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Why Dynamic Memory Allocation?

• Don't know how much data will need to be stored until 
runtime; choices?

#define MAXCLASSSIZE 500
struct student { …definition here… };
struct student students[MAXCLASSSIZE];

int i = 0;
while (more_students && (i < MAXCLASSSIZE))

readstudents (students[i++]);

Choice 1: Declare static array of maximum size that could 
possibly occur
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Why Dynamic … (cont’d)

Choice 2: Declare dynamic (auto) array of specific size 
needed, at run time

int main (void) {
int maxnum;
printf(“Number of students in class? \n”);
scanf(“%d”, &maxnum);
struct student students[maxnum];

int i = 0;
while (more_students && (i < maxnum))

readstudents (students[i++]);
}
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Why Dynamic… (cont’d)

Choice 3: Allocate memory dynamically using a standard library 
function (malloc or calloc)

#include <stdio.h>
#include <stdlib.h>
…
int main(void) {

struct student *sp;
while (more_students) {

sp = (struct student *) 
calloc (num, sizeof(struct student));

if (sp != NULL)
readstudents (sp);

}
}
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Dynamic Storage Allocation

• Dynamic storage allocation is used most often for strings, 
arrays, and structures.

• Dynamically allocated structures can be linked together to 
form lists, trees, and other data structures.

• Dynamic storage allocation is done by calling a memory 
allocation function.

Copyright © 2008 W. W. Norton & Company. All rights reserved.
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Memory Allocation Functions

• The <stdlib.h> header declares three memory allocation 
functions:
malloc—Allocates a block of memory but doesn’t initialize it.
calloc—Allocates a block of memory and clears it.
realloc—Resizes a previously allocated block of memory.

• These functions return a value of type void * (a “generic” 
pointer).

Copyright © 2008 W. W. Norton & Company. All rights reserved.
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Null Pointers

• If a memory allocation function can’t locate a memory block of 
the requested size, it returns a null pointer.

• A null pointer is a special value that can be distinguished from 
all valid pointers.

• After we have stored the function’s return value in a pointer 
variable, we must test to see if it is a null pointer.

Copyright © 2008 W. W. Norton & Company. All rights reserved.
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Null Pointers

• An example of testing malloc’s return value:
p = malloc(10000);
if (p == NULL) {
/* allocation failed; take appropriate action */

}

• NULL is a macro (defined in various library headers) that represents 
the null pointer.

• Some programmers combine the call of malloc with the NULL test:
if ((p = malloc(10000)) == NULL) {
/* allocation failed; take appropriate action */

}

Copyright © 2008 W. W. Norton & Company. All rights reserved.
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Memory Layout of a Program

• The heap is an area of virtual memory available for dynamic 
(runtime) memory allocation
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C  vs. Other Languages

• C requires you to manually allocate and reclaim memory.
• Other languages (e.g. Java, C#) automatically allocate and 

reclaim memory for you.
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The sizeof Operator

• Not a function call; a C operator
– returns number of bytes required by a data type

• Return value is of predefined type size_t
#include <stdlib.h>
size_t tsz1, tsz2, tsz3;
int a;
float b[100];
struct student { …definition here… } st;

tsz1 = sizeof (a);  /* 4 */
tsz2 = sizeof (b);  /* ? */
tsz3 = sizeof (st); /* ? */

what are these sizes?

(see sizeof_example.c in 
Code samples and 
Demonstrations in Canvas)
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The calloc() Standard Library Function

Syntax: 

struct student * students;
students = (struct student *) 

calloc (num, sizeof(struct student));
int * ip;
ip = (int *) calloc (1, sizeof (int));
char *cp;
cp = (char *) calloc (1000, sizeof (char));

Generic pointer, must be cast to type of result

void * calloc (size_t num, size_t sz)

OS allocates (num * sz) bytes of contiguous 
storage  (all bytes initialized to zeros)
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calloc() (cont’d)

• Return value is starting address of the storage allocated
• If not enough memory available, returns NULL

– Could also be a unique pointer that could be passed to free() 
– ALWAYS check for this error

cp = (char *) calloc (1000, sizeof (char));
if (cp == NULL) {

printf(“Cannot allocate memory; exiting\n”);
exit (-1);

}

N common source of bugsN
failure to check

return value
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The malloc() Std. Lib. Function

• Syntax: void * malloc (size_t sz)
• OS allocates sz bytes of contiguous storage 

– Uninitialized

• Returns starting address of storage
– If size is 0, returns NULL or unique pointer that can be freed

students = (struct student *) 
malloc ( num * sizeof(struct student));

ip = (int *) malloc (sizeof (int));
cp = (char *) malloc ( 1000 * sizeof (char));

N common source of bugsN
malloc() does not
initialize memory

(see examples.c in Code samples and Demonstrations
in Canvas)
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The realloc() Std. Lib. Function

• Syntax: void * realloc(void * ptr, size_t sz)

• Grows or shrinks allocated memory
– ptr must be dynamically allocated
– Growing memory doesn’t initialize new bytes
– If can’t expand, returns NULL. Old memory is unchanged
– If ptr is NULL, behaves like malloc
– If sz is NULL, behaves like free
– Memory shrinks in place
– Memory may NOT grow in place

• If not enough space, will move to new location and copy contents
• Old memory is freed
• Update all pointers!!!
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The free() Standard Library Function

• Syntax: void free (void * ptr)
– no way to check for errors!
– ptr must have been previously allocated by malloc() or 
calloc()

– no need to specify amount of memory to be freed.
– Frees (for other uses) memory previously allocated

free(students);
free (ip);
free (cp);

N common source of bugsN
failure to free

unused memory



ITCS 2116: C Programming - 19

Dynamic Memory Allocation 
Common Mistakes

• These bugs can really be hard to find and fix 
– May run for hours before the bug pops up, and in a place that 

appears to have no relationship to the actual cause of the error
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Mistake M1: Invalid Pointers

• Problems?

char *ptr;
…
ptr = 'A';
…
*ptr = 'B';

N common source of bugs N

int i, j, result;
result = scanf (“%d %d”, i, &j);

(see invalid1.c and
invalid2.c in Code 
samples and Demonstrations
in Canvas)
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Invalid Pointers (cont’d)

• Problems?

int * f( void )
{

int val;
…
return &val;

}

why is this a problem?

N common source of bugs N

(see invalid3.c in Code 
samples and Demonstrations
in Canvas)
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Invalid Pointers (cont’d)

• Problems? Fix?

…dynamically allocate and construct a linked 
list…
…
/* now list is no longer needed,
* free memory 
*/
for (p = head; p != NULL; p = p->next)

free(p);
why is this a problem?

N common source of bugs N
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M2: Not Initializing Memory

• Problems?
int * sumptr;
int ival[100] = { …initial values here… };
int i;

sumptr = (int *) malloc ( sizeof(int) );

for (i = 0; i < 10; i++)
*sumptr += ival[i];

N common source of bugs N

(see no_initialization.c in Code 
samples and Demonstrations in Canvas)
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M3: Stack Buffer Overflows

• Problems?
• One of the biggest sources of security problems

void bufoverflow (void)
{

char buf[64];

(void) gets(buf);
return;

}

N common source of bugs N

Are you sure the input will be no more than 64 
characters long?
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M4: Writing Past End of 
Dynamically Allocated Memory

int i, sz;
int *ip, *jp;

(void) scanf (“%d”, &sz);
ip = (int *) calloc (sz, sizeof(int));
…check for errors here…

jp = ip;
for (i = 0; i <= sz; i++)

(void) scanf (“%d”, jp++); 

why is this a problem?

N common source of bugs N
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M5: Freeing Unallocated Memory

Problems?

int i;
int *ip;

ip = &i;
…
free(ip); 

why is this a problem?

N common source of bugs N

(see allocate.c in Code samples and 
Demonstrations in Canvas)
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Freeing Unallocated …(cont’d)

• Problems?
int *ip;

ip = (int *) calloc (1000, sizeof(int));
…
free(ip);
…
free(ip); 

N common source of bugs N

(see double_free.c in Code samples and 
Demonstrations in Canvas)
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M6: Memory Leaks

• Allocated memory is referenced using pointer returned by 
allocation

• If you lose pointers (free them, change to another address), 
you can no longer reference or free allocated memory

• Common problem in large, long-running programs (think: 
servers)
– over time, memory footprint of program gets bigger, bigger, …

N common source of bugs N
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M6: Memory Leaks
void leak (int n)
{

int * xp;
xp = (int *) malloc (n * sizeof(int));
…memory is used and then no longer needed…
return;

} N common source of bugsN

why is this a problem?

No use of free to release memory.
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Automatic Garbage Collection?
C requires you to manually allocate and reclaim memory, 
e.g... void addFirst (Object obj) {

Node * newNode = 
(Node *) malloc (sizeof(Node));

assert( newNode != NULL );
newNode->data = ...;
newNode->next = first;
first = newNode;

}

Object removeFirst() {
assert (first != NULL);
Node * old = first;
Object obj = first->data;
first = first->next;
free (old);
return obj;

}

Programmer explicitly
indicates there are no
more references to
the removed object
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