Dynamic Memory Allocation

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

COLLEGE OF COMPUTING
. | AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 1 {

Why Dynamic Memory Allocation?

e Don't know how much data will need to be stored until
runtime; choices?

Choice 1: Declare static array of maximum size that could
possibly occur

#define MAXCLASSSIZE 500
struct student { ..definition here.. };
struct student students[MAXCLASSSIZE];

int i = 0;
while (more students && (i < MAXCLASSSIZE))
readstudents (students[i++]);

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 2

Why Dynamic ... (cont’d)

Choice 2: Declare dynamic (auto) array of specific size
needed, at run time

int main (void) {
int maxnum;
printf (“Number of students in class? \n”);
scanf (V"3d”, &maxnum) ;
struct student students|[maxnum] ;

int 1 = 0;
while (more students && (i < maxnum))
readstudents (students[i++]);

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 3

Why Dynamic... (cont’d)

Choice 3: Allocate memory dynamically using a standard library
function (malloc or calloc)

#include <stdio.h>
#include <stdlib.h>

int main(void) {
struct student *sp;
while (more students) ({
sp = (struct student ¥*)
calloc (num, sizeof(struct student)) ;
if (sp '= NULL)
readstudents (sp)

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 4

Dynamic Storage Allocation

* Dynamic storage allocation is used most often for strings,
arrays, and structures.

* Dynamically allocated structures can be linked together to
form lists, trees, and other data structures.

* Dynamic storage allocation is done by calling a memory
allocation function.

COLLEGE OF COMPUTING
AND INFORMATICS
Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 5

Memory Allocation Functions

* The<stdlib.h> header declares three memory allocation

functions:

malloc — Allocates a block of memory but doesn’t initialize it.
calloc — Allocates a block of memory and clears it.
realloc — Resizes a previously allocated block of memory.

* These functions return a value of type void * (a “generic”
pointer).

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 6 Copyright © 2008 W. W. Norton & Company. Al rights reserved.

Null Pointers

* If a memory allocation function can’t locate a memory block of
the requested size, it returns a null pointer (NULL).

* A null pointer is a special value that can be distinguished from
all valid pointers.

* After we have stored the function’s return value in a pointer
variable, we must test to see if it is a null pointer.

COLLEGE OF COMPUTING
AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 7 Copyright © 2008 W. W. Norton & Company. Al rights reserved.

Null Pointers

 An example of testingmalloc’s return value:

p = malloc(10000) ;
if (p == NULL) ({
/* allocation failed; take appropriate action */

}

e NULL is a macro (defined in various library headers) that represents
the null pointer.

 Some programmers combine the call of malloc with the NULL test:

if ((p = malloc(10000)) == NULL) {
/* allocation failed; take appropriate action */

}

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 8 Copyright © 2008 W. W. Norton & Company. Al rights reserved.

Memory Layout of a Program

* The heap is an area of virtual memory available for dynamic
(runtime) memory allocation

™

> Statically allocated

<

> Dynamically allocated

Increasing memory addresses

v

~ COLLEGE OF COMPUTING
_ AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 9

C vs. Other Languages

* Crequires you to manually allocate and reclaim memory.

 Other languages (e.g., Java, Python, C#) automatically allocate
and reclaim memory for you.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 10

The sizeof Operator

* Not a function call; a C operator

— returns number of bytes required by a data type

* Return value is of predefined type size t

(see sizeof example.c in

Code samples and
Demonstrations in Canvas)

#include <stdlib.h>

int a;
float b[100];

tszl = sizeof (a);
tsz2 = sizeof (b);
tsz3 = sizeof (st);

size t tszl, tsz2, tsz3;

/* 4 %/
/* 2 %/
/* 2 %/

struct student { ..definition here..

what are these sizes?

v

}

st;

ITSC 2181: Introduction to Computer Systems - 11

COLLEGE OF COMPUTING
AND INFORMATICS

Themalloc () Std. Lib. Function

* Syntax: void * malloc (size t sz)
 OS allocates sz bytes of contiguous storage

_ e ey e ge & common source of bugs®
Uninitialized madloc() doey not
e Returns starting address of storage il 3

— If size is O, returns NULL or unique pointer that can be freed

students = (struct student *)
malloc (num * sizeof (struct student)) ;

ip = (int *) malloc (sizeof (int));
cp = (char *) malloc (1000 * sizeof (char));
(see examples.c in Code samples and Demonstrations COLLEGE OF COMPUTING
| in Canvas) c AND INFORMATICS
ITSC 2181: Introduction to Comput ystents—42 —

The calloc () Standard Library Function

Syntax: calloc (size t num, size t sz)

\Gener/c pointer, néjst be cast to type of result

OS allocates (num * sz) bytes of contiguous storag

bytes initialized to zeros)

int * ip;
ip = (int *) calloc (1, sizeof (int));
char *cp;

struct student * students; *_—’—_’_’_,,//’/,
students = (struct student *)

calloc (num, sizeof (struct student));

cp = (char *) calloc (1000, sizeof (char));

ITSC 2181: Introduction to Computer Systems - 13

(all

COLLEGE OF COMPUTING
AND INFORMATICS

calloc () (cont’'d)

* Return value is starting address of the storage allocated
* If not enough memory available, returns NULL

— Could also be a unique pointer that could be passed to free()
— ALWAYS check for this error

L common souwrce of bugs®
failure to- check
retuwrnw value

cp = (char *) calloc (1000, sizeof (char))
if (cp == NULL) {

printf (“Cannot allocate memory; exiting\n”);

exit (-1);
}

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 14

The £ree () Standard Library Function

* Syntax: void free (void * ptr)
— no way to check for errors!

— ptr must have been previously allocated bymalloc () or
calloc ()

— no need to specify amount of memory to be freed.
— Frees (for other uses) memory previously allocated

free (students) ;

free (1ip); %am@mw%?z%%&
free (cp): ummedf/mzn;jy

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 15

Dynamic Memory Allocation
Common Mistakes

 These bugs can really be hard to find and fix

— May run for hours before the bug pops up, and in a place that
appears to have no relationship to the actual cause of the error

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 16

Mistake M1: Invalid Pointers

e Problems?

& common sowrce of bugs2

result = scanf

int 1, j, result;

(“sd %d”,

1,

&j) ;

char *ptr;
ptr = 'A';

*ptr = 'B';

(see invalidl.c and
invalid2.c in Code
samples and Demonstrations

in Canvas)

ITSC 2181: Introduction to Computer Systems - 17

COLLEGE OF COMPUTING
AND INFORMATICS

Invalid Pointers (cont’d)

& common sowrce of bugs2

e Problems?

int * £(void)

{

samples and Demonstrations

int wval; (see invalid3.c in Code
in Canvas)

return &val; |

} \/\
\

why is this a problem?

COLLEGE OF COMPUTING
. | AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 18 {

Invalid Pointers (cont’d)

% common sowrce of bugs:

* Problems? Fix? =

..dynamically allocate and construct a linked
list..

/* now list is no longer needed,
* free memory

*/
for (p = head; p '= NULL; p = p->next)

free(p); 1\

why is this a probl‘em?

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 19

M2: Not Initializing Memory

e Problems?

& common sowrce of bugs2

int * sumptr;

ITSC 2181: Introduction to Computer Systems - 20

int ival[l00] = { ..initial values here.. };
int i;
sumptr = (int *) malloc (sizeof(int));
for (1 = 0; 1 < 10; i++4)
*sumptr += ival[i];
(see no_initialization.c in Code
samplfs and Demonstrations in Canvas)

COLLEGE OF COMPUTING
AND INFORMATICS

M3: Stack Buffer Overflows

void bufoverflow (void) & common source of bugs:

{

char buf[64];

(void) gets (buf) ;
return;

}

* Problems?
* One of the biggest sources of security problems

Are you sure the input will be no more than 64
characters long?

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 21

MA4: Writing Past End of
Dynamically Allocated Memory

int 1, sz;
int *ip, *jp;

(void) scanf (“"%d”, &sz);

...check for errors here..

Jp = 1p;
for (i = 0; i <= sz; i++)

(void) scanf\é)ﬁi", Jjpt+)

ip = (int *) calloc (sz, sizeof(int));

commeon sowrce of bugs

\

ITSC 2181: Introduction to Computer Systems - 22 why is this a problem?

COLLEGE OF COMPUTING
AND INFORMATICS

M5: Freeing Unallocated Memory

Problems?

int 1i;

int *ip;
ip = &1;

free (ip) ;

L common source of bugs:

~—\

\

why is this a problem?

(see allocate.c in Code samples and

ITSC 2181: Introduction to Computer Systemls -23

Demonstrations in Canvas) [c ‘x’ fﬁﬁﬁ% gAFA ET%/I;UTING

Freeing Unallocated ...(cont’d)

e Problems?

int *ip;

ip = (int *) calloc (1000, sizeof(int));

free (ip) ; & common source of bugs%

free (ip) ;

(see double free.c in Code samples and
Demonstrations in Canvas)

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 24

M6: Memory Leaks

& common source of bugs®

* Allocated memory is referenced using pointer returned by
allocation

* |f you lose pointers (free them, change to another address),
you can no longer reference or free allocated memory

e Common problem in large, long-running programs (think:
servers)

— over time, memory footprint of program gets bigger, bigger, ...

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 25

M6: Memory Leaks

void leak (int n)
{
int * xp;
Xp = (int *) malloc (n * sizeof (int)) ;
..memory is used and then no longer needed..
return;
} \/\ 2 comwfworwc&ofbw%
\

why is this a problem?

(m of free to release memory.]

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 26

Automatic Garbage Collection?

C requires you to manually allocate and reclaim memory,

e.g... void addFirst (Object obj) {
Node * newNode =

(Node *) malloc (sizeof (Node)) ;
assert(newNode '= NULL) ;
newNode->data = ...;
newNode->next = first;
first = newNode;

}

Programmer explicitly Object removeFirst() {
C assert (first '= NULL) ;
indicates there are no

: t Node * old = first;
more references to Object obj = first->data;
the removed object

first = first->next;

» free (old);
return obj;
} COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 27

References

* S.J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version
1.2. Free online textbook, available at:
https://diveintosystems.org/book/

* K. N.King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

* D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 28

https://diveintosystems.org/book/

