
ITSC 2181: Introduction to Computer Systems - 1

Advanced C Features

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

ITSC 2181: Introduction to Computer Systems - 2

Flow of Control

• Flow-of-control statements in C:
– if-then-else
– conditional operator (? :)
– switch-case
– for
– continue and break
– while and do-while

ITSC 2181: Introduction to Computer Systems - 3

The switch Statement

• A cascaded if statement can be used to compare an expression against a series
of values:

 if (grade == 4)
 printf("Excellent");
 else if (grade == 3)
 printf("Good");
 else if (grade == 2)
 printf("Average");
 else if (grade == 1)
 printf("Poor");
 else if (grade == 0)
 printf("Failing");
 else
 printf(”Invalid grade");

ITSC 2181: Introduction to Computer Systems - 4

The switch Statement (cont’d)

• The switch statement is an alternative:
 switch (grade) {
 case 4: printf("Excellent");
 break;
 case 3: printf("Good");
 break;
 case 2: printf("Average");
 break;
 case 1: printf("Poor");
 break;
 case 0: printf("Failing");
 break;
 default: printf(”Invalid grade");
 break;
 }

ITSC 2181: Introduction to Computer Systems - 5

The switch Statement (cont’d)

• A switch statement may be easier to read than a cascaded if
statement.

• switch statements are often faster than if statements.
• Most common form of the switch statement:
 switch (expression) {
 case constant-expression : statements
 …
 case constant-expression : statements
 default : statements
 }

ITSC 2181: Introduction to Computer Systems - 6

The switch Statement (cont’d)

• The word switch must be followed by an integer expression—
the controlling expression—in parentheses.

• Characters are treated as integers in C and thus can be tested in
switch statements.

• Floating-point numbers and strings don’t qualify, however.

ITSC 2181: Introduction to Computer Systems - 7

The switch Statement (cont’d)

• Each case begins with a label of the form
 case constant-expression :

• A constant expression is much like an ordinary expression except
that it cannot contain variables or function calls.

5 is a constant expression, and 5 + 10 is a constant expression,
but n + 10 isn’t a constant expression (unless n is a macro that
represents a constant).

• The constant expression in a case label must evaluate to an
integer (characters are valid).

ITSC 2181: Introduction to Computer Systems - 8

The switch Statement (cont’d)

• After each case label comes any number of statements.
• No braces are required around the statements.
• The last statement in each group is normally break.

ITSC 2181: Introduction to Computer Systems - 9

The switch Statement (cont’d)

• Duplicate case labels are not allowed.
• The order of the cases doesn’t matter, and the default case doesn’t

need to come last.
• Several case labels may precede a group of statements:

 switch (grade) {
 case 4:
 case 3:
 case 2:
 case 1: printf("Passing");
 break;
 case 0: printf("Failing");
 break;
 default: printf("Invalid grade");
 break;
 }

ITSC 2181: Introduction to Computer Systems - 10

The switch Statement (cont’d)

• To save space, several case labels can be put on the same line:
 switch (grade) {
 case 4: case 3: case 2: case 1:
 printf("Passing");
 break;
 case 0: printf("Failing");
 break;
 default: printf("Invalid grade");
 break;
 }

• If the default case is missing and the controlling expression’s value doesn’t
match any case label, control passes to the next statement after the switch.

(see date.c in Code samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 11

The Role of the break Statement

• Executing a break statement causes the program to “break” out of the
switch statement; execution continues at the next statement after the
switch.

• The switch statement is really a form of “computed jump.”
• When the controlling expression is evaluated, control jumps to the case

label matching the value of the switch expression.
• A case label is nothing more than a marker indicating a position within the
switch.

(see date.c in Code samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 12

The Role of the break Statement (cont’d)

• Without break (or some other jump statement) at the end of a case, control will
flow into the next case.

• Example:
 switch (grade) {
 case 4: printf("Excellent");
 case 3: printf("Good");
 case 2: printf("Average");
 case 1: printf("Poor");
 case 0: printf("Failing");
 default: printf("Invalid grade");
 }

• If the value of grade is 3, the message printed is
 GoodAveragePoorFailingInvalid grade

ITSC 2181: Introduction to Computer Systems - 13

The Role of the break Statement (cont’d)

• Omitting break is sometimes done intentionally, but it’s usually just an oversight.
• It’s a good idea to point out deliberate omissions of break:
 switch (grade) {
 case 4: case 3: case 2: case 1:
 num_passing++;
 /* FALL THROUGH */
 case 0: total_grades++;
 break;
 }

• Although the last case never needs a break statement, including one makes it easy
to add cases in the future.

(see date.c in Code samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 14

Enums

ITSC 2181: Introduction to Computer Systems - 15

Enumerated Data Type

• Used for variables with small set of possible values, where actual
encoding of value is unimportant

enum colors {red, blue, green, white, black};
enum colors mycolor;

mycolor = blue;
...
if ((mycolor == blue) || (mycolor == green))
 printf("cool color\n");

(see colors.c in Code samples and
Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 16

Enumerated Data Type (cont’d)

Don’t compare variables of different enumerated types - results not
what you expect!

enum {blue, red, green, white, black}
 primarycolor;
enum {black, brown, orange, yellow}
 halloweencolor;

primarycolor = black;
halloweencolor = black;
if (primarycolor == halloweencolor)
 printf("Same color\n");

Although you can interpret enumerated data
types as integers, it is not recommended

What will print?

(see color_comparison.c in
Code samples and Demonstrations
in Canvas)

ITSC 2181: Introduction to Computer Systems - 17

Enumerated Data Type (cont’d)

Compared to macros…?
#define BLUE 0
#define RED 1
#define GREEN 2
#define WHITE 3
#define BLACK 4

int primarycolor;
primarycolor = RED;
…
if (primarycolor == RED) …

GNOME: “If you have a list of possible values for a variable,
do not use macros for them; use an enum instead and give
it a type name”

ITSC 2181: Introduction to Computer Systems - 18

typedef

ITSC 2181: Introduction to Computer Systems - 19

The typedef Statement

Assigns an alternate name (synonym) to a C data type
– more concise, more readable

typedef char * cptr;
cptr cp;
char * dp; /* same type as cp */

typedef struct {
 int val;
 cptr name;
 struct mystruct *next;
} llnode;
llnode entries[100];

typedef name, not a
declaration of a variable

ITSC 2181: Introduction to Computer Systems - 20

The typedef Statement (cont’d)

• typedefs help make programs portable
– to retarget a program for a different architecture, just

redefine the typedefs and recompile
• Usually, typedefs are collected in a header file that

is #include’d in all source code modules

typedef int values[20];
values tbl1, tbl2; /* two arrays, each with
 * 20 ints */

Arrays can be typedefs

ITSC 2181: Introduction to Computer Systems - 21

Command Line Arguments

ITSC 2181: Introduction to Computer Systems - 22

Command Line Arguments

To use command line arguments, define main as:
int main(int argc, char *argv[]) {}
– argc: argument count

• Includes the program itself

– argv: argument vector
• Array of pointers to command line arguments stored as strings
• argv[0]: name of program
• argv[1] to argv[argc-1]: other arguments
• argv[argc]: null pointer

ITSC 2181: Introduction to Computer Systems - 23

Processing Command Line Args

• Using arrays
for (int i = 1; i < argc; i++)
 printf(“%s\n”, argv[i]);

• Using pointers
for (char **p = &argv[1]; *p != NULL; p++)
 printf(“%s\n”, *p);

(see cmd_line_args.c in Code samples
and Demonstrations in Canvas)

ITSC 2181: Introduction to Computer Systems - 24

Generic Pointers

ITSC 2181: Introduction to Computer Systems - 25

The void * Type and Type Recasting

• The C type void * represents a generic pointer:
– A pointer to any type (int, float, char, struct, etc.)
– Or a pointer to an unspecified type.

• Typical use is in dynamic memory allocation and systems code (e.g.,
when creating threads).

• Must be converted to specific type before use. For example:

int *array;
array = (int *)malloc(sizeof(int) * 10); // recast void *
*array = 10;

ITSC 2181: Introduction to Computer Systems - 26

References

• S. J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version 1.2.
Free online textbook, available at: https://diveintosystems.org/book/

• K. N. King, C Programming: A Modern Approach, 2nd Edition. W. W. Norton
& Company. 2008.

• D.S. Malik, C++ Programming: From Problem Analysis to Program Design,
Seventh Edition. Cengage Learning. 2014.

https://diveintosystems.org/book/

