2. . Introduction to

e = Operating Systems

Monitor

O 0O

Hard
Keyboard USB prin’[er disk drive

e
[@Q@@E \ noooo

CPU

Memory

Video
controller

Different types of hardware

Different (complex) usage

protocols

e Low level hardware controller detail too complicated for application
programmers,/users

Hardware state can get messed up through use of incorrect protocols

Monitor

Hard
Keyboard USB printer disk drive
o e
o [EE@@E \ noooo
. Hard
Video Keyboard USB .
CPU Memory controller controller controller cor?tlrsci(ller
Bus

e Need special software that
* Knows how to interact with hardware controllers
* Provides simpler external interface to application

Abstraction!

programmers/ users

Consider another aspect

User 1 User 2 User3 eee
/ /\7/\) \\
Web Text E-mail Music = o
browser editor client player

Application Software

Several applications need

to share system resources

Hardware

Consider another aspect

User 1 User 2 User3 eee
/ /\7/\) \\
Web Text E-mail Music _p
browser editor client player

Application Software

!

(Need a resource manager)

|

Hardware

Operating System (OS)

o Software that sits b/w hardware & application (user) programs

¢ Most systems have user interface layer b/w OS & applications

o Provides a virtual interface to underlying hardware
o Simple interface for applications/users (hides h/w complexity)
o Ensures safety (protects hardware, prevents & handles errors)

o May provide multiple levels of abstraction

o Acts as a resource manager
o Allows multiple applications/users to share resources

o Ensures fair, efficient & protected access to resources

Web browser Music player Email reader

o O ¢

Applications

Virtual interface

Operating System

Physical interface

Hardware

Services provided by Operating System

Program execution

o Load program & data, schedule and execute program

Memory management

¢ Manage main memory; ensure programs can’t mess
with other programs’ memory

File management
o Create, read, write files

o Access control for files

I/O management

¢ Safe and controlled access to I/O devices

Information maintenance
o Get/set system time/date

Communication services

o Communication b/w programs

User management

o Authentication for access to system

Error management
¢ Detect & handle errors

Accounting services

o Collect statistics, monitor performance

To manage complexity...

o OS design typically separates mechanism from policy

o le., separates how from what/when/which

o Mechanism

o Data structures/operations used to implement
abstraction/service

o Policy

o Procedures/rules to guide selection of action from
possible alternatives

Protection

Need structures/mechanisms that ensure:
Protection of hardware (CPU, memory, I/O devices)
Protection between multiple applications/users

Protection

o System operation split into two modes

*

*

User mode

Kernel mode

o User mode

*

*

Execution on behalf of user = protected mode
No direct access to hardware
Can execute only subset of instructions

Can access only restricted memory areas

Kernel (monitor/supervisor/system) mode

¢

*

*

Execution on behalf of operating system =2 privileged mode
Complete access to hardware
Can execute any instruction

Can access any memory area

Web browser Music player Email reader
User Q Q Q
mode Applications
Kernel .
et Operating System

Hardware

¢

4

L 4

Hardware support for modes

System maintains mode bit indicating current mode

If privileged operation is attempted in user mode
o It must be prevented from taking place

o System must be notified

These are achieved using an exception

o Synchronous interrupt = caused by current instruction

When an exception occurs
o System enters privileged mode

o Appropriate actions are taken

Consequence of modes

¢ Need special mechanism for applications to access OS services

o System call is the answer
o Interface between running programs and OS
o Provides controlled entry into kernel for privileged operation

o Makes sure access is performed in specific well defined way

System Call

o Causes system to switch to kernel mode
> Trap - a kind of synchronous interrupt — used to achieve this

> In general, any interrupt causes switch to kernel mode

o Typically invoked using assembly language instructions
o Systems generally provide library or API to invoke system call

> Library function serves as wrapper for actual system call

USER SPACE

Return from system call

Executing user program Invoke system call

<

Q‘b

)
¢ Execute system call

KERNEL SPACE

Example - read system call

Address
OxFFFFFFFF

—

User space <

ANS

Kernel space <
(Operating system)

or

5

—

Return to caller

Trap to the kernel

Put code for read in register

10

Increment SP 11

~ Call read

Push fd

Push &buffer

Push nbytes

Y

Dispatch

Y

Sys call
handler

Library
procedure
read

User program
calling read

Internal structure of Operating Systems

Monolithic architecture

o Entire OS is a single program
o Collection of procedures linked into single executable

¢ Program runs fully in kernel mode

o Sometimes called “spaghetti nest” approach

o Everything tangled up with everything else

Still usually has some structure...

Entry to OS

here — invokes

Main service procs.
procedure

. Carry out
Service Y

procedures system calls

Utility Help service
procedures

procedures

o Examples: Linux, Windows

L 4

*

Pros & Cons

Any procedure can call any other directly

> Efficient procedure calls
Design, implementation, debugging etc. can be hard
OS could become unwieldy & difficult to understand

Error in one part of OS can bring down entire OS

Layered architecture

o Divide OS into multiple layers
o Each layer responsible for certain operations/services

o Layers independent of layers above them

Example: THE operating system

Layer Function
5 The operator
User programs

Input/output management

Operator-process communication

Memory and drum management

O—=[N|W|PH

Processor allocation and multiprogramming

A variant of layered structure

o Similar concept, but layers represented as concentric circles

¢ Inner layers have higher privilege that outer layers
layer N

o Example: MULTICS user Inrtace

layer 1

f / ' . \ 'l|

|'I ’ ."“,_ 'II |

r | ({ layer O W | \
'y | \ hardware | |

Microkernel architecture

o Split OS functionality into multiple small modules
o Core module, called microkernel, runs in kernel mode
o All other modules run in user mode

o Communication between modules using message passing

User File Window Memory

Program erver Server Server
I

Microkernel (scheduling, timers, interrupts, etc.)

o Examples: QNX, MINIX 3

¢ More commonly used in embedded/real-time systems

Pros & Cons

Easier to design, implement & debug

More flexible & easier to extend

More isolation of faults/errors

o Error in one module need not bring down entire OS
More reliable & more secure

Significant performance overhead

Modern operating system design

Hybrid, object-oriented approach

Separate modules for separate functionality

Modules loadable into kernel as needed

Modules communicate via well defined interfaces

scheduling

device and cIasQ
bus drivers
core Solaris
miscellaneous kernel loadable
modules system calls

STREAMS executable
modules formats

