Advanced C Features

ITSC 2181: Introduction to Computer Systems
UNC Charlotte
College of Computing and Informatics

| COLLEGE OF COMPUTING
| AND INFORMATICS

|

ITSC 2181: Introduction to Computer Systems - 1

Flow of Control

* Flow-of-control statements in C:
— 1f-then-else
— conditional operator (? :)
— switch-case
— for
— continue and break

— while and do-while

c COLLEGE OF COMPUTING
_ AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 2

The switch Statement

A cascaded 1 £ statement can be used to compare an expression against a series

of values:

if (grade == 4)
printf ("Excellent");

else 1f (grade == 3)
printf ("Good") ;
else 1f (grade == 2)

printf ("Average") ;
else 1f (grade == 1)

printf ("Poor") ;
else 1f (grade == 0)

printf ("Failing");
else

printf (“Invalid grade");

ITSC 2181: Introduction to Computer Systems - 3

COLLEGE OF COMPUTING
AND INFORMATICS

The switch Statement (cont’d)

e The switch statement is an alternative:
switch (grade) {

case 4: printf ("Excellent");
break;

case 3: printf ("Good");
break;

case 2: printf ("Average");
break;

case 1l: printf ("Poor");
break;

case 0O: printf("Failing");
break;

default: printf (“Invalid grade");
break;

}

COLLEGE OF COMPUTING
_ AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 4

The switch Statement (cont’d)

A switch statement may be easier to read than a cascaded i £

statement.

e switch statements are often faster than i £ statements.

e Most common form of the switch statement:

switch (expression) {
case constant-expression

case constant-expression
default : statements

ITSC 2181: Introduction to Computer Systems - 5

statements

statements

COLLEGE OF COMPUTING
AND INFORMATICS

The switch Statement (cont’d)

* The word switch must be followed by an integer expression—
the controlling expression—in parentheses.

* Characters are treated as integers in C and thus can be tested in
switch statements.

* Floating-point numbers and strings don’t qualify, however.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 6

The switch Statement (cont’d)

* Each case begins with a label of the form
case constant—expression

* A constant expression is much like an ordinary expression except
that it cannot contain variables or function calls.

5 is a constant expression, and 5 + 10 is a constant expression,
but n + 10 isn’t a constant expression (unless n is a macro that

represents d constant).
* The constant expression in a case label must evaluate to an
integer (characters are valid).

COLLEGE OF COMPUTING
AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 7

The switch Statement (cont’d)

* After each case label comes any number of statements.
* No braces are required around the statements.
* The last statement in each group is normally break.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 8

The switch Statement (cont’d)

* Duplicate case labels are not allowed.

* The order of the cases doesn’t matter, and the default case doesn’t
need to come last.

* Several case labels may precede a group of statements:
switch (grade) {

case 4:

case 3:

case 2:

case 1l: printf ("Passing");
break;

case 0: printf("Failing");
break;

default: printf ("Invalid grade");
break;

} | COLLEGE OF COMPUTING
| AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 9

The switch Statement (cont’d)

To save space, several case labels can be put on the same line:

switch (grade) {
case 4: case 3: case 2: case 1:
printf ("Passing") ;

break;

case 0: printf("Failing");
break;

default: printf("Invalid grade");
break;

}

If the default case is missing and the controlling expression’s value doesn’t
match any case label, control passes to the next statement after the switch.

(see date.c in Code samples |
and Demonstrations in Canvas) [
— | COLLEGE OF COMPUTING

| c | AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 10 .r

|

The Role of the break Statement

* Executing a break statement causes the program to “break” out of the
switch statement; execution continues at the next statement after the

switch.
* The switch statement is really a form of “computed jump.”

* When the controlling expression is evaluated, control jumps to the case
label matching the value of the switch expression.

* A case label is nothing more than a marker indicating a position within the

switch.
(see date.c in Code samples
and Demonstrations in Canvas)

COLLEGE OF COMPUTING
AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 11

The Role of the break Statement (cont’d)

 Without break (or some other jump statement) at the end of a case, control will
flow into the next case.

e Example:
switch (grade) {
case 4: printf ("Excellent");
case 3: printf ("Good");
case 2 printf ("Average") ;
case 1 printf ("Poor");
case 0: printf("Failing");
default: printf("Invalid grade");

}

* |f the value of grade is 3, the message printed is
GoodAveragePoorFailingInvalid grade

ITSC 2181: Introduction to Computer Systems - 12

‘;“‘ COLLEGE OF COMPUTING
| AND INFORMATICS

The Role of the break Statement (cont’d)

 Omitting break is sometimes done intentionally, but it’s usually just an oversight.

* It’s a good idea to point out deliberate omissions of break:

switch (grade) {
case 4: case 3: case 2: case 1:
num passing++;

* *
/* FALL THROUGH */ (see date.c in Code samples
case (0: total grades++; and Demonstrations in Canvas)
break; -

}
* Although the last case never needs a break statement, including one makes it easy
to add cases in the future.

‘;“‘ COLLEGE OF COMPUTING
| AND INFORMATICS

ITSC 2181: Introduction to Computer Systems - 13

Enums

c COLLEGE OF COMPUTING

_ AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 14

Enumerated Data Type

e Used for variables with small set of possible values, where actual
encoding of value is unimportant

enum colors {red, blue, green, white, black};
enum colors mycolor;

mycolor = blue;

if ((mycolor == blue) || (mycolor == green))
printf ("cool color\n");

—

| (see colors.c in Code samples and
Demonstrations in Canvas) c COLLEGE OF COMPUTING

, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 15

Enumerated Data Type (cont’d)

Don’t compare variables of different enumerated types - results not
what you expect!

enum {blue, red, green, white, black}

primarycolor; . _
enum {black, brown, orange, yellow} What will print?

halloweencolor;

r(See color comparison.c in T

primarycolor = black; Qode samples and Demonstrations
halloweencolor = black; inCanvas)
if (primarycolor == halloweencolor)

printf ("Same color\n"); «

Although you can interpret enumerated data

types as integers, it is not recommended c COLLEGE OF COMPUTING

, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 16

Enumerated Data Type (cont’d)

Compared to macros...?

#define BLUE O
#define RED 1
#define GREEN 2
#define WHITE 3
#define BLACK 4

int primarycolor;
primarycolor = RED;

if (primarycolor == RED)

GNOME: “If you have a list of possible values for a variable,
do not use macros for them; use an enum instead and give

. V4
It a type name c COLLEGE OF COMPUTING

, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 17

typedef

n COLLEGE OF COMPUTING

_ AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 18

The typedef Statement

Assigns an alternate name (synonym) to a C data type

— more concise, more readable typedef name, not a
declaration of a variable

typedef char * cptr;
cptr cp;
char * dp; /* same type as cp */

typedef struct {

int val;

cptr name;

struct mystruct *next;
} llnode;
llnode entries[100];

ITSC 2181: Introduction to Computer Systems - 19

COLLEGE OF COMPUTING
AND INFORMATICS

The typedef Statement (cont’d)

Arrays can be typedefs

typedef int values[20];
values tbll, tbl2; /* two arrays, each with
* 20 ints */

* typedefs help make programs portable

— to retarget a program for a different architecture, just
redefine the typedefs and recompile

* Usually, typedefs are collected in a header file that
is #include’d in all source code modules

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 20

Command Line Arguments

COLLEGE OF COMPUTING
_ AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 21

Command Line Arguments

To use command line arguments, define main as:
int main(int argc, char *argv[]) {}
— argc: argument count
* Includes the program itself
— argv: argument vector

* Array of pointers to command line arguments stored as strings
e argv[0]:name of program
e argv|[l] toargv[argc-1]:other arguments

* argv[argc]: null pointer

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 22

Processing Command Line Args

* Using arrays
for (int 1 = 1; i1 < argc; i++)

printf (“%$s\n”, argv[i]);

* Using pointers
for (char **p = gargv[l]; *p != NULL; p++)

printf (“%$s\n”, *p);
| (see cmd line args.c in Code samples
and Demonstrations in Canvas)

[

| coLLEGE oF comPuTING
| AND INFORMATICS

|

ITSC 2181: Introduction to Computer Systems - 23

Generic Pointers

c COLLEGE OF COMPUTING

_ AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 24

The void * Type and Type Recasting

* The C type void * represents a generic pointer:
— A pointer to any type (int, £loat, char, struct, etc.)
— Or a pointer to an unspecified type.

« Typical use is in dynamic memory allocation and systems code (e.g.,
when creating threads).

Must be converted to specific type before use. For example:
int *array;

array = (int *)malloc(sizeof (int) * 10); // recast void *
*array = 10;

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 25

References

* S.J. Matthews, T. Newhall and K. C. Webb, Dive into Systems, Version 1.2.
Free online textbook, available at: https://diveintosystems.org/book/

K. N.King, C Programming: A Modern Approach, 2nd Edition. W. W. Norton
& Company. 2008.

 D.S. Malik, C++ Programming: From Problem Analysis to Program Design,
Seventh Edition. Cengage Learning. 2014.

COLLEGE OF COMPUTING
, AND INFORMATICS
ITSC 2181: Introduction to Computer Systems - 26

https://diveintosystems.org/book/

