ITSC 2181 — Introduction to Computer Systems — Fall 2023

ITSC 2181 - Introduction to Computer Systems - Fall 2023

Module 03 - Unit 2: Lab

Objectives

Practice how to write small C programs, including identifying and
correcting ¢ compiler error messages and warnings.

Practice the use of arrays in C to process data.

Practice the use of functions in C to process data.

General Instructions

Please do not write your email or user ID anywhere in the program. To
identify your code, you may use your UNC Charlotte 800#

In this lab, you will write a few short C programs. Each program needs
to be in its own source code filg, i.e., a file with the .c extension.

You need to test your code thoroughly before submitting it.

To earn any credit, a program has to compile. You may comment-
out lines that have errors to obtain partial credit for work done.

Programs need to compile cleanly to receive full credit, i.e., they do
not produce any errors or warnings.

It is essential that you do your own work.

o Do not use any external resources (Internet, Al, friends,
etc.). All cases of cheating will be taken very seriously.

o If you need help, please ask the instructor, TA/IA or CCI
Tutoring center.

Copyright © 2019-2023, Julio C. Bahamdn, UNC Charlotte.
All Rights Reserved.



ITSC 2181 — Introduction to Computer Systems — Fall 2023

Program 1 (40 points)

1. Write a function named capitalize that capitalizes all letters (i.e.,
alphabetic characters) in its argument.

2. The argument will be a null-terminated string containing arbitrary
characters, not just letters.

3. You must use array scripting to access each character in the
string individually.

4. To check if a character is alphabetic, you can use the isalpha function
from the C Standard Library, see:
https://en.wikibooks.org/wiki/C Programming/ctype.h/isalpha

5. To convert a character to uppercase, you can use the toupper function

from the C Standard Library, see:
https://en.wikibooks.org/wiki/C Programming/ctype.h/toupper

6. You cannot use any other C Standard Library functions, except for
printf and scanf.

Use the following code to test your function:
char the_str[] = "test";

capitalize(the_str);
printf ("%$s\n", the str);

char the str2[] = "This IS a tesT!";

capitalize (the_str2);
printf ("%$s\n", the str2);

Sample output is shown below:

TEST
THIS IS A TEST!

Implement a program named strings_practice.c that uses the function
you wrote. You may use the code shown above. However, we recommend
testing with other strings as well.

Copyright © 2019-2023, Julio C. Bahamdn, UNC Charlotte.
All Rights Reserved.


https://en.wikibooks.org/wiki/C_Programming/ctype.h/isalpha
https://en.wikibooks.org/wiki/C_Programming/ctype.h/toupper

ITSC 2181 — Introduction to Computer Systems — Fall 2023

Program 2 (60 points)

A very common operation with arrays is sorting array elements by their
values. For example, elements in the array may be reordered so that
smaller elements are placed before larger elements. One of the simplest
sorting algorithms is insertion sort, which is described in the following
Wikipedia article: https://en.wikipedia.org/wiki/Insertion sort. Make sure to
read the article before proceeding.

Write a program, named sort_ints.c, that does the following:
1. Asks the user to enter 10 integers.
2. Stores the input values in an array.
3. Sorts the contents of the array in ascending order, using the
insertion sort algorithm.
4. Displays the contents of the array after they have been sorted.
5. To implement the insertion sort algorithm, it is necessary to swap
elements in the same array.
a. You need to implement a function to do this.
b. To swap any two elements in an array, declare an extra variable
(let’s call it temp). First, store the contents of the first element
in temp. Copy the contents of the second element onto the
first. Finally, copy the value of temp onto the second element.
See the following code:

temp = numArray[firstElementIndex];
numArray[firstElementIndex] = numArray[secondElementIndex];
numArray[secondElementIndex] = temp;

A few sample runs are provided below:

Please enter 10 integers separated by a space:
97 93 92 97 90 100 95 97 96 96

The list after sorting:
90 92 93 95 96 96 97 97 97 100

Please enter 10 integers separated by a space:
987 6543210

The list after sorting:

Copyright © 2019-2023, Julio C. Bahamdn, UNC Charlotte.
All Rights Reserved.


https://en.wikipedia.org/wiki/Insertion_sort

ITSC 2181 — Introduction to Computer Systems — Fall 2023

012345¢67879

Please enter 10 integers separated by a space:
999 54 5 125 77 45 1000 37 65 12

The list after sorting:
5 12 37 45 54 65 77 125 999 1000

For extra practice (optional), you could create a modified version of your
code that uses the Quicksort algorithm, see
https://en.wikipedia.org/wiki/Quicksort you do not need to submit this

alternate version.

Submission Instructions

1.

2.

Create a folder (directory) on your computer.

Name the folder ITSC_2181 M@3 U2_Lab_student-id
Replace student-id with your UNCC student ID (800#), e.q.
8001231234

. Download and copy your program (source code) files into this folder.

. Compress (Zip) the folder with all its contents. You should consider

keeping the files for every lab in a separate folder (directory) from
your other course materials. You can then use the Send to,
Compressed Folder command on Windows or the Compress command
on a Mac to create the Zip file.

. Submit a single Zip file (created in #4, above) via Canvas.

Grading Rubric

This lab is worth a total of 100 points.

Do your own work. Do not use any external resources (Internet,
friends, etc.). All cases of cheating will be taken very seriously. If you
need help, please ask the instructor, TA/IA or CCI Tutoring
center.

Programs need to compile to earn any credit. You may comment-out

lines that have errors to obtain partial credit for work done.

Copyright © 2019-2023, Julio C. Bahamdn, UNC Charlotte.
All Rights Reserved.


https://en.wikipedia.org/wiki/Quicksort

ITSC 2181 — Introduction to Computer Systems — Fall 2023

e Your work will be graded on three (3) major components: Logic and
flow of program, output, and formatting/organization. Refer to the

following table for details.

Logic and Flow of Program - 60%

Fully Correct and code compiles without errors.

Full Credit

Minor Errors and code compiles without errors OR some
required functionality is missing.

75% Credit

Major Errors and/or code compiles with warnings OR
significant portions of the required functionality are missing.

50% Credit

output provided.

Completely incorrect/missing/does not compile. No Credit
Output - 30%
Fully Correct and matches formatting and layout of sample Full Credit

Minor Errors.

75% Credit

Major Errors.

50% Credit

guidelines. Whitespace has been used appropriately,
including indentation and blank lines.
Comments are used when needed.

Completely incorrect output. No credit
Formatting/Organization of Code - 10%
Code is clear, easy to read and formatter according to the Full Credit

Needs minor improvement.

75% Credit

Needs major improvement.

50% Credit

No formatting/organization at all.

No Credit

Additional Deductions
e Code that produces warnings: -10% per program
e Incorrectly named files: -2 points per file

e Students who cheat on any course assignment, lab, test or other
activity will have their course grade reduced by one letter grade,
regardless of the activity’s point value, if it is their first offense at UNC

Charlotte.

Copyright © 2019-2023, Julio C. Bahamdn, UNC Charlotte.

All Rights Reserved.




