
ITCS 2116: C Programming - 1

C Expressions, Operators, and Selection
Statements

ITCS 2116: C Programming
College of Computing and Informatics
Department of Computer Science

ITCS 2116: C Programming - 2

Outline

• Expressions
• Operators

– Single operand
– Two operands
– Relational
– Logical
– Assignment

• Statement Separation
• C Operator Precedence and Order of Evaluation
• Flow of Control or Conditionals

ITCS 2116: C Programming - 3

Expressions

• Most statements in a C program are expressions
• Evaluating an expression means doing the computation

according to the definition of the operations specified
• Results of expression evaluation:

– value returned (and assigned); and/or
– side effects (other changes to variables, or output, along the way)

j = k + 3 * m++;

ITCS 2116: C Programming - 4

What Are the C Operators?

• There are approximately 50 of them
• Categories of operators

1. arithmetic
2. logical and relational
3. assignment
4. bitwise operators
5. “other”

ITCS 2116: C Programming - 5

Arithmetic: Single Operand Operators
Unary plus (+a): no effect

a = ++b / c-- ;

Unary minus (-b): changes sign of operand

Increment (++) and decrement (--) operators
– operand type must be modifiable (not a constant)

– these operators have side effects!

a = +b;

a = -b;

(see expressions.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 6

Single Operand... (cont’d)

N common source of bugs N
difference between
postfix and prefix

prefix: side effect takes place first, then expression value is determined

int i = 1, j = 8;
printf(“%d %d\n”, ++i, --j);
printf(“%d %d\n”, i, j);

postfix: expression uses old operand value first, then side effect takes
place

int i = 1, j = 8;
printf(“%d %d\n”, i++, j--);
printf(“%d %d\n”, i, j);

what is the output?

what is the output?

(see expressions.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 8

Arithmetic on Two Operands

• Multiplication (*), Quotient (/), Remainder (%),
Addition (+), Subtraction (-)
– Possibility of underflow and overflow during expression evaluation,

or assignment of the results

• Division by zero
– causes program execution failure if the operands are of integer type
– generates a special value (inf) and continues execution if the

operands are IEEE floating point

N common source of bugs N
overflow in

computations

N common source of bugs N
divide by zero

(see expressions.c in
Code samples and
Demonstrations in Canvas)

ITCS 2116: C Programming - 9

Arithmetic on Two Operands

• Modulus operator (%) operands must have type integer, should
both be positive

• Result of a % b is a program exception if b == 0

printf(“%d”, (37 % 3));

printf(“%d”, (-37 % 3));
results?

(see expressions.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 11

Assignment Operators

• a = b assigns the value of b to a
– a must be a reference and must be modifiable (not a function, not an

entire array, etc.)
• Both a and b must be one of the following

– numbers (integer or floating), or
– structs or unions of the same type, or
– pointers to variables of the same type

float a;
int b = 25;
a = b;

float a[2];
int b[2] = {25, 15};
a = b;

OK Not OK

ITCS 2116: C Programming - 12

Assignment Operators (cont’d)

• a op= b
– where op is one of *,/,%,+,-,<<,>>,&,^,|
– “shorthand” for a = a op b

int i = 30, j = 40, k = 50;
i += j; // same as i = i + j
k %= j; // same as k = k % j
j *= k; // same as j = j * k

ITCS 2116: C Programming - 13

Flow of Control or Conditionals

ITCS 2116: C Programming - 14

Flow of control

• Flow-of-control statements in C
– if-then-else
– conditional operator (? :)
– switch-case
– for
– continue and break
– while and do-while

ITCS 2116: C Programming - 15

The if statement

• Allows a program to choose between two alternatives by
evaluating an expression.

• Syntax:
if (expression) statement

• Example:
if (grade > 95)

printf(“A+”);

ITCS 2116: C Programming - 16

Relational and Logical Operators

Used in evaluation conditions

float f = 9593.264;
if (f)

...do something...

What is TRUE (in C)?
– 0 means FALSE

– anything else (1, -96, 1.414,‘F’, inf) means TRUE

– ???

if (expression evaluates to TRUE)
...do something...

ITCS 2116: C Programming - 17

Relational Operators

• Operands must be numbers (integer or floating point), result
type is int
– i.e., cannot use to compare structs, functions, arrays, etc.

• If relation is true, result is 1, else result is 0

if (a < b) ...
if (x >= y) ...
if (q == r) ...

Six comparison operators: <, >, ==, !=, >=, <=

float f = 9593.264;
if (f != 0)

...do something...

same meaning
as in previous slide

ITCS 2116: C Programming - 18

Relational Operators

• C’s relational operators:
< less than
> greater than
<= less than or equal to
>= greater than or equal to

• Produce 0 (false) or 1 (true) when used in expressions.
• Can be used to compare integers and floating-point numbers,

with operands of mixed types allowed.

(see if_stmts.c in Code
samples and Demonstrations
in Canvas)

ITCS 2116: C Programming - 19

Relational Operators (cont’d)

• One of the most common mistakes in C
== is relational comparison for equality
= is assignment!

if (enemy_launch = confirmed)
retaliate();

Oops… sorry!

N common source of bugs N
confusion between

= and ==

Example: some strategic defense code…

ITCS 2116: C Programming - 20

Logical Operators
Logical operators allow construction of complex (compound) conditions

Operands must be (or return) numbers (integer or floating point), result
type is int

int j = ...;
if (! j)

... do something ... float f = ..., g = ...;
if (! (f < g))

... do something ...

Logical NOT (!) operator
– result: 1 (TRUE) if operand was 0 (FALSE), otherwise 0

ITCS 2116: C Programming - 21

Logical … (cont’d)

• AND (&&):
– evaluate first operand, if 0, result is 0; else,
– evaluate second operand, if 0, result is 0; else,
– result is 1

if (x && (y > 32))
... do something ...

ITCS 2116: C Programming - 22

Logical... (cont’d)

• Condition evaluation stops as soon as truth value is known,
short-circuit evaluation
– i.e., order of the operands is significant

• Relied on by many programs!
if ((b != 0) && ((a / b) > 5))

printf(“quotient greater than 5\n”);

what’s the difference???
if (((a / b) > 5) && (b != 0))

printf(“quotient greater than 5\n”);

N common source of bugs N
lack of understanding of

significance of order
in conditions

ITCS 2116: C Programming - 23

Logical… (cont’d)

• OR (||) operator
– evaluate first operand, if not 0, result is 1;
– otherwise, evaluate second operand, if not 0, result

is 1;
– otherwise, result is 0

• There is no logical XOR in C
(a XOR b) è (a && (! b)) || ((!a) && b)

ITCS 2116: C Programming - 25

The else clause

• if statements can have an else clause.
• The statement that follows else is executed if the expression

evaluates to zero (false).
• Syntax:
if (expression) statement
else statement

ITCS 2116: C Programming - 26

The else clause: Example

if (age > 16)

printf(“Can drive”);
else

printf(“Too young to drive”);

(see if_then_else.c in
Code samples and
Demonstrations in Canvas)

ITCS 2116: C Programming - 27

Using Compound Statements

• Any group of statements that is surrounded by braces will be
handled by the C compiler as a single statement.

• Syntax:
{

statement1;
statement2;
…
statementn;

}

ITCS 2116: C Programming - 28

Compound Statement Example

if (age > 16)

printf(“Can drive”);
else
{

printf(“Too young to drive”);
printf(“Please re-apply later”);

}

ITCS 2116: C Programming - 29

Cascaded if statements

if (expression)

statement

else if (expression)

statement

…
else if (expression)

statement
else

statement

(see broker.c in Code samples and
Demonstrations in Canvas)

ITCS 2116: C Programming - 30

Cascaded if Statements

• A “cascaded” if statement is often the best way to test a
series of conditions, stopping as soon as one of them is true.

• Example:
if (n < 0)
printf("n is less than 0\n");

else
if (n == 0)
printf("n is equal to 0\n");

else
printf("n is greater than 0\n");

(see broker.c in Code samples and
Demonstrations in Canvas)

ITCS 2116: C Programming - 31

Cascaded if Statements

• Although the second if statement is nested inside the first, C
programmers don’t usually indent it.

• Instead, they align each else with the original if:
if (n < 0)
printf("n is less than 0\n");

else if (n == 0)
printf("n is equal to 0\n");

else
printf("n is greater than 0\n");

ITCS 2116: C Programming - 33

Statement Termination and the “,”

• Normally, statements are executed sequentially and are
separated by ;

• Another separator: ‘,’ (e.g., j = k++, i = k;):
1. evaluate expressions left to right
2. complete all side effects of left expression before evaluating right

expression
3. result is value of the right expression

(see statement_termination.c in
Code samples and Demonstrations in
Canvas)

ITCS 2116: C Programming - 34

Constant Expressions

• Constant-valued expressions are used in…
– case statement labels
– array bounds
– bit-field lengths
– values of enumeration constants
– initializers of static variables

static int a = 35 + (16 % (4 | 1));

all evaluated at
compile time,
not run time

(static: variable’s value is initialized only once, no matter how many times the
block in which it is defined is executed)

ITCS 2116: C Programming - 35

Constant Expressions… (cont’d)

• Cannot contain assignments, increment or decrement
operators, function calls, …
– see a C reference manual for all the restrictions
– basically: nothing that has to be evaluated at run-time

static int b = a++ - sum();

error

C Operator Precedence

Tokens Operator Class Prec. Associates

a[k] subscripting postfix

16

left-to-right
f(...) function call postfix left-to-right

. direct selection postfix left-to-right
-> indirect selection postfix left to right

++ -- increment, decrement postfix left-to-right
++ -- increment, decrement prefix

15

right-to-left
sizeof size unary right-to-left

~ bit-wise complement unary right-to-left
! logical NOT unary right-to-left

- + negation, plus unary right-to-left
& address of unary right-to-left

* Indirection
(dereference) unary right-to-left

C Operator Precedence (cont’d)
(type) casts unary 14 right-to-left
* / % multiplicative binary 13 left-to-right
+ - additive binary 12 left-to-right

<< >> left, right shift binary 11 left-to-right
< <= > >= relational binary 10 left-to-right
== != equality/ineq. binary 9 left-to-right
& bitwise and binary 8 left-to-right
^ bitwise xor binary 7 left-to-right
| bitwise or binary 6 left-to-right
&& logical AND binary 5 left-to-right
|| logical OR binary 4 left-to-right
?: conditional ternary 3 right-to-left

= += -=
*= /= %=
&= ^= |=
<<= >>=

assignment binary 2 right-to-left

, sequential eval. binary 1 left-to-right

ITCS 2116: C Programming - 38

Order of Evaluation in Compound Expressions

• Which operator has higher precedence?
• If two operators have equal precedence, are operations

evaluated left-to-right or right-to-left?
• Example:

a += b = q - ++ r / s && ! t == u ;
what gets executed first, second, ...?

One solution: use parentheses to force a specific order

t = (u + v) * w;

ITCS 2116: C Programming - 39

Order of Evaluation in Compound Expressions

• Common mistake: overlooking precedence and associativity (l-
to-r or r-to-l)

N common source of bugs N
failure to use parentheses

to enforce precedence

t = u+v * w;

Advice: either...
– force order of evaluation when in doubt by using parentheses

– or (even better) write one large expression as sequence of
several smaller expressions

ITCS 2116: C Programming - 40

Evaluating Expressions… (cont’d)

• Instead of… a+=b=q-++r/(s^!t==u);

Or…

a+=(b=(q-((++r)/(s^((!t)==u)))));

Better:
tmp1 = s ^ ((!t) == u);
tmp2 = (++r) / tmp1;
b = q - tmp2;
a += b;

N common source of bugs N
expressions that
are too complex

ITCS 2116: C Programming - 41

The C Conditional Operator

• A terse way to write if-then-else statements

• This is equivalent to (shorthand for)

c = (a > b) ? d : e;

if (a > b)

c = d;

else

c = e;

N common source of bugs N
complex conditional

statements

ITCS 2116: C Programming - 43

The switch Statement

• A cascaded if statement can be used to compare an expression against a
series of values:
if (grade == 4)
printf("Excellent");

else if (grade == 3)
printf("Good");

else if (grade == 2)
printf("Average");

else if (grade == 1)
printf("Poor");

else if (grade == 0)
printf("Failing");

else
printf(”Invalid grade");

ITCS 2116: C Programming - 44

The switch Statement (cont’d)

• The switch statement is an alternative:
switch (grade) {

case 4: printf("Excellent");
break;

case 3: printf("Good");
break;

case 2: printf("Average");
break;

case 1: printf("Poor");
break;

case 0: printf("Failing");
break;

default: printf(”Invalid grade");
break;

}

ITCS 2116: C Programming - 45

The switch Statement (cont’d)

• A switch statement may be easier to read than a cascaded
if statement.

• switch statements are often faster than if statements.
• Most common form of the switch statement:

switch (expression) {
case constant-expression : statements
…
case constant-expression : statements
default : statements

}

ITCS 2116: C Programming - 46

The switch Statement (cont’d)

• The word switch must be followed by an integer
expression—the controlling expression—in parentheses.

• Characters are treated as integers in C and thus can be tested
in switch statements.

• Floating-point numbers and strings don’t qualify, however.

ITCS 2116: C Programming - 47

The switch Statement (cont’d)

• Each case begins with a label of the form
case constant-expression :

• A constant expression is much like an ordinary expression
except that it cannot contain variables or function calls.
– 5 is a constant expression, and 5 + 10 is a constant expression,

but n + 10 isn’t a constant expression (unless n is a macro that
represents a constant).

• The constant expression in a case label must evaluate to an
integer (characters are valid).

ITCS 2116: C Programming - 48

The switch Statement (cont’d)

• After each case label comes any number of statements.
• No braces are required around the statements.
• The last statement in each group is normally break.

ITCS 2116: C Programming - 49

The switch Statement (cont’d)

• Duplicate case labels aren’t allowed.
• The order of the cases doesn’t matter, and the default case doesn’t

need to come last.
• Several case labels may precede a group of statements:

switch (grade) {
case 4:
case 3:
case 2:
case 1: printf("Passing");

break;
case 0: printf("Failing");

break;
default: printf("Invalid grade");

break;
}

ITCS 2116: C Programming - 50

The switch Statement (cont’d)

• To save space, several case labels can be put on the same line:
switch (grade) {

case 4: case 3: case 2: case 1:
printf("Passing");
break;

case 0: printf("Failing");
break;

default: printf("Invalid grade");
break;

}

• If the default case is missing and the controlling expression’s value doesn’t
match any case label, control passes to the next statement after the switch.

(see date.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 52

The Role of the break Statement

• Executing a break statement causes the program to “break” out of the
switch statement; execution continues at the next statement after the
switch.

• The switch statement is really a form of “computed jump.”
• When the controlling expression is evaluated, control jumps to the case

label matching the value of the switch expression.
• A case label is nothing more than a marker indicating a position within

the switch.

(see date.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 53

The Role of the break Statement (cont’d)

• Without break (or some other jump statement) at the end of a case, control
will flow into the next case.

• Example:
switch (grade) {

case 4: printf("Excellent");
case 3: printf("Good");
case 2: printf("Average");
case 1: printf("Poor");
case 0: printf("Failing");
default: printf("Invalid grade");

}

• If the value of grade is 3, the message printed is
GoodAveragePoorFailingInvalid grade

ITCS 2116: C Programming - 54

The Role of the break Statement (cont’d)

• Omitting break is sometimes done intentionally, but it’s usually just an
oversight.

• It’s a good idea to point out deliberate omissions of break:
switch (grade) {

case 4: case 3: case 2: case 1:
num_passing++;
/* FALL THROUGH */

case 0: total_grades++;
break;

}

• Although the last case never needs a break statement, including one makes it
easy to add cases in the future.

(see date.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 60

A Strange (or bad) Idea?

• Mixing relational, bit-wise, and arithmetic operations into a single
expression. Is possible in C, but it is not recommended.

unsigned char g, h;
int a, b;
float e, f;
…
if ((a < b) && (e * f || (g ^ h)))

…do something here…

N common source of bugs N
mixing of operator

types
in a single expression

int a = -4;
char c = ‘D’;
float e = 0.0, f = 22.2, g;
…
g = (c == ‘D’) + (e || f) * a;

is condition true?

What is the value of g?

(see mixed_operators.c
in Code samples and
Demonstrations in Canvas)

ITCS 2116: C Programming - 64

References

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

