
ITCS 2116: C Programming - 1

Dynamic Memory Allocation

ITCS 2116: C Programming
College of Computing and Informatics
Department of Computer Science



ITCS 2116: C Programming - 2

Why Dynamic Memory Allocation?

• Don't know how much data will need to be stored until 
runtime; choices?

#define MAXCLASSSIZE 500
struct student { …definition here… };
struct student students[MAXCLASSSIZE];

int i = 0;
while (more_students && (i < MAXCLASSSIZE))

readstudents (students[i++]);

Choice 1: Declare static array of maximum size that could 
possibly occur



ITCS 2116: C Programming - 3

Why Dynamic … (cont’d)

Choice 2: Declare dynamic (auto) array of specific size 
needed, at run time

int main (void) {
int maxnum;
printf(“Number of students in class? \n”);
scanf(“%d”, &maxnum);
struct student students[maxnum];

int i = 0;
while (more_students && (i < maxnum))

readstudents (students[i++]);
}



ITCS 2116: C Programming - 4

Why Dynamic… (cont’d)

Choice 3: Allocate memory dynamically using a standard library 
function (malloc or calloc)

#include <stdio.h>
#include <stdlib.h>
…
int main(void) {

struct student *sp;
while (more_students) {

sp = (struct student *) 
calloc (num, sizeof(struct student));

if (sp != NULL)
readstudents (sp);

}
}



ITCS 2116: C Programming - 5

Dynamic Storage Allocation

• Dynamic storage allocation is used most often for strings, 
arrays, and structures.

• Dynamically allocated structures can be linked together to 
form lists, trees, and other data structures.

• Dynamic storage allocation is done by calling a memory 
allocation function.

Copyright © 2008 W. W. Norton & Company. All rights reserved.



ITCS 2116: C Programming - 6

Memory Allocation Functions

• The <stdlib.h> header declares three memory allocation 
functions:
malloc—Allocates a block of memory but doesn’t initialize it.
calloc—Allocates a block of memory and clears it.
realloc—Resizes a previously allocated block of memory.

• These functions return a value of type void * (a “generic” 
pointer).

Copyright © 2008 W. W. Norton & Company. All rights reserved.



ITCS 2116: C Programming - 7

Null Pointers

• If a memory allocation function can’t locate a memory block of 
the requested size, it returns a null pointer.

• A null pointer is a special value that can be distinguished from 
all valid pointers.

• After we have stored the function’s return value in a pointer 
variable, we must test to see if it is a null pointer.

Copyright © 2008 W. W. Norton & Company. All rights reserved.



ITCS 2116: C Programming - 8

Null Pointers

• An example of testing malloc’s return value:
p = malloc(10000);
if (p == NULL) {
/* allocation failed; take appropriate action */

}

• NULL is a macro (defined in various library headers) that represents 
the null pointer.

• Some programmers combine the call of malloc with the NULL test:
if ((p = malloc(10000)) == NULL) {
/* allocation failed; take appropriate action */

}

Copyright © 2008 W. W. Norton & Company. All rights reserved.



ITCS 2116: C Programming - 9

Memory Layout of a Program

• The heap is an area of virtual memory available for dynamic 
(runtime) memory allocation

Instructions (Code)

The Heap

The Stack

Static Data
Statically allocated

Dynamically allocated

In
cr

ea
si

ng
 m

em
or

y 
ad

dr
es

se
s



ITCS 2116: C Programming - 10

C  vs. Other Languages

• C requires you to manually allocate and reclaim memory.
• Other languages (e.g. Java, C#) automatically allocate and 

reclaim memory for you.



ITCS 2116: C Programming - 11

The sizeof Operator

• Not a function call; a C operator
– returns number of bytes required by a data type

• Return value is of predefined type size_t
#include <stdlib.h>
size_t tsz1, tsz2, tsz3;
int a;
float b[100];
struct student { …definition here… } st;

tsz1 = sizeof (a);  /* 4 */
tsz2 = sizeof (b);  /* ? */
tsz3 = sizeof (st); /* ? */

what are these sizes?

(see sizeof_example.c in 
Code samples and 
Demonstrations in Canvas)



ITCS 2116: C Programming - 12

The calloc() Standard Library Function

Syntax: 

struct student * students;
students = (struct student *) 

calloc (num, sizeof(struct student));
int * ip;
ip = (int *) calloc (1, sizeof (int));
char *cp;
cp = (char *) calloc (1000, sizeof (char));

Generic pointer, must be cast to type of result

void * calloc (size_t num, size_t sz)

OS allocates (num * sz) bytes of contiguous 
storage  (all bytes initialized to zeros)



ITCS 2116: C Programming - 13

calloc() (cont’d)

• Return value is starting address of the storage allocated
• If not enough memory available, returns NULL

– Could also be a unique pointer that could be passed to free() 
– ALWAYS check for this error

cp = (char *) calloc (1000, sizeof (char));
if (cp == NULL) {

printf(“Cannot allocate memory; exiting\n”);
exit (-1);

}

N common source of bugsN
failure to check

return value



ITCS 2116: C Programming - 14

The malloc() Std. Lib. Function

• Syntax: void * malloc (size_t sz)
• OS allocates sz bytes of contiguous storage 

– Uninitialized

• Returns starting address of storage
– If size is 0, returns NULL or unique pointer that can be freed

students = (struct student *) 
malloc ( num * sizeof(struct student));

ip = (int *) malloc (sizeof (int));
cp = (char *) malloc ( 1000 * sizeof (char));

N common source of bugsN
malloc() does not
initialize memory

(see examples.c in Code samples and Demonstrations
in Canvas)



ITCS 2116: C Programming - 16

The realloc() Std. Lib. Function

• Syntax: void * realloc(void * ptr, size_t sz)

• Grows or shrinks allocated memory
– ptr must be dynamically allocated
– Growing memory doesn’t initialize new bytes
– If can’t expand, returns NULL. Old memory is unchanged
– If ptr is NULL, behaves like malloc
– If sz is NULL, behaves like free
– Memory shrinks in place
– Memory may NOT grow in place

• If not enough space, will move to new location and copy contents
• Old memory is freed
• Update all pointers!!!



ITCS 2116: C Programming - 17

The free() Standard Library Function

• Syntax: void free (void * ptr)
– no way to check for errors!
– ptr must have been previously allocated by malloc() or 
calloc()

– no need to specify amount of memory to be freed.
– Frees (for other uses) memory previously allocated

free(students);
free (ip);
free (cp);

N common source of bugsN
failure to free

unused memory



ITCS 2116: C Programming - 19

Dynamic Memory Allocation 
Common Mistakes

• These bugs can really be hard to find and fix 
– May run for hours before the bug pops up, and in a place that 

appears to have no relationship to the actual cause of the error



ITCS 2116: C Programming - 20

Mistake M1: Invalid Pointers

• Problems?

char *ptr;
…
ptr = 'A';
…
*ptr = 'B';

N common source of bugs N

int i, j, result;
result = scanf (“%d %d”, i, &j);

(see invalid1.c and
invalid2.c in Code 
samples and Demonstrations
in Canvas)



ITCS 2116: C Programming - 21

Invalid Pointers (cont’d)

• Problems?

int * f( void )
{

int val;
…
return &val;

}

why is this a problem?

N common source of bugs N

(see invalid3.c in Code 
samples and Demonstrations
in Canvas)



ITCS 2116: C Programming - 22

Invalid Pointers (cont’d)

• Problems? Fix?

…dynamically allocate and construct a linked 
list…
…
/* now list is no longer needed,
* free memory 
*/
for (p = head; p != NULL; p = p->next)

free(p);
why is this a problem?

N common source of bugs N



ITCS 2116: C Programming - 23

M2: Not Initializing Memory

• Problems?
int * sumptr;
int ival[100] = { …initial values here… };
int i;

sumptr = (int *) malloc ( sizeof(int) );

for (i = 0; i < 10; i++)
*sumptr += ival[i];

N common source of bugs N

(see no_initialization.c in Code 
samples and Demonstrations in Canvas)



ITCS 2116: C Programming - 24

M3: Stack Buffer Overflows

• Problems?
• One of the biggest sources of security problems

void bufoverflow (void)
{

char buf[64];

(void) gets(buf);
return;

}

N common source of bugs N

Are you sure the input will be no more than 64 
characters long?



ITCS 2116: C Programming - 25

M4: Writing Past End of 
Dynamically Allocated Memory

int i, sz;
int *ip, *jp;

(void) scanf (“%d”, &sz);
ip = (int *) calloc (sz, sizeof(int));
…check for errors here…

jp = ip;
for (i = 0; i <= sz; i++)

(void) scanf (“%d”, jp++); 

why is this a problem?

N common source of bugs N



ITCS 2116: C Programming - 26

M5: Freeing Unallocated Memory

Problems?

int i;
int *ip;

ip = &i;
…
free(ip); 

why is this a problem?

N common source of bugs N

(see allocate.c in Code samples and 
Demonstrations in Canvas)



ITCS 2116: C Programming - 27

Freeing Unallocated …(cont’d)

• Problems?
int *ip;

ip = (int *) calloc (1000, sizeof(int));
…
free(ip);
…
free(ip); 

N common source of bugs N

(see double_free.c in Code samples and 
Demonstrations in Canvas)



ITCS 2116: C Programming - 28

M6: Memory Leaks

• Allocated memory is referenced using pointer returned by 
allocation

• If you lose pointers (free them, change to another address), 
you can no longer reference or free allocated memory

• Common problem in large, long-running programs (think: 
servers)
– over time, memory footprint of program gets bigger, bigger, …

N common source of bugs N



ITCS 2116: C Programming - 29

M6: Memory Leaks
void leak (int n)
{

int * xp;
xp = (int *) malloc (n * sizeof(int));
…memory is used and then no longer needed…
return;

} N common source of bugsN

why is this a problem?

No use of free to release memory.



ITCS 2116: C Programming - 31

Automatic Garbage Collection?
C requires you to manually allocate and reclaim memory, 
e.g... void addFirst (Object obj) {

Node * newNode = 
(Node *) malloc (sizeof(Node));

assert( newNode != NULL );
newNode->data = ...;
newNode->next = first;
first = newNode;

}

Object removeFirst() {
assert (first != NULL);
Node * old = first;
Object obj = first->data;
first = first->next;
free (old);
return obj;

}

Programmer explicitly
indicates there are no
more references to
the removed object



ITCS 2116: C Programming - 33

References

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W. 
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program 
Design, Seventh Edition. Cengage Learning. 2014.


