

Lecture Notes for 9/5/2023

Review: In 2.2 we defined matrix multiplication. A matrix $A_{m \times n}$ can be multiplied to a matrix B if B has size $n \times q$, and AB has size $m \times q$. Why do we define the multiplication this way? Here is a reason.

Consider the following linear equation system:

$$\begin{aligned} 2x_1 + 5x_2 - 3x_3 + x_4 &= b_1 \\ -x_1 + 2x_2 + 4x_3 - 2x_4 &= b_2 \\ 3x_1 + 2x_3 + 3x_4 &= b_3 \end{aligned}$$

This equation can be written in the matrix form as

$$\begin{bmatrix} 2 & 5 & -3 & 1 \\ -1 & 2 & 4 & -2 \\ 3 & 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

The problem here is that we do not know what are the values of b_1 , b_2 and b_3 . However in this example, b_1 , b_2 and b_3 are the solution of the following equation system:

$$\begin{aligned} b_1 - 3b_2 + 4b_3 &= 3 \\ 2b_1 + b_2 - b_3 &= -7 \\ -3b_1 + 2b_2 + b_3 &= 2 \end{aligned}$$

$$\begin{bmatrix} 1 & -3 & 4 \\ 2 & 1 & -1 \\ -3 & 2 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -7 \\ 2 \end{bmatrix}$$

which can be written in the matrix form

$$\begin{bmatrix} 1 & -3 & 4 \\ 2 & 1 & -1 \\ -3 & 2 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -7 \\ 2 \end{bmatrix}.$$

How would you solve for x_1 , x_2 , x_3 , x_4 ?

We had observed that in general $AB \neq BA$: sometimes BA is not defined even when AB is defined, sometimes AB and BA are both defined but have different sizes, and even in the case that A and B are both $n \times n$ square matrices so AB and BA are also $n \times n$ matrices, AB and BA are still not equal in general. But other than this, most rules we know about number multiplication are actually still true for matrix multiplication:

- $A(BC) = (AB)C$ (Associative property of matrix multiplication)
- $A(B + C) = AB + AC$ (Left distributive property)
- $(A + B)C = AC + BC$ (Right distributive property)
- $r(AB) = (rA)B = A(rB)$ (Associative property of scalars in matrix multiplication)
- $A_{m \times n}I_n = I_mA_{m \times n} = A$ (Identity for matrix multiplication)

In the above I is the identity matrix, for example $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, and so on. Here is an example

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 3 & 1 \\ 7 & -4 & 3 \\ 0 & 5 & -8 \end{bmatrix} = \begin{bmatrix} -2 & 3 & 1 \\ 7 & -4 & 3 \\ 0 & 5 & -8 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 3 & 1 \\ 7 & -4 & 3 \\ 0 & 5 & -8 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 3 & 1 \\ 7 & -4 & 3 \\ 0 & 5 & -8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & 5 \\ 0 & 2 & 4 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 5 \\ 0 & 2 & 4 \end{bmatrix}$$

$2 \times 2 \ 2 \times 3$

$$(AB)^T$$

One other important formula:

$$\underline{A^T} \underline{B^T}$$

- $\underline{(AB)^T} = \underline{B^T} \underline{A^T}$ (transpose of multiplication)

$$\underbrace{A}_{3 \times 4} \quad \underbrace{B}_{4 \times 5}$$

$$\underbrace{A^T}_{4 \times 3} \quad \underbrace{B^T}_{5 \times 4}$$

Also, some matrices are more special than the others, and they deserve to have their own names for easier reference in the future. Here are a few.

Square matrices: $A_{n \times n}$ (matrices with the same number of rows and columns)

$$\underbrace{B^T}_{5 \times 4} \quad \underbrace{A^T}_{4 \times 3}$$

5 x 3

Triangular matrices:

$$\begin{bmatrix} -2 & 3 & 1 \\ 0 & -4 & 3 \\ 0 & 0 & -8 \end{bmatrix}, \begin{bmatrix} 0 & 3 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix} \quad (\text{upper triangular})$$

$$\begin{bmatrix} -2 & 0 \\ 2 & -8 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & -1 \end{bmatrix} \quad (\text{lower triangular})$$

Diagonal matrices:

$$\begin{bmatrix} 7 & 0 \\ 0 & -5 \end{bmatrix}, \begin{bmatrix} -2 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -8 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Quiz Question 1. Let A , B and C be square matrices of the same size $n \times n$. Which of the following statement regarding matrix multiplication is true?

A. $A(B - C) = AB - AC$;

B. $(A + B)^2 = A^2 + 2AB + B^2$;

C. $(A + B)(A - B) = A^2 - B^2$;

D. $(AB)^2 = A^2B^2$.

The point of this quiz question: Sometimes a familiar formula such as $(a+b)(a-b) = a^2 - b^2$ with real numbers uses the fact $ab = ba$ implicitly, which means we do not have $(A + B)(A - B) = A^2 - B^2$ for matrices.

2.4 Inverse of a matrix

Let A be a square matrix. A matrix B is called the *inverse* of A if B has the same size as A and $AB = BA = \underline{I}$.

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

$0 + 0 - 3$

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 3 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & -1 \\ 2 & 0 & 1 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 3 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -3 \\ \text{NOT } 1 \\ -2 + 2 + 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Properties of invertible matrices:

- (1) If A is invertible, then A^{-1} is unique;
- (2) If A and B are both $n \times n$ invertible matrices, then $(AB)^{-1} = B^{-1}A^{-1}$;
- (3) If A is invertible and $k \neq 0$ is a scalar, then $(kA)^{-1} = \frac{1}{k}A^{-1}$.
- (4) If A is invertible, then $(A^T)^{-1} = (A^{-1})^T$.

Proof. (1) Assume that B and C are both inverses of A . Then by definition $AB = BA = I$ and $AC = CA = I$. Multiply both sides of the equation $AB = I$ by C (from left): $C(AB) = CI$. The right side is just $CI = C$. The left side is (by associativity of matrix multiplication) $C(AB) = (CA)B = IB = B$. Thus $B = C$. So we have shown any two inverse matrices of A must in fact be the same. So the inverse of A is unique.

(2) By direct verification:

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$$

Similarly $(B^{-1}A^{-1})(AB) = I$. So $B^{-1}A^{-1} = (AB)^{-1}$.

(3) By the distribution of scalar multiplication and matrix multiplication,

$$(kA)\left(\frac{1}{k}A^{-1}\right) = \left(k\frac{1}{k}\right)(AA^{-1}) = 1 \cdot I = I.$$

Similarly $\left(\frac{1}{k}A^{-1}\right)(kA) = I$. That is, $(kA)^{-1} = \frac{1}{k}A^{-1}$.

(4) Taking the transpose on all sides of $A^{-1}A = AA^{-1} = I$, we get $A^T(A^{-1})^T = (A^{-1})^TA^T = I^T = I$. So $(A^T)^{-1} = (A^{-1})^T$.

$$\begin{aligned}
 & (AB)^{-1} \\
 & \cancel{A} \cancel{B} \quad \cancel{B}^{-1} \cancel{A}^{-1} \\
 & \underline{A} \underline{B} \quad \underline{B}^{-1} \underline{A}^{-1} \\
 & \underline{\underline{A}} \underline{\underline{B}} \quad \underline{\underline{B}}^{-1} \underline{\underline{A}}^{-1} \\
 & (kA)\left(\frac{1}{k}A^{-1}\right) \\
 & \cancel{k} \cancel{A} \quad \cancel{\frac{1}{k}} \cancel{A}^{-1} \\
 & \underline{k} \underline{A} \quad \underline{\frac{1}{k}} \underline{A}^{-1}
 \end{aligned}$$

Question: how do we know when a matrix is invertible and how to find the inverse?

If A is a 1×1 matrix then $A = [a]$, $A^{-1} = [a^{-1}]$ if $a \neq 0$, otherwise A^{-1} does not exist.

If A is a 2×2 matrix, that is, $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ if $ad - bc \neq 0$. If $ad - bc = 0$, A^{-1} does not exist.

For example, if

$$ad - bc = 3 \cdot 2 - 4(-2)$$

$$A = \begin{bmatrix} 3 & 4 \\ -2 & 2 \end{bmatrix}, \quad = 6 + 8 = 14 \neq 0$$

then

$$A^{-1} = \frac{1}{14} \begin{bmatrix} 2 & -4 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & 4 \\ -2 & 2 \end{bmatrix}$$

$$= \frac{1}{14} \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Quiz Question 2. Which of the following matrices is **NOT** invertible?

A. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ B. $\begin{bmatrix} -1 & 3 \\ 3 & 1 \end{bmatrix}$ C. $\begin{bmatrix} 2 & -7 \\ -4 & 14 \end{bmatrix}$ D. $\begin{bmatrix} 0 & 3 \\ -1 & 3 \end{bmatrix}$

For a general $n \times n$ matrix A with $n \geq 3$, how do we find A^{-1} ?

Answer: by using Gauss-Jordan elimination on the augmented matrix $[A | I]$ to reduce it to a reduced echelon form. If the reduced echelon form is I , then the right side is A^{-1} . Otherwise A^{-1} does not exist.

Example 1. $A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 2 \end{bmatrix}$

$$\begin{array}{c}
 \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 & 1 & 0 \\ 5 & 3 & 2 & 0 & 0 & 1 \end{array} \right] \xrightarrow{\substack{2R_1 + R_2 \rightarrow R_2 \\ -5R_1 + R_3 \rightarrow R_3}} \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 3 & 2 & -5 & 0 & 1 \end{array} \right] \\
 \uparrow
 \end{array}$$

$$\xrightarrow{-3R_2 + R_3 \rightarrow R_3} \frac{1}{2} \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & -11 & -3 & 1 \end{array} \right] \xrightarrow{\substack{\text{row operations} \\ \text{pivot}}}$$

$$\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & -\frac{11}{2} & -\frac{3}{2} & \frac{1}{2} \end{array} \right] \quad A^{-1}$$

$$\text{Example 2. } A = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & -6 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\left[\begin{array}{ccc|ccc} -2 & -6 & 0 & -2 & 0 & 0 \\ 1 & 3 & 0 & 1 & 0 & 0 \\ 2 & 0 & -6 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right] \xrightarrow{-2R_1+R_2 \rightarrow R_2} \left[\begin{array}{ccc|ccc} 1 & 3 & 0 & 1 & 0 & 0 \\ 0 & -6 & -6 & -2 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right]$$

$$\xrightarrow{\quad} \left[\begin{array}{ccc|ccc} 1 & 3 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & -6 & -6 & -2 & 1 & 0 \end{array} \right] \xrightarrow{\quad}$$

0 0 0 No Inverse.

Quiz Question 3. Find the inverse matrix of

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}.$$

A. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

B. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$

C. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$

D. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$

Given a linear equation system $A\mathbf{x} = \mathbf{b}$ with A being a square matrix, then in the case that we know the inverse of A , the equation system is easy to solve: we multiply A^{-1} (from left) to both sides of the equation: $A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$. The left side is always $A^{-1}(A\mathbf{x}) = (A^{-1}A)\mathbf{x} = I \cdot \mathbf{x} = \mathbf{x}$, so the solution of the equation system is simply $\mathbf{x} = A^{-1}\mathbf{b}$.

For example, if the equation is

$$A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix},$$

and we know that $A^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$, then

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \underline{A^{-1}\mathbf{b}} = \underline{\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}} \underline{\begin{bmatrix} -1 \\ 2 \end{bmatrix}} = \underline{\begin{bmatrix} -1 \\ 3 \end{bmatrix}}.$$

Notice that we don't even have to know A in solving for \mathbf{x} . Of course we can find A from A^{-1} if we want to, but why bother if we only want to find \mathbf{x} ?

$A_{n \times n} \quad X_{n \times 1}$

$$\begin{aligned} A\mathbf{x} &= \mathbf{b}_{n \times 1} & A_{n \times n} \\ \underline{A^{-1}} \underline{(A\mathbf{x})} &= \underline{\underline{A^{-1}\mathbf{b}}} \\ \mathbf{x} &= \underline{A^{-1}\mathbf{b}} \end{aligned}$$

Quiz Question 4. Assume that A is a 3×3 matrix and we know its inverse matrix is

$$A^{-1} = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} \quad x = A^{-1} b$$

Solve the equation system

$$A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} \quad = \begin{bmatrix} 3 \\ -6 \\ -1 \end{bmatrix}$$

A. $\begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$; B. $\begin{bmatrix} 3 \\ -6 \\ -1 \end{bmatrix}$; C. $\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$; D. $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$.