C Expressions, Operators, and Selection
Statements

ITCS 2116: C Programming

College of Computing and Informatics
Department of Computer Science

ITCS 2116: C Programming - n CHARLOTTE

Outline

* Expressions

* QOperators
— Single operand
— Two operands
— Relational
— Logical
— Assignment

* Statement Separation
 C Operator Precedence and Order of Evaluation
* Flow of Control or Conditionals

ITCS 2116: C Programming - 2

n CHARLOTTE

e —
Expressions

* Most statements in a C program are expressions

* Evaluating an expression means doing the computation
according to the definition of the operations specified

* Results of expression evaluation:

— value returned (and assigned); and/or
— side effects (other changes to variables, or output, along the way)

-

j =k + 3 * mt+;
ITCS 2116: C Programming - 3 nCHARLOTTE

What Are the C Operators?

 There are approximately 50 of them

 (Categories of operators
arithmetic

logical and relational
assignment

bitwise operators

“other”

Lk wihe

ITCS 2116: C Programming - 4 n CHARLOTTE

Arithmetic: Single Operand Operators

Unary plus (+a): no effect

(see expressions.c in Code samples
and Demonstrations in Canvas)

a = +b;

—

Unary minus (=b): changes sign of operand

a = -b;

Increment (++) and decrement (--) operators

— operand type must be modifiable (not a constant)

— these operators have side effects!

a=++b / c-- ;

ITCS 2116: C Programming - 5 n CHARLOTTE

Single Operand... (cont’d)

prefix: side effect takes place first, then expression value is determined

inti=1, j = 8;
printf (“%d %d\n”, ++i, --3j);
printf (“%d %d\n”, i, j);

what is the output?

postfix: expression uses old operand value first, then side effect takes
place

inti1i=1, jJj = 8;
printf (“%d %d\n”, i++, j--);
printf (“%d %d\n”, i, j);

what is the output?

(see expressions.c in Code samples

& common source of bugs 2 Land Demonstrations in Canvas)
difference between

L

postfix and prefix n
ITCS 2116: C Programming - 6 CHARLOTTE

Arithmetic on Two Operands

* Multiplication (*), Quotient (/), Remainder (%),
Addition (+), Subtraction (-)

— Possibility of underflow and overflow during expression evaluation,

or assignment of the results T
overflow in (see expressions.c in

computations Code samples and
Demonstrations in Canvas)

* Division by zero
— causes program execution failure if the operands are of integer type

— generates a special value (inf) and continues execution if the
operands are IEEE floating point |

divide by zero

ITCS 2116: C Programming - 8 n CHARLOTTE

Arithmetic on Two Operands

 Modulus operator (%) operands must have type integer, should
both be positive

printf (“%d”, (37 % 3));
results?
printf (“%d”, (-37 % 3));
* Resultofa % b isaprogram exceptionifb == 0

(see expressions.c in Code samples
and Demonstrations in Canvas)

—

ITCS 2116: C Programming -9 n CHARLOTTE

Assignment Operators

* a = b assignsthevalueof b to a

— a must be a reference and must be modifiable (not a function, not an
entire array, etc.)

* Both a and b must be one of the following
— numbers (integer or floating), or

— structs or unions of the same type, or
— pointers to variables of the same type

OK Not OK
float a; float a[2];
int b = 25; \int b[2] = {25, 15};
ITCS 2116: C Programming - 11 a = b ; — : nCHARLOTTE

Assignment Operators (cont’d)

*a op=0Db

— where opisoneof *,/,%,+,-,<<,>>,&,*, |

— “shorthand” for a a opb

int i = 30, j = 40, k = 50;

i += j; // same as 1 = i + 7
k $= j; // same as k = k % 7
j *= k; // same as J = j * k

ITCS 2116: C Programming - 12 n CHARLOTTE

Flow of Control or Conditionals

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 13

Flow of control

* Flow-of-control statements in C
— 1f-then-else
— conditional operator (? :)
— switch-case
— for
— continue and break

— while and do-while

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 14

The 1 £ statement

* Allows a program to choose between two alternatives by
evaluating an expression.

* Syntax:
1f (expression) statement

 Example:
i1f (grade > 95)
printf (“A+");

ITCS 2116: C Programming - 15

n CHARLOTTE

Relational and Logical Operators

Used in evaluation conditions

i1f (expression evaluates to TRUE)
...do something...

What is TRUE (in C)?

— 0 means FALSE
— anything else (1, -96, 1.414,'F’, inf) means TRUE

—??

float £ = 9593.264;
if (f)
...do something...

ITCS 2116: C Programming - 16 n CHARLOTTE

Relational Operators

Six comparison operators: <, >, ==, =, >=,6 <=

if (a < b)
if (x >= vy)
if (g == r)

 Operands must be numbers (integer or floating point), result
typeis int
— i.e., cannot use to compare structs, functions, arrays, etc.

e |frelation is true, resultis 1, else resultis O

float £ = 9593.264; same meaning
if (£ '= 0) as in previous slide
...do something...

ITCS 2116: C Programming - 17 n CHARLOTTE

Relational Operators

 C’srelational operators:

< lessthan

> greater than

<= less than or equal to
>= greater than or equal to

samples and Demonstrations

T e e
(see if stmts.c in Code
in Canvas)

* Produce O (false) or 1 (true) when used in expressions.

* Can be used to compare integers and floating-point numbers,
with operands of mixed types allowed.

ITCS 2116: C Programming - 18 n CHARLOTTE

Relational Operators (cont’d)

e One of the most common mistakes in C

== is relational comparison for equality 2 common source of bugs %
. . confusion between
= |s assighment! = and ==

Example: some strategic defense code...

if (enemy launch = confirmed)
retaliate () ;

Oops... sorryl!

ITCS 2116: C Programming - 19 n CHARLOTTE

Logical Operators

Logical operators allow construction of complex (compound) conditions

Operands must be (or return) numbers (integer or floating point), result
typeis int

Logical NOT (!) operator
— result: 1 (TRUE) if operand was 0 (FALSE), otherwise 0

.
L 4

int j

if (! J)
do somethin float £ = ..., g=...;
T lif (Y (£ < q))

do something ...

n CHARLOTTE

ITCS 2116: C Programming - 20

Logical ... (cont’d)

e AND (&&):
— evaluate first operand, if 0, result is 0; else,
— evaluate second operand, if 0, result is 0; else,
— resultis 1

if (x && (y > 32))
. do something ...

ITCS 2116: C Programming - 21 n CHARLOTTE

Logical... (cont’d)

e Condition evaluation stops as soon as truth value is known,

short-circuit evaluation

2 common source of bugs %

— i.e., order of the operands is significant lack of understanding of

significance of order

* Relied on by many programs! in conditions

if ((b '=0) && ((a / b) > 5))
printf (“quotient greater than 5\n”);

what's the difference???

if (((a / b) > 5) && (b '= 0))
printf (“quotient greater than 5\n”);

ITCS 2116: C Programming - 22

‘Eh]HARJKYFTE

Logical... (cont’d)

* OR(| |) operator
— evaluate first operand, if not O, resultis 1;

— otherwise, evaluate second operand, if not O, result
Is 1;

— otherwise, result is O

* Thereis no logical XOR in C
(aXORb)=> (a && (! b)) || (('a) && b)

ITCS 2116: C Programming - 23 n CHARLOTTE

N
The else clause

e if statements can have an else clause.

* The statement that follows else is executed if the expression
evaluates to zero (false).

* Syntax:
1f (expression) statement

else statement

ITCS 2116: C Programming - 25 n CHARLOTTE

The else clause: Example

i1f (age > 10)
printf (“Can drive”);

else

printf (“Too young to drive”);

(see if then else.c in
Code samples and
Demonstrations in Canvas)

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 26

Using Compound Statements

* Any group of statements that is surrounded by braces will be
handled by the C compiler as a single statement.

* Syntax:
{

statement;;
statement,;

statement,;

ITCS 2116: C Programming - 27 n CHARLOTTE

Compound Statement Example

i1f (age > 10)
printf (“Can drive”);

else

{

printf (“Too young to drive”);
printf (“"Please re-apply later”);

}

UUUUUUUUUUUUUUUUUUUUUUUUUUU

CHARLOTTE

ITCS 2116: C Programming - 28

Cascaded if statements

i1f (expression)
statement ((see broker.c in Code samples and {

Demonstrations in Canvas)

else 1f (expression)

statement

else 1f (expression)

statement
else

statement

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 29

Cascaded if Statements

A “cascaded” if statement is often the best way to test a
series of conditions, stopping as soon as one of them is true.

 Example:
if (n < 0)
- " - Yy . (see broker.c in Code samples and
Prlntf(n is less than O\n) g Demonstrations in Canvas) _1
else — B
if (n == 0)
printf("n is equal to 0\n");
else

printf("n is greater than 0\n");

IVERSITY OF NORTH CAROLII

CHARLOTTE

ITCS 2116: C Programming - 30

Cascaded if Statements

* Although the second if statement is nested inside the first, C
programmers don’t usually indent it.

* Instead, they align each else with the original i £:

if (n < 0)

printf("n is less than 0\n");
else if (n == 0)

printf("n is equal to 0\n");
else

printf("n is greater than 0\n");

ITCS 2116: C Programming - 31 n CHARLOTTE

Statement Termination and the “,”

 Normally, statements are executed sequentially and are
separated by ;

* Anotherseparator: ‘', (e.g.,j = k++, 1 = k;):
1. evaluate expressions left to right

2. complete all side effects of left expression before evaluating right
expression

3. result is value of the right expression

(see statement termination.c in
Code samples and Demonstrations in
Canvas)

ITCS 2116: C Programming - 33 n CHARLOTTE

Constant Expressions

* Constant-valued expressions are used in...

\
— case statement labels
— array bounds all evaluated at
— bit-field lengths > compile time,
, not run time
— values of enumeration constants
— initializers of static variables _/

static int a = 35 + (16 % (4 | 1)) ;

(static: variable’s value is initialized only once, no matter how many times the
block in which it is defined is executed)

ITCS 2116: C Programming - 34 n CHARLOTTE

Constant Expressions... (cont’d)

* Cannot contain assignments, increment or decrement
operators, function calls, ...

— see a C reference manual for all the restrictions
— basically: nothing that has to be evaluated at run-time

static int b = a++ - sum() ;

2// error

ITCS 2116: C Programming - 35 n CHARLOTTE

C Operator Precedence

Tokens Operator Class | Prec.| Associates
alk] subscripting postfix left-to-right
£(...) function call postfix left-to-right
direct selection postfix 16 left-to-right

-> indirect selection postfix left to right
++ -- increment, decrement | postfix left-to-right
++ -- increment, decrement prefix right-to-left
sizeof size unary right-to-left
~ bit-wise complement unary right-to-left

! logical NOT unary 15 right-to-left

- + negation, plus unary right-to-left

& address of unary right-to-left

* Indirection unary right-to-left

(dereference)

C Operator Precedence (cont’d)

(type) casts unary 14 right-to-left
* /% multiplicative | binary 13 left-to-right
+ - additive binary 12 left-to-right
<< >> left, right shift binary 11 left-to-right
< <= > >= relational binary 10 left-to-right
== I= equality/ineq. binary 9 left-to-right
bitwise and binary 8 left-to-right
bitwise xor binary 7 left-to-right
I bitwise or binary 6 left-to-right
&& logical AND binary 5 left-to-right
| | logical OR binary 4 left-to-right
?: conditional ternary 3 right-to-left
= 4= -=
*= [= S=
= A= |= assignment binary 2 right-to-left
<<= >>=
, sequential eval. | binary 1 left-to-right

Order of Evaluation in Compound Expressions

 Which operator has higher precedence?

* If two operators have equal precedence, are operations
evaluated left-to-right or right-to-left?

 Example:

a+=b=qg-++r / s & ! t = u ;

what gets executed first, second, ...?

One solution: use parentheses to force a specific order

t=(u+v) * w;

ITCS 2116: C Programming - 38

n CHARLOTTE

Order of Evaluation in Compound Expressions

« Common mistake: overlooking precedence and associativity (l-
to-r or r-to-l)

t = ut+v * w,) 2 common souree of bugs 2
failure to use parentheses

to enforce precedence

Advice: either...
— force order of evaluation when in doubt by using parentheses

— or (even better) write one large expression as sequence of
several smaller expressions

ITCS 2116: C Programming - 39 n CHARLOTTE

Evaluating Expressions... (cont’d)

2 common source of bugs %

expressions that
* Instead of... at+=b=q-++r/ (s ! t==u) ; are too complex
Or...
at=(b=(g- ((++xr) /(s*(('t)==u)))));
Better:
tmpl = s * (('t) ==u);
tmp2 = (++r) / tmpl;

b:q—thZ;
a += b;

ITCS 2116: C Programming - 40 n CHARLOTTE

The C Conditional Operator

* A terse way to write if-then-else statements

c=(a>b) ?2d: e;

* This is equivalent to (shorthand for)

if (a > b) % common source of bugs %
complex conditional
c =d; statements
else
cC = e;

ITCS 2116: C Programming - 41 n CHARLOTTE

The switch Statement

A cascaded 1 f statement can be used to compare an expression against a

series of values:

if (grade == 4)
printf ("Excellent");

else 1f (grade == 3)
printf ("Good") ;
else 1f (grade == 2)

printf ("Average");
else 1f (grade == 1)

printf ("Poor") ;
else 1f (grade == 0)

printf ("Failing");
else

printf (“Invalid grade");

ITCS 2116: C Programming - 43

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

The switch Statement (cont’d)

e The switch statement is an alternative:
switch (grade) {

case 4: printf("Excellent");
break;

case 3: printf ("Good");
break;

case 2: printf ("Average");
break;

case 1l: printf ("Poor");
break;

case 0O: printf("Failing");
break;

default: printf (“Invalid grade");
break;

}

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 44

The switch Statement (cont’d)

A switch statement may be easier to read than a cascaded
1f statement.

e switch statements are often faster than i £ statements.
e Most common form of the switch statement:

switch (expression) {
case constant-expression : statements

case constant-expression : statements
default : statements

}

ITCS 2116: C Programming - 45

n CHARLOTTE

The switch Statement (cont’d)

* The word switch must be followed by an integer
expression—the controlling expression—in parentheses.

* Characters are treated as integers in C and thus can be tested
In switch statements.

* Floating-point numbers and strings don’t qualify, however.

ITCS 2116: C Programming - 46

n CHARLOTTE

The switch Statement (cont’d)

* Each case begins with a label of the form
case constant-expression

* A constant expression is much like an ordinary expression
except that it cannot contain variables or function calls.

— 5 is a constant expression, and 5 + 10 is a constant expression,
but n + 10 isn’t a constant expression (unless n is a macro that

represents d constant).
* The constant expression in a case label must evaluate to an
integer (characters are valid).

ITCS 2116: C Programming - 47 n CHARLOTTE

The switch Statement (cont’d)

* After each case label comes any number of statements.
* No braces are required around the statements.
* The last statement in each group is normally break.

ITCS 2116: C Programming - 48 n CHARLOTTE

The switch Statement (cont’d)

* Duplicate case labels aren’t allowed.
* The order of the cases doesn’t matter, and the default case doesn’t
need to come last.

e Several case labels may precede a group of statements:
switch (grade) {

case 4:

case 3:

case 2:

case 1: printf ("Passing");
break;

case 0: printf("Failing");
break;

default: printf ("Invalid grade");
break;

| et tHeyars

ITCS 2116: C Programming - 50

The switch Statement (cont’d)

To save space, several case labels can be put on the same line:

switch (grade) {
case 4: case 3: case 2: case 1:
printf ("Passing") ;

break;

case 0: printf("Failing");
break;

default: printf("Invalid grade");
break;

}

If the default case is missing and the controlling expression’s value doesn’t
match any case label, control passes to the next statement after the switch.

(see date.c in Code samples
and Demonstrations in Canvas)

IVERSITY OF NORTH CAROLI

CHARLOTTE

The Role of the break Statement

* Executing a break statement causes the program to “break” out of the
switch statement; execution continues at the next statement after the
switch.

* The switch statement is really a form of “computed jump.”

* When the controlling expression is evaluated, control jumps to the case
label matching the value of the switch expression.

* A case label is nothing more than a marker indicating a position within

the switch.
(see date.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 52 n CHARLOTTE

The Role of the break Statement (cont’d)

 Without break (or some other jump statement) at the end of a case, control
will flow into the next case.

 Example:
switch (grade) {
case 4: printf ("Excellent");
case 3: printf ("Good");
case Z2: printf ("Average");
case 1: printf("Poor");
case 0: printf("Failing");
default: printf("Invalid grade");

}

* |fthe value of grade is 3, the message printed is
GoodAveragePoorFailingInvalid grade

IVERSITY OF NORTH CAROLI

CHARLOTTE

ITCS 2116: C Programming - 53

The Role of the break Statement (cont’d)

* Omitting break is sometimes done intentionally, but it’s usually just an
oversight.
* It’s a good idea to point out deliberate omissions of break:

switch (grade) {
case 4: case 3: case 2: case 1:

num passing++; (see date.c in Code samples {

/* FALL THROUGH */ and Demonstrations in Canvas)
case 0: total grades++; B

break;

}
e Although the last case never needs a break statement, including one makes it
easy to add cases in the future.

| et tHeyars

A Strange (or bad) Idea?

* Mixing relational, bit-wise, and arithmetic operations into a single
expression. Is possible in C, but it is not recommended.

unsigned char g, h;
int a, b; is condition true?
float e, £;

A (see mixed operators.c
if ((a < b) && (e * £ || (g h))) in Code samples and
..do something here.. Demonstrations in Canvas)
int a = -4;
% common source of bugs 2 SEE ® = g What is the value of g?
mixing of operator float e = 0.0, £ = 22.2, g;
types -

UK U YOIING)E g = (c == 'D’) + (e || £) * a;

ITCS 2116: C Programming - 60 n CHARLOTTE

References

* K.N.King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

* D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

ITCS 2116: C Programming - 64 n CHARLOTTE

