Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Format of a C Program

Unit 4 and 5: Supporting functions and procedures, sorting
example and comparison with other ISAs

ITSC 2181 Introduction to Computer Systems
College of Computing and Informatics
Department of Computer Science

Module 06: Instruction Set Architecture, RISC-V Assembly
Programming, and Assembly Program of a C Program

* Unit 1: Module overview, Instruction Set Architecture (ISA) and
assembly programs, registers, instruction operations and operands,
register and immediate operands, arithmetic and logic instructions

* Unit 2: Memory Operands and Memory Access Instructions

* Unit 3: Conditional control instructions for making decisions (if-else)
and loops

@ Unit 4: Supporting Functions and procedures
1o~ Unit 5: Sort examples and comparison with other ISAs

* Materials are developed based on textbook:

— Computer Organization and Design RISC-V Edition: The
Hardware/Software Interface, Amazon

— RISC-V Specification: https://riscv.org/technical/specifications/
— ITSC 3181: https://passlab.github.io/ITSC3181/

https://www.amazon.com/Computer-Organization-Design-RISC-V-Architecture/dp/0128122757
https://riscv.org/technical/specifications/
https://passlab.github.io/ITSC3181/

Instructions Used So Far: add, addi, sub, slli, load,
, and beqg/bne/bge/blt

store

add x10, x5, x6
addi x10, x5, 100
sub x11, x5, x6
slli x12, x5, 5
1d x12, 32(x5)

sd x12, 32(x5)

//
/]
/]
//
/]

x10]
x10]
x11]
x12]

x12]

= Mem|[32 + [x5]
// Mem|[32 + [x5]] = [x12]

x5] + [x6]
x5] + 100
x5] — [x6]
XS5 * 2ANS

beq x5, x6, <labell> // if ([x5] == [x6]) ...

Pro

Modern Digital Computer

ssssss Chip

Memory

1/O Controller
1

1/O E

Input and Output Devices

* They can do computation and access memory, and implementing
complicated computation and algorithms involving decision
making and repetive

* Organizing software to make them modular and easily reusable
— Function and function call (procedure, method, etc)

Three Kinds of Operands and Three Classes of
Instructions

®* General form:

— <op word> <dest operand> <src operand 1> <src operand 2>
— E.g.: add x5, x3, x4, which performs [x5] = [x3] + [x4]

Three Kinds of Operands
1. Register operands, e.g., x0 — x31
2. Immediate operands, e.g., 0, -10, etc

3. Memory operands, .5. 16(x3) Module 06: Unit 1

Module 06: Unit 3

Three Classes of Instructions
1. Arithmetic-logic instructions
* add, sub, addi, and, or, shift left|right, etc

* Procedure call and return: jal and jr

Function Call: sum_full.c

¢ sum_full.c |

35 REAL sum(int N, REAL X[], REAL a) {

36
S7
38
39
49
41
O
52
53
54
55
56
D7
58
59

}

int 1i;
REAL result = =
for (i = 0; 1 < N; ++1i)

result += a x X[i];
return result;

c sum_full.c
srand48((1 << 12));

init(X, N);

init (Y, N);

REAL a = -

/* example run x/

elapsed = read_timer();

REAL result = sum(N, X, a);

elapsed = (read_timer() - elapsed);

https://passlab.github.io/ITSC3181/exercises/sum

https://passlab.github.io/ITSC3181/exercises/sum

1. Place arguments for callee in

Function Call Steps

registers

Transfer control to callee
function

Acquire storage for callee
function

Perform callee’s operations

Place result in register for
caller

Return to place of call

35 REAL sum(int N, REAL X[], REAL a) {

36 int 1;

37 REAL result = 2

38 for (i1 = 0; 1 < N; ++1)
39 result += a * X[i];
40 return result;

41 }

0O
52

BN AT S RTAMTACITASE SIS ERIEED SEREE s S # 3 sssawsasflc-is-sas-saciaEER

srand48((1 << B -

53 init(X, N);

54 LAY N);

55 REAL a = -

56 /* example run x/

57 lapsed = read_timer();

58 RBAL result = sum(N, X, a);

59 elapsed = (read_timer() - elapsec

Three Important Things of the Computer System to

Support Function Calls

1. Hardware instructions for control
transfer for procedure call and call

return
* Caller->callee transfer P (
* Callee>caller transfer 5 REAL sum(int N, REAL X[], REAL a) {
2. Specifying register/memory for - B
passing data between caller and 38 for (i = 0; i < Nj ++1i)
callee 39 result += a x X[i];
. 40 return result;
 Passing argument from 41 }
callereca"ee ‘ ._ I NI, Tes
 Passing return value from callee 52 srand48((1 << 12));
—>caller 53 init(X, N);
. 54 iASEL Y, NG
3. Mechanism of stack memory for 55 REAL a = ;
managing data of functions 56 /* example run x/
. . 57 elapsed = read_timer();
* Storage for fl_mctlon variables, etc ;g REAL result - RS
* Preserve register data of the callei 59 elapsed = (read_timer() - elapsec

when control is in callee

e Restore the data when control is
returned to caller

Sum Example, sum_full_riscv.s

96
97
98
99
100
101
102
103
104
105

e e \J

127
128
129
130
131
132
133
134

return result;

REAL result —

158 main:

.globl sum 156

.type sum, @functiol57
sum:

addi sp,sp,-48

sd s0,40(sp)

addi s@,sp,48

mv a5,al

sd al,-48(s0)

fsw fa0,-40(s0)

SW a5,-36(s0)

centew urg 1215

sext.w ab,ab 216

blt a4,a5,.L10 217

flw fa5,-24(s0) 218

fmv.s fa0, fab 219

d s@,40(sp) 220

addi sp,sp,48 221

ir ra 222

Return to caller with return ?;’T

value stored in register fa0

.globl
.type

fsw
call
fsd
lw
flw
1d
mv
call
fsw
call

https://passlab.github.io/ITSC3181/exercises/sum

sum(N, X, a);

main
main, @function

Sp,sp,-80@
ra,72(sp)
SO, G’_(Sp)
s@,sp, 80
a5, a0

faS;—i.i;(‘se) Args for

read_timer SUM
fa0,-56(s0) callin
ab,-20(s0) rega0,
fa0,-44(s0) fa0, a5
al ’ =32 (50) Store return
a0, a5 address in

sum reg x1 and
fa0,-60(s0) calltransfer

read_timer tosum
8

https://passlab.github.io/ITSC3181/exercises/sum

1. Hardware Instruction for Function Call

® Function call: jump and link

jal x1, ProcedureLabel
— Address of following instruction put in x1
— Jumps to target address

® Function return: jump and link register

jalr x0, 0(x1)

— Like jal, but jumps to 0 + address in x1

— Use x0 as rd (xO0 cannot be changed)

— Can also be used for computed jumps
 e.g., for case/switch statements

In Summary for jal and jalr Instructions

* Thejal (jump and link) instruction in RISC-V is used for
making function calls. It jumps to the target function's
address while saving the return address in the link register
(ra). Function arguments can be passed in registers before
the jal instruction. The jalr (jump and link register) instruction
is used for function call returns, where it jumps to the
address stored in the link register, returning control to the
calling function at the point just after the original jal
instruction. Together, these instructions enable function calls
and returns in RISC-V assembly language.

10

2. Register Usage Convention for Function Call

* x10-x17: arguments and return values for function calls (a0 —a17)
— https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf

— https://inst.eecs.berkeley.edu/~cs61lc/resources/RISCV Calling Convention.r~*

* x5-x7,x28 —x31: temporary registers (t0-t6) 5U1t =

— Not automatically preserved by the callee

* x8—-x9, x18 —x27: saved registers (s0-s11)
— If used, the callee saves and restores them

Register | ABI Name | Description Saver
x0 zero Hard-wired zero =

x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer f—

x4 tp Thread pointer —
x5-7 t0—2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 a0-1 Function arguments/return values | Caller
x12—-17 | a2-7 Function arguments Caller
x18-27 s2—-11 Saved registers Callee
x28—-31 t3-6 Temporaries Caller
£f0-7 ft0-7 FP temporaries Caller
£8-9 fsO0-1 FP saved registers Callee
£10-11 | fa0-1 FP arguments/return values Caller
£12-17 | fa2-7 FP arguments Caller
£18-27 fs2—-11 FP saved registers Callee
£28-31 ft8—-11 FP temporaries Caller

Table 18.2: RISC-V calling convention register usage.

.globl
. type

addi
sd
sd
addi
mv

fsw
call
fsd

flw
1d
mv
call

» fsw

call

sum(N, X, a);

main
main, @function

Sp,Sp,—

ra,72(sp)
s0,64(sp)

s@,sp,

a5, a0

fa5.,-44(s0) Args for
read_timer SYM
fa@,-56(s@) callin
a5,-20(s0) rega0,
fa0,-44(s0) fa0, a5
al,-32(s0) Store return
ao ’ as address in
St reg x1 and

fad,-60(s0) call transfer
read_timer tosum

.

https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/RISCV_Calling_Convention.pdf

Register a0-a7, and s0-s11

1.

2.

a0-a7 Registers (Argument Registers):

1.

Purpose: The a0-a7 registers, also known as the argument registers, are primarily used to pass function
arguments to a called function.

Usage: When a function is called, arguments are typically placed in the a0-a7 registers before the jal (jump
and link) instruction is executed. The called function can access these values directly from these registers.
Saving Values: The called function should not assume that the argument values in a0-a7 will remain
unchanged after the function call. If it needs to preserve or modify these values, it should save them to
other registers or memory before overwriting them.

s0-s11 Registers (Saved Registers):

1.

Purpose: The s0-s11 registers, also known as the saved registers, are used for saving and preserving values
across function calls. They are callee-saved registers, meaning that the called function must ensure their
values are preserved across the function call and restore them before returning to the calling function.
Usage: When a function is called, it must save the contents of the s0-s11 registers if it intends to modify
these registers. This ensures that any values saved in these registers by the calling function are not
inadvertently changed.

Saving Values: To save the values of s0-s11, the callee (the called function) typically pushes these registers
onto the stack in the function prologue (the beginning of the function). After the function has finished

executing, it restores the saved values from the stack in the function epilogue (the end of the function) to
ensure that the calling function's expectations are met regarding the values in these registers.

In summary, the a0-a7 registers are used to pass function arguments, and the s0-s11 registers are
used to save and preserve registers across function calls. Proper management of these registers is
essential to ensure the correct and efficient execution of functions in a RISC-V assembly program

12

3. Stack Memory for Managing Data of Function
Call

* Memory Layout of a Process
— Text: program code
— Static data: global variables

* e.g., static variables in C, constant arrays and strings

* x3 (global pointer) initialized to address allowing *offsets
into this segment)

— Dynamic data: heap ~

 E.g., mallocin C, new in Java

— Stack: automatic storage for
function

e Variables

* For preserving data in
registers

Dynamically allocated Statically allocated

=
w

How Stack Works For Function Calls

* Stack Memory for Each Function Call void bar() {
— Named as Stack Frame, Function frame }
(activation record) void foo() {

] bar();
— Memory space for function’s parameters and }

local variables, temporary objects, the return it main() <
address, and other items that are needed by foo();
the function. }

Text: Instructions (Code)

Sratic Data

The Heap m bar m
N m foo foo foo m
The Stack m main main main main main m
Stac-k_ Stack Stack Stack Stack Stack Stack

https://eecs280staff.github.io/notes/02_ProceduralAbstraction_Testing.html
14

1n:ezt:§_zni(;r:t x) { HOW StaCk WorkS For
Function Calls

}

int plus_two(int x) {
return plus_one(x + 1);

}

int main() {
int result = 0;
result = plus_one(0);

result = plus_two(result);
cout << result; // prints 3
}
1us_onc 0 J Lt
main main main
0x1000 0 result 0x1000 0 result 0x1000 1 result
Stack Stack Stack

Figure 8 Activation record for plus_one() .

plus_one
0x1008 | 2 |[x

m plus_two plus_two

main main main

0x1000 1 result 0x1000 1 result 0x1000 1 result

Stack Stack Stack

Figure 9 State of stack in second call to plus_one() .

Stack Frame (Activation Record) of a Function Call

* |Information:

Parameters
Local variables
Return address PO

Location to put return value pointer
when function exits

Control link to the caller’ s
activation record

Saved registers
Temporary variables and
intermediate results

(not alwgys) Access link to the
function’ s static parent

* Frame pointer (fp register):
the starting address of AR ik

* Stack pointer (sp register):

pointer

the ending address of AR

incoming
arguments

\d/

outgoing
arguments

argument n

argument 2

argument 1

higher addresses

T

auwel} snoinald

local
variables

return address

temporaries

saved registers

argument m

argument 2

argument 1

awel} jualind

awiel} Jxau

i

lower addresses

Leaf Procedure Example

* Leaf procedure: a procedure does not call other procedures
— Thinking of procedure calls as a tree

long long int leaf example (
long long int g, long long int h,
long long int i, long long int j) {
long long int f;
f=(g+h)-(@{+73);
return f;

¥

— Arguments g, ..., j in register a0 — a3
— Need a register for f (could be a*, s*, t*)
— Need to save s0-s11 on stack if it is used in this func

17

Leaf Procedure Example

RISC-V (64-bits) gcc13.20~ 4

Av

1
2
3
4

10
11
12
13
14
15
16
17
18
19
20
21

£ Output...~ V¥ Filter...~ @& Libra

leaf example:
addi
sd
addi
sd
sd
sd
sd
1d
1d
add
1d
1d
add
sub
sd
1d
mv
1d
addi
jr

sp,sp,—64
s0,56(sp)
s0,sp, 64

-
|
—~~
A N N

r—64(s0)
a4,-40(s0)
a5,-48(s0)
a4,a4d,ab
a3,-56(s0)
a5,-64(s0)
a5,a3,a5b
a5,a4,ab
a5,-24(s0)
a5,-24(s0)
al0,a5
s0,56(sp)
sp,sp, 64

ra

long long int leaf example (
long long int g, long long int h,
long long int i, long long int j) {

1

2

3

4 long long int f;

5 f=1(g+h) - (i+3);
6

return £f;

~

}
adjust stack pointer to create the stack frame for the fun
save s0 on stack

use s0 in this function
save a0(g) on stack -40(s0) Save a0 — a3 on

save al(h) on stack -48(s0) stack, which are for

save a2(i) on stack -56(s0) arguments g, h, i,
save a3(j) on stack -64(s0) and j

load g
load h

g+h

load i

load j

i+]

(g+h) - (i+j)
store f

return value (f) in a0
restore sO

adjust sp back to the activation frame of the caler

long long int leaf example (

int

long long int g, long long int h,
long long int i, long long int j) {

long long int f£;

f=(g+h) - (i+3J);

return £f;

main() {

long long int v;

v = leaf example(l, 2, 3, 4)

return v;

See it from Compiler Explorer

I

RISC-V (64-bits) gcc13.20~ 7 @

A~ R Output..v VFilter...~ & Librarie

leaf example(long long, long

1

2 addi
3 sd

4 addi
5 sd

6 sd

7 sd

8 sd

9 1d
10 1d
11 add
12 1d
13 1d
14 add
15 sub
16 sd
17 1d
18 mv
19 1d
20 addi

sp,sp,-64
s0,56(sp)
s0,sp, 64
a0,-40(s0)
al,-48(s0)
a2,-56(s0)
a3,-64(s0)
a4,-40(s0)
a5,-48(s0)
ad,a4,ab
a3,-56(s0)
a5,-64(s0)
a5,a3,a5
a5,a4,a5
a5,-24(s0)
a5,-24(s0)
a0,a5
s0,56(sp)
sp,sp, 64

Leaf Procedure Example

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

main:

addi
sd
sd
addi
1li
1i
1i
1li
call
sd
1d
sext.w
mv
1d
1d
addi

jr

sp,sp,-32
ra,24(sp)
s0,16(sp)
s0,sp,32
a3,4

az2,3

al,2

ao,1

leaf example

a0,-24(s0)
a5,-24(s0)
a5,ab

a0, a5
ra,24(sp)
s0,16(sp)
sp,sp,32

ra

19

https://godbolt.org/

Non-Leaf Procedures

* Procedures that call other procedures

* For nested call, caller needs to save on the stack:
— Its return address
— Any arguments and temporaries needed after the call

®* Restore from the stack after the call

long long int fact (long long int n){
if (n < 1) return n;
else return n * fact(n - 1);

}

* factisarecursive function

20

. 1 long long int fact (long long int n){
RISC-V (64-bits) gcc 1320~ (2 @ 5 R R

3 else return n * fact(n - 1); E

A~ R Output...¥ VFilter..v @ Libraries

See*it! from ComEiTer ExE1orer
fact(long long):

1
2 addi sp,sp,=32 Adjust stack frame for the call
3 sd gl Save return address on stack
4 sd . s0,16(sp) Save s0 on stack since the func will use it
5 addi s0,sp,32 sO now has the adjusted stack pointer
6 sd a0,-24(s0) Save the argument n on stack
7 1d a5,-24(s0) Load n
8 bgt a5,zero,.L2 Branch to .L2 if n is greater than 0, i.e. reversing n<1 =
9 1d a5,-24(s0) n>=1=>n>0
10 J -L3 If n < 1, load n to a5 for return value and jump to .L3
11 .L2:
12 1d a5,-24(s0) Load n
13 addi a5,a5,-1 n—-1isin ab
14 mv a0,a5 Put the argument (n-1) on a0
15 call fact(long long). call fact(n-1)
16 mv a4, a0 move result of fact(n - 1) to a4
17 1d a5,-24(s0) Load n
18 mul a5,a4,a5 N * fact(n-1) and store in a5, so it is ready for return to fact(r
19 .L3:
20 mv a0,a5 Return value in a5 in either both path of if, how move to a0 ft
21 1d ra,24(sp) Restore caller’s return address
22 1d s0,16(sp) Restore register sO
23 addi sp,sp,32 Pop stack 21

24 jr ra Return

https://godbolt.org/

Byte/Halfword/Word Operations

* RISC-V byte/halfword/word load/store

— Load byte/halfword/word: Sign extend to 64 bits in rd
* Ib rd, offset(rsl)
e Th rd, offset(rsl)
 lw rd, offset(rsl)
— Load byte/halfword/word unsigned: Zero extend to 64 bits
in rd
 Thu rd, offset(rsl)
* Thu rd, offset(rsl)
e Twu rd, offset(rsl)
— Store byte/halfword/word: Store rightmost 8/16/32 bits
e sb rs2, offset(rsl)
e sh rs2, offset(rsl)
e sw rs2, offset(rsl)

22

String Copy Example

* Ccode:

— A string is an array of characters with" \O" as the last character
e char x[100]; a string of 100 character
e char * x2; is used for refer to a string

— Null-terminated string

void strcpy (char x[], char y[]) {
long long int 1 = 0;

while ((x[i] = y[i]) !'= "\©’)
1 += 1;

g = W N =

void strcpy (char x[], char y[]) {
long long int i = 0;
while ((x[i] = y[i]) !'= '\0")
] i+=1; 13
} 14
See it From Compiler Explorer 15
16
RISC-V (64-bits) gcc 1320~ (2 € 17
18
A~ L Output...~ YFilter..~ @& Librari 19
1 strcpy(char*, char¥*): 20
2 addi sp,sp,-48 21
3 sd s0,40(sp) 22
4 addi s0,sp,48 23
5 sd a0,-40(s0)
6 sd al,-48(s0) 24
. sd zero,-24(s0) 25
8 j .L2 26
9 .L3 27
10 1d a5,-24(s0) 28
11 addi a5,a5,1 29
12 sd a5,-24(s0) 30
31

String Copy Example

L2

1d
1d
add
1d
1d
add
lbu
sb
lbu
sext.w
snez
andi
bne
nop
nop
1d
addi

Jjr

a5,-24(s0)
a4,-48(s0)
ad,ad,ab
a5,-24(s0)
a3,-40(s0)
a5,a3,ab
ad,0(a4d)
a4d,0(ab)
a5,0(ab5)
a5,ab
a5,ab
a5,a5,0xff

a5, zero,.L3

s0,40(sp)
sp,sp,48
ra 24

https://godbolt.org/

C Bubble Sort Example

void swap(long long int v[], long long int k) {

long long int temp;
temp = v[k];
vik] = v[k+1];
vik+1] = temp;

}

void sort (long long int v[], long long int n) {

long long int i, j;
for (1 =0; 1i<n; 1i+4=1) {
for (j =1 - 1;
j >= 0 && v[j] > v[] + 1];
j-=1){
swap(v, J);

Bubble sort example

iitial [5] 3 [8] a] & |

Step 1

Step 2

Step 3

Step 4

Step 5

N

h |
[sls]sf2]s]

—

[s[s[s]s]6]

P—

¥
(s s8] =&a]s]

_——

¥ ¥
[3] s a]8]6s6]

[sls]afe[3s]

Initial Unsorted array

Compare 1 and 2™
(Swap)

Compare 2™ and 3™
(Do not Swap)

Compare 3° and 4™
(Swap)

Compare 4™ and 5™
(Swap)

Repeat Step 1-5 until

no more swaps required

25

Bubble Sort Assembly From GCC

* Study from the Code from Compiler Explorer

1 void swap(long long int v[], long long int k) {
2 long long int temp;

3 temp = v[k];

4 vik] = v[k+1l];

5 vik+l] = temp;

6 }

7

8 void sort (long long int v[], long long int n) {
9 long long int i, Jj;

10 for (1 = 0; 1 <n; i +=1) {

11 for (3 =1 - 1;

12 J >= 0 && v[]j] > v[] + 1];

13 J -—=1) {

14 swap(v, J);

15 }

16 }

’—l
~J
-

https://godbolt.org/

You Own Way of Using Register

void swap(long long int v[], long long int k) {

long long int temp;

temp = v[k];
vik] = v[k+1];
vik+l] = temp;

Register usage: vin x10, k in x11, temp in x5

void sort (long long int v[], long long int n) {
long long int i, 7Jj;
for (1 = 0; 1 < n; 1i+=1) {

for (j =1 - 1;
J >= 0 && v[]j] > v[] + 1];
J—=1) {
Swap(V, j);
}

Register usage: vin x10, nin x11, i in x19, j in x20

27

The Procedure Swap

void swap(long long int v[], long long int k) {

long long int temp;
temp = v[k];

vik] = v[k+1l];
vik+l] = temp;

}

Register usage: vin x10, k in x11, temp in x5

swap:
s11i x6,x11,3
add x6,x10,x6
1d x5,0(x6)
1d x7,8(x6)
sd x7,0(x6)
sd x5,8(x6)
jalr x0,0(x1)

// reg x6
// reg x6
// reg x5
// reg x7
// VvIKk] =
// vIk+1]
// return

=k * 8

=v + (k * 8)
(temp) = v[k]

= vik + 1]

reg x7

= reg x5 (temp)

to calling routine

28

void sort (long long int v[], long long int n) {
long long int i, j;
The Outer Loop of Sort for (105 L <ni i em 1) o
for (j =1 - 1;
J>= 0 && v[j] > v[] + 1];
3—=1) {

* Skeleton of outer loop: | seep(rs 37
— for (i=0;i<n;i+=1){ Register usage: v in x10, n in x11, i in x19, j
in x20
mv x21, x10 // store parameter x10 into x21
mv x22, x11 // store parameter x11 into x22 (not using st
11 x19,0 // 1 =0
forltst:

bge x19,x11,exitl //go to exitl if x19>x11(ix>n)

(body of outer for-l1oop)

exitl:
29

The Inner Loop

Skeleton of inner loop:
— for(j=i-1;j>=0&&V[j]>Vv[j+1];j-=1) {swap (v, j); }
addi x20,x19,-1 // 3 =1 -1

for2tst:
b1t
s111
add
1d
1d
ble
mv
mv
jal
add1
j

exit2:

x20,x0,exit2 // go to exit2 if X20 < 0 (j < 0)

x5,x20, 3
x5,x10,x5
X6,0(x5)
x7,8(x5)

// reg x5 =3 * 8

// reg x5 =v + (3 * 8)
// reg x6 = v[j]

// reg x7 = v[j + 1]

X6,x7,exit2 // go to exit2 if x6 < x7

x10, x21
x11, x20
x1,swap

// first swap parameter is v
// second swap parameter 1is j
// call swap

x20,x20,-1 //] =1

for2tst

// branch to test of inner Tloop

30

Preserving Registers

* Preserve saved registers:

addi sp,sp,-40 // make room on stack for 5 regs
sd x1,32(sp) // save x1 on stack
sd x22,24(sp) // save x22 on stack
sd x21,16(sp) // save x21 on stack
sd x20,8(sp) // save x20 on stack
sd x19,0(sp) // save x19 on stack

* Restore saved registers:

exitl:

1d x19,0(sp) // restore x19 from stack
1d x20,8(sp) // restore x20 from stack
1d x21,16(sp) // restore x21 from stack
1d x22,24(sp) // restore x22 from stack
1d x1,32(sp) // restore x1 from stack
addi sp,sp, 40 // restore stack pointer
jalr x0,0(x1)

The Full Version
T] e

sort: addi sp. sp. -40 # make room on stack for 5 registers
() Checl1 sd x1, 32(sp) # save return address on stack
sd x22, 24(sp) # save x22 on stack
sd x21, 16(sp) # save x21 on stack
sd x20, 8(sp) # save x20 on stack
sd x19, 0(sp) # save x19 on stack
mv x21, x10 # copy parameter x10 into x21
Move parameters my x22, xl11 # copy parameter xl1 into x22
11 %19, 0 #i=0
Outer loop forltst:bge x19, x22, exitl # go to exitl if i1 >=n
' addi x20, x19, -1 $i=1 -1
forZ2tst:blt x20, x0, exit2 ## go to exit2 if j < 0
s11i x5, x20, 3 #xb=j*8
Inner loop add x5, x21., x5 #f x5 =v +(j*B8)
1d x6, 0(x5) # x6 = v(]]
1d x7, 8(x5) # x7 = v[j + 1]
ble x6, x7, exit?2 # go to exit2 if x6 < x7
mv x10, x21 # first swap parameter is v
Pass parameters mv x11, x20 # second swap parameter is
and call jal x1, swap # call swap
Inner loop ‘ addi x20, x20, -1 j for2tst
|] for2tst # go to for2tst
Outer loop exit?2: addi x19, x19, 1 #1+=1
| j forltst # go to forltst
exitl: 1d x19, O(sp) # restore x19 from stack
1d x20, 8(sp) # restore x20 from stack
1d x21, 16(sp) # restore x21 from stack
1d x22, 24(sp) # restore x22 from stack
1d x1, 32(sp) # restore return address from stack
addi sp. sp. 40 ## restore stack pointer

32

jalr x0, 0(x1) # return to calling routine

RISC-V Instruction Set Extensions

M: integer multiply, divide, remainder
A: atomic memory operations

F: single-precision floating point

D: double-precision floating point

C: compressed instructions
— 16-bit encoding for frequently used instructions

33

The Intel x86 ISA

* Evolution with backward compatibility

8080 (1974): 8-bit microprocessor

e Accumulator, plus 3 index-register pairs
8086 (1978): 16-bit extension to 8080
* Complex instruction set (CISC)

8087 (1980): floating-point coprocessor
* Adds FP instructions and register stack
80286 (1982): 24-bit addresses, MMU

* Segmented memory mapping and protection

80386 (1985): 32-bit extension (now |A-32)

* Additional addressing modes and operations
* Paged memory mapping as well as segments

34

The Intel x86 ISA

* Further evolution...

i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, ...

Pentium (1993): superscalar, 64-bit datapath

* Later versions added MMX (Multi-Media eXtension) instructions
 The infamous FDIV bug

Pentium Pro (1995), Pentium Il (1997)

 New microarchitecture (see Colwell, The Pentium Chronicles)
Pentium Il (1999)

e Added SSE (Streaming SIMD Extensions) and associated registers
Pentium 4 (2001)

e New microarchitecture
e Added SSE2 instructions

35

The Intel x86 ISA

* And further...
— AMDG64 (2003): extended architecture to 64 bits

— EMG64T — Extended Memory 64 Technology (2004)
« AMDG64 adopted by Intel (with refinements)
* Added SSE3 instructions

— Intel Core (2006)

* Added SSE4 instructions, virtual machine support

— AMDG64 (announced 2007): SSE5 instructions

* |Intel declined to follow, instead...
— Advanced Vector Extension (announced 2008)
* Longer SSE registers, more instructions
* If Intel didn’t extend with compatibility, its competitors

would!
— Technical elegance # market success

36

Basic x86 Registers

Name Use
31 0

EAX GPRO
ECX GPR 1
EDX GPR 2
EBX GPR 3
ESP GPR 4
EBP GPR 5

ESI GPR 6
EDI GPR 7

Code segment pointer

Stack segment pointer (top of stack)
Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

EIP Instruction pointer (PC)

EFLAGS Condition codes

37

Basic x86 Addressing Modes

* Two operands per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

= Memory addressing modes
= Address in register
s Address = Ry, + displacement
» Address = R, + 25¢@€ x R, (scale =0, 1, 2, or 3)
» Address = R, + 25¢@le x R, 4., + displacement

x86 Instruction Encoding

a. JE EIP + displacement * Variable length encoding
4 4 8
%t | %Gon. | Displacement — Postfix bytes specify
b. CALL addressing mode
8 32 . .
CALL Offet — Prefix bytes modify
. operation
c.MOV EBX, [EDI + 45]
T poéf'é‘yte A— * Operand length, repetition,
locking, ...
d. PUSH ESI
5 3
PUSH | Reg

e. ADD EAX, #6765
4 3 1 32

ADD [Reg|w Immediate

f. TEST EDX, #42
7 1 8 32

TEST w Postbyte Immediate

39

Implementing 1A-32

* Complex instruction set makes implementation difficult
— Hardware translates instructions to simpler microoperations
* Simple instructions: 1-1
* Complex instructions: 1-many
— Microengine similar to RISC
— Market share makes this economically viable

®* Comparable performance to RISC
— Compilers avoid complex instructions

40

More Materials for RISC-V Instruction

* Slides for RISC-V intro and specification:
— https://passlab.github.io/ITSC3181/notes/lectureXX RISCV ISA.
pdf
® RISC-V instruction reference cards:
— https://passlab.github.io/ITSC3181/resources/RISCVGreenCardv
8-20151013.pdf
* Information for learning assembly programming

— https://passlab.github.io/ITSC3181/resources/RISC-
VAssemblyProgramming.html

* Resources from the official website including the standard
— https://riscv.org/

41

https://passlab.github.io/ITSC3181/notes/lectureXX_RISCV_ISA.pdf
https://passlab.github.io/ITSC3181/notes/lectureXX_RISCV_ISA.pdf
https://passlab.github.io/ITSC3181/resources/RISC-VAssemblyProgramming.html
https://passlab.github.io/ITSC3181/resources/RISC-VAssemblyProgramming.html

Concluding Remarks

Instruction Set Architecture are Hardware and Software Interface

Three major classes of instructions

— Arithmetic and logic instructions

— Load/Store instructions

— Control transfer (branch and jump/link)

— Other helpful instruction, e.g. load immediate, etc.

High-level language constructs to instruction sequence
— Arithmetic and logic expression => Arithmetic and logic instructions
— Array reference => address calculation and load/store
— If-else/switch-case, for/while-loop => branch and jump
— Function call => jump/link, store and restore registers

Design principles

1. Simplicity favors regularity

2. Smaller is faster

3. Good design demands good compromises

4. Make the common case fast 42

