
Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Format of a C Program

Unit 3: Conditional control instructions for making decisions
(if-else) and loops

ITSC 2181 Introduction to Computer Systems
College of Computing and Informatics

Department of Computer Science

Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

• Unit 1: Module overview, Instruction Set Architecture (ISA) and
assembly programs, registers, instruction operations and operands,
register and immediate operands, arithmetic and logic instructions

• Unit 2: Memory Operands and Memory Access Instructions
• Unit 3: Conditional control instructions for making decisions (if-else)

and loops
• Unit 4: Supporting Functions and procedures
• Unit 5: Sort examples and comparison with other ISAs

• Materials are developed based on textbook:
– Computer Organization and Design RISC-V Edition: The

Hardware/Software Interface, Amazon
– RISC-V Specification: https://riscv.org/technical/specifications/
– ITSC 3181: https://passlab.github.io/ITSC3181/

2

☛

https://www.amazon.com/Computer-Organization-Design-RISC-V-Architecture/dp/0128122757
https://riscv.org/technical/specifications/
https://passlab.github.io/ITSC3181/

Instructions Used So Far: add, addi, sub and slli

add x10, x5, x6 // [x10] = [x5] + [x6]
addi x10, x5, 100 // [x10] = [x5] + 100
sub x11, x5, x6 // [x11] = [x5] – [x6]
slli x12, x5, 5 // [x12] = x5 * 2^^5
ld x12, 32(x5) // [x12] = Mem[32 + [x5]]
sd x12, 32(x5) // Mem[32 + [x5]] = [x12]

• They can do computation and access memory
– How to create more capable program? è decision making and

repetive

• Another two fundamental programming constructs
– If-else (è nested if-else, switch-case, break, continue, etc)
– for loop (èwhile loop, do-until, etc)

3

Flow of Control of Program Execution

• Flow of control is the order in
which a program performs
actions.
– Up to this point, the order has

been sequential.

void main () {
int A[2];
int a;
A[0] = 1;
A[1] = 2;

 a = A[0] + A[1];
 A[0] = a;
 A[1] = a;
}

Two major control-flow statements:
• A branching statement chooses between two or more

possible actions.
– if-else, switch-case, etc

• A loop statement repeats an action until a stopping
condition occurs.
– for, while, do-while

Three Kinds of Operands and Three Classes of
Instructions

• General form:
– <op word> <dest operand> <src operand 1> <src operand 2>
– E.g.: add x5, x3, x4, which performs [x5] = [x3] + [x4]

Three Kinds of Operands
1. Register operands, e.g., x0 – x31
2. Immediate operands, e.g., 0, -10, etc
3. Memory operands, e.g. 16(x4)

Three Classes of Instructions
1. Arithmetic-logic instructions
• add, sub, addi, and, or, shift left|right, etc

2. Memory load and store instructions
• lw and sw: Load/store word
• ld and sd: Load/store doubleword

3. Control transfer instructions (changing sequence of instruction execution)
• Conditional branch: bne, beq
• Unconditional jump: j (
• Procedure call and return: jal and jr 5

Module 06: Unit 1
Module 06: Unit 2
Module 06: Unit 3

We will study how to use branch instructions to
implement if-else and for loop

add x10, x5, x6 // [x10] = [x5] + [x6]
addi x10, x5, 100 // [x10] = [x5] + 100
sub x11, x5, x6 // [x11] = [x5] – [x6]
slli x12, x5, 5 // [x12] = x5 * 2^^5
ld x12, 32(x5) // [x12] = Mem[32 + [x5]]
sd x12, 32(x5) // Mem[32 + [x5]] = [x12]
beq x5, x6, <label1> // if ([x5] == [x6]) …

If-else and loop change the sequence of execution, the same
for beq

E.g. if (a == b) diff = 0
else diff = a-b;

6

Conditional Branch Instruction
Branch to the labeled instruction if a condition is true, otherwise continue

• beq rs1, rs2, L1
– if ([rs1] == [rs2], i.e. true) branch to instruction labeled L1 (branch target);
– else continue the following instruction

beq x1, x2, label1

add x5, x6, x7
…
addi …

label1: sub x5, x6, x7
…

• bne rs1, rs2, L1
– if ([rs1] != [rs2]) branch to instruction labeled L1 (branch target);
– else continue the following instruction
• J: unconditional jump (not an instruction)
– beq x0, x0, L1

7

True

 beq x1, x2, label1

add x5, x6, x7
…
addi …

 label1: sub x5, x6, x7
 …

True
False

Translating If Statements 1/2

• C code:

 if (i==j) f = g+h; //No else

• Compiled RISC-V code:

 bne x22, x23, NEXT //branch if not equal
add x19, x20, x21 //Then path

NEXT:

8

Variable f g h i j

Register x19 x20 x21 x22 x23

1. Using bne (reverse of if (==)) to branch to the code after if. In this way, the code
following the bne is the code for the truth path of if

Translating If-else Statements 1/2

• C code:

 if (i==j) f = g+h;
else f = g-h;

• Compiled RISC-V code:

 bne x22, x23, Else //branch if not equal
add x19, x20, x21 //Then path
beq x0, x0, Exit //unconditional

Else: sub x19, x20, x21 //Else path
Exit: …

9

Variable f g h i j

Register x19 x20 x21 x22 x23

1. Using bne (reverse of if (==)) to branch to the Else path b.c. we want the code
following the bne to be the code of the Then path

2. We need “beq x0 x0 Exit”, an unconditional jump, to let Then path terminate since
CPU executes instruction in the sequence if not branching.

Translating If-else Statements 2/2 (Not
Recommended)

• C code:

 if (i==j) f = g+h;
else f = g-h;

• Compiled RISC-V code:

 beq x22, x23, Then //branch if equal
 sub x19, x20, x21 //Else path
 beq x0, x0, Exit //unconditional
Then: add x19, x20, x21 //Then path
Exit:

10

Variable f g h i j

Register x19 x20 x21 x22 x23

1. Using beq (for if (==)) to branch to the Then path
2. The instruction that follows the beq is the Else path
3. We need “beq x0 x0 Exit”, an unconditional jump, to let Else path terminate since

CPU executes instruction in the sequence if not branching.

In-class Exercise #2: if-else Questions

11

Pattern for translating if-else

 If (cond) true-path-code
 else false-path-code

b(!cond) else-path //use the branch instruction that has reverse
 // cond of the condition in the if statement
true-path-code
j over

else-path:
false-path-code

over:

12

Loop Statements and Loop Structure

• A portion of a program that repeats a statement or a
group of statements is called a loop.
– the for Statement
– the while Statement
– the do-while Statement

Loop Structure:
1. Control of loop: ICU

1. Initialization
2. Condition for termination (continuing)
3. Updating the condition

2. Body of loop

for (i=0; i<100; i++) { … }

while (i<100) { …; i++; }

break and continue Statements of the Loop

• break: immediately stop the current loop iteration and
stop the whole loop

• continue: immediately stop the current loop iteration
and continue the next iteration from the beginning of
the loop

while (i<100) {
 if (A[i] == key) break; //found
 i++;
}

for (i=0; i<100; i++) {
if (isAlreadyProcessed(A[i])) continue;
process(&A[i]);

}

Translating Loop Statement

15

1. Using bge for (<) to branch to the false/exit path, which breaks the loop
2. The instruction(s) following bge are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop

i < 100 ?

i ++Exit

TrueFalse

i = 0;

…

for (i=0; i<100; i++) { … }

while (i<100) { …; i++; }

• Do the loop control first
– Init condition
– Loop condition (using reverse

relationship for branch instr)
– True path (the loop body)
– Loop back
– False path (break the loop)
• Then translate the loop body

Loop: beq/bge x22, x23, Exit
… # loop body

addi x22, x22, 1
beq x0, x0, loop

Exit:

Translating Loop Statement: for loop

• C code:

for (i=0; i<100; i++) …
– i in x22
• RISC-V code:
 addi x22, x0, 0
 li x23, 100

Loop: bge x22, x23, Exit //beq works
… …
addi x22, x22, 1 //true,the loop body,i++

beq x0, x0, Loop
Exit: …

16

1. Using bge for (<) to branch to the false/exit path, which breaks the loop
2. The instruction(s) following bge are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop

i < 100 ?

i ++Exit

TrueFalse

i = 0;

…

In-class Exercise #2: for loop

17

Translating Loop Statement: while loop

• C code:

while (save[i] == k) i += 1;
– i in x22, k in x24
– address of save in x25
• RISC-V code: (save[i] is to be read/loaded)

Loop: slli x10, x22, 3 //x10 has i*8
add x10, x10, x25 //base+offset
ld x9, 0(x10)//save[i] in x9
bne x9, x24, Exit //false
addi x22, x22, 1 //true,the loop body,i=i+1

beq x0, x0, Loop
Exit: …

18

1. Using bne for (==) to branch to the false path, which breaks the loop by going to the Exit
2. The instruction(s) following bne are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop

(save[i]
== k) ?

i += 1Exit

TrueFalse

In-class Exercise #2: while loop

19

More Conditional Operations

• blt rs1, rs2, L1
– if (rs1 < rs2) branch to instruction labeled L1

• bge rs1, rs2, L1
– if (rs1 >= rs2) branch to instruction labeled L1

• Example:
if (a > b) a += 1; //a in x22, b in x23

 bge x23, x22, Exit // branch if b >= a
 addi x22, x22, 1

Exit:

• 1-D stencil: B2[i] = B[i-1] + B[i] + B[i+1]; int type
– Representing a typical program pattern: Need to access a

memory location and its surrounding area

• Converting to assembly
– Similar to while loop
– Do the loop control first (init, condition, loop back, etc)
– Then do the loop body

21

for (i=1; i<M-1; i++) B2[i] = B[i-1] + B[i] + B[i+1];

B[3]B[2] B[i-1]B[i-2] B[i+1]B[i] B[i+2] B[N-3]B[N-4]B[1]B[0] B[N-1]B[N-2]

B2[3]B2[2] B2[i-1]B2[i-2] B2[i+1]B2[i] B2[i+2] B2[N-3]B2[N-4]B2[1]B2[0] B2[N-1]B2[N-2]

for (i=1; i<M-1; i++) B2[i] = B[i-1] + B[i] + B[i+1];

• Base address B and B2 are in register x22 and x23. i is stored in
register x5, M is stored in x4.

 addi x5, x0, 1 // i=1
 addi x21, x4, -1 // loop bound x21 has M-1
LOOP: bge x5, x21, Exit
 slliw x6, x5, 2 // x6 now store i*4, slliw is i<<2 (shift left logic)
 add x7, x22, x6 // x7 now stores address of B[i].
 lw x9, 0(x7) // load B[i] from memory location (x7+0) to x9
 lw x10, -4(x7) // load B[i-1] to x10
 add x9, x10, x9 // x9 = B[i] + B[i-1]
 lw x10, 4(x7) //load B[i+1] to x10
 add x9, x10, x9 // x9 = B[i-1] + B[i] + B[i+1]
 add x8, x23, x6 // x8 now stores the address of B2[i]
 sw x9, 0(x8) // store value for B2[i] from register x9 to memory (x8+0)
 addi x5, x5, 1 // i++
 beq x0, x0, LOOP
Exit:

22

Using bge (>=) for <, i.e.
reverse relationship, to
exit

Why Use Reverse Relationship between High-level
Language Code and instructions

• To keep the original code sequence
 and structure as much as possible.

• High level language
– If (==|>|<, …) true do the following things
– while (==|>|<, …) do the following things
– for (; i<M; …) do the following things

• b* Instructions
– If (true), go to branch target,

• i.e. do NOT the following things of b*

23

L2: addi x5, x5, 1
add x10, x5, x11
beq x5, x6, L1
add x10, x10, x9
sub ….
…

L1: sub x10, x10, x9
add …
…

Signed vs. Unsigned

• Signed comparison: blt, bge
• Unsigned comparison: bltu, bgeu
• Example

– x22 = 1111 1111 1111 1111 1111 1111 1111 1111
– x23 = 0000 0000 0000 0000 0000 0000 0000 0001
– x22 < x23 // signed

• –1 < +1
• “blt x22 x23” true and branch to target

– x22 > x23 // unsigned

• +4,294,967,295 > +1
• “bltu x22 x23” false and not branch

Example
• Find the minimum of an array

A is in t0, min is in t1, i is in t2, N is in t3

Init condition: i=0
add t2, x0, x0 # li t2, 0
lw t1, 0(t0)

Loop: bge t2, t3, Exit # (if i >= N) break the loop, the false path

slli t6, t2, 2 #mul t6, t2, 4
add t7, t0, t6
lw t4, 0(t7)
blt t4, t1, TRUE
J FALSE

TRUE: add t1, x0, t4 # copy A[i] to min
FALSE:

addi t2, t2, 1
J loop #beq x0 x0 loop

Exit: 25

int A[N];
int min = A[0];
for (i=0; i<N; i++) {
 if (A[i] < min) min = A[i]; //loop body
}

Switch-case

int i;
switch (i) {
 case 0:
 a = 0;
 break;
 case 1:
 a = 1;
 break;
 case 2:
 a = 2;
 break;
 default:
 a = i;
 }

26

Label in C

• Label (a program symbol) is the symbolic representation of
the address of the memory that the instruction is stored in.

27

