
ITCS 2116: C Programming - 1

Getting Started in C

ITCS 2116: C Programming
College of Computing and Informatics
Department of Computer Science

ITCS 2116: C Programming - 2

Outline

• C Overview
• Software Tools
• Course Goals
• Programming Languages
• Common Platform
• Sample Program

ITCS 2116: C Programming - 3

Why C?

• Developed to build Unix operating system
• Main design considerations:

– Compiler size: needed to run on PDP-11 with 24KB of memory (Algol60 was too
big to fit)

– Code size: needed to implement the whole OS and applications with little
memory

– Performance
– Portability

• Little consideration (if any) to the following:
– Security, robustness, maintainability
– Legacy Code

ITCS 2116: C Programming - 4

Why C? (cont’d)

• Simple to write compiler
– Programming embedded systems, often only have a C compiler

• Performance
– Typically 50x faster than interpreted Java

• Smaller, simpler, lots of experience
• One of the most popular programming languages

– For the latest numbers, see https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

ITCS 2116: C Programming - 5

What’s Your Priority?
Priority Language Choices
Speed of execution, minimum memory
“footprint”

Assembly, C

Safer, easier to develop large (hundreds of
files) programs

Java, C++

Easier / faster to code, higher level
operations, richer libraries

Python, Ruby, PHP,
Perl

Integrate with the web Web application
frameworks,
Javascript

ITCS 2116: C Programming - 6

C Strengths

• It’s a procedural language (like many others

• It’s efficient (binary code size, execution speed)

• Simple, clean language design

• C99 is a international standard

• It has a decent standard library of useful functions

ITCS 2116: C Programming - 7

Examples of C or C++

• Linux: Assembly, C
• MS Windows: Assembly, C, C++
• Firefox Web Browser: C++, Javascript
• Gnu Compiler (GCC): C
• MySQL: C, C++
• Embedded Systems (cars, appliances, etc.)
• High performance (science/engineering) applications

ITCS 2116: C Programming - 8

C Weaknesses

• Little consideration for security or safety

• Less modular than Java and other OO languages (but C++ fixes
that)

• More programming effort required than PHP/Python/Perl/Ruby
and other scripting languages

• Not usually written in C or C++: web apps, business apps, GUIs,
simple utility programs

ITCS 2116: C Programming - 9

Software Tools

• Help produce programs…
– Quickly
– Of high quality
– More reliably
– In large teams of programmers

• Examples of tools
– Compilers, code formatters / indenters, debuggers, test generators,

performance profilers, version control management, dependency checking,
documentation generation, static analysis, …

• Often these are bundled in an IDE
– Eclipse, Visual Studio, …

ITCS 2116: C Programming - 10

Some Standard Goals

• Understand syntax and semantics of C and how to use
• Be able to write small- to medium-sized C programs
• Understand differences between compiling and interpreting
• Know how to avoid, find, and fix programming bugs in C
• Know how to dynamically allocate/free memory
• Know how to use header files and the C preprocessor

ITCS 2116: C Programming - 11

Some Standard Goals (cont’d)

• Be familiar with and know how to use standard library functions
• Use command-line tools to design, compile, document, debug, improve,

and maintain programs
• Know how to automate dependence checking / building an executable /

common programming tasks
• Know how to use common tools to write programs as part of a team

ITCS 2116: C Programming - 12

Other Goals

• Will this course make me…
üa better programmer?
üa better computer scientist?
ümore marketable?
?wealthy, successful, famous?
? a better person?

ITCS 2116: C Programming - 13

Types of Programming Languages

• Declarative: focus on what the computer should do
– Functional: Scheme, Haskell
– Dataflow
– Logic- or constraint-based: Prolog
– Markup languages: HTML, CSS, subset of SQL

• Imperative: focus on how the computer should do something
– Procedural : C
– Object-oriented : Java

ITCS 2116: C Programming - 14

Procedural vs. Object-Oriented

• Procedural: programming as procedures that modify variables
– Emphasis on actions that must take place
– Analogy: following a recipe

• Object-Oriented: programming as objects that interact (each
with internal state, and methods to manage that state)
– Emphasis on the state of objects
– Analogy: operating a car

ITCS 2116: C Programming - 15

Getting Started….

ITCS 2116: C Programming - 16

Common Platform for This Course

• Different platforms have different conventions for end of line,
end of file, tabs, compiler output, …

• Solution (for this class): compile and run all programs
consistently on one platform

• Our common platform:
– Replit (repl.it)

https://replit.com/

ITCS 2116: C Programming - 17

Your Choices

• Use ReplIt (repl.it), a web-based virtual computing
environment (https://replit.com/)

• Use a CCI Lab Computer
• Use Mac OS X (Xcode + developer tools)
• Use MS Windows + cygwin or Visual Studio
• Use Linux on your PC (dual boot or virtualized)

ITCS 2116: C Programming - 18

Common Platform Questions

• If you want to develop locally, that’s fine, but you must ensure
that it works on the Common Platform
– You should always test on the Common Platform before submitting
– The Instructional Assistants will use the common platform to grade

your work
– No, really, you should test on the Common Platform

ITCS 2116: C Programming - 19

Common Platform Questions

– There are differences between the C compilers for different
architectures that may cause your program (that runs locally) to fail
on the Common Platform

– C is not architecture neutral!

ITCS 2116: C Programming - 20

Your First C Program
#include <stdio.h>

int main(void)
{

printf(“Hello, world!\n”);
return 0;

}

File with
library function

declarations

Entry point of the
program, with no

arguments

Standard library
function, with message

argument
Exit program and

indicate successful
completion

% gcc –Wall –std=c99 hello.c –o hello

Command to compile
program code into

an executable

ITCS 2116: C Programming - 21

Compiling and Running the Program

ITCS 2116: C Programming - 22

A Sample Program (For Illustration)
Specification:

1. Two line segments are created
2. The user is asked to enter the left and right edges of the two line segments, as

integer values
3. The length of each segment is computed as

(right edge – left edge)
4. The two lengths are compared to determine if they are the same, and a

message is displayed

4 6 8 10 12 14 16

length= 9-4 = 5 length= 19-12 = 7

ITCS 2116: C Programming - 23

Compiling and Running the Program

ITCS 2116: C Programming - 24

Sample C Program (part 1)

• The following slides show sample program code to implement
a solution to the problem described earlier.

• We will study each of the elements used in the C code
throughout the term.

• By the end of the term you will be able to write programs such
as the one used in this example.

ITCS 2116: C Programming - 25

Sample C Program (part 2)
#include <stdio.h>
#include <stdlib.h>

static int compute_length (int, int);

int main (void)
{

typedef struct {
int left;
int right;
int length;

} seg_t;

seg_t *seg1, *seg2;

library function
definitions

data structure
definition

declaration of
references to

data structure instances

main routine, procedure #1

ITCS 2116: C Programming - 26

Sample C Program (part 3)
seg1 = (seg_t *) malloc (sizeof (seg_t));
seg2 = (seg_t *) malloc (sizeof (seg_t));

printf ("Enter left edge of segment 1: ");
scanf ("%d", &(seg1->left));
printf ("Enter right edge of segment 1:");
scanf ("%d", &(seg1->right));
printf ("Enter left edge of segment 2: ");
scanf ("%d", &(seg2->left));
printf ("Enter right edge of segment 2:");
scanf ("%d", &(seg2->right));

seg1->length = computelength (seg1->left,
seg1->right);

seg2->length = computelength (seg2->left,
seg2->right);

create instances of data structure,
and associate with references

input / output, store
result in data structure

call a subroutine, store
result in data structure

ITCS 2116: C Programming - 27

Sample C Program (part 4)
if (seg1->length == seg2->length)
printf("Segment lengths are equal\n");

else
printf("Segment lengths are NOT equal\n");

return 0;
}

int compute_length (int left, int right)
{

return (right-left);
}

subroutine, procedure #2

