
ITSC 2181: Introduction to Computer Systems - 1

Input / Output

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

ITSC 2181: Introduction to Computer Systems - 2

<stdio.h>: I/O Functions

• Buffer: area of memory used to reduce number of expensive system calls
– i.e., get input and write output in blocks or chunks

• Stream: source of data being read, or destination of data being written
– (actually, a file descriptor/handle + a buffer)

• Two types of streams
1. text, ASCII characters, structured as lines terminated by ‘\n’
2. binary, sequence of bytes with no particular structure

ITSC 2181: Introduction to Computer Systems - 3

<stdio.h> … (cont’d)

• Every C program begins execution with 3 streams
– stdin, stdout, and stderr

• The program does not need to open or close these streams;
happens automatically

ITSC 2181: Introduction to Computer Systems - 4

Input Redirection

• We can change the location that a program’s stdin, stdout, and/or
stderr streams read from or write to.

• One way to do this is by re-directing one or all of these to read or
write to a file.

 < redirects a stdin to read from a file.
 Example: ./a.out < infile.txt

 > redirects a stdout to write to a file.
 Example: ./a.out > outfile.txt

ITSC 2181: Introduction to Computer Systems - 5

Input Redirection (cont’d)

• You can redirect the standard input from a file, e.g.,

• You can redirect the standard output to a file, e.g.,

• Note: the EOF (end of file) character on your keyboard is either
Ctrl-d (Unix, Linux, Mac OS X) or Ctrl-z (Windows)

pgm99 < infile.txt

pgm99 > outfile.txt

ITSC 2181: Introduction to Computer Systems - 6

Formatted Output

The format string passed to the printf function can include
formatting placeholders and special characters (e.g., \t)that create
special formatting. For example, the following code:
 int y = 10;
 float pi = 3.14;
 printf("%g \t %s \t %d\n", pi, "hello", y);

Produces the following output:
 3.14 hello 10

ITSC 2181: Introduction to Computer Systems - 7

Formatting Placeholders for Common C Types

%f, %g placeholders for a float or double value
%d placeholder for a decimal value (char, short, int)
%u placeholder for an unsigned decimal
%c placeholder for a single character
%s placeholder for a string value
%p placeholder to print an address value

%ld placeholder for a long value
%lu placeholder for an unsigned long value
%lld placeholder for a long long value
%llu placeholder for an unsigned long long value

ITSC 2181: Introduction to Computer Systems - 8

Specifying Field Width - Examples

%5.3f prints float value in space 5 chars wide, with 3 places beyond
decimal

%20s prints the string value in a field of 20 chars wide, right justified
%-20s prints the string value in a field of 20 chars wide, left justified

%8d prints the int value in a field of 8 chars wide, right justified

%-8d prints the int value in a field of 8 chars wide, left justified

ITSC 2181: Introduction to Computer Systems - 9

Placeholders to Specify Different Representations

%x prints value in hexadecimal (base 16)
%o prints value in octal (base 8)
%d prints value in signed decimal (base 10)
%u prints value in unsigned decimal (unsigned base 10)
%e prints float or double in scientific notation

Note: There is no formatting option to display a value in binary.

ITSC 2181: Introduction to Computer Systems - 10

File Input/Output

ITSC 2181: Introduction to Computer Systems - 11

<stdio.h> fopen()

FILE * fopen(const char *filename, const char
*mode) Establishes a connection between a file or device and a

stream

Returns pointer to object of type FILE, records
information for controlling stream

– returns NULL on failure

FILE * infile;
infile = fopen(“/tmp/testfile.txt”, “r”);
if (infile == NULL)
 { (void) printf(“Error.\n”); return -1;}

ITSC 2181: Introduction to Computer Systems - 12

<stdio.h> fopen() (cont’d)

• Mode
– "r" - open for reading
– "w" - create file for writing (discard previous contents)
– "a" - append to existing file or create for writing
– (+ some others, less important)

• If ‘b’ appended to above modes, file is opened as binary file

ITSC 2181: Introduction to Computer Systems - 13

<stdio.h> Binary Files

• Needed if
– non-ASCII data, or
– need to handle differences between outputs produced by different platforms (e.g.,

Windows « Linux)

• Examples of binary files
– images: .bmp, .gif, .jpg, .tif
– audio: .wav, .ac3
– video: .avi
– word processing: .rtf
– encrypted files
– etc.

ITSC 2181: Introduction to Computer Systems - 14

<stdio.h> fgetc()

int fgetc(FILE *stream)
int getc(FILE *stream)

Read next character of stream as unsigned char (converted to int)

returns EOF if end of file or error

getchar() is equivalent to getc(stdin)

int res;
unsigned char c;
if ((res = getc(stdin)) == EOF)
 …take action here…
c = (unsigned char) res;

ITSC 2181: Introduction to Computer Systems - 15

<stdio.h> fputc()

int fputc(int c, FILE *stream)
int putc(int c, FILE * stream)

Write the character c (converted to unsigned char) to stream

Returns character written, or EOF on error

putchar(c) equivalent to putc(c, stdout)

(void) putc(‘H’, stdout);
(void) putc(‘I’, stdout);
(void) putc(‘!’, stdout);

ITSC 2181: Introduction to Computer Systems - 16

<stdio.h> ungetc()

int ungetc(int c, FILE * stream)

Pushes c (converted to unsigned char) back onto stream !
– Clears the stream’s end-of-file indicator.

– c will be read by next getc on stream

Only one character of pushback per stream is guaranteed

EOF may not be pushed back

Returns character pushed back, EOF on error
(see ungetc_example.c in Code
samples and Demonstrations in
Canvas)

ITSC 2181: Introduction to Computer Systems - 17

<stdio.h> ungetc()… (cont’d)

• This program reads input words, prints one word per line
• No spaces between words, but each new word starts with a capital letter (e.g.

“DogCatBirdFishBee”)

char s[100], *p = s;
while (((*p=getc(stdin)) != EOF) && (*p != ‘\n’))
 if ((p > s) && (isupper(*p))) {
 ungetc(*p, stdin); /* read one too many */
 *p = ‘\0’;
 (void) printf(“Word: %s\n”, s);
 p = s;
 }
 else
 p++;
(void) printf(“Word: %s\n”, s);

(see ungetc_example.c in Code
samples and Demonstrations in
Canvas)

ITSC 2181: Introduction to Computer Systems - 18

<stdio.h> fread()

size_t fread (void * ptr, size_t size,
 size_t nobj, FILE * stream)

Reads up to nobj objects of size size from stream into array
pointed to by ptr

Returns number of objects read, less if error

char items[NUMITEMS];
size_t nr = fread((void *) items, sizeof(char),
 (size_t) NUMITEMS, stdin);
if (nr != NUMITEMS)
 … do something here …

(see fread.c in Code samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 19

<stdio.h> fwrite()

size_t fwrite (const void * ptr, size_t size,
 size_t nobj, FILE * stream)

Writes up to nobj objects of size size starting at address
ptr to stream

Returns number of objects written, less than requested if
error

ITSC 2181: Introduction to Computer Systems - 20

<stdio.h> fseek()

int fseek (FILE *stream, long offset,
 int origin)

Sets file position (for subsequent reading or writing) to offset from
origin

origin may be SEEK_SET (beginning of file), SEEK_CUR (current
position), or SEEK_END (end of file)

Mainly for binary streams

Returns non-zero on error

ITSC 2181: Introduction to Computer Systems - 21

<stdio.h> fseek() … (cont’d)

int res = fseek(infile, (long) 1000, SEEK_SET);
c = getc(infile); /* now read 1001st byte */

int res = fseek(infile, (long) -5, SEEK_END);
c = getc(infile); /* read 5th byte from end */

ITSC 2181: Introduction to Computer Systems - 22

<stdio.h> fflush()

int fflush(FILE *stream)

Causes any buffered data to be immediately written to output file

Helpful if you don’t want to wait for ‘\n’ to see output

fflush(stdout);

Or if you want to discard all the input typed by the user so far

fflush(stdin);

ITSC 2181: Introduction to Computer Systems - 23

<stdio.h> fclose()

int fclose(FILE * stream)

Actions
– flush any unwritten data to output file or device

– close the stream (cannot be read or written after)

(void) fclose(outfile);

ITSC 2181: Introduction to Computer Systems - 24

<stdio.h> remove()

Delete the named file, return 0 if successful

int remove(const char *filename)

if (remove(“/tmp/testfile.txt”))
 …error, take action here…

ITSC 2181: Introduction to Computer Systems - 25

<stdio.h> fscanf()

Like scanf, but specify stream to be read from
– scanf(fmt, args…) is same as
fscanf(stdin, fmt, args…)

int fscanf(FILE *stream, const char *fmt, …)

int sscanf(char * s, const char *fmt, …)

Like scanf, but … scans from a string instead of a file!

ITSC 2181: Introduction to Computer Systems - 26

<stdio.h> fprintf()

Like printf, but specify stream to be written to
printf(fmt, args…) is same as
frintf(stdin, fmt, args…)

int fprintf(FILE *stream,
 const char *fmt, …)

int sprintf(char * s, FILE *stream,
 const char *fmt, …)

Like printf, but … prints to a string instead of a file!

ITSC 2181: Introduction to Computer Systems - 27

<stdio.h> I/O Error Functions

int feof(FILE *stream)

Returns non-zero if EOF for stream has been reached

int ferror(FILE *stream)

Returns non-zero if error indicator for stream is set

void clearerr(FILE *stream)

Clears previously set error indicator for stream
– errors are not cleared unless programmer explicitly uses clearerr

ITSC 2181: Introduction to Computer Systems - 28

References

• S. J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version 1.2.
Free online textbook, available at: https://diveintosystems.org/book/

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W. Norton
& Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program Design,
Seventh Edition. Cengage Learning. 2014.

https://diveintosystems.org/book/

