) is the dimension of Col(A), this proves
that rank(A) = m.
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Example 1. Let T : @—) R3 be a linear transformation whose associated
matrix is A. Given that A has the following echelon form

1
A —— E3 1. TOOT AX

=) — O

0
0

—5 o o

Determine whether A is 1-1, onto, or an isomorphism.

T o Wt =

T A~ onbo

it '\g.bwumzolr\]s m

Example 2. If the linear tranfsormation T :@o\mo, is it then

also 1-1 hence is an isomorphism? \/ AN
T

|
A 3%3 (;

|
CHE

Example 3. What can we say about the linear transformation 7" : P3 — Py
defined by the derivative? Is it 1-17 onto? isomorphism?
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Quiz Question 1. Let T : R? — R* be a linear transformation whose
associated matrix has an echelon formg as show below. Identify the correct

statement.
-3 ( X\
. R
Rt

A—>

OO O
O O =
OO =N

A. T is 1-1 only;
B. T is onto only;

C. T is an isomorphism;

is neither 1-1 nor onto.
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Quiz Question 2. Let A be the matrix associated with a linear transformation
T. Given that A has an echelon form as given below

12 0 -3 1
0 01 2 -4
0 00 4 2|7
0 0 0 O 1

which of the following statements is correct about 1'7

A. T is 1-1 but not onto;

@ is onto but not 1-1;

C. T is neither 1-1 nor onto;

D. T is both 1-1 and onto (hence it is an isomorphism).
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Let us now discuss Section 6.4.
t t A% =0
korreed — T T(X)= Ax

Let T : U — V be a linear transformation. The rank of T is the dimension 1L
of the range of T, which equals the rank of the matrix A associated with T

L . ; . ; N T A A
Similarly, the nullity of T is the dimension of the null space of T (which is ! “~
defined as the solution set of the equation T'(x) = 0, or Ax = 0 with A being ... 4 WU
the matrix associated with 7'), and it equals the nullity of the matrix A. v

Note: The range of a linear transformation is also called the image of the
transformation, and the null space of a linear transformation is also called the
kernel of the transformation.
Example. Consider the situation in the last quiz question: Let A be the
matrix associated with a linear tra?sformation T. Given that A has an echelon
form £
2 0 < O | 2 © ©& o i‘ >
0 0(1) 9 -« 6 o | © o 2o
000 @& 2| %3 D
000 0 1 e o 10 xa | )
O s o o | q:
we see that rank(A) = 4 and nullity(A) = 1, thus the rank of T is 4 and the R
nullity of T is 1. X “LY, -2 J
1
x — —
2l Xz | = X, .
Xg 0 0
\[ ai X§ O 0
T: R> — Py is defined by T [ | a2 = a1 + (a2 — az)x. Find the o E——
as —

space and the range of T' (by specifying a
rank and nullity.

Wi = “ Xo= Xy =0

or each of them), as well as its

_ 2 -
\_Oﬂ\\f ) O\l | o o @\‘
= O
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Quiz Question 3. The linear transformation 7" : P3 — P5 is defined by the
derivative T (ao + a1z + asx® + a3x3) = a1+2asx+3asz?. Since the coordinate

ao
vector of ag+a1z+asx?+azx? is Zl under the standard basis {1, z, 22, 23} of
2
as
a
P3, and the coordinate vector of a; +2asx + 3asz? is |2as | under the standard
3(13

basis {1, 2,22} of P?, we see that the matrix A associated with T is

A—

o OO
o O =
o N O
w o O

Find the rank r and nullity n of T
—_— "

A r=3,n=4 B.r=1,n=3 Cr=2 n=1;; D.r+3, n=1.
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Q & A session on WebWork Assignment #6.

(Potential ones that you may find them difficult: #5, 6, 7, 17, 18, 21, 25)
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Quiz Question 4. Let V be a vector space, and T : V — V a linear
transformation. Let u and v be two vectors in V such that T (2u—5v) = u+3v
and T(—=3u+ 8v) = —2u + v. Solve for T'(u) in terms of u and v.

A, —2u+29v; B.8u+24v; C.2u—29v; D.—-u+1lv.



