
Computer Organization
A brief overview

Main components of a PC
u  Processor

u  Memory and storage (e.g., hard disk)

u  Other I/O devices

u  Buses

Processor

u  Central Processing Unit (CPU)

u  Brain (i.e., computation center)

u  Capable of executing specific set of instructions
u  Instructions have pre-determined codes

u  Instructions may have input/output data

Memory & Storage
u  Used to store instructions & data

u  Permanent (non-volatile) à Retains data permanently
u  Read Only Memory (ROM)

u  Name misleading – some ROMs can be modified

u  Read/Write Memory (e.g., disks)

u  Temporary (volatile) à Loses data when powered off
u  Random Access Memory (RAM)

u  Static RAM (SRAM)
u  Retains value indefinitely as long as power is on

u  Dynamic RAM (DRAM)
u  Value must be refreshed every 10-100 ms

Comparison

u  Disk
u  Definitely need this for permanent storage
u  Cheap à large storage possible
u  Slow à bottleneck because CPUs are fast!

u  DRAM
u  More expensive à relatively small storage possible
u  Faster, but still not fast enough!

u  SRAM
u  Fast…
u  …but expensive à very small storage possible

Memory performance

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

1980 1985 1990 1995 2000

year

ns

Disk seek time
DRAM access time
SRAM access time
CPU cycle time

From Eun Jung Kim slides

Ideally, we want fast, cheap & large memory!
So, what should we choose?

Best of all worlds…
Stores variables,

temporary results, special
values (e.g., PC) in CPU

Permanent,
large storage

Stores frequently used
data close to CPU

[SRAM]

Smaller volatile storage
closer to CPU

[DRAM]

Magnetic disk
u  Very cheap, very large, non-volatile storage

u  Mechanical device à random access of data is very slow

u  Set of rotating metal platters

u  Mechanical arms with read/write heads to access data

u  Organized into tracks & sectors

Main memory
u  Smaller volatile memory closer to CPU

u  Collection of cells (1-bit each) organized into sets called supercells

u  Each supercell has unique address used to read/write data

u  Logically organized and handled in lines/blocks of supercells

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x08
0x08
0x09

01101000
10101001
10100000
00000000
10001010
01010101
10010101
01100110
10010110
01101001

...

Cache
u  Small, fast memory for frequently used data

u  Organized into lines/blocks of data similar to main memory
u  Works on principle of locality of reference (temporal/spatial)

u  When CPU requests for data
u  If line containing data is already in cache à cache hit

u  If line containing data not in cache à cache miss
à  Fetch line containing data from next level in memory hierarchy

à  (Typically) put line into current level of cache

u  System may have multiple levels of cache

u  Cache levels are typically inclusive

Registers

u  Very small, very fast memory in CPU itself

u  Special registers
u  Program counter (PC)
u  Stack pointer (SP)

u  Stores address of top of stack

u  Stack à area of memory containing data for procedures
(functions) that have started, but not completed

u  Program status word (PSW)
u  Stores bits relevant to current state of system (more later)

u  …

Instruction execution

u  General sequence of operations
u  Retrieve next instruction from memory (fetch)

u  Program Counter (PC) has address of instruction to fetch

u  Figure out what type of instruction it is (decode)
u  Each type of instruction has a specific format

u  Fetch data – if needed – from memory
u  Execute instruction

u  Store results
u  Update PC to store address of next instruction

Perceived performance is important

u  Process one instruction fully, then next à simple, but slow

u  Split instruction execution sequence into stages

u  Multiple instructions can make progress concurrently

u  This idea is known as pipelining à similar to assembly line

Very simple 3-stage pipeline

Time

Inst 1

Inst 2

Inst 3

Stg 1 Stg 2 Stg 3

Stg 1 Stg 2 Stg 3

Stg 1 Stg 2 Stg 3

Inst 4 Stg 1 Stg 2 Stg 3

Input / Output (I/O) devices
u  Monitor, keyboard, (disk), printer, etc…

u  Physical device operation is very complex
u  Each device has controller h/w that directly interacts with it
u  Controller provides simpler interface to device

CPU – I/O device interaction

u  CPU & I/O devices work asynchronously

u  Need a way for CPU to know when device
u  Has input data to give to CPU
u  Is ready to receive commands or output data from CPU
u  Has completed command issued by CPU

Modes of I/O operation
u  One option…

https://www.youtube.com/watch?v=4vUBsTJYK28

Modes of I/O operation
u  One option…

u  CPU stops current activity
u  CPU asks if device is ready, e.g.

u  Device has new input

u  Device is done with previous command/output

u  If yes, CPU services device
u  CPU moves to next device

u  Once done, CPU resumes previously stopped activity
u  CPU repeats above steps periodically

u  This concept is called polling

u  Another approach
u  CPU sends commands/data to device
u  CPU goes back to other activity

u  Device signals completion to CPU using interrupt

Modes of I/O operation

Interrupt
u  External event that causes change in flow of current execution

u  Sequence of activities…
u  CPU executing instructions
u  Interrupt received
u  CPU

u  Finishes current instruction

u  Recognizes interrupt

u  Saves current state

u  Services interrupt

u  Resumes normal activity

Interrupt
u  Handling code in special function called interrupt handler

u  Interrupt handler services interrupt

u  Different handlers for different types of interrupts

u  Handler may trigger another function for extended service

u  Direct Memory Access (DMA)
u  CPU initiates data transfer
u  Transfer coordinated by special DMA hardware

u  Interrupt generated upon completion

Modes of I/O operation

