
ITCS 2116: C Programming - 1

Arrays in C

ITCS 2116: C Programming
College of Computing and Informatics
Department of Computer Science

ITCS 2116: C Programming - 2

Motivation to Use Arrays?

• Simple data type: variables of these types can store only one
value at a time

• Structured data type: a data type in which each data item is a
collection of other data items. Arrays are a structured data
type.

2

ITCS 2116: C Programming - 3

Arrays

• A collection of a fixed number of components, all of the same
data type

• One-dimensional array: components are arranged in a list form
• Syntax for declaring a one-dimensional array:

• intExp: any constant expression that evaluates to a positive
integer

3

ITCS 2116: C Programming - 4

Declaring Arrays

• The declaration determines the
1. element datatype
2. array length (implicit or explicit)
3. array initialization (none, partial, or full)

• Array length (bounds) can be any constant (integer)
expression, e.g., 3, 3*16-20/4, etc.

ITCS 2116: C Programming - 5

Accessing Array Components

• General syntax:

• indexExp: called the index
– An expression with a nonnegative integer value

• Value of the index is the position of the item in the array
• []: array subscripting operator
– Array index always starts at 0

5

ITCS 2116: C Programming - 6

Accessing Array Components (cont’d.)

6

ITCS 2116: C Programming - 7

Accessing Array Components (cont’d.)

7

ITCS 2116: C Programming - 8

Processing One-Dimensional Arrays

• Basic operations on a one-dimensional array:
– Initializing
– Inputting data
– Outputting data stored in an array
– Finding the largest and/or smallest element

• Each operation requires ability to step through elements of the
array
– Easily accomplished by a loop

8

ITCS 2116: C Programming - 9

Arrays

• Almost any interesting program uses for loops and arrays
• a[i] refers to ith element of array a
– numbering starts at 0

N common source of bugs N
referencing first
element as a[1]

ITCS 2116: C Programming - 10

Processing One-Dimensional Arrays (cont’d.)

10

int list[5]; //array of size 5
int i;

for (i = 0; i < 5; i++)
{

scanf("%d", &list[i]);
}

for (i = 0; i < 5; i++)
{

printf("%d\n", list[i]);
}

ITCS 2116: C Programming - 11

Array Initialization

ITCS 2116: C Programming - 12

Initializing 1-D Arrays
• Explicit length, nothing initialized:

int days_in_month[12];

char first_initial[12];

float inches_rain[12];

int days_in_month[12]
= {31,28,31,30,31,30,31,31,30,31,30,31 };

char first_initial[12]
= {‘J’,‘F’,‘M’,‘A’,‘M’,‘J’,‘J’,‘A’,‘S’,‘O’,‘N’,‘D’};

float inches_rain[12]
= {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0,3.2,2.9,3.0,3.2};

What happens if you try to initialize more than 12 values??

• Explicit length, fully initialized:

ITCS 2116: C Programming - 13

Initializing 1-D Arrays (cont’d)

• Implicit length + full initialization:

The number of values initialized implies the size of the array.

int days_in_month[]
= {31,28,31,30,31,30,31,31,30,31,30,31 };

char first_initial[]
= {‘J’,‘F’,‘M’,‘A’,‘M’,‘J’,‘J’,‘A’,‘S’,‘O’,‘N’,‘D’};

float inches_rain[]
= {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0,3.2,2.9,3.0,3.2};

ITCS 2116: C Programming - 14

Initializing 1-D Arrays (cont’d)
• Can initialize just selected elements
• uninitialized values are cleared to 0

• Two styles:
int days_in_month[12]
= {31,28,31,30,31,30};

char first_initial[12]
= {‘J’,‘F’,‘M’};

float inches_rain[12]
= {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0};

int days_in_month[12]
= {[0]=31,[3]=30,[7]=31};

char first_initial[12]
= {[2]=`M’,[3]=‘A’, [4]=‘M’, [11]=‘D’};

ITCS 2116: C Programming - 15

Initializing 1-D Arrays (cont’d)

Implicit array length and partial initialization??

char first_initial[] =
{ [0]=‘J’, [2]=‘M’, [8]=‘S’ };

How big is this array?

ITCS 2116: C Programming - 16

Memory Layout and Bounds Checking

• There is NO bounds checking in C
– i.e., it’s legal (but not advisable) to refer to
days_in_month[216] or
days_in_month[-35] !

– Who knows what is stored there?

… …

Storage for array int days_in_month[12];

Storage for other stuff Storage for some more stuff

(each location shown here is an int)

ITCS 2116: C Programming - 17

Bounds Checking… (cont’d)

• References outside of declared array bounds
– may cause program exceptions (“bus error” or “segmentation

fault”),
– may cause other data values to become corrupted, or
– may just reference wrong values

• Debugging these kinds of errors is one of the hardest errors to
diagnose in C

N common source of bugs N
referencing outside
the declared bounds

of an array

ITCS 2116: C Programming - 18

Operations on Arrays
• The only built-in operations on arrays are:
– address of operator (&)
– sizeof operator
– we’ll discuss these shortly...

• Specifically, there are no operators to…
– assign a value to an entire array
– add two arrays
– multiply two arrays
– rearrange (permute) contents of an array
– etc.

ITCS 2116: C Programming - 19

Operations on Arrays?

Instead of using built-in operators, write loops to process arrays.
For example:

int exam1_grade[NUMSTUDENTS],
hw1[NUMSTUDENTS],
hw2[NUMSTUDENTS],
hwtotal[NUMSTUDENTS];

for (int j = 0; j < NUMSTUDENTS; j++) {
exam1_grade[j] = 100;
hwtotal[j] = hw1[j] + hw2[j];

}

ITCS 2116: C Programming - 20

Variable Length Arrays

In C99, array length can be dynamically declared for non-static
variables:

int i, szar;

(void) printf(”Enter # of months in year: ");
(void) scanf("%d", &szar);

int days[szar];

What happens if you attempt to allocate an array of size zero,
or of negative size??

ITCS 2116: C Programming - 21

Variable… (cont’d)
However… array lengths cannot change dynamically during program
execution

int sz1, sz2;
(void) printf(”Enter first # of records: ");
(void) scanf("%d", &sz1);
int recs[sz1];

… do some stuff…

(void) printf(”Enter second # of records: ");
(void) scanf("%d", &sz2);
int recs[sz2];

Will not work! Compile error!

ITCS 2116: C Programming - 22

Multidimensional Arrays

ITCS 2116: C Programming - 23

Multi-Dimensional (“M-D”) Arrays
Declaring a multi-dimensional array with explicit
length (in all dimensions), no initialization:

int xy_array[10][20];
char rgb_pixels[256][256][3];

Referring to one element of a multi-dimensional array:
xyval = xy_array[5][3];
r = rgb_pixels[100][25][0];

rows
columns

color intensity (r, g, or b)

ITCS 2116: C Programming - 24

M-D Arrays… (cont’d)
• M-D Arrays are really arrays of arrays! i.e.,
– 2-D arrays (xy_array) are arrays of 1-D arrays
– 3-D arrays (rgb_pixels) are arrays of 2-D arrays, each of which is

an array of 1-D arrays
– etc.

• The following are all valid references
rgb_pixels /* entire array (image)

of pixels */
rgb_pixels[9] /* 10th row of pixels */
rgb_pixels[9][4] /* 5th pixel in 10th row */
rgb_pixels[9][4][0] /* red value of 5th

pixel in 10th row */

ITCS 2116: C Programming - 25

Initializing M-D Arrays

With implicit initialization, elements are initialized in “leftmost-
to-rightmost” dimension order, e.g.

/* 2-D array with 2 rows and 3 columns */
char s2D[2][3] =

{ {'a', 'b', 'c'}, {'d', 'e', 'f'} };

for (int i = 0; i < 2; i++)
for (int j = 0; j < 3; j++)

putchar(s2D[i][j]);

The above outputs abcdef

ITCS 2116: C Programming - 26

Initializing M-D… (cont’d)

int i[3][4] =
{ {0, 1, 2, 3},
{4, 5, 6, 7},
{8, 9, 10, 11} };

int i[3][4] =
{ {0, 1},
{4, 5},
{8, 9} };

Full initialization, explicit length

Partial initialization, explicit length

ITCS 2116: C Programming - 27

Implicit Length for M-D Arrays

Only the first dimension (row) length can be omitted

int i[2][] =
{ {0, 1, 2}, {4, 5, 6} };

int i[][3] =
{ {0, 1, 2}, {4, 5, 6} };

OK

NOT OK

ITCS 2116: C Programming - 28

Memory Layout of M-D Arrays

Laid out in row-major (leftmost-to-rightmost dimension)
ordering

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’

Storage for array s2D[2][3]

1st row 2nd row
Doesn’t matter what the order is, in Java; why should we care in C?

ITCS 2116: C Programming - 29

Character Strings

ITCS 2116: C Programming - 30

Character Strings
• Strings (i.e., sequence of chars) are a particularly useful 1-D

array
• All the rules of arrays apply, but there are a couple of extra

features
• Initialization can be done in the following styles

char s1[] = “hope”;
char s2[] = { ‘h’, ‘o’, ‘p’, ‘e’ };

• In the first style, the string is implicitly null-terminated
by the compiler, i.e., the array is 5 characters long

N common source of bugs N
failure to null

terminate a string

ITCS 2116: C Programming - 31

Character Strings (cont’d)

• Null termination is a convenience to avoid the need to specify
explicitly the length of a string
– i.e., functions processing strings can check for a null character to

recognize the end of the string
– For example, printf() displays a string of arbitrary length using

format specifier %s (the string must be null-terminated)

char s3[] = “C Prog”;
printf (“The string is %s\n”, s1);

‘C’ ‘ ’ ‘P’ ‘r’ ‘o’ ‘g’ null

Storage for array s3[] Each location
shown here is
a char

ITCS 2116: C Programming - 32

Character String Concatenation

• Can use anywhere a string constant is allowed

char s1[] = "Now " "is " "the " "time";
printf("%s\n", s1);

char s1[] = “This is a really long string that”
“would be hard to specify in a single”
“line, so using concatenation is a”
“convenience.” ;

Output of execution is:
Now is the time

• Can initialize a string as a concatenation of multiple
quoted initializers:

ITCS 2116: C Programming - 33

The sizeof Operator

• Not a function call; a C operator
– Returns number of bytes required by a data type

• Return value is of predefined type size_t
#include <stdlib.h>
size_t tsz1, tsz2, tsz3;
int a;
float b[100];
struct student { …definition here… } st;

tsz1 = sizeof (a); /* 4 */
tsz2 = sizeof (b); /* ? */
tsz3 = sizeof (st); /* ? */

what are these sizes?

ITCS 2116: C Programming - 34

The sizeof Operator (cont’d)

Can also be used to determine the number of elements in an
array

float b[100];
…
int nelems;
nelems = sizeof (b) / sizeof (b[0]);

sizeof()is evaluated at compile time for statically allocated objects

ITCS 2116: C Programming - 35

Arrays

• Specification of array and index is commutative, i.e., a[i]
references the same value as i[a]

• The syntax used on the second line is not very common and it
is not recommended.

days_in_month[0] = 31;

1[days_in_month] = 28;

ITCS 2116: C Programming - 36

References

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

