structs

ITCS 2116: C Programming

College of Computing and Informatics
Department of Computer Science

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 1

B
structs

* Example: a person has multiple attributes
— Name
— weight
— height
— gender
— ID number
— age
— etc.

* To indicate these are all part of the same entity, we
define a struct data type for persons

| et tHeyars

Declaring Structure Tag

struct person { char *name [MAXP];
char name|[LEN] ; int height[MAXP];
int height; int weight[MAXP] ;
int weight; char gender [MAXP];
char gender; int idnum[MAXP] ;
int idnum; short age[MAXP] ;
short age; . .
};
struct person Makes more sense than simply
persons [MAXP] ; defining these fields
’ individually, not indicating how

they are related

ITCS 2116: C Programming - 3 n CHARLOTTE

Declaring Structs

\

/
struct T/,

char name[LEN] ;

int height;
int weight;
char gender;
int idnum;
short age;

} personl, person2;

"Unnamed struct

)

structl{
char name[LEN] ;
int height;
int weight;
char gender;
int idnum;

D

struct variables

short age;

} personl = {“Bob”

Initialized struct variables

185,

\/

ITCS 2116: C Programming - 4

person2

’

5, 27},

n CHARLOTTE

structs in Memory

e struct members stored in memory in order declared

 Each member is allocated the amount of memory

appropriate to its type

* Members are in same memory block

— May be offsets

ITCS 2116: C Programming - 5

name
height
weight
gender

idnum

age

n CHARLOTTE

struct Name Space

* Astruct isanewscope
e Two different structs can have members with the same

Names
struct person { _ struct student {
char name[LEN] ; No conflict: char name[LEN] ;
int weight; ?har Cla§3;
_ _ int creditHours;
int height;

}s
ITCS 2116: C Programming - 6 n CHARLOTTE

Initializing Named structs

Unitialized

struct person personl;

Fully initialized

struct person personl =
{“Fred”, 72, 180, ‘M’ , 12345, 20};

Partially initialized (version 1)

struct person personl =
{“Fred”, 72, 180, ‘M’};

| (see struct initialization.c in Code
samples and Demonstrations in Canvas)

ITCS 2116: C Programming - 7 n CHARLOTTE

..Initializing (cont’d)

Partially initialized (version 2)

struct person personl =

{ .name = “Fred”,
.height = 72,
.gender = ‘M’,

.idnum = 12345} ;

| (see struct initialization.c in Code
samples and Demonstrations in Canvas)

ITCS 2116: C Programming - 8 n CHARLOTTE

Referring to structs and members

Simple assighment to a struct member

person3.weight = 200;

Assignment to an entire struct (version 1)

person2 = personl;

Assignment to an entire struct (version 2)

persond4 = (struct person)

{“Mary”, This code uses a
66 compound literal.
4

125,
\FI ,
98765,

ITCS 2116: C Programming - 10 2 1 } ; nCHARLOTTE

structs can contain structs

One struct... | struct date {

unsigned short month;
unsigned short day;
unsigned int year;

};

struct person-with-start {
struct date start;

Contained in char name [LEN] ;

int height;
another struct... Fe ey

char gender;
int idnum;
short age;

ITCS 2116: C Programming - 11 n CHARLOTTE

- ¢
structs can contain... (cont'd)

Referencing a struct within a struct

struct person-with-start pl;

pl.start.month = 8;
pl.start.day = 16;
pl.start.year = 2009;

n CHARLOTTE

ITCS 2116: C Programming - 12

Arrays of structs

Example

int main () {
struct person persons[100];

persons[l] = getstruct(“"Liz”);
persons [2] = getstruct (“Jim”) ;
(persons|[2])].idnum = 23456;

- \
AN

| (see struct _arrayl.c in Code samples Are parentheses needed?
and Demonstrations in Canvas) No

ITCS 2116: C Programming - 14 n CHARLOTTE

ITCS 2116: C Programming - 1

Reminder: C Operator Precedence

Tokens Operator Class | Prec.| Associates

alk] subscripting postfix left-to-right

£(...) function call postfix left-to-right

direct selection | postfix 6 left-to-right

-> indirect selection postfix left to right

++ -- increment, decrement | postfix left-to-right

(type) {init} literal postfix left-to-right

++ - increment, decrement prefix right-to-left

sizeof size unary right-to-left

~ bit-wise complement unary right-to-left

! logical NOT unary 15 right-to-left

- + negation, plus unary right-to-left

& address of unary right-to-left
Indirection

(dereference) unary right-to-left

LOTTE

Arrays of... (cont'd)

Example of an array of structs, each containing an array
of structs...

struct person {

struct phonenumber pno[4];

};
struct person persons[MAXPERSONS] ;

struct phonenumber {
short areacode;
short exchange;
short number;
char type;

ITCS 2116: C Programming - 16 n CHARLOTTE

Initializing Arrays of structs

Example

struct person persons[100] = {

{ “Fred”, 72, 180, ‘M’, 0, 20 },

{ “Liz”, 63, 115, ‘F’, 33333, 19 },

{ “Mary”, 76, 180, ‘F’, 44444, 25,

{{919, 515, 2044, W'},
{919, 555, 6789, ‘H’}} },
[10] = {.name = “Bill”, .height = 70,
.gender = '‘M’}

ITCS 2116: C Programming - 17 n CHARLOTTE

Referencing Arrays of structs

if |(((persons[4]) .pno[2])].areacode == 919)
coe \

N

Are parentheses
needed?

No

| (see struct array2.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 18 n CHARLOTTE

structs as Input Parameters

void printname (struct person) ;

int main () {
struct person personl = {.};
(void) printname (personl);

}

void printname (struct person p)

{

(void) printf (“Name: %$s\n”, p.name);

}

Structs are passed by value, as usual

— i.e., a copy is made and passed to the function

ITCS 2116: C Programming - 20 n CHARLOTTE

structs as Return Values

* (finally!) The answer to how functions can return multiple
results

— one struct (with multiple members) = one result

| et tHeyars

structs as Return Values

struct person getstruct(char * name) {
struct person new;
new.name = name;
printf (“Enter height and weight for %s:
name) ;
(void) scanf (“%d %d4d”,
& (new.height) , | & (new.weight)) ;

return (new);
} \

struct person personl = getstruct (“Bob”) ;

144

4

e T Are parentheses needed? No

(see struct return.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 22 -

n CHARLOTTE

structs Can Contain Pointers

struct person {
char *name;

} personl;

personl.name = “Donna’”;
printf (“Name is %s\n”, personl.name) ;
char initial *personl.name;

AN

Be careful when assigning string values from another function.
Use the strepy () or strncpy () function.

ITCS 2116: C Programming - 24 n CHARLOTTE

Are parentheses needed? No

Pointers to Structs

struct person {

} personl, *p;

p = &personl;

(*p) .name “Donna” ;

(*p) .height 65;

printf (“Name is %$s\n”, (
char initial * (*p) .nam
printf (“Height is %d\n”,

(see struct pointerl.c in Code samples
and Demonstrations in Canvas)

*p) .name) ;

a-
(*p) .height] ;

/

Are parentheses needed?

Yes!
ITCS 2116: C Programming - 25

5'& common source of bugs 5'&

failure to use parens
around (*p) .m

“’C}UUUATFTE

A New Operator: =>

* Unfortunately, *p.height != (*p) .height
. N\l /

the value?f)inted to by
the member p.height

* A new operator (for convenience):
(*a) .b can bereplaced by a->b

N
the height of the person

pointed to by p

é'é common source of bugs 5'%

failure to use parens
around (*p) .m

ITCS 2116: C Programri

p = &personl;

p->name = “Donna”;
p->height = 65;

printf (“Name is %$s\n”, p
char initial = *p->name;
printf (“Height is %d\n”,

| (see struct pointer2.c in Code samples
and Demonstrations in Canvas)

_— What does *

_W dereference?

p->height) ; n CHARLOTTE

A New Operator... (cont’d)

* How about pointer to a struct containing pointer to a
struct containing...? No problem!

struct person ({

struct person *father;
struct person *mother;
} persons[100], *p;
p = &persons|[l];
p->father = &persons[22];
p->mother = &persons[45]; Parentheses needed?

if (|p->father->age|>= 65) ’////

printf (“Mother: %$s\n”, |p->mother->name|) ;

ITCS 2116: C Programming - 27 n CHARLOTTE

Enumerated Data Type

e Use for variables with small set of possible values, where
actual encoding of value is unimportant

enum colors {red, blue, green, white, black};
enum colors mycolor;

mycolor = blue;

if ((mycolor == blue) || (mycolor == green))
printf ("cool color\n");

—

| (see colors.c in Code samples and
Demonstrations in Canvas)

ITCS 2116: C Programming - 29 n CHARLOTTE

Enumerated Data Type (cont’d)

Don’t compare variables of different enumerated types - results
not what you expect!

enum {blue, red, green, white, black}

primarycolor; . _
enum {black, brown, orange, yellow} What will print?

halloweencolor;

r(See color comparison.c in T

primarycolor = black; Qode samples and Demonstrations
halloweencolor = black; inCanvas)
if (primarycolor == halloweencolor)

printf ("Same color\n"); «

Although you can interpret enumerated data

types as integers, it is not recommended
ITCS 2116: C Programming - 31 nCHARLOTTE

Enumerated Data Type (cont’d)

Compared to macros...?

#define BLUE O
#define RED 1
#define GREEN 2
#define WHITE 3
#define BLACK 4

int primarycolor;
primarycolor = RED;

if (primarycolor == RED) ..

GNOME: “If you have a list of possible values for a variable,
do not use macros for them; use an enum instead and give
it a type name”

ITCS 2116: C Programming - 32 n CHARLOTTE

The typedef Statement

Assigns an alternate name (synonym) to a C data type

— more concise, more readable typedef name, not a
declgration of a variable

typedef char * cptr;
cptr cp;

char * dp; /* same type as cp */

typedef struct {
int val;
cptr name;
struct mystruct *next;
} llnode;
llnode entries[100];
ITCS 2116: C Programming - 33 nCHARLOTTE

The typedef Statement (cont’d)

Arrays can be typedefs

typedef int values[20];
values tbll, tbl2; /* two arrays, each with
* 20 ints */

* typedefs help make programs portable

— to retarget a program for a different architecture, just
redefine the typedefs and recompile

* Usually, typedefs are collected in a header file that
is #include’d in all source code modules

ITCS 2116: C Programming - 34 n CHARLOTTE

bool variables

* Defines an integer variable that is restricted to store
only the values O (false) and 1 (true)

— attempt to assign any non-zero value will actually store the
value 1

#include <stdbool.h>

bool testl;

testl = ((c = getchar()) && (c '= '‘n’));

if (testl) /* or (testl

ITCS 2116: C Programming - 36

true) */

n CHARLOTTE

The union Statement

* Defined like a struct, but only stores exactly one of the
named members

— motivation: use less memory
* Nothing in the union tells you which member is stored there!

— usually, another variable indicates what is stored in the union

| et tHeyars

union Example

/* animal can have only one of the following */
union properties {

unsigned short speed of flight; // bird
bool freshwater or saltwater; // £ish
enum {VERY, SOME, NONE} hairiness; // mammal
}i
struct {

unsigned char type;

char * name;

union properties info;
} animals[10];

animals[0] . type = MAMMAL;
animals[0] .name = "Polar Bear'";
animals[0] .info.hairiness = VERY;

ITCS 2116: C Programming - 38 n CHARLOTTE

References

* K.N.King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

* D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

ITCS 2116: C Programming - 41 n CHARLOTTE

