C Fundamentals and Console |/0O

ITCS 2116: C Programming

College of Computing and Informatics
Department of Computer Science

ITCS 2116: C Programming - 1 n CHARLOTTE

Outline

e C Coding Style

* Platform Independence?
 C Compilation Steps

* gcc

(99 and C89

* Consolel/O

* Streams
 Character 1/O
* printf

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 2

C Coding Style (Conventions)

* Universal agreement
1. clarity and consistency are very important
2. indentation, white space, and comments helpful
3. consistent naming conventions helpful

* See the Style Guidelines for ITCS 2116 in Canvas

* Tools (intelligent editors, indent, etc.) will take care of much
formatting for you.

ITCS 2116: C Programming - 3 n CHARLOTTE

Does it Matter?

Consider the following entries from the International Obfuscated

C Code (IOCC) Contest...

ob-fus-cate: render obscure, unclear, or
unintelligible: the spelling changes will
deform some familiar words and obfuscate
their etymological origins.

ITCS 2116: C Programming - 4

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

#include\
<stdio.h>
#include <stdlib.h>
#include <string.h>

#define w "Hk~HdA=Jk | Jk~LSyL[{M[wMcxNksNss:"
#define r"HtQH|Q@=HdJHtJHdYHtY:HtFHtF=JDBI1"\
"DJTEJDFI1MI1M: HAMHAM=TI | KI1MJTOJDOI1WITY:8Y"
#define S"ITQRI\\@=HdHHtGH|KILJJDIJDH:H|KID"\
"K=HdQHtPH | TIDRJDRJDQ: JC?JK?=JDRJLRI |UItU: 8T"
#define (i,j)L[i=2*T[j,0[i=O[j-R[j,T[i=2*\
R[j-5*T[j+4*O[j-L[j, R[i=3*T[j-R[j-3*O[j+L[],
#define t"IS?I\\@=HdGHtGIDJILIJDIItHJTFJDF:8J"

#define y vy (4) ,yy (5), yy (6) ,yy (7)
#define yy(i)R[i]=T[i],T[i] =0[i],O0[i]=L [i]

#define Y (O 1, 41)_ (11, 51)_ (2 1, 61)_ (31, 7]) =1 f] . f]

#define v (i) (((R[i]* _ +T[i])* +0[i])* +L[i]) *2 W atISt e
double b =32 ,1 ,k ,0 ,B, ;intQ ,s ,V , R [8], T[8] ,0 [8], L[8] ; .
#define g(Q,R) R= *X ++ % 64 *8 ,R |= *X /8 &7 ,Q=*X++%8,0=0*64+*X++%64-256, -f r]

define p "G\ \QG\ \ P=GLPGTPGAMGANGtOG1OG" "dSGARGDPGLPG\ \LG\\LHtGHtH: " pu rpose O t IS
define W "Hs?H{?=HdGH | FI\\II\\GJ1HJ" "1FL\\DLTCM1AM\\@Ns}Nk| : 8G" :)

define U "EDGEDH=EtCEl1DH{~H|AJk}" "Jk?LSzL[|[M[wMcxNksNst:"

define u "Hs?H| @=HdFHtEI" "\\HI\\FJLHJTD: 8H" prOg ral I I .

char * x X, (i) 640],z[3]="4_",

*Z = "4,804.804G" r U "4M"u S"4R"u t"4S8CHADH|E=HtAIDAItQRI1AJTCJIDCI1KI\\K:8K"U
"ATDAWDAW=D\ \UD\ \VF\ \FFAHGtCGtEIDBIDDI1BIdDJTRJILC: 8D" t"4UGDNG\ \L=GDJGLKHL\

FHLGHtEHtE:"p"4ZFDTFLT=G|EG1HITBH|DIlDIdE:HtMH|M=JDBJLDKLAKDALDFKtFKdMK\

\\LJTOJ\ \NJTMJITM: 8M4aGtFGlG=G|HG|H:G\\IG\\J=G|IG|I:GAKG1lL=G|JG|J:4b"W

S"4d"W t t"4g"r w"4iGlIG1lK=G|JG|J:4kH1@Ht@=HADHtCHAJPH | P:HdDHdD=It\

BI1DJTEJDFIANI\\N:8N"w"41lID@RIL@=H1IH|FH1PH|NHt*H|”:H|MH|N=J\\D\

J\\GK\ \OKTOKDXJtXItZI|YI1WI|V:844mHLGH\\G=HLVH\\V:4n" u t t

"4p"W"IT@I\\@=HdHHtGIDKILIJLGJLG:JK?JK?=JDGJLGI|MJDL:8M4\

rHtQH|@=HtDH|BJALJTH: ITEI\\E=ILPILNNtCN1B:8N4t"W t"4u"

p"4zI[?I1@=H1HH|HIDLILIJDII |HKDAJ|A:JtCItC=JdLJtJIL\

THLAFNk | Nc| \

:8K"; main (

int C,char** A) {for(x=A[l1l],i=calloc(strlen(x)+2,163840) ;
C-1;C<3?0=_= 0, (z[1l]=*x++)? ((*x++==104?2[1]*=32:--x), X =
strstr(z,z)) && (X+=C++) : (printf ("P2 %4 320 4 ",V=b/2+32),
V*=2,s=0=0,C =4) :C<4?Q-->0?i[(int) ((1+=0)+b)] [(int) (k+=B)

1=1:_?_-=.5/ 256,0=(v(2)-(1=v(0)))/(Q=16) ,B=(v(3) - (k=v (1)
))/Q:*X>60?y (I(L[4],L[5])q(L[6],L[7])*X-61]|]| (++X,y,¥,Y) ,
Y:*X>57?2++4X, y,Y¥:*X >54?++X,b+=*X++%64*4:--C:printf ("%d "
(A10QI[s1+i[Q 1[s+1]+i[Q+1] [s]+i[Q+1] [s+1]) &&(Q+=2)<V]]| (Q=
0,s+=2)<640

ITCS 2116: C Programi | IU(C=1)) 7 nCHARLOTTE

/* 02
#include <time.h>
#include/* _ ,0*/ <stdlib.h>
#define c(C)/* - . */return (C); /* 2004*/
#include <stdio.h>/*. Moekan wu “\b-"' x/
typedef/* */char p;p* u ,W [9
1[128] ,*v;typedef int ; R,i,N,I,A ,m,0,e
[9], al[256],k [9], n[- 256] ;FILE*f ;. x (_K,_r
- R for (; r< q ; K =
OxfEEEEE) & (K>>8)) A n[255 &
Aaf[o + r ++ 1)1) ;¢ (K
)} _E (p*r, p*q){ c(£ =
fopen (r ,9))}_ B(_ g){c(fseek (£, 0
,d))}_D(){c(£fclose(f))}_ C(p *q) {c(0- puts(q))Y _/* /
*/main(_ t,p**z) {if (t<4)c(c("<in" "file>" "\40<1" "a" "yout> "
/*b9213272%/"<outfile>"))u=0;i=I=(E(z[1],"rb")) ?B(2)20 : (((o =ftell
(£))>=8)?(u =(p*)malloc(o))?B(0)?0:!fread(u,o0,1,£):0:0)?0: D():0 ;if(

tu)c(C(" bad\40input ")) ;if(E(z[2],"rb")) {for (N=-1;256> i;n[i++] =-1)al
i]=0; for (i=I=0; i<o&& (R =fgetc(£))>-1;i++)++a[R] ? (R==N)?(++I>7)?(n[
N]+1)?20: (n [N]=i-7) :0: (N=R) | (I=1) :0;A =-1;N=o+1;for(i=33;i<127;i++
) (n[i 1+ 1&&N>a[i])? N= a [A=i] :0;B(i=I=0) ;if (A+1) for (N=n[A];
I< 8&& (R =fgetc(f))> -l&& i <o ;it++) (i<N| |i>N+7) ? (R==A) ? ((*w[I
1 =u [i])?1l: (*w[I]= 46))?(a [I++]=i) :0:0:0;D() ; }if (I<1l)c(C(
" bad\40la" "yout ")) for(i =0;256>(R= i) ;n[i++]=R) for (A=8;
A >0;A --) R = ((R&l)==0) ? (unsigned int)R>>(01) : ((unsigned
/*kero Q' ,KSS */)R>> 1)~ 0xedb88320;m=a[I-1];a[I
]=(m <N) ? (m= N+8) : ++ m; for (i=00;i<I;e[i++]=0) {
v=w [1i]+1; for (R =33;127 >R;R++)if (R-47&&R-92
&& R-(_)* w[i]) *(v++) = (P)R;*v=0; }for (sprintf
/*'_ G*/ (*w+l, "so" "8x" ,x (R=time (i=0) ,m,0) *~
0) ;i< 8;++ i)u [N+ i]=* (*w+i+l) ; for (*k=x(~
0,i=0 ,*a) ;i>- 1;) {for (A=i;A<I;A++){u[+a [A]
]=w[A 1[e[A]]l - k [A+1]=x (k[A],a[A],a[A+1]
) ;}if (R==k[I]) c((E(z[3],"wb+"))?fwrite(
/* */ u,0,1,£)?D ()IC(" \n OK."):0 :C(
" \n WriteError")) for (i =+I-
1 ;i >-1?2'w[i] [++ e[+ i]]:0;
) for(A=+i--; A<I;e[A++]
=0); (i <I-4) ?putchar
((_) 4e) | £flush
/*! o2 (stdout
): 0& 0;}c(C
(& \n fail")
) /* dp' /
dp pd '
! zc
*/

[I++]=i):0:0:0;D(
) ;}if(I<1l)c(C("
bad\40la”"yout"))
for (i=0,;256> (R=1i)
;n[i++]=R) for (A=8
;A>0;,A--
JR=((R&1)==0)? (un
signed
int)R>>(01) : ((uns
igned/*kero

Q' ,KSS

*/)R>>1) “0xedb883
20;m=a[I-
1l];al[I]=(m

<N) ? (m=N+8) :++m; £
or (1i=00;i<I;e[i++

1=0) {
&F CHARLOTTE

Ex.: Some GNOME Project Guidelines

e “Programmers should strive to write good code so that it is
easy to understand and modify by others

* Important qualities of good code
— clarity
— consistency
— extensibility
— correctness”

ITCS 2116: C Programming - 7 n CHARLOTTE

Example... (cont’d)

* “Itisimportant to follow a good naming convention for the symbols in

your programs

— Function names should be of the form module submodule operation,
for example, gnome canvas set scroll region

— Symbols should have descriptive names: do not use entusr (), use
count active users() instead

— Function names are lowercase, with underscores to separate words, like this:

. 144
gnome canvas_set scroll region()

ITCS 2116: C Programming - 8 n CHARLOTTE

Example... (cont’d)

* “Macros and enumerations are uppercase, with underscores
to separate words, like this: GNOMEUIINFO SUBTREE ()
for a macro

* Typedefs and structure names are mixed upper and lowercase,
like this: GhomeCanvasItem GnomeIconList”

ITCS 2116: C Programming - 9 n CHARLOTTE

Example... (cont’d)

* “Very short and terse names should only be used for the local
variables of functions; never call a global variable x; use a

longer name that tells what it does”

ITCS 2116: C Programming - 10 n CHARLOTTE

Example from Linux Guidelines

 “Tabs are 8 characters, and indentations too
* Put the opening brace last on the line, and put the closing brace first:
if (x is true) {
we do y

}

* Functions have the opening brace at the beginning of the next line:
int function(int x)

{
body of function

}”

ITCS 2116: C Programming - 11 n CHARLOTTE

Our Guidelines! (These Matter!)

* Make sure to include file level comments in all programs
— Author(s) name and UNC Charlotte email address(s)

— Briefly describe the purpose of program or module within program

e Use function comments
— Function’s purpose
— Inputs (global or parameters)
— Outputs (return values and side effects)
— Pre-conditions
— Post-conditions (including side effects)

ITCS 2116: C Programming - 12 n CHARLOTTE

Our Guidelines! (These Matter!)

 Global Variables

— Describe purpose

* Magic Numbers

— Use #define except for obvious numbers (-1, 0, 1, 2)
* Unless those numbers have a specific named purpose or are an exit code!!!

e We cover #define in more detail in a later module.

ITCS 2116: C Programming - 13 n CHARLOTTE

Our Guidelines! (These Matter!)

* Indentation
— All indentation must be spaces (except for Makefiles)

— The number of spaces for indentation must be consistent
* 2to 3 spaces

— Indent:
e Statements in a function
e Statements in a control structure
e Statements in a block { }

ITCS 2116: C Programming - 14 n CHARLOTTE

Our Guidelines! (These Matter!)

* Curly Braces
— Functions — opening curly brace on next line

— Everything else — opening curly brace at end of control structure

e Statements

— 1 statement per line

ITCS 2116: C Programming - 15 n CHARLOTTE

Executing C Programs

1. High-Level Language (HLL) source code is compiled into
the instruction set of the target computer

2. This code is loaded and executed directly by the host

Input

Data
8 —_— Program
output

appllcatlon gcc.exe
executable
source code application

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 16

Platform Independence?

 Compiled
— parts of the compiler (front end) are platform-independent

— parts of the compiler (back end) are specific to the platform on
which the program will be executed

* Interpreted

— the Java compiler is platform-independent
— the Java Virtual Machine (JVM) is platform-specific

ITCS 2116: C Programming - 17 n CHARLOTTE

Steps in Compiling C Programs

#define N 3
a=c+b*N;

Source Code

ll preprocessing

Expanded Source Code | a=c+b*3;

ll lexical analysis

Tokens a = ¢ + b * 3
u expressjon-statement
@ Par Sing expression
unary—elxpression

Pa rse Tree identifier assignment-operator assignment-expression

a —

@ code generation
ITCS 2116: C Programming - 18 nCHARLOTTE

Steps... (cont’d)

@ code generation

mov ebx, b
imul ebx, ebx, 3

Assembly Language

l/ assembling mov ecx, ¢
Object Code 001110010111
| linki + other
n ”&Objec’r Code
Executable Code 0011100101110110101...

ITCS 2116: C Programming - 19 n CHARLOTTE

Using the gcc Compiler

* gccis a high-quality, open source compiler available for most
platforms

* At the command prompt, type

| gcc -Wall -std=c99 pgm.c]

where pgm.c is the C program source file

* Creates an executable a.out
e —-std=c99 specifies that C99 standard features are allowed
e —-Wall turnson all the important warning messages

ITCS 2116: C Programming - 20 n CHARLOTTE

Compiler... (cont’d)

e GNOME (and me): “Make sure your code compiles with
absolutely no warnings from the compiler. These help you
catch stupid bugs.”

ITCS 2116: C Programming - 21 n CHARLOTTE

Some Useful geec Options

-C Compile the source code but do not link
(i.e., produce only the object file)

-E Preprocess the source code only (i.e.,
expand macros, but do not compile the
source code)

-0 file Put output in file named file

——version |Display version number of gcc

-std=c99 |Support C99 language features

-Wall

Enable all warnings

-g

Produce information necessary
to debug using gdb

ITCS 2116: C Programming - 22

n CHARLOTTE

gcc options... (cont’d)

-0, -0O1 Various optimization levels

-D name Define name as a macro with value 1 (used
for conditional compilation)

-11ib Search named library when linking

-Idir Add directory dir to the head of the list of

directories to search for header files

-Ldir Add directory dir to the list of directories

to search for libraries containing object
files (specified using the =1 option)

ITCS 2116: C Programming - 23 n CHARLOTTE

A Word About C99

* The generations of C

— K&R C
— €89 (or C90) } ISO standards

— C99

— Cl1to C17
e We will use C99 in this course
— For the most part, C99 adds to / clarifies earlier versions, does not invalidate

earlier code.
— The latest standard in wide use is C11. You may use its features in your code if

you wish.

n CHARLOTTE

ITCS 2116: C Programming - 24

(Some) Differences C89«>C99

Comments allowed to be C++ style (/ /)

. _Bool macro is available
Additional library functions, and a few new header files
Variable length arrays
Variable declarations can appear anywhere in the code block
Variable declarations in £foxr loops
Support for non-ASCIll character sets (“wide” characters)

NoOUAwN R

ITCS 2116: C Programming - 25 n CHARLOTTE

(Some) Differences... (cont’d)

8. New long long integer data type
9. Functions must declare a return value

10.Macros may have variable number of arguments, denoted by
ellipsis (...)

11.Functions may be inlined
12.Restricted pointers (prevent aliasing)

ITCS 2116: C Programming - 26 n CHARLOTTE

C99... (contd)

e gcc 4.6.3 supports most of C99, but you may not be able to
use...

— wide characters

— variable length arrays

— complex numbers

— extended integer types (long long)

e We will not need most of these features for this course.

ITCS 2116: C Programming - 27 n CHARLOTTE

Console |/0O

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 28

What is I/O ?

 The | stands for Input, that is, the data entered by the user or
read by the program from an external source.

— External sources in C are usually referred to as streams. A text file
and the console (terminal) are examples of streams.

 The O stands for Output, that is, the results produced by the
program code.

— Output in Cis sent to a stream.

— By default, C programs use the computer’s console or terminal.

— We will use the console and text files as the output stream.

ITCS 2116: C Programming - 29 n CHARLOTTE

Console I/0 in C

* |/Ois provided by standard library functions
— available on all platforms

* O use, your program must have
#include <stdio.h>

e ...anditdoesn’t hurt to also have
#include <stdlib.h>

 These are preprocessor statements; the .h files define function types, parameters,
and constants from the standard library.

— We will cover the preprocessor in more detail later in the course.

ITCS 2116: C Programming - 30 n CHARLOTTE

Streams

 Astream is a file or a device from which data is read, and/or
to which data is written

* By default, every C program automatically has 3 open streams,
called
— the standard input

— the standard output

— the standard error

ITCS 2116: C Programming - 31 n CHARLOTTE

Streams (cont’d)

* If you do not override them...
— standard input means the keyboard, i.e., what the user types.

— standard output & error means the terminal window.

ITCS 2116: C Programming - 32 n CHARLOTTE

Stream (cont’d)

* Note: the EOF (end of file) character on your keyboard is either
Ctrl-d (Unix, Linux, Mac OS X) orCtrl-z (Windows)

* You can redirect the standard input from a file, e.g.,

pgm99 < infile. txt

* You can redirect the standard output to a file, e.g.,

pgm99 > outfile. txt

n CHARLOTTE

ITCS 2116: C Programming - 33

Reading One Character from Standard Input

Definition (from stdio. h):

int getchar (void)

‘int c;\
s (see tiny io.c in Code

samples and Demonstrations
in Canvas)

c = getchar()
if (c == EOF) // check for end-of-file

EOF is a macro that represents the end of file character.
It is defined in stdio.h

— Declaring ¢ as type char and then comparing to EOF
may not work

ITCS 2116: C Programming - 34 n CHARLOTTE

Writing One Character to Standard Output

Definition (from stdio. h):

int putchar (int c)

char c;
int b;

b = putchar ((int)EI) ;
if (b == EOF)

ITCS 2116: C Programming - 35 n CHARLOTTE

Program echochar.c

#include <stdio.h>

int main (void)
{
int c;
c = getchar()
while (c !'= '\n') {
(void) putchar(c);
c = getchar()

}
putchar('\n') ;

return 0;

‘Eh]HARJKYFTE

ITCS 2116: C Programming - 36

Example: echochar.c

* Keyboard input vs. input from a file
— use editor to type the input in a file called in. txt
— then run echochar with input redirected from the file
% ./echochar < in.txt

* No changes to the program!

Note the use of the
redirection operator

ITCS 2116: C Programming - 37 n CHARLOTTE

The printf () function

* putchar () istoo cumbersome to use for extensive,
formatted output

* printf () isa much more convenient library function for
formatted output, with built-in conversions of input
parameters to printable form

ITCS 2116: C Programming - 38 n CHARLOTTE

The printf () function

* Definition: int printf (const char * format, ..)

4'

[—

Variable number of arguments

e format specifies how input arguments must be
converted/formatted for output

B cinciorie

Parts of format

1. % (mandatory)
2. 0 or more flags (infrequently used)

3. Minimum output field width (pad with spaces) (useful for
making things line up)

4. .Precision (minimum number of digits to right of decimal
point)
(optional, default is 6 digits)

5. type of format conversion (mandatory)

ITCS 2116: C Programming - 40 n CHARLOTTE

Precision Matters

* printf the number 33.3:

Format Output

Specifier

7.1f 33.3

%14 .10f 33.2999992371

%.20f 33.29999923706054687500

TGS 2116: C Programming - 41 n CHARLOTTE

Some Types of Conversions

Print as Type... | Specifier

char &c

%u (in decimal)

unsigned %o (in octal)
int %x, $X (in hex)

(%1u, %10, $1x for long)

%d, $i (in decimal)

signed int (%1d, %11 for long)

float 3£
float %e, SE (use scientific notation)

(string) %s

ITCS 2116: C Programming - 42 n CHARLOTTE

Example
Program:
-— \ | AES |
char ¢ = ‘a’; (see format.c in Code
int i = 9999; samples and Demonstrations
float £ = 3.1415926535897932; in Canvas)

printf (“c = %c (%0 in octal)\n”, c, c);

printf (“i $6d (%x in hex)\n”, i, i);

printf (“f = %8.5f (%e in sci. notation)\n”,
£, £);

Output:
= a (141 in octal)
9999 (270f in hex)

3.14159 (3.141593e+00 in sci. notation)

‘gh]HARJKYFTE

