
MIPS ASSEMBLY PROGRAMMING
LANGUAGE PART II
Ayman Hajja, PhD

MEMORY ADDRESSES ARE IN
BYTES

2

Processor

Datapath

Registers

ALU

Memory
Enable?

Read/Write

Address

Read Data
Write Data

PC

Control

REGISTERS

Unlike C or Java, assembly does not use variables

Assembly operands are registers:

Limited number of special locations built directly into the
hardware

Operations can only be performed on registers

Since registers are are directly built in the CPU, they are very
fast (100 to 500 times faster than main memory)

3

REGISTERS

Since registers are directly built in the CPU, there is a
predetermined number of them:

In MIPS, we have 32 general-purpose registers, and few
other special-purpose registers

4

REGISTERS

Registers are numbered from 0 to 31

Each register can be referred to by a number or name

Number references:

$0, $1, $2, …, $30, $31

For now:

$16 to $23 will be referred to by $s0 to $s7 (variables)

$8 to $15 will be referred to by $t0 to $t7 (temp variables)

In general, use names to make your code more readable

5

MACHINE INSTRUCTIONS

A machine instruction is a pattern of bits that directs the
processor to perform one machine operation.

Here is the machine instruction that directs the MIPS processor
to add two 32-bit registers together (a register is a part of the
processor that holds a bit pattern).

0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

6

Means
addition

of the first
register to add

of the second
register to add

Destination/Result
register

MIPS INSTRUCTIONS: ADD
(REGISTER INSTRUCTION)

Addition in Assembly:

Example 1: add $s0, $s1, $s2 (in MIPS)

Equivalent to a = b + c; (in C), assuming that:

$s1 contains the value of b

$s2 contains the value of c

and $s0 will be used to store the result (equivalent to 'a')

7

8

Addition in Assembly:

Example 1: add $s0, $s1, $s2 (in MIPS)

Equivalent to a = b + c; (in C), assuming that:

$s1 contains the value of b

$s2 contains the value of c

and $s0 will be used to store the result (equivalent to 'a')

Example 2: add $s0, $s1, $zero (in MIPS)

Equivalent to f = g; (in C), assuming that $s0 corresponds to f, and
$s1 corresponds to g

MIPS INSTRUCTIONS: ADD
(REGISTER INSTRUCTION)

9

Subtraction in Assembly:

Example: sub $s3, $s4, $s5 (in MIPS)

Equivalent to: d = e - f; (in C), assuming that:

d corresponds to $s3

e corresponds to $s4

f corresponds to $s5

MIPS INSTRUCTIONS: SUB
(REGISTER INSTRUCTION)

10

How to do the following C statement?

a = b + c + d - e;

a $s0

b $s1

c $s2

d $s3

e $s4

MIPS INSTRUCTIONS: ADDITION
AND SUBTRACTION OF INTEGERS

a $s0

b $s1

c $s2

d $s3

e $s4

MIPS INSTRUCTIONS: ADDITION
AND SUBTRACTION OF INTEGERS

How to do the following C statement?

a = b + c + d - e;

We break it into multiple instructions:

add $t0, $s1, $s2 # temp = b + c

11

12

How to do the following C statement?

a = b + c + d - e;

We break it into multiple instructions:

add $t0, $s1, $s2 # temp = b + c

add $t0, $t0, $s3 # temp = temp + d

a $s0

b $s1

c $s2

d $s3

e $s4

MIPS INSTRUCTIONS: ADDITION
AND SUBTRACTION OF INTEGERS

13

How to do the following C statement?

a = b + c + d - e;

We break it into multiple instructions:

add $t0, $s1, $s2 # temp = b + c

add $t0, $t0, $s3 # temp = temp + d

sub $s0, $t0, $s4 # a = temp - e

a $s0

b $s1

c $s2

d $s3

e $s4

MIPS INSTRUCTIONS: ADDITION
AND SUBTRACTION OF INTEGERS

IMMEDIATES

Immediates are numerical constants that are embedded in the
instruction itself

Add Immediate:

addi $s0, $s1, -10 (in MIPS)

f = g - 10; (in C)

assuming $s0 and $s1 are associated with the variables f, g
respectively

14

