
ITSC 2181: Introduction to Computer Systems - 1

Strings in C

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

ITSC 2181: Introduction to Computer Systems - 2

String Literals

• A string literal is a sequence of characters enclosed within double quotes:
 "When you come to a fork in the road, take it."

• String literals may contain escape sequences.
• Character escapes often appear in printf and scanf format strings.
• For example, each \n character in the string
 "Candy\nIs dandy\nBut liquor\nIs quicker.\n --Ogden Nash\n"

 causes the cursor to advance to the next line:
 Candy
 Is dandy
 But liquor
 Is quicker.
 --Ogden Nash

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 3

How String Literals Are Stored

• When a C compiler encounters a string literal of length n in a
program, it sets aside n + 1 bytes of memory for the string.

• This memory will contain the characters in the string, plus one
extra character—the null character—to mark the end of the
string.

• The null character is a byte whose bits are all zero, so it’s
represented by the \0 escape sequence.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 4

How String Literals Are Stored

• The string literal "abc" is stored as an array of four
characters:

• The string "" is stored as a single null character:

Copyright © 2008 W. W. Norton & Company. All rights reserved.

(see array_iteration.c in Code
samples and Demonstrations in Canvas) for
an example of code to access individual
characters in an array.

ITSC 2181: Introduction to Computer Systems - 5

How String Literals Are Stored

• Since a string literal is stored as an array, the compiler treats it
as a pointer of type char *

• Both printf and scanf expect a value of type char * as
their first argument.

• The following call of printf passes the address of "abc"
(a pointer to where the letter a is stored in memory):

 printf("abc");

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 6

Operations on String Literals

• We can use a string literal wherever C allows a char *
pointer:
 char *p;

 p = "abc";

• This assignment makes p point to the first character of the
string.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 7

Operations on String Literals

• String literals can be subscripted (like arrays):
 char ch;

 ch = "abc"[1];

 The new value of ch will be the letter b.
• A function that converts a number between 0 and 15 into the

equivalent hex digit:
 char digit_to_hex_char(int digit)
 {
 return "0123456789ABCDEF"[digit];
 }

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 8

Operations on String Literals

• Attempting to modify a string literal causes undefined
behavior:

 char *p = "abc";

 *p = 'd'; /*** WRONG ***/

• A program that tries to change a string literal may crash or
behave erratically.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 9

String Literals versus Character Constants

• A string literal containing a single character isn’t the same as a character
constant.

"a" is represented by a pointer.
'a' is represented by an integer.

• A legal call of printf:
 printf("\n");

• An illegal call:
 printf('\n'); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 10

String Variables

• If a string variable needs to hold 80 characters, it must be
declared to have length 81:

 #define STR_LEN 80
 …
 char str[STR_LEN+1];

• Adding 1 to the desired length allows room for the null
character at the end of the string.

• Defining a macro that represents the string’s length and
adding 1 is a common practice.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 11

Initializing a String Variable

• A string variable can be initialized at the same time it is declared:
 char date1[8] = "June 14";
• The compiler will automatically add a null character so that date1 can

be used as a string:

• "June 14" is not a string literal in this context. Instead, C views it as
an abbreviation for an array initializer.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 12

Initializing a String Variable

If the initializer is too short to fill the string variable, the compiler
adds extra null characters:
 char date2[9] = "June 14";

Appearance of date2:

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 13

Reading and Writing Strings

• Writing a string is easy using either printf or puts.
• Reading a string is a bit harder, because the input may be longer than

the string variable into which it is being stored.
• To read a string in a single step, we can use either scanf or gets.
• As an alternative, we can read strings one character at a time.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 14

A Special Case of Array Declaration

• Declaring a pointer to a string literal also allocates the memory
containing that string

• Example:

Doesn’t work with other types or arrays, ex.:

char *str = “This is a string”;

int *nums = {0, 1, 2, 3, 4}; /* won’t work! */
char *str = {‘T,‘h’,‘i’,‘s’}; /* no NULL char */

is equivalent to… char str[] = “This is a string”;

Except! first version is read only (cannot modify string contents
in your program) (see string_test.c in Code

samples and Demonstrations in
Canvas).

ITSC 2181: Introduction to Computer Systems - 15

The C Standard Library

Manipulating Strings and Characters

ITSC 2181: Introduction to Computer Systems - 16

Standard Library: <ctype.h>

• The C Standard Library has many functions for checking whether a
character is a digit, is upper case, …
– isalnum(c), isalpha(c), isspace(c),…

• Also, functions for converting to upper case and converting to lower
case
– toupper(c), tolower(c), …

• The input argument is an int and the return value is an int
– Works fine with unsigned chars or 7-bit character types
– Need to cast to unsigned char for safety

ITSC 2181: Introduction to Computer Systems - 17

<ctype.h> (cont’d)
Checking: isalnum (c) c is a letter or a digit

isalpha(c) c is a letter
isdigit (c) c is a decimal digit
islower (c) c is a lower-case letter
isspace (c) c is white space (\f \n \r \t \v)
isupper (c) c is an upper-case letter

Only a partial list. For full list see library or
https://en.wikibooks.org/wiki/C_Programming/ctype.h/Function_reference.

tolower (c) convert c to lower case
toupper (c) convert c to upper case

Converting:

https://en.wikibooks.org/wiki/C_Programming/ctype.h/Function_reference

ITSC 2181: Introduction to Computer Systems - 18

scanf() and printf() for Strings

sscanf(s, "…", …) scans a string (instead of
stdin) for expected input

sprintf(s, "…", …) outputs to a string
(instead of stdout) the specified output

(see sscanf_example.c in Code samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 19

sscanf and sprintf Example

char input[80] = "55 cars";
char output[80] = "";
int total_cars = 0;

sscanf(input, "%d", &total_cars);

sprintf(output, "Total Cars: %d\n", total_cars);
printf(output);

(see sscanf_example.c in Code samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 20

Using the C String Library

• The C library provides a rich set of functions for performing
operations on strings.

• Programs that need string operations should contain the
following line:

 #include <string.h>

• In subsequent examples, assume that str1 and str2 are
character arrays used as strings.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 21

The strcpy (String Copy) Function

• Prototype for the strcpy function:
 char *strcpy(char *s1, const char *s2);

• strcpy copies the string s2 into the string s1.
– To be precise, we should say “strcpy copies the string pointed to

by s2 into the array pointed to by s1.”

• strcpy returns s1 (a pointer to the destination string).

Copyright © 2008 W. W. Norton & Company. All rights reserved.

(see remind.c in Code samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 22

The strcpy (String Copy) Function

• A call of strcpy that stores the string "abcd" in str2:
 strcpy(str2, "abcd");
 /* str2 now contains "abcd" */

• A call that copies the contents of str2 into str1:
 strcpy(str1, str2);
 /* str1 now contains "abcd" */

Copyright © 2008 W. W. Norton & Company. All rights reserved.

(see remind.c in Code samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 23

The strcpy (String Copy) Function

• In the call strcpy(str1, str2), strcpy has no way to
check that the str2 string will fit in the array pointed to by
str1.

• If it doesn’t, undefined behavior occurs.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

(see remind.c in Code samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 24

The strncpy (Safe String Copy) Function

• Calling the strncpy function is a safer, albeit slower, way to
copy a string.

• strncpy has a third argument that limits the number of
characters that will be copied.

• A call of strncpy that copies str2 into str1:
 strncpy(str1, str2, sizeof(str1));

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 25

The strncpy (Safe String Copy) Function

• strncpy will leave str1 without a terminating null
character if the length of str2 is greater than or equal to the
size of the str1 array.

• A safer way to use strncpy:
 strncpy(str1, str2, sizeof(str1) - 1);
 str1[sizeof(str1)-1] = '\0';

• The second statement guarantees that str1 is always null-
terminated.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 26

The strlen (String Length) Function

• Prototype for the strlen function:
 size_t strlen(const char *s);

• size_t is a typedef name that represents one of C’s
unsigned integer types.

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 27

The strlen (String Length) Function

• strlen returns the length of a string s, not including the null
character.

• Examples:
 int len;

 len = strlen("abc"); /* len is now 3 */
 len = strlen(""); /* len is now 0 */
 strcpy(str1, "abc");
 len = strlen(str1); /* len is now 3 */

Copyright © 2008 W. W. Norton & Company. All rights reserved.

ITSC 2181: Introduction to Computer Systems - 28

Standard Library: <string.h>

• (<strings.h> on some machines)
• Lots of string processing functions for

– copying one string to another
– comparing two strings
– determining the length of a string
– concatenating two strings
– finding a substring in another string
– …

• Function headers at end of slides
• A good reference site is http://www.cplusplus.com/

(see string_comparison_example.c in
Code samples and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 29

<stdlib.h> String Functions

• double atof(char s[]) converts a string to a double,
ignoring leading white space

• int atoi(char s[]) converts a string to an int, ignoring
leading white space
– These don’t return information about errors

• (instead of…)
• Could also use

– strtol
– strtod/f

int num = 0;
while (isspace(c = getchar()))
 ;
while (isdigit(c)) {
 num = num * 10 + c – '0';
 c = getchar();
}

ITSC 2181: Introduction to Computer Systems - 30

References

• S. J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version
1.2. Free online textbook, available at:
https://diveintosystems.org/book/

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W.
Norton & Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program
Design, Seventh Edition. Cengage Learning. 2014.

https://diveintosystems.org/book/

