
Introduction to
Operating Systems

•  Low level hardware controller detail too complicated for application
programmers/users

•  Hardware state can get messed up through use of incorrect protocols

Different types of hardware
Different (complex) usage

protocols

•  Need special software that
•  Knows how to interact with hardware controllers
•  Provides simpler external interface to application

programmers/users Abstraction!

Application Software

Consider another aspect

Web
browser

Text
editor

E-mail
client

Music
player

Hardware

User 1 User 2 User 3

Several applications need
to share system resources

Application Software

Consider another aspect

Web
browser

Text
editor

E-mail
client

Music
player

Hardware

(Need a resource manager)

User 1 User 2 User 3

Operating System (OS)
u  Software that sits b/w hardware & application (user) programs

u  Most systems have user interface layer b/w OS & applications

u  Provides a virtual interface to underlying hardware
u  Simple interface for applications/users (hides h/w complexity)

u  Ensures safety (protects hardware, prevents & handles errors)
u  May provide multiple levels of abstraction

u  Acts as a resource manager
u  Allows multiple applications/users to share resources

u  Ensures fair, efficient & protected access to resources

Applications

Physical interface

Virtual interface

Operating System

Hardware

Web browser Music player Email reader

Services provided by Operating System

u  Program execution
u  Load program & data, schedule and execute program

u  Memory management
u  Manage main memory; ensure programs can’t mess

with other programs’ memory

u  File management
u  Create, read, write files
u  Access control for files

u  I/O management
u  Safe and controlled access to I/O devices

u  Information maintenance
u  Get/set system time/date

u  Communication services
u  Communication b/w programs

u  User management
u  Authentication for access to system

u  Error management
u  Detect & handle errors

u  Accounting services
u  Collect statistics, monitor performance

To manage complexity…

u  OS design typically separates mechanism from policy
u  I.e., separates how from what/when/which

u  Mechanism
u  Data structures/operations used to implement

abstraction/service

u  Policy
u  Procedures/rules to guide selection of action from

possible alternatives

Protection

Need structures/mechanisms that ensure:
Protection of hardware (CPU, memory, I/O devices)

Protection between multiple applications/users

Protection

u  System operation split into two modes
u  User mode

u  Kernel mode

u  User mode
u  Execution on behalf of user à protected mode
u  No direct access to hardware

u  Can execute only subset of instructions
u  Can access only restricted memory areas

u  Kernel (monitor/supervisor/system) mode
u  Execution on behalf of operating system à privileged mode
u  Complete access to hardware

u  Can execute any instruction
u  Can access any memory area

Kernel
mode

User
mode Applications

Operating System

Hardware

Web browser Music player Email reader

Hardware support for modes
u  System maintains mode bit indicating current mode

u  If privileged operation is attempted in user mode
u  It must be prevented from taking place
u  System must be notified

u  These are achieved using an exception
u  Synchronous interrupt à caused by current instruction

u  When an exception occurs
u  System enters privileged mode
u  Appropriate actions are taken

Consequence of modes

u  Need special mechanism for applications to access OS services

u  System call is the answer
u  Interface between running programs and OS

u  Provides controlled entry into kernel for privileged operation
u  Makes sure access is performed in specific well defined way

System Call
u  Causes system to switch to kernel mode

à  Trap – a kind of synchronous interrupt – used to achieve this
à  In general, any interrupt causes switch to kernel mode

u  Typically invoked using assembly language instructions
u  Systems generally provide library or API to invoke system call
à  Library function serves as wrapper for actual system call

KERNEL SPACE

USER SPACE

Executing user program Invoke system call Return from system call

Execute system call

Example – read system call

Internal structure of Operating Systems

Monolithic architecture
u  Entire OS is a single program

u  Collection of procedures linked into single executable
u  Program runs fully in kernel mode

u  Sometimes called “spaghetti nest” approach
u  Everything tangled up with everything else

Still usually has some structure…

u  Examples: Linux, Windows

Entry to OS
here – invokes
service procs.

Carry out
system calls

Help service
procedures

Pros & Cons

u  Any procedure can call any other directly
à  Efficient procedure calls

u  Design, implementation, debugging etc. can be hard

u  OS could become unwieldy & difficult to understand

u  Error in one part of OS can bring down entire OS

Layered architecture
u  Divide OS into multiple layers

u  Each layer responsible for certain operations/services
u  Layers independent of layers above them

Example: THE operating system

A variant of layered structure
u  Similar concept, but layers represented as concentric circles

u  Inner layers have higher privilege that outer layers

u  Example: MULTICS

Microkernel architecture
u  Split OS functionality into multiple small modules

u  Core module, called microkernel, runs in kernel mode
u  All other modules run in user mode
u  Communication between modules using message passing

u  Examples: QNX, MINIX 3

u  More commonly used in embedded/real-time systems

Pros & Cons

u  Easier to design, implement & debug

u  More flexible & easier to extend

u  More isolation of faults/errors
u  Error in one module need not bring down entire OS

u  More reliable & more secure

u  Significant performance overhead

Modern operating system design
u  Hybrid, object-oriented approach

u  Separate modules for separate functionality

u  Modules loadable into kernel as needed

u  Modules communicate via well defined interfaces

