Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

Unit 1: Module Overview, Instruction Operations and
Operands

ITSC 2181 Introduction to Computer Systems
College of Computing and Informatics
Department of Computer Science

General
purpose
registe

Add

Hardware Components of a Computer

Southbridge g

Northbridge (with heatsink)

20-pin ATX Power
Connector

CPU Fan &
Heatsink
Mounting

% Connectors For
Points

Computer system

- - CPU
Arithmetig
:l tﬁc lRlIl Instruction register
(AL U) PC Program counter
PSRlIl Processor status register

memory (RAM)

W - o
kN
NH-P-:

One memory cell

PCI Slot (x5)

Inteqrated Peripherals

Modern Digital Computer

Processor Chip

CPU
Register Main
File Memory
(RAM)
|
cache memory
[|
: Memory Bus
1/0 Controller
1 1/0 Bus

S e S R
L B

Input and Output Devices

Memory Layout of a Program

* A program includes both code and variables
— In system: that becomes instructions and data, all are stored in memory

Code (machine instructions) [0 Text segment

Static variables [0 Data or BSS segment

Function variables O stack (i, A[100] and B)
— Ais avariable that stores memory address, the memory for A’s 100 int elements is in the stack
— Bis amemory address, it is stored in stack, but the memory B points to is in heap (100 int element

Dynamic aIIocT_ted me

168 <

368 </

ory using mlloc or C++ “n

INUX Frocess iviemory in

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

~ Random stack offset

Stack (grows down)
‘- RLIMIT_STACK (e.g.,

"5’.8{{?%‘%%%‘{’(46 space)

Stack size limit. If 8MB, “int

oxconoedoo = ”S”“E/ A[10,000,000]” won’t work.

8MB)

Modern Digital Computer

Processor Chip

CPU

Register
File

cache memory

1/0 Controller ‘

I:I_I_|_I 1/0 Bus

Main
Memory
(RAM)

Memory Bus

Input and Output Devices

Random mmap offset

Memory Mapping Segment

File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

U <

#include <stdio.h>

/static char *gonzo = “God’s own prototype”;
,static char *userName;

int main(int argc, char* argv[]){
int i; /* stack */
int A[100]; /* stack */

Heap

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.

Example: static char *gonzo = "“God’s own prototype”; start data
Text segment (ELF) end_code
Stores the binary image of the process (e.g., /bin/gonzo) x08048000

int *B =

for(i = 0; i < 100; i++) {

}
}

2]

"/ 3

(int*)malloc (sizeof (int) *100) ; //heap

A[i] = i*i;
B[i] = A[i] * 20;
printf (”“A[i]: %d, B[i]: %d\n",A[i], B[i]);

Levels of Program Code

* High-level language
— Level of abstraction closer to
problem domain

— Provides for productivity and
portability

® Machine-Level Code:

Instructions

— Textual representation of
binary machine instructions

— Interface between HW and SW
— Assembly language

* Hardware representation
— Binary digits (bits)
— Encoded instructions and data

High-level
language
program

(in C)

Assembly
language
program

(for RISC-V)

Binary machine
language
program

(for RISC-V)

swap(size_t v[], size_t k)
I

size_t temp;
temp = v[k];
vlk] = v[k+1];
vik+1] = temp;

]
J

swap:

s11i x6, x11, 3
add x6, x10, x6
1d x5, 0(x6)
1d x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

Instruction Set Architecture: The Interface
Between Hardware and Software

software ~

I

instruction set

hardware

* The words of a computer
language are called instructions,
and its vocabulary/dictionary is
called an instruction set

— lowest software interface,
assembly level, to the users or to
the compiler writer

Instruction Set Architecture — A
type of computers

High-level
language
program
(in C)

Assembly
language
program

(for RISC-V)

Binary machine
language
program

(for RISC-V)

swap(size_t v[], size_t k)
I

size_t temp;
temp = v[k];
vlk] = v[k+1];
v[k+1] = temp;

swap:
s11i x6, x11, 3
add x6, x10, x6

1d x5, 0(x6)
1d x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

Major Types of ISA (Computers)

* X86: Intel and AMD, Desktop, laptop, server market

ow laptop/server

N 4

* RISC-V: fast growing one, embedded so far S

* Power (mainly IBM) and SPARC (mainly Oracle and Fujitsu):
server market

Levels of Program Code to
Multiple Target Architectures

High-level swap(size_t v[], size_t k) I

language { — — '

program size_t temp;

(in C) temp = v[kl; Java C/C++ Python

vlk] = v[k+1];
v[k+1] = temp;

‘ ‘
@ Javac and el
CC/Clan
T 5 5

Assembly swap:

language s11i x6, x11, 3

program add x6, x10, x6

(for RISC-V) 1d x5, 0(x6)

1d x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

Assembler

Binary machine 00000000001101011001001100010011
language 00000000011001010000001100110011
program 00000000000000110011001010000011
(for RISC-V) 00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

X86 64 Assembly Example

Using “-S” compiler flag to translate high-level code to assembly instructions

yanyh@vm:~$ uname -a
Linux vm 4.4.0-170-generic #199-Ubuntu SMP Thu Nov 14 01:45:04 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

.file
| text
i .globl

. type
{ Swap:
1.LFBO:

:~$ gcc =S swap.cC
n:~$ cat swap.s

"swap.c"

swap
swap, @function

.cfi_startproc

] pushq

%rbp

.cfi_def_cfa_offset 16
.cfi_offset 6, -16

movq

%rsp, %rbp

¢ .cfi_def_cfa_register 6

mov(q

movl

mov 1
i cltq
¢ leaq
movq
addq
| mov 1
mov 1
| movl
{ C-l.tq
leaq
movq
¢ addq
mov 1
cltq
addq
leaq
movq

%rdi, -24(%rbp)
%esi, —28(%rbp)
—28(%rbp), %eax

0(,%rax,4), %rdx
-24(%rbp), %rax
%rdx, %rax
(%srax), %eax
%eax, —4(%rbp)
-28(%rbp), %eax

0(,%rax,4), %rdx
-24(%rbp), %rax
%rax, %rdx

-28(%rbp), %eax

$1, %rax
0(,%rax,4), %rcx
—24(%rbp), %rax

Assembly
language
program
(for RISC-V)

swap(size_t v[], size_t k)
|

size_t temp;
temp = v[kl;
vlk] = v[k+1];
vlk+1l] = temp;

Assembler

Binary machine 00000000001101011001001100010011

language
program
(for RISC-V)

https:

https:

00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

* X86_64 is ISA Architecture
for most Intel and AMD
desktop/server CPUs

®* RISC-V is one ISA
* ARM is another ISA

— Most cellphone/smartphone
are ARM CPUs

Try the highlighted command for swap.c from the terminal of

repl.it/languages/c

asslab.github.io/ITSC3181/exercises/swa

https://passlab.github.io/ITSC3181/exercises/swap/
https://repl.it/languages/c

X86_64 Assembly Example https://repl.it/languages/c

Disassembly a machine binary code to assembly instructions using “objdump”

High-level swap(size_t v[], size_t k) yanyh@vm:~$ gcc —-c swap.cC

language { yanyh@vm:~$ objdump -D swap.o

program size_t temp; :

(in C) temp = vLkl; swap.o: file format elf64-x86-64
vlk] = v[k+1]; ‘

vik+1l] = temp;

Disassembly of section .text:

|
: , 0000000000000000 <swap>:
Compiler S 0: 55 push %vbg

t 1: 48 89 e5 mov %rsp,%rbp
4: 48 89 7d e8 mov %rdi,-0x18(%rbp)
Assembly 8: 89 75 e4 mov %esi,—0x1c(%rbp)
———- b: 8b 45 e4 mov -0x1c(%rbp),%eax
program e: 48 98 cltq
(for RISC-V) 10: 48 8d 14 85 00 00 00 lea 0x0(,%rax,4) ,%rdx
17: 00
18: 48 8b 45 e8 mov -0x18(%rbp) ,%rax
1c: 48 01 do add %rdx,%rax
. 1f: 8b 00 mov (%rax) ,%eax
Dis sembly 21z 89 45 fc mov %eax,—0x4(%rbp)
24: 8b 45 e4 mov -0x1c(%rbp),%eax
273 48 98 cltq
<:E§§%E§EE> 29: 48 8d 14 85 00 00 00 lea 0x0(,%rax,4),%rdx
30: 00
31: 48 8b 45 e8 mov -0x18(%rbp) ,%rax
Bi 00000000001101011001001100010011 39 43 91, c2 add rax, Srix
Inary mac .
Iangu);ge 00000000011001010000001100110011 gg 22 gg =4 'gﬂq @x1c(%rbp) , %eax
program 00000000000000110011001010000011
(for RISC-V) 00000000100000110011001110000011 3d: 48 83 c0 01 add $0x1,%rax
00000000011100110011000000100011 41: 48 8d O0c 85 00 00 00 lea @x@(,%rax,4),9srcx
00000000010100110011010000100011 48: 00
00000000000000001000000001100111 49: 48 8b 45 e8 mov —0x18(%rbp),%rax

4d: 48 01 c8 add %rcx,%rax

O Ol NN T Tl ey B e

https://repl.it/languages/c

Exercise: Inspect ISA for sum

* Swap example
— https://passlab.github.io/ITSC3181/exercises/sum

* Check float sum(int N, float X[], float a)
TNt 23
— sum_x86_64.s, float result = 0.0;

for (1 = 0; 1 < N; ++1i)
result += a * X[1];

* Generate and execute } return results
— gCC-Ssum.c-o sum_x86_ 64.s
— gcc-csum.c
— objdum -D sum.o > sum_x86_64 objdump.txt

® Other system commands:

— cat /proc/cpuinfo to show the CPU and #cores

— top command to show system usage and memory
10

Compiler Explorer

* Explore other ISA assembly from Compiler Explorer at
https://godbolt.org/

C' @ godbolt.org

Use conan or vcpkg to manage your C & C++ library

=s EXPLORER \&\ blore \ depetidencles
C++ source #1 X O X | x86-64 gcc 9.2 (Editor #1, Compiler #1) C++ X
A~ BSave/load +Addnew..> V¥ Vim S Cpplnsights C++ v x86-64 gcc 9.2 v @& Compiler options...
" SENESEN T AR SRRy S A~ [0O1010 O./a.out M.LX0: Olibf: Mtext M/ O\s+ E
2 int square(int num) {
3 return num * num; 1 square(int):
4 } B 2 push rbp
3 mov rbp, rsp
4 mov DWORD PTR [rbp-4], edi
5 mov eax, DWORD PTR [rbp-4]
6 imul eax, eax
7 pop rbp
8 retI

11

https://godbolt.org/

Module 06 - Unit 1 Exercise 1 on Canvas

Compiling a C program to produce its assembly output
Using gcc and compiler explorer to output and study the

assembly output of bubble.c program

12

Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

Relevant course level outcome:

* Explain the instruction set architecture of a computer system and how an
instruction is represented at the machine level and symbolic assembler
level.

* Use assembly instructions to write simple program to understand the core
concepts of ISA and assembly programming.

* Be able to map major high-level language statements into
assembly/machine language notations.

* At the end of this module, students should be able to:

1. explain what aninstruction set architecture (ISA) is and recognize existing
ISAilused in the computer industry (x86, ARM, RISC-V, etc) and their CPU
vendors;

2. explain how ISA is used for creating and executing a program (e.g. program
in high-level language is translated into assembly and assembly program is
assembled into binary);

3. enumerate and explain the three major classes of instructions in most
RISC ISA: arithmetic-logic instructions, memory access instructions, and
control transfer instructions;

. . .o . . . 13
4. use arithmetic and logic instructions, memory access instructions, and

Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

" Unit 1: Module overview, Instruction Set Architecture (ISA) and
assembly programs, registers, instruction operations and operands,
register and immediate operands, arithmetic and logic instructions

® Unit 2: Memory operands and memory access instructions

® Unit 3: Conditional control and instructions for making Decisions
(if-else) and loops

® Unit 4: Supporting Functions and procedures

® Unit 5: Sort examples and comparison with other ISAs

® Materials are developed based on textbook:

— Computer Organization and Design RISC-V Edition: The
Hardware/Software Interface, Amazon

— RISC-V Specification: https://riscv.org/technical/specifications/
— ITSC 3181: https://passlab.github.io/ITSC3181

14

https://www.amazon.com/Computer-Organization-Design-RISC-V-Architecture/dp/0128122757
https://riscv.org/technical/specifications/
https://passlab.github.io/ITSC3181/

The RISC-V Instruction Set

* Used as the example throughout the book
— We will use and study only three classes of instructions for a handful of ins
— Sufficient for most programs.

* Developed at UC Berkeley as open ISA
* Now managed by the RISC-V Foundation (riscv.org)

* Typical of many modern ISAs
— See RISC-V Reference Data Card

* Similar ISAs have a large share of embedded core market
— Applications in consumer electronics, network/storage, cameras, printers, ...

* Other Instruction Set Architectures:
— X86 and X86_32: Intel and AMD, main-stream desktop/laptop/server
— ARM: smart phone/pad
— RISC-V: emerging and free ISA, closer to MIPS than other ISAs
* The same textbook in RISC-V version
— Others: Power, SPARC, etc

15

RISC-V Base Integer Instructions

Description

Note

R[rd] = R[rs1] + R[rs2]
R[rd] = R[rs1] - R[rs2]
R[rd] = R[rs1] " R[rs2]
R[rd] = R[rs1] | R[rs2]
R[rd] = R[rs1] & R[rs2]
R[rd] = R[rs1] << R[rs2]
R[rd] = R[rs1] >> R[rs2]
R[rd] = R[rs1] >> R[rs2]
R[rd] = (rsl < rs2)?1:0

sign-extends

R[rd] = R[rs1] + SE(imm)
R[rd] = R[rs1] " SE(imm)
R[rd] = R[rs1] | SE(imm)
R[rd] = R[rs1] & SE(imm)
R[rd] = R[rs1] << imm[4:0]
R[rd] = R[rs1] >> imm[4:0]
R[rd] = R[rs1] >> imm[4:0]

sign-extends

R[rd] = M[R[rs1]+SE(imm)]
MI[R[rs1]+SE({mm)] = R[rs2]

if(rs1 == rs2)
PC += SE(imm) << 1

if(rs1 != rs2)
PC += SE(imm) << 1

if(rs1 < rs2)
PC += SE(imm) <<1

if(rs1 >= rs2)
PC += SE(imm) <<1

R[rd] = PC+4;
PC += SE(imm) <<1
R[rd] = PC+4;

PC = R[rs1]+ SE(imm)

R[rd] = SE(imm) << 12
R[rd] = PC + (SE(imm) << 12)

Inst Name

add ADD

sub SUB

xor XOR

or OR

and AND

sll Shift Left Logical

srl Shift Right Logical
sra Shift Right Arith*

slt Set Less Than

addi ADD Immediate

xori XOR Immediate

ori OR Immediate

andi AND Immediate

slli Shift Left Logical Imm
srli Shift Right Logical Imm
srai Shift Right Arith Imm
1w Load Word

SW Store Word

beq Branch ==

bne Branch !=

blt Branch <

bge Branch >=

jal Jump And Link

jalr Jump And Link Reg
lui Load Upper Imm
auipc | Add Upper Imm to PC
csrrw | CSR read & write
csrrs | CSR read & set

csrrc CSR read & clear
ecall | Environment Call
ebreak | Environment Break

R[rd] = CSRs[csr];
CSRs[csr] = R[rs1]

R[rd] = CSRs[csrl;
CSRs[csr] = CSRs[csr] | R[rs1]

R[rd] = CSRslcsr];
CSRs[csr] =
CSRs[csr] & ~R[rs1]

Transfer control to OS
Transfer control to debugger

_ Registers

Register | Name Description Saver
X0 zero Zero constant —
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5-x7 to-t2 Temporaries Caller
x8 s@ / fp | Saved / frame pointer | Callee
X9 s1 Saved register Callee
x10-x11 | a@-a1l Fn args/return values | Caller
x12-x17 | a2-a7 Fn args Caller
x18-x27 | s2-s11 Saved registers Callee
x28-x30 | t3-t5 Temporaries Caller
X3-| oo ESTRIRTN, 1. RIS . FESSERRER ee n_11-3r—
Memory Allocation
SP — OxFFFF FFFO Stack
1
T
Dynamic Data
0x1000 0000 Static Data
PC — 0x0040 0000 Text
Reserved

16

Mapping High-Level Program to Instructions:

Operands and Instructions

< C' & godbolt.org
= EXPLORER Add...¥ More~ Templates Che
C source #1 & X O X RISC-V (64-bits) gcc (trunk) (Editor #1) # X
A~ @ +- v @c ¥ | RISC-V (64-bits) gcc (trunk) ¥ (2
1l int sum(int N, int X[], int a) { == 0 A- @output.~ YFilter..~ B Librar
2 ‘ Int 4 .
3 int result = 0.0; ; e addi S
4 for (1 = 0; 1 < N; ++1i) 5 ed rla),4§;sp)
5 result += a * X[i]; & . 50’32(sp)
6 return result; r 5 addi solsp 5
. “ . d } . 6 mv a5,al
* Variables [] “memory” locations as we learned so far 7 sd al,-48(s0)
. . 8 mv a4,a2
— Are mapped to operands of instructions . - e
— Three kinds of operands: b BY a:'ajo(.
° RegISter 12 sw zero,-24(s0)
* Immediate (constant) e i PR
* Memory location 15 .L3:
. | 16 1w a5,-20(s0)
* QOperations: +/-/& etc, if-else, for loop 17 s11i a5,a5,2
. 18 1d a4,-48(s0)
— Are mapped to Instructions that use operands 19 add as5,ad,as
— Three kinds of instructions: i SO
* Compute: +, -, &, etc 22 mit bt
* Move data: between memory and registers >)
* Control: if-else, for loop 25 addv a5,a4,as

N
N

T alk _24f(<0)

We Will Study: Three Kinds of Operands and
Three Classes of Instructions

® General form:

— <op word> <dest operand> <src operand 1> <src operand 2>
— E.g.: add x5, x3, x4, which performs [x5] = [x3] + [x4]

Three Kinds of Operands
1. Register operands, e.g., x0 — x31
2. Immediate operands, e.g., 0, -10, etc
3. Memory operands, e.g. 16(x4)

Three Classes of Instructions

1. Arithmetic-logic instructions
* add, sub, addi, and, or, shift left|right, etc

2. Memory load and store instructions
* lw and sw: Load/store word
* |d and sd: Load/store doubleword

3. Control transfer instructions (changing sequence of instruction execution)
* Conditional branch: bne, beq
* Unconditional jump: j (
* Procedure call and return: jal and jr 18

Registers in CPU and Register Operands of Instructions

* Registers are super-fast small memory/storage used in CPU.
— General-purpose registers, program counter, instruction register,
status register, floating-point register, etc
— 32 GP Registers in RISC-V CPU, 32-bit or 64-bit size for each

® Data and instructions need to be loaded to memory and
then register ‘g oo ~=*~ =~ =wmmnnmn r

Computer system

z > CPU
Arithmeti¢
Logic t— Instruction register
s IR0 |

(ALU) PC 1% — Program counter

a— Processor status register
Y

memory (RAM) |

A\

One memory cell 19

i

1

&
Q

Registers vs. Memory

* Registers are faster to access than memory
— ~100x faster, ~10 more expensive, and takes more space

® Operating on memory data requires loads and stores
— More instructions to be executed

ll')ggllste Computer system

Arithmeti¢
Logic He— Instruction register
Unit | %
(ALU)) Program counter ‘
e Processor status register
Add PGS “ 1 _
o memory (RAM)

One memory cell

Register Operands

® Arithmetic instructions use register operands
— add <dest>, <src1>, <src2>

® 64-bit RISC-V has 32 64-bit general purpose registers

— The storage for all GP registers is called a register file

b
N

* It is storage, i.e. to store data

— Use for frequently accessed data

— Numbered x0 to x31

* the “memory address” for register

= LA A A A R A R
Ol VN[O W N+ O

R]
- ol
-

— 64-bit data is called a "doubleword”

— 32-bit data called a “word”

N A R N A A Y
Ol o|N||O| | W N

L AR AR A R A R R R R R R R R R R
NININ
WIN| =

)
=

AR AR
NN
~N| oo,

® Design Principle: Smaller is faster

NN
0|0

— c.f. main memory: millions of locations

HEAEAES
i wlw
=]

1

RISC-V 32 64-Bit Registers, x0 to x31

* Usage convention for most programs: z -

— XO0: the constant value 0 =

=
— x1: return address of a function o
— X2: stack pointer of a functon 1?
— x3: global pointer i
— x4: thread pointer e
— x5—x7, x28 — x31: temporaries ¥i7
— x8: frame pointer 5
— X9, x18 — x27: saved registers gz
— %10 —x11: function arguments/results =
— x12 —x17: function arguments =

x27

=

=

~rw v

Arithmetic Operations (of the First Class Instrs)

® Add and subtract, three operands

— Two source operands: provide input or source data
— One destination operand: where result goes to.

add a, b, c //sum of b and ¢ is placed in a

® All arithmetic operations have this form
— Three operands, two sources and one destination

(zeneral

— 3-operands instructions Peabon Computer system

—= = CPU |
= [Arithmetiq

togic NINIRL o [}
=| (ALU) PC| 1 [f-

PSR[__ 0 |

— — —

® Design Principle: Simplicity favors regularit s« ATV (RAM)

£ 0 0
1 4
R'egul:c\r.lty makes |m.plementat|on simpler 2L &
— Simplicity enables higher performance at lo\

One memory cell

Register Operand Example

®* Ccode:

f=(g+h)-(1+3);

— f, ..., jvalues are already loaded in x19, x20, ..., x23

* Compiled RISC-V code, all are register operands

— Three operands: the first operand is destination, last two are
source operands

add x5, x20, x21 // [x5] = [x20] + [x21]
add x6, x22, x23 // [x6] = [x22] + [x23]
sub x19, x5, x6 // [x19] = [x5] - [x6]

— [x5]: the actual data 1in register x5

Constant or Immediate Operands

int a += 4; ifaisinregister x22

® Constant data specified in an instruction

addi x22, x22, 4

instructions that take immediate operands ends with letter i

* No subtract immediate instruction

— Just use a negative constant
addi x2, x1, -1

® Design Principle: Make the common case fast
— Small constants are common
— Immediate operand avoids a load instruction

25

The Constant Zero

* RISC-V register x0 is the constant O always
— Cannot be overwritten

* Useful for common operations

— E.g., move between registers, e.g. a=b;
add x9, x5, xO0
add1i x9, x5, 0

— E.g. initialization such as i =0; j=-100;
e addi x9, x0, 0
e addi x11, x0, -100

26

Instructions for Logical Operations

* |nstructions for bitwise manipulation

Operation C Java RISC-V

Shift left << << S11, slli
Shift right >> >>> Srl, srli
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, oril
Bit-by-bit XOR A A X0r, Xxoril
Bit-by-bit NOT ~ ~

« Useful for extracting and inserting
groups of bits in a word

27

Shift Logic Operation Examples

* Shift Left Logic: S11i by i bits: multiplies by 2
— C/java:inti=23;intj=i<<1; //46
— RISC-V: Ifiisin x5, and j is stored in x6:

. ojo|o|1lfo|1|1]|1

e slliw x6, x5, 1

* slliw: shift left logic immediate word ///////
olo|l1|o|1|1]1]0O

® |Instruction name

— Carries the operand type it operates
* B: byte, H: half-word, W: word, D: double word

7 6 54 3 2 10

Logical left shift one bit =

* Shift Right Logic 76543210
— Java:inti=23;intj=i>>>1;//j=11 0|0JO|1|0f1f1]1
— C:inti=23;intj=i>>1;//j=11 \\\\\\
— RISC-V:ifiisin x5, jwill be in x6:

e srliw x6, x5, 1 o> oflofofof1fof1]1

— Fill in 0, not much used for signed Logical right shift one bit =
28

Shift Right Arithmetic

* Shift right arithmetic (srai): Format: srai(w) rd, rs, #immediate

— Shift right and fill with sign bit

— srai by bits: divides by 2’

— Java: i=-105; int j=i>>1; //-53

— RISC-V:ifiisin x5, j will be in x6:
* sraiw x6, x5, -1;

INAARNNY

-105

29

Summary of Shift Operations

* immed: how many positions to shift

* Shift left logical (sll): Format: slli(w) rd, rs, #immediate
— Shift left and fill with O bits
— s11i by bits: multiplies by 2
— E.g.inta=b<<2;//a=b*4(2?)

* Shift right logical (srl): Format: srli(w) rd, rs, #immediate
— Shift right and fill with 0 bits
— srli by bits: divides by 2’ (unsigned only)
— E.g.inta=b>>2; //a=b /4 (2%

* Shift right arithmetic (sra): Format: srai(w) rd, rs, #immediate
— Shift right and fill with sign bit
— Sral by bits: divides by 2’

Instructions for AND, OR, XOR Operations

* Useful to mask bits in a word
— Select only some bits, clear othersto 0

and x9,x10,x11
or x9,x10,x11

xor x9,x10,x12

More Examples

Using ONLY the add, sub and slli instruction to convert the
following C statement to the corresponding RISC-V assembly.
Assume that the variables £, g, and j are integers assigned to
registers t0, t1, and t2 respectively. You can use other
temporary registers such as t3, t4, t5, to,etc.

f =g -3+ f * 16;

sub t6, t1,t2 #t6b now has g —]
slli t5, t0, 4 #t5 now has f * 2
add t0, t5, t6 # t0 (f) now has the result.

32

More Examples

Using ONLY the add, sub and slli instruction to convert the
following C statement to the corresponding RISC-V assembly.
Assume that the variables £, g, and j are integers assigned to
registers t0, t1, and t2 respectively. You can use other
temporary registers such as t3, t4, t5, to,etc.

f =g -3 * 65+ £ * 8; //Hint: 65 64 + 1

slh t4,t2, 6 # t4 now has j * 64

add t4, t4, t2 # t4 now has j * 65

slli t5, t0, 3 #t5 now has f * &

sub t6, t1,t4 # t6 now has g —j*65

add t0, t5, t6 # t0 (f) now has the result.

33

Module 06 - Unit 1 Exercise 2 on Canvas

RISC-V Assembly Programming with add/sub/slli

34

RARS -- RISC-V Assembler and Runtime Simulator

* https://github.com/TheThirdOne/rars

— We will use to write and execute simple RISC-V assembly program
— Download the jar file and execute it directly
* https://github.com/TheThirdOne/rars/releases/download/v1.6/r

[Jpri 341320917: ji T/hsperfdata_yanyh/riscvi.asm - RARS 1.6

] L4 [)
rS 6 Ia r File Edit Run Settings Tools Help
.

IIEE[®[®Y ¢ R EAZ (X000 ed e

Run speed at max (no interaction)

Edit Execute N Registers Floating Point »
Name Number Value
Text Segment Labels s 9 ISP
E Label Address A ra 1 0x0000000
Program Arguments: Caigidi a 3 oononua
Bkpt Address Code Basic Source main 0x00400000 ap 3 0x10608000
0x00400000 0x03c00293 addi X5,x0, 0x0000003C 5% 1 t0, 60 . tp 4 0x00600000
0x00400004 0x00000313 addi x6,x0,0 6: utl, 0 Tiscvi-asm 0 5 000000032
0x00400008 0x00530313 addi X6,X6,5 8: addi t1, t1, 5 loop 0x00400008 t1 6 0x00000032
0x0040000C Oxfff28293 addi x5,x5,Oxfffffff 9: addi to, t, -1 failure 0x00400018 © 7 0x00000000
0x00400010 oxfes31ce3 bne x6,x5,0xfFI{f{8 10: bne t1, te, loop success, 0x00400024 o 8 0x00000000
0x00400014 0x00031863 bne x6,x@, 0x00000010 113 bne t1, zero, success s1 9 0x00000000
0x00400018 0x00000513 addi x10,x0,0 13: 1 a0, 0 a0 10 0x0000002a
c addi x17,x0 14: 1i a7, 93 al 11 0x00000000
0x00400020 000000073 ecall R ecall a2 12 0x00000000
0x00400024 0x02a00513 addi x10,x0,0x0000002a 18: 1i a0, 42 a3 13 0x00000000
addi x17,x0 19: 1 a7, 93 ag }g gxggzgggg:
0040002¢ 0x00000073 ecall 20: ecall a X
” " a6 16 0x00000000
a7 17 0x0000005d
s2 18 0x00000000
v Data v Text s3 19 0x00000000
s4 20 0x00000000
s5 21 0x00000000
® Data Segment 6 22 0x00000000
Address Value (+0) Value (+4) Value (+8) Value (+0) Value (+10) Value (+14) Value (+18) Value (+10) A e o et
2x19010000 s9 25 0x00000000
ox10a10020 s10 26 0x00000000
9x100106.10 s11 27 0x0P000000
g:}gg}gggg 3 28 0x00000000
t4 29 0x00000000
0x10010020 0x00000000 0x00000000 e = EGaEE
0x100100c0 0x00000000[0x00000000] © 5 e
e pc 000400030
0x10010120
0x10010140
0x10010160
0x10010180
0x10010120
21001010

€ D 0x10010000 (.data) Hexadecimal Addresses Hexadecimal Values ASCII

Messages Run /O

— program is finished running (42) — 3 5

Reset: reset completed.

Clear

program is finished running (42) —

https://github.com/TheThirdOne/rars
https://github.com/TheThirdOne/rars/releases/download/v1.6/rars1_6.jar
https://github.com/TheThirdOne/rars/releases/download/v1.6/rars1_6.jar

Psuedo-instructions Used in RARS

® Are NOT machine instructions

® Are assembly instructions that help programmers
— Translated to machine instructions by assembler

® For example
— mv x6, x7 //move/copy value from x7 to x6
e Machine instruction: add x6, x7, x0 //since x0 is always 0
* Machine instruction: addi x6, x7, 0

— i x8, 100 //set the value of a register to be an immediate (load
immediate)

* Machine instruction: addi x8, x0, 100
— lax10, label //load address of label to register

e Need two machine instructions
— auipc x8, xxx
— addi x0, x0, xxx

36

Module 06 - Unit 1 Lab on Canvas

Converting a C “Hello World Program” to RISC-V assembly and
simulating their execution using RARS simulator

37

Module 06 - Unit 1 Review Quiz on Canvas

RISC-V Assembly Programming with add/sub/slli

38

