Dynamic Memory Allocation

ITCS 2116: C Programming

College of Computing and Informatics
Department of Computer Science

| et tHeyars



Why Dynamic Memory Allocation?

e Don't know how much data will need to be stored until
runtime; choices?

Choice 1: Declare static array of maximum size that could
possibly occur

#define MAXCLASSSIZE 500
struct student { ..definition here.. };
struct student students[MAXCLASSSIZE];

int i = 0;
while (more students && (i < MAXCLASSSIZE))
readstudents (students[i++]);

ITCS 2116: C Programming -2 n CHARLOTTE



Why Dynamic ... (cont’d)

Choice 2: Declare dynamic (auto) array of specific size
needed, at run time

int main (void) {
int maxnum;
printf (“Number of students in class? \n”);
scanf (V"3d”, &maxnum) ;
struct student students|[maxnum] ;

int 1 = 0;
while (more students && (i < maxnum))
readstudents (students[i++]);

ITCS 2116: C Programming - 3 n CHARLOTTE



Why Dynamic... (cont’d)

Choice 3: Allocate memory dynamically using a standard library
function (malloc or calloc)

#include <stdio.h>
#include <stdlib.h>

int main(void) {
struct student *sp;
while (more students) ({
sp = (struct student ¥*)
calloc (num, sizeof(struct student)) ;
if (sp '= NULL)
readstudents (sp)

ITCS 2116: C Programming -4 n CHARLOTTE



Dynamic Storage Allocation

* Dynamic storage allocation is used most often for strings,
arrays, and structures.

* Dynamically allocated structures can be linked together to
form lists, trees, and other data structures.

* Dynamic storage allocation is done by calling a memory
allocation function.

ITCS 2116: C Programming - 5 Copyright © 2008 W. W. Norton & Company. All rights reserved. nCHARLOTTE



Memory Allocation Functions

* The<stdlib.h> header declares three memory allocation
functions:

malloc—Allocates a block of memory but doesn’t initialize it.

calloc—Allocates a block of memory and clears it.
realloc—Resizes a previously allocated block of memory.

* These functions return a value of type void * (a “generic”
pointer).

ITCS 2116: C Programming - 6 Copyright © 2008 W. W. Norton & Company. All rights reserved. nCHARLOTTE



Null Pointers

* If a memory allocation function can’t locate a memory block of
the requested size, it returns a null pointer.

* A null pointer is a special value that can be distinguished from
all valid pointers.

e After we have stored the function’s return value in a pointer
variable, we must test to see if it is a null pointer.

ITCS 2116: C Programming - 7 Copyright © 2008 W. W. Norton & Company. All rights reserved. nCHARLOTTE



Null Pointers

 An example of testingmalloc’s return value:

p = malloc(10000) ;
if (p == NULL) ({
/* allocation failed; take appropriate action */

}

e NULL is a macro (defined in various library headers) that represents
the null pointer.

 Some programmers combine the call of malloc with the NULL test:

if ((p = malloc(10000)) == NULL) {
/* allocation failed; take appropriate action */

}

ITCS 2116: C Programming - 8

Copyright © 2008 W. W. Norton & Company. All rights reserved. nCHARLOTTE



Memory Layout of a Program

* The heap is an area of virtual memory available for dynamic

(runtime) memory allocation

™

<

Increasing memory addresses

> Statically allocated

> Dynamically allocated

ITCS 2116: C Programming - 9

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE




C vs. Other Languages

* Crequires you to manually allocate and reclaim memory.

 Other languages (e.g. Java, C#) automatically allocate and
reclaim memory for you.

ITCS 2116: C Programming - 10 n CHARLOTTE



The sizeof Operator

* Not a function call; a C operator

— returns number of bytes required by a data type

(see sizeof example.c in

Code samples and
Demonstrations in Canvas)

* Return value is of predefined type size t

#include <stdlib.h>

int a;
float b[100];

tszl = sizeof (a);
tsz2 = sizeof (b);
tsz3 = sizeof (st);

size t tszl, tsz2, tsz3;

/* 4 %/
/* 2 %/
/* 2 %/

struct student { ..definition here..

what are these sizes?

v

} st;

ITCS 2116: C Programming - 11

n CHARLOTTE




The calloc () Standard Library Function

Syntax: calloc (size t num, size t sz)

\Gener/c pointer, néjst be cast to type of result

OS allocates (num * sz) bytes of contiguous
storage (all bytes initialized to zeros)

struct student * students; *_—’—_—_’_,,//’/,
students = (struct student *)

calloc (num, sizeof (struct student));
int * ip;
ip = (int *) calloc (1, sizeof (int));

char *cp;
cp = (char *) calloc (1000, sizeof (char));

ITCS 2116: C Programming - 12 n CHARLOTTE




calloc () (cont’'d)

* Return value is starting address of the storage allocated
* If not enough memory available, returns NULL

— Could also be a unique pointer that could be passed to free()
— ALWAYS check for this error

& common source of bugs

failwre to- check
return value

cp = (char *) calloc (1000, sizeof (char));

if (cp == NULL) {
printf (“Cannot allocate memory; exiting\n”);
exit (-1);

}

ITCS 2116: C Programming - 13 n CHARLOTTE



Themalloc () Std. Lib. Function

* Syntax: void * malloc (size t sz)
 OS allocates sz bytes of contiguous storage

_ TN T & common source of bugs
Uninitialized malloc() does not
e Returns starting address of storage initiodige :

— If size is O, returns NULL or unique pointer that can be freed

students = (struct student *)

malloc ( num * sizeof (struct student)) ;
(int *) malloc (sizeof (int));

(char *) malloc ( 1000 * sizeof (char));

ip
cp

(isee examples.c in Code samples and Demonstrations J

in Canvas)

n CHARLOTTE

ITCS 2116: C Programming - 14

—




The realloc () Std. Lib. Function

* Syntax:void * realloc(void * ptr, size t sz)

* Grows or shrinks allocated memory
— ptr must be dynamically allocated
— Growing memory doesn’t initialize new bytes
— If can’t expand, returns NULL. Old memory is unchanged
— If ptr is NULL, behaves like malloc
— If sz is NULL, behaves like free
— Memory shrinks in place

— Memory may NOT grow in place
* If not enough space, will move to new location and copy contents
 Old memoryis freed
e Update all pointers!!!

ITCS 2116: C Programming - 16 n CHARLOTTE



The £ree () Standard Library Function

* Syntax: void free (void * ptr)
— no way to check for errors!

— ptr must have been previously allocated bymalloc () or
calloc ()

— no need to specify amount of memory to be freed.
— Frees (for other uses) memory previously allocated

free (students) ;

free (1ip); ;ngﬁfw
free (cp): wwedfjmw;ijy

ITCS 2116: C Programming - 17 n CHARLOTTE



Dynamic Memory Allocation
Common Mistakes

 These bugs can really be hard to find and fix

— May run for hours before the bug pops up, and in a place that
appears to have no relationship to the actual cause of the error

ITCS 2116: C Programming - 19 n CHARLOTTE



Mistake M1: Invalid Pointers

e Problems?

& common source of bugs

int 1,

Jj, result;

result = scanf (“"%d %47,

1,

&j) ;

ptr =

*ptr =

char *ptr;

'Al ;

'B';

(see invalidl.c and
invalid2.c in Code
samples and Demonstrations

in Canvas)

ITCS 2116: C Programming - 20

n CHARLOTTE




Invalid Pointers (cont’d)

& common source of bugs

e Problems?

int * £( void )

{

samples and Demonstrations

int wval; (see invalid3.c in Code
in Canvas)

return &val; |

} \/\
\

why is this a problem?

| et tHeyars



Invalid Pointers (cont’d)

. common source of bugs:

* Problems? Fix? =

..dynamically allocate and construct a linked
list..

/* now list is no longer needed,
* free memory

*/
for (p = head; p '= NULL; p = p->next)

free (p) ; 1\

why is this a probl‘em?

ITCS 2116: C Programming - 22 n CHARLOTTE



M2: Not Initializing Memory

e Problems?

& common source of bugs

int * sumptr;

int ival[l00] = { ..initial values here.. };
int i;
sumptr = (int *) malloc ( sizeof(int) );
for (1 = 0; 1 < 10; i++4)
*sumptr += ival[i];
(see no_initialization.c in Code
samplfs and Demonstrations in Canvas)

ITCS 2116: C Programming - 23

n CHARLOTTE




M3: Stack Buffer Overflows

void bufoverflow (void) & common source of bugs

{

char buf[64];

(void) gets (buf) ;
return;

}

* Problems?
* One of the biggest sources of security problems

Are you sure the input will be no more than 64
characters long?

ITCS 2116: C Programming - 24 n CHARLOTTE



MA4: Writing Past End of

Dynamically Allocated Memory

ITCS 2116: C Programming - 25

int 1, sz;
int *ip, *jp;

(void) scanf (“"%d”, &sz);
ip = (int *) calloc (sz, sizeof(int));

...check for errors here..

Jp = 1p;

for (i = 0; i <= sz; i++)

(void) scanf\é)ﬁi", Jjpt+)

\

why is this a problem?

‘Eh]HARJKYFTE




M5: Freeing Unallocated Memory

Problems?

int i; % commorvsource of bugs®
int *ip;

ip = &1;

free (ip) ;

~—N\
\

why is this a problem?

(see allocate.c in Code samples and
Demonstrations in Canvas)

| et tHeyars




Freeing Unallocated ...(cont’d)

e Problems?

int *ip;

ip = (int *) calloc (1000, sizeof(int));

free (ip) ; & common source of bugsd

free (ip) ;

(see double free.c in Code samples and
Demonstrations in Canvas)

ITCS 2116: C Programming - 27 n CHARLOTTE



M6: Memory Leaks

L common source of bugs
* Allocated memory is referenced using pointer returned by
allocation

* |f you lose pointers (free them, change to another address),
you can no longer reference or free allocated memory

e Common problem in large, long-running programs (think:
servers)

— over time, memory footprint of program gets bigger, bigger, ...

ITCS 2116: C Programming - 28 n CHARLOTTE




M6: Memory Leaks

void leak (int n)

{

int * xp;

Xp = (int *) malloc (n * sizeof (int)) ;
..memory is used and then no longer needed..
return;
} &/\ & common source of bugsd
|
\

why is this a problem?

m of free to release memory. ]

ITCS 2116: C Programming - 29 n CHARLOTTE



Automatic Garbage Collection?

C requires you to manually allocate and reclaim memory,

e.g... void addFirst (Object obj) {
Node * newNode =

(Node *) malloc (sizeof (Node)) ;
assert( newNode '= NULL ) ;
newNode->data = ...;
newNode->next = first;
first = newNode;

}

Object removeFirst() {

indicates there are no assert (first != NULL);
Node * old = first;

more reference?’ to Object obj = first->data;
the removed object first = first->next;

» free (old);
k./////’—' return obj;

ITCS 2116: C Programming - 31 n CHARLOTTE

Programmer explicitly




References

* K.N.King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

* D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

ITCS 2116: C Programming - 33 n CHARLOTTE



