

Number Systems II

Signed Binary Number Encoding

- The leftmost bit (**high-order/most significant bit**) indicates whether a number is NEGATIVE (1) or NON-NEGATIVE(0)
- Two potential signed binary encodings -
 - Signed Magnitude
 - Two's Complement

Signed Magnitude

- Treats the high-order bit exclusively as a sign bit
- If the high-order bit is 1 then it is negative, and 0 when non-negative
- The high-order bit does not affect the absolute value of the number

Converting Signed Binary to Decimal

- Compute a decimal value for the digits indexed from 0 to (N-2)
- Check the (N-1)th index (most-significant bit). If it's 1, the value is negative, otherwise it is non-negative

$$\begin{aligned}(1101)_2 &= - (1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0) \\ &= - (1 \times 4 + 0 \times 2 + 1 \times 1) \\ &= - 5\end{aligned}$$

Two's Complement

- Treats the high-order bit both as a sign bit and also affects the value of the number
- If the high-order bit is 1 for an N-bit binary number then $(-1 \times 2^{N-1})$ is added to the total sum of all the remaining bits and the number becomes negative
- If the high-order bit is 0 for an N-bit binary number then $(0 \times 2^{N-1})$ is added to the total sum of all the remaining bits and the number becomes positive

Converting Two's Complement to Decimal

- Compute a decimal value for the digits indexed from 0 to (N-2)
- Check the (N-1)th index (most-significant bit). If it's 1, the value is negative, otherwise it is non-negative

$$\begin{aligned}(1101)_2 &= (-1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0) \\ &= (-1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1) \\ &= -8 + 4 + 0 + 1 \\ &= -3\end{aligned}$$

Converting Negative Decimal to Two's Complement

- Start with decimal in binary
- Flip all the bits
- Add 1
- Example: to get -13

0000 1101 (decimal 13)

1111 0010 (flip all the bits)
0000 0001 (add 1)

1111 0011 (decimal -13)

Addition of two unsigned binary numbers

- In case of Binary numbers, each digit holds only 0 or 1
- When adding two bits that are both 1, the result carries out to the next digit
- That means there are also carry ins during the addition of two digits
- When summing two binary numbers A and B, there are eight possible outcomes depending on the values of Digit_A , Digit_B , and a Carry_{in} from the previous digit

Inputs			Outputs	
Digit _A	Digit _B	Carry _{in}	Result (Sum)	Carry _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Examples

$$\begin{array}{r} 1. \quad \begin{array}{r} 0010 \\ + 1011 \\ \hline \end{array} \\ \text{Result: } 1101 \end{array}$$

1 ← Carry the 1 from digit 1
into digit 2

$$\begin{array}{r} 0010 \\ + 1011 \\ \hline \end{array}$$

$$\begin{array}{r} 2. \quad \begin{array}{r} 1100 \\ + 0111 \\ \hline \end{array} \\ \text{Result: } 0011 \\ \text{Carry out: } 1 \end{array}$$

1 1 ← Carry a 1 from: digit 2 into
1 1 0 0 digit 3, and digit 3 out of
+ 0 1 1 1 the overall

Bitwise Operators

- Bitwise AND
- Bitwise OR
- Bitwise XOR
- Bitwise NOT
- Bitwise Shifting
 - Shifting Left
 - Shifting Right

Bitwise Operations

Bitwise operations follow the Truth table for each type of operator

Table 1. The Results of Bitwise ANDing Two Values (A AND B)

A	B	A & B
0	0	0
0	1	0
1	0	0
1	1	1

Table 2. The Results of Bitwise ORing Two Values (A OR B)

A	B	A B
0	0	0
0	1	1
1	0	1
1	1	1

Bitwise Operations

Bitwise operations follow the Truth table for each type of operator

Table 3. The Results of Bitwise XORing Two Values (A XOR B)

A	B	$A \wedge B$
0	0	0
0	1	1
1	0	1
1	1	0

Table 4. The Results of Bitwise NOTing a Value (A)

A	$\sim A$
0	1
1	0

Bit Shifting

- Two types of Bit Shifting
 - Shifting Left: "<<" is used as the operand
 - Shifting Right: ">>" is used as the operand

Shifting Left

- Shifting a sequence to the left by N places moves each of its bits to the left N times
- Appends new zeros to the right side of the sequence
- Example:

Shifting 0b00101101 to the left by 2 places

Result: 0b10110100

Shifting Right

- Two variants:
 - Logical Right Shift
 - Arithmetic Right Shift

Logical Right Shift

- Prepends new zeros to the left side (high-order bits) of the sequence
- Example:

Shifting 0b10110011 to the right by 2 places

Result: 0b**00**101100

Shifting Right

Arithmetic Right Shift

- Prepends a copy of the shifted value's most significant bit into each of the new bit positions
- Example:

Shifting 0b10110011 to the right by 2 places

Result: 0b**1**1101100