Number Systems I




Signed Binary Number Encoding

o The leftmost bit (high-order/most significant bit) indicates
whether a number is NEGATIVE (1) or NON-NEGATIVE(O)

o Two potential signed binary encodings -

o Signed Magnitude

o Two's Complement




Signed Magnitude

o Treats the high-order bit exclusively as a sign bit

o If the high-order bit is 1 then it is negative, and 0 when
non-negative

o The high-order bit does not affect the absolute value of the
number




Compute a decimal value for the digits indexed from 0
to (N-2)

Check the (N-1)" index (most-significant bit). If it's 1,
the value is negative, otherwise it is non-negative
(1101), =-(1x22+ 0 x 21+ 1 x 29)
=-(1x4+0x2+1x1)
=-5



Treats the high-order bit both as a sign bit and also affects
the value of the number

If the high-order bit is 1 for an N-bit binary number then
(-1x 2N-1) is added to the total sum of all the remaining bits

and the number becomes negative

If the high-order bit is O for an N-bit binary number then
(0 x 2N1) is added to the total sum of all the remaining bits

and the number becomes positive



Compute a decimal value for the digits indexed from O
to (N-2)

Check the (N-1)" index (most-significant bit). If it's 1,
the value is negative, otherwise it is non-negative

(1101),= (-1 x 23+ 1 x 22+ 0 x 21 + 1 x 20)

=(-1x8+1x4+0x2+1x1)
=-8+4+0+1
=-3



Start with decimal in binary
Flip all the bits
Add 1
Example: to get -13
0000 1101 (decimal 13)

1111 0010 (flip all the bits)
0000 0001 (add 1)

1111 0011 (decimal -13)



In case of Binary numbers, each digit holds only 0 or 1

When adding two bits that are both 1, the result carries out

to the next digit

That means there are also carry ins during the addition of

two digits

When summing two binary numbers A and B, there are eight
possible outcomes depending on the values of Digit,, Digitg,

and a Carry;, from the previous digit



Inputs Outputs

Digita Digitg Carry;, Result Carryqyt
(Sum)
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1



1. 0010

+1011
Result: 1101
2. 17100
+0111

Result: 0011
Carry out: 1

1= Carry the 1 from digit 1
0010 into digit 2

+1011

1 1< Carry a 1 from: digit 2 into

11 0 0 digit 3, and digit 3 out of
+ 0111 the overall



Bitwise AND
Bitwise OR

Bitwise XOR

Bitwise NOT

Bitwise Shifting
Shifting Left

Shifting Right



Bitwise Operations

Bitwise operations follow the Truth table for each type of operator

Table 1. The Results of Bitwise ANDing Two Values (A AND B) Table 2. The Results of Bitwise ORing Two Values (A OR B)

A - A&B A B AlB

0 0 0 0 0 0

0 1 0 0 1 1
0 1

1 0 0 1



Bitwise operations follow the Truth table for each type of operator

Table 3. The Results of Bitwise XORing Two Values (A XOR B)

A B A*B Table 4. The Results of Bitwise NOTing a Value (A)
0 0 0 A "
0 1 1 0 1

1 0 1 L .



Two types of Bit Shifting

Shifting Left: "<<" is used as the operand

Shifting Right: ">>" is used as the operand



Shifting a sequence to the left by N places moves each
of its bits to the left N times

Appends new zeros to the right side of the sequence
Example:

Shifting 0b00101101 to the left by 2 places
Result: 0b10110100



Two variants:

Logical Right Shift
Arithmetic Right Shift

Logical Right Shift

Prepends new zeros to the left side (high-order bits) of the
sequence

Example:

Shifting Ob10110011 to the right by 2 places
Result: 0000101100



Arithmetic Right Shift

Prepends a copy of the shifted value's most significant bit into
each of the new bit positions

Example:

Shifting Ob10110011 to the right by 2 places
Result: 0011101100



