Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

Unit 1: Module Overview, Instruction Operations and
Operands

ITSC 2181 Introduction to Computer Systems
College of Computing and Informatics
Department of Computer Science

Hardware Components of a Computer

: : : Southbridge g4
Northbridge (with heatsink) < PCI Slot (x5)

20-pin ATX Power
Connector

CMOS
Backup
Battery

CPU Fan & ¥
Heatsink

Mounting Connectors For
Points Inteqrated Peripherals
CPU Socket

Modern Digital Computer

Processor Chip

CPU
Arithmeti¢ el M';A;igry
Logic Instruction register (RAM)
Unit |
(AL U) Program counter cache memory
Processor status register

- Memory Bus
1/0 Controller

I/O Bus

N

Input and Output Devices

memory (RAM)

One memory cell

Memory Layout of a Program

A program includes both code and variables

Code (machine instructions) =» Text segment

Static variables =»Data or BSS segment
Function variables =»stack (i, A[100] and B)

- A is a variable that stores memory address, the memory for A’s 100 int elements is in the stack
- B is a memory address, it is stored in stack, but the memory B points to is in heap (100 int elements)

Dynamic allocated memory using malloc or C++ “new” @ heap (B[100)

168 <

3GB

Linux Process Memory in 32-bit System (4G space)

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

Stack (grows down)

N

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

U

- RLIMIT_STACK (e.g., 8MB)

0xc0000000 == TASK_SIZE
:" Random stack offset

In system: that becomes instructions and data, all are stored in memory

Modern Digital Computer

Processor Chip

CPU

Register
File

cache memory

Main
Memory
(RAM)

Memory Bus
1/0 Controller ‘

|_I_I_|_I 1/0 Bus

Input and Output Devices

Stack size limit. If 8MB, “int
A[10,000,000]” won’t
work.

Random mmap offset

int

Heap

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

/static char *gonzo =
,static char *userName;

#include <stdio.h>

“God’s own prototype”;

main (int argc, char* argv[]) {

program break int i; /* stack */
sk { int A[100]; /* stack */
start_b int *B = (int*)malloc(sizeof (int)*100) ;
:' Ragflomgbrk offset //heaP
for(i = 0; i < 100; i++) {

A[i] = i*i;

B[i] = A[i] * 20;
start_data printf(”A[i]: %d, B[i]: %d\n",A[i], B[i]);
end_code }

K_/}/

Levels of Program Code

. High-level swap(size_t v[], size_t k)
o - anguage {
ngh Ievel Ianguage lprograr?\ size_t temp;
— Level of abstraction closer to b oy BTt
problem domain , VDk+11 = temp:

— Provides for productivity and

portability @D

* Machine-Level Code:

Instructions i PE 1 X6 A1, 3
— Textual representation of For RISCV) 0 X 00
binary machine instructions s X7 008
— Interface between HW and SW Jalr X0, 00D

— Assembly language

* Hardware representation

— Binary d|g|ts (bItS) Binary machine 00000000001101011001001100010011
£ ded i i dd language 00000000011001010000001100110011
— Encoded instructions an ata program 00000000000000110011001010000011
(for RISC-V) 00000000100000110011001110000011

00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

Instruction Set Architecture: The Interface
Between Hardware and Software

High-level swap(size_t v[], size_t k)
A4
software - language {
program Size_t temp;
(inC) temp = v[kI;
7 v vlk] = v[k+1];
instruction set | vik+1] = temp;
hardware @

Assembly swap:
language s11i x6, x11, 3
program add x6, x10, x6

* The words of a computer

. . or < 1d x5, 0(x6)
language are called instructions, | ©" e 7. 86w
and its vocabulary/dictionary is Bl S0
called an instruction set
— lowest software interface, (@

assembly level, to the users or to
the Compller erter Binary machine 00000000001101011001001100010011
language 00000000011001010000001100110011
program 00000000000000110011001010000011
|nstruction Set Architecture — A R 888888885???88%%8858858%8?8883

00000000010100110011010000100011
00000000000000001000000001100111 5§

type of computers

Major Types of ISA (Computers)

X86: Intel and AMD, Desktop, laptop, server market

RISC-V: fast growing one, embedded so far RISC-\/°

Power (mainly IBM) and SPARC (mainly Oracle and Fujitsu):
server market

Levels of Program Code to
Multiple Target Architectures

High-level
language
program
(inC)

Assembly
language
program

(for RISC-V)

Binary machine
language
program

(for RISC-V)

swap(size_t v[], size_t k)
{

size_t temp;

temp = v[k];

vlk]l] = v[k+1];

v[k+1] = temp;

swap:
s11i x6, x11, 3
add x6, x10, x6
1d x5, 0(x6)
1d x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

Assembler

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

Java C/C++ Python

X86 64 Assembly Example: Compiling

Using “-S” compiler flag to translate high-level code to assembly instructions

fany :H ‘
Linux vm
yanyh@v
1\yh@v

{ swap:
1 .LFBO:

)

n:~$ uname -a

4.4.0-170-generic #199-Ubuntu SMP Thu Nov 14 01:45:04 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

.file
. text
.globl

.type

n:~$ gcc -S swap.c
m:~$ cat swap.s

"swap.c"

swap
swap, @function

.cfi_startproc

pushq

%rbp

.cfi_def_cfa_offset 16
.cfi_offset 6, -16

movq

%rsp, %rbp

.cfi_def_cfa_register 6

movq
movl
movl
cltq
leaq
movq
addq
movl
mov 1
mov 1
cltq
leaq
movq
addq
movl
cltq
addq
leaq
movq

%rdi, —-24(%rbp)
%esi, —28(%rbp)
-28(%rbp), %eax

0(,%rax,4), %rdx
-24(%rbp), %rax
%rdx, %rax
(%srax), %eax
%eax, —4(%rbp)
-28(%rbp), %eax

0(,%rax,4), %rdx
-24(%rbp), %rax
%rax, %rdx

-28(%rbp), %eax

$1, %rax
0(,%rax,4), %rcx
-24(%rbp), %rax

Binary machine

language

program
(for RISC-V)

00000000001101011001001100010011
00000000011001010000001100110011

000 110011001010000011
110011001110000011
0 110011000000100011
0000000 100110011010000100011
00000000000000001000000001100111

X86_64 is ISA Architecture
for most Intel and AMD
desktop/server CPUs

RISC-V is one ISA
ARM is another ISA

— Most cellphone/smartphone
are ARM CPUs

Try the highlighted command for swap.c from the terminal of

https://repl.it/languages/c

https://passlab.github.io/ITSC3181/exercises/swap/

https://passlab.github.io/ITSC3181/exercises/swap/
https://repl.it/languages/c

X86_ 64 Assembly Example: Disassembly

Disassembly a machine binary code to assembly instructions using “objdump”

High-level swap(size_t v[], size_t k) yanyh@vm:~$ gcc —-c swap.c

language { yanyh@vm:~$ objdump -D swap.o

program size_t temp;

(in C) temp = v[k]; swap.o: file format elf64-x86-64

vlk] = v[k+1];
vik+1l] = temp;

| https://repl.it/languages/c

Disassembly of section .text:

_ , 0000000000000000 <swap>:
Compiler { ==« 55 push %rbp

0
l 1: 48 89 e5 mov %rsp,%rbp
4: 48 89 7d e8 mov %rdi,-0x18(%rbp)
e 8: 89 75 e4 mov %esi,-0x1c(%rbp)
m—- b: 8b 45 e4 mov -0x1c(%rbp) ,%eax
program e: 48 98 cltq
(for RISC-V) 10: 48 8d 14 85 00 00 00 lea 0x0(,%rax,4) ,%rdx
17: 00
18: 48 8b 45 e8 mov -0x18(%rbp) ,%rax
1c: 48 01 do add %rdx,%rax
) 1f: 8b 00 mov (%srax) ,%eax
Dis SCIIﬂDl)/ 21: 89 45 fc mov %eax,-0x4(%rbp)
24: 8b 45 e4 mov -0x1c(%rbp) ,%eax
27% 48 98 cltq
<:E§§%E§EE> 29: 48 8d 14 85 00 00 00 lea 0x0(,%rax,4),%rdx
30: 00
31: 48 8b 45 e8 mov -0x18(%rbp) ,%rax
Binary mac 00000000001101011001001100010011 e 46,101 2 a0c rax; srox
inar .
Iangu)allge 00000000011001010000001100110011 gg 22 gg e '2({\,;(1 @x1c(%rbp) ,%eax
program 00000000000000110011001010000011
(for RISC-V) 00000000100000110011001110000011 3d: 48 83 co 01 add $0x1,%rax
00000000011100110011000000100011 41: 48 8d 0c 85 00 00 00 lea 0x0(,%rax,4),%rcx
00000000010100110011010000100011 48: 00
00000000000000001000000001100111 49: 48 8b 45 €8 mov —@xlS(%rbp),%rax 9

4d: 48 01 c8 add %rcx,%rax

| =l 5 B Ol NN s T O imis’ Y Disibcis

https://repl.it/languages/c

Exercise: Inspect ISA for sum

Swap example
— https://passlab.github.io/ITSC3181/exercises/sum

Check float sum(int N, float X[],

— sum_x86_64.s, int 1i;

float result = 0.0;

for (i = 0; i < N; ++1i)
result += a * X[1i];

return result;

Generate and execute

— gcc-Ssum.c-osum_x86 _64.s }
— gcc-csum.c

— objdump -D sum.o > sum_x86_64 objdump.txt

Other system commands:
— cat /proc/cpuinfo to show the CPU and #cores
— top command to show system usage and memory

float a)

10

Compiler Explorer

* Explore other ISA assembly from Compiler Explorer at
https://godbolt.org/

C' & godbolt.org

e I] Use conan or vepkg to manage your C & C++ library
=4 EXPLORER | /%~ | More~ :
N |\ dependencies
C++ source #1 X 0O X | x86-64 gcc 9.2 (Editor #1, Compiler #1) C++ X
A~ BSave/load 4+ Addnew..> WV Vim © Cpplnsights C++ v x86-64 gcc 9.2 v ® Compiler options...
i // Type your code here, or load an example. .
Al o e 2 P A~ 01010 O.Jaout B.X0: Olibf: B.text @A/ O\s+ E
2 int square(int num) {
3 return num * num; 1 square(int):
4) B 2 push rbp
3 mov rbp, rsp
4 mov DWORD PTR [rbp-4], edi
5 mov eax, DWORD PTR [rbp-4]
6 imul eax, eax
i pop rbp
8 retl

11

https://godbolt.org/

Module 06 - Unit 1 Exercise 1 on Canvas

Compiling a C program to produce its assembly output
Using gcc and compiler explorer to output and study the

assembly output of bubble.c program

12

Module 06: Instruction Set Architecture, RISC-V Assembly

Programming, and Assembly Program of a C Program

Relevant course level outcome:

Explain the instruction set architecture of a computer system and how an
instrluction is represented at the machine level and symbolic assembler
leve

Use assembly instructions to write simple program to understand the core
concepts of ISA and assembly programming.

Be able to map major high-level language statements into
assembly/machine language notations.

At the end of this module, students should be able to:

. explain what an instruction set architecture (ISA) is and recognize existing

ISAs used in the computer industry (x86, ARM, RISC-V, etc) and their CPU
vendors;

. explain how ISA is used for creating and executing a program (e.g.

program in high-level language is translated into assembly and assembly
program is assembled into binary);

. enumerate and explain the three major classes of instructions in most

RISC ISA: arithmetic-logic instructions, memory access instructions, and
control transfer instructions;

. use arithmetic and logic instructions, memory access instructions, and

control transfer instructions to convert high-level C language constructs 13
to assemblv instructions.

Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

I®" Unit 1: Module overview, Instruction Set Architecture (ISA) and
assembly programs, registers, instruction operations and operands,
register and immediate operands, arithmetic and logic instructions

* Unit 2: Memory operands and memory access instructions

* Unit 3: Conditional control and instructions for making Decisions (if-
else) and loops

* Unit 4: Supporting Functions and procedures
* Unit 5: Sort examples and comparison with other ISAs

* Materials are developed based on textbook:

— Computer Organization and Design RISC-V Edition: The
Hardware/Software Interface, Amazon

— RISC-V Specification: https://riscv.org/technical/specifications/
— ITSC 3181: https://passlab.github.io/ITSC3181/

14

https://www.amazon.com/Computer-Organization-Design-RISC-V-Architecture/dp/0128122757
https://riscv.org/technical/specifications/
https://passlab.github.io/ITSC3181/

The RISC-V Instruction Set

Used as the example throughout the book
— We will use and study only three classes of instructions for a handful of ins
— Sufficient for most programs.

Developed at UC Berkeley as open ISA
Now managed by the RISC-V Foundation (riscv.org)
Typical of many modern ISAs

See RISC-V Reference Data Card

Similar ISAs have a large share of embedded core market

Applications in consumer electronics, network/storage, cameras, printers, ...

Other Instruction Set Architectures:

X86 and X86_32: Intel and AMD, main-stream desktop/laptop/server
ARM: smart phone/pad

RISC-V: emerging and free ISA, closer to MIPS than other ISAs

* The same textbook in RISC-V version

Others: Power, SPARC, etc

15

RISC-V Base Integer Instructions

Inst Name Description Note
add ADD R[rd] = R[rs1] + R[rs2]
sub SUB R[rd] = R[rs1] - R[rs2]
xor XOR R[rd] = R[rs1] " R[rs2]
or OR R[rd] = R[rs1] | R[rs2]
and AND R[rd] = R[rs1] & R[rs2]
sll Shift Left Logical R[rd] = R[rs1] << R[rs2]
srl Shift Right Logical R[rd] = R[rs1] >> R[rs2]
sra Shift Right Arith* R[rd] = R[rs1] >> R[rs2] sign-extends
slt Set Less Than R[rd] = (rsl < rs2)?1:0
addi ADD Immediate R[rd] = R[rs1] + SE(imm)
xori XOR Immediate R[rd] = R[rs1] " SE(imm)
ori OR Immediate R[rd] = R[rs1] | SE(imm)
andi AND Immediate R[rd] = R[rs1] & SE(imm)
slli Shift Left Logical Imm R[rd] = R[rs1] << imm[4:0]
srli Shift Right Logical Imm R[rd] = R[rs1] >> imm[4:0]
srai Shift Right Arith Imm R[rd] = R[rs1] >> imm[4:0] sign-extends
1w Load Word R[rd] = M[R[rs1]+SE(imm)]
sw Store Word MI[R([rs1]+SE(imm)] = R[rs2]
beq Branch == if(rs1 == rs2)

PC += SE(imm) << 1
bne Branch != if(rs1 != rs2)

PC += SE(imm) << 1
blt Branch < if(rs1 < rs2)

PC += SE(imm) <<1
bge Branch >= if(rs1 >= rs2)

PC += SE(imm) <<1
jal Jump And Link R[rd] = PC+4;

PC += SE(imm) <<1
jalr Jump And Link Reg R[rd] = PC+4;

PC = R[rs1]+ SE(imm)
lui Load Upper Imm R[rd] = SE(imm) << 12
auipc | Add Upper Imm to PC R[rd] = PC + (SE(imm) << 12)
csrrw | CSR read & write R[rd] = CSRs[csr];

CSRs[csr] = R[rs1]
csrrs | CSR read & set R[rd] = CSRs[csr];

CSRs[csr] = CSRs[csr] | R[rs1]
csrrc | CSR read & clear R[rd] = CSRslcsr];

CSRs[csr] =

CSRs[csr] & ~R[rs1]
ecall Environment Call Transfer control to OS
ebreak | Environment Break Transfer control to debugger

. Registers
Register | Name Description Saver
X0 zero Zero constant —
x1 ra Return address Caller
X2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5-x7 to-t2 Temporaries Caller
x8 s@ / fp | Saved / frame pointer | Callee
x9 s1 Saved register Callee
x10-x11 | a@-a1l Fn args/return values | Caller
x12-x17 | a2-a7 Fn args Caller
x18-x27 | s2-s11 Saved registers Callee
x28-x30 | t3-t5 Temporaries Caller
X34 il A e LY o W el I‘-11_Er
Memory Allocation
SP — OxFFFF FFFO Stack
{
T

PC — 0x0040 0000

0x1000 0000

Dynamic Data

Static Data

Text

Reserved

16

Mapping High-Level Program to Instructions:
Operands and Instructions

S C' & godbolt.org

®* Recall we count

three basic = EXPLORER /Add-.~ More~

operations of a G source #1 & X

program: A~ @ +- v @c
- Ar'thmet|C/|Og|C 1 int sum(int N, int X[], int a) {
_ Array/var i l izt i;sult = 0.0;

reference] N
— Condition check 5 result += a * X[i];
If-else and loop } SO BT

* Variables: “memory” locations as we learned so far
— Are mapped to operands of instructions
— Three kinds of operands:
* Register
* Immediate (constant)
* Memory location

* QOperations: +/-/& etc, if-else, for loop
— Are mapped to Instructions that use operands
— Three kinds of instructions:
* Compute: +, -, &, etc
* Move data: between memory and registers
* Control: if-else, for loop

Templates

O X

Che

RISC-V (64-bits) gcc (trunk) (Editor #1) # X

v RISC-V (64-bits) gcc (trunk) ¥ (4

I A~ L Output..> VFilter...~ & Librar

0 N4 o B W N

NN NNNNNRRRR B B B B 2 =
O Ul B W N H O VW OOSNO U B WN KF O LV

sum:

ol 3

addi
sd
sd
addi
mv
sd
mv
sw
mv
sw
sw

sw
J

1w
slli
1d

add

1w

1w
mulw
sext.w
1w
addw

sSw

sp,sp,-48
ra,40(sp)
s0,32(sp)
s0,sp,48
a5,al
al,-48(s0)
ad,a2
a5,-36(s0)
a5,a4
a5,-40(s0)
zero,-24(s0)
zero,-20(s0)
el

a5,-20(s0)
a5,a5,2
a4,-48(s0)
a5,a4,ab5
a5,0(a5)
a4,-40(s0)
a5,a4,ab5
a5,a5
a4,-24(s0)
a5,a4,ab
a5,-24(s0)

Three Kinds of Operands and Three Classes of
Instructions

* @General form:

— <op word> <dest operand> <src operand 1> <src operand 2>
— E.g.: add x5, x3, x4, which performs [x5] = [x3] + [x4]

Module 06: Unit 1

Three Classes of Instructions Module 06: Unit 3
Arithmetic-logic instructions
add, sub, addi, and, or, shift left|right, etc

Three Kmds of Operands

3. Control transfer instructions (changing sequence of instruction execution)
* Conditional branch: bne, beq
* Unconditional jump: j (
* Procedure call and return: jal and jr 18

Registers in CPU and Register Operands of Instructions

* Registers are super-fast small memory/storage used in CPU.

— General-purpose registers, program counter, instruction
register, status register, floating-point register, etc

— 32 GP Registers in RISC-V CPU, 32-bit or 64-bit size for each

* Data and instructions need to be loaded to memory and
then register in order to be processed.

(General
purpose

registe

Add

=¢— Instruction register

S — Program counter
=a— Processor status register

Computer system
‘ Arithmetig Sl W
rithmetig
[]|Logic
e IR 0]
(ALU) PC[1 |
psR 0]
2 2 memory (RAM)
21 ‘\
3 22 “%

One memory cell

19

Registers vs. Memory

* Registers are faster to access than memory
— ~100x faster, ~10 more expensive, and takes more space

* Operating on memory data requires loads and stores
— More instructions to be executed

u
ek

Computer system

Arithmetig¢
Logic Instruction register
Unit - o
(ALU) Ogram counter .
Processor status register

memory (RAM)

One memory cell

Register Operands

* Arithmetic instructions use register operands
— add <dest>, <src1>, <src2>
— Examples:
— add x5, x6, x7
— sub x7, x7, x9
— mul x20, x21, x22

* 64-bit RISC-V has 32 64-bit general purpose registers
— The storage for all GP registers is called a register file
* |tis storage, i.e. to store data
— Use for frequently accessed data
— Numbered x0 to x31
* the “memory address” for register

— 64-bit data is called a "doubleword”
— 32-bit data called a “word”

* Design Principle: Smaller is faster
— c¢.f. main memory: millions of locations

~
N

o
AR R A A R A AR
OO VN[O B|W N+ O

o
[
-

N A A A A Y
Ol |o|N||| bW N

AR AR A A L R R A R A R R R R R R R
NIN|IN
WIN| =

)
=

AR
N
o

NINININ
O N O

HEAEAEA RS
| w|w
=]

1

RISC-V 32 64-Bit Registers, x0 to x31

x0 / zero

* Usage convention for most programs: 1

x2

— x0: the constant value 0 x3

x4

x5

x6

x7

— x1: return address of a function

x8

x9

— x2: stack pointer of a functon X10
— x3: global pointer o
— x4: thread pointer %E
— X5—x7,x28 —x31: temporaries %j
— x8: frame pointer X
— x9, x18 — x27: saved registers o
— x10 —x11: function arguments/results =

x24

— x12 —x17: function arguments x25

~ry vmv

Arithmetic Operations, The First Class Instrs

* Add and subtract, three operands
— Two source operands: provide input or source data
— One destination operand: where result goes to.

add a, b, ¢ //sum of b and c is placed in a

* All arithmetic operations have this form
— Three operands, two sources and one destination
— 3-operands instructions General

Computer system

— . CPU
= | Arithmetiq

vogic | IRL__0]
= | (ALU) PC[1 |f-

PSR[0 |

— — —

memory (RAM)

LR\

One memory cell

* Design Principle: Simplicity favors regularit
— Regularity makes implementation simpler e 0
— Simplicity enables higher performance at lov 3

Register Operand Example

* Ccode:

f=(g+h)-(@+))

— f, ..., jvalues are already loaded in x19, x20, ..., x23

* Compiled RISC-V code, all are register operands

— Three operands: the first operand is destination, last two are
source operands

add x5, x20, x21 // [x5] = [x20] + [x21]
add x6, x22, x23 // [x6] = [x22] + [x23]
sub x19, x5, x6 // [x19] = [x5] — [x6]

— [x5]: the actual data in register x5

24

Constant or Immediate Operands

inta +=4; if aisin register x22

* Constant data specified in an instruction

addi x22, x22, 4

instructions that take immediate operands ends with letter i

* No subtract immediate instruction

— Just use a negative constant
addi x2, x1, -1

* Design Principle: Make the common case fast
— Small constants are common
— Immediate operand avoids a load instruction

25

The Constant Zero

* RISC-V register x0 is the constant 0 always
— Cannot be overwritten

* Useful for common operations
— E.g., move between registers, e.g. a=b; (x9 and x5 for a and b)
» add x9, x5, x0
* addi x9, x5, 0
— E.g. initialization such as i = 0; j=-100;
e addi x9, x0, 0
e addi x11, x0, -100

26

Instructions for Logical Operations

* Instructions for bitwise manipulation

Operation C Java RISC-V
Shift left << << Sll, slli
Shift right >> >>> Srl, srli
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit XOR A A XOr, XOfr
Bit-by-bit NOT ~ ~

= Useful for extracting and inserting
groups of bits in a word

Shift Logic Operation Examples

* Shift Left Logic: slli by i bits: multiplies by 2/

C/java: inti=23;intj=i<<1; //46
RISC-V: Ifiis in x5, and j is stored in x6:
 slliw x6, x5, 1

* slliw: shift left logic immediate word

®* |nstruction name

Carries the operand type it operates

5 4 3 210

7 6
01]0

et

Logical left shift one bit

* B: byte, H: half-word, W: word, D: double word

* Shift Right Logic

Java:inti=23;intj=i>>>1; //j=11
C:inti=23;intj=i>>1;//j=11
RISC-V: ifiis in x5, j will be in x6:

* srliw x6, x5, 1

Fill in 0, not much used for signed

O»0(O0O(Of(Of1]|O

Logical right shift one bit

Shift Right Arithmetic

* Shift right arithmetic (srai): Format: srai(w) rd, rs, #immediate
— Shift right and fill with sign bit
— sral by i bits: divides by 2
— Java: i=-105; int j=i>>1; //-53
— RISC-V: ifiisin x5, jwill be in x6:
* sraiw x6, x5, -1;

7 6
1|0 -105

1{1loflo]1]0]1]1 -53

29

Summary of Shift Operations

immed: how many positions to shift

Shift left logical (sll): Format: slli(w) rd, rs, #immediate
— Shift left and fill with 0 bits

— slli by i bits: multiplies by 2

— E.g.inta=b<<2;//a=b * 4 (22

Shift right logical (srl): Format: srli(w) rd, rs, #immediate
— Shift right and fill with 0 bits

— srli by i bits: divides by 2’ (unsigned only)

— E.g.inta=b>>2;//a=b/4(2?

Shift right arithmetic (sra): Format: srai(w) rd, rs, #immediate
— Shift right and fill with sign bit
— srai by i bits: divides by 2

Instructions for AND, OR, XOR Operations

* Useful to mask bits in a word
— Select only some bits, clear others to O

and x9,x10,x11
or x9,x10,x11
xor x9,x10,x12

More Examples

Using ONLY the add, sub and slli instruction to convert the

following C statement to the corresponding RISC-V assembly.
Assume that the variables £, g, and 7 are integers assigned to

registers t0, t1, and t2 respectively. You can use other
temporary registers suchas t3, t4, t5, t6,etc.

f =g -3+ £ * 16;

sub t6, t1,t2 #t6 now has g —]
slhi t5, t0, 4 #t5nowhasf* 16
add t0, t5, t6 # t0 (f) now has the result.

32

More Examples

Using ONLY the add, sub and slli instruction to convert the

following C statement to the corresponding RISC-V assembly.
Assume that the variables £, g, and 7 are integers assigned to

registers t0, t1, and t2 respectively. You can use other
temporary registers suchas t3, t4, t5, t6,etc.

04 + 1

f =g -3 * 65+ £ *x 8; //Hint: 65

slhi t4,t2, 6 # t4 now has j * 64

add t4, t4, t2 # t4 now hasj * 65

slhi t5, t0, 3 #t5 now has f * 8

sub t6, t1,t4 # t6 now has g —j*65

add t0, t5, t6 # t0 (f) now has the result.

33

Module 06 - Unit 1 Exercise 2 on Canvas

RISC-V Assembly Programming with add/sub/slli

34

RARS -- RISC-V Assembler and Runtime Simulator

* https://github.com/TheThirdOne/rars
— We will use to write and execute simple RISC-V assembly program

— Download the jar file and execute it directly

* https://github.com/TheThirdOne/rars/releases/download/v1.6/1
rS]_ 6.Ja Foseee : — hspertdata_yanyhiscvt.asm -RARS 1

= = Run speed at max (no interaction)
(=T kA ¢ [%[EE%] [0 600 e e

Edit Execute - Registers Floating Point ~ »
2 Name Number Value

Text Segment L=l zero [) 0x00000000

. Label Address A ra 1 002000000

Program Arguments (globah % 2 ox7Fffeffc

Bkpt Address Code Basic Source ap 3 0x10008000

0x00400000 0%03c00293 addi X5, 0, 0x0000003C 5 1i to, 60 i frouanamet —C e

0x00400004 0x00000313 addi x6,x0,0 6: 1 t1, riscvi.asm o 5 0x00600032

0x00400008 0x00530313 addi X6,%6,5 8: addi t1, t1, 5 loop 6x00400008 e Lo

0x0040000¢ oxfff28293 addi x5,x5,exffffffff 9: addi to, to, -1 failure 0x00400018 2 7 0x00000000

000400010 oxfes3lce3bne x6,x5,0xFFIFFff8 10: bne t1, to, loop success 000400024 s 8 000000000

0x00400014 0x00031863 bne x6, X2, 0x00000810 11: bne t1, zero, success s1 9 0x00000000

0x00400018 0x00000513 addi x10,X0,0 13: a0, 0 8 R IR

400893 addi x17,x0, d 14 U a7, 93 L N moYa00008

0x00400020 0x00000073 ecall 15: ecall a2 - IRRA

0x00400024 x02a00513 addi x10,x0,0x0000002a 18: 1 a0, 42 L2 = Oxbosooed

e 1 G a4 14 0x00000000

x0040002C 000000073 ecall 20: ecall 5)

a6 16 0x00000000

a7 17 0x0000005d

s2 18 0x00000000

Vv Data v Text s3 19 0x00000000

s4 20 0X00000000

s5 21 x00000000

® Data Segment s6 2 0x00000000

Address Value (+0) Value (+4) Value (+8) Value (+0) Value (+10) Value (+14) Value (+18) Value (+10 A z Horeres

0x10010080 9 25 000000000

0x10010020 s10 26 0x00000000

0x10010040 s11 27 0x00000000

0x10010060 3 28 0x00000000

0x10010080 4 29 x00000000

0x10010020 000000000 x00000000 5 30 0x00000000

0x100100c0 00000000 6 31 0x00600000

0x100100€0 pc 0x00400030
0x100101¢0
0x10010120
0x10010140
0x10010160
0x10010180
0x10010120
2x100101cH

4 @ 0x10010000 (.data) Hexadecimal Addresses Hexadecimal Values ASCIl

Messages Run [/0

— progran is finished running (42) — 3 5

Reset: reset completed.

Clear

program is finished running (42) —

https://github.com/TheThirdOne/rars
https://github.com/TheThirdOne/rars/releases/download/v1.6/rars1_6.jar
https://github.com/TheThirdOne/rars/releases/download/v1.6/rars1_6.jar

Psuedo-instructions Used in RARS

* Are NOT machine instructions

* Are assembly instructions that help programmers
— Translated to machine instructions by assembler

* For example
— mv x6, x7 //move/copy value from x7 to x6
* Machine instruction: add x6, x7, x0 //since x0 is always 0
 Machine instruction: addi x6, x7, 0
— lix8,100 //set the value of a register to be an immediate (load
immediate)
 Machine instruction: addi x8, x0, 100
— la x10, label //load address of label to register
* Need two machine instructions
— auipc x8, xxx
— addi x0, x0, xxx

36

Module 06 - Unit 1 Lab on Canvas

Converting a C “Hello World Program” to RISC-V assembly and
simulating their execution using RARS simulator

37

Module 06 - Unit 1 Review Quiz on Canvas

RISC-V Assembly Programming with add/sub/slli

38

