
Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Format of a C Program

Unit 2: Memory Operands and Memory Access Instructions

ITSC 2181 Introduction to Computer Systems
College of Computing and Informatics

Department of Computer Science

Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

• Unit 1: Module overview, Instruction Set Architecture (ISA) and
assembly programs, registers, instruction operations and operands,
register and immediate operands, arithmetic and logic instructions

• Unit 2: Memory Operands and Memory Access Instructions
• Unit 3: Conditional control instructions for making decisions (if-else)

and loops
• Unit 4: Supporting Functions and procedures
• Unit 5: Sort examples and comparison with other ISAs

• Materials are developed based on textbook:
– Computer Organization and Design RISC-V Edition: The

Hardware/Software Interface, Amazon
– RISC-V Specification: https://riscv.org/technical/specifications/
– ITSC 3181: https://passlab.github.io/ITSC3181/

2

☛

https://www.amazon.com/Computer-Organization-Design-RISC-V-Architecture/dp/0128122757
https://riscv.org/technical/specifications/
https://passlab.github.io/ITSC3181/

Three Kinds of Operands and Three Classes of
Instructions

• General form:
– <op word> <dest operand> <src operand 1> <src operand 2>
– E.g.: add x5, x3, x4, which performs [x5] = [x3] + [x4]

Three Kinds of Operands
1. Register operands, e.g., x0 – x31
2. Immediate operands, e.g., 0, -10, etc
3. Memory operands, e.g. 16(x4)

Three Classes of Instructions
1. Arithmetic-logic instructions
• add, sub, addi, and, or, shift left|right, etc

2. Memory load and store instructions
• lw and sw: Load/store word
• ld and sd: Load/store doubleword

3. Control transfer instructions (changing sequence of instruction execution)
• Conditional branch: bne, beq
• Unconditional jump: j (
• Procedure call and return: jal and jr 3

Module 06: Unit 1
Module 06: Unit 2
Module 06: Unit 3

Instructions Used So Far: add, addi, sub and slli

add x10, x5, x6 // [x10] = [x5] + [x6]
addi x10, x5, 100 // [x10] = [x5] + 100
sub x11, x5, x6 // [x11] = [x5] – [x6]

slli x12, x5, 5 // [x12] = [x5] * 2^^5

• All within CPU, i.e. ALU (Arithmetic Logic Unit) and register
– How to access memory?

4

Module 6 Unit 2 Assigned Reading and Pre-
knowledge Check

• Load-store architecture
– Memory access and ALU operations

are separated
– Data must be loaded or stored

between memory and register first
– ALU can only operates on

register/immediate operands
– E.g. RISC-V, ARM, MIPS, PowerPC,

SPARC
• Register-memory architecture
– ALU operation can be performed

on/from memory,
• E.g. add, x6, x6, 0(x22)

– Example: X86
• Why?: Memory wall
– Large speed gap between CPU and

DRAM
5

ALU ALU

Register File

Memory Memory

https://en.wikipedia.org/wiki/Load%E2%80%93store_architecture
https://en.wikipedia.org/wiki/Register%E2%80%93memory_architecture

Module 6 Unit 2 Assigned Reading and Pre-
knowledge Check

• Load-store architecture
• Register-memory architecture
• Memory wall problem and DRAM speed
– The memory wall problem refers to a phenomenon that occurs in computer architecture

when the processor’s speed outpaces the rate at which data can be transferred to and
from the memory system. As a result, the processor must wait for the data to be fetched
from memory, which slows down its performance and limits its speed.

6

DRAM
Generation

Frequency Range

DDR1 200 MHz to 400 MHz

DDR2 400 MHz to 1600 MHz

DDR3 800 MHz to 2133 MHz

DDR4 1600 MHz to 5333 MHz

DDR5 3200 MHz to 6400 MHz

https://en.wikipedia.org/wiki/Load%E2%80%93store_architecture
https://en.wikipedia.org/wiki/Register%E2%80%93memory_architecture
https://developer20.com/memory-wall-problem/
https://www.electronicshub.org/what-is-dram-frequency

Memory Operands and Memory Access
Instructions

• Main memory used for composite data
– Arrays, structures, dynamic data
• To apply arithmetic operations
– Load data from memory into registers
– Store result from register to memory

• Memory is byte addressed
– Each address identifies an 8-bit byte
• For multi-byte data, RISC-V is Little Endian
– Least-significant byte at least address of a word
– c.f. Big Endian: Most-significant byte at least address

7

To store number 12345678

For Register/Immediate Operands and
Arithmetic/Logic Instructions

Using ONLY the add, addi, sub and slli instruction to convert the
following C statement to the corresponding RISC-V assembly.
Assume that the variables a and i are long integers whose values
are already in registers x1 and x2,respectively. You can use other
temporary registers such as x10, x11, x12, etc. Register x0 always
contains 0 and cannot be changed.

 a = i + 1; è

 a = i++; è

 a = ++i; è

8

add x1, x2, 0 # a = i
addi x2, x2, 1; # i++

addi x2, x2, 1; # i++
add x1, x2, 0 # a = i

addi x1, x2, 1;

We already loaded
data into registers!

Memory Access Example #1

• Using ONLY the add, addi, sub, slli, ld and sd instruction to convert the
following C statements to the corresponding RISC-V assembly.
Assume that the values for variables a and i are in memory. The
addresses of the memory location for a and i are in register x6 and x7.
The result should be written back to memory location for a and i.

 a = i + 1; //a and i are long int

9

• To apply arithmetic/logic operations: data need to be loaded from
memory into registers

• After finishing computation, data in registers can be stored to
memory

load i
add 1
store a

Memory Access Instructions and Memory
Operands

• Using ONLY the add, addi, sub, slli, ld and sd instruction to convert the following C
statements to the corresponding RISC-V assembly. Assume that the values for
variables a and i are in memory. The addresses of the memory location for a and i
are in register x6 and x7. The result should be written back to memory location for
a and i.

 a = i + 1; //a and i are long int

10

ld x10, 0(x7) # load data of i from memory address 0+[x7] to register x10
addi x11, x10, 1 # increment i (in register x10) by 1 and store the result to register x11,
 # which is the value for a
sd x11, 0(x6) # store the data of [x11] to memory address 0+[x6],

which is for memory location of variable a

• ld: load instruction, load a double word (8 bytes) from mem to register
• sd: store instruction, store a double word (8 bytes) from register to

memory
• 0(x6), 0(x7) are memory operands: for memory address 0+[x6] or 0+[x7]

Load and Store Instructions

Format: ld rd, offset(rs1)
Example: ld x9, 64(x22) // load doubleword
to x9
• ld: load a doubleword from a memory location whose address is

specified as rs1+offset (base+offset, [x22]+64) into register rd (x9)
– Base should be stored in a register, offset MUST be a constant

number
– Address is specified similar to array element, e.g. A[8], for ld, the

address is offset(base), e.g. 64(x22)

Format: sd rs2, offset(rs1)
Example: sd x9, 96(x22) // store a doubleword

• sd: store a doubleword from register rs2 (x9 in the example) to a
memory location whose address is specified as
rs1+offset(base+offset, [x22]+96). Offset MUST be a constant
number.

11

Memory Access Example #2

• Using ONLY the add, sub, slli, ld and sd instruction to convert the
following C statements to the corresponding RISC-V assembly.
Assume that the values for variables a and i are in memory. The
addresses of the memory location for a and i are in register x6 and x7.
The result should be written back to memory location for a and i.

 i++; a = i; //a and i are long int

12

i = i+1; load i
add
store i

a = i; load i
store a

Program with pseudo code first

Memory Access Example #2

• Using ONLY the add, sub, slli, ld and sd instruction to convert the
following C statements to the corresponding RISC-V assembly.
Assume that the values for variables a and i are in memory. The
addresses of the memory location for a and i are in register x6 and x7.
The result should be written back to memory location for a and i.

 i++; a = i; //a and i are long int

13

ld x10, 0(x7) # load data of i from memory address 0+[x7] to x10
addi x11, x10, 1 # increment i by 1 and store the result to x11,
 # which is the value for a
sd x11, 0(x7) # store the new value of i to its memory location (0+[x6])

ld x10, 0(x7) # load the data of i from memory address 0+[x7] to x10
sd x10, 0(x6) # store [x10] to memory address 0+[x6],

which is for memory location of variable a

load i
add

store i

load i
store a

Memory Access Example #3
• C code:
 double A[N]; //double size is 8 bytes
 double h = A[8];
– h in x21, base address of A in x22

• Compiled RISC-V code:
– Element A[8] is 64 bytes offset from A[0]
– A[8] right-val è load

• Pseudo code:
– load A[8]
– Assign to h (x21)

ld x9, 64(x22) // load doubleword A[8]
add x21, x9, x0 // copy from x9 to x21 (h)

or just simple as:
ld x21, 64(x22)

1464(x22) is a memory operand, in contrast to register operands (x9)

Memory Access Example #4

• C code:
 double A[N]; //double size is 8 bytes

 A[12] = h;
– h in x21, base address of A in x22

• Compiled RISC-V code:
– Element A[12] is 12*8 bytes offset from A[0]
– A[12]: left-val è store instruction

sd x21, 96(x22) //store doubleword A[12]

15
96(x22) is a memory operand, in contrast to register operands (x9)

Memory Access Example #5

• C code:
 double A[N]; //double size is 8 bytes

 A[12] = h + A[8];
– h in x21, base address of A in x22

 ld x9, 64(x22) // load A[8]
add x9, x21, x9
sd x9, 96(x22) // store A[12]

16
64(x22) and 96(x22) are memory operands, in contrast to register operands (x9)

Memory Access Example #6

• C code:
 double A[N]; //double size is 8 bytes

 A[12] = h + A[8];
– Memory address for h is in x 11, base address of A in x22

• Compiled RISC-V code:
– A[8] right-val, A[12]: left-val

 ld x21, 0(x11) //load h

 ld x9, 64(x22) // load A[8]

 add x9, x21, x9

 sd x9, 96(x22) // store A[12]

17

Load and Store Instructions for Other Data Types

• Load and store are the ONLY two instructions that access memory
• ld/sd: load/store a double word (8 bytes)
– E.g. double, long int, pointer variable in a 64-bit systems

• lw/sw and lwu: load/store a word (4 bytes)
– E.g. int, float
– E.g. unsigned int

• lh/sh and lhu: load/store a half-word (2 bytes)
– E.g. short
– E.g. unsigned short

• lbu/sbu: load/store a byte (1 byte)
– E.g. char

• Load a smaller number to 64-bit register: sign or logic extension

18

More Load/Store Examples for int A[100]:

• int A[100]; base address (A, or &A[0]) is in x22, int is 4 bytes
– Need to use lw/sw since we are dealing with 4-byte (word)

elements
– lw/sw A[0]: address can be specified as 0(x22).

• A scalar variable (e.g. int f;) can be considered as one-
element array (e.g. int f[1]) for load/store
– lw/sw a variable’s (e.g. int f) 32-bit value stored in a specific

memory address which is stored in register x6 to register x8
• lw x8, 0(x6) //offset is 0
• sw x8, 0(x6)

19

#7: A[8] = A[10], base is in x22, each element 4 bytes

• lw x6, 40(x22)
• sw x6, 32(x22)

• The context of the terms we use: base and offset
– For array/variable: base: &A[0], offset: bytes between A[0] and

A[i];
– For lw/sw: base: base register, offset: the constant in the instr

– If you have address of A[4] in x9, [x9] can be used for lw/sw as
base address
• lw x5, 0(x9): load A[4]
• sw x5, 8(x9): store to A[6]
• sw x5, -8(x9): store to A[2]

20

#8: a += A[10], base is in x22, each element 4 bytes

• The memory address of variable a is in register x10

+=: è a = a + A[10];

lw x5, 0(x10) //load a to x5
lw x6, 40(x22) //load A[10] to x6
add x5, x5, x6 // addition
sw x5, 0(x10) //store back to a

21

#9: A[8] += a, base is in x22, each element 4 bytes

• The memory address of variable a is in register x10

+=: A[8] += a è A[8] = A[8] + a;

lw x5, 0(x10) //load a to x5
lw x6, 32(x22) //load A[8] to x6
add x6, x5, x6 //addition
sw x6, 32(x22) //store to A[8]

22

#10: Load/Store Example: Accessing Memory A[i]

int B[N]; // int type, 4 bytes
a = B[i]; //i is a variable reference, not a constant

• Base address for B[] is in x23. i is already loaded in register x5.
– To load B[i] to a register, e.g. x9, needs to find the address for B[i] in load and

store in the form of:
• base+offset: B+i*4

– But i*4 is not constant, cannot be the offset for load or store instructions
• Solution: Calculate the address of B[i] and store in registers as base for

LW/SW, and then use 0 as offset in L/S

slliw x6, x5, 2 // x6 now has i*4, slliw is i<<2 (shift left logic)
add x7, x23, x6 // x7 now has the address of B[i].
lw x10, 0(x7) // load a word from memory location 0+[x7],

//which is B[i], into reg x10 which is for a
23

#11: Load/Store Example: Accessing Memory A[i]

int A[N], B[N]; // int type, 4 bytes
A[i] = B[i]; //i is a variable reference, not a constant

• Base address for A and B are in x22 and x23. i is stored in x5
– Calculate the address of A[i] and B[i] and store in registers as base for

LW/SW, and then use 0 as offset in L/S

slliw x6, x5, 2 // x6 now has i*4, slliw is i<<2 (shift left logic)
add x7, x23, x6 // x7 now has the address of B[i].
lw x9, 0(x7) // load a word from mem 0+[x7], which is B[i] to x9

add x8, x22, x6 // x8 now has the address of A[i]
sw x9, 0(x8) // store a word from register x9 to memory 0+[x8]

// which is A[i]
24

#12: Load/Store Example: Accessing Memory A[i],
A[i-1] and A[i+1]

int A[N], B[N]; // int type, 4 bytes
A[i] = B[i-1] + B[i] + B[i+1]; //i is a variable reference, not a constant

• Base address for A and B are in x22 and x23. i is already loaded in register x5
– Calculate the address of A[i] and B[i] and store in registers as base for LW/SW, and

then use 0, 4 and -4 as offset in load/store

slliw x6, x5, 2 // x6 now has i*4, slliw is i<<2 (shift left logic)
add x7, x23, x6 // x7 now has the address of B[i].

lw x9, 0(x7) // load a word from memory 0+[x7], which is B[i], into reg x9
lw x10, 4(x7) //load a word from memory 4+[x7], which is B[i+1] into x10
lw x11, -4(x7) //load a word from memory -4+[x7], which is B[i-1] into x11

add x9, x9, x10
add x9, x9, x11

add x8, x22, x6 // x8 now has the address of A[i]
sw x9, 0(x8) // store a word from register x9 to memory location 0+[x8]
 // which is A[i]

25

Two Classes of Instructions so Far

• Arithmetic instructions
– Three operands, could be either register or immediate. Immediate can

only be the second source operand.
• add x10, x5, x6; sub x5, x4, x7
• addi x10, x5, 10;

• Load and store instructions: Load data from memory to register
and store data from register to memory
– Remember the way of specifying memory address (base+offset)
– ld x9, 64(x22) // load doubleword
sd x9, 96(x22) // store doubleword

• With these two classes instructions, you can implement the
following high-level code, and different ways of combining them
– f = (g + h) - (i + j);
– A[12] = h + A[8];

26

Clarifying the Terms

• For ALU to access register
– Fetch and set, e.g. add x5, x6, x7
• ALU fetches data from register x6 and x7,
 performs add, then set x5 with the result

• For move data between mem and register
– Load and store

• For move data between storage and mem
– Read and write

27

Storage

RISC-V Base Integer Instructions

28

Module 6 Unit 2: Exercise 1

• Recognizing load/store instructions in an assembly program
• From compiler explorer, count load/store instructions

29

https://godbolt.org/

Module 6 Unit 2: Exercise 2

30

Module 6 Unit 2: Lab #1 Write two C programs for
Use with RISC-V Assembly Programming

31

1. Write two C programs for Use with RISC-V Assembly
Programming

– A program to accumulate integers from 1 to 100
– A program to find the average of 100 integers that are randomly

generated

Module 6 Unit 2: Lab #2 Declare and access an
array in RISC-V RARS

32

1. Understanding the code structure of an assembly program,
– Read the document Fundamental of RISC-V Assembly
– https://github.com/TheThirdOne/rars/wiki/Creating-Hello-

World

https://github.com/TheThirdOne/rars/wiki/Fundamentals-of-RISC-V-Assembly
https://github.com/TheThirdOne/rars/wiki/Creating-Hello-World
https://github.com/TheThirdOne/rars/wiki/Creating-Hello-World

Code Structure of A Program

.globl main #declare main function

.data # The .data section of the program is used to
 # reserve memory to use for the variables/arrays
.text #The .text section is the actual code
main: #definition of main funct

33

34

1. Understanding the code structure of an assembly program
– Read the document Fundamental of RISC-V Assembly
– https://github.com/TheThirdOne/rars/wiki/Creating-Hello-World

2. Declare and access an array in RISC-V RARS
– https://github.com/TheThirdOne/rars/blob/master/test/memory.s

Three commonly used pseudo instructions
• mv x6, x7 //move/copy value from x7 to

x6
• li x8, 100 //set the value of a register to

be an immediate
• la x10, label //load address of label to

register

Module 6 Unit 2: Lab #2 Declare and access an
array in RISC-V RARS

https://github.com/TheThirdOne/rars/wiki/Fundamentals-of-RISC-V-Assembly
https://github.com/TheThirdOne/rars/wiki/Creating-Hello-World
https://github.com/TheThirdOne/rars/blob/master/test/memory.s

Declare An Array

.globl main #declare main function

.data #The .data section, for the variables/arrays
 buffer: .space 8 #declare a symbol named "buffer" for
 # 8 bytes of memory.
 # For a word element, this correspond to "int buffer[2]"
 #If you need to declare an array of 100 elements of int,

 # use "myArray: .space 400
.text #The .text section of the program is the actual code
main: #definition of main function
 la t0, buffer # set register t0 to have the address of the buffe[0]
 li t1, 8 # Set register t1 to have immediate number 8

35

Memory.s file
.globl main #declare main function
.data #The .data section of the program is used to claim memory to use for the variables/arrays of the
program

buffer: .space 8 #declare a symbol named "buffer" for 8 bytes of memory.
 # For a word element, this corresponds to "int buffer[2]"

 #This declaration claims 8 bytes of memory.
 # If you need to declare an array of 100 elements of word, use "myArray: .space 400

.text #The .text section of the program is the actual code
main: #definition of main function

la t0, buffer # set register t0 to have the address of the buffer variable
li t1, 8 # Set register t1 to have immediate number 8
sw t1, 0(t0) # store a word (4 bytes) of what register t1 contains (8) to memory address 0(t0), which is buffer[0]
lw t2, 0(t0) # load a word from memory address 0(t0) to register t2, i.e. buffer[0] -> t2
bne t1, t2, failure # check whether register t1 and t2 contain the same value or not. If not, branch to failure, else continue
the next instruction
li t3, 56 # set register t3 to have immediate 56
sw t3, 4(t0) # store a word of what register t3 contains (56) to memory address 4(t0), which is buffer[1]
addi t0, t0, 4 # increment register t0 (&buffer) by 4, t0 now contains buffer+4, which is &buffer[1]
lw t4, 0(t0) # load a word from memory 0(t0) (&buffer[1]) to register t4
bne t3, t4, failure # check whether register t3 and t4 contain the same value or not. If not, branch to failure, else continue.
lw t5, -4(t0) # load a word from memory -4(t0) to register t5. -4(t0) address is actually &buffer[0] since register t0
now contains the address of buffer[1]
bne t5,t1, failure # check whether register t5 and t1 contain the same value or not. They should both contain 8
li t1, 0xFF00F007 # set register t1 to have value 0xFF00F007
sw t1, 0(t0) # store a word of what register t1 contains to memory address 0(t0) (&buffer[1])
lb t2, 0(t0)

36

37

• Create a main program to declare, initialize and use an
array. We will go through this example during the class or
lab. The example in the lab is different, but similar.
– Use the data segment and registers to check the value in

memory and register while you debug your program

Module 6 Unit 2: Lab #2 Declare and access an
array in RISC-V RARS

void main () {
int A[2];
int a;
A[0] = 1;
A[1] = 2;

 a = A[0] + A[1];
 A[0] = a;
 A[1] = a;
}

Random Number Generator

li a0, 0 # for random number seed
li a1, 100 # range of random number
li a7, 42 # rand code
ecall # call random number generator to
generate a random number stored in a0

• Check:
https://github.com/TheThirdOne/rars/wiki/Environment-
Calls

38

https://github.com/TheThirdOne/rars/wiki/Environment-Calls
https://github.com/TheThirdOne/rars/wiki/Environment-Calls

39

• Similar questions as in Exercise 2

Module 6 Unit 2: Review Quiz

