Lecture Notes for 9/7/2023

2.5 Solving a system using an inverse matrix
Given a linear equation system Ax = b with A being a
square matrix, then in the case that we know the inverse

of A, the equation system is easy to solve: we multiply

A~1 (from left) to both sides of the equation: A~1(Ax) =
A7'b. The left side is always A7'(Ax) = (A 'A)x =
I -x = x, so the solution of the equation system is simply

x = A" 'b.

For example, if the equation is

I 1 ’
Alzy| = |0 ) A - blo
.CL’3_ 3
[0 10
and we know that A=' = | -1 3 3|, then
[ 2 10
1 0 1 0] |1 0
9| =A7b=|-1 3 3| |0| =8
xs3 2 10| |3 2

Notice that we don’t even have to know A in solving
for x. Of course we can find A from A~! if we want to.


Yuanan Diao

Yuanan Diao

Yuanan Diao

Yuanan Diao

Yuanan Diao

Yuanan Diao

Yuanan Diao

Yuanan Diao


2.6 Elementary matrices

Review: the procedure to find the inverse matrix of a
given matrix. For example, how do we find the inverse

0 20
of the matrix [ 1 0 0|7
—4 0 1

AN AR, R 1) 0
| 3_>3 O@
00

At the end of this we conclude that A~! =

o= O
=~ O
—_— o O

But HOW DO WE KNOW THIS??? The elementary
matrices provide us the main tool in explaining this.
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An elementary matrizis a matrix obtained by applying
one of the three elementary row operations to the identity

matrix.
Examples.
(1 0
=101
10 0
(1 0
=101
10 0
(1 0
I=101
0 0
(1 0
01
I'= 00
10 0

1
= 0 1

Here are some elementary matrices.

JaRTRs

0
— |1
0

- |1
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Quiz Question 1. Which of the following is the 4 x 4
elementary matrix obtained by the row operation bR, +
Ry — Rs?

1000 1000
0100 0150
Alos 1o Blooto
000 1] 0001
10 0 0] 1000
0100 105
“lootofl Ploo1o
050 1] 0001
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Given a square matrix, how do we know that it is an
elementary matrix or not?

Answer: it is an elementary matrix if it can be changed
back to the identity matrix by ONE elementary row oper-
ation! And you should be able to identify which elemen-
tary row operation was used to obtain the elementary
matrix. Look at the examples we just did:

100 010 100
010 — |1 0] — 10
0 0 1) 0 0 1) 0 0 1]
i} bR tRs —Ri s -
10 0] =r[1 ~2,[100
010 —]010 — |01
0 0 1 4 0 1) 0 0 1]
1 0 0] (1 0 0] 1 0 0]
010 —1[030 —1]010
0 0 1) 0 0 1] 0 0 1]
1000 0001 1000
0100 0100 0100
0010 0010 0010
0001 1000 0001
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The following matrices are NOT elementary matrices
since they CANNQOT be obtained from an identity matrix
by a SINGLE elementary row operation.

_ o O O
O = O O
O O = O
oo O -

N
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Quiz Question 2. Which of the following is NOT an

elementary matrix?

/\
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(A 1) T Fx " E = A

(EA £ 1) — (BEA. EE

B BA L B BT
In the above examplm the 3 elementary
row operations on A is the same as multiplying the el-

ementary matrices E;, Fy and Ej3 consecutively to A:
E3FEsE A, since we are also applying the same oper-
ations to I (on the right side of A in the augmented
matrix), the right side of this augmented matrix is pre-
Cisely EgEQEll = E3E2E1. We saw that E3E2E1A =
(E3E3F1)A = I at the end, that means (E3EyEp) = A™L,
That is why the right side of the augmented matrix be-
comes A~! at the end of the process.

This is true in general, that is, multiplying a matrix
A by an elementary matrix E from the left side of A
has the same effect as performing the same row oper-
ation used to obtain £ on A. Thus we can generalize
the above example to any matrix A: if we can perform
a sequence of elementary row operations on A to reduce
it to I, and the same sequence of elementary row op-
erations change the identity matrix to B, then it means
that (ExEy_1- -+ EsFE1)A = I, where E is the elementary
matrix corresponds to the first elementary row operation
we used, Fs is the elementary matrix corresponds to the
second elementary row operation we used, and so on, F
is the elementary matrix corresponds to the last elemen-
tary row operation we used. So EpEy_1--- EyFE; = A™!
and EyFEy_q--- EoFy is precisely the matrix at the right
side of the augmented matrix at the end of the process.
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One more terminology: We say that two matrices A,
B are row-equivalent if B is obtained from A by apply-
ing a sequence of row operations to A. That is, B =
EyEy_q--- EyE A for some elementary matrices Ey, Es,
..., Ep. For example, a matrix A and its echelon form
are row equivalent, and A and its reduced row echelon
form are also row equivalent. And, a square matrix A is
invertible also means A is row equivalent to 1.

An elementary matrix is always invertible: We saw
that we can use one elementary row operation to change
an elementary matrix to the identity. That is, if E is
an elementary matrix, then there is another elementary
matrix £’ such that E'E' = I. So F is invertible. In fact
we know more. -

001
E=1010
100
100 1
0100
E=10010
000 1
10 0 0
01 0 0
E=100 =5 0
00 0 1

10
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Quiz Question 3. Let E be the elementary matrix
obtained by applying the row operation 3Ry+ Ry — Ry,

then which of the following is E~17?

Al

O
10 —3 30 | v
01 0 B. 1 0 Dl?
00 0 1 © 0
10 [ 3 0O
0 1 7010
00 - o |
o
\DJ
o\
©
)
\
\/BO Lg’D /DD
//——/ —_—
o  © ° L Y- o L0
O\ OOK OQ
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| ©0o 'O
Theorem 2.6.3: Invertible Matrix Theorem. g ‘ ’0} /’ g }
O

|

Let A be ann X m square matrix. Then the following statements are equivalent.

1. Aisinvertible.

2. A is row equivalent to the n x n identity matrix I,,.

3. A has n pivot positions.

4. The equation Ax = 0 has only the trivial solution x = 0.
5.Ann X n matrix C exists such that CA = I,,.

6. Ann X n matrix D exists such that AD = I,,.

7. The transpose matrix AT isinvertible.

This means that if A is invertible, then any of the
statements 2—7 is also true. On the other hand, if any of
the statements 27 is true, then A is invertible.

With what we have learned, we can in fact prove the
theorem. For example, if A is invertible, then it is obvi-
ous that the equation Ax = 0 has only the trivial solu-
tion (namely the zero solution) x = 0, we can see this by
multiplying A~! on both side of the equation (from left).
How do we argue the other way around, that is, if we
know the equation Ax = 0 has only the trivial solution,
how can prove that A must be invertible?

12
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Quiz Question 4. If A is a 3 x 3 matrix and the fol-
lowing three row operations on A results in the identity

matrix:

~ Step 1. Ry «+— R3; L, g o I
Step 2. —2R; + Ry — Ro; = 5 Ek — A
Step 3. Ry+ Ry — R [ IO

Which of the following is A~1?

|
N0 0171 00](00 1]
Ao/t ol =2 10|01 0
11l lo o1l 100
001171 001l 0 0] E ﬁZE%
B.lo1oll=210/]010 3 |

D 0
r

1 1
100/ [0 0101 1] P y
10 0][to0 07001

c.lo1 =201 —=2[010
01 -1 00 1] 100
00 17t 0 0] [t 0 0

D. |0 1 0 1 0[]0 1 0
1 00] [0 —21] [0 —11
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