
ITCS 2116: C Programming - 1

Pointers in C

ITCS 2116: C Programming
College of Computing and Informatics
Department of Computer Science

ITCS 2116: C Programming - 2

Part 1

Pointer Variables

ITCS 2116: C Programming - 3

Pointers in Every Day Life

• Examples
– telephone numbers
– web pages
– Twitter ID

• Principle: indirection

• This approach has many benefits, such as:
– Enables dynamic memory allocation
– Makes it possible to implement data structures (e.g., linked lists)

You can call someone or send them a text message
using their phone number.

The phone number may change over time, but the
message or call can still reach the same person.

One phone number may be forwarded to another
phone number, which may be forwarded to another,
and so on.

ITCS 2116: C Programming - 4

All References are Addresses?

• In reality, all program references (to variables, functions,
system calls, interrupts, …) are addresses
1. you write code that uses symbolic names
2. the compiler translates those for you into the addresses needed by

the computer
– requires a directory or symbol table

(name ® address translation)
• You could just write code that uses addresses (no symbolic

names)
– advantages? disadvantages?

ITCS 2116: C Programming - 5

Pointer Variables

• The first step in understanding pointers is visualizing what they
represent at the machine level.

• In most modern computers, main memory is divided into
bytes, with each byte capable of storing eight bits of
information:

• Each byte has a unique address.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 6

Pointer Variables

If there are n bytes in memory, we can think of addresses as
numbers that range from 0 to n – 1:

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 7

Pointer Variables

• Each variable in a program occupies one or more bytes of
memory.

• The address of the first byte is said to be the address of the
variable.

• In the following figure, the address of the variable i is 2000:

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 8

Pointer Variables

• Addresses can be stored in special pointer variables.
• When we store the address of a variable i in the pointer

variable p, we say that p “points to” i.
• A graphical representation:

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 9

Declaring Pointer Variables

• When a pointer variable is declared, its name must be
preceded by an asterisk:
int *p;

• p is a pointer variable capable of pointing to objects of type
int.

• We use the term object instead of variable since p might point
to an area of memory that doesn’t belong to a variable.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 10

Declaring Pointer Variables

• Pointer variables can appear in declarations along with other variables:
int i, j, a[10], b[20], *p, *q;

• C requires that every pointer variable point only to objects of a particular
type (the referenced type):
int *p; /* points only to integers */
double *q; /* points only to doubles */
char *r; /* points only to characters */

• There are no restrictions on what the referenced type may be.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 11

The Address and Indirection Operators

• C provides a pair of operators designed specifically for use with
pointers.
– To find the address of a variable, we use the & (address of) operator.
– To gain access to the object that a pointer points to, we use the *

(indirection) operator.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 12

The Address Operator

• Declaring a pointer variable sets aside space for a pointer but
doesn’t make it point to an object:
int *p; /* points nowhere in particular */

• It’s crucial to initialize p before we use it.
• Trying to use a pointer that has not been initialized will usually

result in program failure.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 13

The Address Operator

• One way to initialize a pointer variable is to assign it the
address of a variable:
int i, *p;
…
p = &i;

• Assigning the address of i to the pointer variable p makes p
point to i:

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 14

The Address Operator

• It’s also possible to initialize a pointer variable at the time it’s
declared:
int i;
int *p = &i;

• The declaration of i can even be combined with the
declaration of p:
int i, *p = &i;

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 15

The Indirection Operator

• Once a pointer variable points to an object, we can use the *
(indirection) operator to access what is stored in the object.

• If p points to i, we can print the value of i as follows:
printf("%d\n", *p);

• Applying & to a variable produces a pointer to the variable.
• Applying * to the pointer takes us back to the original variable:

j = *&i; /* same as j = i; */

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 16

The Indirection Operator

• As long as p points to i, *p is an alias for i.
– The expression *p has the same value as i.

– Changing the value of *p changes the value of i.

• The example on the next slide illustrates the equivalence of *p
and i.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 17

The Indirection Operator

p = &i;

i = 1;

printf("%d\n", i); /* prints 1 */
printf("%d\n", *p); /* prints 1 */
*p = 2;

printf("%d\n", i); /* prints 2 */
printf("%d\n", *p); /* prints 2 */

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 18

The Indirection Operator

• Applying the indirection operator to an uninitialized pointer
variable causes undefined behavior:
int *p;
printf("%d", *p); /*** WRONG ***/

• Assigning a value to *p is particularly dangerous:
int *p;
*p = 1; /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 19

Pointer Assignment

• C allows the use of the assignment operator to copy pointers
of the same type.

• Assume that the following declaration is in effect:
int i, j, *p, *q;

• Example of pointer assignment:
p = &i;

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 20

Pointer Assignment

• Another example of pointer assignment:
q = p;

q now points to the same place as p:

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 21

Pointer Assignment

• If p and q both point to i, we can change i by assigning a new value to
either *p or *q:
*p = 1;

*q = 2;

• Any number of pointer variables may point to the same object.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 22

Pointer Assignment

• Be careful not to confuse
q = p;

with
*q = *p;

• The first statement is a pointer assignment, but the second is
not.

• The example on the next slide shows the effect of the second
statement.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 23

Pointer Assignment

p = &i;
q = &j;
i = 1;

*q = *p;

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITCS 2116: C Programming - 24

Pointer Operations in C

Consider the code below
• "v and w are variables of type int"
• "pv is a variable containing the address of another variable"

• "pv = the address of v"
• "w = the value of the int whose address is contained in pv"

int v, w;
int * pv;

pv = &v;
w = *pv;

ITCS 2116: C Programming - 25

C Pointer Operators

px is not an alias (another name) for the variable x; it is a
variable storing the location (address) of the variable x

px = &x; “px is assigned the address of x”

y = *px; “y is assigned the value at the address
indicated (pointed to) by px”

ITCS 2116: C Programming - 26

…Operators (cont’d)
& = “the address of…”

int a;
int *ap;

ap = &a;

“ap gets the address
of variable a”

“ap is a pointer
to an int”

char c;
char *cp;

cp = &c;
“cp gets the address

of variable c”

“cp is a pointer
to a char”

float f;
float *fp;

fp = &f;
“fp gets the address

of variable f”

“fp is a pointer
to a float”

ITCS 2116: C Programming - 27

…Operators (cont’d)
* = “pointer to…” or indirection operator

*ap = 33;
b = *ap;

“the variable ap points to (i.e., a), is assigned the value 33”
“b is assigned the value of the variable pointed to by ap”(i.e., a)
the value of b is 33

*cp = ‘Q’;
d = *cp;

“the variable cp points to (i.e., c) is assigned the value ‘Q’”

“d is assigned the value of the variable pointed to by cp (i.e., c)”

*fp = 3.14;
g = *fp;

“the variable fp points to (i.e., f) is assigned the value 3.14”
“g is assigned the value of the variable pointed to by fp (i.e., f)”

ITCS 2116: C Programming - 28

Variable Names Refer to Memory
A C expression, without pointers

Memory
Address

Variable

0 b

4 c

8 a

“Pseudo-Assembler” code

Symbol Table

a = b + c; /* all of type int */

load int at address 0 into reg1
load int at address 4 into reg2
add reg1 to reg2
store reg2 into address 8

ITCS 2116: C Programming - 29

Variables Stored in Memory

Addr Contents
0 Value of b

4 Value of c

8 Value of a

32 bits (4 bytes) wide

Almost all machines are byte-addressable, i.e.,
every byte of memory has a unique address

ITCS 2116: C Programming - 30

Pointers Refer to Memory Also
A C expression, with pointers

“Pseudo-assembler” codeSymbol Table

int *ap;
ap = &a;
ap = b + c; / all of type int */

load address 8 into reg3
load int at address 0 into reg1
load int at address 4 into reg2
add reg1 to reg2
store reg2 into address pointed
to by reg3

Memory
Address

Variable

0 b

4 c

8 a

12 ap

ITCS 2116: C Programming - 31

Pointers Refer… (cont’d)

Address Contents Variable
Name

0 Value of b b

4 Value of c c

8 Value of a a

12 8 (address of a) ap

32 bits (4 bytes) wide

ITCS 2116: C Programming - 32

Addresses vs. Values

Result of execution:

int a = 35;
int *ap;
ap = &a;
printf(“ a=%d\n &a=%u\n ap=%u\n *p=%d\n”,

a,
(unsigned int) &a,
(unsigned int) ap,
*ap);

???

This code produces compiler warnings
– to avoid compiler warnings use the
%p format specifier.

%p allows us to print the value of a
pointer, i.e., the memory address it
contains.

(see addresses_values.c in Code
samples and Demonstrations in
Canvas).

ITCS 2116: C Programming - 33

Pointers to Pointers to …
A C expression

Var Address
a 8

ap 12

app 20

appp 16

b 0

c 4

char * ap = &a;
char ** app = ≈
char *** appp = &app;

***appp = b + c;

Addr Contents Var
0 Value of b b

4 Value of c c

8 Value of a a

12 8 (addr of a) ap

16 20 (addr of app) appp

20 12 (addr of ap) app

32 bits (4 bytes) wide

(see ptrs_to.c
in Code samples
and Demonstrations
in Canvas).

ITCS 2116: C Programming - 34

…Types (cont’d)

Make sure pointer type agrees with the type of the operand
it points to.

int i, *ip;
float f, *fp;

fp = &f; /* makes sense */

fp = &i; /* definitely fishy */
/* but only a warning */

Example: if you're told the office of an instructor is
a mailbox number, that's probably a mistake

ITCS 2116: C Programming - 35

Pointer Type Conversions

Pointer casts are possible, but rarely (never?) useful
char * cp = …;
float * fp = …;
….
fp = (float *) cp; /* casts a pointer to

* a char to a pointer
* to a float???
*/

Analogy: like saying a phone number is really an email
address -- doesn’t make sense!

ITCS 2116: C Programming - 36

…Conversions (cont’d)

However, casts (implicit or explicit) of variables pointed to are useful

float f;
int i;
char * ip = &i ;
…
f = * ip; /* converts an int to a float */

f = i ; /* no different! */

ITCS 2116: C Programming - 37

Pointer Mistakes

The following slides show examples of common
mistakes programmers make when using pointers in C.

ITCS 2116: C Programming - 38

Find the Pointer Mistakes
int a, b, *ap, *bp;
char c, d, *cp, *dp;
float f, g, *fp, *gp;

2. *ap = 3333;

4. c = *ap;

1. ap = &c;

3. c = ap;

Do any of the following
cause problems, and if so,
what type?

N common source of bugs N
pretty much

* everything *
to do with pointers

ITCS 2116: C Programming - 39

int a, b, *ap, *bp;
char c, d, *cp, *dp;
float f, g, *fp, *gp;

2. *ap = 3333;

4. c = *ap;

1. ap = &c;

3. c = ap;

incompatible types

incompatible types

Do any of the following
cause problems, and if so,
what type?

Find the Pointer Mistakes

ITCS 2116: C Programming - 40

… Mistakes (cont’d)

8. gp = &fp;

9. *gp = 3.14159;

int a, b, *ap, *bp;
char c, d, *cp, *dp;
float f, g, *fp, *gp;

5. dp = ap;

6. dp = ‘Q’;

7. fp = 3.14159;

ITCS 2116: C Programming - 41

… Mistakes (cont’d)

8. gp = &fp;

9. *gp = 3.14159;

int a, b, *ap, *bp;
char c, d, *cp, *dp;
float f, g, *fp, *gp;

5. dp = ap;

6. dp = ‘Q’;

7. fp = 3.14159;

incompatible types

incompatible types

almost certainly a mistake

forgot the *

ITCS 2116: C Programming - 42

10. *fp = &gp;

10. &gp = &fp;

12. b = *a;

13. b = &a;

… Mistakes (cont’d)
int a, b, *ap, *bp;
char c, d, *cp, *dp;
float f, g, *fp, *gp;

ITCS 2116: C Programming - 43

10. *fp = &gp;

11. &gp = &fp;

12. b = *a;

13. b = &a;

… Mistakes (cont’d)
int a, b, *ap, *bp;
char c, d, *cp, *dp;
float f, g, *fp, *gp;

incompatible types

& cannot be on left-hand-side of assignment

a is not a pointer

b is not a pointer

ITCS 2116: C Programming - 44

Sense…

All of these are OK
a = *p2; copy value pointed to by p2 to a
*p1 = 35; set value of variable pointed to by p1 to 35
*p1 = b; copy value of b to value pointed to by p1
*p1 = *p2; copy value pointed to by p2 to value pointed to by p1
p1 = &b; p1 gets the address of b
p1 = p2; p1 gets the address stored in p2 (i.e., they now point

to the same location)

int a, b, *p1, *p2;
a = 30, b = 50;
p1 = & a;
p2 = & b;

Initially:

(see sense.c in Code samples and Demonstrations in Canvas)

ITCS 2116: C Programming - 45

…and Nonsensibility

None of these are OK
<anything> = &35;

<anything> = *35;
p1 = 35;

a = &<anything>;
a = *b;

*a = <anything>;
&<anything> = <anything>;

a = p2;

int a, b, *p1, *p2;
a = 30, b = 50;
p1 = & a;
p2 = & b;

a = **p2;

p1 = b;

p1 = &p2;

p1 = *p2;

<anything> = *b;
*p1 = p2;

*p1 = &<anything>;

Initially:

û û
(see nonsensibility.c in Code
samples and Demonstrations in
Canvas)

ITCS 2116: C Programming - 46

Reminder: Precedence of & and *

Tokens Operator Class Prec. Associates

++ -- increment, decrement prefix

15

right-to-left

sizeof size unary right-to-left

~ bit-wise complement unary right-to-left

! logical NOT unary right-to-left

- + negation, plus unary right-to-left

& address of unary right-to-left

*
Indirection

(dereference) unary right-to-left

ITCS 2116: C Programming - 47

Pointers as Arguments of Functions

• Pointers can be passed as arguments to functions
• Useful if you want the callee to modify the caller’s variable(s)
– that is, passing a pointer is the same as passing a reference to (the

address of) a variable

• The pointer itself is passed by value, and the caller’s copy of
the pointer cannot be modified by the callee

ITCS 2116: C Programming - 48

…as Arguments (cont’d)

int i = 100, j = 500;
int *p1 = &i, *p2 = &j;
printf(“%d %d %p %p\n”, i, j, p1, p2);
swap(p1, p2);
printf(“%d %d %p %p\n”, i, j, p1, p2);

prints the pointer (not the
variable that is pointed to)

void swap (int * px, int * py) {
int temp = *px;
*px = *py;
*py = temp;
px = py = NULL; /* just to show caller’s

pointers not changed */
}

ITCS 2116: C Programming - 49

…as Arguments (cont'd)

• Results of execution: ???
• Download arguments.c from Canvas (Code samples and

Demonstrations), execute it and examine the output.

ITCS 2116: C Programming - 50

Pointers as Return Values

A function can
return a pointer as
the result

int i, j, *rp;
rp = bigger (&i, &j);

Useful? Wouldn't it be easier to return the bigger value
(*p1 or *p2) ?

int * bigger (int *p1, int *p2)
{

if (*p1 > *p2)
return p1;

else
return p2;

}

ITCS 2116: C Programming - 51

…Return Values (cont’d)
• Warning! never

return a pointer to
an auto variable
in the scope of the
callee!

• Why not?
– Because an auto

variable has no
scope outside of
the function.

int main (void)
{

printf("%d\n", * sumit(3));
printf("%d\n", * sumit(4));
printf("%d\n", * sumit(5));
return (0);

}

int * sumit (int i)
{

int sum = 0;
sum += i;
return ∑

}

(see sumit.c
in Code samples
and Demonstrations
in Canvas).

ITCS 2116: C Programming - 52

…Return Values (cont’d)

But with this change,
no problems!

Why not?

Output:

int * sumit (int i)
{

static int sum = 0;
sum += i;
return ∑

}

3
7
12

Download sumit.c from Canvas, execute it
and examine the output.

ITCS 2116: C Programming - 53

void sumit (int i, int *sp)
{

*sp += i;
return

}

Alternative…
int s = 0;
sumit(3, &s); printf("%d\n", s);
sumit(4, &s); printf("%d\n", s);
sumit(5, &s); printf("%d\n", s);

Use a pointer to the variable that you want to
contain the sum instead. That variable can remain
local to the caller without running into scope issues.

ITCS 2116: C Programming - 54

References

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

