C Expressions and Operators

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

COLLEGE OF COMPUTING
. | AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 1 {

e —
Expressions

* Most statements in a C program are expressions

* Evaluating an expression means doing the computation
according to the definition of the operations specified
* Results of expression evaluation:

— value returned (and assigned); and/or
— side effects (other changes to variables, or output, along the way)

j =k + 3 * mt+;
COLLEGE OF COMPUTING
AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 2

What Are the C Operators?

 There are approximately 50 of them

 (Categories of operators
arithmetic

logical and relational
assignment

bitwise operators
“other”

Lk wihe

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 3

Arithmetic: Single Operand Operators

Unary plus (+a): no effect

a = +b;

(see expressions.c in Code samples
and Demonstrations in Canvas)

—

Unary minus (=b): changes sign of operand

a = -b;

Increment (++) and decrement (--) operators

— operand type must be modifiable (not a constant)

— these operators have side effects!

a=++b / c-- ;

ITSC 2181: Introduction to Computer Systems - 4

COLLEGE OF COMPUTING
AND INFORMATICS

Single Operand... (cont’d)

prefix: side effect takes place first, then expression value is determined

int i1 =1, jJj = 8;
printf (“%d %d\n”, ++i, --3);
printf (“%d %d\n”, i, j);

what is the output?

postfix: expression uses old operand value first, then side effect takes
place

inti1i=1, jJj = 8;
printf (“%d %d\n”, i++, j--);
printf (“%d %d\n”, i, j);

what is the output?

2 common souree of bugs %

(see expressions.c in Code samples
and Demonstrations in Canvas)

difference between
i i COLLEGE OF COMPUTING
, pOSffIX a"d preflx c AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 5

Arithmetic on Two Operands

* Multiplication (*), Quotient (/), Remainder (%),
Addition (+), Subtraction (-)

— Possibility of underflow and overflow during expression evaluation,

or assignment of the results T
overflow in (see expressions.c in

computations Code samples and
Demonstrations in Canvas)

* Division by zero
— causes program execution failure if the operands are of integer type

— generates a special value (inf) and continues execution if the
operands are IEEE floating point |

divide by zero

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 6

Arithmetic on Two Operands

 Modulus operator (%) operands must have type integer, should
both be positive

printf (“%d”, (37 % 3));
results?
printf (“%d”, (-37 % 3));
* Resultofa % b isaprogram exceptionifb == 0

(see expressions.c in Code samples
and Demonstrations in Canvas)

—

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 7

Assignment Operators

* a = b assignsthevalueof b to a

— a must be a reference and must be modifiable (not a function, not an
entire array, etc.)

* Both a and b must be one of the following
— numbers (integer or floating), or

— structs or unions of the same type, or
— pointers to variables of the same type

OK Not OK
float a; float a[2];
int b = 25; \int b[2] = {25, 15};
a = b; a="b; G WD INFORMATICS

ITSC 2181: Introduction to C TTPULET OySIEIS - O

Assignment Operators (cont’d)

*°a op=Db
— where opisoneof *,/,%,+,-,<<,>>,&,*, |
— “shorthand” fora = a op b
int 1 = 30, j = 40, k = 50;
i += j; // same as 1 = i + 7
k $= Jj; // same as k = k &]
j *= k; // same as J = j * k

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 9

Constant Expressions

* Constant-valued expressions are used in...

\
— case statement labels
— array bounds all evaluated at
— bit-field lengths > compile time,
, not run time
— values of enumeration constants
— initializers of static variables _/

static int a = 35 + (16 % (4 | 1)) ;

(static: variable’s value is initialized only once, no matter how many times the

block in which it is defined is executed)
COLLEGE OF COMPUTING
AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 10

Constant Expressions... (cont’d)

* Cannot contain assignments, increment or decrement
operators, function calls, ...

— see a C reference manual for all the restrictions
— basically: nothing that has to be evaluated at run-time

static int b = a++ - sum() ;

2/ error

ITSC 2181: Introduction to Computer Systems - 11

COLLEGE OF COMPUTING
AND INFORMATICS

C Operator Precedence

Tokens Operator Class | Prec.| Associates
alk] subscripting postfix left-to-right
£(...) function call postfix left-to-right
direct selection postfix 16 left-to-right

-> indirect selection postfix left to right
++ -- increment, decrement | postfix left-to-right
++ -- increment, decrement prefix right-to-left
sizeof size unary right-to-left
~ bit-wise complement unary right-to-left

! logical NOT unary 15 right-to-left

- + negation, plus unary right-to-left

& address of unary right-to-left

* Indirection unary right-to-left

(dereference)

C Operator Precedence (cont’d)

(type) casts unary 14 right-to-left
* /% multiplicative | binary 13 left-to-right
+ - additive binary 12 left-to-right
<< >> left, right shift binary 11 left-to-right
< <= > >= relational binary 10 left-to-right
== I= equality/ineq. binary 9 left-to-right
bitwise and binary 8 left-to-right
bitwise xor binary 7 left-to-right
I bitwise or binary 6 left-to-right
&& logical AND binary 5 left-to-right
| | logical OR binary 4 left-to-right
?: conditional ternary 3 right-to-left
= 4= -=
*= [= S=
= A= |= assignment binary 2 right-to-left
<<= >>=
, sequential eval. | binary 1 left-to-right

Order of Evaluation in Compound Expressions

 Which operator has higher precedence?

* If two operators have equal precedence, are operations
evaluated left-to-right or right-to-left?

 Example:

a+=b=qg-++r / s & ! t = u ;

what gets executed first, second, ...?

One solution: use parentheses to force a specific order

t=(u+v) * w;

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 14

Order of Evaluation in Compound Expressions

« Common mistake: overlooking precedence and associativity (l-
to-r or r-to-l)

t = ut+v * w,) 2 common souree of bugs 2
failure to use parentheses

to enforce precedence

Advice: either...
— force order of evaluation when in doubt by using parentheses

— or (even better) write one large expression as sequence of
several smaller expressions

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 15

Evaluating Expressions... (cont’d)

2 common source of bugs %

expressions that
* Instead of... at+=b=q-++r/ (s ! t==u) ; are too complex
Or...
at=(b=(g- ((++xr) /(s*(('t)==u)))));
Better:

tmpl = s * ((!'t) == u);
tmp2 = (++r) / tmpl;
b:q -_ tmp2;

a += b;

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 16

The C Conditional Operator

* A terse way to write if-then-else statements

c=(a>b) ?2d: e;

* This is equivalent to (shorthand for)

if (a > b) & common sourece of bugs &
complex conditional
c = d; statements
else
cC = e;

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 17

References

* S.J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version
1.2. Free online textbook, available at:
https://diveintosystems.org/book/

* K. N.King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

* D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 18

https://diveintosystems.org/book/

