
ITSC 2181: Introduction to Computer Systems - 1

Functions in C

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

ITSC 2181: Introduction to Computer Systems - 2

Functions in C

• Functions are also called subroutines or procedures
• One part of a program calls (or invokes the execution of) the

function

Example: printf()
int main(void) {
 …
 printf (…);
 …
}

caller

int printf(…) {
 …code for printf…
}

callee

passes

control

(see functions.c in Code Samples
and Demonstrations in Canvas)

returns
control

ITSC 2181: Introduction to Computer Systems - 3

Are Functions Necessary?

int main(void) {
 …
 …code for printing something…
 …
 …code for printing something else…
 …
 …code for printing something else…
 …
}

Alternative: just copy the source code of printf()into
the caller, everywhere it is called.

This is called inlining the function code. Usually not the
best solution.

ITSC 2181: Introduction to Computer Systems - 4

Reasons to Use Functions

• Functions improve modularity
– reduce duplication, inconsistency
– improve readability, easier to understand
– simplify debugging

• test parts – unit testing
• then the whole – system/functional testing

• Allows creation of libraries of useful "building blocks" for
common processing tasks

ITSC 2181: Introduction to Computer Systems - 5

Function Return Values
• The simplest possible function has no return value

and no input parameters. For example:
• Useful? void abort (void)

char getchar (void)

int rand (void)

clock_t clock (void)

• The next simplest case: value returned, but no input
parameters. For example:

ITSC 2181: Introduction to Computer Systems - 6

What Values Can a Function Return?

• The datatype of a function can be any of:
– integer or floating point number
– structs and unions
– enumerated constants
– void
– pointers to any of the above (more on this later)

• Each function’s type should be declared before use

ITSC 2181: Introduction to Computer Systems - 7

How Many Values Returned?

• A function can return at most one value
• What if you need a function to return multiple results?
• Example: you provide the radius and height of a cylinder to a

function, and want to get back…
1. surface area
and
2. volume of the cylinder

ITSC 2181: Introduction to Computer Systems - 8

How Many … (cont’d)

• Choice #1: make the return type a struct
typedef struct { //similar to an object
 int area; // first field
 int vol; // second field
} mystruct;

mystruct ans;
mystruct cyl (int , int);

int main(void) {
 …
 ans = cyl (r, h);
}

ITSC 2181: Introduction to Computer Systems - 9

How Many … (cont’d)

• Choice #2: use global variables
– global variables are visible to (and can be updated by) all functions

double area, vol;
void cyl (int , int);

int main(void) {

 …

 cyl (r, h);
}

void cyl (int r, int h)
{

 area = h * (2 * PI * r);
 vol = h * (r * r * PI);
}

N common source of bugs N
use of global

variables

(see cylinder.c in Code Samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 10

How Many … (cont’d)

• Choice #3: pass parameters by reference using pointers,
instead of by value
– allows them to be updated by the function

• Example: later, when we talk about pointers…

ITSC 2181: Introduction to Computer Systems - 11

Function Side Effects

• Besides the value returned, these are things that may be
changed by the execution of the function

• Examples
– input to or output by the computer
– changes to the state of the computer system
– changes to global variables
– changes to input parameters (using pointers)

• There are problems with side effects; we’ll come back to this...

N common source of bugs N
side effects in

functions and expressions

ITSC 2181: Introduction to Computer Systems - 12

Input Parameters of a Function

• Often called arguments of the function
• Two types
– formal or abstract – parameter declarations in the function

definition
– actual or concrete – the actual values passed to the function at run

time

• If no input parameters to the function, leave empty, or use the
void keyword

ITSC 2181: Introduction to Computer Systems - 13

Input Parameters of a Function (cont’d)

• The number and value of actual parameters should match the
number and type of formal parameters

int a, v;

void cyl (int , int);

int main(void) {
 float r;
 …
 (void) cyl (r);
}

void cyl (int r, int h)
{
 a = h * (2 * PI * r);
 v = h * (r * r * PI);
}

function prototype

actual parameters

formal parameters

Oops!
Callee

Caller

ITSC 2181: Introduction to Computer Systems - 14

Parameter Passing

• Parameters are passed using call-by-value
– i.e., a copy of the parameter value is made and provided to the

function

• Any changes the function makes to this (copied) value have no
effect on the caller’s variables

ITSC 2181: Introduction to Computer Systems - 15

Input Parameters (cont’d)

Example:

void cylbigger (int r, int h)
{
 r = 2 * r;
 h = 2 * h;
 a = h * (2 * PI * r);
 v = h * (r * r * PI);
}

float a, v;
void main ()
{
 int r, h;
 ...
 (void) cylbigger (r, h);
 ...

does not change caller’s
variables r and h

(see functions.c in Code Samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 16

Types for Function Arguments

In C, an implicit type conversion occurs if actual argument type
is different from formal argument type

void u (char c);
…
double g = 12345678.0;
…
u (g);

g = 12345678.0
c = 78

no compiler warnings!

formal

actual

Advice: more predictable if you cast it yourself

N common source of bugs N
overlooking type differences

in parameters

(see implicit_conversion.c in Code Samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 17

Must Declare Function Before Use
Program without compilation errors
#include <stdio.h>

float f (float x, float y)
{
 …
}

int main (void)
{
 float w, x, y;
 …
 w = f(x, y);
 …
}

Program with compilation errors
#include <stdio.h>

int main (void)
{
 float w, x, y;
 …
 w = f(x, y);
 …
}

float f (float x, float y)
{
 …
}

Why should this make a difference?

(see order.c in
Code Samples and
Demonstrations in
Canvas)

ITSC 2181: Introduction to Computer Systems - 18

Declare Before... (cont’d)

• Approaches
1. (unusual) locate the function definition at the beginning of the

source code file, or…
2. (usual) put a function prototype at the beginning of the source code

(actual function definition can appear anywhere)

ITSC 2181: Introduction to Computer Systems - 19

Declare Before... (cont’d)
Program without compilation errors

#include <stdio.h>

float f (float , float);

int main (void)
{
 float w, x, y;
 …
 w = f(x, y);
 …
}

float f (float x, float y)
{
 …
}

function prototype

(see order.c in Code Samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 20

Side Effects, Again

• Q: If a variable is referenced multiple times in a single
statement, and modified (by side effects) one of those times,
do the other references see the side effect?

• Examples: a = 2;
b = ++a;
c = a + a;

a = 2;
b = ++a + a;

x = 1;
b = --x && x;

a = 2;
b = ++a, c = a;

a = 2;
b = f(++a, a);

a = 2;
x = (++a > 2) ? a : 5;

a = 2;
if (a++)
 b = a;

ITSC 2181: Introduction to Computer Systems - 21

Recursion

• What about f() calling f()???
• A powerful and flexible way to iteratively compute a value
– although this idea seems modest, recursion is one of the most

important concepts in computer science

• Each iteration must temporarily store some input or
intermediate values while waiting for the results of recursion
to be returned

N common source of bugs N
misunderstanding

of recursion

ITSC 2181: Introduction to Computer Systems - 22

Recursion
Example

...
int main (void)
{ …
 int n = 3;
 w = factorial(n);
…
}

int factorial(int n)
{
 if (n == 1)
 return 1;
 else
 return n * factorial(n-1);
}

ITSC 2181: Introduction to Computer Systems - 23

Recursion Example… (cont’d)

returns 2 * 1

factorial(1)

returns 1

returns 3 * 2 * 1

calls factorial(3)

main()

factorial(3)

calls factorial(2),
stores n=3

factorial(2)

calls factorial(1),
stores n=2

ITSC 2181: Introduction to Computer Systems - 24

Recursion ... (etc)

• What does the function
f(n) = f(n-1) + f(n-2) (and f(1) == f(0) == 1) return for n = 5?

long long int f (long long int n)
{
 if ((n == 1) || (n == 0))
 return 1;
 else
 return (f(n-1) + f(n-2));
}

what function is this? any problems if n = 50?
code it and try!

(see fib.c in
Code Samples and
Demonstrations in
Canvas)

ITSC 2181: Introduction to Computer Systems - 25

Recursion or Iteration?

• Every recursion can be rewritten as a combination of
1. a loop (iteration), plus…
2. storage (a stack) for intermediate values

ITSC 2181: Introduction to Computer Systems - 26

How Big Should A Function Be?

• Too small (100 line program, 20 functions)???
• Too large (10,000 line program with 2 functions)???
• Just right ? (Linux recommendations)
– “Functions should ... do just one thing...[and] fit on one or two

screenfuls of text”
– “... the number of local variables [for a function] shouldn't exceed

5-10”

ITSC 2181: Introduction to Computer Systems - 27

Top-Down Programming in C

• Procedural programming languages encourage a way of
structuring your programs:
– start with the basics
– then progressively fill in the details

• Ex.: writing a web browser
– how does one get started on a large program like this?

ITSC 2181: Introduction to Computer Systems - 28

The C Standard Library

• Small set of useful functions, standardized on all platforms
• Definitions are captured in 24 header files
• Includes functions to do tasks such as:
– Input/output processing: <stdio.h>
– String handling: <string.h>
– Mathematical computations: <math.h>
– Memory management: <stdlib.h>
– Generating random numbers: <stdlib.h>
– Date and time processing: <time.h>

ITSC 2181: Introduction to Computer Systems - 29

References

• S. J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version
1.2. Free online textbook, available at:
https://diveintosystems.org/book/

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

https://diveintosystems.org/book/

