Pointers Variables in C

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

| COLLEGE OF COMPUTING
| AND INFORMATICS

|

ITSC 2181: Introduction to Computer Systems - 1

Memory Layout of a Program

Increasing memory addresses

ITSC 2181: Introduction to Computer Systems - 2

<

> Statically allocated

> Dynamically allocated

C

COLLEGE OF COMPUTING
AND INFORMATICS

Pointers in Every Day Life

. Examples You can call someone or send them a text message

using their phone number.
— telephone numbers

The phone number may change over time, but the

— web Pages message or call can still reach the same person.
— Twitter/X ID
One phone number may be forwarded to another
. Principle; indirection phone number, which may be forwarded to another,

and so on.
|

* This approach has many benefits, such as:
— Enables dynamic memory allocation
— Makes it possible to implement data structures (e.g., linked lists)

‘;"‘1 COLLEGE OF COMPUTING
| AND INFORMATICS

|

ITSC 2181: Introduction to Computer Systems - 3

All References are Addresses?

* In reality, all program references (to variables, functions,
system calls, interrupts, ...) are addresses

1. you write code that uses symbolic names

2. the compiler translates those for you into the addresses needed by
the computer

— requires a directory or symbol table
(name — address translation)

* You could just write code that uses addresses (no symbolic
names)

— advantages? disadvantages?

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 4

Pointer Variables

* The first step in understanding pointers is visualizing what they
represent at the machine level.

* In most modern computers, main memory is divided into

bytes, with each byte capable of storing eight bits of
information:

* Each byte has a unique address.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 5 Copyright © 2003889, Norton & Company. Al rights reserved.

Pointer Variables

If there are n bytes in memory, we can think of addresses as
numbers that range from O to n — 1:

Address

0

1

2

ITSC 2181: Introduction to Computer Systems -6 Copyright © 2008 W. W. Norton & Company. All rights reserved.

Contents

01010011

01110101

01110011

01100001

01101110

01000011

‘;“‘ COLLEGE OF COMPUTING
| AND INFORMATICS

Pointer Variables

* Each variable in a program occupies one or more bytes of

memory.
 The address of the first byte is said to be the address of the

variable.
* In the following figure, the address of the variable i is 2000:

2000

2001

COLLEGE OF COMPUTING
AND INFORMATICS
Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 7

Pointer Variables

* Addresses can be stored in special pointer variables.

 When we store the address of a variable i in the pointer
variable p, we say that p “points to” i.

* A graphical representation:

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 8 Copyright © 2008 W. W. Norton & Company. All rights reserved.

Declaring Pointer Variables

 When a pointer variable is declared, its name must be
preceded by an asterisk:

int *p;
* pis apointer variable capable of pointing to objects of type
int.

* We use the term object instead of variable since p might point
to an area of memory that doesn’t belong to a variable.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 9 Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 10 Copyright © 2008 W. W. Norton & Company. All rights reserved.

Declaring Pointer Variables

Pointer variables can appear in declarations along with other variables:
int 1, 3, al(l0], b[20], *p, *qg;

C requires that every pointer variable point only to objects of a particular
type (the referenced type):

int *p; /* points only to integers */
double *qg; /* points only to doubles */
char *r; /* points only to characters */

There are no restrictions on what the referenced type may be.

COLLEGE OF COMPUTING
AND INFORMATICS

The Address and Indirection Operators

* C provides a pair of operators designed specifically for use with
pointers.

— To find the address of a variable, we use the & (address of) operator.

— To gain access to the object that a pointer points to, we use
the * (indirection) operator.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 11 Copyright © 2008 W. W. Norton & Company. All rights reserved.

The Address Operator

* Declaring a pointer variable sets aside space for a pointer but
doesn’t make it point to an object:

int *p; /* points nowhere in particular */

* |t's crucial to initialize p before we use it.

* Trying to use a pointer that has not been initialized will usually
result in program failure.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 12 Copyright © 2008 W. W. Norton & Company. All rights reserved.

The Address Operator

* One way to initialize a pointer variable is to assign it the
address of a variable:

int 1, *p;
p = &1;

* Assigning the address of i to the pointer variable p makes p

point to 1:

ITSC 2181: Introduction to Computer Systems - 13 Copyright © 2008 W. W. Norton & Company. All rights reserved.

COLLEGE OF COMPUTING
AND INFORMATICS

The Address Operator

* |t's also possible to initialize a pointer variable at the time it’s
declared:
int 1;
int *p = &1;

 The declaration of 1 can even be combined with the
declaration of p:

int 1, *p = &1i;

COLLEGE OF COMPUTING
AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 14 Copyright © 2008 W. W. Norton & Company. All rights reserved.

The Indirection Operator

* Once a pointer variable points to an object, we can use the *
(indirection) operator to access what is stored in the object.

* If p pointsto i, we can print the value of i as follows:
printf ("%d\n", *p);
* Applying & to a variable produces a pointer to the variable.

* Applying * to the pointer takes us back to the original variable:

J = *&i; /* same as J = 1i; */

COLLEGE OF COMPUTING
AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 15 Copyright © 2008 W. W. Norton & Company. All rights reserved.

The Indirection Operator

* Aslongas p pointsto i, *p is an alias for i.
— The expression *p has the same value as 1.
— Changing the value of *p changes the value of 1.

* The example on the next slide illustrates the equivalence of *p
and 1.

We use of the indirection operator (*) to access
the data at the address stored in the pointer.

COLLEGE OF COMPUTING
: | AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 16 Copyright © 2008 W. W. Norton & Company. All rights reserved. {

The Indirection Operator

printf ("%d\n", 1i);

printf ("%d\n", *p);

D = 2;

printf ("%d\n", 1i);

printf ("%d\n", *p);

ITSC 2181: Introduction to Computer Systems - 17

/* prints 1 */
/* prints 1 */

O
%
-

/* prints 2 */
/* prints 2 */

Copyright © 2008 W. W. Norton & Company. All rights reserved.

f
IfJ COLLEGE OF COMPUTING
FJ AND INFORMATICS

/

The Indirection Operator

* Applying the indirection operator to an uninitialized pointer
variable causes undefined behavior:
int *p;
printf ("%d", *p); /*** WRONG ***/

* Assigning a value to *p is particularly dangerous:
int *p;
*p — 1; /*** WRONG ***/

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 18 Copyright © 2008 W. W. Norton & Company. All rights reserved.

Pointer Assignment

* Callows the use of the assighment operator to copy pointers
of the same type.

* Assume that the following declaration is in effect:
int 1, J, *p, *q;

 Example of pointer assignment:
p = &1;

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 19 Copyright © 2008 W. W. Norton & Company. All rights reserved.

Pointer Assignment

* Another example of pointer assignment:
q = p;
g now points to the same place as p:

1"

| COLLEGE OF COMPUTING
| AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 20 Copyright © 2008 W. W. Norton & Company. All rights reserved. |

Pointer Assignment

* If pand gboth point to i, we can change i by assigning a new value to
either *p or *q:

* p — 1 ; P o | T~
1 i
T

 Any number of pointer variables may point to the same object.

COLLEGE OF COMPUTING
: | AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 21 Copyright © 2008 W. W. Norton & Company. All rights reserved. {

Pointer Assignment

* Be careful not to confuse
q = p;
with
*q = *p;
* The first statement is a pointer assignment, but the second is
not.

* The example on the next slide shows the effect of the second
statement.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 22 Copyright © 2008 W. W. Norton & Company. All rights reserved.

Q O

ITSC 2181: Introduction to Computer Systems - 23

Pointer Assignment

Copyright © 2008 W. W. Norton & Company. All rights reserved.

c‘r‘

| AND INFORMATICS

/

f
| COLLEGE OF COMPUTING

Pointer Operations in C

Consider the code below

 "wrand w are variables of type int"
 "pwvis avariable containing the address of another variable”

* "pv =the address of v"

* "w =thevalue of the int whose address is contained in pv"

ITSC 2181: Introduction to Computer Systems - 25

int v, w;
int * pv;

pv = &v;
w = *pv;

(see test.c
in Code Samples and
Demonstrations in Can

V:S)_}

COLLEGE OF COMPUTING
AND INFORMATICS

C Pointer Operators

px is not an alias (another name) for the variable x; it is a
variable storing the location (address) of the variable x

px = &x; | pxisassigned the address of x"

y = *px; |yisassigned the value at the address
indicated (pointed to) by px”

Note the use of the indirection operator (*) to
access the data found at the address stored in px.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 26

...Operators (cont’d)

& = “the address of...”

int a; “ap is a pointer
int *ap; toan int
ap = &a; har c; . :
P ’ cha :’ cp is a pointer
char *cp; to a char’

“ap gets the address
of variable a”

CP = &c; float f;
“cp gets the address float *fp; “f£p is a pointer

of variable ¢” toa float’

fp = &f;

“fp gets the address
: , COLLEGE OF COMPUTING
| of variable £ c AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 27

...Operators (cont’d)

* = “pointer to...” or indirection operator

*ap = 33;
b = *ap;

“the variable ap points to (i.e., a), is assigned the value 33"

‘b is assigned the value of the variable pointed to by ap’(i.e., a)
the value of b is 33

“the variable cp points to (i.e., c) is assigned the value ‘Q”

“d is assigned the value of the variable pointed to by cp (i.e., ¢)’

“the variable £p points to (i.e., £) is assigned the value 3.14"

“g is assigned the value of the variable pointed to by £p (i.e., £)’

c COLLEGE OF COMPUTING
ITSC 2181: Introduction to Computer Systems - 28

AND INFORMATICS

Variable Names Refer to Memory

A C expression, without pointers

a=Db + c; /* all of type int */

Symbol Table
Memory | Variable
Address

0
4 Cc
8 a

ITSC 2181: Introduction to Computer Systems - 29

“Pseudo-Assembler” code

load int at address 0 into reqgl
load int at address 4 into reg2
add regl to reg2?

store reg2 into address 8

COLLEGE OF COMPUTING
AND INFORMATICS

Variables Stored in Memory

Almost all machines are byte-addressable, i.e.,
every byte of memory has a unique address

-

Addr Contents
0 Value of b
4 Value of c
8 Value of a
32 bits (4 bytes) wide c COLLEGE OF COMPUTING
| AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 30

Pointers Refer to Memory Also

A C expression, with pointers

int *ap;
ap = &a;

ap = b + ¢; / all of type int */

Symbol Table
Memory | Variable
Address

0

4 Cc

8 a

12 ap

ITSC 2181: Introduction to Computer Systems - 31

“Pseudo-assembler” code

load address 8 into reg3

load int at address 0 into reqgl
load int at address 4 into reg2
add regl to reg2

store reg2 into address pointed
to by reg3

COLLEGE OF COMPUTING
AND INFORMATICS

Pointers Refer... (cont’d)

Address Contents Variable
Name
0 Value of b b
4 Value of ¢ c
8 4’2_ Value of a a
12 8 (address of a) ap
NG J
Y

32 bits (4 bytes) wide

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 32

N
Addresses vs. Values

int a = 35;
int *ap; _— _
ap = &a; This code produces compiler warnings
— to avoid compiler warnings use the |
$p format specifier.

printf (Y a=%d\n &a=%u\n ap=%u\n *p=%d\n”,
a,
(unsigned int) &a,
(unsigned int) ap,

\ %p allows us to print the value of a

pointer, i.e., the memory address it
*ap) ; contains.

: . (see addresses_values.c in Code
Result of execution: samples and Demonstrations in

3 = 33 Canvas): |
&a 3221224568 299

ap 3221224568
*ap =

COLLEGE OF COMPUTING
AND INFORMATICS

Data Types

Make sure pointer type agrees with the type of the operand
It points to.

int 1, *ip;
float £, *fp;

fp = &f; /* makes sense */

fp = &i; /* definitely fishy */
/* but only a warning */

Example: if you're told the office of an instructor is
a mailbox number, that's probably a mistake c

COLLEGE OF COMPUTING

, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 34

Pointers and Functions

Passing variables by reference

COLLEGE OF COMPUTING
_ AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 36

Pointers as Arguments of Functions

* Pointers can be passed as arguments to functions

e Useful if you want the callee to modify the caller’s variable(s)

— that is, passing a pointer is the same as passing a reference to (the
address of) a variable

* The pointer itself is passed by value, and the caller’s copy of
the pointer cannot be modified by the callee

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 37

...as Arguments (cont’d)

void swap (int * px, int * py) {
int temp = *px;
*pPx = *py;
*py = temp;

}

px = py = NULL; /* just to show caller’s
pointers not changed */

(see arguments.c in Code Samples prints the pointer (not the

and Demonstrations in Canvas)

int i = 100, j = 500; l
int *pl = &1, *p2 = &j;

printf (*%d %d %p %p\n”, i, j,/pl, p2);

swap (pl, p2);
printf (“%d %d %p %$p\n”, i, j, pl, p2

ITSC 2181: Introduction to Computer Systems - 38

variable that is pointed to)

COLLEGE OF COMPUTING
AND INFORMATICS

...as Arguments (cont'd)

e Results of execution: ??7?

* Download arguments.c from Canvas (Code samples and
Demonstrations), execute it and examine the output.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 39

Pointers as Return Values

A function can wLriE i};_j’ *r;:; L gq)
. r — 1 er &l, & ’
return a pointer as "x L J
the result int * bigger (int *pl, int *p2)
{
if (*pl > *p2)
return pl;
else
return p2;
}

Useful? Wouldn't it be easier to return the bigger value

(*pl or *p2)°?

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 40

...Return Values (cont’d)

° Warning! never int main (void)
. {
return a pom.ter to printf ("sd\n", * sumit(3));
an auto variable printf ("$d\n", * sumit(4));
in the scope of the SRRt (R s 7
calleel return (0);
' }
* Why not?
— Because an auto int * sumit (int 1) (see sumit.c
: { in Code samples
variable ha.s no int sum = 0; gnd Demonstrations
scope outside of cum 4= i in Canvas).

the function. return
} c COLLEGE OF COMPUTING

AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 41

...Return Values (cont’d)

int * sumit (int i)
. . {
But with this change, int sum = 0;
no problems! sum += i;
return ∑
Why not? }

Output: 3

7
12

Download sumit.c from Canvas (in Code samples and

Demonstrations in Canvas), execute it and examine the output.
c COLLEGE OF COMPUTING

AND INFORMATICS

Alternative...

int s = 0;

sumit (3, &s); printf("%d\n", s);
sumit (4, &s); printf("%d\n", s);
sumit (5, &s); printf("%d\n", s);

void sumit (int i,)
{

return
}

Use a pointer to the variable that you want to
contain the sum instead. That variable can remain

local to the caller without running into scope issues. COLLEGE OF COMPUTING
AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 43

References

* S.J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version
1.2. Free online textbook, available at:
https://diveintosystems.org/book/

* K. N.King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

* D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 44

https://diveintosystems.org/book/

