
ITCS 2116: C Programming - 1

Functions in C

ITCS 2116: C Programming
College of Computing and Informatics
Department of Computer Science

ITCS 2116: C Programming - 2

Functions in C

• Functions are also called subroutines or procedures
• One part of a program calls (or invokes the execution of) the

function

Example: printf()

returns
control

int main(void) {
…
printf (…);
…

}

caller

int printf(…) {
…code for printf…

}

callee

passes

control

ITCS 2116: C Programming - 3

Are Functions Necessary?

int main(void) {
…
…code for printing something…
…
…code for printing something else…
…
…code for printing something else…
…

}

Alternative: just copy the source code of printf()into
the caller, everywhere it is called.

This is called inlining the function code. Usually not the
best solution.

ITCS 2116: C Programming - 4

Reasons to Use Functions

• Functions improve modularity
– reduce duplication, inconsistency
– improve readability, easier to understand
– simplify debugging

• test parts – unit testing
• then the whole – system/functional testing

• Allows creation of libraries of useful "building blocks" for
common processing tasks

ITCS 2116: C Programming - 5

Function Return Values
• The simplest possible function has no return value

and no input parameters. For example:
• Useful? void abort (void)

char getchar (void)

int rand (void)

clock_t clock (void)

• The next simplest case: value returned, but no input
parameters. For example:

ITCS 2116: C Programming - 6

What Values Can a Function Return?

• The datatype of a function can be any of:
– integer or floating point number
– structs and unions
– enumerated constants
– void
– pointers to any of the above (more on this later)

• Each function’s type should be declared before use

ITCS 2116: C Programming - 7

Values… (cont’d)

• Functions cannot return arrays, nor can they return functions
– (although they can return pointers to both)

int main(void) {
char s[100];
…
s[] = readstring();
…

}

char readstring() [100] {
…

}

Not legal – do not
try!

ITCS 2116: C Programming - 8

How Many Values Returned?

• A function can return at most one value
• What if you need a function to return multiple results?
• Example: you provide the radius and height of a cylinder to a

function, and want to get back…
1. surface area
and
2. volume of the cylinder

ITCS 2116: C Programming - 9

How Many … (cont’d)

• Choice #1: make the return type a struct
typedef struct { //similar to an object

int area; // first field
int vol; // second field

} mystruct;

mystruct ans;
mystruct cyl (int , int);

int main(void) {
…
ans = cyl (r, h);

}

ITCS 2116: C Programming - 10

How Many … (cont’d)

• Choice #2: use global variables
– global variables are visible to (and can be updated by) all functions

double area, vol;
void cyl (int , int);

int main(void) {

…

cyl (r, h);
}

void cyl (int r, int h)
{

area = h * (2 * PI * r);

vol = h * (r * r * PI);

}

N common source of bugs N
use of global

variables

ITCS 2116: C Programming - 11

How Many … (cont’d)

• Choice #3: pass parameters by reference using pointers,
instead of by value
– allows them to be updated by the function

• Example: later, when we talk about pointers…

ITCS 2116: C Programming - 12

Function Side Effects

• Besides the value returned, these are things that may be
changed by the execution of the function

• Examples
– input to or output by the computer
– changes to the state of the computer system
– changes to global variables
– changes to input parameters (using pointers)

• There are problems with side effects; we’ll come back to this...

N common source of bugs N
side effects in

functions and expressions

ITCS 2116: C Programming - 13

Input Parameters of a Function

• Often called arguments of the function
• Two types
– formal or abstract – parameter declarations in the function

definition
– actual or concrete – the actual values passed to the function at run

time

• If no input parameters to the function, leave empty, or use the
void keyword

ITCS 2116: C Programming - 14

Input Parameters of a Function (cont’d)

• The number and value of actual parameters should match the
number and type of formal parameters

int a, v;

void cyl (int , int);

int main(void) {
float r;
…
(void) cyl (r);

}

void cyl (int r, int h)
{

a = h * (2 * PI * r);
v = h * (r * r * PI);

}

function prototype

actual parameters

formal parameters

Oops!
Callee

Caller

ITCS 2116: C Programming - 15

Parameter Passing

• Parameters are passed using call-by-value
– i.e., a copy of the parameter value is made and provided to the

function

• Any changes the function makes to this (copied) value have no
effect on the caller’s variables

ITCS 2116: C Programming - 16

Input Parameters (cont’d)

Example:

void cylbigger (int r, int h)
{

r = 2 * r;
h = 2 * h;
a = h * (2 * PI * r);
v = h * (r * r * PI);

}

float a, v;
void main ()
{

int r, h;
...
(void) cylbigger (r, h);
...

does not change caller’s
variables r and h

ITCS 2116: C Programming - 17

Arrays as Local Variables?
• Arrays can be declared as

local variables of functions.
For example:

int main() {
double smallarray[20];

int i, ...
for (i < 0; i < 20; i++)

smallarray[i] = ...

double bigarray[10000000];

int main() {
int i, ...
for (i = 0; i < 10000000; i++)

bigarray[i] = ...

• Space for local variables is allocated on the stack
§ large arrays must be declared as static or global variables –

otherwise segmentation fault occurs

ITCS 2116: C Programming - 18

Types for Function Arguments

In C, an implicit type conversion occurs if actual argument type
is different from formal argument type

void u (char c);
…
double g = 12345678.0;
…
u (g);

g = 12345678.0
c = 78

no compiler warnings!

formal

actual

Advice: more predictable if you cast it yourself

N common source of bugs N
overlooking type differences

in parameters

ITCS 2116: C Programming - 19

Must Declare Function Before Use
Program without compilation errors
#include <stdio.h>

float f (float x, float y)
{

…
}

int main (void)
{

float w, x, y;
…
w = f(x, y);
…

}

Program with compilation errors
#include <stdio.h>

int main (void)
{

float w, x, y;
…
w = f(x, y);
…

}

float f (float x, float y)
{

…
}

Why should this make a difference?

ITCS 2116: C Programming - 20

Declare Before... (cont’d)

• Approaches
1. (unusual) locate the function definition at the beginning of the

source code file, or…
2. (usual) put a function prototype at the beginning of the source code

(actual function definition can appear anywhere)

ITCS 2116: C Programming - 21

Declare Before... (cont’d)
Program without compilation errors

#include <stdio.h>

float f (float , float);

int main (void)
{

float w, x, y;
…
w = f(x, y);
…

}

float f (float x, float y)
{

…
}

function prototype

ITCS 2116: C Programming - 22

Functions and Arrays

ITCS 2116: C Programming - 23

Arrays as Function Arguments

• An array can be passed as an input argument
• You can specify the array length explicitly in the function

declaration
• Example: void getdays (int months[12])

{
…

}

void getdays (int years[10][12])
{

…
}

ITCS 2116: C Programming - 24

Arrays as Arguments (cont’d)

• Make sure actual argument lengths agree with formal
argument lengths!
– will generate compiler errors otherwise

• Example: int years[5][12];
…
result = getdays (years);

why not years[5][12] here?

ITCS 2116: C Programming - 25

Omitting Array Sizes

• Implicit length for the first dimension of a formal parameter is
allowed

• However, you cannot omit the length of other dimensions

void days (int years[][12])
{

…
} void days (int years[10][])

{
…

}

OK

NOT OK

ITCS 2116: C Programming - 26

Dynamic Array Size Declaration

• Q: How can you tell how big the array is if its size is implicit?
• A: You provide array size as an input parameter to the function
• Example:

void days (int nm, int months[nm])
{ … }

Make sure the size parameter comes before the
array parameter.

void days (int nm, int months[])
{ … }

OR

ITCS 2116: C Programming - 27

Dynamic Array Size… (cont’d)

Make sure sizes are consistent with array declaration

void days(int ny, int nm, int years[ny][nm])
{ …

for (i = 0 ; i < ny ; i++)
for (j = 0; j < nm ; j++)

dcnt += years[i][j];
…

}

int years[10][12];
…
(void) days(20,12, years);

problem here!
N common source of bugs N
mismatches in

array size declarations

ITCS 2116: C Programming - 28

Arrays as Parameters

• Arrays are passed BY REFERENCE, not by value
– i.e., the callee function can modify the caller’s array values

• Therefore, if you update values in an array passed to a function,
you are updating the caller’s array

int years[10][12];
…
(void) changedays(years);
…
void changedays (int inyears[10][12])
{ … inyears[1][7] = 29; … }

N common source of bugs N
confusion about

call by reference vs.
call by value

ITCS 2116: C Programming - 29

Side Effects, Again

• Q: If a variable is referenced multiple times in a single
statement, and modified (by side effects) one of those times,
do the other references see the side effect?

• Examples: a = 2;
b = ++a;
c = a + a;

a = 2;
b = ++a + a;

x = 1;
b = --x && x;

a = 2;
b = ++a, c = a;

a = 2;
b = f(++a, a);

a = 2;
x = (++a > 2) ? a : 5;

a = 2;
if (a++)

b = a;

ITCS 2116: C Programming - 30

Side Effects… (cont’d)

• Complete set of sequence points for C
– statement termination ;
– closing parenthesis in a condition evaluation)
– the following operators:

a&&b a||b a?b:c a,b
– after evaluation of all arguments to a function call
– after returning a value from a function

• Advice: avoid having multiple references to a variable in a
single statement if one of those references has side effects.

ITCS 2116: C Programming - 31

Functions Calling Functions

• f() calls g() calls h() calls i() calls j() calls …
• Is there such a thing as having too many layers, or too deep a

calling stack? Disadvantages?

ITCS 2116: C Programming - 32

Recursion

• What about f() calling f()???
• A powerful and flexible way to iteratively compute a value
– although this idea seems modest, recursion is one of the most

important concepts in computer science

• Each iteration must temporarily store some input or
intermediate values while waiting for the results of recursion
to be returned

N common source of bugs N
misunderstanding

of recursion

ITCS 2116: C Programming - 33

Recursion
Example

...
int main (void)
{ …
int n = 3;
w = factorial(n);

…
}

int factorial(int n)
{
if (n == 1)
return 1;

else
return n * factorial(n-1);

}

ITCS 2116: C Programming - 34

Example… (cont’d)

returns 2 * 1

factorial(1)

returns 1

returns 3 * 2 * 1

calls factorial(3)

main()

factorial(3)

calls factorial(2),
stores n=3

factorial(2)

calls factorial(1),
stores n=2

ITCS 2116: C Programming - 35

Recursion ... (etc)

• What does the function
f(n) = f(n-1) + f(n-2) (and f(1) == f(0) == 1) return for n = 5?

long long int f (long long int n)
{
if ((n == 1) || (n == 0))
return 1;

else
return (f(n-1) + f(n-2));

}

what function is this? any problems if n = 50?
code it and try!

ITCS 2116: C Programming - 36

Recursion or Iteration?

• Every recursion can be rewritten as a combination of
1. a loop (iteration), plus…
2. storage (a stack) for intermediate values

ITCS 2116: C Programming - 37

How Big Should A Function Be?

• Too small (100 line program, 20 functions)???
• Too large (10,000 line program with 2 functions)???
• Just right ? (Linux recommendations)
– “Functions should ... do just one thing...[and] fit on one or two

screenfuls of text”
– “... the number of local variables [for a function] shouldn't exceed

5-10”

ITCS 2116: C Programming - 38

Top-Down Programming in C

• Procedural programming languages encourage a way of
structuring your programs:
– start with the basics
– then progressively fill in the details

• Ex.: writing a web browser
– how does one get started on a large program like this?

ITCS 2116: C Programming - 39

The C Standard Library

• Small set of useful functions, standardized on all platforms
• Definitions are captured in 24 header files
• Today: how to generate random numbers
– needed for cryptography, games of chance, simulation, probability,

etc…

ITCS 2116: C Programming - 40

<stdlib.h>: Random Numbers

• The <stdlib.h> library header defines:
– int rand(void)

returns pseudo-random number in range 0 to RAND_MAX
– void srand(unsigned int seed)

uses seed to generate new sequence of pseudo-random numbers
– RAND_MAX

Maximum value returned by rand()

• Don't forget: #include <stdlib.h>

ITCS 2116: C Programming - 41

Random Numbers… (cont'd)

• To seed the random number generator
(void) srand((unsigned) time (NULL));

where time()is defined in <time.h>

• To generate a random (real) number r2 in the (real number)
range min…max:

double min = …, max = … ;
double range = max – min;

double r1 =
((double) rand() / (double) RAND_MAX) * range;

double r2 = r1 + min;

ITCS 2116: C Programming - 42

Example

• To generate a number in the interval [0.0,1.0]
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

double getrand() {
int r = rand();
return ((double) r / (RAND_MAX + 1));

}

int main () {
(void) srand(time (NULL));

…
double r = getrand();

…

ITCS 2116: C Programming - 49

References

• K. N. King, C Programming: A Modern Approach,
2nd Edition. W. W. Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem
Analysis to Program Design, Seventh Edition.
Cengage Learning. 2014.

