
Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Format of a C Program

Unit 4 and 5: Supporting functions and procedures, sorting
example and comparison with other ISAs

ITSC 2181 Introduction to Computer Systems
College of Computing and Informatics

Department of Computer Science

Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

• Unit 1: Module overview, Instruction Set Architecture (ISA) and
assembly programs, registers, instruction operations and operands,
register and immediate operands, arithmetic and logic instructions

• Unit 2: Memory Operands and Memory Access Instructions
• Unit 3: Conditional control instructions for making decisions (if-else)

and loops
• Unit 4: Supporting Functions and procedures
• Unit 5: Sort examples and comparison with other ISAs

• Materials are developed based on textbook:
– Computer Organization and Design RISC-V Edition: The

Hardware/Software Interface, Amazon
– RISC-V Specification: https://riscv.org/technical/specifications/
– ITSC 3181: https://passlab.github.io/ITSC3181/

2

☛
☛

https://www.amazon.com/Computer-Organization-Design-RISC-V-Architecture/dp/0128122757
https://riscv.org/technical/specifications/
https://passlab.github.io/ITSC3181/

Instructions Used So Far: add, addi, sub, slli, load,
store, and beq/bne/bge/blt

add x10, x5, x6 // [x10] = [x5] + [x6]
addi x10, x5, 100 // [x10] = [x5] + 100
sub x11, x5, x6 // [x11] = [x5] – [x6]
slli x12, x5, 5 // [x12] = x5 * 2^^5
ld x12, 32(x5) // [x12] = Mem[32 + [x5]]
sd x12, 32(x5) // Mem[32 + [x5]] = [x12]
beq x5, x6, <label1> // if ([x5] == [x6]) …

• They can do computation and access memory, and implementing
complicated computation and algorithms involving decision
making and repetive

• Organizing software to make them modular and easily reusable
– Function and function call (procedure, method, etc)

3

Three Kinds of Operands and Three Classes of
Instructions

• General form:
– <op word> <dest operand> <src operand 1> <src operand 2>
– E.g.: add x5, x3, x4, which performs [x5] = [x3] + [x4]

Three Kinds of Operands
1. Register operands, e.g., x0 – x31
2. Immediate operands, e.g., 0, -10, etc
3. Memory operands, e.g. 16(x4)

Three Classes of Instructions
1. Arithmetic-logic instructions
• add, sub, addi, and, or, shift left|right, etc

2. Memory load and store instructions
• lw and sw: Load/store word
• ld and sd: Load/store doubleword

3. Control transfer instructions (changing sequence of instruction execution)
• Conditional branch: bne, beq
• Unconditional jump: j (
• Procedure call and return: jal and jr 4

Module 06: Unit 1
Module 06: Unit 2
Module 06: Unit 3

Function Call: sum_full.c

5https://passlab.github.io/ITSC3181/exercises/sum

https://passlab.github.io/ITSC3181/exercises/sum

Function Call Steps

1. Place arguments for callee in
registers

2. Transfer control to callee
function

3. Acquire storage for callee
function

4. Perform callee’s operations
5. Place result in register for

caller
6. Return to place of call

6

Three Important Things of the Computer System to
Support Function Calls

1. Hardware instructions for control
transfer for procedure call and call
return
• Calleràcallee transfer
• Calleeàcaller transfer

2. Specifying register/memory for
passing data between caller and
callee

• Passing argument from
calleràcallee

• Passing return value from callee
àcaller

3. Mechanism of stack memory for
managing data of functions

• Storage for function variables, etc
• Preserve register data of the caller

when control is in callee
• Restore the data when control is

returned to caller
7

Sum Example, sum_full_riscv.s

8

Args for
sum
call in
reg a0,
fa0, a5

https://passlab.github.io/ITSC3181/exercises/sum

Store return
address in
reg x1 and
call transfer
to sum

Return to caller with return
value stored in register fa0

https://passlab.github.io/ITSC3181/exercises/sum

1. Hardware Instruction for Function Call

• Function call: jump and link
 jal x1, ProcedureLabel

– Address of following instruction put in x1
– Jumps to target address
• Function return: jump and link register
 jalr x0, 0(x1)

– Like jal, but jumps to 0 + address in x1
– Use x0 as rd (x0 cannot be changed)
– Can also be used for computed jumps

• e.g., for case/switch statements

9

In Summary for jal and jalr Instructions

• The jal (jump and link) instruction in RISC-V is used for
making function calls. It jumps to the target function's
address while saving the return address in the link register
(ra). Function arguments can be passed in registers before
the jal instruction. The jalr (jump and link register) instruction
is used for function call returns, where it jumps to the
address stored in the link register, returning control to the
calling function at the point just after the original jal
instruction. Together, these instructions enable function calls
and returns in RISC-V assembly language.

10

2. Register Usage Convention for Function Call
• x10 – x17: arguments and return values for function calls (a0 – a17)

– https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf
– https://inst.eecs.berkeley.edu/~cs61c/resources/RISCV_Calling_Convention.pdf

• x5 – x7, x28 – x31: temporary registers (t0-t6)
– Not automatically preserved by the callee

• x8 – x9, x18 – x27: saved registers (s0-s11)
– If used, the callee saves and restores them

11

https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/RISCV_Calling_Convention.pdf

Register a0-a7, and s0-s11
1. a0-a7 Registers (Argument Registers):

1. Purpose: The a0-a7 registers, also known as the argument registers, are primarily used to pass function
arguments to a called function.

2. Usage: When a function is called, arguments are typically placed in the a0-a7 registers before the jal (jump
and link) instruction is executed. The called function can access these values directly from these registers.

3. Saving Values: The called function should not assume that the argument values in a0-a7 will remain
unchanged after the function call. If it needs to preserve or modify these values, it should save them to
other registers or memory before overwriting them.

2. s0-s11 Registers (Saved Registers):
1. Purpose: The s0-s11 registers, also known as the saved registers, are used for saving and preserving values

across function calls. They are callee-saved registers, meaning that the called function must ensure their
values are preserved across the function call and restore them before returning to the calling function.

2. Usage: When a function is called, it must save the contents of the s0-s11 registers if it intends to modify
these registers. This ensures that any values saved in these registers by the calling function are not
inadvertently changed.

3. Saving Values: To save the values of s0-s11, the callee (the called function) typically pushes these registers
onto the stack in the function prologue (the beginning of the function). After the function has finished
executing, it restores the saved values from the stack in the function epilogue (the end of the function) to
ensure that the calling function's expectations are met regarding the values in these registers.

• In summary, the a0-a7 registers are used to pass function arguments, and the s0-s11 registers are
used to save and preserve registers across function calls. Proper management of these registers is
essential to ensure the correct and efficient execution of functions in a RISC-V assembly program

12

3. Stack Memory for Managing Data of Function
Call

• Memory Layout of a Process
– Text: program code
– Static data: global variables

• e.g., static variables in C, constant arrays and strings
• x3 (global pointer) initialized to address allowing ±offsets

into this segment

13

Text: Instructions (Code)

The Heap

The Stack

Static Data

St
at
ic
al
ly

 a
llo

ca
te

d
D
yn
am
ic
al
ly

 a
llo

ca
te

d

– Dynamic data: heap
• E.g., malloc in C, new in Java

– Stack: automatic storage for
function
• Variables
• For preserving data in

registers

How Stack Works For Function Calls

• Stack Memory for Each Function Call
– Named as Stack Frame, Function frame

(activation record)
– Memory space for function’s parameters and

local variables, temporary objects, the return
address, and other items that are needed by
the function.

14

https://eecs280staff.github.io/notes/02_ProceduralAbstraction_Testing.html

How Stack Works For
Function Calls

15

Stack Frame (Activation Record) of a Function Call

• Information:
– Parameters
– Local variables
– Return address
– Location to put return value

when function exits
– Control link to the caller’s

activation record
– Saved registers
– Temporary variables and

intermediate results
– (not always) Access link to the

function’s static parent
• Frame pointer (fp register):

the starting address of AR
• Stack pointer (sp register):

the ending address of AR
16

Leaf Procedure Example

• Leaf procedure: a procedure does not call other procedures
– Thinking of procedure calls as a tree

– Arguments g, …, j in register a0 – a3
– Need a register for f (could be a*, s*, t*)
– Need to save s0-s11 on stack if it is used in this func

17

long long int leaf_example (
 long long int g, long long int h,
 long long int i, long long int j) {
 long long int f;
 f = (g + h) - (i + j);
 return f;
}

Leaf Procedure Example

Save a0 – a3 on
stack, which are for
arguments g, h, i,
and j

restore s0

18

adjust stack pointer to create the stack frame for the func

adjust sp back to the activation frame of the caller

save s0 on stack

load g
load h
g+h
load i
load j
i+j
(g+h) - (i+j)

save a0(g) on stack -40(s0)
save a1(h) on stack -48(s0)
save a2(i) on stack -56(s0)
save a3(j) on stack -64(s0)

store f

use s0 in this function

return value (f) in a0

Leaf Procedure Example

19

See it from Compiler Explorer

https://godbolt.org/

Non-Leaf Procedures

• Procedures that call other procedures
• For nested call, caller needs to save on the stack:

– Its return address
– Any arguments and temporaries needed after the call
• Restore from the stack after the call

• fact is a recursive function
20

long long int fact (long long int n){
 if (n < 1) return n;
 else return n * fact(n - 1);
}

fact Example

Save return address on stack

Branch to .L2 if n is greater than 0, i.e. reversing n<1 è
n>=1 è n>0

n – 1 is in a5

If n < 1, load n to a5 for return value and jump to .L3

call fact(n-1)

Load n

Load n

Restore caller’s return address

Pop stack

Return value in a5 in either both path of if, now move to a0 for return

Return

move result of fact(n - 1) to a4

21

Save the argument n on stack

Adjust stack frame for the call

Save s0 on stack since the func will use it
s0 now has the adjusted stack pointer

Load n

Put the argument (n-1) on a0

N * fact(n-1) and store in a5, so it is ready for return to fact(n)

See it from Compiler Explorer

Restore register s0

https://godbolt.org/

Byte/Halfword/Word Operations
• RISC-V byte/halfword/word load/store
– Load byte/halfword/word: Sign extend to 64 bits in rd
• lb rd, offset(rs1)
• lh rd, offset(rs1)
• lw rd, offset(rs1)

– Load byte/halfword/word unsigned: Zero extend to 64 bits
in rd
• lbu rd, offset(rs1)
• lhu rd, offset(rs1)
• lwu rd, offset(rs1)

– Store byte/halfword/word: Store rightmost 8/16/32 bits
• sb rs2, offset(rs1)
• sh rs2, offset(rs1)
• sw rs2, offset(rs1)

22

String Copy Example

• C code:
– A string is an array of characters with` \0` as the last character

• char x[100]; a string of 100 character
• char * x2; is used for refer to a string

– Null-terminated string

23

void strcpy (char x[], char y[]) {
 long long int i = 0;
 while ((x[i] = y[i]) != '\0’)
 i += 1;
}

String Copy Example

24

See it From Compiler Explorer

https://godbolt.org/

C Bubble Sort Example

25

void swap(long long int v[], long long int k) {
 long long int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

void sort (long long int v[], long long int n) {
 long long int i, j;
 for (i = 0; i < n; i += 1) {
 for (j = i - 1;
 j >= 0 && v[j] > v[j + 1];
 j -= 1) {
 swap(v, j);
 }
 }
}

Bubble Sort Assembly From GCC

• Study from the Code from Compiler Explorer

26

https://godbolt.org/

You Own Way of Using Register

27

Register usage: v in x10, k in x11, temp in x5

Register usage: v in x10, n in x11, i in x19, j in x20

swap:

slli x6,x11,3 // reg x6 = k * 8

add x6,x10,x6 // reg x6 = v + (k * 8)

ld x5,0(x6) // reg x5 (temp) = v[k]

ld x7,8(x6) // reg x7 = v[k + 1]

sd x7,0(x6) // v[k] = reg x7

sd x5,8(x6) // v[k+1] = reg x5 (temp)

jalr x0,0(x1) // return to calling routine

The Procedure Swap

28

Register usage: v in x10, k in x11, temp in x5

The Outer Loop of Sort

• Skeleton of outer loop:
– for (i = 0; i <n; i += 1) {

 mv x21, x10 // store parameter x10 into x21

 mv x22, x11 // store parameter x11 into x22 (not using stack)

li x19,0 // i = 0

for1tst:

bge x19,x11,exit1 //go to exit1 if x19≥x11(i≥n)

 (body of outer for-loop)

addi x19,x19,1 // i += 1

j for1tst // branch to test of outer loop

exit1:

29

Register usage: v in x10, n in x11, i in x19, j
in x20

The Inner Loop

• Skeleton of inner loop:
– for (j = i − 1; j >= 0 && v[j] > v[j + 1]; j − = 1) { swap (v, j); }
 addi x20,x19,-1 // j = i −1

 for2tst:

blt x20,x0,exit2 // go to exit2 if X20 < 0 (j < 0)

slli x5,x20,3 // reg x5 = j * 8

add x5,x10,x5 // reg x5 = v + (j * 8)

ld x6,0(x5) // reg x6 = v[j]

ld x7,8(x5) // reg x7 = v[j + 1]

ble x6,x7,exit2 // go to exit2 if x6 ≤ x7

 mv x10, x21 // first swap parameter is v

 mv x11, x20 // second swap parameter is j

 jal x1,swap // call swap

 addi x20,x20,-1 // j –= 1

 j for2tst // branch to test of inner loop

exit2:

30

Preserving Registers

• Preserve saved registers:
 addi sp,sp,-40 // make room on stack for 5 regs

 sd x1,32(sp) // save x1 on stack

 sd x22,24(sp) // save x22 on stack

 sd x21,16(sp) // save x21 on stack

 sd x20,8(sp) // save x20 on stack

 sd x19,0(sp) // save x19 on stack

• Restore saved registers:
exit1:

 ld x19,0(sp) // restore x19 from stack

 ld x20,8(sp) // restore x20 from stack

 ld x21,16(sp) // restore x21 from stack

 ld x22,24(sp) // restore x22 from stack

 ld x1,32(sp) // restore x1 from stack

 addi sp,sp, 40 // restore stack pointer

 jalr x0,0(x1)

31

The Full Version

• Check the textbook

32

RISC-V Instruction Set Extensions

• M: integer multiply, divide, remainder
• A: atomic memory operations
• F: single-precision floating point
• D: double-precision floating point
• C: compressed instructions

– 16-bit encoding for frequently used instructions

33

The Intel x86 ISA

• Evolution with backward compatibility
– 8080 (1974): 8-bit microprocessor

• Accumulator, plus 3 index-register pairs
– 8086 (1978): 16-bit extension to 8080

• Complex instruction set (CISC)
– 8087 (1980): floating-point coprocessor

• Adds FP instructions and register stack
– 80286 (1982): 24-bit addresses, MMU

• Segmented memory mapping and protection
– 80386 (1985): 32-bit extension (now IA-32)

• Additional addressing modes and operations
• Paged memory mapping as well as segments

34

The Intel x86 ISA

• Further evolution…
– i486 (1989): pipelined, on-chip caches and FPU

• Compatible competitors: AMD, Cyrix, …
– Pentium (1993): superscalar, 64-bit datapath

• Later versions added MMX (Multi-Media eXtension) instructions
• The infamous FDIV bug

– Pentium Pro (1995), Pentium II (1997)
• New microarchitecture (see Colwell, The Pentium Chronicles)

– Pentium III (1999)
• Added SSE (Streaming SIMD Extensions) and associated registers

– Pentium 4 (2001)
• New microarchitecture
• Added SSE2 instructions

35

The Intel x86 ISA

• And further…
– AMD64 (2003): extended architecture to 64 bits
– EM64T – Extended Memory 64 Technology (2004)

• AMD64 adopted by Intel (with refinements)
• Added SSE3 instructions

– Intel Core (2006)
• Added SSE4 instructions, virtual machine support

– AMD64 (announced 2007): SSE5 instructions
• Intel declined to follow, instead…

– Advanced Vector Extension (announced 2008)
• Longer SSE registers, more instructions

• If Intel didn’t extend with compatibility, its competitors
would!
– Technical elegance ≠ market success

36

Basic x86 Registers

37

Basic x86 Addressing Modes

• Two operands per instruction
Source/dest operand Second source operand

Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

n Memory addressing modes
n Address in register
n Address = Rbase + displacement
n Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)
n Address = Rbase + 2scale × Rindex + displacement

38

x86 Instruction Encoding

• Variable length encoding
– Postfix bytes specify

addressing mode
– Prefix bytes modify

operation
• Operand length, repetition,

locking, …

39

Implementing IA-32

• Complex instruction set makes implementation difficult
– Hardware translates instructions to simpler microoperations

• Simple instructions: 1–1
• Complex instructions: 1–many

– Microengine similar to RISC
– Market share makes this economically viable
• Comparable performance to RISC

– Compilers avoid complex instructions

40

More Materials for RISC-V Instruction

• Slides for RISC-V intro and specification:
– https://passlab.github.io/ITSC3181/notes/lectureXX_RISCV_ISA.

pdf
• RISC-V instruction reference cards:

– https://passlab.github.io/ITSC3181/resources/RISCVGreenCardv
8-20151013.pdf

• Information for learning assembly programming
– https://passlab.github.io/ITSC3181/resources/RISC-

VAssemblyProgramming.html
• Resources from the official website including the standard

– https://riscv.org/

41

https://passlab.github.io/ITSC3181/notes/lectureXX_RISCV_ISA.pdf
https://passlab.github.io/ITSC3181/notes/lectureXX_RISCV_ISA.pdf
https://passlab.github.io/ITSC3181/resources/RISC-VAssemblyProgramming.html
https://passlab.github.io/ITSC3181/resources/RISC-VAssemblyProgramming.html

Concluding Remarks

• Instruction Set Architecture are Hardware and Software Interface
• Three major classes of instructions
– Arithmetic and logic instructions
– Load/Store instructions
– Control transfer (branch and jump/link)
– Other helpful instruction, e.g. load immediate, etc.
• High-level language constructs to instruction sequence
– Arithmetic and logic expression => Arithmetic and logic instructions
– Array reference => address calculation and load/store
– If-else/switch-case, for/while-loop => branch and jump
– Function call => jump/link, store and restore registers

• Design principles
1. Simplicity favors regularity
2. Smaller is faster
3. Good design demands good compromises
4. Make the common case fast 42

