
ITCS 2116: C Programming - 1

The Rest of C

ITCS 2116: C Programming
College of Computing and Informatics
Department of Computer Science



ITCS 2116: C Programming - 3

The const Keyword...

Indicates to the compiler that a value should not change during 
program execution
– should be initialized, but not changed

const int twopowfive = 32;
const float pi = 3.14159;

twopowfiv = 64; /* ERROR */ 
pi = 6.3; /* ERROR */



ITCS 2116: C Programming - 4

... (cont’d)

Is this better than macros?
#define TWOPOWFIV 32
#define PI 3.14159

Derived types can be const also
struct pet {

char *name;
unsigned short weight;
unsigned char age;
unsigned char type;

};
const struct pet mypet = 

{ “Fluffy”, 30, 5, DOG };



ITCS 2116: C Programming - 5

const and Pointers...

Is it the pointer that cannot be changed, or the thing it points at?

Constant pointer to changeable character

char * cp = &c;
*cp++ = ‘A’;  /* no problems */

char * const cp = &c;
*cp = ‘Q’;  /* No problems */ 
cp = &d ;   /* ERROR, changes pointer */

Changeable pointer to changeable character:



ITCS 2116: C Programming - 6

... (cont'd)
Changeable pointer to constant character

Constant pointer to constant character

const char * cp = &c;
*cp = ‘Z’ ; /* ERROR, changes value 

* pointed to */
c = ‘Z’;    /* But this is OK! */
cp = &d;    /* No problems */

const char * const cp = &c;
*cp++ = ‘Z’ ; /* ERROR, changes both */

Considered good practice; use whenever possible (particularly 
pointers passed to functions)



ITCS 2116: C Programming - 8

The union Statement

• Defined like a struct, but only stores exactly one of the named 
members
– motivation: use less memory

• Nothing in the union tells you which member is stored there!
– usually, another variable indicates what is stored in the union



ITCS 2116: C Programming - 9

union Example
/* animal can have only one of the following */
union properties {
unsigned short speed_of_flight;      // bird
bool freshwater_or_saltwater;       // fish
enum {VERY, SOME, NONE} hairiness;   // mammal

};

struct {
unsigned char type;
char * name;
union properties info;

} animals[10];

animals[0].type = MAMMAL;
animals[0].name = "Polar Bear";
animals[0].info.hairiness = VERY;



ITCS 2116: C Programming - 11

Functions with a Variable Number of 
Arguments...

Example: printf(char *fmt, …)
– the first argument (char *fmt, the named argument) indicates how 

many, and  what type, of unnamed arguments to expect
– the ... (the unnamed arguments) stands for an arbitrary list of 

arguments provided by the calling program



ITCS 2116: C Programming - 12

… (cont’d)

• Requires macros defined in <stdarg.h>
• In function f():

1. Declare a variable of type va_list
2. Call va_start; returns pointer to the first unnamed argument
3. Call va_arg to return pointer to each successive unnamed argument
4. Call va_end to end processing



ITCS 2116: C Programming - 13

… (cont’d)

• How many unnamed parameters?
– this has to be indicated by the named parameter

• What are types of unnamed parameters?
– either this is fixed (implicit), or the named parameter must explicitly 

indicate
– example: the printf() format specifier



ITCS 2116: C Programming - 14

Example...

• A function sumup(num, …) which returns the sum of a list of 
num arguments, all of type int

• Calling sumup(): #include <stdio.h>
#include <stdarg.h>
int sumup(int, …);

int main(void)
{

int i = 295, j = 3, k = 450, res;
res = sumup(3, i, j, k);
…

}

Number of unnamed arguments

List of unnamed arguments



ITCS 2116: C Programming - 15

… (cont’d)

• Definition of sumup():
int sumup(int num, …) {

int sum;
va_list ap;

va_start(ap, num);
sum = 0;
for(int i = 0; i < num; i++)

sum += va_arg(ap, int);

va_end(ap);
return sum;

}

Declare pointer to arguments

Makes ap point to first
unnamed argument

Read unnamed arguments,
all of type int

Clean up before exiting



ITCS 2116: C Programming - 16

Another Example...

• Function sumup(char *fmt, …), where fmt specifies type and 
number of unnamed arguments
– one character per unnamed argument
– types = ‘i’ (int), ‘d’ (double), and ‘c’ (char)
– Ex.: if fmt[] equals “iddic”Þ

there are 5 unnamed arguments, 
first and fourth are type int, 
second and third are type double, 
fifth is type char

float sumup(char *fmt, …);
…

float res;
res = sumup(“cid”, (char) ‘Q’, 2500, 3.141);



ITCS 2116: C Programming - 17

… (cont’d)
float sumup(char *fmt, …) {

int i;
float sum = 0, d;
char c;
va_list ap;
va_start(ap, fmt);
for(; *fmt != ‘\0’; fmt++)

if (*fmt == ‘c’)
sum += va_arg(ap, char));

else if (*fmt == ‘i’)
sum += va_arg(ap, int));

else if (*fmt == ‘d’)
sum += va_arg(ap, double));

va_end(ap);
return sum;

}



ITCS 2116: C Programming - 18

Environmental Variables

• A way for users to customize execution environment of programs
• Example: cmd> echo $HOME 

/home/jerry
cmd> HOME=/home/linda
cmd> echo $HOME
/home/linda

Common environment variables:
TERM
SHELL
USER
PATH
HOME

MAIL
GROUP
LANG
EDITOR
PRINTER



ITCS 2116: C Programming - 19

Reading / Writing E.V.’s in C

Read using getenv() (#include <stdlib.h>)

char *string = getenv(“HOME”);
printf(“$HOME=%s\n”, string);

And setenv() if you want to change them

setenv(“HOME”, "/home/new", 1);



ITCS 2116: C Programming - 21

Bit Fields in C

• Way to pack bits into a single word; useful?
• Bit fields of a word are defined like members of a structure



ITCS 2116: C Programming - 22

Bit Fields Example... (http://www.cs.cf.ac.uk/Dave/C/)

• Frequently devices and OS communicate by means of a single 
word struct Disk_register  {

unsigned ready:1;
unsigned error_occurred:1;
unsigned disk_spinning:1;
unsigned write_protect:1;
unsigned head_loaded:1;
unsigned error_code:8;
unsigned track:9;
unsigned sector:5;
unsigned command:5;

};



ITCS 2116: C Programming - 23

...(cont’d)
struct Disk_register * dr = 

(struct Disk_register * ) MEMADDR;

/* Define sector and track to start read */
dr->sector = new_sector;
dr->track = new_track;
dr->command = READ;

/* ready will be true when done, else wait */
while ( ! dr->ready ) ;

if (dr->error_occurred) /* check for errors */
{ 
switch (dr->error_code)
......

}



ITCS 2116: C Programming - 24

Warnings About Bit Fields

• Recommendation: always make bit fields unsigned
• # of bits determines maximum value 
• Restrictions

1. no arrays of bit fields
2. no pointers to a bit field

• Danger: files written using bit-fields are non-portable!
– order in which bit-fields stored within 
– a word is system dependent



ITCS 2116: C Programming - 25

“Bit Twiddling”

• C has operators that treat operands simply as sequences of bits

• Question: Why do bit level operations in C  (or any language)?   
• Answer #1: lets you pack information as efficiently as possible
• Answer #2: some processing is faster to implement with bit-level 

operations than with arithmetic operators



ITCS 2116: C Programming - 26

“Bit Twiddling”... (cont’d)

• Ex: image processing
– pack 64 B&W pixel values into a single long long operand, and 

process 64 pixels with one instruction
– mask one image with another to create overlays

• Other applications: 
– data compression,
– encryption
– error correction
– I/O device control
– ...



ITCS 2116: C Programming - 27

Working in Binary With C?

• There is no standard way to…
– …write a constant in binary

– …input an ASCII-encoded binary string and convert to an integer

– …output an integer as an ASCII-encoded binary string

• Alternatives?
– Use octal or hexadecimal representation

printf(“%b”, i);

scanf(“%b”, &i);

i = 01011011;

N common source of bugs N
thinking sequence of

1’s and 0’s means base 2



ITCS 2116: C Programming - 28

BitOps: One Operand

• Bit-wise complement (~)
– operand must be integer type
– result is ones-complement of operand (flip every bit)
– Example: ~0x0d   // (binary 00001101) 

== 0xf2   // (binary 11110010)

Not the same as Logical NOT (!) or sign change (-)
char i, j1, j2, j3;
i = 0x0d;    // binary 00001101
j1 = ~i;     // binary 11110010
j2 = -i;     // binary 11110011
j3 = !i;     // binary 00000000



ITCS 2116: C Programming - 29

BitOps: Two Operands

• Operate bit-by-bit on operands to produce a result operand of 
the same length

• And (&): result 1 if both inputs 1, 0 otherwise
• Or (|): result 1 if either input 1, 0 otherwise
• Xor (^): result 1 if one input 1, but not both, 0 otherwise
• Operands must be of type integer



ITCS 2116: C Programming - 30

Two Operands... (cont’d)

• Examples
00 111 000
&
11 011 110
----------
00 011 000

00 111 000
|
11 011 110
----------
11 111 110

00 111 000
^
11 011 110
----------
11 100 110



ITCS 2116: C Programming - 31

Differences: Logical and Bit Ops

int a, b, c, 
d, e, f;

int i = 30;
int j = 0;
a = i && j;
b = !j;
c = !i;

float x = 30.0;
float y = 0.0;
d = x || y;
e = !y;
f = !x;

int a, b, c, 
d, e, f;

int i = 30;
int j = 0;
a = i & j;
b = ~j;
c = ~i;

float x = 30.0;
float y = 0.0;
d = x | y;
e = ~y;
f = ~x;

Results? Difference?  Problems?

N common source of bugs N
difference between
logical and bit-level

operators



ITCS 2116: C Programming - 32

Shift Operations

• x << y is left (logical) shift of x by y positions
– x and y must both be integers 
– x should be unsigned or positive
– 0 <= y <= number of bits in x
– y leftmost bits of x are discarded
– zero fill y bits on the right

N common source of bugs N
logical shifts

on negative numbers

01111001 << 3
--------------------

11001000

these 3 bits are zero filled

these 3 bits are discarded



ITCS 2116: C Programming - 33

ShiftOps... (cont’d)

• x >> y is right (logical) shift of x by y positions
– y rightmost bits of x are discarded
– zero fill y bits on the left

N common source of bugs N
logical shifts

on negative numbers

01111001 >> 3
--------------------

00001111

these 3 bits are zero filled

these 3 bits are discarded



ITCS 2116: C Programming - 34

ShiftOps... (cont’d)

• It is occasionally useful to know that...
– right logical shift of an unsigned number x by y positions is equivalent to 

dividing x by 2y

– left logical shift of an unsigned number x by y positions is equivalent to 
multiplying x by 2y

unsigned char j, k, m;
j = 121;
k = j << 3
m = j >> 3;
printf(“%d %d %d\n”, j, k, m);



ITCS 2116: C Programming - 35

Other Useful Bit Operations

• Complementing, Anding, Oring, and Xoring bits are all provided directly by 
C operators

• What about the following?
– clearing all or selected bits to 0’s, or setting all or selected bits to 1’s
– testing if all or selected bits are 0’s, or 1’s
– counting the number of bits that are 0’s, or that are 1’s
– copying all or selected bits from x to y
– copying a bit or bits from position i of x to position j of y



ITCS 2116: C Programming - 36

Clearing Bits to 0’s

• Using C operators:
– & with 0 will clear, & with 1 means “no change”

• So, create a mask with 0’s where you want to clear, and 1’s 
everywhere else

If input is... And mask is... Then input & mask 
=

0 0 0 (no change)
0 1 0 (no change)
1 0 0 (clear)
1 1 1 (no change)



ITCS 2116: C Programming - 37

Clearing... (cont’d)

• How would you clear (to 0) all the bits in a char?

• How would you clear the right two bits 
(without changing the other bits)?

unsigned char m = 0x00;
a = a & m;

unsigned char m = 0374;
a = a & m;

a: 00 111 011
& 
m: 11 111 100
-------------

a: 00 111 000

a: 00 111 011
& 
m: 00 000 000
-------------

a: 00 000 000



ITCS 2116: C Programming - 38

Setting Bits to 1’s

• Using C operators:
– | with 1 will set, | with 0 means “no change”

• So, create a mask with 1’s where you want to set, and 0’s 
everywhere else

If input is... And mask is... Then input | mask =

0 0 0 (no change)

0 1 1 (set)

1 0 1 (no change)

1 1 1 (no change)



ITCS 2116: C Programming - 39

Setting... (cont’d)

• How would you set (to 1) all the bits in a char ? 

• How would you set the right two bits without changing the other 
bits?

unsigned char m = 0377;
a = a | m;

a: 00 111 110
| 
m: 11 111 111
-------------

a: 11 111 111

unsigned char m = 0003;
a = a | m;

a: 00 111 110
| 
m: 00 000 011
-------------

a: 00 111 111



ITCS 2116: C Programming - 40

Complementing (Inverting) Bits

• Using C operators:
– ^ with 1 will complement, ^ with 0 means “no change”

• So, create a mask with 1’s where you want to complement, and 
0’s everywhere else

If input is... And mask is... Then input ^ mask =

0 0 0 (no change)

0 1 1 (complement)

1 0 1 (no change)

1 1 0 (complement)



ITCS 2116: C Programming - 41

Complementing... (cont’d)

• How would you complement (invert) all the bits in a char ? 

• How would you complement the right two bits without changing 
the other bits?

unsigned char m = 0377;
a = a ^ m;

a = ~a; //also works

a: 00 111 110
^ 
m: 11 111 111
-------------

a: 11 000 001

unsigned char m = 0003;
a = a ^ m;

a: 00 111 110
^ 
m: 00 000 011
-------------

a: 00 111 101



ITCS 2116: C Programming - 42

Testing Bits for 1’s

• Using C operators:
1. & with 1 where you want to test, & with 0 elsewhere
2. then check if result == mask

• So, create a mask with 1’s where you want to test, and 0’s 
everywhere else

If input is... And mask is... Then input & mask =

0 0 0 (matches mask)

0 1 0 (won’t match mask)

1 0 0 (matches mask)

1 1 1 (matches mask)



ITCS 2116: C Programming - 43

Test... (cont’d)

• How would you test (if == 1) all the bits in a char ? 

• How would you test if the right two bits == 1?

unsigned char m = 0377;
if ((a & m) == m)

...

a: 00 111 110
& 
m: 11 111 111
-------------

00 111 110

unsigned char m = 0003;
if ((a & m) == m)

...

a: 00 111 110
& 
m: 00 000 011
-------------

00 000 010Not equal to m à



ITCS 2116: C Programming - 44

Counting the Bits That Are 1’s

• Using C operators:
1. you already know how to test if a specific bit == 1
2. do this for each bit, one at a time
3. each time the bit == 1, add 1 to a counter

• A movable mask
– (0001 << i) creates a mask with a 1 in the ith position from the right, 

and 0 everywhere else



ITCS 2116: C Programming - 45

Test... (cont’d)

unsigned char m;
unsigned int cnt = 0;
for (i = 0; i < 8; i++) {

m = 0001 << i;
if ((a & m) == m)

cnt += 1;
}



ITCS 2116: C Programming - 46

Testing Bits for 0’s

• Using C operators:
– (you try it)

• How would you test (if == 0) all the bits in a char?

• How would you test if the two right bits == 0?
???

???



ITCS 2116: C Programming - 47

Copying Selected Bits (from b to a)

• Using C operators:
– clear all the bits in a you do want to replace
– clear all the bits in b you don’t want to copy
– | a with b to get result

a: 00 111 110
& 
m: 11 111 100
-------------

00 111 100

b: 10 100 101
& 
m: 00 000 011
-------------

00 000 001

|
-------------

00 111 101



ITCS 2116: C Programming - 49

References

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W. Norton 
& Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program Design, 
Seventh Edition. Cengage Learning. 2014.

• Slides source: CSC 230 - C and Software Tools 
© NC State University Computer Science Faculty. Modified for class use.


