
ITCS 2116: C Programming - 1

structs

ITCS 2116: C Programming
College of Computing and Informatics
Department of Computer Science

ITCS 2116: C Programming - 2

structs

• Example: a person has multiple attributes
– name
– weight
– height
– gender
– ID number
– age
– etc.

• To indicate these are all part of the same entity, we
define a struct data type for persons

ITCS 2116: C Programming - 3

Declaring Structure Tag

Makes more sense than simply
defining these fields
individually, not indicating how
they are related

struct person {
char name[LEN];
int height;
int weight;
char gender;
int idnum;
short age;
…

};

struct person
persons[MAXP];

char *name[MAXP];
int height[MAXP];
int weight[MAXP];
char gender[MAXP];
int idnum[MAXP];
short age[MAXP];

…

ITCS 2116: C Programming - 4

Declaring Structs
struct {

char name[LEN];
int height;
int weight;
char gender;
int idnum;
short age;
…

} person1, person2;

Unnamed struct

struct variables

struct {
char name[LEN];
int height;
int weight;
char gender;
int idnum;
short age;
…

} person1 = {“Bob”,
70, 185, ‘M’, 5, 27},
person2 = {…};

Initialized struct variables

ITCS 2116: C Programming - 5

structs in Memory

name

height

weight

gender

idnum

age

• struct members stored in memory in order declared
• Each member is allocated the amount of memory

appropriate to its type
• Members are in same memory block

– May be offsets

ITCS 2116: C Programming - 6

struct Name Space

• A struct is a new scope
• Two different structs can have members with the same

names

struct person {
char name[LEN];
int weight;
int height;
…

};

struct student {
char name[LEN];
char class;
int creditHours;
…

};

No conflict!

ITCS 2116: C Programming - 7

Initializing Named structs
Unitialized

struct person person1;

struct person person1 =
{“Fred”, 72, 180, ‘M’, 12345, 20};

struct person person1 =
{“Fred”, 72, 180, ‘M’};

Fully initialized

Partially initialized (version 1)

(see struct_initialization.c in Code
samples and Demonstrations in Canvas)

ITCS 2116: C Programming - 8

…Initializing (cont’d)

struct person person1 =
{.name = “Fred”,
.height = 72,
.gender = ‘M’,
.idnum = 12345};

Partially initialized (version 2)

(see struct_initialization.c in Code
samples and Demonstrations in Canvas)

ITCS 2116: C Programming - 10

Referring to structs and members
Simple assignment to a struct member

person3.weight = 200;

Assignment to an entire struct (version 1)

person2 = person1;

Assignment to an entire struct (version 2)
person4 = (struct person)

{“Mary”,
66,
125,
‘F’,
98765,
21};

This code uses a
compound literal.

ITCS 2116: C Programming - 11

structs can contain structs

One struct... struct date {
unsigned short month;
unsigned short day;
unsigned int year;

};

Contained in
another struct...

struct person-with-start {
struct date start;
char name[LEN];
int height;
int weight;
char gender;
int idnum;
short age;
…

};

ITCS 2116: C Programming - 12

structs can contain... (cont'd)

Referencing a struct within a struct

struct person-with-start p1;
...
p1.start.month = 8;
p1.start.day = 16;
p1.start.year = 2009;

ITCS 2116: C Programming - 14

Arrays of structs
Example

…
int main () {

struct person persons[100];

persons[1] = getstruct(“Liz”);
persons[2] = getstruct(“Jim”);
(persons[2]).idnum = 23456;
…

}

Are parentheses needed?
No

(see struct_array1.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 15

Reminder: C Operator Precedence
Tokens Operator Class Prec. Associates

a[k] subscripting postfix

16

left-to-right
f(...) function call postfix left-to-right

. direct selection postfix left-to-right
-> indirect selection postfix left to right

++ -- increment, decrement postfix left-to-right
(type){init} literal postfix left-to-right

++ -- increment, decrement prefix

15

right-to-left
sizeof size unary right-to-left

~ bit-wise complement unary right-to-left
! logical NOT unary right-to-left

- + negation, plus unary right-to-left
& address of unary right-to-left

* Indirection
(dereference) unary right-to-left

ITCS 2116: C Programming - 16

Arrays of… (cont'd)

Example of an array of structs, each containing an array
of structs…

struct phonenumber {
short areacode;
short exchange;
short number;
char type;

};

struct person {
…
struct phonenumber pno[4];

};
struct person persons[MAXPERSONS];

ITCS 2116: C Programming - 17

Initializing Arrays of structs
Example

struct person persons[100] = {
{ “Fred”, 72, 180, ‘M’, 0, 20 },
{ “Liz”, 63, 115, ‘F’, 33333, 19 },
{ “Mary”, 76, 180, ‘F’, 44444, 25,
{{919, 515, 2044, ‘W’},
{919, 555, 6789, ‘H’}} },

[10] = {.name = “Bill”, .height = 70,
.gender = ‘M’}

};

ITCS 2116: C Programming - 18

Referencing Arrays of structs

if (((persons[4]).pno[2]).areacode == 919)
…

Are parentheses
needed?

No

(see struct_array2.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 20

structs as Input Parameters

Structs are passed by value, as usual
– i.e., a copy is made and passed to the function

void printname (struct person);

int main () {
struct person person1 = {…};
(void) printname (person1);
…

}

void printname (struct person p)
{

(void) printf(“Name: %s\n”, p.name);
}

ITCS 2116: C Programming - 21

structs as Return Values

• (finally!) The answer to how functions can return multiple
results
– one struct (with multiple members) = one result

ITCS 2116: C Programming - 22

structs as Return Values
struct person getstruct(char * name) {

struct person new;
new.name = name;
printf (“Enter height and weight for %s: ”,

name);
(void) scanf(“%d %d”,

&(new.height), &(new.weight));
return (new);

}

int main () {
…
struct person person1 = getstruct(“Bob”);
…

}

Are parentheses needed? No

(see struct_return.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 24

structs Can Contain Pointers

struct person {
char *name;
…

} person1;

person1.name = “Donna”;
printf(“Name is %s\n”, person1.name);
char initial = *person1.name;

Are parentheses needed? No

Be careful when assigning string values from another function.
Use the strcpy() or strncpy() function.

ITCS 2116: C Programming - 25

Pointers to Structs

Are parentheses needed?
Yes!

struct person {
…

} person1, *p;

p = &person1;

(*p).name = “Donna”;
(*p).height = 65;
printf(“Name is %s\n”, (*p).name);
char initial = *(*p).name;
printf(“Height is %d\n”, (*p).height);

N common source of bugs N
failure to use parens

around (*p).m

(see struct_pointer1.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 26

A New Operator: ->

• Unfortunately, *p.height != (*p).height

• A new operator (for convenience):
(*a).b can be replaced by a->b

…
p = &person1;

p->name = “Donna”;
p->height = 65;
printf(“Name is %s\n”, p->name);
char initial = *p->name;
printf(“Height is %d\n”, p->height);

the value pointed to by
the member p.height

the height of the person
pointed to by p

What does *
dereference?

N common source of bugs N
failure to use parens

around (*p).m

(see struct_pointer2.c in Code samples
and Demonstrations in Canvas)

ITCS 2116: C Programming - 27

A New Operator… (cont’d)
• How about pointer to a struct containing pointer to a
struct containing…? No problem!

struct person {
…
struct person *father;
struct person *mother;

} persons[100], *p;
p = &persons[1];
p->father = &persons[22];
p->mother = &persons[45];

if (p->father->age >= 65)
…

printf(“Mother: %s\n”, p->mother->name);

Parentheses needed?

ITCS 2116: C Programming - 29

Enumerated Data Type

• Use for variables with small set of possible values, where
actual encoding of value is unimportant

enum colors {red, blue, green, white, black};
enum colors mycolor;

mycolor = blue;
...
if ((mycolor == blue) || (mycolor == green))

printf("cool color\n");

(see colors.c in Code samples and
Demonstrations in Canvas)

ITCS 2116: C Programming - 31

Enumerated Data Type (cont’d)

Don’t compare variables of different enumerated types - results
not what you expect!

enum {blue, red, green, white, black}
primarycolor;

enum {black, brown, orange, yellow}
halloweencolor;

primarycolor = black;
halloweencolor = black;
if (primarycolor == halloweencolor)

printf("Same color\n");

Although you can interpret enumerated data
types as integers, it is not recommended

What will print?

(see color_comparison.c in
Code samples and Demonstrations
in Canvas)

ITCS 2116: C Programming - 32

Enumerated Data Type (cont’d)

Compared to macros…?
#define BLUE 0
#define RED 1
#define GREEN 2
#define WHITE 3
#define BLACK 4

int primarycolor;
primarycolor = RED;
…
if (primarycolor == RED) …

GNOME: “If you have a list of possible values for a variable,
do not use macros for them; use an enum instead and give
it a type name”

ITCS 2116: C Programming - 33

The typedef Statement

Assigns an alternate name (synonym) to a C data type
– more concise, more readable

typedef char * cptr;
cptr cp;
char * dp; /* same type as cp */

typedef struct {
int val;
cptr name;
struct mystruct *next;

} llnode;
llnode entries[100];

typedef name, not a
declaration of a variable

ITCS 2116: C Programming - 34

The typedef Statement (cont’d)

• typedefs help make programs portable
– to retarget a program for a different architecture, just

redefine the typedefs and recompile
• Usually, typedefs are collected in a header file that

is #include’d in all source code modules

typedef int values[20];
values tbl1, tbl2; /* two arrays, each with

* 20 ints */

Arrays can be typedefs

ITCS 2116: C Programming - 36

bool variables
• Defines an integer variable that is restricted to store

only the values 0 (false) and 1 (true)
– attempt to assign any non-zero value will actually store the

value 1

#include <stdbool.h>
…
bool test1;

test1 = ((c = getchar()) && (c != ‘n’));

if (test1) /* or (test1 == true) */
…

ITCS 2116: C Programming - 37

The union Statement

• Defined like a struct, but only stores exactly one of the
named members
– motivation: use less memory

• Nothing in the union tells you which member is stored there!
– usually, another variable indicates what is stored in the union

ITCS 2116: C Programming - 38

union Example
/* animal can have only one of the following */
union properties {
unsigned short speed_of_flight; // bird
bool freshwater_or_saltwater; // fish
enum {VERY, SOME, NONE} hairiness; // mammal

};

struct {
unsigned char type;
char * name;
union properties info;

} animals[10];

animals[0].type = MAMMAL;
animals[0].name = "Polar Bear";
animals[0].info.hairiness = VERY;

ITCS 2116: C Programming - 41

References

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

