Functions in C

ITCS 2116: C Programming

College of Computing and Informatics
Department of Computer Science

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 1

Functions in C

* Functions are also called subroutines or procedures

* One part of a program calls (or invokes the execution of) the
function

Example: print£ ()

65666 : :
int main(void) { | © O(\\(O\ int printf(.) ({
© ..code for printf..
printf (..); — }
returns
| control callee
caller

ITCS 2116: C Programming - 2 n CHARLOTTE

Are Functions Necessary?

Alternative: just copy the source code of print£ () into
the caller, everywhere it is called.

int main(void) {

..code for printing something..

..code for printing something else..

..code for printing something else..

}

This is called inlining the function code. Usually not the

best solution. nCI—]ARLOTTE

Reasons to Use Functions

* Functions improve modularity
— reduce duplication, inconsistency
— improve readability, easier to understand
— simplify debugging
* test parts — unit testing
* then the whole — system/functional testing

* Allows creation of libraries of useful "building blocks" for
common processing tasks

ITCS 2116: C Programming - 4 n CHARLOTTE

Function Return Values

* The simplest possible function has no return value
and no input parameters. For example:

° Useful? void abort (void)

* The next simplest case: value returned, but no input
parameters. For example:

char getchar (void)

int rand (void)

clock t clock (void)

ITCS 2116: C Programming - 5 n CHARLOTTE

What Values Can a Function Return?

 The datatype of a function can be any of:
— integer or floating point number
— structs and unions
— enumerated constants
— void
— pointers to any of the above (more on this later)

e Each function’s type should be declared before use

ITCS 2116: C Programming - 6 n CHARLOTTE

Values... (cont’d)

* Functions cannot return arrays, nor can they return functions

— (although they can return pointers to both)

ITCS 2116: C Programming - 7

int main (void) ({

char s[100]; !/;;—_—‘

s[] = readstring();

}

char readstring() [100] {

}

Not legal — do not

try!

n CHARLOTTE

How Many Values Returned?

A function can return at most one value
* What if you need a function to return multiple results?

* Example: you provide the radius and height of a cylinder to a
function, and want to get back...
1. surface area
and

2. volume of the cylinder

ITCS 2116: C Programming - 8 n CHARLOTTE

* Choice #1: make the return type a struct

ITCS 2116: C Programming - 9

How Many ... (cont’d)

typedef struct { //similar to an object
int area; // first field

int wvol; // second field
} mystruct;

mystruct ans;

mystruct cyl (int , int);

int main(void) {

ans = cyl (r, h);

n CHARLOTTE

How Many ... (cont’d)

* Choice #2: use global variables
— global variables are visible to (and can be updated by) all functions

double area, vol;
void cyl (int , int

int main (void) {

cyl (r, h);

) g

% common source of bugs %

use of global

variables

ITCS 2116: C Programming - 10

void cyl
{
area =

vol =

h

(1nt r, int h)

h

*

*

(2 * PI * r);

(r * r * PI);

n CHARLOTTE

How Many ... (cont’d)

* Choice #3: pass parameters by reference using pointers,
instead of by value

— allows them to be updated by the function

 Example: later, when we talk about pointers...

ITCS 2116: C Programming - 11 n CHARLOTTE

Function Side Effects

* Besides the value returned, these are things that may be
changed by the execution of the function

 Examples

— input to or output by the computer

2 common source of bugs 2

— changes to the state of the computer system Side effectsin
functions and expressions

— changes to global variables

— changes to input parameters (using pointers)

 There are problems with side effects; we’ll come back to this...

ITCS 2116: C Programming - 12 n CHARLOTTE

Input Parameters of a Function

e Often called arguments of the function

* Two types
— formal or abstract — parameter declarations in the function
definition
— actual or concrete — the actual values passed to the function at run
time
* If no input parameters to the function, leave empty, or use the
void keyword

ITCS 2116: C Programming - 13 n CHARLOTTE

Input Parameters of a Function (cont’d)

 The number and value of actual parameters should match the

number and type of formal parameters

function prototype

\(

int a, v;

—
void cyl (int , int);
\

int main(void) {
float r;

(void) cyl (r);

~

formal parameters

cyl (int r, int h)

h * (2 * PI * r);
h * (r * r * PI);

ITCS 2116: C Programming - 14

Caller

~Oops!

actual parameters

Callee

n CHARLOTTE

Parameter Passing

 Parameters are passed using call-by-value

— i.e., a copy of the parameter value is made and provided to the
function

* Any changes the function makes to this (copied) value have no
effect on the caller’s variables

ITCS 2116: C Programming - 15 n CHARLOTTE

Input Parameters (cont’d)

Example: |tleat a, v;

void main ()

{

int r, h;

(void) cylbigger (r, h);

void cylbigger (int r, int h)

/////,r 2 * r;

does not change caller’s ——h =2 *h;
variables r and h a=h=* (2 * PI *r);
v=h?®* (r * r * PI);

ITCS 2116: C Programming - 16 n CHARLOTTE

Arrays as Local Variables?

e Arrays can be declared as |int main() |
]] double smallarray[20];
local variables of functions.
For example:

int 1,
for (1 < 0; i < 20; i++)
smallarray[i] = ...

* Space for local variables is allocated on the stack

= large arrays must be declared as static or global variables —
otherwise segmentation fault occurs

double bigarray[10000000];

int main() {
int 1, ..
for (i = 0; i < 10000000; i++)

ITCS 2116: C Programming - 17 blgarray [l] I nCHARLOTTE

Types for Function Arguments

In C, an implicit type conversion occurs if actual argument type
is different from formal argument type

whar c) g = 12345678.0
e c = 78
formal — T4 ub1e g = 12345678.0;
u (9)4—;\ actual 2 common source of bugs 2
_ _ overlooking type differences
no compiler warnings! in parameters

Advice: more predictable if you cast it yourself

ITCS 2116: C Programming - 18 n CHARLOTTE

Must Declare Function Before Use

Program with compilation errors

int main (void)

{
float w, x, y;
w=f(x, y);

}

float £ (float x,
{

}

#include <stdio.h>

float y)

ITCS 2116: C Programming - 19

Program without compilation errors

#include <stdio.h>

float £ (float x,
{

}

int main (void)
{
float w, x, y;

w=f£f(x, y);

}

float y)

Why should this make a difference?

n CHARLOTTE

Declare Before... (cont’d)

 Approaches

1. (unusual) locate the function definition at the beginning of the
source code file, or...

2. (usual) put a function prototype at the beginning of the source code
(actual function definition can appear anywhere)

ITCS 2116: C Programming - 20 n CHARLOTTE

Declare Before... (cont’d)

Program without compilation errors
#include <stdio.h>

float £ (float , float); — function prototype

int main (void)

{

float w, x, y;
w= f(x, y);
}

float £ (float x, float y)
{

}
ITCS 2116: C Programming - 21 nCHARLOTTE

Functions and Arrays

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 22

Arrays as Function Arguments

* An array can be passed as an input argument
* You can specify the array length explicitly in the function

declaration

 Example:

ITCS 2116: C Programming - 23

void getdays (int months|[12]])

{

}

void getdays (int years|[10] [12]))

{

}

n CHARLOTTE

Arrays as Arguments (cont’d)

* Make sure actual argument lengths agree with formal
argument lengths!

— will generate compiler errors otherwise

 Example: int yearSEhlZ] 5

result = getdays (years):;

o

/

why not years[5] [12] here?

ITCS 2116: C Programming - 24 n CHARLOTTE

Omitting Array Sizes

* Implicit length for the first dimension of a formal parameter is
allowed

* However, you cannot omit the length of other dimensions

OK
void days (int years[][12])
{

NOT OK
} void days (int years[10][])

{

ITCS 2116: C Programming - 25 } n CHARLOTTE

Dynamic Array Size Declaration

* Q: How can you tell how big the array is if its size is implicit?
* A:You provide array size as an input parameter to the function
 Example:

void days (int nm, int months][])

{ ..}
OR

void days (int nm, int months[nm])

{ ...}

Make sure the size parameter comes before the
array parameter.

ITCS 2116: C Programming - 26 n CHARLOTTE

Dynamic Array Size... (cont’d)

void days(int ny, int nm, int years|[ny] [nm])
{
for (i =0 ; i < ny ; i++)
for (J =0; j < nm ; j++)
dcnt += years[i][Jj];
}

Make sure sizes are consistent with array declaration

int years[10][12];

\

problem here! | ..
(void) days (20,12, years);

ITCS 2116: C Programming - 27

2 common source of bugs 2

mismatches in

array size declarations

“’C}UUUAJFTE

Arrays as Parameters

* Arrays are passed BY REFERENCE, not by value

— i.e., the callee function can modify the caller’s array values

* Therefore, if you update values in an array passed to a function,
you are updating the caller’s array

int years [10] [12] ’ 2 common source of bugs 2
confusion about

_ call by reference vs.
(void) changedays (years) ; call by value

void changedays (int inyears[10][12])
{ .. 1inyears[1l][7] = 29; e}

ITCS 2116: C Programming - 28 n CHARLOTTE

Side Effects, Again

 Q: If avariable is referenced multiple times in a single
statement, and modified (by side effects) one of those times,

do the other references see the side effect? |x = 1;
b=--x && x;
e Examples: |a = 2;
b = ++a; a = 2;
c =a+ a; if (at++)
b = a;
a = 2;
b = ++a + a; a = 2;
b=f(++a, a);
a = 2;
b=++a, ¢ = a; a 2;

"

) . .
ITCS 2116: C Programming - 29 (++a > 2) i @ i 5 ’ nCHARLOTTE

Side Effects... (cont’d)

 Complete set of sequence points for C
— statement termination ;
— closing parenthesis in a condition evaluation)

— the following operators:
a&é&b al|b a?b:c a,b

— after evaluation of all arguments to a function call
— after returning a value from a function

* Advice: avoid having multiple references to a variable in a
single statement if one of those references has side effects.

ITCS 2116: C Programming - 30 n CHARLOTTE

Functions Calling Functions

e £() callsg() callsh () callsi () callsj () calls...

* Is there such a thing as having too many layers, or too deep a
calling stack? Disadvantages?

ITCS 2116: C Programming - 31 n CHARLOTTE

Recursion

* What about £ () calling £ () ???

* A powerful and flexible way to iteratively compute a value
— although this idea seems modest, recursion is one of the most
iImportant concepts in computer science
* Each iteration must temporarily store some input or

intermediate values while waiting for the results of recursion
to be returned

2 common source of bugs %

misunderstanding

of recursion

ITCS 2116: C Programming - 32 n CHARLOTTE

int main (void)

{ . Recursion

int n = 3;
w = factorial(n); Example

int factorial (int n)

{

if (n == 1)
return 1;
else

return n * factorial (n-1) ;

ITCS 2116: C Programming - 33 n CHARLOTTE

ITCS 2116: C Programming - 34

Example... (cont’d)

main ()

calls factorial(3)

returns 3*2 * 1
factorial (3)

calls factorial(2),
stores n=3

returns 2 * 1
factorial (2)

calls factorial(1),
stores n=2
returns 1

factorial (1)

n CHARLOTTE

Recursion ... (etc)

* What does the function
f(n) = f(n-1) + f(n-2) (and f(1) == f(0) == 1) return forn =57

long long int £ (long long int n)
{
if ((n==1) || (n == 0))

return 1;
else
return (£f(n-1) + £(n-2));
}

what function is this? any problems if n = 507

code it and try! n
ITCS 2116: C Programming - 35 CHARLOTTE

Recursion or lteration?

* Every recursion can be rewritten as a combination of
1. aloop (iteration), plus...
2. storage (a stack) for intermediate values

ITCS 2116: C Programming - 36 n CHARLOTTE

How Big Should A Function Be?

* Too small (100 line program, 20 functions)???
* Too large (10,000 line program with 2 functions)???
e Just right ? (Linux recommendations)

— “Functions should ... do just one thing...[and] fit on one or two
screenfuls of text”

— “... the number of local variables [for a function] shouldn't exceed
5-10”

ITCS 2116: C Programming - 37 n CHARLOTTE

Top-Down Programming in C

* Procedural programming languages encourage a way of
structuring your programs:

— start with the basics
— then progressively fill in the details

* Ex.: writing a web browser

— how does one get started on a large program like this?

ITCS 2116: C Programming - 38 n CHARLOTTE

The C Standard Library

* Small set of useful functions, standardized on all platforms
* Definitions are captured in 24 header files
 Today: how to generate random numbers

— needed for cryptography, games of chance, simulation, probability,
etc...

ITCS 2116: C Programming - 39 n CHARLOTTE

<stdlib.h>: Random Numbers

* The <stdlib.h> library header defines:

— int rand(void)
returns pseudo-random number in range 0 to RAND MAX

— void srand(unsigned int seed)
uses seed to generate new sequence of pseudo-random numbers

— RAND_MAX
Maximum value returned by rand ()

* Don't forget: #include <stdlib.h>

ITCS 2116: C Programming - 40 n CHARLOTTE

Random Numbers... (cont'd)

* To seed the random number generator

(void) srand((unsigned) time (NULL));

where time () is defined in <time.h>

 To generate a random (real) number 2 in the (real number)
range min..max:

double min = ..., max = .. ;
double range = max - min;

double rl =
((double) rand() / (double) RAND MAX) * range;
double r2 = rl + min;

ITCS 2116: C Programming - 41 n CHARLOTTE

Example

* To generate a number in the interval [0.0,1.0]

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

double getrand() {

int r = rand|() ;

return ((double) r / (RAND MAX + 1))
}

int main () {
(void) srand(time (NULL)) ;

double r = getrand() ;

ITCS 2116: C Programming - 42 n CHARLOTTE

N
References

K. N.King, C Programming: A Modern Approach,
2nd Edition. W. W. Norton & Company. 2008.

* D.S. Malik, C++ Programming: From Problem
Analysis to Program Design, Seventh Edition.
Cengage Learning. 2014.

n CHARLOTTE

ITCS 2116: C Programming - 49

