
ITSC 2181: Introduction to Computer Systems - 1

C Fundamentals and Console I/O

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

ITSC 2181: Introduction to Computer Systems - 2

C Coding Style (Conventions)

• Universal agreement
1. clarity and consistency are very important
2. indentation, white space, and comments helpful
3. consistent naming conventions helpful

• Tools (intelligent editors, indent, etc.) will take care of much
formatting for you.

ITSC 2181: Introduction to Computer Systems - 3

Does it Matter?

Consider the following entries from the International Obfuscated
C Code (IOCC) Contest…

ob·fus·cate: render obscure, unclear, or
unintelligible: the spelling changes will
deform some familiar words and obfuscate
their etymological origins.

ITSC 2181: Introduction to Computer Systems - 4

#include\
 <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 #define w "Hk~HdA=Jk|Jk~LSyL[{M[wMcxNksNss:"
 #define r"Ht@H|@=HdJHtJHdYHtY:HtFHtF=JDBIl"\
 "DJTEJDFIlMIlM:HdMHdM=I|KIlMJTOJDOIlWITY:8Y"
 #define S"IT@I\\@=HdHHtGH|KILJJDIJDH:H|KID"\
 "K=HdQHtPH|TIDRJDRJDQ:JC?JK?=JDRJLRI|UItU:8T"
 #define _(i,j)L[i=2*T[j,O[i=O[j-R[j,T[i=2*\
 R[j-5*T[j+4*O[j-L[j,R[i=3*T[j-R[j-3*O[j+L[j,
 #define t"IS?I\\@=HdGHtGIDJILIJDIItHJTFJDF:8J"

 #define y yy(4),yy(5), yy(6),yy(7)
 #define yy(i)R[i]=T[i],T[i] =O[i],O[i]=L [i]
#define Y _(0], 4])_ (1], 5])_ (2], 6])_ (3], 7])_=1
#define v(i)(((R[i] * _ + T [i]) * _ + O [i]) * _ + L [i]) *2
double b = 32 ,l ,k ,o ,B ,_ ; int Q , s , V , R [8], T[8] ,O [8], L[8] ;
#define q(Q,R) R= *X ++ % 64 *8 ,R |= *X /8 &7 ,Q=*X++%8,Q=Q*64+*X++%64-256,
define p "G\\QG\\P=GLPGTPGdMGdNGtOGlOG" "dSGdRGDPGLPG\\LG\\LHtGHtH:"
define W "Hs?H{?=HdGH|FI\\II\\GJlHJ" "lFL\\DLTCMlAM\\@Ns}Nk|:8G"
define U "EDGEDH=EtCElDH{~H|AJk}" "Jk?LSzL[|M[wMcxNksNst:"
define u "Hs?H|@=HdFHtEI" "\\HI\\FJLHJTD:8H"
char * x ,*X , (* i)[640],z[3]="4_",
*Z = "4,8O4.8O4G" r U "4M"u S"4R"u t"4S8CHdDH|E=HtAIDAIt@IlAJTCJDCIlKI\\K:8K"U
 "4TDdWDdW=D\\UD\\VF\\FFdHGtCGtEIDBIDDIlBIdDJT@JLC:8D"t"4UGDNG\\L=GDJGLKHL\
FHLGHtEHtE:"p"4ZFDTFLT=G|EGlHITBH|DIlDIdE:HtMH|M=JDBJLDKLAKDALDFKtFKdMK\
\\LJTOJ\\NJTMJTM:8M4aGtFGlG=G|HG|H:G\\IG\\J=G|IG|I:GdKGlL=G|JG|J:4b"W
S"4d"W t t"4g"r w"4iGlIGlK=G|JG|J:4kHl@Ht@=HdDHtCHdPH|P:HdDHdD=It\
BIlDJTEJDFIdNI\\N:8N"w"4lID@IL@=HlIH|FHlPH|NHt^H|^:H|MH|N=J\\D\
J\\GK\\OKTOKDXJtXItZI|YIlWI|V:8^4mHLGH\\G=HLVH\\V:4n" u t t
"4p"W"IT@I\\@=HdHHtGIDKILIJLGJLG:JK?JK?=JDGJLGI|MJDL:8M4\
rHt@H|@=HtDH|BJdLJTH:ITEI\\E=ILPILNNtCNlB:8N4t"W t"4u"
p"4zI[?Il@=HlHH|HIDLILIJDII|HKDAJ|A:JtCJtC=JdLJtJL\
THLdFNk|Nc|\
:8K"; main (
int C,char** A) {for(x=A[1],i=calloc(strlen(x)+2,163840);
C-1;C<3?Q=_= 0,(z[1]=*x++)?((*x++==104?z[1]^=32:--x), X =
strstr(Z,z)) &&(X+=C++):(printf("P2 %d 320 4 ",V=b/2+32),
V*=2,s=Q=0,C =4):C<4?Q-->0?i[(int)((l+=o)+b)][(int)(k+=B)
]=1:_?_-=.5/ 256,o=(v(2)-(l=v(0)))/(Q=16),B=(v(3)-(k=v(1)
))/Q:*X>60?y ,q(L[4],L[5])q(L[6],L[7])*X-61||(++X,y,y,y),
Y:*X>57?++X, y,Y:*X >54?++X,b+=*X++%64*4:--C:printf("%d "
,i[Q][s]+i[Q][s+1]+i[Q+1][s]+i[Q+1][s+1])&&(Q+=2)<V||(Q=
0,s+=2)<640
||(C=1));}

What is the
purpose of this
program?

ITSC 2181: Introduction to Computer Systems - 5

 /* ,*/
 #include <time.h>
 #include/* _ ,o*/ <stdlib.h>
 #define c(C)/* - . */return (C); /* 2004*/
 #include <stdio.h>/*. Moekan "' `\b-' */
 typedef/* */char p;p* u ,w [9
][128] ,*v;typedef int _;_ R,i,N,I,A ,m,o,e
 [9], a[256],k [9], n[256];FILE*f ;_ x (_ K,_ r
 ,_ q){; for(; r< q ; K =((
 0xffffff) &(K>>8))^ n[255 & (K
 ^u[0 + r ++])]);c (K
)} _ E (p*r, p*q){ c(f =
 fopen (r ,q))}_ B(_ q){c(fseek (f, 0
 ,q))}_ D(){c(fclose(f))}_ C(p *q){c(0- puts(q))}_/* /
 */main(_ t,p**z){if(t<4)c(C("<in" "file>" "\40<l" "a" "yout> "
 /*b9213272*/"<outfile>"))u=0;i=I=(E(z[1],"rb")) ?B(2)?0 : (((o =ftell
 (f))>=8)?(u =(p*)malloc(o))?B(0)?0:!fread(u,o,1,f):0:0)?0: D():0 ;if(
 !u)c(C(" bad\40input "));if(E(z[2],"rb")){for(N=-1;256> i;n[i++] =-1)a[
 i]=0; for(i=I=0; i<o&&(R =fgetc(f))>-1;i++)++a[R] ?(R==N)?(++I>7)?(n[
 N]+1)?0:(n [N]=i-7):0: (N=R) |(I=1):0;A =-1;N=o+1;for(i=33;i<127;i++
)(n[i]+ 1&&N>a[i])? N= a [A=i] :0;B(i=I=0);if(A+1)for(N=n[A];
 I< 8&& (R =fgetc(f))> -1&& i <o ;i++)(i<N||i>N+7)?(R==A)?((*w[I
] =u [i])?1:(*w[I]= 46))?(a [I++]=i):0:0:0;D();}if(I<1)c(C(
 " bad\40la" "yout "))for(i =0;256>(R= i);n[i++]=R)for(A=8;
 A >0;A --) R = ((R&1)==0) ?(unsigned int)R>>(01):((unsigned
 /*kero Q' ,KSS */)R>> 1)^ 0xedb88320;m=a[I-1];a[I
]=(m <N)?(m= N+8): ++ m;for(i=00;i<I;e[i++]=0){
 v=w [i]+1;for(R =33;127 >R;R++)if(R-47&&R-92
 && R-(_)* w[i])*(v++)= (p)R;*v=0;}for(sprintf
 /*'_ G*/ (*w+1, "%0" "8x",x(R=time(i=0),m,o)^~
 0) ;i< 8;++ i)u [N+ i]=*(*w+i+1);for(*k=x(~
 0,i=0 ,*a);i>- 1;){for (A=i;A<I;A++){u[+a [A]
]=w[A][e[A]] ; k [A+1]=x (k[A],a[A],a[A+1]
);}if (R==k[I]) c((E(z[3],"wb+"))?fwrite(
 /* */ u,o,1,f)?D ()|C(" \n OK."):0 :C(
 " \n WriteError")) for (i =+I-
 1 ;i >-1?!w[i][++ e[+ i]]:0;
) for(A=+i--; A<I;e[A++]
 =0); (i <I-4)?putchar
 ((_) 46) | fflush
 /*' ,*/ (stdout
): 0& 0;}c(C
 (" \n fail")
) /* dP' /
 dP pd '
 ' zc
 */
 }

[I++]=i):0:0:0;D(
);}if(I<1)c(C("
bad\40la”"yout"))
for(i=0;256>(R=i)
;n[i++]=R)for(A=8
;A>0;A--
)R=((R&1)==0)?(un
signed
int)R>>(01):((uns
igned/*kero
Q',KSS
*/)R>>1)^0xedb883
20;m=a[I-
1];a[I]=(m
<N)?(m=N+8):++m;f
or(i=00;i<I;e[i++
]=0){

ITSC 2181: Introduction to Computer Systems - 6

Ex.: Some GNOME Project Guidelines

• “Programmers should strive to write good code so that it is
easy to understand and modify by others

• Important qualities of good code
– clarity
– consistency
– extensibility
– correctness”

ITSC 2181: Introduction to Computer Systems - 7

Example… (cont’d)

• “It is important to follow a good naming convention for the symbols in
your programs
– Function names should be of the form module_submodule_operation,

for example, gnome_canvas_set_scroll_region
– Symbols should have descriptive names: do not use cntusr(), use
count_active_users() instead

– Function names are lowercase, with underscores to separate words, like this:
gnome_canvas_set_scroll_region()”

ITSC 2181: Introduction to Computer Systems - 8

Example… (cont’d)

• “Macros and enumerations are uppercase, with underscores
to separate words, like this: GNOMEUIINFO_SUBTREE()
for a macro

• Typedefs and structure names are mixed upper and lowercase,
like this: GnomeCanvasItem, GnomeIconList”

ITSC 2181: Introduction to Computer Systems - 9

Example… (cont’d)

• “Very short and terse names should only be used for the local
variables of functions; never call a global variable x; use a
longer name that tells what it does”

ITSC 2181: Introduction to Computer Systems - 10

Example from Linux Guidelines

• “Tabs are 8 characters, and indentations too
• Put the opening brace last on the line, and put the closing brace first:

 if (x is true) {
 we do y
 }

• Functions have the opening brace at the beginning of the next line:
 int function(int x)
 {
 body of function
 }”

ITSC 2181: Introduction to Computer Systems - 11

Our Guidelines! (These Matter!)

• Make sure to include file level comments in all programs
– Author(s) name and UNC Charlotte email address(s)
– Briefly describe the purpose of program or module within program

• Use function comments
– Function’s purpose
– Inputs (global or parameters)
– Outputs (return values and side effects)
– Pre-conditions
– Post-conditions (including side effects)

ITSC 2181: Introduction to Computer Systems - 12

Our Guidelines! (These Matter!)

• Global Variables
– Describe purpose

• Magic Numbers
– Use #define except for obvious numbers (-1, 0, 1, 2)

• Unless those numbers have a specific named purpose or are an exit code!!!

• We cover #define in more detail later.

ITSC 2181: Introduction to Computer Systems - 13

Our Guidelines! (These Matter!)

• Indentation
– All indentation must be spaces (except for Makefiles)
– The number of spaces for indentation must be consistent

• 2 to 3 spaces

– Indent:
• Statements in a function
• Statements in a control structure
• Statements in a block { }

ITSC 2181: Introduction to Computer Systems - 14

Our Guidelines! (These Matter!)

• Curly Braces
– Functions – opening curly brace on next line
– Everything else – opening curly brace at end of control structure

• Statements
– 1 statement per line

ITSC 2181: Introduction to Computer Systems - 15

Executing C Programs

1. High-Level Language (HLL) source code is compiled into
the instruction set of the target computer

2. This code is loaded and executed directly by the host

C
source code

.c

C
application

Compiler /
Linker

Program
output

Input
Data

gcc.exe

Loader
(part of
the OS)

executable
application

.exe

app.exe

ITSC 2181: Introduction to Computer Systems - 16

Platform Independence?

• Compiled
– parts of the compiler (front end) are platform-independent
– parts of the compiler (back end) are specific to the platform on

which the program will be executed

• Interpreted
– the Java compiler is platform-independent
– the Java Virtual Machine (JVM) is platform-specific

ITSC 2181: Introduction to Computer Systems - 17

Steps in Compiling C Programs
Source Code

Expanded Source Code

Parse Tree

#define N 3
a=c+b*N;

Tokens

a=c+b*3;

a = c + b * 3 ;

preprocessing

lexical analysis

parsing

code generation
… …

expression-statement

expression ;

unary-expression

assignment-operator assignment-expressionidentifier

a =

ITSC 2181: Introduction to Computer Systems - 18

Steps… (cont’d)

Assembly Language

Object Code

Executable Code

mov ebx, b
imul ebx, ebx, 3
mov ecx, c

001110010111

0011100101110110101…

code generation

assembling

linking + other
Object Code

ITSC 2181: Introduction to Computer Systems - 19

Using the gcc Compiler
• gcc is a high-quality, open source compiler available for most

platforms
• At the command prompt, type
 gcc -Wall -std=c17 pgm.c
 where pgm.c is the C program source file
• Creates an executable a.out
• -std=c99 specifies that C99 standard features are allowed
• -Wall turns on all the important warning messages

ITSC 2181: Introduction to Computer Systems - 20

Compiler… (cont’d)

• GNOME (and me): “Make sure your code compiles with
absolutely no warnings from the compiler. These help you
catch stupid bugs.”

ITSC 2181: Introduction to Computer Systems - 21

Some Useful gcc Options
-c Compile the source code but do not link

(i.e., produce only the object file)
-E Preprocess the source code only (i.e.,

expand macros, but do not compile the
source code)

-o file Put output in file named file
--version Display version number of gcc
-std=c17 Support C17 (2017) language features
-Wall Enable all warnings
-g Produce information necessary

to debug using gdb

ITSC 2181: Introduction to Computer Systems - 22

gcc options… (cont’d)
-O, -O1 Various optimization levels
-D name Define name as a macro with value 1 (used

for conditional compilation)
-llib Search named library when linking
-Idir Add directory dir to the head of the list of

directories to search for header files
-Ldir Add directory dir to the list of directories

to search for libraries containing object
files (specified using the -l option)

-S Performs preprocessing and compilation
steps. Generates assembly instructions.

ITSC 2181: Introduction to Computer Systems - 23

C Language Standards

• There are multiple generations of C
– K&R C
– C89 (or C90)
– C99
– C11, C17 and C23

• We will use the default C standard supported by gcc
– To compile code for a specific standard, use the -std compiler directive. For

example: -std=c11 to use C11.
– The latest standard in wide use is C11.

ISO standards

ITSC 2181: Introduction to Computer Systems - 24

Console I/O

ITSC 2181: Introduction to Computer Systems - 25

What is I/O ?

• The I stands for Input, that is, the data entered by the user or
read by the program from an external source.
– External sources in C are usually referred to as streams. A text file

and the console (terminal) are examples of streams.

• The O stands for Output, that is, the results produced by the
program code.
– Output in C is sent to a stream.
– By default, C programs use the computer’s console or terminal.
– We will use the console and text files as the output stream.

ITSC 2181: Introduction to Computer Systems - 26

Console I/O in C

• I/O is provided by standard library functions
– available on all platforms

• To use, your program must have

• …and it doesn’t hurt to also have

• These are preprocessor statements; the .h files define function types, parameters,
and constants from the standard library.

#include <stdio.h>

#include <stdlib.h>

ITSC 2181: Introduction to Computer Systems - 27

Streams

• A stream is a file or a device from which data is read, and/or
to which data is written

• By default, every C program automatically has 3 open streams,
called
– the standard input
– the standard output
– the standard error

ITSC 2181: Introduction to Computer Systems - 28

Streams (cont’d)

• If you do not override them…
– standard input means the keyboard, i.e., what the user types.
– standard output & error means the terminal window.

ITSC 2181: Introduction to Computer Systems - 29

The printf() function

• printf() is a library function for formatted output, with
built-in conversions of input parameters to printable form.

• Definition: int printf(const char * format, …)

 Variable number of arguments

• format specifies how input arguments must be
converted/formatted for output.

ITSC 2181: Introduction to Computer Systems - 30

Parts of format

1. % (mandatory)
2. 0 or more flags (infrequently used)
3. Minimum output field width (pad with spaces) (useful for

making things line up)
4. .Precision (minimum number of digits to right of decimal

point)
(optional, default is 6 digits)

5. type of format conversion (mandatory)

ITSC 2181: Introduction to Computer Systems - 31

Precision Matters

• printf the number 33.3:

Format
Specifier

Output

%7.1f 33.3

%14.10f 33.2999992371

%.20f 33.29999923706054687500

ITSC 2181: Introduction to Computer Systems - 32

Some Types of Conversions
Print as Type… Specifier
char %c

unsigned
int

%u (in decimal)
%o (in octal)
%x, %X (in hex)
(%lu, %lo, %lx for long)

signed int %d, %i (in decimal)
(%ld, %li for long)

float %f

float %e, %E (use scientific notation)

(string) %s

ITSC 2181: Introduction to Computer Systems - 33

Example
Program:

char c = ‘a’;
int i = 9999;
float f = 3.1415926535897932;

printf(“c = %c (%o in octal)\n”, c, c);
printf(“i = %6d (%x in hex)\n”, i, i);
printf(“f = %8.5f (%e in sci. notation)\n”,
 f, f);

c = a (141 in octal)
i = 9999 (270f in hex)
f = 3.14159 (3.141593e+00 in sci. notation)

Output:

(see format.c in Code
samples and Demonstrations
in Canvas)

ITSC 2181: Introduction to Computer Systems - 34

The scanf() function

• scanf() is a library function for formatted input:
– Converts numbers to/from ASCII
– Skips “white space” automatically

• Definition: int scanf(const char * fmt, …)
– Variable number of arguments

• fmt specifies how input must be converted.

ITSC 2181: Introduction to Computer Systems - 35

Examples
char c, d;
float f, g;
int i, j;
int result;

result = scanf(“%c %c”, &c, &d);
…check result to see if returned value 2…

result = scanf(“%d %f %f”, &i, &f, &g);
…check result to see if returned value 3…

result = scanf(“%d”, &i);
…check result to see if returned value 1…

(see scanf_examples.c in Code
samples and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 36

Parts of the Format Specifier

1. % (mandatory)
2. Minimum input field width (optional, number of characters to

scan)
3. Type of format conversion (mandatory)

NOTE: White space in the format string does not force white
space to be present in the input stream.

(see date.c in Code samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 37

Some Types of Conversions
Convert input to Type… Specifier

char %c

unsigned int %u (in decimal)
%o (in octal)
%x, %X (in hex)
(%lu, %lo, %lx for long)

signed int %d, %i (in decimal)
(%ld, %li for long)

float %f

float %e, %E (use scientific notation)

(string) %s

ITSC 2181: Introduction to Computer Systems - 38

Input Arguments to scanf()

• Must be passed using “call by reference”, so that scanf()
can overwrite their value
– Pass memory address of the argument using & operator

• Example:
char c;
int j;
double num;
int result;

result = scanf(“%c %d %lf”, &c, &j, &num);

N common source of bugs N

failure to use &
before arguments

to scanf

ITSC 2181: Introduction to Computer Systems - 39

Advice on scanf()

• Experiment with it and make sure you understand how it works, how
the format specifier affects results
– The assigned readings and reference materials are excellent resources on how

different input strings are processed

• Always check return value to see if you read the number of values you
were expecting

(see scanf_examples.c in Code
samples and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 40

scanf()Example

Results with input
12345678912345678?

1 2 345678912345 1234?

char x, y;
int j;
scanf(“%c%c%d”, &x, &y, &j);

(see scanf_examples.c in Code
samples and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 41

References

• S. J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version
1.2. Free online textbook, available at:
https://diveintosystems.org/book/

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

https://diveintosystems.org/book/

