
ITSC 2181: Introduction to Computer Systems - 1

Pointers and Arrays

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

ITSC 2181: Introduction to Computer Systems - 2

Introduction

• C allows us to perform arithmetic—addition and subtraction—
on pointers to array elements.

• This leads to an alternative way of processing arrays in which
pointers take the place of array subscripts.

• The relationship between pointers and arrays in C is a close
one.

• Understanding this relationship is critical for mastering C.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 3

Pointer Arithmetic

• Pointers can point to array elements:
 int a[10], *p;
 p = &a[0];

• A graphical representation:

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 4

Pointer Arithmetic

• We can now access a[0] through p; for example, we can
store the value 5 in a[0] by writing

 *p = 5;

• An updated picture:

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 5

Pointer Arithmetic

• If p points to an element of an array a, the other elements of
a can be accessed by performing pointer arithmetic (or
address arithmetic) on p.

• C supports three (and only three) forms of pointer arithmetic:
– Adding an integer to a pointer
– Subtracting an integer from a pointer
– Subtracting one pointer from another

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 6

Adding an Integer to a Pointer

• Adding an integer j to a pointer p yields a pointer to the
element j places after the one that p points to.

• More precisely, if p points to the array element a[i],
then p + j points to a[i+j].

• Assume that the following declarations are in effect:
 int a[10], *p, *q, i;

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 7

Adding an Integer to a Pointer

• Example of pointer addition:

 p = &a[2];

 q = p + 3;

 p += 6;

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 8

Arrays and Pointers

• An array variable declaration is really two things:
1. allocation (and initialization) of a block of memory large enough to

store the array
2. binding of a symbolic name to the address of the start of the array

int nums[3] = { 10, 20, 30 };

Byte Address Contents
nums 10

nums + 4 20
nums + 8 30

Example:

Block of
Memory

ITSC 2181: Introduction to Computer Systems - 9

Ways to Denote Array Addresses

• Address of first element of the array
– nums (or nums+0), or
– &nums[0]

• Address of second element
– nums+1
– &nums[1]

• etc.

What happened to the
“address of” operator?

Why “+1” and not “+4”?

Address of operator not
needed since array name is
really a pointer to (address of)
the first element.

The array knows its element size, so
you want to only move one element
and it doesn’t tie your program to a
specific type.

+4 would refer to bytes, which is not
the unit we want to use

ITSC 2181: Introduction to Computer Systems - 10

Arrays as Function Arguments

• Reminder: an array is passed by reference, as an address of (pointer to)
the first element

• The following are equivalent
int len, slen (char s[]);
char str[20] = “a string”;
len = slen(str);
…
int slen(char str[])
{
 int len = 0;
 while (str[len] != ‘\0’)
 len++;
 return len;
}

int len, slen (char *s);
char str[20] = “a string”;
len = slen(str);
…
int slen(char *str)
{
 char *strend = str;
 while (*strend != ‘\0’)
 strend++;
 return (strend – str);
}

With arrays With pointers

ITSC 2181: Introduction to Computer Systems - 11

Arrays are Pointers

• Example: adding together elements of an array
• Version 0, with array indexing:

int i, nums[3] = {10, 20, 30};
int sum = 0;
for (i = 0; i < 3; i++)
 sum += nums[i];

ITSC 2181: Introduction to Computer Systems - 12

Arrays are Pointers(cont’d)
Same example, using pointers (version 1)

int *ap, nums[3] = {10, 20, 30};

int sum = 0;
for (ap = &(nums[0]); ap < &(nums[3]); ap++)
 sum += *ap;

pointer to int increment pointer to
next element in array
(pointer arithmetic)

loop until you exceed the
bounds of the array

initialize pointer to
starting address of array

add next element to sum

(see array_summation.c in Code
Samples and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 13

Arrays are Pointers (cont’d)
Using pointers in normal way (version 2)

for (ap = nums; ap < (nums+3); ap++)
 sum += *ap;

But don’t try to do this

for (ap = (nums+3); nums < ap; nums++)
 sum += *nums;

initialize pointer to
starting address of array

loop until you exceed the
bounds of the array -
more pointer arithmetic

(see array_summation2.c
in Code samples and
Demonstrations in Canvas).

ITSC 2181: Introduction to Computer Systems - 14

Pointer Arithmetic
Question: How much is the increment?

int *ap, nums[3] = {10, 20, 30};
int sum = 0;
for (ap = nums; ap <= (nums+2); ap++)
 sum += *ap;

char *ap, nums[3] = {10, 20, 30};
char sum = 0;
for (ap = nums; ap <= (nums+2); ap++)
 sum += *ap;

Answer: the size of one element of the array (e.g., 4 bytes for an
int, 1 byte for a char, 8 bytes for a double, …)

Adds 4 to the address

Adds 1 to the address

(see array_iteration.c in Code samples and
Demonstrations in Canvas).

ITSC 2181: Introduction to Computer Systems - 15

…Arithmetic (cont’d)
Array of ints

Symbolic Address Byte Addr Contents
nums Start of nums 10

nums+1 Start of nums + 4 20
nums+2 Start of nums + 8 30

Symbolic Address Byte Addr Contents
nums Start of nums 10

nums+1 Start of nums + 1 20
nums+2 Start of nums + 2 30

Array of chars

ITSC 2181: Introduction to Computer Systems - 16

…Arithmetic (cont’d)

Referencing the ith element of an array
int nums[10] = {…};
…
nums[i-1] = 50;

int nums[10] = {…};
…
*(nums + i – 1) = 50;

Equivalent

Referencing the end of an array
int *np, nums[10] = {…};
…
for (np = nums; np < (nums+10); np++)
 …

nums points to the beginning of
our array. To get to element i, we
add i, then subtract 1 to move
left.

The end of the array is at the
address of what would be the 11th
element.

ITSC 2181: Introduction to Computer Systems - 17

Processing the Rows
of a Multidimensional Array

• A pointer variable p can also be used for processing the elements in just
one row of a two-dimensional array.

• To visit the elements of row i, we’d initialize p to point to element 0 in
row i in the array a:

 p = &a[i][0];

 or we could simply write
 p = a[i];

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 18

Processing the Rows
of a Multidimensional Array

• For any two-dimensional array a, the expression a[i] is a pointer to
the first element in row i.

• To see why this works, recall that a[i] is equivalent to *(a + i)
• Thus, &a[i][0] is the same
• as &(*(a[i] + 0)), which is equivalent to &*a[i]
• This is the same as a[i], since the & and * operators cancel.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 19

Processing the Rows
of a Multidimensional Array

• A loop that clears row i of the array a:
 int a[NUM_ROWS][NUM_COLS], *p, i;
 …
 for (p = a[i]; p < a[i] + NUM_COLS; p++)
 *p = 0;

• Since a[i] is a pointer to row i of the array a, we can pass a[i] to a
function that’s expecting a one-dimensional array as its argument.

• In other words, a function that’s designed to work with one-
dimensional arrays will also work with a row belonging to a two-
dimensional array.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 20

Processing the Columns
of a Multidimensional Array

• Processing the elements in a column of a two-dimensional
array isn’t as easy, because arrays are stored by row, not by
column.

• A loop that clears column i of the array a:
 int a[NUM_ROWS][NUM_COLS], (*p)[NUM_COLS], i;
 …
 for (p = &a[0]; p < &a[NUM_ROWS]; p++)
 (*p)[i] = 0;

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 21

Multidimensional Arrays and Pointers

2-D array º 1-D array of 1-D arrays
double rain[years][months] =
{ {3.1, 2.6, 4.3, …},
 {2.7, 2.8, 4.1, …},
 …
};

year = 3, month = 5;
rain[year][month] = 2.4;

double *yp, *mp;
yp = rain[3];
mp = yp + 5;
*mp = 2.4;

rain is the address of the entire
array

rain[3] is the address of the
4th row of the array

rain[3][5] is the value of the
6th element in the 4th row

&rain[3][5] is the address of
the 6th element in the 4th row

yp = address of 4th row

mp = address of 6th element in 4th row

ITSC 2181: Introduction to Computer Systems - 22

…Multidimensional (cont’d)

Equivalent:
double *yp, *mp;
yp = rain[3];
mp = yp + 5;
*mp = 2.4;

rain is the address of the
entire array

rain[3] is the address of
the 4th row of the array

rain[3][5] is the value
of the 6th element in the 4th
row

&(rain[3][5]) is the
address of the 6th element
in the 4th row

double *mp;
mp = &(rain[3][5]);
*mp = 2.4;

inconsistent?
The 1st dimension is
an address, whereas
the 2nd dimension is
a value.

ITSC 2181: Introduction to Computer Systems - 23

References

• S. J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version
1.2. Free online textbook, available at:
https://diveintosystems.org/book/

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

https://diveintosystems.org/book/

