The Rest of C

ITCS 2116: C Programming

College of Computing and Informatics
Department of Computer Science

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 1

The const Keyword...

Indicates to the compiler that a value should not change during
program execution

— should be initialized, but not changed

const int twopowfive = 32;
const float pi = 3.14159;

twopowfiv = 64; /* ERROR */
pi = 6.3; /* ERROR */

ITCS 2116: C Programming - 3 n CHARLOTTE

... (cont’d)

Is this better than macros?

#define TWOPOWFIV 32
#define PI 3.14159

Derived types can be const also

struct pet {
char *name;
unsigned short weight;
unsigned char age;
unsigned char type;

};

const struct pet mypet =

{ “Fluffy”, 30, 5, DOG };
ITCS 2116: C Programming - 4 nCHARLOTTE

const and Pointers...

Is it the pointer that cannot be changed, or the thing it points at?

Changeable pointer to changeable character:

char * cp = &c;
cp++ = ‘A’; / no problems */

Constant pointer to changeable character

char *cp = &c;
cp = 'Q’; / No problems */
cp = &d ; /* ERROR, changes pointer */

ITCS 2116: C Programming - 5 n CHARLOTTE

. (cont'd)

Changeable pointer to constant character

cp = ‘Z’ ; / ERROR, changes value
* pointed to */

c = ‘Z2’; /* But this is OK! */

cp = &d; /* No problems */

Constant pointer to constant character
const char const cp &c;
cp++ ‘Z’ ; / ERROR, changes both */

Considered good practice; use whenever possible (particularly
pointers passed to functions)

ITCS 2116: C Programming - 6 n CHARLOTTE

The union Statement

* Defined like a struct, but only stores exactly one of the named
members

— motivation: use less memory
* Nothing in the union tells you which member is stored there!

— usually, another variable indicates what is stored in the union

ITCS 2116: C Programming - 8 n CHARLOTTE

union Example

/* animal can have only one of the following */
union properties {

unsigned short speed of flight; // bird
bool freshwater or saltwater; // £ish
enum {VERY, SOME, NONE} hairiness; // mammal
}i
struct {

unsigned char type;

char * name;

union properties info;
} animals[10];

animals[0] . type = MAMMAL;
animals[0] .name = "Polar Bear";
animals[0] .info.hairiness = VERY;

ITCS 2116: C Programming -9 n CHARLOTTE

Functions with a Variable Number of
Arguments...

Example: printf (char *fmt, ..)

— the first argument (char *fmt, the named argument) indicates how
many, and what type, of unnamed arguments to expect

— the . . . (the unnamed arguments) stands for an arbitrary list of
arguments provided by the calling program

ITCS 2116: C Programming - 11 n CHARLOTTE

... (cont’d)

* Requires macros defined in <stdarg.h>

 |n function f():

Declare a variable of type va list

Call va_start; returns pointer to the first unnamed argument

Call va_arg to return pointer to each successive unnamed argument

B W

Call va_end to end processing

ITCS 2116: C Programming - 12 n CHARLOTTE

... (cont’d)

* How many unnamed parameters?
— this has to be indicated by the named parameter
 What are types of unnamed parameters?

— either this is fixed (implicit), or the named parameter must explicitly
indicate

— example: the print£f () format specifier

ITCS 2116: C Programming - 13 n CHARLOTTE

Example...

* Afunction sumup (num, ..) which returnsthe sum of a list of
num arguments, all of type int

¢ Calllng sumup () . |#include <stdio.h>

#include <stdarg.h>
int sumup(int, ..);

int main (void)
{
int 1 = 295, j = 3, k = 450, res;
res = sumup(3, i, j, k);
) / \

List of unnamed arguments
/

”~
Number of unnamed arguments

ITCS 2116: C Programming - 14 n CHARLOTTE

... (cont’d)

* Definition of sumup ():

}

int sumup(int num, ..) {

_ Declare pointer to arguments

int sum; /

va list ap; - Makes ap point to first

unnamed angument

<4

va_ start(ap, num);

sum = 0;

for(int 1 = 0; 1 < num; i++)

sum += va arg(ap, int);

va end(ap) ; Remd argume

all of type int
return sum;\

Clean up before exiting

aNts,

ITCS 2116: C Programming - 15

n CHARLOTTE

Another Example...

* Function sumup (char *fmt, ..), where £mt specifies type and
number of unnamed arguments

— one character per unnamed argument
— types =i’ (int), d’ (double), and ‘¢’ (char)

— Ex.:if fmt[] equals “iddic” =
there are 5 unnamed arguments,
first and fourth are type int,
second and third are type double,
fifth is type char

float sumup (char *fmt, .);

float res;
res = sumup (“cid”, (char) ‘Q’, 2500, 3.141);

ITCS 2116: C Programming - 16 n CHARLOTTE

... (cont’d)

float sumup(char *fmt, ..) {
int 1i;
float sum = 0, d;
char c;
va list ap;
va_start(ap, fmt);
for(; *fmt '= ‘\0’; fmt++)
if (*fmt == ‘c’)
sum += va arg(ap, char));
else i1f (*fmt == ‘i’)
sum += va arg(ap, int));
else if (*fmt == ‘d’)
sum += va arg(ap, double)) ;
va_end (ap) ;
return sum;

ITCS 2116: C Programming - 17 n CHARLOTTE

Environmental Variables

* A way for users to customize execution environment of programs

* Example: B oo
/home/jerry
cmd> HOME=/home/linda

cmd> echo SHOME
/home/linda

Common environment variables:

TERM MAIL
SHELIL GROUP
USER LANG
PATH EDITOR
HOME PRINTER

‘?CHARUJFHE

Reading / Writing EV.s in C

Read using getenv () (#include <stdlib.h>)

char *string = getenv (“HOME") ;
printf (“$HOME=%s\n”, string);

And setenv () if you want to change them

setenv (YHOME”, "/home/new", 1) ;

ITCS 2116: C Programming - 19 n CHARLOTTE

Bit Fields in C

* Way to pack bits into a single word; useful?
e Bit fields of a word are defined like members of a structure

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

ITCS 2116: C Programming - 21

B it F i e | d S Exa m p I e e o o (http://www.cs.cf.ac.uk/Dave/C/)

* Frequently devices and OS communicate by means of a single

word

ITCS 2116: C Programming - 22

struct Disk_r

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

egister {
[ﬁeady:l;

error occurred:1;
disk spinning:1;
write protect:1;
head loaded:1;
error code:8;
track:9;
sector:5;
command:5;

n CHARLOTTE

...(cont’d)

struct Disk register * dr =
(struct Disk register *) MEMADDR;

/* Define sector and track to start read */
dr->sector = new_sector;

dr->track = new track;

dr->command = READ;

/* ready will be true when done, else wait */
while (! dr->ready) ;

if (dr->error occurred) /* check for errors */

{

switch (dr->error code)

ITCS 2116: C Programming - 23 n CHARLOTTE

Warnings About Bit Fields

e Recommendation: always make bit fields unsigned
e # of bits determines maximum value
e Restrictions

1. no arrays of bit fields
2. no pointers to a bit field

 Danger: files written using bit-fields are non-portable!
— order in which bit-fields stored within

— aword is system dependent

ITCS 2116: C Programming - 24 n CHARLOTTE

“Bit Twiddling”

* C has operators that treat operands simply as sequences of bits

* Question: Why do bit level operations in C (or any language)?
* Answer #1: lets you pack information as efficiently as possible

* Answer #2: some processing is faster to implement with bit-level
operations than with arithmetic operators

ITCS 2116: C Programming - 25 n CHARLOTTE

“Bit Twiddling”... (cont’d)

* EX: Iimage processing
— pack 64 B&W pixel values into a single long long operand, and
process 64 pixels with one instruction

— mask one image with another to create overlays

e Other applications:
— data compression,
— encryption
— error correction

— 1/0 device control

TGS 2116: G Programming - 26 n CHARLOTTE

Working in Binary With C?

& common source of bugs £

* There is no standard way to... thinking sequence of
~. — T’'s and 0’s means base 2

i=20 11;
/ \

— ...input an ASCll-encoded binary string and convert to an integer
~. _—

scan}\g%%",/&i) £

/\

— ...output an intege@ an ASCI}encoded binary string

— ...write a constai

printERED”, 1)
e Alternatives? — N

e chgrynﬁn‘E- octal or hexadecimal representation n CHARLOTTE

BitOps: One Operand

* Bit-wise complement (~)

— operand must be integer type

— result is ones-complement of operand (flip every bit)

— Example: ~0x0d

== 0xf2

Not the same as Logical NOT (!) or sign change (-)

char i, jl1, j2, 3j3;

0x0d;

// binary 00001101
// binary 11110010
// binary 11110011
// binary 00000000

ITCS 2116: C Programming - 28

// (binary 00001101)
// (binary 11110010)

n CHARLOTTE

BitOps: Two Operands

* QOperate bit-by-bit on operands to produce a result operand of
the same length

 And (&): result 1 if both inputs 1, 0 otherwise
 Or(|): result1if eitherinput 1, 0 otherwise
e Xor (”): result 1if one input 1, but not both, 0 otherwise

* Operands must be of type integer

ITCS 2116: C Programming - 29 n CHARLOTTE

Two Operands... (cont’d)

 Examples

00 111 000
&
11 011 110

00 011 000

ITCS 2116: C Programming - 30

00 111 000

I
11 011 110

11 111 110

00 111 000

A

11 011 110

11 100 110

n CHARLOTTE

Differences: Logical and Bit Ops

Results? Difference? Problems?

int a, b, c, int a, b, c,

d, e, £; d, e, £;
int 1 = 30; int 1 = 30;
int j = 0; int j = 0;
a =1 && j; a=1=& j;
b = !j; :%aammon source of bugs & b = "'j;
c = 1i: difference between | . _ _;.

logical and bit-level

float x = 30.0; operators float x = 30.0;
float y = 0.0; float y = 0.0;
d=x || vy’ d =x| vy,
e = ly; e = ~y;
f = 1x; f = ~x;

ITCS 2116: C Programming - 31 n CHARLOTTE

Shift Operations

* x << yisleft (logical) shift of x by y positions
— x and y must both be integers

& common source of bugs 2

logical shifts

— x should be unsigned or positive :
on negative numbers

— 0 <=y <= number of bits in x
— y leftmost bits of x are discarded
— zero fill y bits on the right

these 3 bits are discarded

01111001 << 3

11001000

768 2116: C Programming - 52 these 3 bits are zero filled n CHARLOTTE

ShiftOps... (cont’d)

* x >> yisright (logical) shift of x by y positions

— y rightmost bits of x are discarded

£ common source of bugs %

— zero fill y bits on the left logical shifts
on negative numbers

these 3 bits are discarded

/_)_\

01111001 >> 3

00001111

Y/

these 3 bits are zero filled

ITCS 2116: C Programming - 33 n CHARLOTTE

ShiftOps... (cont’d)

* Itis occasionally useful to know that...

— right logical shift of an unsigned number x by y positions is equivalent to
dividing x by 2VY

— left logical shift of an unsigned number x by y positions is equivalent to
multiplying x by 2V

unsigned char j, k, m;

j = 121;
k = j << 3
m= j >> 3;

printf (“%d %d %d\n”, j, k, m);

ITCS 2116: C Programming - 34 n CHARLOTTE

Other Useful Bit Operations

* Complementing, Anding, Oring, and Xoring bits are all provided directly by

C operators
 What about the following?

— clearing all or selected bits to 0’s, or setting all or selected bits to 1’s

— testing if all or selected bits are 0’s, or 1’s
— counting the number of bits that are O’s, or that are 1’s
— copying all or selected bits from xtoy

— copying a bit or bits from position i of x to position jof y

ITCS 2116: C Programming - 35

n CHARLOTTE

Clearing Bits to O’s

* Using C operators:
— & with 0 will clear, & with 1 means “no change”

* So, create a mask with 0’s where you want to clear, and 1’s
everywhere else

If input is... And mask is... | Then input & mask
0) 0) O (no change)
0) 1 O (no change)
1 0) O (clear)
1 1 1 (no change)

n CHARLOTTE

ITCS 2116: C Programming - 36

Clearing... (cont’d)

* How would you clear (to 0) all the bits in a char?

unsigned char m = 0x00; a: 00 111 011

a=aé&m:; &
m: 00 000 000

a: 00 000 000

* How would you clear the right two bits

(without changing the other bits)? a: 00 111 011
&
unsigned char m = 0374; m: 11 111 100

a=aé&m;, | |=mmmmm———————

a: 00 111 000

ITCS 2116: C Programming - 37 n CHARLOTTE

Setting Bits to 1’s

* Using C operators:

— | with 1 will set, | with 0 means “no change”

* So, create a mask with 1’s where you want to set, and 0’s
everywhere else

ITCS 2116: C Programming - 38

If input is... And mask is... Then input | mask =
0 0 0 (no change)
0 1 1 (set)
1 0 1 (no change)
1 1 1 (no change)

n CHARLOTTE

Setting... (cont’d)

 How would you set (to 1) all the bitsin a char ?

unsigned char m = 0377; a: 00 111 110

a=a | m; |
m: 11 111 111

a: 11 111 111

* How would you set the right two bits without changing the other
bits?

unsigned char m = 0003; a: 00 111 110
a=a | m; |

m: 00 000 011

a: 00 111 111

ITCS 2116: C Programming - 39 n CHARLOTTE

Complementing (Inverting) Bits

* Using C operators:

— M with 1 will complement, » with 0 means “no change”

* So, create a mask with 1's where you want to complement, and
0’s everywhere else

If input is... And mask is... Then input » mask =
0 0 0 (no change)
0 1 1 (complement)
1 0 1 (no change)
1 1 0 (complement)

ITCS 2116: C Programming - 40 n CHARLOTTE

Complementing... (cont’d)

* How would you complement (invert) all the bits in a char ?

a: 00 111 110
unsigned char m = 0377; A

a=a"m m: 11 111 111

a = ~a; //also works

a: 11 000 001

* How would you complement the right two bits without changing
the other bits? a: 00 111 110

>

unsigned char m = 0003;
a=a”m;

m: 00 000 011

a: 00 111 101

ITCS 2116: C Programming - 41 n CHARLOTTE

Testing Bits for 1’s

* Using C operators:
1. & with 1 where you want to test, & with 0 elsewhere

2. then check if result == mask

* So, create a mask with 1's where you want to test, and O’s
everywhere else

If input is... And mask is... Then input & mask =
0 0 0 (matches mask)
0 1 0 (won’t match mask)
1 0 0 (matches mask)
1 1 1 (matches mask)

ITCS 2116: C Programming - 42 n CHARLOTTE

Test... (cont’d)

* How would you test (if == 1) all the bits in a char ?

unsigned char m = 0377; a: 00 111 110
if ((a & m) == m) &
m: 11 111 111

00 111 110

* How would you test if the right two bits == 17

unsigned char m = 0003; a: 00 111 110

if ((a & m) == m) &
m: 00 000 011

Not equal to m > 00 000 010

ITCS 2116: C Programming - 43 n CHARLOTTE

Counting the Bits That Are 1’s

* Using C operators:
1. you already know how to test if a specific bit ==
2. do this for each bit, one at a time
3. each time the bit==1, add 1 to a counter

* A movable mask
— (0001 << i) creates a mask with a 1 in the ith position from the right,
and 0 everywhere else

n CHARLOTTE

ITCS 2116: C Programming - 44

Test... (cont’d)

unsigned char m;
unsigned int cnt = 0O;
for (1 = 0; i < 8; i++) {
m = 0001 << 1i;
if ((a & m) == m)
cnt += 1;

ITCS 2116: C Programming - 45

n CHARLOTTE

Testing Bits for O’s

* Using C operators:
— (you try it)
 How would you test (if == 0) all the bits in a char?

297

* How would you test if the two right bits == 0?

297

ITCS 2116: C Programming - 46 n CHARLOTTE

Copying Selected Bits (from b to a)

* Using C operators:
— clear all the bits in a you do want to replace

— clear all the bits in b you don’t want to copy

— | a with b to get result

a: 00 111 110 b: 10 100 101

& &

m: 11 111 100 m: 00 000 011
00 111 100 00 000 0OO1

00 111 101
ITCS 2116: C Programming - 47 nCHARLOTTE

N
References

K. N.King, C Programming: A Modern Approach, 2nd Edition. W. W. Norton
& Company. 2008.

 D.S. Malik, C++ Programming: From Problem Analysis to Program Design,
Seventh Edition. Cengage Learning. 2014.

* Slides source: CSC 230 - C and Software Tools
© NC State University Computer Science Faculty. Modified for class use.

ITCS 2116: C Programming - 49 n CHARLOTTE

