
ITSC 2181: Introduction to Computer Systems - 1

Getting Started in C

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

ITSC 2181: Introduction to Computer Systems - 2

Why C?

• Developed to build Unix operating system
• Main design considerations:

– Compiler size: needed to run on PDP-11 with 24KB of memory (Algol60 was too
big to fit)

– Code size: needed to implement the whole OS and applications with little
memory

– Performance
– Portability

• Little consideration (if any) to the following:
– Security, robustness, maintainability
– Legacy Code

ITSC 2181: Introduction to Computer Systems - 3

Why C? (cont’d)

• Simple to write compiler
– Programming embedded systems, often only have a C compiler

• Performance
– Typically 50x faster than interpreted Java

• Smaller, simpler, lots of experience
• One of the most popular programming languages

– For the latest numbers, see https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

ITSC 2181: Introduction to Computer Systems - 4

What’s Your Priority?
Priority Language Choices
Speed of execution, minimum memory
“footprint”

Assembly, C

Safer, easier to develop large (hundreds of
files) programs

Java, C++

Easier / faster to code, higher level
operations, richer libraries

Python, Ruby, PHP,
Perl

Integrate with the web Web application
frameworks,
JavaScript

ITSC 2181: Introduction to Computer Systems - 5

C Strengths

• It’s a procedural language (like many others

• It’s efficient (binary code size, execution speed)

• Simple, clean language design

• There is an international standard, currently C17

• It has a decent standard library of useful functions

ITSC 2181: Introduction to Computer Systems - 6

Examples of C or C++

• Linux: Assembly, C
• MS Windows: Assembly, C, C++
• Firefox Web Browser: C++, Javascript
• GNU Compiler (GCC): C
• MySQL: C, C++
• Embedded Systems (cars, appliances, etc.)
• High performance (science/engineering) applications

ITSC 2181: Introduction to Computer Systems - 7

C Weaknesses

• Little consideration for security or safety

• Less modular than Java and other OO languages (but C++ fixes
that)

• More programming effort required than PHP/Python/Perl/Ruby
and other scripting languages

• Not usually written in C or C++: web apps, business apps, GUIs,
simple utility programs

ITSC 2181: Introduction to Computer Systems - 8

Types of Programming Languages

• Declarative: focus on what the computer should do
– Functional: Scheme, Haskell
– Dataflow
– Logic- or constraint-based: Prolog
– Markup languages: HTML, CSS, subset of SQL

• Imperative: focus on how the computer should do something
– Procedural : C
– Object-oriented : Java There are no objects in C. Oftentimes this

makes programming very different from
Java and Python.

ITSC 2181: Introduction to Computer Systems - 9

Procedural vs. Object-Oriented

• Procedural: programming as procedures that modify variables
– Emphasis on actions that must take place
– Analogy: following a recipe

• Object-Oriented: programming as objects that interact (each
with internal state, and methods to manage that state)
– Emphasis on the state of objects
– Analogy: operating a car

ITSC 2181: Introduction to Computer Systems - 10

Getting Started….

ITSC 2181: Introduction to Computer Systems - 11

Common Platform for This Course

• Different platforms have different conventions for end of line,
end of file, tabs, compiler output, …

• Solution (for this class): compile and run all programs
consistently on one platform

• Our common platform will be a Virtual Machine (VM) that runs
the Ubuntu Linux operating system.
– See Canvas for more details.

ITSC 2181: Introduction to Computer Systems - 12

Other Alternatives

• Use ReplIt (repl.it), a web-based virtual computing
environment (https://replit.com/)

• Use a CCI Lab Computer
• Use Mac OS X (Xcode + developer tools)
• Use MS Windows + cygwin or Visual Studio
• Use Linux on your PC (dual boot or virtualized)

Note:
The only platform supported by the course
staff is the VM that we provide.

ITSC 2181: Introduction to Computer Systems - 13

Common Platform Questions

• If you want to develop locally, that’s fine, but you must ensure
that it works on the Common Platform
– You should always test on the Common Platform before submitting
– The Instructional Assistants will use the common platform to grade

your work
– No, really, you should test on the Common Platform

ITSC 2181: Introduction to Computer Systems - 14

Common Platform Questions

– There are differences between the C compilers for different
architectures that may cause your program (that runs locally) to fail
on the Common Platform

– C is not architecture neutral!

ITSC 2181: Introduction to Computer Systems - 15

Your First C Program
#include <stdio.h>

int main(void)
{
 printf(“Hello, world!\n”);
 return 0;
}

File with
library function

declarations

Entry point of the
program, with no

arguments

Standard library
function, with message

argument
Exit program and

indicate successful
completion

% gcc hello.c –o hello

Command to compile
program code into

an executable

ITSC 2181: Introduction to Computer Systems - 16

Compiling and Running the Program

ITSC 2181: Introduction to Computer Systems - 17

A Sample Program (For Illustration)
Specification:

1. Two line segments are created
2. The user is asked to enter the left and right edges of the two line segments, as

integer values
3. The length of each segment is computed as

(right edge – left edge)
4. The two lengths are compared to determine if they are the same, and a

message is displayed

4 6 8 10 12 14 16

length= 9-4 = 5 length= 19-12 = 7

ITSC 2181: Introduction to Computer Systems - 18

Compiling and Running the Program

ITSC 2181: Introduction to Computer Systems - 19

Sample C Program (part 1)

• The following slides show sample program code to implement
a solution to the problem described earlier.

• We will study each of the elements used in the C code
throughout the term.

• By the end of the C programming module you will be able to
write programs such as the one used in this example.

ITSC 2181: Introduction to Computer Systems - 20

Sample C Program (part 2)
#include <stdio.h>
#include <stdlib.h>

static int compute_length (int, int);

int main (void)
{
 typedef struct {
 int left;
 int right;
 int length;
 } seg_t;

 seg_t *seg1, *seg2;

library function
definitions

data structure
definition

declaration of
references to

data structure instances

main routine, procedure #1

ITSC 2181: Introduction to Computer Systems - 21

Sample C Program (part 3)
seg1 = (seg_t *) malloc (sizeof (seg_t));

 seg2 = (seg_t *) malloc (sizeof (seg_t));

 printf ("Enter left edge of segment 1: ");
 scanf ("%d", &(seg1->left));
 printf ("Enter right edge of segment 1:");
 scanf ("%d", &(seg1->right));
 printf ("Enter left edge of segment 2: ");
 scanf ("%d", &(seg2->left));
 printf ("Enter right edge of segment 2:");
 scanf ("%d", &(seg2->right));

 seg1->length = computelength (seg1->left,
 seg1->right);
 seg2->length = computelength (seg2->left,
 seg2->right);

create instances of data structure,
and associate with references

input / output, store
result in data structure

call a subroutine, store
result in data structure

ITSC 2181: Introduction to Computer Systems - 22

Sample C Program (part 4)
if (seg1->length == seg2->length)

 printf("Segment lengths are equal\n");
 else
 printf("Segment lengths are NOT equal\n");

 return 0;
}

int compute_length (int left, int right)
{
 return (right-left);
}

subroutine, procedure #2

ITSC 2181: Introduction to Computer Systems - 23

Variables and Datatypes

ITSC 2181: Introduction to Computer Systems - 24

Identifiers (Names, Labels)

• Consist of letters, ‘_’, and digits
 cannot start with a digit (2_B_or_not_2_B)

• Case sensitive!
 myVar is not the same as myvar

• Unlimited length (advice: stop at 32)
gnome_memmgt_insert_into_heap_I_modified_this_because_I_
can

ITSC 2181: Introduction to Computer Systems - 25

Reserved Keywords

• Do not use reserved keywords as identifiers, such as:

auto, break, case, char, const, continue,
default, do, double, else, enum, extern, float,
for, goto, if, int, long, register, return,
short, signed, sizeof, static, struct, switch,
typedef, union, unsigned, void, volatile, while,
_Bool, _Complex, _Imaginary, inline, restrict

ITSC 2181: Introduction to Computer Systems - 26

C Variables

• A variable = a location in memory + its interpretation
• Interpretation of a variable is based on its

1. storage class and
2. data type

ITSC 2181: Introduction to Computer Systems - 27

Data Types

• The data type of a variable defines its interpretation

• Ex: suppose a 32-bit binary value stored in memory is
01000001010000100100001101000100

– if type float, interpreted to be numerical value 781.03521728515625

– if type unsigned int, interpreted to be numerical value 1145258561

– if type char, interpreted to be the ASCII string value ABCD

ITSC 2181: Introduction to Computer Systems - 28

Static or Dynamic Types

• In C variables are statically typed
– A type must be specified when a variable is created, and cannot

change thereafter

• Languages with dynamic typing (e.g., PHP, Python, Perl, Ruby,
Javascript, …) are more flexible

ITSC 2181: Introduction to Computer Systems - 29

Specializations of Fundamental Types

• Integers can be…
– signed or unsigned (signed by default)
– really short (char), short, regular (int by default), long, really

long (long long)

• Floating point (always signed) can be…
– regular precision (float)
– double precision (double)
– extended precision (long double)

ITSC 2181: Introduction to Computer Systems - 30

Min and Max Integer Values

Type # bits Value
Min ‘unsigned anything’ n.a. 0
Min ‘signed char’ 8 -128
Max ‘signed char’ 8 127
Max ‘unsigned char’ 8 255
Min ‘signed short int’ 16 -32,768
Max ‘signed short int’ 16 32,767
Max ‘unsigned short int’ 16 65,535

The lengths (in bits) (and the max and min values) of these
types are platform dependent

ITSC 2181: Introduction to Computer Systems - 31

Integer Values… (cont’d)
Type # bits Value

Min ‘signed int’ 32 -2,147,483,648

Max ‘signed int’ 32 2,147,483,647

Max ‘unsigned int’ 32 4,294,967,295

Min/Max ‘signed long int’ 64 same as ‘signed long long int’

Max ‘unsigned long int’ 64 same as ‘unsigned long long
int’

Min ‘signed long long int’ 64 -9,223,372,036,854,775,808

Max ‘signed long long int’ 64 9,223,372,036,854,775,807

Max ‘unsigned long long int’ 64 18,446,744,073,709,551,615

ITSC 2181: Introduction to Computer Systems - 32

Constants

• Types of constants (set once and never changed)
– integer
– floating point
– character (a type of integer)
– enumeration (we’ll talk about these later)

• Character constants in single quotes: ′a′, ′b′
– value stored is the numeric value of the character in ASCII

• #define <CONSTANT_NAME> <value>

ITSC 2181: Introduction to Computer Systems - 33

ASCII

• The ASCII code is used by computers to represent characters,
such as letters, special symbols and digits

• ASCII is a specific 8-bit encoding of Western characters
(punctuation, digits, upper and lower case characters)

• Only the first 128 values are standardized
• The interpretation of the remaining 128 values are

application/platform-specific

ITSC 2181: Introduction to Computer Systems - 34

Standardized ASCII (0-127)

ITSC 2181: Introduction to Computer Systems - 35

One Interpretation of 128-255

ITSC 2181: Introduction to Computer Systems - 36

Useful Character Constant Escape Sequences
• \0 Null character
• \‘ Single quote
• \“ Double quote
• \\ Backslash
• \n Newline
• \t Horizontal tab
• \nnn Octal value of character

(ex: ‘a’ == ‘\141’)
• \xnn Hexadecimal value of character

(ex: 'a' == ‘\x61’)

(see letter.c in Code samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 37

References

• S. J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version
1.2. Free online textbook, available at:
https://diveintosystems.org/book/

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

https://diveintosystems.org/book/

