

Lecture Notes for 9/28/2023

3.5 Invertibility and determinants

3.6 Cramer's rule

Theorem 3.5.1. Let A be a square matrix. Then A is invertible if and only if $\det(A) \neq 0$. Furthermore, if A is invertible, then $\det(A^{-1}) = 1/\det(A)$.

Theorem 3.5.4. Let A be an $n \times n$ matrix, then the follow statements are equivalent:

1. A is invertible;
2. The reduced row echelon form of A is the identity matrix I_n ;
3. A has n pivot columns (or n pivots, or n pivot positions);
4. The equation $Ax = 0$ has only the trivial solution $\mathbf{x} = \mathbf{0}$;
5. There exists an $n \times n$ matrix C such that $CA = I_n$;
6. There exists an $n \times n$ matrix D such that $AD = I_n$;
7. The transpose A^T of A is invertible;
8. $\det(A) \neq 0$.

We will be using this result later (many times in fact) so try to read it a few times to keep it in your memory for a while, it will be handy!

$$\det(\overset{\sim}{AB}) = (\overset{\sim}{\det(A)}) \det(B)$$

$$\cancel{\det(A+B) = \det(A) + \det(B)} \quad \text{? ? ?}$$

One more important property of determinants (this is covered in WebWork and will be covered in the next test):

Let A and B be two $n \times n$ matrices that are identical except for one row (or one column). Say the first row of A and B may be different, that is:

$$\underbrace{(a_{11} + b_{11})}_{a_{11} C_{11}} C_{11} + \dots + \underbrace{a_{nn}}_{b_{11} C_{11}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix}.$$

If C is the matrix obtained from A by adding the first row of B to the first row of A :

$$\underbrace{a_{11} C_{11}}_{a_{11}} + \underbrace{b_{11} C_{11}}_{b_{11}} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix},$$

then $\det(C) = \det(A) + \det(B)$.

Example. If $\underbrace{\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}}_r = 4$, $\underbrace{\begin{vmatrix} a & b & c \\ 2 & 3 & -1 \\ g & h & i \end{vmatrix}}_r = -7$, find $\begin{vmatrix} a & b & c \\ 3d-4 & 3e-6 & 3f+2 \\ g & h & i \end{vmatrix}$.

$$= \begin{vmatrix} a & b & c \\ 3d & 3e & 3f \\ g & h & i \end{vmatrix} + \begin{vmatrix} a & b & c \\ -4 & -6 & 2 \\ g & h & i \end{vmatrix} = 3 \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} - 2 \begin{vmatrix} a & b & c \\ 2 & 3 & -1 \\ g & h & i \end{vmatrix}$$

$$= 3 \cdot 4 - 2(-7) = 12 + 14 = 26$$

Example. If $\underbrace{\begin{vmatrix} a & b & c \\ d & e & f \\ 3 & 3 & 3 \end{vmatrix}}_r = 12$, $\underbrace{\begin{vmatrix} a & b & c \\ d & e & f \\ 1 & 2 & 3 \end{vmatrix}}_r = -5$, find $\begin{vmatrix} a & b & c \\ d & e & f \\ -3 & -4 & -5 \end{vmatrix}$.

$$3 \begin{vmatrix} a & b & c \\ d & e & f \\ 1 & 1 & 1 \end{vmatrix} = 12$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ 1 & 1 & 1 \end{vmatrix} = 4$$

$$- \begin{vmatrix} a & b & c \\ d & e & f \\ 3 & 4 & 5 \end{vmatrix} = - \begin{vmatrix} a & b & c \\ d & e & f \\ 2+1 & 2+2 & 2+3 \end{vmatrix} = - \left(2 \begin{vmatrix} a & b & c \\ d & e & f \\ 2 & 2 & 2 \end{vmatrix} + \begin{vmatrix} a & b & c \\ d & e & f \\ 2 & 2 & 2 \end{vmatrix} \right)$$

$$= - (2 \cdot 4 + (-5)) = -3$$

$$-2x(1 \ 1 \ 1) + -1y(1 \ 2 \ 3) = (-3, -4, -5)$$

$$\begin{array}{l} x+y = -3 \\ - (x+2y = -4) \end{array} \quad \begin{array}{l} x+y = -3 \\ -x-2y = 4 \end{array} \quad \begin{array}{l} -y = 1 \\ y = -1 \end{array}$$

Quiz Question 1. Given that

$$\begin{vmatrix} a & b & c \\ d & e & f \\ 0 & 1 & 4 \end{vmatrix} = -3 \text{ and } \begin{vmatrix} a & b & c \\ d & e & f \\ -2 & 3 & 1 \end{vmatrix} = 4, \text{ find } \begin{vmatrix} a & b & c \\ d & e & f \\ 4 & -5 & 2 \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ 0 & 1 & \frac{1}{4} \end{vmatrix}$$

A. -11; B. 5; C. 1; D. -2.

$$x(0 \ \underline{1} \ 4) + y(-2 \ \underline{3} \ 1) = (4 \ \underline{-5} \ 2)$$

$$0 + -2y = 4$$

$$y = -2$$

Cofactor matrix and adjoint matrix of A :

Let A be an $n \times n$ matrix, with C_{ij} being the cofactor of the entry a_{ij} in A . Then

$$C = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

is called the cofactor matrix of A and the transpose of it is called the adjoint matrix of A , denoted by $\text{adj}(A)$:

$$A \cdot C^T = C^T \cdot A = \det(A) I$$

$$\text{adj}(A) = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

$$\left(\frac{1}{\det(A)} C^T \right) A = I$$

Theorem 3.5.2. Let A be a square matrix and $\text{adj}(A)$ the adjoint matrix of A , then $A \cdot \text{adj}(A) = \text{adj}(A) \cdot A = \det(A)I_n$. Thus if $\det(A) \neq 0$, then $A^{-1} = \frac{1}{\det(A)} \text{adj}(A)$.

The proof of this theorem is given in the book.

$$C^T = \det(A) A^{-1}$$

If A is a 4×4 matrix such that

$$A^{-1} = \begin{bmatrix} 2 & -3 & 0 & 1 \\ 0 & -1 & 5 & 4 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & -2 & 1 \end{bmatrix}$$

$$\det(A^{-1}) = 2$$

$$\det(A) = \frac{1}{2}$$

(so $\det(A) = (1/\det(A^{-1})) = 1/2$), find the cofactor matrix of A and use it to find the cofactors C_{23} and C_{44} .

$$C^T = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 & 0 \\ -3 & -1 & 0 & 0 \\ 0 & 5 & 3 & -2 \\ 1 & 4 & -2 & 1 \end{bmatrix}$$

$$C_{23} = 0 \quad C_{44} = \frac{1}{2}$$

$$C_{34} = \frac{1}{2}(-2) = -1$$

Quiz Question 2. Continue from the last example, where 4×4 matrix such that

$$A^{-1} = \begin{bmatrix} 2 & -3 & 0 & 1 \\ 0 & -1 & 5 & 4 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & -2 & 1 \end{bmatrix}$$

(so $\det(A) = 1/\det(A^{-1}) = 1/2$), find the cofactor C_{14} .

A. $-1/2$; B. 0 ; C. $1/2$; D. 1 .

$$A^{-1} = \frac{1}{\det(A)} \cdot C^T$$

$$\frac{1}{2} \begin{bmatrix} 2 & 0 & 0 & 0 \end{bmatrix}$$

$$C^T = \det(A) A^{-1}$$

$$C = \det(A) (A^{-1})^T$$

3.6 Cramer's rule

$$\boxed{A^{-1}A} \underline{x} = \underline{A^{-1}b} \quad \underline{x} = \underline{A^{-1}b}$$

$$x_j = \frac{\det(A_j)}{\det(A)}$$

Theorem 3.6.1. Consider the linear equation system $Ax = b$ with n equations and n variables, so that the coefficient matrix A is of size $n \times n$. Let A_j be the matrix obtained from A by replacing its j -th column with b , then if $\det(A) \neq 0$, the equation has a unique solution which is given by $x_j = \frac{\det(A_j)}{\det(A)}$ for $1 \leq j \leq n$.

$$x_1 \quad x_2 \quad \dots \quad x_n$$

Note that under this setting A is an $n \times n$ matrix, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$.

$$x_1 = \frac{\det(A_1)}{\det(A)}, \quad x_2 = \frac{\det(A_2)}{\det(A)}, \quad \dots$$

Example. Find the solution of the equation system

$$2x_1 + 5x_2 = a, \quad -x_1 + 3x_2 = b$$

where a and b are some constant numbers. Express your answer in terms of a and b .

$$\begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} \vec{x} \\ \vec{b} \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

$$\begin{aligned} A &= \begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix} & \det(A) &= 6 + 5 = 11 \\ \det(A_1) &= \begin{vmatrix} 2 & 5 \\ a & 3 \end{vmatrix} & &= a - 5b \\ \det(A_2) &= \begin{vmatrix} 2 & a \\ -1 & b \end{vmatrix} & &= 3a - 5b \\ &= 2b - (-a) & &= a + 2b \\ &= a + 2b & & \\ x_1 &= \frac{1}{11}(3a - 5b), & x_2 &= \frac{1}{11}(a + 2b) \end{aligned}$$

Quiz Question 3. Consider the linear equation system $A\mathbf{x} = \mathbf{b}$ with n equations and n unknowns. If $\det(A) = 0$, then which of the following statement is always true?

- a. We can still apply Cramer's rule to solve the equation;
- b. The equation is definitely inconsistent;
- c. The equation is consistent and has a unique solution;
- d. The equation is either inconsistent, or is consistent with infinitely many solutions.

Quiz Question 4. Consider the linear equation system $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} -2 & 1 & 0 \\ 4 & 3 & 1 \\ 1 & -5 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 2 \\ -17 \end{bmatrix}.$$

Given that $\det(A) = -19$, find x_2 . x_1

a. The solution does not exist; b. 2; c. -2; d. 2/19.

$$\left| \begin{array}{ccc|c} -2 & 0 & 0 & 0 \\ 4 & 2 & 1 & 2 \\ 1 & -5 & 1 & -17 \end{array} \right| \quad x_2 = \frac{\det(A_2)}{\det(A)}$$

$$= -38 / -19 = 2$$