.~ Computer Organization

" A brief overview




Main components of a PC

Processor
Memory and storage (e.g., hard disk)
Other 1/O devices

Buses

Monitor
Hard
Keyboard USB printer disk drive
—§ é@@@%ﬁs oooon
. Hard
Video Keyboard USB ;
CPU Memory controller controller controller cor?tlfgller

Bus




Processor

Central Processing Unit (CPU)

Brain (i.e., computation center)

Capable of executing specific set of instructions

¢ Instructions have pre-determined codes

Instructions may have input/output data



Memory & Storage

o Used to store instructions & data

¢ Permanent (nonwolatile) 2 Retains data permanently
¢+ Read Only Memory (ROM)

¢ Name misleading - some ROMs can be modified

o Read/Write Memory (e.g., disks)

o Temporary (volatile) 2 Loses data when powered off

o Random Access Memory (RAM)
o Static RAM (SRAM)

+ Retains value indefinitely as long as power is on

¢ Dynamic RAM (DRAM)
o Value must be refreshed every 10-100 ms



Comparison

o Disk

¢ Definitely need this for permanent storage

o Cheap =2 large storage possible
¢ Slow =2 bottleneck because CPUs are fast!

+ DRAM

o More expensive = relatively small storage possible

o Faster, but still not fast enough!

e SRAM

e s

o ...but expensive = very small storage possible



(7))
c

100,000,000
10,000,000
1,000,000
100,000
10,000
1,000

100

10

1

Memory performance

—— Disk seek time
DRAM access time

—A— SRAM access time

—8— CPU cycle time

1980 1985 1990 1995 2000

year

From Eun Jung Kim slides

Ideally, we want fast, cheap & large memory!

So, what should we choose?




Best of all worlds...

Stores variables, Stores frequently used

data close to CPU
[SRAM]

Typical capacity

temporary results, special
values (e.g., PC) in CPU
Typical access time

1 nsec Registers <1 KB
2 nsec Cache 4 MB
10 nsec Main memory 1-8 GB
10 msec Magnetic disk 1-4TB

Permanent, Smaller volatile storage

closer to CPU
[DRAM]

large storage



Magnetic disk

Very cheap, very large, non-volatile storage

Mechanical device 2 random access of data is very slow
Set of rotating metal platters

Mechanical arms with read/write heads to access data

Organized into tracks & sectors

Read/write head (1 per surface)

Surface 7
>

Surface 6 =
Surface 5 — |
[

Surface 4 =

Surface 3 — —_
Kﬁt’)) Direction of arm motion
Surface 2

Surface 1
D
Surface 0 —_——




Main memory

Smaller volatile memory closer to CPU
Collection of cells (1-bit each) organized into sets called supercells
Each supercell has unique address used to read/write data

Logically organized and handled in lines/blocks of supercells

OO 01101000
0x01 10101001
0x02 10100000
QOER 00000000
0x04 10001010
Ox05 01010101
QO 10010101
LS 01100110
0x08 10010110
0x09 01101001




Cache

o Small, fast memory for frequently used data
¢ Organized into lines/blocks of data similar to main memory

o Works on principle of locality of reference (temporal/spatial)

o When CPU requests for data

o If line containing data is already in cache =2 cache hit

o If line containing data not in cache = cache miss

> Fetch line containing data from next level in memory hierarchy

> (Typically) put line into current level of cache

o System may have multiple levels of cache

o Cache levels are typically inclusive



Registers

o Very small, very fast memory in CPU itself

o Special registers
¢ Program counter (PC)

o Stack pointer (SP)
o Stores address of top of stack

o Stack = area of memory containing data for procedures
(functions) that have started, but not completed

¢ Program status word (PSW)

o Stores bits relevant to current state of system (more later)



Instruction execution

General sequence of operations

*

Retrieve next instruction from memory (fetch)

¢ Program Counter (PC) has address of instruction to fetch

Figure out what type of instruction it is (decode)

o Each type of instruction has a specific format
Fetch data - if needed - from memory
Execute instruction

Store results

Update PC to store address of next instruction



Perceived performance is important

Process one instruction fully, then next =2 simple, but slow
Split instruction execution sequence into stages
Multiple instructions can make progress concurrently

This idea is known as pipelining =2 similar to assembly line

Inst1 |Stgl [Stg2 | Stg 3
Tnst 2 Stg 1 | Stg2 | Ste 3
Feteh || Decade | Execute Inst 3 Stg 1 | Stg 2 | Stg 3
Inst 4 Stg1 | Stg2 | Stg 3
Time

v

Very simple 3-stage pipeline



Input / Output (I/O) devices

¢ Monitor, keyboard, (disk), printer, etc...

o Physical device operation is very complex

o Each device has controller h/w that directly interacts with it

o Controller provides simpler interface to device

Monitor

Hard

Memory

controller

controller

controller

Keyboard USB printer disk drive
o e ©
| (s oonon
CPU Video Keyboard USB Hard

disk
controller

Bus




CPU - I/O device interaction

o CPU & I/0O devices work asynchronously

¢ Need a way for CPU to know when device
+ Has input data to give to CPU
¢ Is ready to receive commands or output data from CPU

¢ Has completed command issued by CPU



Modes of I/O operation

¢ One option...

https://www.youtube.com/watch’v=4vUBsT]YK28




Modes of I/O operation

¢ One option...
o CPU stops current activity

o CPU asks if device is ready, e.g.

¢ Device has new input

¢ Device is done with previous command/output
o If yes, CPU services device
o CPU moves to next device
o Once done, CPU resumes previously stopped activity

o CPU repeats above steps periodically

o This concept is called polling



Modes of I/O operation

¢ Another approach
¢ CPU sends commands/data to device
o CPU goes back to other activity

¢ Device signals completion to CPU using interrupt



Interrupt

o External event that causes change in flow of current execution

¢ Sequence of activities...
¢ (CPU executing instructions

o Interrupt received

s CPLJ

¢ Finishes current instruction
¢ Recognizes interrupt

o Saves current state

¢ Services interrupt

+ Resumes normal activity



Interrupt

Handling code in special function called interrupt handler
Interrupt handler services interrupt
Different handlers for different types of interrupts

Handler may trigger another function for extended service



Modes of I/O operation

¢ Direct Memory Access (DMA)
¢ CPU initiates data transfer
¢ Transfer coordinated by special DMA hardware

o Interrupt generated upon completion



