Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Format of a C Program

Unit 3: Conditional control instructions for making decisions
(if-else) and loops

ITSC 2181 Introduction to Computer Systems
College of Computing and Informatics
Department of Computer Science

Module 06: Instruction Set Architecture, RISC-V Assembly

Programming, and Assembly Program of a C Program

Unit 1: Module overview, Instruction Set Architecture (ISA) and
assembly programs, registers, instruction operations and operands,
register and immediate operands, arithmetic and logic instructions

Unit 2: Memory Operands and Memory Access Instructions

Unit 3: Conditional control instructions for making decisions (if-else)
and loops

Unit 4: Supporting Functions and procedures
Unit 5: Sort examples and comparison with other ISAs

Materials are developed based on textbook:

— Computer Organization and Design RISC-V Edition: The
Hardware/Software Interface, Amazon

— RISC-V Specification: https://riscv.org/technical/specifications/
— ITSC 3181: https://passlab.github.io/ITSC3181/

https://www.amazon.com/Computer-Organization-Design-RISC-V-Architecture/dp/0128122757
https://riscv.org/technical/specifications/
https://passlab.github.io/ITSC3181/

Instructions Used So Far: add, addi, sub and slli

Modern Digital Computer

add x10, x5, x6
addi x10, x5, 100
sub x11, x5, x6
slli x12,x5,5
Id x12, 32(x5)

sd x12, 32(x5)

//
/]
/]
/]

x10]
x10]
x11

x12]

x5] + [x6]
x5] + 100
x5] — [x6]
X5 * 2/ANS

/[[x12] = Mem|[32 + [x5]]
/l Mem|32 + [x5]] = [x12]

rrrrrrrrrr hip

°* They can do computation and access memory
— How to create more capable program? = decision making and

repetive

* Another two fundamental programming constructs

— If-else (= nested if-else, switch-case, break, continue, etc)
— for loop (= while loop, do-until, etc)

Flow of Control of Program Execution

void main () {

* Flow of control is the order in int A[2];
. int a;
which a program performs A[0] = 1;
. All] = 2;
actions.
+ A[1l]

— Up to this point, the order has

been sequential.
}

Two major control-flow statements:
* A branching statement chooses between two or more
possible actions.
— 1f-else, swilitch-case, etc
* A loop statement repeats an action until a stopping

condition occurs.
— for, while, do-while

Three Kinds of Operands and Three Classes of
Instructions

®* General form:

— <op word> <dest operand> <src operand 1> <src operand 2>
— E.g.: add x5, x3, x4, which performs [x5] = [x3] + [x4]

Three Kinds of Operands
1. Register operands, e.g., x0 — x31
2. Immediate operands, e.g., 0, -10, etc

3. Memory operands, .. 16(x4) Module 06: Unit 1
Three Classes of Instructions Module 06: Unit 3

1. Arithmetic-logic instructions
* add, sub, addi, and, or, shift left|right, etc

2.

Conditional branch: bne, beq
Unconditional jump: j (
Procedure call and return: jal and jr

We will study how to use branch instructions to
implement if-else and for loop

add x10, x5, x6 /l [x10] = [x5] + [x6]
addi x10, x5, 100 /I [x10] = [x5] + 100
sub x11, x5, x6 /I [x11] = [x5] — [x6]
slli x12,x5,5 /[[x12] = x5 * 2715
Id x12, 32(x5) // [x12] = Mem|32 + [x5]]
sd x12, 32(x5) // Mem|[32 + [x5]] = [x12]
beq x5, x6, <labell>// if (|[x5] == [x6]) ...

If-else and loop change the sequence of execution, the same
for beq

E.g.if (a==Db) diff =0
else diff = a-b;

Conditional Branch Instruction

Branch to the labeled instruction if a condition is true, otherwise continue

* beq rsl, rs2, L1
— if ([rs1] == [rs2], i.e. true) branch to instruction labeled L1 (branch target);
— else continue the following instruction

beq x1, x2, labell

beq x1, x2, labell
q False I

add x5, x6, x7 True add x5, x6, x7 True

addi ... - addi ...
— " labell: sub x5, x6, x7
labell: sub x5, x6, x7

* bne rsl, rs2, L1
— if ([rs1] !=[rs2]) branch to instruction labeled L1 (branch target);
— else continue the following instruction

* J: unconditional jump (not an instruction)
— beq x0, x0, L1

Translating If Statements 1/2

®* Ccode:

if (i==j) £ =g+h; //No else

Variable [f _lg b i i _

Register x19 x20 x21 X22 x23

* Compiled RISC-V code:

bne x22, x23, NEXT //branchifnotequal
add x19, x20, x21 //Then path
NEXT :

1. Using bne (reverse of if (==)) to branch to the code after if. In this way, the code
following the bne is the code for the truth path of if

Translating If-else Statements 1/2

* Ccode: = =
if (i==j) £ =9g+h; | !
else f = g-h; oot o

Variable [f _lg b i i _

Register x19 x20 x21 X22 x23 =1 P—

* Compiled RISC-V code:

bne x22, x23, Else //branchifnotequal

add x19, x20, x21 //Then path

beq x0, x0, Exit //unconditional
Else: sub x19, x20, x21 //Else path
EXit:

1. Using bne (reverse of if (==)) to branch to the Else path b.c. we want the code
following the bne to be the code of the Then path

2. We need “beq x0 x0 Exit”, an unconditional jump, to let Then path terminate since g
CPU executes instruction in the sequence if not branching.

Translating If-else Statements 2/2 (Not

Recommended)
* Ccode: =] —
if (i==j) f=g+h; | Za)
else f = g-h; e o

Variable [f _lg b i i _

Register x19 x20 x21 X22 x23
* Compiled RISC-V code:

beq x22, x23, Then //branchifequal

sub x19, x20, x21 //Else path
beq x0, x0, Exi1t //unconditional

Then: add x19, x20, x21 //Then path
Ex1t:

Using beq (for if (==)) to branch to the Then path

The instruction that follows the beq is the Else path
We need “beq x0 x0 Exit”, an unconditional jump, to let Else path terminate since 10

CPU executes instruction in the sequence if not branchinaq.

WON=

In-class Exercise #2: if-else Questions

11

Pattern for translating if-else

If (cond) true-path-code
else false-path-code

§

b(!cond) else-path //use the branch instruction that has reverse
// cond of the condition in the if statement

true-path-code

j over

else-path:
false-path-code

over:

12

Loop Statements and Loop Structure

* A portion of a program that repeats a statement or a
group of statements is called a loop.

— the for Statement for (i=0; i<100: [#%) { H}
— the while Statement
— the do-while Statement while (i<100) { l; i#%)

Loop Structure:
1. Control of loop: ICU

1. Initialization
2. Condition for termination (continuing)
3. Updating the condition

2. Body of loop

break and continue Statements of the Loop

* break: immediately stop the current loop iteration and

stop the whole loop
while (1<100) {
if (A[1i] == key) break; //found
i++;

}
* continue:immediately stop the current loop iteration
and continue the next iteration from the beginning of
the loop

for (i=0; [i<100; B9 ¢

~ process(sA[i]);
}

et

Translating Loop Statement

i =0;

e

for (i=0; i<100; i+%) { M }
while (i<100) { l; #¥0

* Do the loop control first

— Init condition Loop: beqg/bge x22, x23, -
— Loop condition (using reverse

relationship for branch instr)

— True path (the loop body) _

— Loop back beq x0, x0, loop
— False path (break the loop) -

* Then translate the loop body

Using bge for (<) to branch to the false/exit path, which breaks the loop

The instruction(s) following bge are for the true path, which are for the loop body.
beq to jumping back to the beginning of the loop

15

Translating Loop Statement: for loop

i=0;

* Ccode:

for (i=0; i<100; i++) M
— 1inx22
* RISC-V code:
addi x22, x0, O
11 x23, 100

Loop: bge x22, x23, Exit //beqg works

Eeq xg, xg, Loop

1. Using bge for (<) to branch to the false/exit path, which breaks the loop
2. Theinstruction(s) following bge are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop 16

In-class Exercise #2: for loop

17

Translating Loop Statement: while loop

* Ccode:

while (saveli] == k) i += 1;
— iinx22, kin x24

— address of save in x25
* RISC-V code: (savel[i] is to be read/loaded)

Loop: sll1
add
1o
one
addi
neq

x10,
x10,
X9,
X9,
X22,
x0,

x22, 3 //x10 has 1*8
x10, x25 //base+offset
0(x10)//save[1] 1n x9
x24, Exit //false

X22, 1 //true,the Toop body,i=i+1
x0, Loop

1. Using bne for (==) to branch to the false path, which breaks the loop by going to the Exit
2. The instruction(s) following bne are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop 18

In-class Exercise #2: while loop

19

More Conditional Operations

* blt rsl, rs2, L1
— if (rs1 < rs2) branch to instruction labeled L1

* bge rsl, rs2, L1

— if (rs1 >=rs2) branch to instruction labeled L1

* Example:
if(a>b)a+=1; //ainx22, binx23

bge x23,x22, Exit //branchifb>=a
addi x22, x22, 1
Exit:

for (i=1; i<M-1; i++) B2[i] = B[i-1] + B[i] + B[i+1];

* 1-D stencil: B2[i] = B[i-1] + B[i] + B[i+1]; int type
— Representing a typical program pattern: Need to access a
memory location and its surrounding area

B[O]

B[1]

B[2]

B[3]

’
s\\ : ¢/
N, I ’

B[i-2]

B[i-1]

BIi]

B[i+1]

B[i+2]

B2[0]

B2[1]

B2[2]

B2[3]

2
s\\ : ¢/
N, I ’

B2[i-2]

B2[i-1]

S
B2[i] B2li+1]B2[i+2]|

* Converting to assembly
— Similar to while loop
— Do the loop control first (init, condition, loop back, etc)
— Then do the loop body

B[N-4]

B[N-3]

B[N-2]

B[N-1]

e
[B2IN-4]]B2[N-3][B2[N-2]]B2[N-1]|

21

for (i=1; i<M-1; i++) B2[i] = B[i-1] + B[i] + B[i+1];

®* Base address B and B2 are in register x22 and x23. i is stored in
register x5, M is stored in x4.

Using bge (>=) for <, i.e.

addix5,x0,1 //i=1 reverse relationship, to
addi x21, x4, -1 //loop bound x21 has M-1 eaxit

22

Why Use Reverse Relationship between High-level
Language Code and instructions

* To keep the original code sequence
and structure as much as possible.

* High level language
— If (==]>]x%, ...) true do the following things
— while (==|>|%, ...) do the following things
— for (; i<M; ...) do the following things

L2: addi x5, x5, 1
add x10, x5, x11
beq x5, x6, L1
add x10, x10, x9
sub

L1: subxl0, x10, x9
add ...

* b* Instructions
— If (true), go to branch target,
* i.e. do NOT the following things of b*

23

Signed vs. Unsigned

* Signed comparison: blt, bge
* Unsigned comparison: bltu, bgeu

* Example
—x22=111111111111111111111111 1111 1111
— x23 = 0000 0000 0000 0000 0000 0000 0000 0001
— Xx22 < x23 // signed

e —1<+1
« “bl1t x22 x23” true and branch to target

— X22 > x23 // unsigned
e +4,294,967,295 > +1
e “bltu x22 x23” false and not branch

Example

* Find the minimum of an array int A[N];
int min = A[O];
Aisint0, minisintl,iisint2, Nisint3 for (i=0; i<N; i++) {
if (A[i] < min) min = A[i]; //loop body
Init condition: i=0 }
add t2, x0, x0 #1it2,0
lw t1, 0(t0)

Loop: bge t2, t3, Exit # (if i >= N) break the loop, the false path

slli t6, t2, 2 #mul t6, t2, 4
add t7, t0, t6

Iw t4, 0(t7)

blt t4, t1, TRUE

J FALSE

TRUE: add t1, x0, t4 # copy A[i] to min

FALSE:
addit2,t2,1
J loop #beq x0 x0 loop

Exit: 25

inti;
switch (i) {
case O:
a=0;
break;
case 1:
a=1;
break;
case 2:
a=2;
break;
default:
a=i

Switch-case

26

Label in C

* Label (a program symbol) is the symbolic representation of
the address of the memory that the instruction is stored in.

// function to check even or not . .
void checkEvenOrNot (int num) void printNumbers ()
{ {
if (num % 2 == 0) int n = 1;
// jump to even label:
goto even; printf ("%d ",n);
else n++;
// Jjump to odd if (n <= 10)
goto odd; goto label;
}
even:)
. wo 3 = " 0000000000400640 <main>:
printf ("%d is even", num); 400640 55
// return if even 400641: 48 89 e5
return; 400644: 48 83 ec 10
odd: 400648: 31 co
. wo 1 ") 40064a: 48 b9 ab 06 40 00 00
printf ("%d is odd", num); 400651 : 00 00 00
} 400654: c7 45 fc 00 00 00 00
40065b: 89 7d f8
sl 10065¢ : 48 89 75 f0
400662: 48 bf do 07 40 00 00
400669: 00 00 00
40066¢cC: 89 c6
40066e: 48 89 ca
400671: b® 00

// function to print numbers from 1 to 10

push
mov
sub
xor
movabs

mov 1
mov
mov
movabs

mov
mov
mov

%rbp

%rsp,%rbp
$0x10,%rsp
%eax,%seax
$0x4006a0,%rcx

$0x0,-0x4 (%rbp)
%edi,-0x8(%rbp)
%rsi,—-0x10(%rbp)
$0x4007d0,%rdi

%eax,%esi)7
%rcx,%srdx -
$0x0,%al

