Arrays in C

ITCS 2116: C Programming

College of Computing and Informatics
Department of Computer Science

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 1

Motivation to Use Arrays?

 Simple data type: variables of these types can store only one
value at a time

e Structured data type: a data type in which each data item is a
collection of other data items. Arrays are a structured data

type.

ITCS 2116: C Programming - 2 nCHARLOTTE

Arrays

* A collection of a fixed number of components, all of the same
data type

* One-dimensional array: components are arranged in a list form

e Syntax for declaring a one-dimensional array:

dataType arrayName[intExp];

* intExp: any constant expression that evaluates to a positive
Integer

ITCS 2116: C Programming - 3 nCHARLOTTE

Declaring Arrays

* The declaration determines the
1. element datatype
2. array length (implicit or explicit)
3. array initialization (none, partial, or full)

* Array length (bounds) can be any constant (integer)
expression, e.g., 3, 3*16-20/4, etc.

ITCS 2116: C Programming - 4 n CHARLOTTE

Accessing Array Components

* General syntax:

arrayName[indexExp]

* indexExp: called the index

— An expression with a nonnegative integer value
* Value of the index is the position of the item in the array
 []:array subscripting operator

— Array index always starts at 0

ITCS 2116: C Programming - 5 nCHARLOTTE

Accessing Array Components (cont’d.)

int 1ist[10];

(0] [1] [2] [3] [4] [5] [e] [7l [8] [9]

e [

list[5] = 34;

[0] [1] [2] [3] [4] [5] [el [7] [8]1 [9]

list

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 6

Accessing Array Components (cont’d.)

list[3] = 10;
list[6] = 35;
list[5] = 1list[3] + list[6];
[0] [1] [2] [3] [4] [5] [é6]1 [7] [8] I[9]
list 10 45 | 35

IVERSITY OF NORTH CAROLII

CHARLOTTE

ITCS 2116: C Programming - 7

Processing One-Dimensional Arrays

* Basic operations on a one-dimensional array:
— Initializing
— Inputting data
— Outputting data stored in an array
— Finding the largest and/or smallest element

* Each operation requires ability to step through elements of the
array

— Easily accomplished by a loop

ITCS 2116: C Programming -8 é CHARLOTTE

Arrays

* Almost any interesting program uses for loops and arrays

e a[i] refersto ith element of array a

— numbering starts at 0

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 9

Processing One-Dimensional Arrays (cont’d.)

int list[5]; //array of size 5
int 1;

for (i = 0; i < 53 i++)

{
scanf("sd", &list[il);
¥
for (i = 0; i < 5; i++)
{
printf("%sd\n", listl[i]);
¥

RRRRRRRRRRRRRRRRRRRRRRRRRR

CHARLOTTE

ITCS 2116: C Programming - 10

Array Initialization

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 11

Initializing 1-D Arrays

* Explicit length, nothing initialized:

int days in month[12];

char first initial[l2];

float inches rain[12];

* Explicit length, fully initialized:

int days in month[12]
= {31,28,31,30,31,30,31,31,30,31,30,31 };

char first initial[l2]
— {\JI’\FI’\MI’\AI’\MI’\JI’\JI’\AI’\SI’\OI’\NI’\DI};

float inches rain[1l2]
= {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0,3.2,2.9,3.0,3.2};

What happens if you try to initialize more than 12 values??

ITCS 2116: C Programming - 12 n CHARLOTTE

Initializing 1-D Arrays (cont’d)

* Implicit length + full initialization:

int days in month[]
= {31,28,31,30,31,30,31,31,30,31,30,31 };

char first initialf[]
— {\JI’\FI’\MI’\AI’\MI’\JI’\JI’\AI’\SI’\OI’\NI’\DI};

float inches rainf[]
= {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0,3.2,2.9,3.0,3.2};

The number of values initialized implies the size of the array.

ITCS 2116: C Programming - 13 n CHARLOTTE

Initializing 1-D Arrays (cont’d)

®* Caninitialize just selected elements
®* uninitialized values are cleared to 0

int days in month[12]
®* Two styles: |= {31,28,31,30,31,30};

char first initial[l2]
— {‘J’,‘F’,‘M’},‘

float inches rain[1l2]
= {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0};

int days in month[12]
= {[0]=31,[3]=30,[7]=31};

char first initial[l2]
= {[2]="M',[3]='A", [4]='M', [11]='D’'};

ITCS 2116: C Programming - 14 n CHARLOTTE

Initializing 1-D Arrays (cont’d)

Implicit array length and partial initialization??

char first initial[] =
{ [0]="0", [2]='M", [8]='S’ };

How big is this array?

ITCS 2116: C Programming - 15 n CHARLOTTE

Memory Layout and Bounds Checking

Storage for array int days in month[12];

Storage for other stuff </X Storage for some more stuff

N e N

(each location shown here is an int)

* There is NO bounds checking in C

— i.e., it’s legal (but not advisable) to refer to
days in month[216] or
days in month[-35] !

— Who knows what is stored there?

ITCS 2116: C Programming - 16 n CHARLOTTE

Bounds Checking... (cont’d)

* References outside of declared array bounds

— may cause program exceptions (“bus error” or “segmentation
fault”),

— may cause other data values to become corrupted, or
— may just reference wrong values

* Debugging these kinds of errors is one of the hardest errors to
diagnose in C

& common source of bugs %

referencing outside

the declared bounds
of an array

ITCS 2116: C Programming - 17 n CHARLOTTE

Operations on Arrays

* The only built-in operations on arrays are:
— address of operator (&)

— sizeof operator

— we’ll discuss these shortly...
e Specifically, there are no operators to...
— assign a value to an entire array
— add two arrays
— multiply two arrays
— rearrange (permute) contents of an array

— efc.
ITCS 2116: C Programming - 18 nCHARLOTTE

Operations on Arrays?

Instead of using built-in operators, write loops to process arrays.

For example:

int examl grade [NUMSTUDENTS],
hwl [NUMSTUDENTS],
hw2 [NUMSTUDENTS] ,
hwtotal [NUMSTUDENTS] ;

for (int j = 0; j < NUMSTUDENTS; j++) {
examl grade[j] = 100;
hwtotal[j] = hwl[j] + hw2[]];

ITCS 2116: C Programming - 19 n CHARLOTTE

Variable Length Arrays

In C99, array length can be dynamically declared for non-static
variables:

int 1, szar;

(void) printf (”"Enter # of months in year: ");
(void) scanf ("%d", é&szar);

—

int days|[szar];

What happens if you attempt to allocate an array of size zero,
or of negative size??

ITCS 2116: C Programming - 20 n CHARLOTTE

Variable... (cont’d)

However... array lengths cannot change dynamically during program
execution

int szl, sz2;

(void) printf (”“Enter first # of records: ");
(void) scanf ("%d", é&szl);

int recs|[szl];

. do some stuff..
(void) printf (”“Enter second # of records: ");

(void) scanf ("%d", &sz2);
int recs|[sz2];

Will not work! Compile error!
ITCS 2116: C Programming - 21 p nCHARLOTTE

Multidimensional Arrays

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 22

Multi-Dimensional (“M-D") Arrays

Declaring a multi-dimensional array with explicit
length (in all dimensions), no initialization:

int xy array[10][20];
char rgb;p1xels[256][256][3],

rows /colormtensﬂy (r, g, or b)

columns

Referring to one element of a multi-dimensional array:

xyval = xy array[5][3];
r = rgb pixels[100] [25][O];

ITCS 2116: C Programming - 23 n CHARLOTTE

M-D Arrays... (cont’d)

* M-D Arrays are really arrays of arrays! i.e.,
— 2-D arrays (xy _array) are arrays of 1-D arrays

— 3-D arrays (rgb_pixels) are arrays of 2-D arrays, each of which is
an array of 1-D arrays

— eftc.

* The following are all valid references

rgb pixels /* entire array (image)
of pixels */
rgb pixels[9] /* 10t row of pixels */
rgb pixels[9] [4] /* 5t" pixel in 10%*" row */
rgb pixels[9][4][0] /* red value of 5%
pixel in 10%*" row */

ITCS 2116: C Programming - 24 n CHARLOTTE

Initializing M-D Arrays

With implicit initialization, elements are initialized in “leftmost-
to-rightmost” dimension order, e.g.

/* 2-D array with 2 rows and 3 columns */
char s2D[2][3] =
{ {'a" 'b" 'c'}’ {'d'] 'e', 'f'} };

for (int 1 = 0; 1 < 2; i++)
for (int j = 0; j < 3; j++)
putchar (s2D[i] [j]) ;

The above outputs abcdef

ITCS 2116: C Programming - 25 n CHARLOTTE

Initializing M-D... (cont’d)

Full initialization, explicit length

int i[3][4] =
{ {0, 1, 2, 3},
{4, 5, 6, 7},
{8, 9, 10, 11} };

Partial initialization, explicit length

int i[3][4] =
{ {0, 1},

{4, 5},

{8, 91 };

ITCS 2116: C Programming - 26 n CHARLOTTE

Implicit Length for M-D Arrays

Only the first dimension (row) length can be omitted

int Y[]|[3] =
oK { {Oﬂ, 2}, {4, 5, 6} };

int i[z]M =

NOT OK { {0, 1, 2}, {4, 5, 6} };

ITCS 2116: C Programming - 27 n CHARLOTTE

Memory Layout of M-D Arrays

Laid out in row-major (leftmost-to-rightmost dimension)

ordering
Storage for array s2D[2] [3]

‘a! ‘b’ GC’ Gd, ie, ‘f!

\ J \ J

1st row 2nd row

Doesn’t matter what the order is, in Java; why should we care in C?

ITCS 2116: C Programming - 28 n CHARLOTTE

Character Strings

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 29

Character Strings

e Strings (i.e., sequence of chars) are a particularly useful 1-D

array
* All the rules of arrays apply, but there are a couple of extra
features
* Initialization can be done in the following styles puym—————
char s1[] = “hope’ failure to null
char s2[] = { ‘h’, ‘o', ‘p’, ‘e’ }; terminate a string

* In the first style, the string is implicitly null-terminated
by the compiler, i.e., the array is 5 characters long

ITCS 2116: C Programming - 30 n CHARLOTTE

Character Strings (cont’d)

* Null termination is a convenience to avoid the need to specify
explicitly the length of a string

— i.e., functions processing strings can check for a null character to
recognize the end of the string

— For example, print£ () displays a string of arbitrary length using
format specifier $s (the string must be null-terminated)

char s3[] = “C Prog”;
printf (“The string is %s\n”, sl);

Storage for array s3[] Each location
A :
e ~ shown here is

cC! () ‘P, nr! 501 sg! nu” a char
ITCS 2116: C Programming - 31 CHARLOTTE

Character String Concatenation

®* Caninitialize a string as a concatenation of multiple
guoted initializers:

Char sl [] — "Now 1A 1A is 1A 1A the LA 1A time 1A ;
printf ("$s\n", sl);

Output of execution is:

Now 1s the time

* Can use anywhere a string constant is allowed

char sl[] = “"This is a really long string that”
“would be hard to specify in a single”
“line, so using concatenation is a”
“convenience.” ;

ITCS 2116: C Programming - 32 n CHARLOTTE

The sizeof Operator

* Not a function call; a C operator

— Returns number of bytes required by a data type

* Return value is of predefined type size t

ITCS 2116: C Programming - 33

#include <stdlib.h>

size t tszl, tsz2, tsz3;

int a;
float b[100];

struct student { ..definition here.. } st;

tszl = sizeof (a);
tsz2 = sizeof (b);
tsz3 = sizeof (st);

/* 4 %/
/* 2 %/
/* 2 %/

what are these sizes?

7

n CHARLOTTE

The sizeof Operator (cont’d)

Can also be used to determine the number of elements in an
array

float b[100];

int nelems;
nelems = sizeof (b) / sizeof (b[0]);

sizeof () is evaluated at compile time for statically allocated objects

ITCS 2116: C Programming - 34 n CHARLOTTE

Arrays

e Specification of array and index is commutative, i.e., a[i]
references the same value as i[a]

days in month[0] = 31;

l[days in month] = 28;

* The syntax used on the second line is not very common and it
is not recommended.

ITCS 2116: C Programming - 35 n CHARLOTTE

References

* K.N.King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

* D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

ITCS 2116: C Programming - 36 n CHARLOTTE

