
ITSC 2181: Introduction to Computer Systems - 1

Arrays in C

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

ITSC 2181: Introduction to Computer Systems - 2

Motivation to Use Arrays?

• Simple data type: variables of these types can store only one
value at a time

• Structured data type: a data type in which each data item is a
collection of other data items. Arrays are a structured data
type.

2

ITSC 2181: Introduction to Computer Systems - 3

Arrays

• A collection of a fixed number of components, all of the same
data type

• One-dimensional array: components are arranged in a list form
• Syntax for declaring a one-dimensional array:

• intExp: any constant expression that evaluates to a positive
integer

3

ITSC 2181: Introduction to Computer Systems - 4

Declaring Arrays

• The declaration determines the
1. element datatype
2. array length (implicit or explicit)
3. array initialization (none, partial, or full)

• Array length (bounds) can be any constant (integer)
expression, e.g., 3, 3*16-20/4, etc.

ITSC 2181: Introduction to Computer Systems - 5

Accessing Array Components

• General syntax:

• indexExp: called the index
– An expression with a nonnegative integer value

• Value of the index is the position of the item in the array
• []: array subscripting operator
– Array index always starts at 0

5

ITSC 2181: Introduction to Computer Systems - 6

Accessing Array Components (cont’d.)

6

ITSC 2181: Introduction to Computer Systems - 7

Accessing Array Components (cont’d.)

7

ITSC 2181: Introduction to Computer Systems - 8

Processing One-Dimensional Arrays

• Basic operations on a one-dimensional array:
– Initializing
– Inputting data
– Outputting data stored in an array
– Finding the largest and/or smallest element

• Each operation requires ability to step through elements of the
array
– Easily accomplished by a loop

8

(see arrays.c in Code Samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 9

Arrays

• Almost any interesting program uses for loops and arrays
• a[i] refers to ith element of array a
– numbering starts at 0

N common source of bugs N

referencing first
element as a[1]

(see arrays.c and commute.c in
Code Samples and Demonstrations in
Canvas)

ITSC 2181: Introduction to Computer Systems - 10

Processing One-Dimensional Arrays (cont’d.)

10

int list[5]; //array of size 5
int i;

for (i = 0; i < 5; i++)
{

scanf("%d", &list[i]);
}

for (i = 0; i < 5; i++)
{

printf("%d\n", list[i]);
}

ITSC 2181: Introduction to Computer Systems - 11

Array Initialization

ITSC 2181: Introduction to Computer Systems - 12

Initializing 1-D Arrays
• Explicit length, nothing initialized:

int days_in_month[12];

char first_initial[12];

float inches_rain[12];

int days_in_month[12]
= {31,28,31,30,31,30,31,31,30,31,30,31 };

char first_initial[12]
= {‘J’,‘F’,‘M’,‘A’,‘M’,‘J’,‘J’,‘A’,‘S’,‘O’,‘N’,‘D’};

float inches_rain[12]
= {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0,3.2,2.9,3.0,3.2};

What happens if you try to initialize more than 12 values??

• Explicit length, fully initialized:

(see array_initialization.c and
array_init_warn.c Code Samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 13

Initializing 1-D Arrays (cont’d)

• Implicit length + full initialization:

The number of values initialized implies the size of the array.

int days_in_month[]
= {31,28,31,30,31,30,31,31,30,31,30,31 };

char first_initial[]
= {‘J’,‘F’,‘M’,‘A’,‘M’,‘J’,‘J’,‘A’,‘S’,‘O’,‘N’,‘D’};

float inches_rain[]
= {3.5,3.7,3.8,2.6,3.9,3.7,4.0,4.0,3.2,2.9,3.0,3.2};

(see array_initialization.c and
array_init_warn.c Code Samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 14

Memory Layout and Bounds Checking

• There is NO bounds checking in C
– i.e., it’s legal (but not advisable) to refer to
days_in_month[216] or
days_in_month[-35] !

– Who knows what is stored there?

… …

Storage for array int days_in_month[12];

Storage for other stuff Storage for some more stuff

(each location shown here is an int)

ITSC 2181: Introduction to Computer Systems - 15

Bounds Checking… (cont’d)

• References outside of declared array bounds
– may cause program exceptions (“bus error” or “segmentation

fault”),
– may cause other data values to become corrupted, or
– may just reference wrong values

• Debugging these kinds of errors is one of the hardest errors to
diagnose in C

N common source of bugs N

referencing outside
the declared bounds of an array(see array_bounds.c in Code Samples

and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 16

Operations on Arrays
• The only built-in operations on arrays are:
– address of operator (&)
– sizeof operator
– we’ll discuss these shortly...

• Specifically, there are no operators to…
– assign a value to an entire array
– add two arrays
– multiply two arrays
– rearrange (permute) contents of an array
– etc.

ITSC 2181: Introduction to Computer Systems - 17

Operations on Arrays?

Instead of using built-in operators, write loops to process arrays.
For example:

int exam1_grade[NUMSTUDENTS],
 hw1[NUMSTUDENTS],
 hw2[NUMSTUDENTS],
 hwtotal[NUMSTUDENTS];

for (int j = 0; j < NUMSTUDENTS; j++) {
 exam1_grade[j] = 100;
 hwtotal[j] = hw1[j] + hw2[j];
}

ITSC 2181: Introduction to Computer Systems - 18

Variable Length Arrays

In C99, array length can be dynamically declared for non-static
variables:

int i, szar;

(void) printf(”Enter # of months in year: ");
(void) scanf("%d", &szar);

int days[szar];

What happens if you attempt to allocate an array of size zero,
or of negative size??

(see var_array.c in Code Samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 19

Variable… (cont’d)
However… array lengths cannot change dynamically during program
execution

int sz1, sz2;
(void) printf(”Enter first # of records: ");
(void) scanf("%d", &sz1);
int recs[sz1];

… do some stuff…

(void) printf(”Enter second # of records: ");
(void) scanf("%d", &sz2);
int recs[sz2];

Will not work! Compile error!

ITSC 2181: Introduction to Computer Systems - 20

Functions and Arrays

ITSC 2181: Introduction to Computer Systems - 21

Arrays as Function Arguments

• An array can be passed as an input argument
• You can specify the array length explicitly in the function

declaration
• Example: void getdays (int months[12])

{
 …
}

void getdays (int years[10][12])
{
 …
}

ITSC 2181: Introduction to Computer Systems - 22

Arrays as Arguments (cont’d)

• Make sure actual argument lengths agree with formal
argument lengths!
– will generate compiler errors otherwise

• Example: int years[5][12];
…
result = getdays (years);

why not years[5][12] here?
(see functions_2.c in Code Samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 23

Omitting Array Sizes

• Implicit length for the first dimension of a formal parameter is
allowed

• However, you cannot omit the length of other dimensions

void days (int years[][12])
{
 …
} void days (int years[10][])

{
 …
}

OK

NOT OK

ITSC 2181: Introduction to Computer Systems - 24

Dynamic Array Size Declaration

• Q: How can you tell how big the array is if its size is implicit?
• A: You provide array size as an input parameter to the function
• Example:

void days (int nm, int months[nm])
{ … }

Make sure the size parameter comes before the
array parameter.

void days (int nm, int months[])
{ … }

OR

ITSC 2181: Introduction to Computer Systems - 25

Dynamic Array Size… (cont’d)

Make sure sizes are consistent with array declaration

void days(int ny, int nm, int years[ny][nm])
{ …
 for (i = 0 ; i < ny ; i++)
 for (j = 0; j < nm ; j++)
 dcnt += years[i][j];
 …
}

int years[10][12];
…
(void) days(20,12, years);

problem here!
N common source of bugs N
mismatches in

array size declarations

ITSC 2181: Introduction to Computer Systems - 26

Arrays as Parameters

• Arrays are passed BY REFERENCE, not by value
– i.e., the callee function can modify the caller’s array values

• Therefore, if you update values in an array passed to a function,
you are updating the caller’s array

int years[10][12];
…
(void) changedays(years);
…
void changedays (int inyears[10][12])
{ … inyears[1][7] = 29; … }

N common source of bugs N
confusion about

call by reference vs.
call by value

(see array_params.c in
Code Samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 27

Arrays Cannot be Return Values

• Functions cannot return arrays, nor can they return functions
– (although they can return pointers to both)

int main(void) {
 char s[100];
 …
 s[] = readstring();
 …
}

char readstring() [100] {
 …
}

Not legal – do not
try!

(see array_return.c
in Code Samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 28

Character Strings

ITSC 2181: Introduction to Computer Systems - 29

Character Strings
• Strings (sequence of chars) are a particularly useful 1-D array
• All the rules of arrays apply, but there are a couple of extra

features
• Initialization can be done in the following styles:

In the first style, the string is implicitly null-terminated by the
compiler. The array is 5 characters long because the null character
(’\0’) is added to mark the end of the string.

char s1[] = “hope”;
char s2[] = { ‘h’, ‘o’, ‘p’, ‘e’ };

N common source of bugs N

failure to null
terminate a string

(see string.c in Code Samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 30

Character Strings (cont’d)

• Null termination is a convenience to avoid the need to specify
explicitly the length of a string
– i.e., functions processing strings can check for a null character to

recognize the end of the string
– For example, printf() displays a string of arbitrary length using

format specifier %s (the string must be null-terminated)
char s3[] = “C Prog”;

 printf (“The string is %s\n”, s1);

‘C’ ‘ ’ ‘P’ ‘r’ ‘o’ ‘g’ null

Storage for array s3[] Each location
shown here is
a char

ITSC 2181: Introduction to Computer Systems - 31

Character String Concatenation

• Can use anywhere a string constant is allowed

char s1[] = "Now " "is " "the " "time";
printf("%s\n", s1);

char s1[] = “This is a really long string that”
 “would be hard to specify in a single”
 “line, so using concatenation is a”
 “convenience.” ;

Output of execution is:
Now is the time

• Can initialize a string as a concatenation of multiple
quoted initializers:

ITSC 2181: Introduction to Computer Systems - 32

Array Operators

ITSC 2181: Introduction to Computer Systems - 33

The sizeof Operator

• Not a function call; a C operator
– Returns number of bytes required by a data type

• Return value is of predefined type size_t
#include <stdlib.h>
size_t tsz1, tsz2, tsz3;
int a;
float b[100];
struct student { …definition here… } st;

tsz1 = sizeof (a); /* 4 */
tsz2 = sizeof (b); /* ? */
tsz3 = sizeof (st); /* ? */

what are these sizes?

ITSC 2181: Introduction to Computer Systems - 34

The sizeof Operator (cont’d)

Can also be used to determine the number of elements in an
array

float b[100];
…
int nelems;
nelems = sizeof (b) / sizeof (b[0]);

sizeof()is evaluated at compile time for statically allocated objects

ITSC 2181: Introduction to Computer Systems - 35

References

• S. J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version
1.2. Free online textbook, available at:
https://diveintosystems.org/book/

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

https://diveintosystems.org/book/

