
ITCS 2116: C Programming - 1

Loops

ITCS 2116: C Programming
College of Computing and Informatics
Department of Computer Science

ITCS 2116: C Programming - 2

Flow of control

• Flow-of-control statements in C
– if-then-else
– conditional operator (?:)
– for
– continue and break
– while and do-while
– switch-case
– goto

ITCS 2116: C Programming - 3

Constant Expressions

• Constant-valued expressions are used in…
– case statement labels
– array bounds
– bit-field lengths
– values of enumeration constants
– initializers of static variables

static int a = 35 + (16 % (4 | 1));

all evaluated at
compile time,
not run time

(static: variable’s value is initialized only once, no matter how
many times the block in which it is defined is executed)

ITCS 2116: C Programming - 4

Constant Expressions… (cont’d)

• Cannot contain assignments, increment or decrement
operators, function calls, …
– see a C reference manual for all the restrictions
– basically: nothing that has to be evaluated at run-time

static int b = a++ - sum();

error

ITCS 2116: C Programming - 5

Why is Repetition Needed?

• Repetition allows efficient use of variables
• Can input, add and average multiple numbers using a limited

number of variables
• For example, to add five numbers:
– Declare one variable for each number, input the numbers and add

the variables together
OR

– Create a loop that reads a number into a variable and adds it to a
variable that contains the sum of the numbers

ITCS 2116: C Programming - 6

for

• Used for iterative operations, i.e., instructions that must be
executed multiple times

• Syntax:

– The increment expression is also known as the loop expression or
update statement.

• Example: for (int i = 0; i < 10; i++)
printf(“i=%d\n”, i);

for (init expr; cond expr; incr expr)
statement;

ITCS 2116: C Programming - 7

for loop (Repetition) Structure

ITCS 2116: C Programming - 8

for loop (Repetition) Structure
Example

int i;

for (i = 0; i <= 10; i++)
{

printf("%d", i);
}

• The statement will execute as long as the condition
evaluates to true.

• How many times will the statement execute?

Condition
expression

Loop
statement

(see square2.c in Code Samples and
Demonstrations in Canvas)

ITCS 2116: C Programming - 10

Reminder: Compound Statements

• Any group of statements that is surrounded by braces will be
handled by the C compiler as a single statement.

• Syntax:
{

statement1;
statement2;
…
statementn;

}

ITCS 2116: C Programming - 11

for loop (Repetition) Structure
Example

This loop outputs (prints) Hello and a star
(on separate lines) five times.

int i;

for (i = 0; i < 5; i++)
{

printf("Hello\n");
printf("*\n");

}

ITCS 2116: C Programming - 12

for loop (Repetition) Structure
Example

int i;

for (i = 0; i < 5; i++)
printf("Hello\n");
printf("*\n");

This loop outputs (prints) Hello five times and a
star only once.

ITCS 2116: C Programming - 13

for loop (Repetition) Structure (cont’d.)

• The following is a semantic error:

The semicolon at the end of the for statement terminates
the loop. The action for this loop is empty.

• The following is a legal (but infinite) for loop:
for (;;)

printf("Hello\n");

for (i = 0; i < 5; i++);
printf("%d ", i);

ITCS 2116: C Programming - 14

for loop (Repetition) Structure
Counting Backward

for (int j = 10; j >= 1; j--)
{

printf("%d ", j);
}

10 9 8 7 6 5 4 3 2 1

Consider the following code:

Sample output:

The variable j is initialized to 10. After each iteration of the loop, j is
decremented by 1. The loop continues to execute as long as j >= 1
evaluates to true

ITCS 2116: C Programming - 15

for
• The value of the counter after the loop is exited is

valid and can be tested or used
– In C99 you can declare your counter in the for loop

• Some parts of the expression can be missing; default
to null statement

for (i = 0; i < 10; i++)
b *= 2;

printf(“b was doubled %d times\n”, i);

for (; i < 10; i++)
b *= 2;

no initialization, i’s value determined
before the loop is executed

ITCS 2116: C Programming - 17

while loop (Repetition) Structure

• Syntax of the while statement:

• statement can be simple or compound
• expression acts as a decision maker and is usually a logical

expression
• statement is called the body of the loop
• The parentheses are part of the syntax

ITCS 2116: C Programming - 18

while loop (Repetition) Structure (cont’d.)

ITCS 2116: C Programming - 19

while loop (Repetition) Structure Example

int i = 0;

while (i <= 10)
{

printf("%d ", i);

i = i + 1;
}

0 1 2 3 4 5 6 7 8 9 10

Consider the following code:

Sample output:

ITCS 2116: C Programming - 20

while loop (Repetition) Structure Example
(cont’d.)

• The variable i in the loop is called the loop control
variable

• Infinite loop: continues to execute endlessly
– Avoided by including statements in loop body that

assure the exit condition is eventually false

ITCS 2116: C Programming - 21

General Form of a while Loop
// Initialize the loop control variable(s)

while (expression) //expression tests the LCV

{
.

.

.
// Update the LCV

.

.

.
}

(see sum.c in Code Samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 22

Various Forms of while Loops

• Counter-controlled while loop

• Sentinel-controlled while loop

ITCS 2116: C Programming - 23

Counter-Controlled while Loops

Use when you know exactly how many times
the statements need to be executed

(see square.c in Code Samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 24

Sentinel-Controlled while Loops

• Sentinel variable is tested in the condition
• Loop ends when sentinel is encountered

int num = 0;
int sum = 0; // Initialize the loop control variable

while (num != -1) // Test the loop control variable
{

sum += num;

scanf("%d", &num); // Update the loop control variable
}

printf("%d", sum);
(see sum.c in Code Samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 26

do…while loop (Repetition) Structure

• Syntax of a do...while loop:

• The statement executes first, and then the expression is
evaluated
– As long as expression is true, the loop continues

• To avoid an infinite loop, the body must contain a statement
that makes the expression false

do
statement

while (expression);

ITCS 2116: C Programming - 27

do…while loop (Repetition) Structure
(cont’d.)

• The statement can be simple or compound
• Loop always iterates at least once
• Often used for input validation

(see numdigits.c in Code Samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 28

do…while loop (Repetition) Structure (cont’d.)

(see numdigits.c in Code
Samples and Demonstrations in
Canvas)

ITCS 2116: C Programming - 29

do…while loop (Repetition)
Example

Consider the following code:

Sample output:

int x = 0;

do
{

printf ("%d ”,x);
x = x + 10;

} while (x <= 100);

0 10 20 30 40 50 60 70 80 90 100

ITCS 2116: C Programming - 30

break and continue Statements

• break and continue alter the flow of control
• The break statement is used for two purposes:
– To exit early from a loop, which can eliminate the use of certain (flag)

variables
– To skip the remainder of a switch structure

• After break executes, the program continues with the first
statement after the structure

(see break_example.c in Code
Samples and Demonstrations in Canvas)

ITCS 2116: C Programming - 31

break and continue Statements (cont’d.)

• continue is used in while, for, and do…while
structures

• The continue statement skips any statements that remains
in the loop and proceeds with the next iteration of the loop

(see continue_example.c in Code
Samples and Demonstrations in Canvas)

ITCS 2116: C Programming - 32

break Statement
Terminates execution of closest enclosing for, while,
do, or switch statement

b = 0;
for (i = 0; i < 10; i++) {

for (j = 0; j < 5; j++) {
if (a[i][j] > 100)

break;
b += a[j];

}
printf(“b = %d\n”, b);

}

which loop(s) does
this exit?

(see break_example.c in Code
Samples and Demonstrations in Canvas)

ITCS 2116: C Programming - 33

for (i = 0; i < 5;) {
printf("Enter the next number: ");
scanf("%d", &next_num);

if (next_num <= 0)
continue;

sum += next_num;
printf("Sum = %d\n", sum);
i++;

}

continue Statement

• Use to bypass one (1) iteration of the innermost loop
– but not exiting the loop altogether

• Example:

(see continue_example.c
in Code Samples and
Demonstrations in Canvas)

ITCS 2116: C Programming - 36

Combining Assignment and
Condition Checking

Why write this…

…when you can write this instead?

c = getchar();
while (c != ‘\n’) {

…do something…
c = getchar();

}

while ((c = getchar()) != ‘\n’) {
…do something…

}

does the same thing!

ITCS 2116: C Programming - 37

Nested Control Structures

• To create the following pattern:
*

**

• We can use the following code:
for (i = 1; i <= 5 ; i++)

{
for (j = 1; j <= i; j++)

printf("*");

printf("\n");

}

ITCS 2116: C Programming - 38

Nested Control Structures (cont’d.)

• What is the result if we replace the first for statement with
this?

for (i = 5; i >= 1; i--)

• Try to figure it out it before you go to the next slide…

ITCS 2116: C Programming - 39

Nested Control Structures (cont’d.)

• What is the result if we replace the first for statement with
this?

for (i = 5; i >= 1; i--)

• Answer:

**

*

ITCS 2116: C Programming - 43

References

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

