
Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

Unit 1: Module Overview, Instruction Operations and
Operands

ITSC 2181 Introduction to Computer Systems

College of Computing and Informatics

Department of Computer Science

 Hardware Components of a Computer

2

Memory Layout of a Program

• A program includes both code and variables
– In system: that becomes instructions and data, all are stored in memory

• Code (machine instructions) 🡺 Text segment

• Static variables 🡺 Data or BSS segment

• Function variables 🡺 stack (i, A[100] and B)
– A is a variable that stores memory address, the memory for A’s 100 int elements is in the stack
– B is a memory address, it is stored in stack, but the memory B points to is in heap (100 int elements)

• Dynamic allocated memory using malloc or C++ “new” 🡺 heap (B[100)

3

#include <stdio.h>

static char *gonzo = “God’s own prototype”;
static char *userName;

int main(int argc, char* argv[]){
 int i; /* stack */
 int A[100]; /* stack */
 int *B = (int*)malloc(sizeof(int)*100); //heap

 for(i = 0; i < 100; i++) {
 A[i] = i*i;
 B[i] = A[i] * 20;
 printf(”A[i]: %d, B[i]: %d\n",A[i], B[i]);
 }
}

Stack size limit. If 8MB, “int
A[10,000,000]” won’t work.

Linux Process Memory in 32-bit System (4G space)

Levels of Program Code

• High-level language
– Level of abstraction closer to

problem domain
– Provides for productivity and

portability

• Machine-Level Code:
Instructions
– Textual representation of

binary machine instructions
– Interface between HW and SW
– Assembly language

• Hardware representation
– Binary digits (bits)
– Encoded instructions and data

4

Instruction Set Architecture: The Interface
Between Hardware and Software

• The words of a computer
language are called instructions,
and its vocabulary/dictionary is
called an instruction set

– lowest software interface,
assembly level, to the users or to
the compiler writer

Instruction Set Architecture – A
type of computers

instruction set

software

hardware

5

Major Types of ISA (Computers)

• X86: Intel and AMD, Desktop, laptop, server market

• ARM: embedded, pad/phone, etc, now laptop/server

• RISC-V: fast growing one, embedded so far

• Power (mainly IBM) and SPARC (mainly Oracle and Fujitsu):
server market

6

Levels of Program Code to
Multiple Target Architectures

Java C/C++ Python

gcc/clang
Javac and

JIT
python

RISC-V X86/X86_64 ARM

7

X86_64 Assembly Example
Using “-S” compiler flag to translate high-level code to assembly instructions

• X86_64 is ISA Architecture
for most Intel and AMD
desktop/server CPUs

• RISC-V is one ISA

• ARM is another ISA
– Most cellphone/smartphone

are ARM CPUs

8
https://passlab.github.io/ITSC3181/exercises/swap/

Try the highlighted command for swap.c from the terminal of
https://repl.it/languages/c

https://passlab.github.io/ITSC3181/exercises/swap/
https://repl.it/languages/c

X86_64 Assembly Example
Disassembly a machine binary code to assembly instructions using “objdump”

9

https://repl.it/languages/c

Disassembly

https://repl.it/languages/c

Exercise: Inspect ISA for sum

• Swap example
– https://passlab.github.io/ITSC3181/exercises/sum

• Check
– sum_x86_64.s,

• Generate and execute
– gcc -s sum.c -o sum_x86_64.s
– gcc -c sum.c
– objdum -D sum.o > sum_x86_64_objdump.txt

• Other system commands:
– cat /proc/cpuinfo to show the CPU and #cores
– top command to show system usage and memory

10

Compiler Explorer

• Explore other ISA assembly from Compiler Explorer at
https://godbolt.org/

11

https://godbolt.org/

Module 06 - Unit 1 Exercise 1 on Canvas

Compiling a C program to produce its assembly output

Using gcc and compiler explorer to output and study the

assembly output of bubble.c program

12

Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

Relevant course level outcome:

• Explain the instruction set architecture of a computer system and how an
instruction is represented at the machine level and symbolic assembler
level.

• Use assembly instructions to write simple program to understand the core
concepts of ISA and assembly programming.

• Be able to map major high-level language statements into
assembly/machine language notations.

• At the end of this module, students should be able to:

1. explain what an instruction set architecture (ISA) is and recognize existing
ISAs used in the computer industry (x86, ARM, RISC-V, etc) and their CPU
vendors;

2. explain how ISA is used for creating and executing a program (e.g. program
in high-level language is translated into assembly and assembly program is
assembled into binary);

3. enumerate and explain the three major classes of instructions in most
RISC ISA: arithmetic-logic instructions, memory access instructions, and
control transfer instructions;

4. use arithmetic and logic instructions, memory access instructions, and
control transfer instructions to convert high-level C language constructs
to assembly instructions.

13

Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

• Unit 1: Module overview, Instruction Set Architecture (ISA) and
assembly programs, registers, instruction operations and operands,
register and immediate operands, arithmetic and logic instructions

• Unit 2: Memory operands and memory access instructions

• Unit 3: Conditional control and instructions for making Decisions
(if-else) and loops

• Unit 4: Supporting Functions and procedures

• Unit 5: Sort examples and comparison with other ISAs

• Materials are developed based on textbook:
– Computer Organization and Design RISC-V Edition: The

Hardware/Software Interface, Amazon
– RISC-V Specification: https://riscv.org/technical/specifications/
– ITSC 3181: https://passlab.github.io/ITSC3181/

14

☛

https://www.amazon.com/Computer-Organization-Design-RISC-V-Architecture/dp/0128122757
https://riscv.org/technical/specifications/
https://passlab.github.io/ITSC3181/

The RISC-V Instruction Set

• Used as the example throughout the book
– We will use and study only three classes of instructions for a handful of ins
– Sufficient for most programs.

• Developed at UC Berkeley as open ISA

• Now managed by the RISC-V Foundation (riscv.org)

• Typical of many modern ISAs
– See RISC-V Reference Data Card

• Similar ISAs have a large share of embedded core market
– Applications in consumer electronics, network/storage, cameras, printers, …

• Other Instruction Set Architectures:
– X86 and X86_32: Intel and AMD, main-stream desktop/laptop/server
– ARM: smart phone/pad
– RISC-V: emerging and free ISA, closer to MIPS than other ISAs

• The same textbook in RISC-V version
– Others: Power, SPARC, etc

15

RISC-V Base Integer Instructions

16

Mapping High-Level Program to Instructions:
Operands and Instructions

17

• Variables 🡺 “memory” locations as we learned so far
– Are mapped to operands of instructions
– Three kinds of operands:

• Register
• Immediate (constant)
• Memory location

• Operations: +/-/& etc, if-else, for loop
– Are mapped to Instructions that use operands
– Three kinds of instructions:

• Compute: +, -, &, etc
• Move data: between memory and registers
• Control: if-else, for loop

We Will Study: Three Kinds of Operands and
Three Classes of Instructions

• General form:
– <op word> <dest operand> <src operand 1> <src operand 2>
– E.g.: add x5, x3, x4, which performs [x5] = [x3] + [x4]

Three Kinds of Operands
 1. Register operands, e.g., x0 – x31
 2. Immediate operands, e.g., 0, -10, etc
 3. Memory operands, e.g. 16(x4)

Three Classes of Instructions
1. Arithmetic-logic instructions

• add, sub, addi, and, or, shift left|right, etc
2. Memory load and store instructions

• lw and sw: Load/store word
• ld and sd: Load/store doubleword

3. Control transfer instructions (changing sequence of instruction execution)
• Conditional branch: bne, beq
• Unconditional jump: j (
• Procedure call and return: jal and jr 18

Registers in CPU and Register Operands of Instructions

• Registers are super-fast small memory/storage used in CPU.
– General-purpose registers, program counter, instruction register,

status register, floating-point register, etc

– 32 GP Registers in RISC-V CPU, 32-bit or 64-bit size for each

• Data and instructions need to be loaded to memory and
then register in order to be processed.

19

Registers vs. Memory

• Registers are faster to access than memory
– ~100x faster, ~10 more expensive, and takes more space

• Operating on memory data requires loads and stores
– More instructions to be executed

20

Register Operands

• Arithmetic instructions use register operands
– add <dest>, <src1>, <src2>

• 64-bit RISC-V has 32 64-bit general purpose registers
– The storage for all GP registers is called a register file

• It is storage, i.e. to store data
– Use for frequently accessed data
– Numbered x0 to x31

• the “memory address” for register

– 64-bit data is called a ”doubleword”
– 32-bit data called a “word”

• Design Principle: Smaller is faster
– c.f. main memory: millions of locations

21

RISC-V 32 64-Bit Registers, x0 to x31

• Usage convention for most programs:
– x0: the constant value 0

– x1: return address of a function

– x2: stack pointer of a functon

– x3: global pointer

– x4: thread pointer

– x5 – x7, x28 – x31: temporaries

– x8: frame pointer

– x9, x18 – x27: saved registers

– x10 – x11: function arguments/results

– x12 – x17: function arguments

22

Arithmetic Operations (of the First Class Instrs)

• Add and subtract, three operands
– Two source operands: provide input or source data
– One destination operand: where result goes to.

add a, b, c //sum of b and c is placed in a

• All arithmetic operations have this form
– Three operands, two sources and one destination
– 3-operands instructions

• Design Principle: Simplicity favors regularity
– Regularity makes implementation simpler
– Simplicity enables higher performance at lower cost 23

Register Operand Example

• C code:

f = (g + h) - (i + j);
– f, …, j values are already loaded in x19, x20, …, x23

• Compiled RISC-V code, all are register operands
– Three operands: the first operand is destination, last two are

source operands

add x5, x20, x21 // [x5] = [x20] + [x21]
add x6, x22, x23 // [x6] = [x22] + [x23]
sub x19, x5, x6 // [x19] = [x5] – [x6]

– [x5]: the actual data in register x5
24

Constant or Immediate Operands

int a += 4; if a is in register x22

• Constant data specified in an instruction

addi x22, x22, 4

instructions that take immediate operands ends with letter i

• No subtract immediate instruction
– Just use a negative constant
addi x2, x1, -1

• Design Principle: Make the common case fast
– Small constants are common
– Immediate operand avoids a load instruction

25

The Constant Zero

• RISC-V register x0 is the constant 0 always
– Cannot be overwritten

• Useful for common operations
– E.g., move between registers, e.g. a=b;

• add x9, x5, x0
• addi x9, x5, 0

– E.g. initialization such as i = 0; j=-100;

• addi x9, x0, 0

• addi x11, x0, -100

26

Instructions for Logical Operations

• Instructions for bitwise manipulation

27

■ Useful for extracting and inserting
groups of bits in a word

Operation C Java RISC-V
Shift left << << Sll, slli

Shift right >> >>> Srl, srli
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori

Bit-by-bit XOR ^ ^ xor, xori
Bit-by-bit NOT ~ ~

Shift Logic Operation Examples

• Shift Left Logic: slli by i bits: multiplies by 2i

– C/java: int i = 23; int j = i<<1; //46
– RISC-V: If i is in x5, and j is stored in x6:

• slliw x6, x5, 1
• slliw: shift left logic immediate word

• Instruction name
– Carries the operand type it operates

• B: byte, H: half-word, W: word, D: double word

• Shift Right Logic
– Java: int i = 23; int j = i >>> 1; //j=11
– C: int i = 23; int j = i >> 1; //j=11
– RISC-V: if i is in x5, j will be in x6:

• srliw x6, x5, 1
– Fill in 0, not much used for signed

28

Shift Right Arithmetic

• Shift right arithmetic (srai): Format: srai(w) rd, rs, #immediate
– Shift right and fill with sign bit
– srai by i bits: divides by 2i

– Java: i=-105; int j=i>>1; //-53
– RISC-V: if i is in x5, j will be in x6:

• sraiw x6, x5, -1;

29

-105

-53

Summary of Shift Operations

• immed: how many positions to shift

• Shift left logical (sll): Format: slli(w) rd, rs, #immediate
– Shift left and fill with 0 bits
– slli by i bits: multiplies by 2i

– E.g. int a = b<<2; //a = b * 4 (22)

• Shift right logical (srl): Format: srli(w) rd, rs, #immediate
– Shift right and fill with 0 bits
– srli by i bits: divides by 2i (unsigned only)
– E.g. int a = b>>2; //a = b / 4 (22)

• Shift right arithmetic (sra): Format: srai(w) rd, rs, #immediate
– Shift right and fill with sign bit
– srai by i bits: divides by 2i

Instructions for AND, OR, XOR Operations

• Useful to mask bits in a word
– Select only some bits, clear others to 0

and x9,x10,x11

 or x9,x10,x11

 xor x9,x10,x12

More Examples

Using ONLY the add, sub and slli instruction to convert the
following C statement to the corresponding RISC-V assembly.
Assume that the variables f, g, and j are integers assigned to
registers t0, t1, and t2 respectively. You can use other
temporary registers such as t3, t4, t5, t6, etc.

f = g – j + f * 16;

32

sub t6, t1, t2 # t6 now has g – j
slli t5, t0, 4 # t5 now has f * 2
add t0, t5, t6 # t0 (f) now has the result.

More Examples

Using ONLY the add, sub and slli instruction to convert the
following C statement to the corresponding RISC-V assembly.
Assume that the variables f, g, and j are integers assigned to
registers t0, t1, and t2 respectively. You can use other
temporary registers such as t3, t4, t5, t6, etc.

f = g – j * 65 + f * 8; //Hint: 65 = 64 + 1

33

slli t4, t2, 6 # t4 now has j * 64
add t4, t4, t2 # t4 now has j * 65
slli t5, t0, 3 # t5 now has f * 8
sub t6, t1, t4 # t6 now has g – j*65
add t0, t5, t6 # t0 (f) now has the result.

Module 06 - Unit 1 Exercise 2 on Canvas

RISC-V Assembly Programming with add/sub/slli

34

RARS -- RISC-V Assembler and Runtime Simulator

• https://github.com/TheThirdOne/rars
– We will use to write and execute simple RISC-V assembly program

– Download the jar file and execute it directly

• https://github.com/TheThirdOne/rars/releases/download/v1.6/ra
rs1_6.jar

35

https://github.com/TheThirdOne/rars
https://github.com/TheThirdOne/rars/releases/download/v1.6/rars1_6.jar
https://github.com/TheThirdOne/rars/releases/download/v1.6/rars1_6.jar

Psuedo-instructions Used in RARS

• Are NOT machine instructions

• Are assembly instructions that help programmers
– Translated to machine instructions by assembler

• For example
– mv x6, x7 //move/copy value from x7 to x6

• Machine instruction: add x6, x7, x0 //since x0 is always 0
• Machine instruction: addi x6, x7, 0

– li x8, 100 //set the value of a register to be an immediate (load
immediate)
• Machine instruction: addi x8, x0, 100

– la x10, label //load address of label to register
• Need two machine instructions
– auipc x8, xxx
– addi x0, x0, xxx

36

Module 06 - Unit 1 Lab on Canvas

Converting a C “Hello World Program” to RISC-V assembly and
simulating their execution using RARS simulator

37

Module 06 - Unit 1 Review Quiz on Canvas

RISC-V Assembly Programming with add/sub/slli

38

