
ITSC 2181: Introduction to Computer Systems - 1

C Expressions and Operators

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

ITSC 2181: Introduction to Computer Systems - 2

Expressions

• Most statements in a C program are expressions
• Evaluating an expression means doing the computation

according to the definition of the operations specified
• Results of expression evaluation:
– value returned (and assigned); and/or
– side effects (other changes to variables, or output, along the way)

j = k + 3 * m++;

ITSC 2181: Introduction to Computer Systems - 3

What Are the C Operators?

• There are approximately 50 of them
• Categories of operators

1. arithmetic
2. logical and relational
3. assignment
4. bitwise operators
5. “other”

ITSC 2181: Introduction to Computer Systems - 4

Arithmetic: Single Operand Operators
Unary plus (+a): no effect

a = ++b / c-- ;

Unary minus (-b): changes sign of operand

Increment (++) and decrement (--) operators
– operand type must be modifiable (not a constant)

– these operators have side effects!

a = +b;

a = -b;

(see expressions.c in Code samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 5

Single Operand... (cont’d)

N common source of bugs N
difference between
postfix and prefix

prefix: side effect takes place first, then expression value is determined

int i = 1, j = 8;
printf(“%d %d\n”, ++i, --j);
printf(“%d %d\n”, i, j);

postfix: expression uses old operand value first, then side effect takes
place

int i = 1, j = 8;
printf(“%d %d\n”, i++, j--);
printf(“%d %d\n”, i, j);

what is the output?

what is the output?

(see expressions.c in Code samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 6

Arithmetic on Two Operands

• Multiplication (*), Quotient (/), Remainder (%),
Addition (+), Subtraction (-)
– Possibility of underflow and overflow during expression evaluation,

or assignment of the results

• Division by zero
– causes program execution failure if the operands are of integer type
– generates a special value (inf) and continues execution if the

operands are IEEE floating point

N common source of bugs N
overflow in

computations

N common source of bugs N
divide by zero

(see expressions.c in
Code samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 7

Arithmetic on Two Operands

• Modulus operator (%) operands must have type integer, should
both be positive

• Result of a % b is a program exception if b == 0

printf(“%d”, (37 % 3));

printf(“%d”, (-37 % 3));
results?

(see expressions.c in Code samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 8

Assignment Operators

• a = b assigns the value of b to a
– a must be a reference and must be modifiable (not a function, not an

entire array, etc.)
• Both a and b must be one of the following
– numbers (integer or floating), or
– structs or unions of the same type, or
– pointers to variables of the same type

float a;
int b = 25;
a = b;

float a[2];
int b[2] = {25, 15};
a = b;

OK Not OK

ITSC 2181: Introduction to Computer Systems - 9

Assignment Operators (cont’d)

• a op= b
– where op is one of *,/,%,+,-,<<,>>,&,^,|
– “shorthand” for a = a op b

int i = 30, j = 40, k = 50;
i += j; // same as i = i + j
k %= j; // same as k = k % j
j *= k; // same as j = j * k

ITSC 2181: Introduction to Computer Systems - 10

Constant Expressions

• Constant-valued expressions are used in…
– case statement labels
– array bounds
– bit-field lengths
– values of enumeration constants
– initializers of static variables

static int a = 35 + (16 % (4 | 1));

all evaluated at
compile time,
not run time

(static: variable’s value is initialized only once, no matter how many times the
block in which it is defined is executed)

ITSC 2181: Introduction to Computer Systems - 11

Constant Expressions… (cont’d)

• Cannot contain assignments, increment or decrement
operators, function calls, …
– see a C reference manual for all the restrictions
– basically: nothing that has to be evaluated at run-time

static int b = a++ - sum();

error

C Operator Precedence

Tokens Operator Class Prec. Associates

a[k] subscripting postfix

16

left-to-right
f(...) function call postfix left-to-right

. direct selection postfix left-to-right
-> indirect selection postfix left to right

++ -- increment, decrement postfix left-to-right
++ -- increment, decrement prefix

15

right-to-left
sizeof size unary right-to-left

~ bit-wise complement unary right-to-left
! logical NOT unary right-to-left

- + negation, plus unary right-to-left
& address of unary right-to-left

* Indirection
(dereference) unary right-to-left

C Operator Precedence (cont’d)
(type) casts unary 14 right-to-left
* / % multiplicative binary 13 left-to-right
+ - additive binary 12 left-to-right

<< >> left, right shift binary 11 left-to-right
< <= > >= relational binary 10 left-to-right
== != equality/ineq. binary 9 left-to-right
& bitwise and binary 8 left-to-right
^ bitwise xor binary 7 left-to-right
| bitwise or binary 6 left-to-right
&& logical AND binary 5 left-to-right
|| logical OR binary 4 left-to-right
?: conditional ternary 3 right-to-left

= += -=
*= /= %=
&= ^= |=
<<= >>=

assignment binary 2 right-to-left

, sequential eval. binary 1 left-to-right

ITSC 2181: Introduction to Computer Systems - 14

Order of Evaluation in Compound Expressions

• Which operator has higher precedence?
• If two operators have equal precedence, are operations

evaluated left-to-right or right-to-left?
• Example:

a += b = q - ++ r / s && ! t == u ;
what gets executed first, second, ...?

One solution: use parentheses to force a specific order

t = (u + v) * w;

ITSC 2181: Introduction to Computer Systems - 15

Order of Evaluation in Compound Expressions

• Common mistake: overlooking precedence and associativity (l-
to-r or r-to-l)

N common source of bugs N
failure to use parentheses

to enforce precedence

t = u+v * w;

Advice: either...
– force order of evaluation when in doubt by using parentheses

– or (even better) write one large expression as sequence of
several smaller expressions

ITSC 2181: Introduction to Computer Systems - 16

Evaluating Expressions… (cont’d)

• Instead of… a+=b=q-++r/(s^!t==u);

Or…

a+=(b=(q-((++r)/(s^((!t)==u)))));

Better:
tmp1 = s ^ ((!t) == u);
tmp2 = (++r) / tmp1;
b = q - tmp2;
a += b;

N common source of bugs N
expressions that
are too complex

ITSC 2181: Introduction to Computer Systems - 17

The C Conditional Operator

• A terse way to write if-then-else statements

• This is equivalent to (shorthand for)

c = (a > b) ? d : e;

if (a > b)

 c = d;

else

 c = e;

N common source of bugs N
complex conditional

statements

ITSC 2181: Introduction to Computer Systems - 18

References

• S. J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version
1.2. Free online textbook, available at:
https://diveintosystems.org/book/

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

https://diveintosystems.org/book/

