Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Format of a C Program

Unit 2: Memory Operands and Memory Access Instructions

ITSC 2181 Introduction to Computer Systems
College of Computing and Informatics
Department of Computer Science

Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

* Unit 1: Module overview, Instruction Set Architecture (ISA) and
assembly programs, registers, instruction operations and operands,
register and immediate operands, arithmetic and logic instructions

1% ynit 2: Memory Operands and Memory Access Instructions

* Unit 3: Conditional control instructions for making decisions (if-else)
and loops

Unit 4: Supporting Functions and procedures
* Unit 5: Sort examples and comparison with other ISAs

* Materials are developed based on textbook:

— Computer Organization and Design RISC-V Edition: The
Hardware/Software Interface, Amazon

— RISC-V Specification: https://riscv.org/technical/specifications/
— ITSC 3181: https://passlab.github.io/ITSC3181/

https://www.amazon.com/Computer-Organization-Design-RISC-V-Architecture/dp/0128122757
https://riscv.org/technical/specifications/
https://passlab.github.io/ITSC3181/

Three Kinds of Operands and Three Classes of
Instructions

®* General form:

— <op word> <dest operand> <src operand 1> <src operand 2>
— E.g.: add x5, x3, x4, which performs [x5] = [x3] + [x4]

Three Kinds of Operands
1. Register operands, e.g., x0 — x31

2. Immediate operands, e.g., 0, -10, etc

Three Classes of Instructions Module 06: Unit 3
1. Arithmetic-logic instructions
e add, sub, addi, and, or, shift left]right, etc

3. Control transfer instructions (changing sequence of instruction execution)
* Conditional branch: bne, beq
* Unconditional jump: j (
* Procedure call and return: jal and jr

Instructions Used So Far: add, addi, sub and slli

add x10, x5, x6 /l [x10] = [x5] + [x6]
addi x10, x5, 100 // [x10] = [x5] + 100
sub x11, x5, x6 /I [x11] = [x5] — [x6]
slli x12, x5, 5 /[[x12] = [x5] * 2275

* All within CPU, i.e. ALU (Arithmetic Logic Unit) and register
— How to access memory?

Modern Digital Computer
Processor Chi

’ 1/O Controller ‘

1 1/O Bus

Input and Output Devices

Module 6 Unit 2 Assigned Reading and Pre-
knowledge Check

®* |oad-store architecture

— Memory access and ALU operations
are separated

— Data must be loaded or stored
between memory and register first

— ALU can only operates on
register/immediate operands

— E.g. RISC-V, ARM, MIPS, PowerPC,
SPARC
¢ Register-memory architecture

— ALU operation can be performed
on/from memory,

e E.g. add, x6, x6, 0(x22)
— Example: X86

* Why?: Memory wall

— Large speed gap between CPU and
DRAM

A | A
Memory Memory
I\I I\ N U X
Pt b
Register File Regiter | ‘
N N
Py K
ALU ALU
A
Load-Store Direct Memory

https://en.wikipedia.org/wiki/Load%E2%80%93store_architecture
https://en.wikipedia.org/wiki/Register%E2%80%93memory_architecture

Module 6 Unit 2 Assigned Reading and Pre-
knowledge Check

* |Load-store architecture

* Register-memory architecture

* Memory wall problem and DRAM speed

— The memory wall problem refers to a phenomenon that occurs in computer architecture
when the processor’s speed outpaces the rate at which data can be transferred to and
from the memory system. As a result, the processor must wait for the data to be fetched
from memory, which slows down its performance and limits its speed.

100,000

10,000

1,000

Performance

100

10

1980

Processor

Processor-Memory

1985 1990

1995
Year

2000 2005

2010

DRAM
Generation

DDR1
DDR2
DDR3
DDR4
DDR5

Computer Architecture: A Quantitative Approach by John L. Hennessy, David A. Patterson, Andrea C. Arpaci-

Dusseau

Frequency Range

200 MHz to 400 MHz
400 MHz to 1600 MHz
800 MHz to 2133 MHz
1600 MHz to 5333 MHz
3200 MHz to 6400 MHz

https://en.wikipedia.org/wiki/Load%E2%80%93store_architecture
https://en.wikipedia.org/wiki/Register%E2%80%93memory_architecture
https://developer20.com/memory-wall-problem/
https://www.electronicshub.org/what-is-dram-frequency

Memory Operands and Memory Access

Instructions

®* Main memory used for composite data
— Arrays, structures, dynamic data

* To apply arithmetic operations

— Load data from memory into registers
— Store result from register to memory

* Memory is byte addressed

— Each address identifies an 8-bit byte

To store number 12345678

Big Endian

—— CPU |

0 memory (RAM) |

H\

(#V) SR
-

* For multi-byte data, RISC-V is Little Endian

— Least-significant byte at least address of a word
— c.f. Big Endian: Most-significant byte at least address

Little Endian

For Register/Immediate Operands and
Arithmetic/Logic Instructions

Using ONLY the add, addi, sub and slli instruction to convert the

following C statement to the corresponding RISC-V assembly.
Assume that the variables a and i are long integers whose values

are already 1n registers x1 and x2, respectively. You can use other
temporary registers such as x10, x11, x12, etc. Register x0 always
contains 0 and cannot be changed.

a:i-|—1; > 2 addi x1, x2, 1;

, | We already loaded
qa=1++: = add x1,x2,0 #a=i . .
’ addix2, x2, 1; #i++ data into registers!

q = ++1: 9 addi x2, x2, 1; #i++
’ add x1,x2,0 #a=i

Memory Access Example #1

e Using ONLY the add, addi, sub, slli, 1d and sd instruction to convert the
following C statements to the corresponding RISC-V assembly.
Assume that the values for variables a and i are in memory. The
addresses of the memory location for a and i are 1n register x6 and x7.
The result should be written back to memory location for a and i.

a=1+1; //a and 1 are long int

To apply arithmetic/logic operations: data need to be loaded from
memory into registers

After finishing computation, data in registers can be stored to
memory

load i
add 1
store a

Memory Access Instructions and Memory
Operands

* Using ONLY the add, addi, sub, slli, Id and sd instruction to convert the following C
statements to the corresponding RISC-V assembly. Assume that the values for
variables a and i are in memory. The addresses of the memory location for a and i
are 1n register x6 and x7. The result should be written back to memory location for
a and i.

a=1+1; //a and i are long int

Id x10, 0(x7) # load data of i from memory address 0+[x7] to register x10
addi x11, x10, 1 #increment i (in register x10) by 1 and store the result to register x1.:

which is the value for a
sd x11, 0(x6) # store the data of [x11] to memory address 0+[x6],
which is for memory location of variable a

 |d: load instruction, load a double word (8 bytes) from mem to registe
 sd: store instruction, store a double word (8 bytes) from register to

memory
e 0(x6), 0(x7) are memory operands: for memory address 0+[x6] or 0+x

Load and Store Instructions

Format: 1d rd, offset(rsl)

Example: 1d x9, 64(x22) // load doubleword
to x9

* |d: load a doubleword from a memory location whose address is
specified as rs1+offset (base+offset, [x22]+64) into register rd (x9)

— Base should be stored in a register, offset MUST be a constant
number

— Address is specified similar to array element, e.g. A[8], for Id, the
address is offset(base), e.g. 64(x22)

Format: sd rs2, offset(rsl)
Example: sd x9, 96(x22) // store a doubleword

* sd: store a doubleword from register rs2 (x9 in the example) to a
memory location whose address is specified as
rsl+offset(base+offset, [x22]+96). Offset MUST be a constant
number.

11

Memory Access Example #2

e Using ONLY the add, sub, slli, Id and sd instruction to convert the
following C statements to the corresponding RISC-V assembly.
Assume that the values for variables a and i are in memory. The
addresses of the memory location for a and i are 1n register x6 and x7.
The result should be written back to memory location for a and i.

i++; a = 1; //a and 1 are long 1nt

Program with pseudo code first

i=i+1; load i
add
store i

a=i load i

store a 12

Memory Access Example #2

e Using ONLY the add, sub, slli, Id and sd instruction to convert the
following C statements to the corresponding RISC-V assembly.
Assume that the values for variables a and i are in memory. The
addresses of the memory location for a and i are 1n register x6 and x7.
The result should be written back to memory location for a and i.

i++; a = 1; //a and 1 are long 1nt

load i Id x10, 0(x7) # load data of i from memory address 0+[x7] to x10
add addi x11, x10, 1 #increment i by 1 and store the result to x11,
which is the value for a
storei sd x11, 0(x7) # store the new value of i to its memory location (0+[x6])

load i Id x10, 0(x7) # load the data of i from memory address 0+[x7] to x10
storea sd x10, 0(x6) # store [x10] to memory address 0+[x6],
which is for memory location of variable a

13

Memory Access Example #3

®* (Ccode:
double A[N]; //double size 1s 8 bytes
double h = A[8];

— hin x21, base address of A in x22 ° int al6]; oeonston iot atens

* Compiled RISC-V code: M
name || elements

— Element A[8] is 64 bytes offset from A[O]
— A[8] right-val = load

® aisthe name of the array’s base address

e Pseudo code: - &ali]: (char*)a + i * sizeof(int)

— load A[8]
— Assign to h (x21)

1d x9, 64(x22) // load doubleword A[8]
add x21, x9, x0 // copy from x9 to x21 Ch)

or just simple as:
1d x21, 64(x22)

64(x22) is a memory operand, in contrast to register operands (x9) 14

Memory Access Example #4

* Ccode:
double A[N]; //double s1ze 1s 8 bytes
A[12] _ h ; * int a[6]; o =

— hin x21, base address of A in x22

® aisthe name of the array’s base address
— 0x0C

* Compiled RISC-V code: &a[i]: (char)a +i* sizeof(int)
— Element A[12] is 12*8 bytes offset from A[O]
— A[12]: left-val = store instruction

sd x21, BB/ /store doubleword A[12

96(x22) is a memory operand, in contrast to register operands (x9) 15

Memory Access Example #5

* Ccode:

double A[N]; //double s1ze 1s 8 bytes

A[12] — h ~+ A[8]; e int a[6];
— hin x21, base address of A in x22

* aisthe name of the array’s base address

1d x9, 64(x22) // load A[8]
add x9, x21, x9

sd x9, EEIEEEE// store A[12]

64(x22) and 96(x22) are memory operands, in contrast to register operands (x9) 6

Memory Access Example #6

* Ccode:

double A[N]; //double size 1s 8 bytes
Al[12] = h + A[8];

— Memory address for his in x 11, base address of A in x22

° int a[6];

®* Compiled RISC-V code:

- A[8] right'val, A[].Z]: Ieft'val ® ais the name of the array’s base address

— 0Ox0C

1d x21, 0(x11) //1oad h
1d x9, 64(x22) // load A[8]
add x9, x21, x9

sd x9, EEISEEE// store A[12]

&ali]: (char*)a + i * sizeof(int)

17

Load and Store Instructions for Other Data Types

* Load and store are the ONLY two instructions that access memory

* |d/sd: load/store a double word (8 bytes)
— E.g. double, long int, pointer variable in a 64-bit systems

Iw/sw and Iwu: load/store a word (4 bytes)
— E.g. int, float
— E.g. unsigned int

Ih/sh and lhu: load/store a half-word (2 bytes)
— E.g. short
— E.g. unsigned short

Ibu/sbu: load/store a byte (1 byte)
— E.g. char

* Load a smaller number to 64-bit register: sign or logic extension

18

More Load/Store Examples for int A[100]:

° int A[100]; base address (A, or &A[0]) is in x22, int is 4 bytes

— Need to use Iw/sw since we are dealing with 4-byte (word)
elements

— lw/sw A[0]: address can be specified as 0(x22).

* Ascalar variable (e.g. int f;) can be considered as one-
element array (e.g. int f[1]) for load/store

— lw/sw a variable’s (e.g. int f) 32-bit value stored in a specific
memory address which is stored in register x6 to register x8

e lw x8, 0(x6) //offsetis O
* sw x8, 0(x6)

19

#7: A[8] = A[10], base is in x22, each element 4 bytes

* |w x6, 40(x22)
® sw x6, 32(x22)

* The context of the terms we use: base and offset
— For array/variable: base: &A[0], offset: bytes between A[0] and
Alil;
— For lw/sw: base: base register, offset: the constant in the instr

— If you have address of A[4] in x9, [x9] can be used for Iw/sw as
base address
* lw x5, 0(x9): load A[4]
* sw x5, 8(x9): store to A[6]
e sw x5, -8(x9): store to A[2]

20

#8: a += A[10], base is in x22, each element 4 bytes

* The memory address of variable a is in register x10
+=:=» a =a+ A[10];

lw x5, 0(x10) //load a to x5

lw x6, 40(x22) //load A[10] to x6
add x5, x5, x6 // addition

sw x5, 0(x10) //store back to a

21

#9: A[8] += a, base is in x22, each element 4 bytes

* The memory address of variable a is in register x10

+=: A[8] += a =» A[8] = A[8] + a;

lw x5, 0(x10) //load a to x5

lw x6, 32(x22) //load A[8] to x6
add x6, x5, x6 //addition

SW X6, 32(x22) //store to A[8]

22

#10: Load/Store Example: Accessing Memory A[i]

int B[N]; // int type, 4 bytes
a = B[i]; //iis a variable reference, not a constant

* Base address for B[] is in x23. i is already loaded in register x5.

— To load BJi] to a register, e.g. x9, needs to find the address for BJi] in load and
store in the form of:

e base+offset: B+i*4
— Buti*4 is not constant, cannot be the offset for load or store instructions

* Solution: Calculate the address of B[i] and store in registers as base for
LW/SW, and then use 0 as offset in L/S

slliw x6, x5,2 // x6 now has i*4, slliw is i<<2 (shift left logic)
add x7, x23, x6 // x7 now has the address of B[i].
lw x10, 0(x7) //load a word from memory location 0+[x7],

//which is B[i], into reg x10 which is for a
23

#11: Load/Store Example: Accessing Memory A[i]

int A[N], B[N]; // int type, 4 bytes
A[i] = B[i]; //i is a variable reference, not a constant

®* Base address for A and B are in x22 and x23. i is stored in x5

— Calculate the address of A[i] and B[i] and store in registers as base for
LW/SW, and then use 0 as offset in L/S

slliw x6, x5, 2 // x6 now has i*4, slliw is i<<2 (shift left logic)
add x7, x23, x6 // x7 now has the address of B[i].
lw x9, 0(x7) // load a word from mem 0+[x7], which is B[i] to x9

add x8, x22, x6 // x8 now has the address of A[i]

sw x9, 0(x8) // store a word from register x9 to memory 0+[x8]
// which is A[i]

24

#12: Load/Store Example: Accessing Memory A[i],
Ali-1] and A[i+1]

int A[N], B[N]; // int type, 4 bytes
A[i] = B[i-1] + B[i] + B[i+1]; //i is a variable reference, not a constant

* Base address for A and B are in x22 and x23. i is already loaded in register x5

— Calculate the address of A[i] and B[i] and store in registers as base for LW/SW, and
then use 0, 4 and -4 as offset in load/store

slliw x6, x5, 2 // x6 now has i*4, slliw is i<<2 (shift left logic)
add x7, x23, x6 // x7 now has the address of BJi].

lw x9, 0(x7) // load a word from memory 0+[x7], which is BJi], into reg x9
lw x10, 4(x7) //load a word from memory 4+[x7], which is B[i+1] into x10
lw x11, -4(x7) //load a word from memory -4+[x7], which is B[i-1] into x11

add x9, x9, x10
add x9, x9, x11

add x8, x22, x6 // x8 now has the address of A[i]
sw x9, 0(x8) // store a word from register x9 to memory location 0+[x8]
// which is A[i]

25

Two Classes of Instructions so Far

® Arithmetic instructions
— Three operands, could be either register or immediate. Immediate can
only be the second source operand.
e add x10, x5, x6; sub x5, x4, x7
e addi x10, x5, 10;

® Load and store instructions: Load data from memory to register
and store data from register to memory

— Remember the way of specifying memory address (base+offset)

- 1d x9, 64(x22) // load doubleword
sd x9, 96(x22) // store doubleword

* With these two classes instructions, you can implement the
following high-level code, and different ways of combining them
-f=0@+h -G+ 73);
- A[12] = h + A[8];

26

Clarifying the Terms

CPU

Registers

PC

Data to Memory

Memory

10001010

00001100

10111000

01000001

Y

-

00001011

"~ Data from Memory

11011101

10110000

01010010

11111010

Address for
reading/writing
data

\

01001100

00100011

00011010

®* For ALU to access register
— Fetch and set, e.g. add x5, x6, x7

* ALU fetches data from register x6 and x7,

performs add, then set x5 with the result

(Location 0)
(Location 1)

(Location 2)

(Location 3)
(Location 4)
(Location 5)

(Location 6)
(Location 7)

<

(Location 8)
(Location 9)
(Location 10)
(Location 11)

®* For move data between mem and register

— Load and store

* For move data between storage and mem

— Read and write

Modern Digital Computer

Processor Chip

CPU

Register
File

|

cache memory

Main
Memory
(RAM)

1/O Controller

Memory Bus

1/0O Bus

Input and Output Devices

27

RISC-V Base Integer Instructions

Description

Note

R[rd] = R[rs1] + R[rs2]
R[rd] = R[rs1] - R[rs2]
R[rd] = R[rs1] " R[rs2]
R[rd] = R[rs1] | R[rs2]
R[rd] = R[rs1] & R[rs2]
R[rd] = R[rs1] << R[rs2]
R[rd] = R[rs1] >> R[rs2]
R[rd] = R[rs1] >> R[rs2]
R[rd] = (rsl < rs2)?1:0

sign-extends

R[rd] = R[rs1] + SE(imm)
R[rd] = R[rs1] " SE(imm)
R[rd] = R[rs1] | SE(imm)
R[rd] = R[rs1] & SE(imm)
R[rd] = R[rs1] << imm[4:0]
R[rd] = R[rs1] >> imm[4:0]
R[rd] = R[rs1] >> imm[4:0]

sign-extends

R[rd] = M[R[rs1]+SE(imm)]
MI[R[rs1]+SE({imm)] = R[rs2]

if(rs1 == rs2)
PC += SE(imm) << 1

if(rs1 != rs2)
PC += SE(imm) << 1

if(rs1 < rs2)
PC += SE(imm) <<1

if(rs1 >= rs2)
PC += SE(imm) <<1

R[rd] = PC+4;
PC += SE(imm) <<1
R[rd] = PC+4;

PC = R[rs1]+ SE(imm)

R[rd] = SE(imm) << 12
R[rd] = PC + (SE(imm) << 12)

Inst Name

add ADD

sub SUB

xor XOR

or OR

and AND

sll Shift Left Logical

srl Shift Right Logical
sra Shift Right Arith*

slt Set Less Than

addi ADD Immediate

xori XOR Immediate

ori OR Immediate

andi AND Immediate

slli Shift Left Logical Imm
srli Shift Right Logical Imm
srai Shift Right Arith Imm
1w Load Word

SW Store Word

beq Branch ==

bne Branch !=

blt Branch <

bge Branch >=

jal Jump And Link

jalr Jump And Link Reg
lui Load Upper Imm
auipc | Add Upper Imm to PC
csrrw | CSR read & write
csrrs | CSR read & set

csrrc CSR read & clear
ecall | Environment Call
ebreak | Environment Break

R[rd] = CSRs[csr];
CSRs[csr] = R[rs1]

R[rd] = CSRs[csr];
CSRs[csr] = CSRs[csr] | R[rs1]

R[rd] = CSRs|csr];
CSRs[csr] =
CSRs[csr] & ~R[rs1]

Transfer control to OS
Transfer control to debugger

_ Registers

Register | Name Description Saver
X0 zero Zero constant —
x1 ra Return address Caller
X2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5-x7 to-t2 Temporaries Caller
x8 s@ / fp | Saved / frame pointer | Callee
X9 s1 Saved register Callee
x10-x11 | a@-a1l Fn args/return values | Caller
x12-x17 | a2-a7 Fn args Caller
x18-x27 | s2-s11 Saved registers Callee
x28-x30 | t3-t5 Temporaries Caller
x3-| . F WS, N PR, PSSR n_1‘l.3r
Memory Allocation
SP — OxFFFF FFFO Stack
1
T

PC — 0x0040 0000

0x1000 0000

Dynamic Data

Static Data

Text

Reserved

28

Module 6 Unit 2: Exercise 1

* Recognizing load/store instructions in an assembly program

* From compiler explorer, count load/store instructions

&

C' & godbolt.org

EXPLORER Add...¥ More~

Csource#1 ¢ X

A~

1
2
3
4
5
6
7
8
9

10

B +- v

long sum (int N, long A[]) {
int i;
long result = 0;
for (i=0; i<N; i++) {
result += A[i];
}

return result;

Templates Check out our stats page
O RISC-V (64-bits) gcc (trunk) (Editor #1) & X
CJe v | RISC-V (64-bits) gcc (trunk) ¥ 2 @ ¢
- A~ L Output...> YFilter..~ B Libraries &
1 sum:
2 addi sp,sp,-48
3 sd ra,40(sp)
| 4 sd s0,32(sp)
5 addi s0,sp,48
6 mv a5,a0
7 sd al,-48(s0)
8 sw a5,-36(s0)
9 sd zero,-32(s0)
10 sw zero,-20(s0)
11 J L2
12 .L3:
13 1w a5,-20(s0)
14 slli a5,a5,3
15 1d a4,-48(s0)
16 add a5,a4,a5 29
17 1d a5,0(ab)

https://godbolt.org/

Module 6 Unit 2: Exercise 2

Module 06 - Unit 2 Exercise 2: Translate C statements to RISC-V
assembly using load/store instructions

(@ This is a preview of the draft version of the quiz

Started: Oct 24 at 10:13pm

Quiz Instructions

For all the questions in this quiz, you use ONLY the add, addi, sub, slli, load/store (Id/sd, Iw/sw, lhw/shw, |b/sb)
instructions to convert the given C statements to the corresponding RISC-V assembly. The use of registers for their
values and memory address are pre-assigned as in the following table. You can use the temporary register x20-x31. x0
always contains 0 and cannot be changed. At the beginning of the program, the data for all variables and arrays are in
memory. The value of a variable or an array element must be stored back to memory EACH time it is modified. The int
type has 4 bytes and the long int type has 8 bytes.

int [int [lon lon
Variables and arrays . B . & intifint A[] int B[]
a |b [intla Jintlb

Assigned register for data x1 [x2 |x3 x4 x5

Assigned register for Base Base
x11|x12|x13 x14 x15
memory addresses address: x16 |address: x17
[| Question 1 2 pts

30

a=b*3+i4;

Module 6 Unit 2: Lab #1 Write two C programs for
Use with RISC-V Assembly Programming

1. Write two C programs for Use with RISC-V Assembly
Programming
— A program to accumulate integers from 1 to 100

— A program to find the average of 100 integers that are randomly
generated

31

Module 6 Unit 2: Lab #2 Declare and access an

array in RISC-V RARS

1. Understanding the code structure of an assembly program,

— Read the document Fundamental of RISC-V Assembly
— https://github.com/TheThirdOne/rars/wiki/Creating-Hello-

[] [] [private/var/folders/24/341320g173g4wjgvO0t7kt86w0000gr/T/hsperfdata_yanyh/riscv2.asm - RARS 1.6
WO r File Edit Run Settings Tools Help
——

— ~ - - — _ Run speed at max (no interaction)
I[C 3 [E[3 ¢ (%D [¢]0/e[0e e (o

.data # Tell the assembler we are defi Bt | Execute
v
o C 0 = [J Text Segment Labels
str: # Label this position in memory Label Adress &
Program Arguments: iscv2.asm
. " n . riscv2.
.string "Hello World!\n" # Copy the | e aies —coa sasic source main oxonaonnon
0x00400000 0x00100513 addi x10,x0,1 8: lia@, 1 # li means to Load Immediate and we want to load the ... str 0x10010000
0x00400004 0x0fc10597 auipc x11,0x0000fc10 9: la al, str # la is similar to li, but works for loading addresses
0x00400008 Oxffc58593 addi x11,x11,@xfffffffc
0x0040000c 0x00d00613 addi x12,x0,13 10: 1i a2, 13 # like the first line, but with 13. This is the final...
0x00400010 0x04000893 addi x17,x0,0x00000040 11: 1i a7, 64 # a7 is what determines which system call we are call...
0x00400014 0x00000073 ecall 12: ecall # actually issue the call
" teXt # Tel-l' t he a s Semble r t hat We a re 0x00400018 0x00000513 addi x10,x0,0 14: 1i a@, @ # The exit code we will be returning is @
. 0x0040001c 0x05d00893 addi x17,x0,0x0000005d 15: 1i a7, 93 # Again we need to indicate what system call we are m...
maln: # Ma ke a la bel to Say Whe re our 000400020 0x80000073 ecall 16: ecall
1ia0, 1 # 1i means to Load Immedi v Data ¥ Text
la al, str # la is similar to 1i, bu -
ata Segment
] :] . Address Value (+0) Value (+4) Value (+8) Value (+c) Value (+10) Value (+14) Value (+18) Value (+1¢)
1li a2, 13 # like the first 1line, bu oxtoe10000 P — oxss72061 ox216d6e72
0x10010020
. . . 0x10010040
1li a7, 64 # a7 is what determines w 010010060
0x10010080
] 0x100100a0
ecall # actually issue the call ox10010000
0x100100e0
0x10010100
0x10010120
0x10010140
. 8 . 0x10010160
1i a0, 0 # The exit code we will b ox10010180
0x100101a0
. . . . Ax100101c0
1li a7, 93 # Again we need to indica
@ B 0x10010000 (.data) ¢ v Hexadecimal Addresses v Hexadecimal Values ASCll
ecall
Messages Run /0
Reset: reset completed.
Clear —— program is finished running (42) —

https://github.com/TheThirdOne/rars/wiki/Fundamentals-of-RISC-V-Assembly
https://github.com/TheThirdOne/rars/wiki/Creating-Hello-World
https://github.com/TheThirdOne/rars/wiki/Creating-Hello-World

Code Structure of A Program

.globl main #declare main function
.data # The .data section of the program is used to

reserve memory to use for the variables/arrays

.data # Tell the assembler we are defining data not code &
str: # Label this position in memory so it can be referred to in our code
.string "Hello World!\n" # Copy the string "Hello World!\n" into memory

1li a2, 13 # like the first line, but with 13. This is the final argument to the syste
1li a7, 64 # a7 is what determines which system call we are calling and we what to cal 33
ecall # actually issue the call

Module 6 Unit 2: Lab #2 Declare and access an
array in RISC-V RARS

1. Understanding the code structure of an assembly program
— Read the document Fundamental of RISC-V Assembly
— https://github.com/TheThirdOne/rars/wiki/Creating-Hello-World

2. Declare and access an array in RISC-V RARS
— https://github.com/TheThirdOne/rars/blob/master/test/memory.s

sw t1l, 0(t0)
w t2, 0(te)

[y ¥ master ~ rars [test / memory.s
1:5 TheThirdOne Update load and store instuctions for rverhree Commonly used pseudo instructions
code | Blame 36 Lines (36 loc) - 545 Bytes * mv x6, x7 //move/copy value from x7 to
lobl i XG
.globl main . .
.data * [|ix8,100 //setthe value of a register to
; buffer: .space 8 . °
< be an immediate
C e e * lax10, label //load address of label to
! Ut 8 register
9

34

https://github.com/TheThirdOne/rars/wiki/Fundamentals-of-RISC-V-Assembly
https://github.com/TheThirdOne/rars/wiki/Creating-Hello-World
https://github.com/TheThirdOne/rars/blob/master/test/memory.s

Declare An Array

.globl main #declare main function
.data #The .data section, for the variables/arrays
buffer: .space 8 #declare a symbol named "buffer" for
8 bytes of memory.
For a word element, this correspond to "int buffer[2]"
#1f you need to declare an array of 100 elements of int,
use "myArray: .space 400

text #The .text section of the program is the actual code
main: #definition of main function
la tO, buffer # set register t0 to have the address of the buffe[0]
litl, 8 # Set register t1 to have immediate number 8

35

Memory:.s file

.globl main #declare main function

.data #The .data section of the program is used to claim memory to use for the variables/arrays of the
program
buffer: .space 8 #declare a symbol named "buffer" for 8 bytes of memory.
For a word element, this corresponds to "int buffer[2]"
#This declaration claims 8 bytes of memory.
If you need to declare an array of 100 elements of word, use "myArray: .space 400

text #The .text section of the program is the actual code
main: #definition of main function
la tO, buffer # set register t0 to have the address of the buffer variable
litl, 8 # Set register t1 to have immediate number 8
sw t1, 0(t0) # store a word (4 bytes) of what register t1 contains (8) to memory address 0(t0), which is buffer[0]
lw t2, 0(t0) # load a word from memory address 0(t0) to register t2, i.e. buffer[0] -> t2

bne t1, t2, failure # check whether register t1 and t2 contain the same value or not. If not, branch to failure, else continue
the next instruction

lit3, 56 # set register t3 to have immediate 56

sw t3, 4(t0) # store a word of what register t3 contains (56) to memory address 4(t0), which is buffer[1]

addi t0, t0, 4 # increment register t0 (&buffer) by 4, t0 now contains buffer+4, which is &buffer[1]

lw t4, 0(t0) # load a word from memory 0(t0) (&buffer[1]) to register t4

bne t3, t4, failure # check whether register t3 and t4 contain the same value or not. If not, branch to failure, else continue.
lw t5, -4(t0) # load a word from memory -4(t0) to register t5. -4(t0) address is actually &buffer[0] since register t0
now contains the address of buffer[1]

bne t5,t1, failure # check whether register t5 and t1 contain the same value or not. They should both contain 8

litl, OxFFOOF007 # set register t1 to have value OxFFOOFO07

sw t1, 0(t0) # store a word of what register t1 contains to memory address 0(t0) (&buffer[1]) 36

b t2, 0(t0)

Module 6 Unit 2: Lab #2 Declare and access an
array in RISC-V RARS

* Create a main program to declare, initialize and use an
array. We will go through this example during the class or
lab. The example in the lab is different, but similar.

— Use the data segment and registers to check the value in
memory and register while you debug your program

° i i hsperfdata_y iscv2.asm - RARS 1.6

File Edit Run Settings Tools Help

[O&® @Y [6] e [%][E

Run speed at max (no interaction)

@000 0d e

Edit Execute Registers Floating Point Control and Status

' '
void main () { l..
Label Address A

: —r

. Bkpt Address Code Basic Source main 0x00400000 & 3 2‘32225223
° 0x00400000 0x00100513 addi x10,x0,1 8: 1i a0, 1 # li means to Load Immediate and we want to load the ... str 0x10010000 P X

l [0x00400004 0x0c10597 auipc x11,0x0000FC10 9: 1laal, str# la is sinilar to Ui, but works for loading addresses o H 0x00000000

4 0x00400008 OxTfc58593 addi x11,X11,OxFFFfFffc 1 6 0x00000000

0x0040000c 0x00d00613 addi x12,x@,13 10: i a2, 13 # like the first line, but with 13. This is the final... 2 7 0x00000000

. addi 17,8 1L: lia7, 64 # a7 is what determines which systen call we are call... 5. 8 0x00000000

o 0x00400014 000000073 ecall 12: ecall # actually issue the call s1 9 0x00000000

l a 0x00400018 0x00000513 addi x10,2,0 14: lia0, 0 # The exit code we will be returning is @ a0 10 0x00000000

V4 addi x17, 0 15: lia7, 93 # Again we need to indicate what system call we are m... oL u 0x10010000

0x00400020 0x00000073 ecall 16 ecall = 2 BRI

a4 14 0x00000000

° a5 15 0x00000000

— a6 16 0x00000000

1 4 a7 17 0x0000005d

s2 18 0x00000000

v Data v Text s3 19 0x00000000

A l 2 o 20 0x00000000

21 0x00000000

, 22 0x00000000

Value (+0) Value (+4) Value (+8) Value (+0) Value (+10) Value (+14) Value (+18) Value (+10) = R

0x10010000 0x6c6c6548 0x6f57206f 0x21646C72 25 0x00000000

0x10010020 % 0x00000000

0x10010040 27 0x00000000

0x10010060 2 0x00000000

0x10010080 29 0x00000000

00000

0x10010020 30 0x0000
— A 0x100100c0 31 000000000
— 0x100100c0 0x00400024

0x10010100
0x10010120
0x10010140

A[O0O] = a;
/4
n10m01en
A [l :| — a o € & 0x10010000(data) ¢ v Hexadecimal Addresses v Hexadecimal Values ~ ASCII
4

Reset: reset completed.

} Messages Run 1/0

Clear | — Program is finished running (42) —

Hello World!

Random Number Generator

11 a@, @ # for random number seed
li al, 100 # range of random number
li a7, 42 # rand code

ecall # call random number generator to
generate a random number stored in a@

* Check:
https://github.com/TheThirdOne/rars/wiki/Environment-

Calls

38

https://github.com/TheThirdOne/rars/wiki/Environment-Calls
https://github.com/TheThirdOne/rars/wiki/Environment-Calls

Module 6 Unit 2: Review Quiz

* Similar questions as in Exercise 2

39

