
RISC-V1

Assembly Language Programming2

(Draft v0.17-0-g8eeb353)3

John Winans
jwinans@niu.edu

4

October 7, 20225

mailto:jwinans@niu.edu

Copyright © 2018, 2019, 2020 John Winans6

This document is made available under a Creative Commons Attribution 4.0 International License.7

See Appendix D for more information.8

Download your own copy of this book from github here: https://github.com/johnwinans/rvalp.9

This document may contain inaccuracies or errors. The author provides no guarantee regarding the10

accuracy of this document’s contents. If you discover that this document contains errors, please notify11

the author.12

ý Fix Me:
Need to say something
about trademarks for things
mentioned in this text

13

ARM® is a registered trademark of ARM Limited in the EU and other countries.14

IBM® is a trademarks or registered trademark of International Business Machines Corporation in the15

United States, other countries, or both.16

Intel® and Pentium® are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other17

countries.18

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page i of 82

https://github.com/johnwinans/rvalp

Contents19

Preface iv20

1 Introduction 121

1.1 The Digital Computer . 122

1.2 Instruction Set Architecture . 423

1.3 How the CPU Executes a Program . 424

2 Numbers and Storage Systems 625

2.1 Boolean Functions . 626

2.2 Integers and Counting . 927

2.3 Sign and Zero Extension . 1928

2.4 Shifting . 2029

2.5 Main Memory Storage . 2130

3 The Elements of a Assembly Language Program 2831

3.1 Assembly Language Statements . 2832

3.2 Memory Layout . 2833

3.3 A Sample Program Source Listing . 2834

3.4 Running a Program With rvddt . 2935

4 Writing RISC-V Programs 3236

4.1 Use ebreak to Stop rvddt Execution . 3237

4.2 Using the addi Instruction . 3338

4.3 todo . 3739

4.4 Other Instructions With Immediate Operands . 3740

4.5 Transferring Data Between Registers and Memory . 3741

4.6 RR operations . 3842

4.7 Setting registers to large values using lui with addi . 3843

4.8 Labels and Branching . 3844

4.9 Jumps . 3945

4.10 Pseudoinstructions . 3946

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page ii of 82

CONTENTS

4.11 Relocation . 4147

4.12 Relaxation . 4348

5 RV32 Machine Instructions 4449

5.1 Conventions and Terminology . 4450

5.2 Addressing Modes . 4851

5.3 Instruction Encoding Formats . 4852

5.4 CPU Registers . 5853

5.5 memory . 5954

A Installing a RISC-V Toolchain 6055

A.1 The GNU Toolchain . 6056

A.2 rvddt . 6157

A.3 qemu . 6258

B Floating Point Numbers 6359

B.1 IEEE-754 Floating Point Number Representation . 6360

C The ASCII Character Set 6961

C.1 NAME . 6962

C.2 DESCRIPTION . 6963

C.3 NOTES . 7164

C.4 COLOPHON . 7165

D Attribution 4.0 International 7266

Bibliography 7767

Glossary 7868

Index 7969

RV32I Reference Card 8170

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page iii of 82

Preface71

I set out to write this book because I couldn’t find it in a single volume elsewhere.72

The closest published work on this topic appear to be select portions of The RISC-V Instruction Set73

Manual, Volume I: User-Level ISA, Document Version 2.2[1], The RISC-V Reader[2], and Computer74

Organization and Design RISC-V Edition: The Hardware Software Interface[3].75

There are some terse guides on the Internet that are suitable for those who already know an assembly76

language. With all the (deserved) excitement brewing over system organization (and the need to77

compress the time out of university courses targeting assembly language programming [4]), it is no78

surprise that RISC-V texts for the beginning assembly programmer are not (yet) available.79

When I started in computing, I learned how to count in binary in a high school electronics course using80

data sheets for integrated circuits such as the 74191[5] and 74154[6] prior to knowing that assembly81

language even existed.82

I learned assembly language from data sheets and texts, that are still sitting on my shelves today,83

such as:84

• The MCS-85 User’s Manual[7]85

• The EDTASM Manual[8]86

• The MC68000 User’s Manual[9]87

• Assembler Language With ASSIST[10]88

• IBM System/370 Principals of Operation[11]89

• OS/VS-DOS/VSE-VM/370 Assembler Language[12]90

• . . . and several others91

All of these manuals discuss each CPU instruction in excruciating detail with both a logical and92

narrative description. For RISC-V this is also the case for the RISC-V Reader[2] and the Computer93

Organization and Design RISC-V Edition[3] books and is also present in this text (I consider that to94

be the minimal level of responsibility.)95

Where I hope this text will differentiate itself from the existing RISC-V titles is in its attempt to96

address the needs of those learning assembly language for the first time. To this end I have primed this97

project with some of the curriculum material I created when teaching assembly language programming98

in the late ’80s.99

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page iv of 82

Chapter 1100

Introduction101

At its core, a digital computer has at least one Central Processing Unit (CPU). A CPU executes a102

continuous stream of instructions called a program. These program instructions are expressed in what103

is called machine language. Each machine language instruction is a binary value. In order to provide104

a method to simplify the management of machine language programs a symbolic mapping is provided105

where a mnemonic can be used to specify each machine instruction and any of its parameters. . .106

rather than require that programs be expressed as a series of binary values. A set of mnemonics,107

parameters and rules for specifying their use for the purpose of programming a CPU is called an108

Assembly Language.109

1.1 The Digital Computer110

There are different types of computers. A digital computer is the type that most people think of when111

they hear the word computer. Other varieties of computers include analog and quantum.112

A digital computer is one that processes data represented using numeric values (digits), most com-113

monly expressed in binary (ones and zeros) form.114

This text focuses on digital computing.115

A typical digital computer is composed of storage systems (memory, disc drives, USB drives, etc.),116

a CPU (with one or more cores), input peripherals (a keyboard and mouse) and output peripherals117

(display, printer or speakers.)118

1.1.1 Storage Systems119

Computer storage systems are used to hold the data and instructions for the CPU.120

Types of computer storage can be classified into two categories: volatile and non-volatile.121

~/rvalp/book/./intro/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 1 of 82

1.1. THE DIGITAL COMPUTER

1.1.1.1 Volatile Storage122

Volatile storage is characterized by the fact that it will lose its contents (forget) any time that it is123

powered off.124

One type of volatile storage is provided inside the CPU itself in small blocks called registers. These125

registers are used to hold individual data values that can be manipulated by the instructions that are126

executed by the CPU.127

Another type of volatile storage is main memory (sometimes called RAM) Main memory is connected128

to a computer’s CPU and is used to hold the data and instructions that can not fit into the CPU129

registers.130

Typically, a CPU’s registers can hold tens of data values while the main memory can contain many131

billions of data values.132

To keep track of the data values, each register is assigned a number and the main memory is broken133

up into small blocks called bytes that each assigned a number called an address (an address is often134

referred to as a location.135

A CPU can process data in a register at a speed that can be an order of magnitude faster than the136

rate that it can process (specifically, transfer data and instructions to and from) the main memory.137

Register storage costs an order of magnitude more to manufacture than main memory. While it is138

desirable to have many registers, the economics dictate that the vast majority of volatile computer139

storage be provided in its main memory. As a result, optimizing the copying of data between the140

registers and main memory is a desirable trait of good programs.141

1.1.1.2 Non-Volatile Storage142

Non-volatile storage is characterized by the fact that it will NOT lose its contents when it is powered143

off.144

Common types of non-volatile storage are disc drives, ROM flash cards and USB drives. Prices can145

vary widely depending on size and transfer speeds.146

It is typical for a computer system’s non-volatile storage to operate more slowly than its main memory.147

This text will focus on volatile storage.148

1.1.2 CPU149

The CPU is a collection of registers and circuitry designed to manipulate the register data and to ý Fix Me:
Add a block diagram of the
CPU components described
here.

150

exchange data and instructions with the main memory. The instructions that are read from the151

main memory tell the CPU to perform various mathematical and logical operations on the data in its152

registers and where to save the results of those operations.153

1.1.2.1 Execution Unit154

The part of a CPU that coordinates all aspects of the operations of each instruction is called the155

execution unit. It is what performs the transfers of instructions and data between the CPU and156

~/rvalp/book/./intro/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 2 of 82

1.1. THE DIGITAL COMPUTER

the main memory and tells the registers when they are supposed to either store or recall data being157

transferred. The execution unit also controls the ALU (Arithmetic and Logic Unit).158

1.1.2.2 Arithmetic and Logic Unit159

When an instruction manipulates data by performing things like an addition, subtraction, comparison160

or other similar operations , the ALU is what will calculate the sum, difference, and so on. . . under161

the control of the execution unit.162

1.1.2.3 Registers163

In the RV32 CPU there are 31 general purpose registers that each contain 32 bits (where each bit is164

one binary digit value of one or zero) and a number of special-purpose registers. Each of the general165

purpose registers is given a name such as x1, x2, . . . on up to x31 (general purpose refers to the166

fact that the CPU itself does not prescribe any particular function to any of these registers.) Two167

important special-purpose registers are x0 and pc.168

Register x0 will always represent the value zero or logical false no matter what. If any instruction169

tries to change the value in x0 the operation will fail. The need for zero is so common that, other170

than the fact that it is hard-wired to zero, the x0 register is made available as if it were otherwise a171

general purpose register.1172

The pc register is called the program counter. The CPU uses it to remember the memory address173

where its program instructions are located.174

The term XLEN refer to the width of an integer register in bits (either 32, 64, or 128.) The number175

of bits in each register is defined by the Instruction Set Architecture (ISA).176

1.1.2.4 Harts177

Analogous to a core in other types of CPUs, a hart (hardware thread) in a RISC-V CPU refers to the178

collection of 32 registers, instruction execution unit and ALU.[1, p. 20]179

When more than one hart is present in a CPU, a different stream of instructions can be executed180

on each hart all at the same time. Programs that are written to take advantage of this are called181

multithreaded.182

This text will primarily focus on CPUs that have only one hart.183

1.1.3 Peripherals184

A peripheral is a device that is not a CPU or main memory. They are typically used to transfer185

information/data into and out of the main memory.186

This text is not concerned with the peripherals of a computer system other than in sections where187

instructions are discussed with the purpose of addressing the needs of a peripheral device. Such188

instructions are used to initiate, execute and/or synchronize data transfers.189

1Having a special zero register allows the total set of instructions that the CPU can execute to be simplified. Thus
reducing its complexity, power consumption and cost.

~/rvalp/book/./intro/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 3 of 82

1.2. INSTRUCTION SET ARCHITECTURE

1.2 Instruction Set Architecture190

The catalog of rules that describes the details of the instructions and features that a given CPU191

provides is called an Instruction Set Architecture (ISA).192

An ISA is typically expressed in terms of the specific meaning of each binary instruction that a CPU193

can recognize and how it will process each one.194

The RISC-V ISA is defined as a set of modules. The purpose of dividing the ISA into modules is to195

allow an implementer to select which features to incorporate into a CPU design.[1, p. 4]196

Any given RISC-V implementation must provide one of the base modules and zero or more of the197

extension modules.[1, p. 4]198

1.2.1 RV Base Modules199

The base modules are RV32I (32-bit general purpose), RV32E (32-bit embedded), RV64I (64-bit200

general purpose) and RV128I (128-bit general purpose).[1, p. 4]201

These base modules provide the minimal functional set of integer operations needed to execute a202

useful application. The differing bit-widths address the needs of different main-memory sizes.203

This text primarily focuses on the RV32I base module and how to program it.204

1.2.2 Extension Modules205

RISC-V extension modules may be included by an implementer interested in optimizing a design for206

one or more purposes.[1, p. 4]207

Available extension modules include M (integer math), A (atomic), F (32-bit floating point), D (64-bit208

floating point), Q (128-bit floating point), C (compressed size instructions) and others.209

The extension name G is used to represent the combined set of IMAFD extensions as it is expected210

to be a common combination.211

1.3 How the CPU Executes a Program212

The process of executing a program is continuous repeats of a series of instruction cycles that are each213

comprised of a fetch, decode and execute phase.214

The current status of a CPU hart is entirely embodied in the data values that are stored in its registers215

at any moment in time. Of particular interest to an executing program is the pc register. The pc216

contains the memory address containing the instruction that the CPU is currently executing.2217

For this to work, the instructions to be executed must have been previously stored in adjacent main218

memory locations and the address of the first instruction placed into the pc register.219

2In the RISC-V ISA the pc register points to the current instruction where in most other designs, the pc register
points to the next instruction.

~/rvalp/book/./intro/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 4 of 82

1.3. HOW THE CPU EXECUTES A PROGRAM

1.3.1 Instruction Fetch220

In order to fetch an instruction from the main memory the CPU will update the address in the pc221

register and then request that the main memory return the value of the data stored at that address.222

3
223

1.3.2 Instruction Decode224

Once an instruction has been fetched, it must be inspected to determine what operation(s) are to225

be performed. This means inspecting the portions of the instruction that dictate which registers are226

involved and what that, if anything, ALU should do.227

1.3.3 Instruction Execute228

Typical instructions do things like add a number to the value currently stored in one of the registers229

or store the contents of a register into the main memory at some given address.230

Part of every instruction is a notion of what should be done next.231

Most of the time an instruction will complete by indicating that the CPU should proceed to fetch and232

execute the instruction at the next larger main memory address. In these cases the pc is incremented233

to point to the memory address after the current instruction.234

Any parameters that an instruction requires must either be part of the instruction itself or read from235

(or stored into) one or more of the general purpose registers.236

Some instructions can specify that the CPU proceed to execute an instruction at an address other237

than the one that follows itself. This class of instructions have names like jump and branch and are238

available in a variety of different styles.239

The RISC-V ISA uses the word jump to refer to an unconditional change in the sequential processing240

of instructions and the word branch to refer to a conditional change.241

Conditional branch instructions can be used to tell the CPU to do things like:242

If the value in x8 is currently less than the value in x24 then proceed to the instruction at243

the next main memory address, otherwise branch to an instruction at a different address.244

This type of instruction can therefore result in one of two different actions pending the result of the245

comparison.4246

Once the instruction execution phase has completed, the next instruction cycle will be performed247

using the new value in the pc register.248

3RV32I instructions are more than one byte in size, but this general description is suitable for now.
4This is the fundamental method used by a CPU to make decisions.

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 5 of 82

Chapter 2249

Numbers and Storage Systems250

This chapter discusses how data are represented and stored in a computer.251

In the context of computing, boolean refers to a condition that can be either true or false and binary252

refers to the use of a base-2 numeric system to represent numbers.253

RISC-V assembly language uses binary to represent all values, be they boolean or numeric. It is the254

context within which they are used that determines whether they are boolean or numeric.255

ý Fix Me:
Add some diagrams here
showing bits, bytes and the
MSB, LSB,. . . perhaps
relocated from the RV32I
chapter?

256

2.1 Boolean Functions257

Boolean functions apply on a per-bit basis. When applied to multi-bit values, each bit position is258

operated upon independent of the other bits.259

RISC-V assembly language uses zero to represent false and one to represent true. In general, however,260

it is useful to relax this and define zero and only zero to be false and anything that is not false is261

therefore true.1262

The reason for this relaxation is to describe the common case where the CPU processes data, multiple263

bits at-a-time.264

These groups have names like byte (8 bits), halfword (16 bits) and fullword (32 bits).265

2.1.1 NOT266

The NOT operator applies to a single operand and represents the opposite of the input. ý Fix Me:
Need to define unary, binary
and ternary operators
without confusing binary
operators with binary
numbers.

267

If the input is 1 then the output is 0. If the input is 0 then the output is 1. In other words, the output268

value is not that of the input value.269

Expressing the not function in the form of a truth table:270

1This is how true and false behave in C, C++, and many other languages as well as the common assembly language
idioms discussed in this text.

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 6 of 82

2.1. BOOLEAN FUNCTIONS

A A
0 1
1 0

271

A truth table is drawn by indicating all of the possible input values on the left of the vertical bar272

with each row displaying the output values that correspond to the input for that row. The column273

headings are used to define the illustrated operation expressed using a mathematical notation. The274

not operation is indicated by the presence of an overline.275

In computer programming languages, things like an overline can not be efficiently expressed using a276

standard keyboard. Therefore it is common to use a notation such as that used by the C language277

when discussing the NOT operator in symbolic form. Specifically the tilde: ‘~’.278

It is also uncommon to for programming languages to express boolean operations on single-bit input(s).279

A more generalized operation is used that applies to a set of bits all at once. For example, performing280

a not operation of eight bits at once can be illustrated as:281

~ 1 1 1 1 0 1 0 1 <== A282

-----------------283

0 0 0 0 1 0 1 0 <== output284

In a line of code the above might read like this: output = ~A285

2.1.2 AND286

The boolean and function has two or more inputs and the output is a single bit. The output is 1 if287

and only if all of the input values are 1. Otherwise it is 0.288

This function works like it does in spoken language. For example if A is 1 and B is 1 then the output289

is 1 (true). Otherwise the output is 0 (false).290

In mathematical notion, the and operator is expressed the same way as is multiplication. That is by a291

raised dot between, or by juxtaposition of, two variable names. It is also worth noting that, in base-2,292

the and operation actually is multiplication!293

A B AB
0 0 0
0 1 0
1 0 0
1 1 1

294

This text will use the operator used in the C language when discussing the and operator in symbolic295

form. Specifically the ampersand: ‘&’.296

An eight-bit example:297

1 1 1 1 0 1 0 1 <== A298

& 1 0 0 1 0 0 1 1 <== B299

-----------------300

1 0 0 1 0 0 0 1 <== output301

In a line of code the above might read like this: output = A & B302

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 7 of 82

2.1. BOOLEAN FUNCTIONS

2.1.3 OR303

The boolean or function has two or more inputs and the output is a single bit. The output is 1 if at304

least one of the input values are 1.305

This function works like it does in spoken language. For example if A is 1 or B is 1 then the output306

is 1 (true). Otherwise the output is 0 (false).307

In mathematical notion, the or operator is expressed using the plus (+).308

A B A+B
0 0 0
0 1 1
1 0 1
1 1 1

309

This text will use the operator used in the C language when discussing the or operator in symbolic310

form. Specifically the pipe: ‘|’.311

An eight-bit example:312

1 1 1 1 0 1 0 1 <== A313

| 1 0 0 1 0 0 1 1 <== B314

-----------------315

1 1 1 1 0 1 1 1 <== output316

In a line of code the above might read like this: output = A | B317

2.1.4 XOR318

The boolean exclusive or function has two or more inputs and the output is a single bit. The output319

is 1 if only an odd number of inputs are 1. Otherwise the output will be 0.320

Note that when xor is used with two inputs, the output is set to 1 (true) when the inputs have different321

values and 0 (false) when the inputs both have the same value.322

In mathematical notion, the xor operator is expressed using the plus in a circle (⊕).323

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

324

This text will use the operator used in the C language when discussing the xor operator in symbolic325

form. Specifically the carrot: ‘^’.326

An eight-bit example:327

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 8 of 82

2.2. INTEGERS AND COUNTING

Decimal Binary Hex
102 101 100 27 26 25 24 23 22 21 20 161 160

100 10 1 128 64 32 16 8 4 2 1 16 1

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 2 0 0 0 0 0 0 1 0 0 2
0 0 3 0 0 0 0 0 0 1 1 0 3
0 0 4 0 0 0 0 0 1 0 0 0 4
0 0 5 0 0 0 0 0 1 0 1 0 5
0 0 6 0 0 0 0 0 1 1 0 0 6
0 0 7 0 0 0 0 0 1 1 1 0 7
0 0 8 0 0 0 0 1 0 0 0 0 8
0 0 9 0 0 0 0 1 0 0 1 0 9
0 1 0 0 0 0 0 1 0 1 0 0 a
0 1 1 0 0 0 0 1 0 1 1 0 b
0 1 2 0 0 0 0 1 1 0 0 0 c
0 1 3 0 0 0 0 1 1 0 1 0 d
0 1 4 0 0 0 0 1 1 1 0 0 e
0 1 5 0 0 0 0 1 1 1 1 0 f
0 1 6 0 0 0 1 0 0 0 0 1 0
0 1 7 0 0 0 1 0 0 0 1 1 1

.
1 2 5 0 1 1 1 1 1 0 1 7 d
1 2 6 0 1 1 1 1 1 1 0 7 e
1 2 7 0 1 1 1 1 1 1 1 7 f
1 2 8 1 0 0 0 0 0 0 0 8 0

Figure 2.1: Counting in decimal, binary and hexadecimal.

1 1 1 1 0 1 0 1 <== A328

^ 1 0 0 1 0 0 1 1 <== B329

-----------------330

0 1 1 0 0 1 1 0 <== output331

In a line of code the above might read like this: output = A ^ B332

2.2 Integers and Counting333

A binary integer is constructed with only 1s and 0s in the same manner as decimal numbers are334

constructed with values from 0 to 9.335

Counting in binary (base-2) uses the same basic rules as decimal (base-10). The difference is when we336

consider that there are ten decimal digits and only two binary digits. Therefore, in base-10, we must337

carry when adding one to nine (because there is no digit representing a ten) and, in base-2, we must338

carry when adding one to one (because there is no digit representing a two.)339

Figure 2.1 shows an abridged table of the decimal, binary and hexadecimal values ranging from 010340

to 12810.341

One way to look at this table is on a per-row basis where each place value is represented by the342

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 9 of 82

2.2. INTEGERS AND COUNTING

base raised to the power of the place value position (shown in the column headings.) For example to343

interpret the decimal value on the fourth row:344

0× 102 + 0× 101 + 3× 100 = 310 (2.2.1)

Interpreting the binary value on the fourth row by converting it to decimal:345

0× 27 + 0× 26 + 0× 25 + 0× 24 + 0× 23 + 0× 22 + 1× 21 + 1× 20 = 310 (2.2.2)

Interpreting the hexadecimal value on the fourth row by converting it to decimal:346

0× 161 + 3× 160 = 310 (2.2.3)

We refer to the place values with the largest exponent (the one furthest to the left for any given base)347

as the most significant digit and the place value with the lowest exponent as the least significant348

digit. For binary numbers these are the Most Significant Bit (MSB) and Least Significant Bit (LSB)349

respectively.2350

Another way to look at this table is on a per-column basis. When tasked with drawing such a table by351

hand, it might be useful to observe that, just as in decimal, the right-most column will cycle through352

all of the values represented in the chosen base then cycle back to zero and repeat. (For example, in353

binary this pattern is 0-1-0-1-0-1-0-. . .) The next column in each base will cycle in the same manner354

except each of the values is repeated as many times as is represented by the place value (in the case355

of decimal, 101 times, binary 21 times, hex 161 times. Again, the binary numbers for this pattern are356

0-0-1-1-0-0-1-1-. . .) This continues for as many columns as are needed to represent the magnitude of357

the desired number.358

Another item worth noting is that any even binary number will always have a 0 LSB and odd numbers359

will always have a 1 LSB.360

As is customary in decimal, leading zeros are sometimes not shown for readability.361

The relationship between binary and hex values is also worth taking note. Because 24 = 16, there is362

a clean and simple grouping of 4 bits to 1 hit (aka nybble). There is no such relationship between363

binary and decimal.364

Writing and reading numbers in binary that are longer than 8 bits is cumbersome and prone to error.365

The simple conversion between binary and hex makes hex a convenient shorthand for expressing binary366

values in many situations.367

For example, consider the following value expressed in binary, hexadecimal and decimal (spaced to368

show the relationship between binary and hex):369

Binary value: 0010 0111 1011 1010 1100 1100 1111 0101370

Hex Value: 2 7 B A C C F 5371

Decimal Value: 666553589372

Empirically we can see that grouping the bits into sets of four allows an easy conversion to hex and373

2Changing the value of the MSB will have a more significant impact on the numeric value than changing the value
of the LSB.

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 10 of 82

2.2. INTEGERS AND COUNTING

expressing it as such is 1
4 as long as in binary while at the same time allowing for easy conversion374

back to binary.375

The decimal value in this example does not easily convey a sense of the binary value.376

In programming languages like the C, its derivatives and RISC-V assembly, numeric values
are interpreted as decimal unless they start with a zero (0). Numbers that start with 0 are
interpreted as octal (base-8), numbers starting with 0x are interpreted as hexadecimal and
numbers that start with 0b are interpreted as binary.

377

2.2.1 Converting Between Bases378

2.2.1.1 From Binary to Decimal379

It is occasionally necessary to convert between decimal, binary and/or hex.380

To convert from binary to decimal, put the decimal value of the place values . . . 8, 4, 2, 1 over the381

binary digits like this:382

Base-2 place values: 128 64 32 16 8 4 2 1383

Binary: 0 0 0 1 1 0 1 1384

Decimal: 16 +8 +2 +1 = 27385

Now sum the place-values that are expressed in decimal for each bit with the value of 1: 16+8+2+1.386

The integer binary value 000110112 represents the decimal value 2710.387

2.2.1.2 From Binary to Hexadecimal388

Conversion from binary to hex involves grouping the bits into sets of four and then performing the389

same summing process as shown above. If there is not a multiple of four bits then extend the binary390

to the left with zeros to make it so.391

Grouping the bits into sets of four and summing:392

Base-2 place values: 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1393

Binary: 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0394

Decimal: 4+2 =6 8+4+ 1=13 8+ 2 =10 8+4+2 =14395

After the summing, convert each decimal value to hex. The decimal values from 0–9 are the same396

values in hex. Because we don’t have any more numerals to represent the values from 10-15, we use the397

first 6 letters (See the right-most column of Figure 2.1.) Fortunately there are only six hex mappings398

involving letters. Thus it is reasonable to memorize them.399

Continuing this example:400

Decimal: 6 13 10 14401

Hex: 6 D A E402

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 11 of 82

2.2. INTEGERS AND COUNTING

2.2.1.3 From Hexadecimal to Binary403

The four-bit mapping between binary and hex makes this task as straight forward as using a look-up404

table to translate each hit (Hex digIT) it to its unique four-bit pattern.405

Perform this task either by memorizing each of the 16 patterns or by converting each hit to decimal406

first and then converting each four-bit binary value to decimal using the place-value summing method407

discussed in section 2.2.1.1.408

For example:409

Hex: 7 C410

Decimal Sum: 4+2+1=7 8+4 =12411

Binary: 0 1 1 1 1 1 0 0412

2.2.1.4 From Decimal to Binary413

To convert arbitrary decimal numbers to binary, extend the list of binary place values until it exceeds414

the value of the decimal number being converted. Then make successive subtractions of each of the415

place values that would yield a non-negative result.416

For example, to convert 123410 to binary:417

Base-2 place values: 2048-1024-512-256-128-64-32-16-8-4-2-1418

419

0 2048 (too big)420

1 1234 - 1024 = 210421

0 512 (too big)422

0 256 (too big)423

1 210 - 128 = 82424

1 82 - 64 = 18425

0 32 (too big)426

1 18 - 16 = 2427

0 8 (too big)428

0 4 (too big)429

1 2 - 2 = 0430

0 1 (too big)431

The answer using this notation is listed vertically in the left column with the MSB on the top and432

the LSB on the bottom line: 0100110100102.433

2.2.1.5 From Decimal to Hex434

Conversion from decimal to hex can be done by using the place values for base-16 and the same math435

as from decimal to binary or by first converting the decimal value to binary and then from binary to436

hex by using the methods discussed above.437

Because binary and hex are so closely related, performing a conversion by way of binary is straight438

forward.439

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 12 of 82

2.2. INTEGERS AND COUNTING

2.2.2 Addition of Binary Numbers440

The addition of binary numbers can be performed long-hand the same way decimal addition is taught441

in grade school. In fact binary addition is easier since it only involves adding 0 or 1.442

The first thing to note that in any number base 0 + 0 = 0, 0 + 1 = 1, and 1 + 0 = 1. Since there is no443

“two” in binary (just like there is no “ten” decimal) adding 1 + 1 results in a zero with a carry as in:444

1 + 1 = 102 and in: 1 + 1 + 1 = 112. Using these five sums, any two binary integers can be added.445

This truth table shows what is called a Full Addr. A full addr is a function that can add three input446

bits (the two addends and a carry value from a “prior column”) and produce the sum and carry output447

values.3448

ci a b co sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

449

Adding two unsigned binary numbers using 16 full adders:450

111111 1111 <== carries451

0110101111001111 <== addend452

+ 0000011101100011 <== addend453

------------------454

0111001100110010 <== sum455

Note that the carry “into” the LSB is zero.456

2.2.3 Signed Numbers457

There are multiple methods used to represent signed binary integers. The method used by most458

modern computers is called two’s complement.459

A two’s complement number is encoded in such a manner as to simplify the hardware used to add,460

subtract and compare integers.461

A simple method of thinking about two’s complement numbers is to negate the place value of the462

MSB. For example, the number one is represented the same as discussed before:463

Base-2 place values: -128 64 32 16 8 4 2 1464

Binary: 0 0 0 0 0 0 0 1465

The MSB of any negative number in this format will always be 1. For example the value −110 is:466

3Note that the sum could be expressed in Boolean Algebra as: sum = ci⊕ a⊕ b

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 13 of 82

2.2. INTEGERS AND COUNTING

Base-2 place values: -128 64 32 16 8 4 2 1467

Binary: 1 1 1 1 1 1 1 1468

. . . because: −128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = −1.469

This format has the virtue of allowing the same addition logic discussed above to be used to calculate470

the sums of signed numbers as unsigned numbers.471

Calculating the signed addition: 4 + 5 = 9472

1 <== carries473

000100 <== 4 = 0 + 0 + 0 + 4 + 0 + 0474

+000101 <== 5 = 0 + 0 + 0 + 4 + 0 + 1475

-------476

001001 <== 9 = 0 + 0 + 8 + 0 + 0 + 1477

Calculating the signed addition: −4 +−5 = −9478

1 11 <== carries479

111100 <== -4 = -32 + 16 + 8 + 4 + 0 + 0480

+111011 <== -5 = -32 + 16 + 8 + 0 + 2 + 1481

---------482

1 110111 <== -9 (with a truncation) = -32 + 16 + 4 + 2 + 1 = -9483

Calculating the signed addition: −1 + 1 = 0484

-128 64 32 16 8 4 2 1 <== place value485

1 1 1 1 1 1 1 1 <== carries486

1 1 1 1 1 1 1 1 <== addend (-1)487

+ 0 0 0 0 0 0 0 1 <== addend (1)488

----------------------489

1 0 0 0 0 0 0 0 0 <== sum (0 with a truncation)490

In order for this to work, the carry out of the sum of the MSBs must be discarded.491

2.2.3.1 Converting between Positive and Negative492

Changing the sign on two’s complement numbers can be described as inverting all of the bits (which493

is also known as the one’s complement) and then add one.494

For example, negating the number four:495

-128 64 32 16 8 4 2 1

0 0 0 0 0 1 0 0 <== 4

1 1 <== carries

1 1 1 1 1 0 1 1 <== one’s complement of 4

+ 0 0 0 0 0 0 0 1 <== plus 1

1 1 1 1 1 1 0 0 <== -4

496

This can be verified by adding 5 to the result and observe that the sum is 1:497

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 14 of 82

2.2. INTEGERS AND COUNTING

-128 64 32 16 8 4 2 1498

1 1 1 1 1 1 <== carries499

1 1 1 1 1 1 0 0 <== -4500

+ 0 0 0 0 0 1 0 1 <== 5501

----------------------502

1 0 0 0 0 0 0 0 1 <== 1 (with a truncation)503

Note that the changing of the sign using this method is symmetric in that it is identical when converting504

from negative to positive and when converting from positive to negative: flip the bits and add 1.505

For example, changing the value -4 to 4 to illustrate the reverse of the conversion above:506

-128 64 32 16 8 4 2 1507

1 1 1 1 1 1 0 0 <== -4508

509

1 1 <== carries510

0 0 0 0 0 0 1 1 <== one’s complement of -4511

+ 0 0 0 0 0 0 0 1 <== plus 1512

----------------------513

0 0 0 0 0 1 0 0 <== 4514

2.2.4 Subtraction of Binary Numbers515

Subtraction of binary numbers is performed by first negating the subtrahend and then adding the two ý Fix Me:
This section needs more
examples of subtracting
signed an unsigned numbers
and a discussion on how
signedness is not relevant
until the results are
interpreted. For example
adding −4 + −8 = −12
using two 8-bit numbers is
the same as adding
252 + 248 = 500 and
truncating the result to 244.

516

numbers. Due to the nature of two’s complement numbers this method will work for both signed and517

unsigned numbers!518

Observation: Since we always have a carry-in of zero into the LSB when adding, we can take advantage519

of that fact by (ab)using that carry input to perform that adding the extra 1 to the subtrahend as520

part of changing its sign in the examples below.521

An example showing the subtraction of two signed binary numbers: −4− 8 = −12522

-128 64 32 16 8 4 2 1523

1 1 1 1 1 1 0 0 <== -4 (minuend)524

- 0 0 0 0 1 0 0 0 <== 8 (subtrahend)525

------------------------526

527

528

1 1 1 1 1 1 1 1 1 <== carries529

1 1 1 1 1 1 0 0 <== -4530

+ 1 1 1 1 0 1 1 1 <== one’s complement of 8531

------------------------532

1 1 1 1 1 0 1 0 0 <== -12533

2.2.5 Truncation534

Discarding the carry bit that can be generated from the MSB is called truncation.535

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 15 of 82

2.2. INTEGERS AND COUNTING

So far we have been ignoring the carries that can come from the MSBs when adding and subtracting.536

We have also been ignoring the potential impact of a carry causing a signed number to change its sign537

in an unexpected way.538

In the examples above, truncating the results either had 1) no impact on the calculated sums or 2)539

was absolutely necessary to correct the sum in cases such as: −4 + 5.540

For example, note what happens when we try to subtract 1 from the most negative value that we can541

represent in a 4 bit two’s complement number:542

-8 4 2 1543

1 0 0 0 <== -8 (minuend)544

- 0 0 0 1 <== 1 (subtrahend)545

------------546

547

548

1 1 <== carries549

1 0 0 0 <== -8550

+ 1 1 1 0 <== one’s complement of 1551

----------552

1 0 1 1 1 <== this SHOULD be -9 but with truncation it is 7553

The problem with this example is that we can not represent −910 using a 4-bit two’s complement554

number.555

Granted, if we would have used 5 bit numbers, then the “answer” would have fit OK. But the same556

problem would return when trying to calculate −16 − 1. So simply “making more room” does not557

solve this problem.558

This is not just a problem when subtracting, nor is it just a problem with signed numbers.559

The same situation can happen unsigned numbers. For example:560

8 4 2 1561

1 1 1 0 0 <== carries562

1 1 1 0 <== 14 (addend)563

+ 0 0 1 1 <== 3 (addend)564

------------565

1 0 0 0 1 <== this SHOULD be 17 but with truncation it is 1566

How to handle such a truncation depends on whether the original values being added are signed or567

unsigned.568

The RV ISA refers to the discarding the carry out of the MSB after an add (or subtract) of two569

unsigned numbers as an unsigned overflow4 and the situation where carries create an incorrect sign in570

the result of adding (or subtracting) two signed numbers as a signed overflow. [1, p. 13]571

2.2.5.1 Unsigned Overflow572

When adding unsigned numbers, an overflow only occurs when there is a carry out of the MSB resulting573

in a sum that is truncated to fit into the number of bits allocated to contain the result.574

4Most microprocessors refer to unsigned overflow simply as a carry condition.

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 16 of 82

2.2. INTEGERS AND COUNTING

Figure 2.2 illustrates an unsigned overflow during addition:575

1 1 1 1 0 0 0 0 0 <== carries

1 1 1 1 0 0 0 0 <== 240

+ 0 0 0 1 0 0 0 1 <== 17

1 0 0 0 0 0 0 0 1 <== sum = 1

Figure 2.2: 240 + 17 = 1 (overflow)

Some times an overflow like this is referred to as a wrap around because of the way that successive576

additions will result in a value that increases until it wraps back around to zero and then returns to577

increasing in value until it, again, wraps around again.578

When adding, unsigned overflow occurs when ever there is a carry out of the most significant
bit.

579

When subtracting unsigned numbers, an overflow only occurs when the subtrahend is greater than580

the minuend (because in those cases the different would have to be negative and there are no negative581

values that can be represented with an unsigned binary number.)582

Figure 2.3 illustrates an unsigned overflow during subtraction:583

0 0 0 0 0 0 1 1 <== 3 (minuend)

- 0 0 0 0 0 1 0 0 <== 4 (subtrahend)

0 0 0 0 0 0 1 1 1 <== carries

0 0 0 0 0 0 1 1 <== 3

+ 1 1 1 1 1 0 1 1 <== one’s complement of 4

1 1 1 1 1 1 1 1 <== 255 (overflow)

Figure 2.3: 3− 4 = 255 (overflow)

When subtracting, unsigned overflow occurs when ever there is not a carry out of the most
significant bit (IFF the carry-in on the LSB is used to add the extra 1 to the subtrahend when
changing its sign.)

584

2.2.5.2 Signed Overflow585

When adding signed numbers, an overflow only occurs when the two addends are positive and sum is586

negative or the addends are both negative and the sum is positive.587

When subtracting signed numbers, an overflow only occurs when the minuend is positive and the588

subtrahend is negative and difference is negative or when the minuend is negative and the subtrahend589

is positive and the difference is positive.5590

5I had to look it up to remember which were which too. . . it is: minuend - subtrahend = difference.[13]

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 17 of 82

2.2. INTEGERS AND COUNTING

Consider the results of the addition of two signed numbers while looking more closely at the carry591

values.592

0 1 0 0 0 0 0 0 0 <== carries

0 1 0 0 0 0 0 0 <== 64

+ 0 1 0 0 0 0 0 0 <== 64

1 0 0 0 0 0 0 0 <== sum = -128

Figure 2.4: 64 + 64 = −128 (overflow)

Figure 2.4 is an example of signed overflow. As shown, the problem is that the sum of two positive593

numbers has resulted in an obviously incorrect negative result due to a carry flowing into the sign-bit594

in the MSB.595

Granted, if the same values were added using values larger than 8-bits then the sum would have been596

correct. However, these examples assume that all the operations are performed on (and results stored597

into) 8-bit values. Given any finite-number of bits, there are values that could be added such that an598

overflow occurs.599

Figure 2.5 shows another overflow situation that is caused by the fact that there is nowhere for the600

carry out of the sign-bit to go. We say that this result has been truncated.601

1 0 0 0 0 0 0 0 0 <== carries

1 0 0 0 0 0 0 0 <== -128

+ 1 0 0 0 0 0 0 0 <== -128

0 0 0 0 0 0 0 0 <== sum = 0

Figure 2.5: −128 +−128 = 0 (overflow)

Truncation is not necessarily a problem. Consider the truncations in figures 2.6 and 2.7. Figure 2.7602

demonstrates the importance of discarding the carry from the sum of the MSBs of signed numbers603

when addends do not have the same sign.604

1 1 1 1 1 1 1 1 0 <== carries

1 1 1 1 1 1 0 1 <== -3

+ 1 1 1 1 1 0 1 1 <== -5

1 1 1 1 1 0 0 0 <== sum = -8

Figure 2.6: −3 +−5 = −8

1 1 1 1 1 1 1 0 0 <== carries

1 1 1 1 1 1 1 0 <== -2

+ 0 0 0 0 1 0 1 0 <== 10

0 0 0 0 1 0 0 0 <== sum = 8

Figure 2.7: −2 + 10 = 8

Just like an unsigned number can wrap around as a result of successive additions, a signed number605

can so the same thing. The only difference is that signed numbers won’t wrap from the maximum606

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 18 of 82

2.3. SIGN AND ZERO EXTENSION

value back to zero, instead it will wrap from the most positive to the most negative value as shown607

in Figure 2.8.608

0 1 1 1 1 1 1 1 0 <== carries

0 1 1 1 1 1 1 1 <== 127

+ 0 0 0 0 0 0 0 1 <== 1

1 0 0 0 0 0 0 0 <== sum = -128

Figure 2.8: 127 + 1 = −128

Formally, a signed overflow occurs when ever the carry into the most significant bit is not the
same as the carry out of the most significant bit.

609

2.3 Sign and Zero Extension610

Due to the nature of the two’s complement encoding scheme, the following numbers all represent the611

same value:612

1111 <== -1613

11111111 <== -1614

11111111111111111111 <== -1615

1111111111111111111111111111 <== -1616

As do these:617

01100 <== 12618

0000001100 <== 12619

00000000000000000000000000000001100 <== 12620

The lengthening of these numbers by replicating the digits on the left is what is called sign extension.621

Any signed number can have any quantity of additional MSBs added to it, provided that they
repeat the value of the sign bit.

622

Figure 2.9 illustrates extending the negative sign bit to the left by replicating it. A negative number623

will have its MSB (bit 19 in this example) set to 1. Extending this value to the left will set all the624

new bits to the left of it to 1 as well.625

19 0

20

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

31 0

32

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 2.9: Sign-extending a negative integer from 20 bits to 32 bits.

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 19 of 82

2.4. SHIFTING

Figure 2.10 illustrates extending the sign bit of a positive number to the left by replicating it. A626

positive number will have its MSB set to 0. Extending this value to the left will set all the new bits627

to the left of it to 0 as well.628

19 0

20

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

31 0

32

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 2.10: Sign-extending a positive integer from 20 bits to 32 bits.

In a similar vein, any unsigned number also may have any quantity of additional MSBs added to it629

provided that they are all zero. This is called zero extension. For example, the following all represent630

the same value:631

1111 <== 15632

01111 <== 15633

00000000000000000000000001111 <== 15634

Any unsigned number may be zero extended to any size.
635

Figure 2.11 illustrates zero-extending a 20-bit number to the left to form a 32-bit number. ý Fix Me:
Remove the sign-bit boxes
from this figure?

636

19 0

20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

31 0

32

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 2.11: Zero-extending an unsigned integer from 20 bits to 32 bits.

2.4 Shifting637

We were all taught how to multiply and divide decimal numbers by ten by moving (or shifting) the638

decimal point to the right or left respectively. Doing the same in any other base has the same effect639

in that it will multiply or divide the number by its base.640

Multiplication and division are only two reasons for shifting. There can be other occasions where ý Fix Me:
Include decimal values in the
shift diagrams.

641

doing so is useful.642

As implemented by a CPU, shifting applies to the value in a register and the results stored back into643

a register of finite size. Therefore a shift result will always be truncated to fit into a register.644

Note that when dealing with numeric values, any truncation performed during a right-shift will man- ý Fix Me:
Add some examples showing
the rounding of positive and
negative values.

645

ifest itself as rounding toward zero.646

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 20 of 82

2.5. MAIN MEMORY STORAGE

2.4.1 Logical Shifting647

Shifting logically to the left or right is a matter of re-aligning the bits in a register and truncating the648

result.649

To shift left two positions: ý Fix Me:
Redraw these with arrows
tracking the shifted bits and
the truncated values

650

19 0

20

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
651

19 0

20

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
652

To shift right one position:653

19 0

20

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
654

19 0

20

0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
655

Note that the vacated bit positions are always filled with zero.
656

2.4.2 Arithmetic Shifting657

Some times it is desirable to retain the value of the sign bit when shifting. The RISC-V ISA provides658

an arithmetic right shift instruction for this purpose (there is no arithmetic left shift for this ISA.)659

When shifting to the right arithmetically, vacated bit positions are filled by replicating the
value of the sign bit.

660

An arithmetic right shift of a negative number by 4 bit positions:661

19 0

20

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
662

19 0

20

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
663

2.5 Main Memory Storage664

As mentioned in section 1.1.1.1, the main memory in a RISC-V system is byte-addressable. For that665

reason we will visualize it by displaying ranges of bytes displayed in hex and in ASCII. As will become666

obvious, the ASCII part makes it easier to find text messages.6667

6Most of the memory dumps in this text are generated by rvddt and are shown on a per-byte basis without any
attempt to reorder their values. Some other applications used to dump memory do not dump the bytes in address-order!
It is important to know how your software tools operate when using them to dump the contents of memory and/or files.

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 21 of 82

2.5. MAIN MEMORY STORAGE

2.5.1 Memory Dump668

Listing 2.1 shows a memory dump from the rvddt ‘d’ command requesting a dump starting at address669

0x00002600 for the default quantity (0x100) of bytes.670

Listing 2.1: rvddt_memdump.out
rvddt memory dump

671

1 ddt > d 0x00002600672

2 00002600: 93 05 00 00 13 06 00 00 93 06 00 00 13 07 00 00 *................*673

3 00002610: 93 07 00 00 93 08 d0 05 73 00 00 00 63 54 05 02 *........s...cT..*674

4 00002620: 13 01 01 ff 23 24 81 00 13 04 05 00 23 26 11 00 *....#$......#&..*675

5 00002630: 33 04 80 40 97 00 00 00 e7 80 40 01 23 20 85 00 *3..@......@.# ..*676

6 00002640: 6f 00 00 00 6f 00 00 00 b7 87 00 00 03 a5 07 43 *o...o..........C*677

7 00002650: 67 80 00 00 00 00 00 00 76 61 6c 3d 00 00 00 00 *g....... val =....*678

8 00002660: 00 00 00 00 80 84 2e 41 1f 85 45 41 80 40 9a 44 *.......A..EA.@.D*679

9 00002670: 4f 11 f3 c3 6e 8a 67 41 20 1b 00 00 20 1b 00 00 *O...n.gA*680

10 00002680: 44 1b 00 00 14 1b 00 00 14 1b 00 00 04 1c 00 00 *D...............*681

11 00002690: 44 1b 00 00 14 1b 00 00 04 1c 00 00 14 1b 00 00 *D...............*682

12 000026 a0: 44 1b 00 00 10 1b 00 00 10 1b 00 00 10 1b 00 00 *D...............*683

13 000026 b0: 04 1c 00 00 54 1f 00 00 54 1f 00 00 d4 1f 00 00 *....T...T.......*684

14 000026 c0: 4c 1f 00 00 4c 1f 00 00 34 20 00 00 d4 1f 00 00 *L...L...4*685

15 000026 d0: 4c 1f 00 00 34 20 00 00 4c 1f 00 00 d4 1f 00 00 *L...4 ..L.......*686

16 000026 e0: 48 1f 00 00 48 1f 00 00 48 1f 00 00 34 20 00 00 *H...H...H...4 ..*687

17 000026 f0: 00 01 02 02 03 03 03 03 04 04 04 04 04 04 04 04 *................*688
689

` 1 The rvddt prompt showing the dump command.690

` 2 From left to right. the dump is presented as the address of the first byte (0x00002600) followed691

by a colon, the value of the byte at address 0x00002600 expressed in hex, the next byte (at692

address 0x00002601) and so on for 16 bytes. There is a double-space between the 7th and 8th693

bytes to help provide a visual reference for the center to make it easy to locate bytes on the right694

end. For example, the byte at address 0x0000260c is four bytes to the right of byte number695

eight (at the gap) and contains 0x13. To the right of the 16-bytes is an asterisk-enclosed set of696

16 columns showing the ASCII characters that each byte represents. If a byte has a value that697

corresponds to a printable character code, the character will be displayed. For any illegal/un-698

displayable byte values, a dot is shown to make it easier to count the columns.699

` 3-17 More of the same as seen on ` 2. The address at the left can be seen to advance by 1610 (or700

1016) for each line shown.701

2.5.2 Endianness702

The choice of which end of a multi-byte value is to be stored at the lowest byte address is referred to as703

endianness. For example, if a CPU were to store a halfword into memory, should the byte containing704

the Most Significant Bit (MSB) (the big end) go first or does the byte with the Least Significant Bit705

(LSB) (the little end) go first?706

On the one hand the choice is arbitrary. On the other hand, it is possible that the choice could impact707

the performance of the system.7708

IBM mainframe CPUs and the 68000 family store their bytes in big-endian order. While the Intel709

Pentium and most embedded processors use little-endian order. Some CPUs are even bi-endian in710

that they have instructions that can change their order on the fly.711

The RISC-V system uses the little-endian byte order.712

7See[14] for some history of the big/little-endian “controversy.”

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 22 of 82

2.5. MAIN MEMORY STORAGE

2.5.2.1 Big-Endian713

Using the contents of Listing 2.1, a big-endian CPU would interpret the contents as follows:714

• The 8-bit value read from address 0x00002658 would be 0x76.715

• The 8-bit value read from address 0x00002659 would be 0x61.716

• The 8-bit value read from address 0x0000265a would be 0x6c.717

• The 8-bit value read from address 0x0000265b would be 0x3d.718

• The 16-bit value read from address 0x00002658 would be 0x7661.719

• The 16-bit value read from address 0x0000265a would be 0x6c3d.720

• The 32-bit value read from address 0x00002658 would be 0x76616c3d.721

Notice that in a big-endian system, the place values of the bits comprising the 0x76 (located at memory722

address 0x00002658) are different depending on the number of bytes representing the value that is723

being read.724

For example, when a 16-bit value is read from 0x00002658 then the 76 represents the binary place725

values: 215 to 28. When a 32-bit value is read then the 76 represents the binary place values: 231 to726

224. In other words the value read from the first memory location (with the lowest address), of the727

plurality of addresses containing the complete value being read, is always placed on the left end, into728

the Most Significant Bits. One might dare say that the 76 is placed at the end with the big place729

values.730

More examples:731

• An 8-bit value read from address 0x00002624 would be 0x23.732

• An 8-bit value read from address 0x00002625 would be 0x24.733

• An 8-bit value read from address 0x00002626 would be 0x81.734

• An 8-bit value read from address 0x00002627 would be 0x00.735

• A 16-bit value read from address 0x00002624 would be 0x2324.736

• A 16-bit value read from address 0x00002626 would be 0x8100.737

• A 32-bit value read from address 0x00002624 would be 0x23248100.738

Again, notice that the byte from memory address 0x00002624 , regardless of the number of bytes739

comprising the complete value being fetched, will always appear on the left/big end of the final value.740

On a big-endian system, the bytes in the dump are in the same order as they would be used
by the CPU if it were to read them as a multi-byte value.

741

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 23 of 82

2.5. MAIN MEMORY STORAGE

2.5.2.2 Little-Endian742

Using the contents of Listing 2.1, a little-endian CPU would interpret the contents as follows:743

• An 8-bit value read from address 0x00002658 would be 0x76.744

• An 8-bit value read from address 0x00002659 would be 0x61.745

• An 8-bit value read from address 0x0000265a would be 0x6c.746

• An 8-bit value read from address 0x0000265b would be 0x3d.747

• A 16-bit value read from address 0x00002658 would be 0x6176.748

• A 16-bit value read from address 0x0000265a would be 0x3d6c.749

• A 32-bit value read from address 0x00002658 would be 0x3d6c6176.750

Notice that in a little-endian system, the place values of the bits comprising the 0x76 (located at751

memory address 0x00002658) are the same regardless of the the number of bytes representing the752

value that is being read.753

Unlike the behavior of a big-endian machine, when little-endian machine reads a 16-bit value from754

0x00002658 the 76 represents the binary place values from 27 to 20. When a 32-bit value is read755

then the 76 (still) represents the binary place values from 27 to 20. In other words the value read756

from the first memory location (with the lowest address), of the plurality of addresses containing the757

complete value being read, is always placed on the right end, into the Least Significant Bits. One758

might say that the 76 is placed at the end with the little place values.759

Also notice that it is the bytes are what are “reversed” in a little-endian system (not the hex digits.)760

More examples:761

• The 8-bit value read from address 0x00002624 would be 0x23.762

• The 8-bit value read from address 0x00002625 would be 0x24.763

• The 8-bit value read from address 0x00002626 would be 0x81.764

• The 8-bit value read from address 0x00002627 would be 0x00.765

• The 16-bit value read from address 0x00002624 would be 0x2423.766

• The 16-bit value read from address 0x00002626 would be 0x0081.767

• The 32-bit value read from address 0x00002624 would be 0x00812423.768

As above, notice that the byte from memory address 0x00002624 , regardless of the number of bytes769

comprising the complete value being fetched, will always appear on the right/little end of the final770

value.771

On a little-endian system, the bytes in the dump are in reverse order as they would be used
by the CPU if it were to read them as a multi-byte value.

772

In the RISC-V ISA it is noted that773

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 24 of 82

2.5. MAIN MEMORY STORAGE

A minor point is that we have also found little-endian memory systems to be more natural774

for hardware designers. However, certain application areas, such as IP networking, operate775

on big-endian data structures, and so we leave open the possibility of non-standard big-776

endian or bi-endian systems.”[1, p. 6]777

2.5.3 Arrays and Character Strings778

While Endianness defines how single values are stored in memory, the array defines how multiple779

values are stored.780

An array is a data structure comprised of an ordered set of elements. This text will limit its definition781

of array to a plurality of elements that are all of the same type. Where type refers to the size (number782

of bytes) and representation (signed, unsigned,. . .) of each element.783

In an array, the elements are stored adjacent to one another such that the address e of any element784

x[n] is:785

e = a + n ∗ s (2.5.1)

Where x is the name of the array, n is the element number of interest, e is the address of interest, a786

is the address of the first element in the array and s is the size (in bytes) of each element.787

Given an array x containing m elements, x[0] is the first element of the array and x[m− 1] is the last788

element of the array.8789

Using this definition, and the memory dump shown in Listing 2.1, and the knowledge that we are790

using a little-endian machine and given that a = 0x00002656 and s = 2, the values of the first 8791

elements of array x are:792

• x[0] is 0x0000 and is stored at 0x00002656.793

• x[1] is 0x6176 and is stored at 0x00002658.794

• x[2] is 0x3d6c and is stored at 0x0000265a.795

• x[3] is 0x0000 and is stored at 0x0000265c.796

• x[4] is 0x0000 and is stored at 0x00002660.797

• x[5] is 0x0000 and is stored at 0x00002662.798

• x[6] is 0x8480 and is stored at 0x00002664.799

• x[7] is 0x412e and is stored at 0x00002666.800

In general, there is no fixed rule nor notion as to how many elements an array has. It is up to
the programmer to ensure that the starting address and the number of elements in any given
array (its size) are used properly so that data bytes outside an array are not accidentally used
as elements.

801

8Some computing languages (C, C++, Java, C#, Python, Perl,. . .) define an array such that the first element is
indexed as x[0]. While others (FORTRAN, MATLAB) define the first element of an array to be x[1].

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 25 of 82

2.5. MAIN MEMORY STORAGE

There is, however, a common convention used for an array of characters that is used to hold a text802

message (called a character string or just string).803

When an array is used to hold a string the element past the last character in the string is set to zero.804

This is because 1) zero is not a valid printable ASCII character and 2) it simplifies software in that805

knowing no more than the starting address of a string is all that is needed to processes it. Without806

this zero sentinel value (called a null terminator), some knowledge of the number of characters in the807

string would have to otherwise be conveyed to any code needing to consume or process the string.808

In Listing 2.1, the 5-byte long array starting at address 0x00002658 contains a string whose value can809

be expressed as either:810

76 61 6c 3d 00811

or812

"val="813

When the double-quoted text form is used, the GNU assembler used in this text differentiates between814

ascii and asciiz strings such that an ascii string is not null terminated and an asciiz string is null815

terminated.816

The value of providing a method to create a string that is not null terminated is that a program may817

define a large string by concatenating a number of ascii strings together and following the last with818

a byte of zero to null-terminate it.819

It is a common mistake to create a string with a missing null terminator. The result of printing such820

a string is that the string will be printed as well as whatever random data bytes in memory follow it821

until a byte whose value is zero is encountered by chance.822

2.5.4 Context is Important!823

Data values can be interpreted differently depending on the context in which they are used. Assuming824

what a set of bytes is used for based on their contents can be very misleading! For example, there is825

a 0x76 at address 0x00002658. This is a ‘v’ is you use it as an ASCII (see Appendix C) character, a826

11810 if it is an integer value and TRUE if it is a conditional.827

2.5.5 Alignment828

With respect to memory and storage, alignment refers to the location of a data element when the ý Fix Me:
Include the obligatory
diagram showing the
overlapping data types when
they are all aligned.

829

address that it is stored is a precise multiple of a power-of-2.830

The primary alignments of concern are typically 2 (a halfword), 4 (a fullword), 8 (a double word) and831

16 (a quad-word) bytes.832

For example, any data element that is aligned to 2-byte boundary must have an (hex) address that833

ends in any of: 0, 2, 4, 6, 8, A, C or E. Any 4-byte aligned element must be located at an address834

ending in 0, 4, 8 or C. An 8-byte aligned element at an address ending with 0 or 8, and 16-byte aligned835

elements must be located at addresses ending in zero.836

Such alignments are important when exchanging data between the CPU and memory because the837

hardware implementations are optimized to transfer aligned data. Therefore, aligning data used by838

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 26 of 82

2.5. MAIN MEMORY STORAGE

any program will reap the benefit of running faster.9839

An element of data is considered to be aligned to its natural size when its address is an exact multiple840

of the number of bytes used to represent the data. Note that the ISA we are concerned with only841

operates on elements that have sizes that are powers of two.842

For example, a 32-bit integer consumes one full word. If the four bytes are stored in main memory at843

an address than is a multiple of 4 then the integer is considered to naturally aligned.844

The same would apply to 16-bit, 64-bit, 128-bit and other such values as they fit into 2, 8 and 16 byte845

elements respectively.846

Some CPUs can deliver four (or more) bytes at the same time while others might only be capable847

of delivering one or two bytes at a time. Such differences in hardware typically impact the cost and848

performance of a system.10
849

2.5.6 Instruction Alignment850

The RISC-V ISA requires that all instructions be aligned to their natural boundaries.851

Every possible instruction that an RV32I CPU can execute contains exactly 32 bits. Therefore they852

are always stored on a full word boundary. Any unaligned instruction is illegal.11
853

An attempt to fetch an instruction from an unaligned address will result in an error referred to as854

an alignment exception. This and other exceptions cause the CPU to stop executing the current855

instruction and start executing a different set of instructions that are prepared to handle the problem.856

Often an exception is handled by completely stopping the program in a way that is commonly referred857

to as a system or application crash.858

9Alignment of data, while important for efficient performance, is not mandatory for RISC-V systems.[1, p. 19]
10The design and implementation choices that determine how any given system operates are part of what is called a

system’s organization and is beyond the scope of this text. See [3] for more information on computer organization.
11This rule is relaxed by the C extension to allow an instruction to start at any even address.[1, p. 5]

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 27 of 82

Chapter 3859

The Elements of a Assembly860

Language Program861

3.1 Assembly Language Statements862

Introduce the assembly language grammar.863

• Statement = 1 line of text containing an instruction or directive.864

• Instruction = label, mnemonic, operands, comment.865

• Directive = Used to control the operation of the assembler.866

3.2 Memory Layout867

Is this a good place to introduce the text, data, bss, heap and stack regions?868

Or does that belong in a new section/chapter that discusses addressing modes?869

3.3 A Sample Program Source Listing870

A simple program that illustrates how this text presents program source code is seen in Listing 3.1.871

This program will place a zero in each of the 4 registers named x28, x29, x30 and x31.872

Listing 3.1: zero4regs.S
Setting four registers to zero.

873

1 .text # put this into the text section874

2 .align 2 # align to 2^2875

3 .globl _start876

4 _start:877

5 addi x28 , x0 , 0 # set register x28 to zero878

6 addi x29 , x0 , 0 # set register x29 to zero879

7 addi x30 , x0 , 0 # set register x30 to zero880

8 addi x31 , x0 , 0 # set register x31 to zero881
882

~/rvalp/book/./elements/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 28 of 82

3.4. RUNNING A PROGRAM WITH RVDDT

This program listing illustrates a number of things:883

• Listings are identified by the name of the file within which they are stored. This listing is from884

a file named: zero4regs.S.885

• The assembly language programs discussed in this text will be saved in files that end with: .S886

(Alternately you can use .sx on systems that don’t understand the difference between upper887

and lowercase letters.1)888

• A description of the listing’s purpose appears under the name of the file. The description of889

Listing 3.1 is Setting four registers to zero.890

• The lines of the listing are numbered on the left margin for easy reference.891

• An assembly program consists of lines of plain text.892

• The RISC-V ISA does not provide an operation that will simply set a register to a numeric893

value. To accomplish our goal this program will add zero to zero and place the sum in in each894

of the four registers.895

• The lines that start with a dot ‘.’ (on lines 1, 2 and 3) are called assembler directives as they896

tell the assembler itself how we want it to translate the following assembly language instructions897

into machine language instructions.898

• Line 4 shows a label named start. The colon at the end is the indicator to the assembler that899

causes it to recognize the preceding characters as a label.900

• Lines 5-8 are the four assembly language instructions that make up the program. Each instruc-901

tion in this program consists of four fields. (Different instructions can have a different number902

of fields.) The fields on line 5 are:903

addi The instruction mnemonic. It indicates the operation that the CPU will perform.904

x28 The destination register that will receive the sum when the addi instruction is finished.905

The names of the 32 registers are expressed as x0 – x31.906

x0 One of the addends of the sum operation. (The x0 register will always contain the value907

zero. It can never be changed.)908

0 The second addend is the number zero.909

set . . . Any text anywhere in a RISC-V assembly language program that starts with the pound-910

sign is ignored by the assembler. They are used to place a comment in the program to help911

the reader better understand the motive of the programmer.912

3.4 Running a Program With rvddt913

To illustrate what a CPU does when it executes instructions this text will use the rvddt simulator to914

display shows sequence of events and the binary values involved. This simulator supports the RV32I915

ISA and has a configurable amount of memory.2916

Listing 3.2 shows the operation of the four addi instructions from Listing 3.1 when it is executed in917

trace-mode.918

1The author of this text prefers to avoid using such systems.
2The rvddt simulator was written to generate the listings for this text. It is similar to the fancier spike simulator.

Given the simplicity of the RV32I ISA, rvddt is less than 1700 lines of C++ and was written in one (long) afternoon.

~/rvalp/book/./zero4regs.out
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 29 of 82

3.4. RUNNING A PROGRAM WITH RVDDT

Listing 3.2: zero4regs.out
Running a program with the rvddt simulator

919

1 [winans@w510 src]$./rvddt -f ../ examples/load4regs.bin920

2 Loading ’../ examples/load4regs.bin’ to 0x0921

3 ddt > t4922

4 x0: 00000000 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0923

5 x8: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0924

6 x16: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0925

7 x24: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0926

8 pc: 00000000927

9 00000000: 00000 e13 addi x28 , x0, 0 # x28 = 0x00000000 = 0x00000000 + 0x00000000928

10 x0: 00000000 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0929

11 x8: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0930

12 x16: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0931

13 x24: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 00000000 f0f0f0f0 f0f0f0f0 f0f0f0f0932

14 pc: 00000004933

15 00000004: 00000 e93 addi x29 , x0, 0 # x29 = 0x00000000 = 0x00000000 + 0x00000000934

16 x0: 00000000 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0935

17 x8: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0936

18 x16: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0937

19 x24: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 00000000 00000000 f0f0f0f0 f0f0f0f0938

20 pc: 00000008939

21 00000008: 00000 f13 addi x30 , x0, 0 # x30 = 0x00000000 = 0x00000000 + 0x00000000940

22 x0: 00000000 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0941

23 x8: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0942

24 x16: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0943

25 x24: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 00000000 00000000 00000000 f0f0f0f0944

26 pc: 0000000c945

27 0000000c: 00000 f93 addi x31 , x0, 0 # x31 = 0x00000000 = 0x00000000 + 0x00000000946

28 ddt > r947

29 x0: 00000000 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0948

30 x8: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0949

31 x16: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0950

32 x24: f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 00000000 00000000 00000000 00000000951

33 pc: 00000010952

34 ddt > x953

35 [winans@w510 src]$954
955

` 1 This listing includes the command-line that shows how the simulator was executed to load a file956

containing the machine instructions (aka machine code) from the assembler.957

` 2 A message from the simulator indicating that it loaded the machine code into simulated memory958

at address 0.959

` 3 This line shows the prompt from the debugger and the command t4 that the user entered to960

request that the simulator trace the execution of four instructions.961

` 4-8 Prior to executing the first instruction, the state of the CPU registers is displayed.962

` 4 The values in registers 0, 1, 2, 3, 4, 5, 6 and 7 are printed from left to right in big-endian,963

hexadecimal form. The double-space gap in the middle of the line is a reference to make it964

easier to visually navigate across the line without being forced to count the values from the far965

left when seeking the value of, say, x5.966

` 5-7 The values of registers 8–31 are printed.967

` 8 The program counter (pc) register is printed. It contains the address of the instruction that the968

CPU will execute. After each instruction, the pc will either advance four bytes ahead or be set969

to another value by a branch instruction as discussed above.970

` 9 A four-byte instruction is fetched from memory at the address in the pc register, is decoded and971

printed. From left to right the fields shown on this line are:972

~/rvalp/book/./elements/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 30 of 82

3.4. RUNNING A PROGRAM WITH RVDDT

00000000 The memory address from which the instruction was fetched. This address is displayed in973

big-endian, hexadecimal form.974

00000e13 The machine code of the instruction displayed in big-endian, hexadecimal form.975

addi The mnemonic for the machine instruction.976

x28 The rd field of the addi instruction.977

x0 The rs1 field of the addi instruction that holds one of the two addends of the operation.978

0 The imm field of the addi instruction that holds the second of the two addends of the979

operation.980

. . . A simulator-generated comment that explains what the instruction is doing. For this in-981

struction it indicates that x28 will have the value zero stored into it as a result of performing982

the addition: 0 + 0.983

` 10-14 These lines are printed as the prelude while tracing the second instruction. Lines 7 and 13 show984

that x28 has changed from f0f0f0f0 to 00000000 as a result of executing the first instruction and985

lines 8 and 14 show that the pc has advanced from zero (the location of the first instruction) to986

four, where the second instruction will be fetched. None of the rest of the registers have changed987

values.988

` 15 The second instruction decoded executed and described. This time register x29 will be assigned989

a value.990

` 16-27 The third and fourth instructions are traced.991

` 28 Tracing has completed. The simulator prints its prompt and the user enters the ‘r’ command992

to see the register state after the fourth instruction has completed executing.993

` 29-33 Following the fourth instruction it can be observed that registers x28, x29, x30 and x31 have994

been set to zero and that the pc has advanced from zero to four, then eight, then 12 (the hex995

value for 12 is c) and then to 16 (which, in hex, is 10).996

` 34 The simulator exit command ‘x’ is entered by the user and the terminal displays the shell prompt.997

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 31 of 82

Chapter 4998

Writing RISC-V Programs999

This chapter introduces each of the RV32I instructions by developing programs that demonstrate their ý Fix Me:
Introduce the ISA register
names and aliases in here?

1000

usefulness.1001

4.1 Use ebreak to Stop rvddt Execution1002

It is a good idea to learn how to stop before learning how to go!1003

The ebreak instruction exists for the sole purpose of transferring control back to a debugging environment.[1,1004

p. 24]1005

When rvddt executes an ebreak instruction, it will immediately terminate any executing trace or go1006

command currently executing and return to the command prompt without advancing the pc register.1007

The machine language encoding shows that ebreak has no operands.1008

ebreak1009

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 I-type

31 20

12

19 15

5

14 12

funct3

3

11 7

5

6 0

opcode

7
1010

Listing 4.2 demonstrates that since rvddt does not advance the pc when it encounters an ebreak1011

instruction, subsequent trace and/or go commands will re-execute the same ebreak and halt the1012

simulation again (and again). This feature is intended to help prevent overzealous users from accidently1013

running past the end of a code fragment.11014

Listing 4.1: ebreak/ebreak.S
A one-line ebreak program.

1015

1 .text # put this into the text section1016

2 .align 2 # align to a multiple of 41017

3 .globl _start1018

41019

5 _start:1020

6 ebreak1021
1022

1This was one of the first enhancements I needed for myself :-)

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 32 of 82

4.2. USING THE ADDI INSTRUCTION

Listing 4.2: ebreak/ebreak.out
ebreak stopps rvddt without advancing pc.

1023

1 $ rvddt -f ebreak.bin1024

2 sp initialized to top of memory: 0x0000fff01025

3 Loading ’ebreak.bin’ to 0x01026

4 This is rvddt. Enter ? for help.1027

5 ddt > d 0 161028

6 00000000: 73 00 10 00 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 *s...............*1029

7 ddt > r1030

8 x0 00000000 f0f0f0f0 0000 fff0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01031

9 x8 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01032

10 x16 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01033

11 x24 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01034

12 pc 000000001035

13 ddt > ti 0 10001036

14 00000000: ebreak1037

15 ddt > ti1038

16 00000000: ebreak1039

17 ddt > g 01040

18 00000000: ebreak1041

19 ddt > r1042

20 x0 00000000 f0f0f0f0 0000 fff0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01043

21 x8 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01044

22 x16 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01045

23 x24 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01046

24 pc 000000001047

25 ddt > x1048
1049

4.2 Using the addi Instruction1050

The detailed description of how the addi instruction is executed is that it: ý Fix Me:
Define what constant and
immediate values are
somewhere.

1051

1. Sign-extends the immediate operand.1052

2. Add the sign-extended immediate operand to the contents of the rs1 register.1053

3. Store the sum in the rd register.1054

4. Add four to the pc register (point to the next instruction.)1055

In the following example rs1 = x28, rd = x29 and the immediate operand is -1.1056

addi x29, x28, -11057

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 I-type

31 20

imm[11:0]

12

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7
1058

Depending on the values of the fields in this instruction a number of different operations can be1059

performed. The most obvious is that it can add things. But it can also be used to copy registers, set1060

a register to zero and even, when you need to, accomplish nothing.1061

4.2.1 No Operation1062

It might seem odd but it is sometimes important to be able to execute an instruction that accomplishes1063

nothing while simply advancing the pc to the next instruction. One reason for this is to fill unused1064

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 33 of 82

4.2. USING THE ADDI INSTRUCTION

memory between two instructions in a program.21065

An instruction that accomplishes nothing is called a nop (sometimes systems call these noop). The1066

name means no operation. The intent of a nop is to execute without having any side effects other1067

than to advance the pc register.1068

The addi instruction can serve as a nop by coding it like this:1069

addi x0, x0, 01070

0 1 0 0 1 1 I-type

31 20

imm[11:0]

12

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7
1071

The result will be to add zero to zero and discard the result (because you can never store a value into1072

the x0 register.)1073

The RISC-V assembler provides a pseudoinstruction specifically for this purpose that you can use1074

to improve the readability of your code. Note that the addi and nop instructions in Listing 4.3 are1075

assembled into the exact same binary machine instructions as can be seen by comparing it to objdump1076

Listing 4.4, and rvddt Listing 4.5 output.1077

Listing 4.3: nop/nop.S
Demonstrate that addi can be used as a nop.

1078

1 .text # put this into the text section1079

2 .align 2 # align to a multiple of 41080

3 .globl _start1081

41082

5 _start:1083

6 addi x0, x0 , 0 # these two instructions assemble into the same thing!1084

7 nop1085

81086

9 ebreak1087
1088

Listing 4.4: nop/nop.lst
Using addi to perform a nop

1089

1 nop: file format elf32 -littleriscv1090

2 Disassembly of section .text:1091

3 00000000 <_start >:1092

4 0: 00000013 nop1093

5 4: 00000013 nop1094

6 8: 00100073 ebreak1095
1096

Listing 4.5: nop/nop.out
Using addi to perform a nop

1097

1 $ rvddt -f nop.bin1098

2 sp initialized to top of memory: 0x0000fff01099

3 Loading ’nop.bin’ to 0x01100

4 This is rvddt. Enter ? for help.1101

5 ddt > d 0 161102

6 00000000: 13 00 00 00 13 00 00 00 73 00 10 00 a5 a5 a5 a5 *........s.......*1103

7 ddt > r1104

8 x0 00000000 f0f0f0f0 0000 fff0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01105

9 x8 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01106

10 x16 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01107

11 x24 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01108

2This can happen during the evolution of one portion of code that reduces in size but has to continue to fit into
a system without altering any other code. . . or sometimes you just need to waste a small amount of time in a device
driver.

~/rvalp/book/./nop/nop.out
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 34 of 82

4.2. USING THE ADDI INSTRUCTION

12 pc 000000001109

13 ddt > ti 0 10001110

14 00000000: 00000013 addi x0, x0, 0 # x0 = 0x00000000 = 0x00000000 + 0x000000001111

15 00000004: 00000013 addi x0, x0, 0 # x0 = 0x00000000 = 0x00000000 + 0x000000001112

16 00000008: ebreak1113

17 ddt > r1114

18 x0 00000000 f0f0f0f0 0000 fff0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01115

19 x8 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01116

20 x16 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01117

21 x24 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f01118

22 pc 000000081119

23 ddt > x1120
1121

4.2.2 Copying the Contents of One Register to Another1122

By adding zero to one register and storing the sum in another register the addi instruction can be1123

used to copy the value stored in one register to another register. The following instruction will copy1124

the contents of t4 into t3.1125

addi t3, t4, 01126

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 I-type

31 20

imm[11:0]

12

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7
1127

This is a commonly required operation. To make your intent clear you may use the mv pseudoinstruc-1128

tion for this purpose.1129

Listing 4.6 shows the source of a program that is dumped in Listing 4.7 illustrating that the assembler1130

has generated the same machine instruction (0x000e8e13 at addresses 0x0 and 0x4) for both of the1131

instructions.1132

Listing 4.6: mv/mv.S
Comparing addi to mv

1133

1 .text # put this into the text section1134

2 .align 2 # align to a multiple of 41135

3 .globl _start1136

41137

5 _start:1138

6 addi t3, t4 , 0 # t3 = t41139

7 mv t3, t4 # t3 = t41140

81141

9 ebreak1142
1143

Listing 4.7: mv/mv.lst
An objdump of an addi and mv Instruction.

1144

1 mv: file format elf32 -littleriscv1145

2 Disassembly of section .text:1146

3 00000000 <_start >:1147

4 0: 000 e8e13 mv t3,t41148

5 4: 000 e8e13 mv t3,t41149

6 8: 00100073 ebreak1150
1151

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 35 of 82

4.2. USING THE ADDI INSTRUCTION

4.2.3 Setting a Register to Zero1152

Recall that x0 always contains the value zero. Any register can be set to zero by copying the contents1153

of x0 using mv (aka addi).31154

For example, to set t3 to zero:1155

addi t3, x0, 01156

0 1 1 1 0 0 0 0 1 0 0 1 1 I-type

31 20

imm[11:0]

12

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7
1157

Listing 4.8: mvzero/mv.S
Using mv (aka addi) to zero-out a register.

1158

1 .text # put this into the text section1159

2 .align 2 # align to a multiple of 41160

3 .globl _start1161

41162

5 _start:1163

6 mv t3, x0 # t3 = 01164

71165

8 ebreak1166
1167

Listing 4.9 traces the execution of the program in Listing 4.8 showing how t3 is changed from1168

0xf0f0f0f0 (seen on `16) to 0x00000000 (seen on `26.)1169

Listing 4.9: mvzero/mv.out
Setting t3 to zero.

1170

1 $ rvddt -f mv.bin1171

2 sp initialized to top of memory: 0x0000fff01172

3 Loading ’mv.bin’ to 0x01173

4 This is rvddt. Enter ? for help.1174

5 ddt > a1175

6 ddt > d 0 161176

7 00000000: 13 0e 00 00 73 00 10 00 a5 a5 a5 a5 a5 a5 a5 a5 *....s...........*1177

8 ddt > t 0 10001178

9 zero x0 00000000 ra x1 f0f0f0f0 sp x2 0000 fff0 gp x3 f0f0f0f01179

10 tp x4 f0f0f0f0 t0 x5 f0f0f0f0 t1 x6 f0f0f0f0 t2 x7 f0f0f0f01180

11 s0 x8 f0f0f0f0 s1 x9 f0f0f0f0 a0 x10 f0f0f0f0 a1 x11 f0f0f0f01181

12 a2 x12 f0f0f0f0 a3 x13 f0f0f0f0 a4 x14 f0f0f0f0 a5 x15 f0f0f0f01182

13 a6 x16 f0f0f0f0 a7 x17 f0f0f0f0 s2 x18 f0f0f0f0 s3 x19 f0f0f0f01183

14 s4 x20 f0f0f0f0 s5 x21 f0f0f0f0 s6 x22 f0f0f0f0 s7 x23 f0f0f0f01184

15 s8 x24 f0f0f0f0 s9 x25 f0f0f0f0 s10 x26 f0f0f0f0 s11 x27 f0f0f0f01185

16 t3 x28 f0f0f0f0 t4 x29 f0f0f0f0 t5 x30 f0f0f0f0 t6 x31 f0f0f0f01186

17 pc 000000001187

18 00000000: 00000 e13 addi t3, zero , 0 # t3 = 0x00000000 = 0x00000000 + 0x000000001188

19 zero x0 00000000 ra x1 f0f0f0f0 sp x2 0000 fff0 gp x3 f0f0f0f01189

20 tp x4 f0f0f0f0 t0 x5 f0f0f0f0 t1 x6 f0f0f0f0 t2 x7 f0f0f0f01190

21 s0 x8 f0f0f0f0 s1 x9 f0f0f0f0 a0 x10 f0f0f0f0 a1 x11 f0f0f0f01191

22 a2 x12 f0f0f0f0 a3 x13 f0f0f0f0 a4 x14 f0f0f0f0 a5 x15 f0f0f0f01192

23 a6 x16 f0f0f0f0 a7 x17 f0f0f0f0 s2 x18 f0f0f0f0 s3 x19 f0f0f0f01193

24 s4 x20 f0f0f0f0 s5 x21 f0f0f0f0 s6 x22 f0f0f0f0 s7 x23 f0f0f0f01194

25 s8 x24 f0f0f0f0 s9 x25 f0f0f0f0 s10 x26 f0f0f0f0 s11 x27 f0f0f0f01195

26 t3 x28 00000000 t4 x29 f0f0f0f0 t5 x30 f0f0f0f0 t6 x31 f0f0f0f01196

27 pc 000000041197

28 00000004: ebreak1198

29 ddt > x1199
1200

3There are other pseudoinstructions (such as li) that can also turn into an addi instruction. Objdump might display
‘addi t3,x0,0’ as ‘mv t3,x0’ or ‘li t3,0’.

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 36 of 82

4.3. TODO

4.2.4 Adding a 12-bit Signed Value1201

addi x1, x7, 41202

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 I-type

31 20

imm[11:0]

12

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7
1203

addi t0, zero, 4 # t0 = 41204

addi t1, t1, 100 # t1 = 1041205

1206

addi t0, zero, 0x123 # t0 = 0x1231207

addi t0, t0, 0xfff # t0 = 0x122 (subtract 1)1208

1209

addi t0, zero, 0xfff # t0 = 0xffffffff (-1) (diagram out the chaining carry)1210

refer back to the overflow/truncation discussion in binary chapter1211

1212

addi x0, x0, 0 # no operation (pseudo: nop)1213

addi rd, rs, 0 # copy reg rs to rd (pseudo: mv rd, rs)1214

4.3 todo1215

Ideas for the order of introducing instructions.1216

4.4 Other Instructions With Immediate Operands1217

andi1218

ori1219

xori1220

1221

slti1222

sltiu1223

srai1224

slli1225

srli1226

4.5 Transferring Data Between Registers and Memory1227

RV is a load-store architecture. This means that the only way that the CPU can interact with the1228

memory is via the load and store instructions. All other data manipulation must be performed on1229

register values.1230

Copying values from memory to a register (first examples using regs set with addi):1231

lb1232

lh1233

lw1234

lbu1235

lhu1236

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 37 of 82

4.6. RR OPERATIONS

Copying values from a register to memory:1237

sb1238

sh1239

sw1240

4.6 RR operations1241

add1242

sub1243

and1244

or1245

sra1246

srl1247

sll1248

xor1249

sltu1250

slt1251

4.7 Setting registers to large values using lui with addi1252

addi // useful for values from -2048 to 20471253

lui // useful for loading any multiple of 0x10001254

1255

Setting a register to any other value must be done using a combo of insns:1256

1257

auipc // Load an address relative the the current PC (see la pseudo)1258

addi1259

1260

lui // Load constant into into bits 31:12 (see li pseudo)1261

addi // add a constant to fill in bits 11:01262

if bit 11 is set then need to +1 the lui value to compensate1263

4.8 Labels and Branching1264

Start to introduce addressing here?1265

beq1266

bne1267

blt1268

bge1269

bltu1270

bgeu1271

1272

bgt rs, rt, offset # pseudo for: blt rt, rs, offset (reverse the operands)1273

ble rs, rt, offset # pseudo for: bge rt, rs, offset (reverse the operands)1274

bgtu rs, rt, offset # pseudo for: bltu rt, rs, offset (reverse the operands)1275

bleu rs, rt, offset # pseudo for: bgeu rt, rs, offset (reverse the operands)1276

1277

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 38 of 82

4.9. JUMPS

beqz rs, offset # pseudo for: beq rs, x0, offset1278

bnez rs, offset # pseudo for: bne rs, x0, offset1279

blez rs, offset # pseudo for: bge x0, rs, offset1280

bgez rs, offset # pseudo for: bge rs, x0, offset1281

bltz rs, offset # pseudo for: blt rs, x0, offset1282

bgtz rs, offset # pseudo for: blt x0, rs, offset1283

4.9 Jumps1284

Introduce and present subroutines but not nesting until introduce stack operations.1285

jal1286

jalr1287

4.10 Pseudoinstructions1288

li rd,constant1289

lui rd,(constant + 0x00000800) >> 121290

addi rd,rd,(constant & 0x00000fff)1291

1292

la rd,label1293

auipc rd,((label-.) + 0x00000800) >> 121294

addi rd,rd,((label-(.-4)) & 0x00000fff)1295

1296

l{b|h|w} rd,label1297

auipc rd,((label-.) + 0x00000800) >> 121298

l{b|h|w} rd,((label-(.-4)) & 0x00000fff)(rd)1299

1300

s{b|h|w} rd,label,rt # rt used as a temp reg for the operation (default=x6)1301

auipc rt,((label-.) + 0x00000800) >> 121302

s{b|h|w} rd,((label-(.-4)) & 0x00000fff)(rt)1303

1304

call label auipc x1,((label-.) + 0x00000800) >> 121305

jalr x1,((label-(.-4)) & 0x00000fff)(x1)1306

1307

tail label,rt # rt used as a temp reg for the operation (default=x6)1308

auipc rt,((label-.) + 0x00000800) >> 121309

jalr x0,((label-(.-4)) & 0x00000fff)(rt)1310

1311

mv rd,rs addi rd,rs,01312

1313

j label jal x0,label1314

jal label jal x1,label1315

jr rs jalr x0,0(rs)1316

jalr rs jalr x1,0(rs)1317

ret jalr x0,0(x1)1318

4.10.1 The li Pseudoinstruction1319

Note that the li pseudoinstruction includes an (effectively) conditional addition of 1 to the immediate1320

operand in the lui instruction. This is because the immediate operand in the addi instruction is sign-1321

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 39 of 82

4.10. PSEUDOINSTRUCTIONS

extended before it is added to rd. If the immediate operand to the addi has its most-significant-bit1322

set to 1 then it will have the effect of subtracting 1 from the operand in the lui instruction.1323

Consider the case of putting the value 0x12345800 into register x5:1324

li x5,0x123458001325

A naive (incorrect) solution might be:1326

lui x5,0x12345 // x5 = 0x123450001327

addi x5,x5,0x800 // x5 = 0x12345000 + sx(0x800) = 0x12345000 + 0xfffff800 = 0x123448001328

The result of the above code is that an incorrect value has been placed into x5.1329

To remedy this problem, the value used in the lui instruction can be altered (by adding 1 to its1330

operand) to compensate for the sign-extention in the addi instruction:1331

lui x5,0x12346 // x5 = 0x12346000 (note: this is 0x12345800 + 0x0800)1332

addi x5,x5,0x800 // x5 = 0x12346000 + sx(0x800) = 0x12346000 + 0xfffff800 = 0x123458001333

Keep in mind that the li pseudoinstruction must only increment the operand of the lui instruction1334

when it is known that the operand of the subsequent addi instruction will be a negative number.1335

By adding 0x00000800 to the immediate operand of the lui instruction in this example, a carry- ý Fix Me:
Add a ribbon diagram of
this?

1336

bit into bit-12 will be set to 1 iff the value in bits 11-0 will be treated as a negative value in the1337

subsequent addi instruction. In other words, when bit-11 is set to 1 in the immediate operand of the1338

li pseudoinstruction, the immediate operand of the lui instruction will be incremented by 1.1339

Consider the case where we wish to put the value 0x12345700 into register x5:1340

lui x5,0x12345 // x5 = 0x12345000 (note that 0x12345700 + 0x0800 = 0x12345f00)1341

addi x5,x5,0x700 // x5 = 0x12345000 + sx(0x700) = 0x12345000 + 0x00000700 = 0x123457001342

The sign-extension in this example performed by the addi instruction will convert the 0x700 to1343

0x00000700 before the addition.1344

Observe that 0x12345700+0x0800 = 0x12345f00 and therefore, after shifting to the right, the least1345

significant 0xf00 is truncated, leaving 0x12345 as the immediate operand of the lui instruction. The1346

addition of 0x0800 in this example has no effect on the immediate operand of the lui instruction1347

because bit-11 in the original value 0x12345700 is zero.1348

A general algorithm for implementing the li rd,constant pseudoinstruction is:1349

lui rd,(constant + 0x00000800) >> 121350

addi rd,rd,(constant & 0x00000fff) // the 12-bit immediate is sign extended1351

Note that on RV64 and RV128 systems, the lui places the immediate operand into bits 31-12 and ý Fix Me:
Find a proper citation for
this.

1352

then sign-extends the result to XLEN bits.1353

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 40 of 82

4.11. RELOCATION

4.10.2 The la Pseudoinstruction1354

The la (and others that use auipc such as the l{b|h|w}, s{b|h|w}, call, and tail) pseudoinstruc-1355

tions also compensate for a sign-ended negative number when adding a 12-bit immediate operand.1356

The only difference is that these use a pc-relative addressing mode.1357

For example, consider the task of putting an address represented by the label var1 into register x10:1358

00010040 la x10,var11359

00010048 ... # note that the la pseudoinstruction expands into 8 bytes1360

...1361

1362

var1:1363

00010900 .word 999 # a 32-bit integer constant stored in memory at address var11364

The la instruction in this example will expand into:1365

00010040 auipc x10,((var1-.) + 0x00000800) >> 121366

00010044 addi x10,x10,((var1-(.-4)) & 0x00000fff)1367

Note that auipc will shift the immediate operand to the left 12 bits and then add that to the pc1368

register (see Figure 5.3.1.)1369

The assembler will calculate the value of (var1-.) by subtracting the address represented by the label1370

var1 from the address of the current instruction (which is expressed as ’.’) resulting in the number1371

of bytes from the current instruction to the target label. . . which is 0x000008c0.1372

Therefore the expanded pseudoinstruction example will become:1373

00010040 auipc x10,((0x00010900 - 0x00010040) + 0x00000800) >> 121374

00010044 addi x10,x10,((0x00010900 - (0x00010044 - 4)) & 0x00000fff) # note the extra -4 here!1375

After performing the subtractions, it will reduce to this:1376

00010040 auipc x10,(0x000008c0 + 0x00000800) >> 121377

00010044 addi x10,x10,(0x000008c0 & 0x00000fff)1378

Continuing to reduce the math operations we get:1379

00010040 auipc x10,0x00001 # 0x000008c0 + 0x00000800 = 0x000010c01380

00010044 addi x10,x10,0x8c01381

Note that the la pseudoinstruction exhibits the same sort of technique as the li in that if/when the1382

immediate operand of the addi instruction has its most significant bit set then the operand in the1383

auipc has to be incremented by 1 to compensate.1384

4.11 Relocation1385

Because expressions that refer to constants and address labels are common in assembly language1386

programs, a shorthand notation is available for calculating the pairs of values that are used in the1387

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 41 of 82

4.11. RELOCATION

implementation of things like the li and la pseudoinstructions (that have to be written to compensate1388

for the sign-extension that will take place in the immediate operand that appears in instructions like1389

addi and jalr.)1390

4.11.1 Absolute Addresses1391

To refer to an absolute value, the following operators can be used:1392

%hi(constant) // becomes: (constant + 0x00000800) >> 121393

%lo(constant) // becomes: (constant & 0x00000fff)1394

Thus, the li pseudoinstruction can, therefore, be expressed like this:1395

li rd,constant lui rd,%hi(constant)1396

addi rd,rd,%lo(constant)1397

4.11.2 PC-Relative Addresses1398

The following can be used for PC-relative addresses:1399

%pcrel_hi(symbol) // becomes: ((symbol-.) + 0x0800) >> 121400

%pcrel_lo(lab) // becomes: ((symbol-lab) & 0x00000fff)1401

Note the subtlety involved with the lab on %pcrel_lo. It is needed to determine the address of the1402

instruction that contains the corresponding %pcrel_hi. (The label lab MUST be on a line that used1403

a %pcrel_hi() or get an error from the assembler.)1404

Thus, the la rd,label pseudoinstruction can be expressed like this:1405

xxx: auipc rd,%pcrel_hi(label)1406

addi rd,rd,%pcrel_lo(xxx) // the xxx tells pcrel_lo where to find the matching pcrel_hi1407

Examples of using the auipc & addi together with %pcrel_hi() and %pcrel_lo():1408

xxx: auipc t1,%pcrel_hi(yyy) // ((yyy-.) + 0x0800) >> 121409

addi t1,t1,%pcrel_lo(xxx) // ((yyy-xxx) & 0x00000fff)1410

...1411

yyy: // the address: yyy is saved into t1 above1412

...1413

Referencing the same %pcrel_hi in multiple subsequent uses of %pcrel_lo is legal:1414

label: auipc t1,%pcrel_hi(symbol)1415

addi t2,t1,%pcrel_lo(label) // t2 = symbol1416

addi t3,t1,%pcrel_lo(label) // t3 = symbol1417

lw t4,%pcrel_lo(label)(t1) // t4 = fetch value from memory at ’symbol’1418

addi t4,t4,123 // t4 = t4 + 1231419

sw t4,%pcrel_lo(label)(t1) // store t4 back into memory at ’symbol’1420

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 42 of 82

4.12. RELAXATION

4.12 Relaxation1421

In the simplest of terms, Relaxation refers to the ability of the linker (not the compiler!) to determine1422

if/when the instructions that were generated with the xxx_hi and xxx_lo operators are unneeded1423

(and thus waste execution time and memory) and can therefore be removed.1424

However, doing so is not trivial as it will result in moving things around in memory, possibly changing1425

the values of address labels in the already-assembled program! Therefore, while the motivation for1426

rexation is obvious, the process of implementing it is non-trivial.1427

See: https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md1428

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 43 of 82

https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md

Chapter 51429

RV32 Machine Instructions1430

5.1 Conventions and Terminology1431

When discussing instructions, the following abbreviations/notations are used:1432

5.1.1 XLEN1433

XLEN represents the bit-length of an x register in the machine architecture. Possible values are 32,1434

64 and 128.1435

5.1.2 sx(val)1436

Sign extend val to the left.1437

This is used to convert a signed integer value expressed using some number of bits to a larger number1438

of bits by adding more bits to the left. In doing so, the sign will be preserved. In this case val1439

represents the least MSBs of the value.1440

For more on sign-extension see section 2.3.1441

5.1.3 zx(val)1442

Zero extend val to the left.1443

This is used to convert an unsigned integer value expressed using some number of bits to a larger1444

number of bits by adding more bits to the left. In doing so, the new bits added will all be set to zero.1445

As is the case with sx(val), val represents the LSBs of the final value.1446

For more on zero-extension see Figure 2.3.1447

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 44 of 82

5.1. CONVENTIONS AND TERMINOLOGY

5.1.4 zr(val)1448

Zero extend val to the right.1449

Some times a binary value is encoded such that a set of bits represented by val are used to represent1450

the MSBs of some longer (more bits) value. In this case it is necessary to append zeros to the right1451

to convert val to the longer value.1452

Figure 5.1 illustrates converting a 20-bit val to a 32-bit fullword.1453

19 0

20

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

31 0

32

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.1: Zero-extending an integer to the right from 20 bits to 32 bits.

5.1.5 Sign Extended Left and Zero Extend Right1454

Some instructions such as the J-type (see section 5.3.2) include immediate operands that are extended1455

in both directions.1456

Figure 5.2 and Figure 5.3 illustrates zero-extending a 20-bit negative number one bit to the right and1457

sign-extending it 11 bits to the left:1458

19 0

20

0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1

31 0

32

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 0

Figure 5.2: Sign-extending a positive 20-bit number 11 bits to the left and one bit to the right.

19 0

20

1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1

31 0

32

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 0

Figure 5.3: Sign-extending a negative 20-bit number 11 bits to the left and one bit to the right.

5.1.6 m8(addr)1459

The contents of an 8-bit value in memory at address addr.1460

Given the contents of the memory dump shown in Figure 5.4, m8(0x42) refers to the memory location1461

at address 4216 that currently contains the 8-bit value fc16.1462

The mn(addr) notation can be used to refer to memory that is being read or written depending on1463

the context.1464

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 45 of 82

5.1. CONVENTIONS AND TERMINOLOGY

When memory is being written, the following notation is used to indicate that the least significant 81465

bis of source will be is written into memory at the address addr:1466

m8(addr) ← source1467

When memory is being read, the following notation is used to indicate that the 8 bit value at the1468

address addr will be read and stored into dest:1469

dest ← m8(addr)1470

Note that source and dest are typically registers.1471

00000030 2f 20 72 65 61 64 20 61 20 62 69 6e 61 72 79 20

00000040 66 69 fc 65 20 66 69 6c 6c 65 64 20 77 69 74 68

00000050 20 72 76 33 32 49 20 69 6e 73 74 72 75 63 74 69

00000060 6f 6e 73 20 61 6e 64 20 66 65 65 64 20 74 68 65

Figure 5.4: Sample memory contents.

5.1.7 m16(addr)1472

The contents of an 16-bit little-endian value in memory at address addr.1473

Given the contents of the memory dump shown in Figure 5.4, m16(0x42) refers to the memory location1474

at address 4216 that currently contains 65fc16. See also section 5.1.6.1475

5.1.8 m32(addr)1476

The contents of an 32-bit little-endian value in memory at address addr.1477

Given the contents of the memory dump shown in Figure 5.4, m32(0x42) refers to the memory location1478

at address 4216 that currently contains 662065fc16. See also section 5.1.6.1479

5.1.9 m64(addr)1480

The contents of an 64-bit little-endian value in memory at address addr.1481

Given the contents of the memory dump shown in Figure 5.4, m64(0x42) refers to the memory location1482

at address 4216 that currently contains 656c6c69662065fc16. See also section 5.1.6.1483

5.1.10 m128(addr)1484

The contents of an 128-bit little-endian value in memory at address addr.1485

Given the contents of the memory dump shown in Figure 5.4, m128(0x42) refers to the memory lo-1486

cation at address 4216 that currently contains 7220687469772064656c6c69662065fc16. See also sec-1487

tion 5.1.6.1488

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 46 of 82

5.1. CONVENTIONS AND TERMINOLOGY

5.1.11 .+offset1489

The address of the current instruction plus a numeric offset.1490

5.1.12 .-offset1491

The address of the current instruction minus a numeric offset.1492

5.1.13 pcrel 131493

An address that is within [−4096..4094] [-0x1000..0x0ffe] of the current instruction location. These1494

addresses are typically expressed in assembly source code by using labels. See section 5.3.6 for exam-1495

ples.1496

5.1.14 pcrel 211497

An address that is within [−1048576..1048574] [-0x100000..0x0ffffe] of the current instruction loca-1498

tion. These addresses are typically expressed in assembly source code by using labels. See section 5.3.21499

for an example.1500

5.1.15 pc1501

The current value of the program counter.1502

5.1.16 rd1503

An x-register used to store the result of instruction.1504

5.1.17 rs11505

An x-register value used as a source operand for an instruction.1506

5.1.18 rs21507

An x-register value used as a source operand for an instruction.1508

5.1.19 imm1509

An immediate numeric operand. The word immediate refers to the fact that the operand is stored1510

within an instruction.1511

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 47 of 82

5.2. ADDRESSING MODES

5.1.20 rsN[h:l]1512

The value of bits from h through l of x-register rsN. For example: rs1[15:0] refers to the contents of1513

the 16 LSBs of rs1.1514

5.2 Addressing Modes1515

immediate, register, base-displacement, pc-relative ý Fix Me:
Write this section.

1516

5.3 Instruction Encoding Formats1517

This document concerns itself with the RISC-V instruction formats shown in Figure 5.5.1518

0 U-type

31 12

imm[31:12]

20

11 7

rd

5

6 0

opcode

7

0 J-type

31 12

imm[20|10:1|11|19:12]

20

11 7

rd

5

6 0

opcode

7

0 R-type

31 25

funct7

7

24 20

rs2

5

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7

0 I-type

31 20

imm[11:0]

12

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7

0 I-type

31 25

funct7

7

24 20

shamt

5

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7

0 S-type

31 25

imm[11:5]

7

24 20

rs2

5

19 15

rs1

5

14 12

funct3

3

11 7

imm[4:0]

5

6 0

opcode

7

0 B-type

31 25

imm[12|10:5]

7

24 20

rs2

5

19 15

rs1

5

14 12

funct3

3

11 7

imm[4:1|11]

5

6 0

opcode

7

Figure 5.5: RISC-V instruction formats.

The method/format of the instructions has been designed with an eye on the ease of future manufacture1519

of the machine that will execute them. It is easier to build a machine if it does not have to accommodate1520

many different ways to perform the same task. The result is that a machine can be built with fewer1521

gates, consumes less power, and can run faster than if it were built when a priority is on how a user1522

might prefer to decode the same instructions from a hex dump.1523

Observe that all instructions have their opcode in bits 0-6 and when they include an rd register it will1524

be specified in bits 7-11, an rs1 register in bits 15-19, an rs2 register in bits 20-24, and so on. This1525

has a seemingly strange impact on the placement of any immediate operands.1526

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 48 of 82

5.3. INSTRUCTION ENCODING FORMATS

When immediate operands are present in an instruction, they are placed in the remaining unused bits.1527

However, they are organized such that the sign bit is always in bit 31 and the remaining bits placed1528

so as to minimize the number of places any given bit is located in different instructions.1529

For example, consider immediate operand bits 12-19. In the U-type format they are in bit positions1530

12-19. In the J-type format they are also in positions 12-19. In the J-type format immediate operand1531

bits 1-10 are in the same instruction bit positions as they are in the I-type format and immediate1532

operand bits 5-10 are in the same positions as they are in the B-type and S-type formats.1533

While this is inconvenient for anyone looking at a memory hexdump, it does make sense when consid-1534

ering the impact of this choice on the number of gates needed to implement circuitry to extract the1535

immediate operands.1536

5.3.1 U Type1537

The U-Type format is used for instructions that use a 20-bit immediate operand and an rd destination1538

register.1539

The rd field contains an x register number to be set to a value that depends on the instruction.1540

If XLEN=32 then the imm value will extracted from the instruction and converted as shown in1541

Figure 5.6 to form the imm_u value.1542

a b c d e f g h i j k l m n o p q r s t 0 0 1 0 1 0 1 1 0 1 1 1 U-type

31 12

imm[31:12]

20

11 7

rd

5

6 0

opcode

7

0

31 12 11 0

imm ua b c d e f g h i j k l m n o p q r s t 0 0 0 0 0 0 0 0 0 0 0 0
20 12

Figure 5.6: Decoding a U-type instruction.

Notice that the 20-bits of the imm field are mapped in the same order and in the same relative position1543

that they appear in the instruction when they are used to create the value of the immediate operand.1544

Leaving the imm bits on the left, in the “upper bits” of the imm_u value suggests a rationale for the1545

name of this format.1546

• lui rd,imm1547

Set register rd to the imm_u value as shown in Figure 5.6.1548

For example: lui x23,0x12345 will result in setting register x23 to the value 0x12345000.1549

• auipc rd,imm1550

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 49 of 82

5.3. INSTRUCTION ENCODING FORMATS

Add the address of the instruction to the imm_u value as shown Figure 5.6 and store the result1551

in register rd.1552

For example, if the instruction auipc x22,0x10001 is executed from memory address 0x800012f41553

then register x22 will be set to 0x900022f4.1554

If XLEN=64 then the imm_u value in this example will be converted to the same two’s complement1555

integer value by extending the sign-bit further to the left.1556

5.3.2 J Type1557

The J-type instruction format is used to encode the jal instruction with an immediate value that1558

determines the jump target address. It is similar to the U-type, but the bits in the immediate operand1559

are arranged in a different order.1560

Note that the imm_j value is an even 21-bit value in the range of [−1048576..1048574] [-0x100000..0x0ffffe]1561

representing a pc-relative offset to the target address.1562

If XLEN=32 then the imm value will extracted from the instruction and converted as shown in1563

Figure 5.7 to form the imm_j value.1564

a b c d e f g h i j k l m n o p q r s t 0 0 1 1 1 1 1 0 1 1 1 1 J-type

31 12

imm[20|10:1|11|19:12]

20

11 7

rd

5

6 0

opcode

7

0

31 21 20 19 12 11 10 1 0

imm ja a a a a a a a a a a a m n o p q r s t l b c d e f g h i j k 0
11 1 8 1 10 1

Figure 5.7: Decoding a J-type instruction.

The J-type format is used by the Jump And Link instruction that calculates the target address by1565

adding imm_j to the current program counter. Since no instruction can be placed at an odd address the1566

20-bit imm value is zero-extended to the right to represent a 21-bit signed offset capable of expressing1567

a wider range of target addresses than the 20-bit imm value alone.1568

• jal rd,pcrel 211569

Set register rd to the address of the next instruction that would otherwise be executed (the1570

address of the jal instruction + 4) and then jump to the address given by the sum of the pc1571

register and the imm_j value as decoded from the instruction shown in Figure 5.7.1572

Note that pcrel_21 is expressed in the instruction as a target address or label that is converted1573

to a 21-bit value representing a pc-relative offset to the target address. For example, consider1574

the jal instructions in the following code:1575

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 50 of 82

5.3. INSTRUCTION ENCODING FORMATS

00000010: 000002ef jal x5,0x10 # jump to self (address 0x10)1576

00000014: 008002ef jal x5,0x1c # jump to address 0x1c1577

00000018: 00100073 ebreak1578

0000001c: 00100073 ebreak1579

The instruction at address 0x10 has a target address of 0x10 and the imm_j is zero because1580

offset from the “current instruction” to the target is zero.1581

The instruction at address 0x14 has a target address of 0x1c and the imm_j is 0x08 because1582

0x1c - 0x14 = 0x08.1583

See also section 5.3.6.1584

5.3.3 R Type1585

0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 R-type

31 25

funct7

7

24 20

rs2

5

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7
1586

The R-type instructions are used for operations that set a destination register rd to the result of an1587

arithmetic, logical or shift operation applied to source registers rs1 and rs2.1588

Note that instruction bit 30 (part of the the funct7 field) is used to select between the add and sub1589

instructions as well as to select between srl and sra.1590

• add rd,rs1,rs21591

Set register rd to rs1 + rs2.1592

Note that the value of funct7 must be zero for this instruction. (The value of funct7 is how1593

the add instruction is differentiated from the sub instruction.)1594

• and rd,rs1,rs21595

Set register rd to the bitwise and of rs1 and rs2.1596

For example, if x17 = 0x55551111 and x18 = 0xff00ff00 then the instruction and x12,x17,x181597

will set x12 to the value 0x55001100.1598

• or rd,rs1,rs21599

Set register rd to the bitwise or of rs1 and rs2.1600

For example, if x17 = 0x55551111 and x18 = 0xff00ff00 then the instruction or x12,x17,x181601

will set x12 to the value 0xff55ff11.1602

• sll rd,rs1,rs21603

Shift rs1 left by the number of bits specified in the least significant 5 bits of rs2 and store the1604

result in rd.11605

For example, if x17 = 0x12345678 and x18 = 0x08 then the instruction sll x12,x17,x18 will1606

set x12 to the value 0x34567800.1607

• slt rd,rs1,rs21608

If the signed integer value in rs1 is less than the signed integer value in rs2 then set rd to 1.1609

Otherwise, set rd to 0.1610

1 When XLEN is 64 or 128, the shift distance will be given by the least-significant 6 or 7 bits of rs2 respectively.
For more information on how shifting works, see section 2.4.

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 51 of 82

5.3. INSTRUCTION ENCODING FORMATS

For example, if x17 = 0x12345678 and x18 = 0x0000ffff then the instruction slt x12,x17,x181611

will set x12 to the value 0x00000000.1612

If x17 = 0x82345678 and x18 = 0x0000ffff then the instruction slt x12,x17,x18 will set1613

x12 to the value 0x00000001.1614

• sltu rd,rs1,rs21615

If the unsigned integer value in rs1 is less than the unsigned integer value in rs2 then set rd to1616

1. Otherwise, set rd to 0.1617

For example, if x17 = 0x12345678 and x18 = 0x0000ffff then the instruction sltu x12,x17,x181618

will set x12 to the value 0x00000000.1619

If x17 = 0x12345678 and x18 = 0x8000ffff then the instruction sltu x12,x17,x18 will set1620

x12 to the value 0x00000001.1621

• sra rd,rs1,rs21622

Arithmetic-shift rs1 right by the number of bits given in the least-significant 5 bits of the rs21623

register and store the result in rd.11624

For example, if x17 = 0x87654321 and x18 = 0x08 then the instruction sra x12,x17,x18 will1625

set x12 to the value 0xff876543.1626

If x17 = 0x76543210 and x18 = 0x08 then the instruction sra x12,x17,x18 will set x12 to the1627

value 0x00765432.1628

Note that the value of funct7 must be zero for this instruction. (The value of funct7 is how1629

the sra instruction is differentiated from the srl instruction.)1630

• srl rd,rs1,rs21631

Logic-shift rs1 right by the number of bits given in the least-significant 5 bits of the rs2 register1632

and store the result in rd.11633

For example, if x17 = 0x87654321 and x18 = 0x08 then the instruction srl x12,x17,x18 will1634

set x12 to the value 0x00876543.1635

If x17 = 0x76543210 and x18 = 0x08 then the instruction srl x12,x17,x18 will set x12 to the1636

value 0x00765432.1637

Note that the value of funct7 must be 0b0100000 for this instruction. (The value of funct7 is1638

how the srl instruction is differentiated from the sra instruction.)1639

• sub rd,rs1,rs21640

Set register rd to rs1 - rs2.1641

Note that the value of funct7 must be 0b0100000 for this instruction. (The value of funct7 is1642

how the sub instruction is differentiated from the add instruction.)1643

• xor rd,rs1,rs21644

Set register rd to the bitwise xor of rs1 and rs2.1645

For example, if x17 = 0x55551111 and x18 = 0xff00ff00 then the instruction xor x12,x17,x181646

will set x12 to the value 0xaa55ee11.1647

5.3.4 I Type1648

The I-type instruction format is used to encode instructions with a signed 12-bit immediate operand1649

with a range of [−2048..2047], an rd register, and an rs1 register.1650

If XLEN=32 then the 12-bit imm value example will extracted from the instruction and converted as1651

shown in Figure 5.8 to form the imm_i value.1652

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 52 of 82

5.3. INSTRUCTION ENCODING FORMATS

a b c d e f g h i j k l 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 I-type

31 20

imm[11:0]

12

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7

31 12 11 0

imm ia b c d e f g h i j k l
20 12

Figure 5.8: Decoding an I-type Instruction.

A special case of the I-type is used for shift-immediate instructions where the imm field is used to1653

represent the number of bit positions to shift as shown in Figure 5.9. In this variation, the least1654

significant five bits of the imm field are extracted to form the shamt_i value.21655

Note also that bit 30 (the imm instruction field bit labeled ‘b’) is used to select between arithmetic1656

and logical shifting.1657

0 b 0 0 0 0 0 h i j k l 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 I-type

31 20

imm[11:0]

12

19 15

rs1

5

14 12

funct3

3

11 7

rd

5

6 0

opcode

7

4 0

shamt ih i j k l
5

0

srai/srlib
1

Figure 5.9: Decoding an I-type Shift Instruction.

• addi rd,rs1,imm1658

Set register rd to rs1 + imm_i.1659

• andi rd,rs1,imm1660

Set register rd to the bitwise and of rs1 and imm_i.1661

2When XLEN is 64 or 128, the shamt i field will consist of 6 or 7 bits respectively.

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 53 of 82

5.3. INSTRUCTION ENCODING FORMATS

00002640: 6f 00 00 00 6f 00 00 00 b7 87 00 00 03 a5 07 43 *o...o..........C*

00002650: 67 80 00 00 00 00 00 00 76 61 6c 3d 00 00 00 00 *g.......val=....*

00002660: 00 00 00 00 80 84 2e 41 1f 85 45 41 80 40 9a 44 *.......A..EA.@.D*

00002670: 4f 11 f3 c3 6e 8a 67 41 20 1b 00 00 20 1b 00 00 *O...n.gA*

00002680: 44 1b 00 00 14 1b 00 00 14 1b 00 00 04 1c 00 00 *D...............*

Figure 5.10: An Example Memory Dump.

For example, if x17 = 0x55551111 then the instruction andi x12,x17,0x0ff will set x12 to1662

the value 0x00000011.1663

Recall that imm is sign-extended. Therefore if x17 = 0x55551111 then the instruction andi x12,x17,0x8001664

will set x12 to the value 0x55551000.1665

• jalr rd,imm(rs1)1666

Set register rd to the address of the next instruction that would otherwise be executed (the1667

address of the jalr instruction + 4) and then jump to an address given by the sum of the rs11668

register and the imm_i value as decoded from the instruction shown in Figure 5.8.1669

Note that the pc register can never refer to an odd address. This instruction will explicitly set1670

the LSB to zero regardless of the value of the value of the calculated target address.1671

• lb rd,imm(rs1)1672

Set register rd to the value of the sign-extended byte fetched from the memory address given1673

by the sum of rs1 and imm_i.1674

For example, given the memory contents shown in Figure 5.10, if register x13 = 0x000026501675

then the instruction lb x12,1(x13) will set x12 to the value 0xffffff80.1676

• lbu rd,imm(rs1)1677

Set register rd to the value of the zero-extended byte fetched from the memory address given1678

by the sum of rs1 and imm_i.1679

For example, given the memory contents shown in Figure 5.10, if register x13 = 0x000026501680

then the instruction lbu x12,1(x13) will set x12 to the value 0x00000080.1681

• lh rd,imm(rs1)1682

Set register rd to the value of the sign-extended 16-bit little-endian half-word value fetched from1683

the memory address given by the sum of rs1 and imm_i.1684

For example, given the memory contents shown in Figure 5.10, if register x13 = 0x000026501685

then the instruction lh x12,-2(x13) will set x12 to the value 0x00004307.1686

If register x13 = 0x00002650 then the instruction lh x12,-8(x13) will set x12 to the value1687

0xffff87b7.1688

• lhu rd,imm(rs1)1689

Set register rd to the value of the zero-extended 16-bit little-endian half-word value fetched from1690

the memory address given by the sum of rs1 and imm_i.1691

For example, given the memory contents shown in Figure 5.10, if register x13 = 0x000026501692

then the instruction lhu x12,-2(x13) will set x12 to the value 0x00004307.1693

If register x13 = 0x00002650 then the instruction lhu x12,-8(x13) will set x12 to the value1694

0x000087b7.1695

• lw rd,imm(rs1)1696

Set register rd to the value of the sign-extended 32-bit little-endian word value fetched from the1697

memory address given by the sum of rs1 and imm_i.1698

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 54 of 82

5.3. INSTRUCTION ENCODING FORMATS

For example, given the memory contents shown in Figure 5.10, if register x13 = 0x000026501699

then the instruction lw x12,-4(x13) will set x12 to the value 4307a503.1700

• ori rd,rs1,imm1701

Set register rd to the bitwise or of rs1 and imm_i.1702

For example, if x17 = 0x55551111 then the instruction ori x12,x17,0x0ff will set x12 to the1703

value 0x555511ff.1704

Recall that imm is sign-extended. Therefore if x17 = 0x55551111 then the instruction ori x12,x17,0x8001705

will set x12 to the value 0xfffff911.1706

• slli rd,rs1,imm1707

Shift rs1 left by the number of bits specified in shamt_i (as shown in Figure 5.9) and store the1708

result in rd.31709

For example, if x17 = 0x12345678 then the instruction slli x12,x17,4 will set x12 to the1710

value 0x23456780.1711

• slti rd,rs1,imm1712

If the signed integer value in rs1 is less than the signed integer value in imm_i then set rd to 1.1713

Otherwise, set rd to 0.1714

• sltiu rd,rs1,imm1715

If the unsigned integer value in rs1 is less than the unsigned integer value in imm_i then set rd1716

to 1. Otherwise, set rd to 0.1717

Note that imm_i is always created by sign-extending the imm value as shown in Figure 5.8 even1718

though it is then later used as an unsigned integer for the purposes of comparing its magnitude1719

to the unsigned value in rs1. Therefore, this instruction provides a method to compare rs1 to1720

a value in the ranges of [0..0x7ff] and [0xfffff800..0xffffffff].1721

• srai rd,rs1,imm1722

Arithmetic-shift rs1 right by the number of bits specified in shamt_i (as shown in Figure 5.9)1723

and store the result in rd.31724

For example, if x17 = 0x87654321 then the instruction srai x12,x17,4 will set x12 to the1725

value 0xf8765432.1726

Note that the value of bit 30 must be 1 for this instruction. (The value of bit 30 is how the srai1727

instruction is differentiated from the srli instruction.)1728

• srli rd,rs1,imm1729

Logic-shift rs1 right by the number of bits specified in shamt_i (as shown in Figure 5.9) and1730

store the result in rd.31731

For example, if x17 = 0x87654321 then the instruction srli x12,x17,4 will set x12 to the1732

value 0x08765432.1733

Note that the value of bit 30 must be 0 for this instruction. (The value of bit 30 is how the srli1734

instruction is differentiated from the srai instruction.)1735

• xori rd,rs1,imm1736

Set register rd to the bitwise xor of rs1 and imm_i.1737

For example, if x17 = 0x55551111 then the instruction xori x12,x17,0x0ff will set x12 to1738

the value 0x555511ee.1739

Recall that imm is sign-extended. Therefore if x17 = 0x55551111 then xori x12,x17,0x8001740

will set x12 to the value 0xaaaae911.1741

3 When XLEN is 64 or 128, the shift distance will be given by the least-significant 6 or 7 bits of the imm field
respectively. For more information on how shifting works, see section 2.4.

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 55 of 82

5.3. INSTRUCTION ENCODING FORMATS

5.3.5 S Type1742

The S-type instruction format is used to encode instructions with a signed 12-bit immediate operand1743

with a range of [−2048..2047], an rs1 register, and an rs2 register.1744

If XLEN=32 then the 12-bit imm value example will extracted from the instruction and converted as1745

shown Figure 5.11 to form the imm_s value.1746

a b c d e f g 0 1 1 1 1 0 0 0 1 1 0 0 0 u v w x y 0 1 0 0 0 1 1 S-type

31 25

imm[11:5]

7

24 20

rs2

5

19 15

rs1

5

14 12

funct3

3

11 7

imm[4:0]

5

6 0

opcode

7

31 12 11 5 4 0

imm sa b c d e f g u v w x y
20 7 5

Figure 5.11: Decoding an S-type Instruction.

• sb rs2,imm(rs1)1747

Set the byte of memory at the address given by the sum of rs1 and imm_s to the 8 LSBs of rs2.1748

For example, given the memory contents shown in Figure 5.10, if registers x13 = 0x000026501749

and x12 = 0x12345678 then the instruction sb x12,1(x13) will change the memory byte at1750

address 0x00002651 from 0x80 to 0x78 resulting in:1751

00002640: 6f 00 00 00 6f 00 00 00 b7 87 00 00 03 a5 07 43 *o...o..........C*1752

00002650: 67 78 00 00 00 00 00 00 76 61 6c 3d 00 00 00 00 *gx......val=....*1753

00002660: 00 00 00 00 80 84 2e 41 1f 85 45 41 80 40 9a 44 *.......A..EA.@.D*1754

00002670: 4f 11 f3 c3 6e 8a 67 41 20 1b 00 00 20 1b 00 00 *O...n.gA*1755

00002680: 44 1b 00 00 14 1b 00 00 14 1b 00 00 04 1c 00 00 *D...............*1756

• sh rs2,imm(rs1)1757

Set the 16-bit half-word of memory at the address given by the sum of rs1 and imm_s to the 161758

LSBs of rs2.1759

For example, given the memory contents shown in Figure 5.10, if registers x13 = 0x000026501760

and x12 = 0x12345678 then the instruction sh x12,2(x13) will change the memory half-word1761

at address 0x00002652 from 0x0000 to 0x5678 resulting in:1762

00002640: 6f 00 00 00 6f 00 00 00 b7 87 00 00 03 a5 07 43 *o...o..........C*1763

00002650: 67 80 78 56 00 00 00 00 76 61 6c 3d 00 00 00 00 *g.xV....val=....*1764

00002660: 00 00 00 00 80 84 2e 41 1f 85 45 41 80 40 9a 44 *.......A..EA.@.D*1765

00002670: 4f 11 f3 c3 6e 8a 67 41 20 1b 00 00 20 1b 00 00 *O...n.gA*1766

00002680: 44 1b 00 00 14 1b 00 00 14 1b 00 00 04 1c 00 00 *D...............*1767

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 56 of 82

5.3. INSTRUCTION ENCODING FORMATS

• sw rs2,imm(rs1)1768

Store the 32-bit value in rs2 into the memory at the address given by the sum of rs1 and imm_s.1769

For example, given the memory contents shown in Figure 5.10, if registers x13 = 0x000026501770

and x12 = 0x12345678 then the instruction sw x12,0(x13) will change the memory word at1771

address 0x00002650 from 0x00008067 to 0x12345678 resulting in:1772

00002640: 6f 00 00 00 6f 00 00 00 b7 87 00 00 03 a5 07 43 *o...o..........C*1773

00002650: 78 56 34 12 00 00 00 00 76 61 6c 3d 00 00 00 00 *xV4.....val=....*1774

00002660: 00 00 00 00 80 84 2e 41 1f 85 45 41 80 40 9a 44 *.......A..EA.@.D*1775

00002670: 4f 11 f3 c3 6e 8a 67 41 20 1b 00 00 20 1b 00 00 *O...n.gA*1776

00002680: 44 1b 00 00 14 1b 00 00 14 1b 00 00 04 1c 00 00 *D...............*1777

5.3.6 B Type1778

The B-type instruction format is used for branch instructions that require an even immediate value1779

that is used to determine the branch target address as an offset from the current instruction’s address.1780

If XLEN=32 then the 12-bit imm value example will extracted from the instruction and converted as1781

shown in Figure 5.12 to form the imm_b value.1782

a b c d e f g 0 1 1 1 1 0 0 0 1 1 0 0 0 u v w x y 1 1 0 0 0 1 1 B-type

31 25

imm[12|10:5]

7

24 20

rs2

5

19 15

rs1

5

14 12

funct3

3

11 7

imm[4:1|11]

5

6 0

opcode

7

0

31 13 12 11 10 5 4 1 0

imm ba y b c d e f g u v w x 0
19 1 1 6 4 1

Figure 5.12: Decoding a B-type Instruction.

Note that imm_b is expressed in the instruction as a target address that is converted to an even 13-bit1783

value in the range of [−4096..4094] [-0x1000..0x0ffe] representing a pc-relative offset to the target1784

address. For example, consider the branch instructions in the following code:1785

00000000: 00520063 beq x4,x5,0x0 # branches to self (address 0x0)1786

00000004: 00520463 beq x4,x5,0xc # branches to address 0xc1787

00000008: fe520ce3 beq x4,x5,0x0 # branches to address 0x01788

0000000c: 00100073 ebreak1789

The instruction at address 0x0 has a target address of zero and imm_b is zero because the offset from1790

the “current instruction” to the target is zero.41791

4This is in contrast to many other instruction sets with pc-relative addressing modes that express a branch target
offset from the “next instruction.”

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 57 of 82

5.4. CPU REGISTERS

The instruction at address 0x4 has a target address of 0xc and it has an imm_b of 0x08 because1792

0x4 + 0x08 = 0x0c.1793

The instruction at address 0x8 has a target address of zero and imm_b is 0xfffffff8 (-8) because1794

0x8 + 0xfffffff8 = 0x0.1795

• beq rs1,rs2,pcrel 131796

If rs1 is equal to rs2 then add imm_b to the pc register.1797

• bge rs1,rs2,pcrel 131798

If the signed value in rs1 is greater than or equal to the signed value in rs2 then add imm_b to1799

the pc register.1800

• bgeu rs1,rs2,pcrel 131801

If the unsigned value in rs1 is greater than or equal to the unsigned value in rs2 then add imm_b1802

to the pc register.1803

• blt rs1,rs2,pcrel 131804

If the signed value in rs1 is less than the signed value in rs2 then add imm_b to the pc register.1805

• bltu rs1,rs2,pcrel 131806

If the unsigned value in rs1 is less than the unsigned value in rs2 then add imm_b to the pc1807

register.1808

• bne rs1,rs2,pcrel 131809

If rs1 is not equal to rs2 then add imm_b to the pc register.1810

5.4 CPU Registers1811

The registers are names x0 through x31 and have aliases suited to their conventional use. The following1812

table describes each register.1813

Note that the calling calling convention specifies that only some of the registers are to be saved by ý Fix Me:
Need to add a section that
discusses the calling
conventions

1814

functions if they alter their contents. The idea being that accessing memory is time-consuming and1815

that by classifying some registers as “temporary” (not saved by any function that alter its contents)1816

it is possible to carefully implement a function with less need to store register values on the stack in1817

order to use them to perform the operations of the function.1818

The lack of grouping the temporary and saved registers is due to the fact that the C extension provides1819

access to only the first 16 registers when executing instructions in the compressed format.1820

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 58 of 82

5.5. MEMORY

Reg ABI/Alias Description Saved

x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer yes
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary/alternate link register
x6-7 t1-2 Temporaries
x8 s0/fp Saved register/frame pointer yes
x9 s1 Saved register yes
x10-11 a0-1 Function arguments/return value
x12-17 a2-7 Function arguments
x18-27 s2-11 Saved registers yes
x28-31 t3-6 Temporaries

1821

5.5 memory1822

Note that RISC-V is a little-endian machine.1823

All instructions must be naturally aligned to their 4-byte boundaries. [1, p. 5]1824

If a RISC-V processor implements the C (compressed) extension then instructions may be aligned to1825

2-byte boundaries.[1, p. 68]1826

Data alignment is not necessary but unaligned data can be inefficient. Accessing unaligned data using1827

any of the load or store instructions can also prevent a memory access from operating atomically. [1,1828

p.19] See also ??.1829

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 59 of 82

Appendix A1830

Installing a RISC-V Toolchain1831

All of the software presented in this text was assembled/compiled using the GNU toolchain and1832

executed using the rvddt simulator on a Linux (Ubuntu 20.04 LTS) operating system.1833

The installation instructions provided here were last tested on on March 5, 2021.1834

It is expected that these tools will evolve over time. See the respective documentation web sites for1835

the latest news and options for installing them.1836

A.1 The GNU Toolchain1837

In order to install custom code in a location that will not cause interference with other applications ý Fix Me:
It would be good to find
some Mac and Windows
users to write and test
proper variations on this
section to address those
systems. Pull requests,
welcome!

1838

(and allow for easy hacking and cleanup), these will install the toolchain under a private directory:1839

~/projects/riscv/install. At any time you can remove everything and start over by executing the1840

following command:1841

1842

1 rm -rf ~/ projects/riscv/install1843
1844

Be very careful how you type the above rm command. If typed incorrectly, it could irreversibly
remove many of your files!

1845

Before building the toolchain, a number of utilities must be present on your system. The following1846

will install those that are needed:1847

1 sudo apt install autoconf automake autotools -dev curl python3 python -dev libmpc -dev \

2 libmpfr -dev libgmp -dev gawk build -essential bison flex texinfo gperf \

3 libtool patchutils bc zlib1g -dev libexpat -dev
1848

Note that the above apt command is the only operation that should be performed as root. All other1849

commands should be executed as a regular user. This will eliminate the possibility of clobbering1850

system files that should not be touched when tinkering with the toolchain applications.1851

To download, compile and install the toolchain: ý Fix Me:
Discuss the choice of ilp32
as well as what the other
variations would do.

1852

~/rvalp/book/./install/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 60 of 82

A.2. RVDDT

1 mkdir -p ~/ projects/riscv

2 cd ~/ projects/riscv

3 git clone https :// github.com/riscv/riscv -gnu -toolchain

4 cd riscv -gnu -toolchain

5 INS_DIR =~/ projects/riscv/install/rv32i

6 ./ configure --prefix=$INS_DIR \

7 --with -multilib -generator="rv32i -ilp32 --;rv32imafd -ilp32 --;rv32ima -ilp32 --"

8 make

1853

After building the toolchain, make it available by putting it into your PATH by adding the following1854

to the end of your .bashrc file:1855

1856

1 export PATH=$PATH:$INS_DIR1857
1858

For this PATH change to take place, start a new terminal or paste the same export command into1859

your existing terminal.1860

A.2 rvddt1861

Download and install the rvddt simulator by executing the following commands. Building the rvddt1862

example programs will verify that the GNU toolchain has been built and installed properly.1863

1 cd ~/ projects/riscv

2 git clone https :// github.com/johnwinans/rvddt.git

3 cd rvddt/src

4 make world

5 cd ../ examples

6 make world

1864

After building rvddt, make it available by putting it into your PATH by adding the following to the1865

end of your .bashrc file:1866

1867

1 export PATH=$PATH :~/ projects/riscv/rvddt/src1868
1869

For this PATH change to take place, start a new terminal or paste the same export command into1870

your existing terminal.1871

Test the rvddt build by executing one of the examples:1872

1 winans@ux410 :~/ projects/riscv/rvddt/examples$ rvddt -f counter/counter.bin

2 sp initialized to top of memory: 0x0000fff0

3 Loading ’counter/counter.bin’ to 0x0

4 This is rvddt. Enter ? for help.

5 ddt > ti 0 1000

6 00000000: 00300293 addi x5, x0, 3 # x5 = 0x00000003 = 0 x00000000 + 0x00000003

7 00000004: 00000313 addi x6, x0, 0 # x6 = 0x00000000 = 0 x00000000 + 0x00000000

8 00000008: 00130313 addi x6, x6, 1 # x6 = 0x00000001 = 0 x00000000 + 0x00000001

9 0000000c: fe534ee3 blt x6, x5, -4 # pc = (0x1 < 0x3) ? 0x8 : 0x10

10 00000008: 00130313 addi x6, x6, 1 # x6 = 0x00000002 = 0 x00000001 + 0x00000001

11 0000000c: fe534ee3 blt x6, x5, -4 # pc = (0x2 < 0x3) ? 0x8 : 0x10

12 00000008: 00130313 addi x6, x6, 1 # x6 = 0x00000003 = 0 x00000002 + 0x00000001

13 0000000c: fe534ee3 blt x6, x5, -4 # pc = (0x3 < 0x3) ? 0x8 : 0x10

14 00000010: ebreak

15 ddt > x

16 winans@ux410 :~/ projects/riscv/rvddt/examples$

1873

~/rvalp/book/./install/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 61 of 82

A.3. QEMU

A.3 qemu1874

You can download and install the RV32 qemu simulator by executing the following commands.1875

At the time of this writing (2021-06) I use release v5.0.0. Release v5.2.0 has issues that confuse GDB1876

when printing the registers and v6.0.0 has different CPU types that I have had trouble with when1877

executing privileged instructions.1878

1 INS_DIR =~/ projects/riscv/install/rv32i

2 cd ~/ projects/riscv

3 git clone git@github.com:qemu/qemu.git

4 cd qemu

5 git checkout v5.0.0

6 ./ configure --target -list=riscv32 -softmmu --prefix=${INS_DIR}
7 make -j4

8 make install

1879

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 62 of 82

Appendix B1880

Floating Point Numbers1881

B.1 IEEE-754 Floating Point Number Representation1882

This section provides an overview of the IEEE-754 32-bit binary floating point format.[15]1883

• Recall that the place values for integer binary numbers are:1884

... 128 64 32 16 8 4 2 11885

• We can extend this to the right in binary similar to the way we do for decimal numbers:1886

... 128 64 32 16 8 4 2 1 . 1/2 1/4 1/8 1/16 1/32 1/64 1/128 ...1887

The ‘.’ in a binary number is a binary point, not a decimal point.1888

• We use scientific notation as in 2.7 × 10−47 to express either small fractions or large numbers1889

when we are not concerned every last digit needed to represent the entire, exact, value of a1890

number.1891

• The format of a number in scientific notation is mantissa× baseexponent1892

• In binary we have mantissa× 2exponent1893

• IEEE-754 format requires binary numbers to be normalized to 1.significand× 2exponent where1894

the significand is the portion of the mantissa that is to the right of the binary-point.1895

– The unnormalized binary value of −2.625 is −10.1011896

– The normalized value of −2.625 is −1.0101× 21
1897

• We need not store the ‘1.’ part because all normalized floating point numbers will start that1898

way. Thus we can save memory when storing normalized values by inserting a ‘1.’ to the left of1899

significand.1900

1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3131

sign

1

30 23

exponent

8

22 0

significand

23
1901

• −((1 + 1
4 + 1

16)× 2128−127) = −((1 + 1
4 + 1

16)× 21) = −(2 + 1
2 + 1

8) = −(2 + .5 + .125) = −2.6251902

~/rvalp/book/./float/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 63 of 82

B.1. IEEE-754 FLOATING POINT NUMBER REPRESENTATION

• IEEE-754 formats:1903

IEEE-754 32-bit IEEE-754 64-bit
sign 1 bit 1 bit
exponent 8 bits (excess-127) 11 bits (excess-1023)
mantissa 23 bits 52 bits
max exponent 127 1023
min exponent -126 -1022

1904

• When the exponent is all ones, the significand is all zeros, and the sign is zero, the number1905

represents positive infinity.1906

• When the exponent is all ones, the significand is all zeros, and the sign is one, the number1907

represents negative infinity.1908

• Observe that the binary representation of a pair of IEEE-754 numbers (when one or both are1909

positive) can be compared for magnitude by treating them as if they are two’s complement1910

signed integers. This is because an IEEE number is stored in signed magnitude format and1911

therefore positive floating point values will grow upward and downward in the same fashion as1912

for unsigned integers and that since negative floating point values will have its MSB set, they1913

will ‘appear‘ to be less than a positive floating point value.1914

When comparing two negative IEEE float values by treating them both as two’s complement1915

signed integers, the order will be reversed because IEEE float values with larger (that is, in-1916

creasingly negative) magnitudes will appear to decrease in value when interpreted as signed1917

integers.1918

This works this way because excess notation is used in the format of the exponent and why the1919

significand’s sign bit is located on the left of the exponent.11920

• Note that zero is a special case number. Recall that a normalized number has an implied 1-bit1921

to the left of the significand. . . which means that there is no way to represent zero! Zero is1922

represented by an exponent of all-zeros and a significand of all-zeros. This definition allows for1923

a positive and a negative zero if we observe that the sign can be either 1 or 0.1924

• On the number-line, numbers between zero and the smallest fraction in either direction are in1925

the underflow areas. ý Fix Me:
Need to add the standard
lecture number-line diagram
showing where the
over/under-flow areas are
and why.

1926

• On the number line, numbers greater than the mantissa of all-ones and the largest exponent1927

allowed are in the overflow areas.1928

• Note that numbers have a higher resolution on the number line when the exponent is smaller.1929

• The largest and smallest possible exponent values are reserved to represent things requiring1930

special cases. For example, the infinities, values representing “not a number” (such as the result1931

of dividing by zero), and for a way to represent values that are not normalized. For more1932

information on special cases see [15].1933

B.1.1 Floating Point Number Accuracy1934

Due to the finite number of bits used to store the value of a floating point number, it is not possible to1935

represent every one of the infinite values on the real number line. The following C programs illustrate1936

this point.1937

1I know this is true and was done on purpose because Bill Cody, chairman of IEEE committee P754 that designed
the IEEE-754 standard, told me so personally circa 1991.

~/rvalp/book/./float/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 64 of 82

B.1. IEEE-754 FLOATING POINT NUMBER REPRESENTATION

B.1.1.1 Powers Of Two1938

Just like the integer numbers, the powers of two that have bits to represent them can be represented1939

perfectly. . . as can their sums (provided that the significand requires no more than 23 bits.)1940

Listing B.1: powersoftwo.c
Precise Powers of Two

1941

1 #include <stdio.h>1942

2 #include <stdlib.h>1943

3 #include <unistd.h>1944

41945

5 union floatbin1946

6 {1947

7 unsigned int i;1948

8 float f;1949

9 };1950

10 int main()1951

11 {1952

12 union floatbin x;1953

13 union floatbin y;1954

14 int i;1955

15 x.f = 1.0;1956

16 while (x.f > 1.0/1024.0)1957

17 {1958

18 y.f = -x.f;1959

19 printf("%25.10f = %08x %25.10f = %08x\n", x.f, x.i, y.f, y.i);1960

20 x.f = x.f/2.0;1961

21 }1962

22 }1963
1964

Listing B.2: powersoftwo.out
Output from powersoftwo.c

1965

1 1.0000000000 = 3f800000 -1.0000000000 = bf8000001966

2 0.5000000000 = 3f000000 -0.5000000000 = bf0000001967

3 0.2500000000 = 3e800000 -0.2500000000 = be8000001968

4 0.1250000000 = 3e000000 -0.1250000000 = be0000001969

5 0.0625000000 = 3d800000 -0.0625000000 = bd8000001970

6 0.0312500000 = 3d000000 -0.0312500000 = bd0000001971

7 0.0156250000 = 3c800000 -0.0156250000 = bc8000001972

8 0.0078125000 = 3c000000 -0.0078125000 = bc0000001973

9 0.0039062500 = 3b800000 -0.0039062500 = bb8000001974

10 0.0019531250 = 3b000000 -0.0019531250 = bb0000001975
1976

B.1.1.2 Clean Decimal Numbers1977

When dealing with decimal values, you will find that they don’t map simply into binary floating point1978

values.1979

Note how the decimal numbers are not accurately represented as they get larger. The decimal number1980

on line 10 of Listing B.4 can be perfectly represented in IEEE format. However, a problem arises in1981

the 11Th loop iteration. It is due to the fact that the binary number can not be represented accurately1982

in IEEE format. Its least significant bits were truncated in a best-effort attempt at rounding the value1983

off in order to fit the value into the bits provided. This is an example of low order truncation. Once1984

this happens, the value of x.f is no longer as precise as it could be given more bits in which to save1985

its value.1986

Listing B.3: cleandecimal.c
Print Clean Decimal Numbers

~/rvalp/book/./cleandecimal.c
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 65 of 82

B.1. IEEE-754 FLOATING POINT NUMBER REPRESENTATION

1987

1 #include <stdio.h>1988

2 #include <stdlib.h>1989

3 #include <unistd.h>1990

41991

5 union floatbin1992

6 {1993

7 unsigned int i;1994

8 float f;1995

9 };1996

10 int main()1997

11 {1998

12 union floatbin x, y;1999

13 int i;2000

142001

15 x.f = 10;2002

16 while (x.f <= 10000000000000.0)2003

17 {2004

18 y.f = -x.f;2005

19 printf("%25.10f = %08x %25.10f = %08x\n", x.f, x.i, y.f, y.i);2006

20 x.f = x.f*10.0;2007

21 }2008

22 }2009
2010

Listing B.4: cleandecimal.out
Output from cleandecimal.c

2011

1 10.0000000000 = 41200000 -10.0000000000 = c12000002012

2 100.0000000000 = 42 c80000 -100.0000000000 = c2c800002013

3 1000.0000000000 = 447 a0000 -1000.0000000000 = c47a00002014

4 10000.0000000000 = 461 c4000 -10000.0000000000 = c61c40002015

5 100000.0000000000 = 47 c35000 -100000.0000000000 = c7c350002016

6 1000000.0000000000 = 49742400 -1000000.0000000000 = c97424002017

7 10000000.0000000000 = 4b189680 -10000000.0000000000 = cb1896802018

8 100000000.0000000000 = 4cbebc20 -100000000.0000000000 = ccbebc202019

9 1000000000.0000000000 = 4e6e6b28 -1000000000.0000000000 = ce6e6b282020

10 10000000000.0000000000 = 501502 f9 -10000000000.0000000000 = d01502f92021

11 99999997952.0000000000 = 51 ba43b7 -99999997952.0000000000 = d1ba43b72022

12 999999995904.0000000000 = 5368 d4a5 -999999995904.0000000000 = d368d4a52023

13 9999999827968.0000000000 = 551184 e7 -9999999827968.0000000000 = d51184e72024
2025

B.1.1.3 Accumulation of Error2026

These rounding errors can be exaggerated when the number we multiply the x.f value by is, itself,2027

something that can not be accurately represented in IEEE form.2 ý Fix Me:
In a lecture one would show
that one tenth is a repeating
non-terminating binary
number that gets truncated.
This discussion should be
reproduced here in text form.

2028

For example, if we multiply our x.f value by 1
10 each time, we can never be accurate and we start2029

accumulating errors immediately.2030

Listing B.5: erroraccumulation.c
Accumulation of Error

2031

1 #include <stdio.h>2032

2 #include <stdlib.h>2033

3 #include <unistd.h>2034

42035

5 union floatbin2036

6 {2037

7 unsigned int i;2038

8 float f;2039

2Applications requiring accurate decimal values, such as financial accounting systems, can use a packed-decimal
numeric format to avoid unexpected oddities caused by the use of binary numbers.

~/rvalp/book/./erroraccumulation.c
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 66 of 82

B.1. IEEE-754 FLOATING POINT NUMBER REPRESENTATION

9 };2040

10 int main()2041

11 {2042

12 union floatbin x, y;2043

13 int i;2044

142045

15 x.f = .1;2046

16 while (x.f <= 2.0)2047

17 {2048

18 y.f = -x.f;2049

19 printf("%25.10f = %08x %25.10f = %08x\n", x.f, x.i, y.f, y.i);2050

20 x.f += .1;2051

21 }2052

22 }2053
2054

Listing B.6: erroraccumulation.out
Output from erroraccumulation.c

2055

1 0.1000000015 = 3dcccccd -0.1000000015 = bdcccccd2056

2 0.2000000030 = 3e4ccccd -0.2000000030 = be4ccccd2057

3 0.3000000119 = 3e99999a -0.3000000119 = be99999a2058

4 0.4000000060 = 3ecccccd -0.4000000060 = becccccd2059

5 0.5000000000 = 3f000000 -0.5000000000 = bf0000002060

6 0.6000000238 = 3f19999a -0.6000000238 = bf19999a2061

7 0.7000000477 = 3f333334 -0.7000000477 = bf3333342062

8 0.8000000715 = 3f4cccce -0.8000000715 = bf4cccce2063

9 0.9000000954 = 3f666668 -0.9000000954 = bf6666682064

10 1.0000001192 = 3f800001 -1.0000001192 = bf8000012065

11 1.1000001431 = 3f8cccce -1.1000001431 = bf8cccce2066

12 1.2000001669 = 3f99999b -1.2000001669 = bf99999b2067

13 1.3000001907 = 3fa66668 -1.3000001907 = bfa666682068

14 1.4000002146 = 3fb33335 -1.4000002146 = bfb333352069

15 1.5000002384 = 3fc00002 -1.5000002384 = bfc000022070

16 1.6000002623 = 3fcccccf -1.6000002623 = bfcccccf2071

17 1.7000002861 = 3fd9999c -1.7000002861 = bfd9999c2072

18 1.8000003099 = 3fe66669 -1.8000003099 = bfe666692073

19 1.9000003338 = 3ff33336 -1.9000003338 = bff333362074
2075

B.1.2 Reducing Error Accumulation2076

In order to use floating point numbers in a program without causing excessive rounding problems an2077

algorithm can be redesigned such that the accumulation is eliminated. This example is similar to2078

the previous one, but this time we recalculate the desired value from a known-accurate integer value.2079

Some rounding errors remain present, but they can not accumulate.2080

Listing B.7: errorcompensation.c
Accumulation of Error

2081

1 #include <stdio.h>2082

2 #include <stdlib.h>2083

3 #include <unistd.h>2084

42085

5 union floatbin2086

6 {2087

7 unsigned int i;2088

8 float f;2089

9 };2090

10 int main()2091

11 {2092

12 union floatbin x, y;2093

13 int i;2094

142095

15 i = 1;2096

~/rvalp/book/./errorcompensation.c
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 67 of 82

B.1. IEEE-754 FLOATING POINT NUMBER REPRESENTATION

16 while (i <= 20)2097

17 {2098

18 x.f = i/10.0;2099

19 y.f = -x.f;2100

20 printf("%25.10f = %08x %25.10f = %08x\n", x.f, x.i, y.f, y.i);2101

21 i++;2102

22 }2103

23 return (0);2104

24 }2105
2106

Listing B.8: errorcompensation.out
Output from erroraccumulation.c

2107

1 0.1000000015 = 3dcccccd -0.1000000015 = bdcccccd2108

2 0.2000000030 = 3e4ccccd -0.2000000030 = be4ccccd2109

3 0.3000000119 = 3e99999a -0.3000000119 = be99999a2110

4 0.4000000060 = 3ecccccd -0.4000000060 = becccccd2111

5 0.5000000000 = 3f000000 -0.5000000000 = bf0000002112

6 0.6000000238 = 3f19999a -0.6000000238 = bf19999a2113

7 0.6999999881 = 3f333333 -0.6999999881 = bf3333332114

8 0.8000000119 = 3f4ccccd -0.8000000119 = bf4ccccd2115

9 0.8999999762 = 3f666666 -0.8999999762 = bf6666662116

10 1.0000000000 = 3f800000 -1.0000000000 = bf8000002117

11 1.1000000238 = 3f8ccccd -1.1000000238 = bf8ccccd2118

12 1.2000000477 = 3f99999a -1.2000000477 = bf99999a2119

13 1.2999999523 = 3fa66666 -1.2999999523 = bfa666662120

14 1.3999999762 = 3fb33333 -1.3999999762 = bfb333332121

15 1.5000000000 = 3fc00000 -1.5000000000 = bfc000002122

16 1.6000000238 = 3fcccccd -1.6000000238 = bfcccccd2123

17 1.7000000477 = 3fd9999a -1.7000000477 = bfd9999a2124

18 1.7999999523 = 3fe66666 -1.7999999523 = bfe666662125

19 1.8999999762 = 3ff33333 -1.8999999762 = bff333332126

20 2.0000000000 = 40000000 -2.0000000000 = c00000002127
2128

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 68 of 82

Appendix C2129

The ASCII Character Set2130

A slightly abridged version of the Linux “ASCII” man(1) page.2131

C.1 NAME2132

ascii - ASCII character set encoded in octal, decimal, and hexadecimal2133

C.2 DESCRIPTION2134

ASCII is the American Standard Code for Information Interchange. It is a 7-bit code. Many 8-bit2135

codes (e.g., ISO 8859-1) contain ASCII as their lower half. The international counterpart of ASCII is2136

known as ISO 646-IRV.2137

The following table contains the 128 ASCII characters.2138

C program ’\X’ escapes are noted.2139

Oct Dec Hex Char Oct Dec Hex Char2140

--2141

000 0 00 NUL ’\0’ (null character) 100 64 40 @2142

001 1 01 SOH (start of heading) 101 65 41 A2143

002 2 02 STX (start of text) 102 66 42 B2144

003 3 03 ETX (end of text) 103 67 43 C2145

004 4 04 EOT (end of transmission) 104 68 44 D2146

005 5 05 ENQ (enquiry) 105 69 45 E2147

006 6 06 ACK (acknowledge) 106 70 46 F2148

007 7 07 BEL ’\a’ (bell) 107 71 47 G2149

010 8 08 BS ’\b’ (backspace) 110 72 48 H2150

011 9 09 HT ’\t’ (horizontal tab) 111 73 49 I2151

012 10 0A LF ’\n’ (new line) 112 74 4A J2152

013 11 0B VT ’\v’ (vertical tab) 113 75 4B K2153

014 12 0C FF ’\f’ (form feed) 114 76 4C L2154

015 13 0D CR ’\r’ (carriage ret) 115 77 4D M2155

~/rvalp/book/./ascii/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 69 of 82

C.2. DESCRIPTION

016 14 0E SO (shift out) 116 78 4E N2156

017 15 0F SI (shift in) 117 79 4F O2157

020 16 10 DLE (data link escape) 120 80 50 P2158

021 17 11 DC1 (device control 1) 121 81 51 Q2159

022 18 12 DC2 (device control 2) 122 82 52 R2160

023 19 13 DC3 (device control 3) 123 83 53 S2161

024 20 14 DC4 (device control 4) 124 84 54 T2162

025 21 15 NAK (negative ack.) 125 85 55 U2163

026 22 16 SYN (synchronous idle) 126 86 56 V2164

027 23 17 ETB (end of trans. blk) 127 87 57 W2165

030 24 18 CAN (cancel) 130 88 58 X2166

031 25 19 EM (end of medium) 131 89 59 Y2167

032 26 1A SUB (substitute) 132 90 5A Z2168

033 27 1B ESC (escape) 133 91 5B [2169

034 28 1C FS (file separator) 134 92 5C \ ’\\’2170

035 29 1D GS (group separator) 135 93 5D]2171

036 30 1E RS (record separator) 136 94 5E ^2172

037 31 1F US (unit separator) 137 95 5F _2173

040 32 20 SPACE 140 96 60 ‘2174

041 33 21 ! 141 97 61 a2175

042 34 22 " 142 98 62 b2176

043 35 23 # 143 99 63 c2177

044 36 24 $ 144 100 64 d2178

045 37 25 % 145 101 65 e2179

046 38 26 & 146 102 66 f2180

047 39 27 ’ 147 103 67 g2181

050 40 28 (150 104 68 h2182

051 41 29) 151 105 69 i2183

052 42 2A * 152 106 6A j2184

053 43 2B + 153 107 6B k2185

054 44 2C , 154 108 6C l2186

055 45 2D - 155 109 6D m2187

056 46 2E . 156 110 6E n2188

057 47 2F / 157 111 6F o2189

060 48 30 0 160 112 70 p2190

061 49 31 1 161 113 71 q2191

062 50 32 2 162 114 72 r2192

063 51 33 3 163 115 73 s2193

064 52 34 4 164 116 74 t2194

065 53 35 5 165 117 75 u2195

066 54 36 6 166 118 76 v2196

067 55 37 7 167 119 77 w2197

070 56 38 8 170 120 78 x2198

071 57 39 9 171 121 79 y2199

072 58 3A : 172 122 7A z2200

073 59 3B ; 173 123 7B {2201

074 60 3C < 174 124 7C |2202

075 61 3D = 175 125 7D }2203

076 62 3E > 176 126 7E ~2204

077 63 3F ? 177 127 7F DEL2205

~/rvalp/book/./ascii/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 70 of 82

C.3. NOTES

C.2.1 Tables2206

For convenience, below are more compact tables in hex and decimal.2207

2 3 4 5 6 7 30 40 50 60 70 80 90 100 110 1202208

------------- ---------------------------------2209

0: 0 @ P ‘ p 0: (2 < F P Z d n x2210

1: ! 1 A Q a q 1:) 3 = G Q [e o y2211

2: " 2 B R b r 2: * 4 > H R \ f p z2212

3: # 3 C S c s 3: ! + 5 ? I S] g q {2213

4: $ 4 D T d t 4: " , 6 @ J T ^ h r |2214

5: % 5 E U e u 5: # - 7 A K U _ i s }2215

6: & 6 F V f v 6: $. 8 B L V ‘ j t ~2216

7: ’ 7 G W g w 7: % / 9 C M W a k u DEL2217

8: (8 H X h x 8: & 0 : D N X b l v2218

9:) 9 I Y i y 9: ’ 1 ; E O Y c m w2219

A: * : J Z j z2220

B: + ; K [k {2221

C: , < L \ l |2222

D: - = M] m }2223

E: . > N ^ n ~2224

F: / ? O _ o DEL2225

C.3 NOTES2226

C.3.1 History2227

An ascii manual page appeared in Version 7 of AT&T UNIX.2228

On older terminals, the underscore code is displayed as a left arrow, called backarrow, the caret is2229

displayed as an up-arrow and the vertical bar has a hole in the middle.2230

Uppercase and lowercase characters differ by just one bit and the ASCII character 2 differs from the2231

double quote by just one bit, too. That made it much easier to encode characters mechanically or2232

with a non-microcontroller-based electronic keyboard and that pairing was found on old teletypes.2233

The ASCII standard was published by the United States of America Standards Institute (USASI) in2234

1968.2235

C.4 COLOPHON2236

This page is part of release 4.04 of the Linux man-pages project. A description of the project,2237

information about reporting bugs, and the latest version of this page, can be found at http://www.2238

kernel.org/doc/man-pages/.2239

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 71 of 82

http://www.kernel.org/doc/man-pages/
http://www.kernel.org/doc/man-pages/
http://www.kernel.org/doc/man-pages/

Appendix D2240

Attribution 4.0 International2241

Creative Commons Corporation (”Creative Commons”) is not a law firm and does not provide legal services or legal advice.2242

Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons2243

makes its licenses and related information available on an ”as-is” basis. Creative Commons gives no warranties regarding its2244

licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all2245

liability for damages resulting from their use to the fullest extent possible.2246

Using Creative Commons Public Licenses2247

Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may2248

use to share original works of authorship and other material subject to copyright and certain other rights specified in the public2249

license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of2250

our licenses.2251

Considerations for licensors: Our public licenses are intended for use by those authorized to give the public permission to use2252

material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read2253

and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights2254

necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any2255

material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation2256

to copyright. More considerations for licensors: http://wiki.creativecommons.org/Considerations_for_licensors2257

Considerations for the public: By using one of our public licenses, a licensor grants the public permission to use the li-2258

censed material under specified terms and conditions. If the licensor’s permission is not necessary for any reason-for ex-2259

ample, because of any applicable exception or limitation to copyright-then that use is not regulated by the license. Our2260

licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the2261

licensed material may still be restricted for other reasons, including because others have copyright or other rights in the2262

material. A licensor may make special requests, such as asking that all changes be marked or described. Although not re-2263

quired by our licenses, you are encouraged to respect those requests where reasonable. More considerations for the public:2264

http://wiki.creativecommons.org/Considerations_for_licensees2265

2266

Creative Commons Attribution 4.0 International Public License2267

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this2268

Creative Commons Attribution 4.0 International Public License (”Public License”). To the extent this Public License may2269

be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and2270

conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed2271

Material available under these terms and conditions.2272

Section 1. Definitions2273

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the2274

Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified2275

in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this2276

Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is2277

always produced where the Licensed Material is synched in timed relation with a moving image.2278

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted2279

~/rvalp/book/./license/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 72 of 82

http://wiki.creativecommons.org/Considerations_for_licensors
http://wiki.creativecommons.org/Considerations_for_licensees

Material in accordance with the terms and conditions of this Public License.2280

c. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without2281

limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the2282

rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not2283

Copyright and Similar Rights.2284

d. Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented2285

under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or2286

similar international agreements.2287

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and2288

Similar Rights that applies to Your use of the Licensed Material.2289

f. Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this2290

Public License.2291

g. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are2292

limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has2293

authority to license.2294

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.2295

i. Share means to provide material to the public by any means or process that requires permission under the Licensed2296

Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or im-2297

portation, and to make material available to the public including in ways that members of the public may access the2298

material from a place and at a time individually chosen by them.2299

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European2300

Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as2301

well as other essentially equivalent rights anywhere in the world.2302

k. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding2303

meaning.2304

Section 2. Scope2305

a. License grant.2306

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-2307

free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material2308

to:2309

a. reproduce and Share the Licensed Material, in whole or in part; and2310

b. produce, reproduce, and Share Adapted Material.2311

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use,2312

this Public License does not apply, and You do not need to comply with its terms and conditions.2313

3. Term. The term of this Public License is specified in Section 6(a).2314

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights2315

in all media and formats whether now known or hereafter created, and to make technical modifications necessary2316

to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making2317

technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to2318

circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications2319

authorized by this Section 2(a) (4) never produces Adapted Material.2320

5. Downstream recipients.2321

a. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material automatically receives2322

an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public2323

License.2324

b. No downstream restrictions. You may not offer or impose any additional or different terms or conditions on,2325

or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the2326

Licensed Rights by any recipient of the Licensed Material.2327

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply2328

that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted2329

official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).2330

b. Other rights.2331

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy,2332

and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to2333

assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed2334

Rights, but not otherwise.2335

2. Patent and trademark rights are not licensed under this Public License.2336

3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed2337

Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory2338

licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties.2339

~/rvalp/book/./license/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 73 of 82

Section 3. License Conditions2340

Your exercise of the Licensed Rights is expressly made subject to the following conditions.2341

a. Attribution.2342

1. If You Share the Licensed Material (including in modified form), You must:2343

a. retain the following if it is supplied by the Licensor with the Licensed Material:2344

i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution,2345

in any reasonable manner requested by the Licensor (including by pseudonym if designated);2346

ii. a copyright notice;2347

iii. a notice that refers to this Public License;2348

iv. a notice that refers to the disclaimer of warranties;2349

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;2350

b. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and2351

c. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or2352

hyperlink to, this Public License.2353

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and2354

context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions2355

by providing a URI or hyperlink to a resource that includes the required information.2356

3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent2357

reasonably practicable.2358

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not prevent recipients of the2359

Adapted Material from complying with this Public License.2360

Section 4. Sui Generis Database Rights2361

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:2362

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial2363

portion of the contents of the database;2364

b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database2365

Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted2366

Material; and2367

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the2368

database.2369

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where2370

the Licensed Rights include other Copyright and Similar Rights.2371

Section 5. Disclaimer of Warranties and Limitation of Liability2372

a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE EXTENT POSSIBLE, THE2373

LICENSOR OFFERS THE LICENSED MATERIAL AS-IS AND AS-AVAILABLE, AND MAKES NO REPRESENTA-2374

TIONS OR WARRANTIES OF ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,2375

IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION, WARRANTIES OF TITLE,2376

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, ABSENCE OF LA-2377

TENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR2378

NOT KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT ALLOWED IN FULL2379

OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.2380

b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE TO YOU ON ANY LEGAL2381

THEORY (INCLUDING, WITHOUT LIMITATION, NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPE-2382

CIAL, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES, COSTS,2383

EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR USE OF THE LICENSED MATERIAL,2384

EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES,2385

OR DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR IN PART, THIS LIMI-2386

TATION MAY NOT APPLY TO YOU.2387

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the2388

extent possible, most closely approximates an absolute disclaimer and waiver of all liability.2389

~/rvalp/book/./license/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 74 of 82

Section 6. Term and Termination2390

a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to2391

comply with this Public License, then Your rights under this Public License terminate automatically.2392

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:2393

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the2394

violation; or2395

2. upon express reinstatement by the Licensor.2396

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your2397

violations of this Public License.2398

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or2399

stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.2400

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.2401

Section 7. Other Terms and Conditions2402

a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly2403

agreed.2404

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from2405

and independent of the terms and conditions of this Public License.2406

Section 8. Interpretation2407

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or2408

impose conditions on any use of the Licensed Material that could lawfully be made without permission under this2409

Public License.2410

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed2411

to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from2412

this Public License without affecting the enforceability of the remaining terms and conditions.2413

c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed2414

to by the Licensor.2415

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and2416

immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.2417

2418

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of2419

its public licenses to material it publishes and in those instances will be considered the Licensor. The text of the Creative2420

Commons public licenses is dedicated to the public domain under the CC0 Public Domain Dedication. Except for the limited2421

purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the2422

Creative Commons policies published at http://creativecommons.org/policies, Creative Commons does not authorize the use2423

of the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior written consent2424

including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other2425

arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph2426

does not form part of the public licenses.2427

Creative Commons may be contacted at http://creativecommons.org.2428

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 75 of 82

http://creativecommons.org/policies
http://creativecommons.org

Bibliography2429

[1] RISC-V Foundation, The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document2430

Version 2.2, 5 2017. Editors Andrew Waterman and Krste Asanović. iv, 3, 4, 16, 25, 27, 32, 59,2431

822432

[2] D. Patterson and A. Waterman, The RISC-V Reader: An Open Architecture Atlas. Strawberry2433

Canyon, 11 2017. ISBN: 978-0999249116. iv2434

[3] D. Patterson and J. Hennessy, Computer Organization and Design RISC-V Edition: The Hard-2435

ware Software Interface. Morgan Kaufmann, 4 2017. ISBN: 978-0128122754. iv, 272436

[4] W. F. Decker, “A modern approach to teaching computer organization and assembly language2437

programming,” SIGCSE Bull., vol. 17, pp. 38–44, 12 1985. iv2438

[5] Texas Instruments, SN54190, SN54191, SN54LS190, SN54LS191, SN74190, SN74191,2439

SN74LS190, SN74LS191 Synchronous Up/Down Counters With Down/Up Mode Control, 3 1988.2440

iv2441

[6] Texas Instruments, SN54154, SN74154 4–line to 16–line Decoders/Demultiplexers, 12 1972. iv2442

[7] Intel, MCS-85 User’s Manual, 9 1978. iv2443

[8] Radio Shack, TRS-80 Editor/Assembler Operation and Reference Manual, 1978. iv2444

[9] Motorola, MC68000 16–bit Microprocessor User’s Manual, 2nd ed., 1 1980. MC68000UM(AD2).2445

iv2446

[10] R. A. Overbeek and W. E. Singletary, Assembler Language With ASSIST. Science Research2447

Associates, Inc., 2nd ed., 1983. iv2448

[11] IBM, IBM System/370 Principals of Operation, 7th ed., 3 1980. iv2449

[12] IBM, OS/VS-DOS/VSE-VM/370 Assembler Language, 6th ed., 3 1979. iv2450

[13] “Definition of subtrahend.” www.mathsisfun.com/definitions/subtrahend.html. Accessed: 2018-2451

06-02. 172452

[14] D. Cohen, “IEN 137, On Holy Wars and a Plea for Peace,” Apr. 1980. This note discusses the2453

Big-Endian/Little-Endian byte/bit-order controversy, but did not settle it. A decade later, David2454

V. James in “Multiplexed Buses: The Endian Wars Continue”, IEEE Micro, 10(3), 9–21 (1990)2455

continued the discussion. 222456

[15] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2019 (Revision of IEEE 754-2008),2457

pp. 1–84, 2019. 63, 642458

[16] RISC-V Foundation, The RISC-V Instruction Set Manual, Volume II: Privileged Architecture,2459

Document Version 1.10, 5 2017. Editors Andrew Waterman and Krste Asanović.2460

~/rvalp/book/./rvalp.bbl
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 76 of 82

https://riscv.org/
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
http://www.ti.com/lit/ds/symlink/sn74ls191.pdf
http://www.ti.com/lit/ds/symlink/sn74ls191.pdf
http://www.ti.com/lit/ds/symlink/sn74ls191.pdf
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=sdls056&fileType=pdf
https://www.mathsisfun.com/definitions/subtrahend.html
http://www.ietf.org/rfc/ien/ien137.txt
https://riscv.org/
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual

BIBLIOGRAPHY

[17] P. Dabbelt, S. O’Rear, K. Cheng, A. Waterman, M. Clark, A. Bradbury, D. Horner, M. Nordlund,2461

and K. Merker, RISC-V ELF psABI specification, 2017.2462

[18] R. M. Stallman and the GCC Developer Community, Using the GNU Compiler Collection (For2463

GCC version 7.3.0). Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA2464

02110-1301 USA: GNU Press, 2017.2465

[19] National Semiconductor Coprporation, Series 32000 Databook, 1986.2466

2467

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 77 of 82

https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

Glossary2468

address A numeric value used to uniquely identify each byte of main memory. 2, 772469

alignment Refers to a range of numeric values that begin at a multiple of some number. Primarily2470

used when referring to a memory address. For example an alignment of two refers to one or2471

more addresses starting at even address and continuing onto subsequent adjacent, increasing2472

memory addresses. 26, 772473

ASCII American Standard Code for Information Interchange. See Appendix C. 21, 772474

big-endian A number format where the most significant values are printed to the left of the lesser2475

significant values. This is the method that everyone uses to write decimal numbers every day.2476

23, 30, 31, 77, 792477

binary Something that has two parts or states. In computing these two states are represented by2478

the numbers one and zero or by the conditions true and false and can be stored in one bit. 1, 3,2479

77, 78, 792480

bit One binary digit. 3, 6, 10, 77, 78, 792481

byte A binary value represented by 8 bits. 2, 6, 77, 78, 792482

CPU Central Processing Unit. 1, 2, 772483

doubleword A binary value represented by 64 bits. 772484

exception An error encountered by the CPU while executing an instruction that can not be com-2485

pleted. 27, 772486

fullword A binary value represented by 32 bits. 6, 772487

halfword A binary value represented by 16 bits. 6, 22, 772488

hart Hardware Thread. 3, 772489

hexadecimal A base-16 numbering system whose digits are 0123456789abcdef. The hex digits (hits)2490

are not case-sensitive. 30, 31, 77, 782491

high order bits Some number of MSBs. 772492

hit One hexadecimal digit. 10, 12, 77, 78, 792493

ISA Instruction Set Architecture. 3, 4, 772494

LaTeX Is a mark up language specially suited for scientific documents. 772495

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 78 of 82

Glossary

little-endian A number format where the least significant values are printed to the left of the more2496

significant values. This is the opposite ordering that everyone learns in grade school when2497

learning how to count. For example, the big-endian number written as “1234” would be written2498

in little endian form as “4321”. 24, 772499

low order bits Some number of LSBs. 772500

LSB Least Significant Bit. 10, 12, 22, 44, 48, 54, 56, 77, 792501

machine language The instructions that are executed by a CPU that are expressed in the form of2502

binary values. 1, 772503

mnemonic A method used to remember something. In the case of assembly language, each machine2504

instruction is given a name so the programmer need not memorize the binary values of each2505

machine instruction. 1, 772506

MSB Most Significant Bit. 10, 12, 13, 19, 20, 22, 44, 45, 77, 782507

nybble Half of a byte is a nybble (sometimes spelled nibble.) Another word for hit. 10, 772508

overflow The situation where the result of an addition or subtraction operation is approaching pos-2509

itive or negative infinity and exceeds the number of bits allotted to contain the result. This is2510

typically caused by high-order truncation. 64, 772511

place value the numerical value that a digit has as a result of its position within a number. For2512

example, the digit 2 in the decimal number 123 is in the ten’s place and its place value is 20. 9,2513

10, 11, 23, 24, 772514

program A ordered list of one or more instructions. 1, 772515

quadword A binary value represented by 128 bits. 772516

RAM Random Access Memory. 2, 772517

register A unit of storage inside a CPU with the capacity of XLEN bits. 2, 77, 792518

ROM Read Only Memory. 2, 772519

RV32 Short for RISC-V 32. The number 32 refers to the XLEN. 772520

RV64 Short for RISC-V 64. The number 64 refers to the XLEN. 772521

rvddt A RV32I simulator and debugging tool inspired by the simplicity of the Dynamic Debugging2522

Tool (ddt) that was part of the CP/M operating system. 21, 29, 772523

thread An stream of instructions. When plural, it is used to refer to the ability of a CPU to execute2524

multiple instruction streams at the same time. 3, 772525

underflow The situation where the result of an addition or subtraction operation is approaching2526

zero and exceeds the number of bits allotted to contain the result. This is typically caused by2527

low-order truncation. 64, 772528

XLEN The number of bits a RISC-V x integer register (such as x0). For RV32 XLEN=32, RV642529

XLEN=64 and so on. 49, 50, 52, 56, 57, 77, 792530

~/rvalp/book/./rvalp.ind
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 79 of 82

Index

A2531

ALU, 32532

ASCII, 26, 692533

ASCIIZ, 262534

B2535

big-endian, 232536

C2537

carry, 152538

CPU, 22539

F2540

Full Adder, 132541

H2542

hart, 32543

I2544

imm b, 572545

imm i, 532546

imm j, 502547

imm s, 562548

imm u, 492549

Instruction2550

addi, 332551

ebreak, 322552

mv, 352553

nop, 332554

instruction cycle, 42555

instruction decode, 52556

instruction execute, 52557

instruction fetch, 52558

ISA, 42559

L2560

Least significant bit, 102561

little-endian, 242562

LSB, see Least significant bit2563

M2564

Most significant bit, 102565

MSB, see Most significant bit2566

O2567

objdump, 342568

overflow, 152569

signed, 172570

unsigned, 162571

R2572

register, 2, 32573

RV32, 442574

RV32A, 42575

RV32C, 42576

RV32D, 42577

RV32F, 42578

RV32G, 42579

RV32I, 42580

RV32M, 42581

RV32Q, 42582

rvddt, 292583

S2584

shamt i, 532585

sign extension, 192586

T2587

truncation, 15, 182588

~/rvalp/book/./rvalp.ind
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 80 of 82

RV32I Reference Card2589

Usage Template Type Description Detailed Description

add rd, rs1, rs2 R Add rd ← rs1 + rs2, pc ← pc+4

addi rd, rs1, imm I Add Immediate rd ← rs1 + imm i, pc ← pc+4

and rd, rs1, rs2 R And rd ← rs1 & rs2, pc ← pc+4

andi rd, rs1, imm I And Immediate rd ← rs1 & imm i, pc ← pc+4

auipc rd, imm U Add Upper Immediate to PC rd ← pc + imm u, pc ← pc+4

beq rs1, rs2, pcrel 13 B Branch Equal pc ← pc + ((rs1==rs2) ? imm b : 4)

bge rs1, rs2, pcrel 13 B Branch Greater or Equal pc ← pc + ((rs1>=rs2) ? imm b : 4)

bgeu rs1, rs2, pcrel 13 B Branch Greater or Equal Unsigned pc ← pc + ((rs1>=rs2) ? imm b : 4)

blt rs1, rs2, pcrel 13 B Branch Less Than pc ← pc + ((rs1<rs2) ? imm b : 4)

bltu rs1, rs2, pcrel 13 B Branch Less Than Unsigned pc ← pc + ((rs1<rs2) ? imm b : 4)

bne rs1, rs2, pcrel 13 B Branch Not Equal pc ← pc + ((rs1!=rs2) ? imm b : 4)

jal rd, pcrel 21 J Jump And Link rd ← pc+4, pc ← pc+imm j

jalr rd, imm(rs1) I Jump And Link Register rd ← pc+4, pc ← (rs1+imm i)&~1

lb rd, imm(rs1) I Load Byte rd ← sx(m8(rs1+imm i)), pc ← pc+4

lbu rd, imm(rs1) I Load Byte Unsigned rd ← zx(m8(rs1+imm i)), pc ← pc+4

lh rd, imm(rs1) I Load Halfword rd ← sx(m16(rs1+imm i)), pc ← pc+4

lhu rd, imm(rs1) I Load Halfword Unsigned rd ← zx(m16(rs1+imm i)), pc ← pc+4

lui rd, imm U Load Upper Immediate rd ← imm u, pc ← pc+4

lw rd, imm(rs1) I Load Word rd ← sx(m32(rs1+imm i)), pc ← pc+4

or rd, rs1, rs2 R Or rd ← rs1 | rs2, pc ← pc+4

ori rd, rs1, imm I Or Immediate rd ← rs1 | imm i, pc ← pc+4

sb rs2, imm(rs1) S Store Byte m8(rs1+imm s) ← rs2[7:0], pc ← pc+4

sh rs2, imm(rs1) S Store Halfword m16(rs1+imm s) ← rs2[15:0], pc ← pc+4

sll rd, rs1, rs2 R Shift Left Logical rd ← rs1 << (rs2%XLEN), pc ← pc+4

slli rd, rs1, shamt I Shift Left Logical Immediate rd ← rs1 << shamt i, pc ← pc+4

slt rd, rs1, rs2 R Set Less Than rd ← (rs1 < rs2) ? 1 : 0, pc ← pc+4

slti rd, rs1, imm I Set Less Than Immediate rd ← (rs1 < imm i) ? 1 : 0, pc ← pc+4

sltiu rd, rs1, imm I Set Less Than Immediate Unsigned rd ← (rs1 < imm i) ? 1 : 0, pc ← pc+4

sltu rd, rs1, rs2 R Set Less Than Unsigned rd ← (rs1 < rs2) ? 1 : 0, pc ← pc+4

sra rd, rs1, rs2 R Shift Right Arithmetic rd ← rs1 >> (rs2%XLEN), pc ← pc+4

srai rd, rs1, shamt I Shift Right Arithmetic Immediate rd ← rs1 >> shamt i, pc ← pc+4

srl rd, rs1, rs2 R Shift Right Logical rd ← rs1 >> (rs2%XLEN), pc ← pc+4

srli rd, rs1, shamt I Shift Right Logical Immediate rd ← rs1 >> shamt i, pc ← pc+4

sub rd, rs1, rs2 R Subtract rd ← rs1 - rs2, pc ← pc+4

sw rs2, imm(rs1) S Store Word m32(rs1+imm s) ← rs2[31:0], pc ← pc+4

xor rd, rs1, rs2 R Exclusive Or rd ← rs1 ^ rs2, pc ← pc+4

xori rd, rs1, imm I Exclusive Or Immediate rd ← rs1 ^ imm i, pc ← pc+4

2590

2591

~/rvalp/book/./refcard/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 81 of 82

RV32I Base Instruction Set Encoding [1, p. 104]2592

31 25 24 20 19 15 14 12 11 7 6 0

imm[31:12] rd U-type lui rd,imm0 1 1 0 1 1 1
imm[31:12] rd U-type auipc rd,imm0 0 1 0 1 1 1

imm[20|10:1|11|19:12] rd J-type jal rd,pcrel 211 1 0 1 1 1 1
imm[11:0] rs1 rd I-type jalr rd,imm(rs1)1 1 0 0 1 1 10 0 0

imm[12|10:5] rs2 rs1 imm[4:1|11] B-type beq rs1,rs2,pcrel 131 1 0 0 0 1 10 0 0
imm[12|10:5] rs2 rs1 imm[4:1|11] B-type bne rs1,rs2,pcrel 131 1 0 0 0 1 10 0 1
imm[12|10:5] rs2 rs1 imm[4:1|11] B-type blt rs1,rs2,pcrel 131 1 0 0 0 1 11 0 0
imm[12|10:5] rs2 rs1 imm[4:1|11] B-type bge rs1,rs2,pcrel 131 1 0 0 0 1 11 0 1
imm[12|10:5] rs2 rs1 imm[4:1|11] B-type bltu rs1,rs2,pcrel 131 1 0 0 0 1 11 1 0
imm[12|10:5] rs2 rs1 imm[4:1|11] B-type bgeu rs1,rs2,pcrel 131 1 0 0 0 1 11 1 1

imm[11:0] rs1 rd I-type lb rd,imm(rs1)0 0 0 0 0 1 10 0 0
imm[11:0] rs1 rd I-type lh rd,imm(rs1)0 0 0 0 0 1 10 0 1
imm[11:0] rs1 rd I-type lw rd,imm(rs1)0 0 0 0 0 1 10 1 0
imm[11:0] rs1 rd I-type lbu rd,imm(rs1)0 0 0 0 0 1 11 0 0
imm[11:0] rs1 rd I-type lhu rd,imm(rs1)0 0 0 0 0 1 11 0 1

imm[11:5] rs2 rs1 imm[4:0] S-type sb rs2,imm(rs1)0 1 0 0 0 1 10 0 0
imm[11:5] rs2 rs1 imm[4:0] S-type sh rs2,imm(rs1)0 1 0 0 0 1 10 0 1
imm[11:5] rs2 rs1 imm[4:0] S-type sw rs2,imm(rs1)0 1 0 0 0 1 10 1 0

imm[11:0] rs1 rd I-type addi rd,rs1,imm0 0 1 0 0 1 10 0 0
imm[11:0] rs1 rd I-type slti rd,rs1,imm0 0 1 0 0 1 10 1 0
imm[11:0] rs1 rd I-type sltiu rd,rs1,imm0 0 1 0 0 1 10 1 1
imm[11:0] rs1 rd I-type xori rd,rs1,imm0 0 1 0 0 1 11 0 0
imm[11:0] rs1 rd I-type ori rd,rs1,imm0 0 1 0 0 1 11 1 0
imm[11:0] rs1 rd I-type andi rd,rs1,imm0 0 1 0 0 1 11 1 1

shamt rs1 rd I-type slli rd,rs1,shamt0 0 1 0 0 1 10 0 10 0 0 0 0 0 0

shamt rs1 rd I-type srli rd,rs1,shamt0 0 1 0 0 1 11 0 10 0 0 0 0 0 0

shamt rs1 rd I-type srai rd,rs1,shamt0 0 1 0 0 1 11 0 10 1 0 0 0 0 0

rs2 rs1 rd R-type add rd,rs1,rs20 1 1 0 0 1 10 0 00 0 0 0 0 0 0

rs2 rs1 rd R-type sub rd,rs1,rs20 1 1 0 0 1 10 0 00 1 0 0 0 0 0

rs2 rs1 rd R-type sll rd,rs1,rs20 1 1 0 0 1 10 0 10 0 0 0 0 0 0

rs2 rs1 rd R-type slt rd,rs1,rs20 1 1 0 0 1 10 1 00 0 0 0 0 0 0

rs2 rs1 rd R-type sltu rd,rs1,rs20 1 1 0 0 1 10 1 10 0 0 0 0 0 0

rs2 rs1 rd R-type xor rd,rs1,rs20 1 1 0 0 1 11 0 00 0 0 0 0 0 0

rs2 rs1 rd R-type srl rd,rs1,rs20 1 1 0 0 1 11 0 10 0 0 0 0 0 0

rs2 rs1 rd R-type sra rd,rs1,rs20 1 1 0 0 1 11 0 10 1 0 0 0 0 0

rs2 rs1 rd R-type or rd,rs1,rs20 1 1 0 0 1 11 1 00 0 0 0 0 0 0

rs2 rs1 rd R-type and rd,rs1,rs20 1 1 0 0 1 11 1 10 0 0 0 0 0 0

ecall1 1 1 0 0 1 10 0 0 0 00 0 00 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0

ebreak1 1 1 0 0 1 10 0 0 0 00 0 00 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1

csr[11:0] rs1 rd I-type csrrw rd,csr,rs11 1 1 0 0 1 10 0 1
csr[11:0] rs1 rd I-type csrrs rd,csr,rs11 1 1 0 0 1 10 1 0
csr[11:0] rs1 rd I-type csrrc rd,csr,rs11 1 1 0 0 1 10 1 1
csr[11:0] zimm[4:0] rd I-type csrrwi rd,csr,zimm1 1 1 0 0 1 11 0 1
csr[11:0] zimm[4:0] rd I-type csrrsi rd,csr,zimm1 1 1 0 0 1 11 1 0
csr[11:0] zimm[4:0] rd I-type csrrci rd,csr,zimm1 1 1 0 0 1 11 1 1

2593

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 82 of 82

	Preface
	Introduction
	The Digital Computer
	Instruction Set Architecture
	How the CPU Executes a Program

	Numbers and Storage Systems
	Boolean Functions
	Integers and Counting
	Sign and Zero Extension
	Shifting
	Main Memory Storage

	The Elements of a Assembly Language Program
	Assembly Language Statements
	Memory Layout
	A Sample Program Source Listing
	Running a Program With rvddt

	Writing RISC-V Programs
	Use ebreak to Stop rvddt Execution
	Using the addi Instruction
	todo
	Other Instructions With Immediate Operands
	Transferring Data Between Registers and Memory
	RR operations
	Setting registers to large values using lui with addi
	Labels and Branching
	Jumps
	Pseudoinstructions
	Relocation
	Relaxation

	RV32 Machine Instructions
	Conventions and Terminology
	Addressing Modes
	Instruction Encoding Formats
	CPU Registers
	memory

	Installing a RISC-V Toolchain
	The GNU Toolchain
	rvddt
	qemu

	Floating Point Numbers
	IEEE-754 Floating Point Number Representation

	The ASCII Character Set
	NAME
	DESCRIPTION
	NOTES
	COLOPHON

	Attribution 4.0 International
	Bibliography
	Glossary
	Index
	RV32I Reference Card

