RISC-V
Assembly Language Programming

(Draft v0.17-0-g8eeb353)

John Winans

jwinans@niu.edu

October 7, 2022

mailto:jwinans@niu.edu

10

11

12

13

14

15

16

17

18

Copyright (©) 2018, 2019, 2020 John Winans

This document is made available under a Creative Commons Attribution 4.0 International License.
See Appendix D for more information.

Download your own copy of this book from github here: https://github.com/johnwinans/rvalp.

This document may contain inaccuracies or errors. The author provides no guarantee regarding the
accuracy of this document’s contents. If you discover that this document contains errors, please notify
the author.

ARM® is a registered trademark of ARM Limited in the EU and other countries.

IBM® is a trademarks or registered trademark of International Business Machines Corporation in the
United States, other countries, or both.

Intel® and Pentium® are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries.

~/rvalp/book/./rvalp.tex Page iof 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

» Fix Me:

Need to say something
about trademarks for things
mentioned in this text

https://github.com/johnwinans/rvalp

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Contents

Preface

Introduction

1.1 The Digital Computer e
1.2 Imstruction Set Architecture
1.3 How the CPU Executes a Program

Numbers and Storage Systems

2.1 Boolean Functions L
2.2 Integers and Counting L e
2.3 Sign and Zero Extension e
2.4 Shifting e
2.5 Main Memory Storage oL e e e e

The Elements of a Assembly Language Program

3.1 Assembly Language Statements L oo
3.2 Memory Layout
3.3 A Sample Program Source Listing
3.4 Running a Program Withrvddto

Writing RISC-V Programs

4.1 Use ebreak to Stop rvddt Execution oL
4.2 Using the addi Instruction L L
4.3 t0do ... e
4.4 Other Instructions With Immediate Operands
4.5 Transferring Data Between Registers and Memory
4.6 RRoperations e
4.7 Setting registers to large values using lui with addi
4.8 Labels and Branching L L
4.9 Jumps ..o e e
4.10 Pseudoinstructions

iv

N

=2}

19
20
21

28
28
28
28
29

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page ii of 82

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

CONTENTS

4.11 Relocation e
4.12 Relaxation e

5 RV32 Machine Instructions

5.1 Conventions and Terminology
5.2 Addressing Modes
5.3 Instruction Encoding Formats
54 CPU Registers
5.0 IMEIOTY . . . v v vt e e e e e e e

A Installing a RISC-V Toolchain

A.1 The GNU Toolchain

B Floating Point Numbers
B.1 IEEE-754 Floating Point Number Representation

C The ASCII Character Set

C1 NAME
C.2 DESCRIPTION
C.3 NOTES e
C.4 COLOPHON e

D Attribution 4.0 International

Bibliography

Glossary

Index

RV 321 Reference Card

60

............. 60
............. 61
............. 62

63

............. 63

69

............. 69
............. 69
............. 71
............. 71

72

77

78

79

81

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page iii of 82

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Preface

I set out to write this book because I couldn’t find it in a single volume elsewhere.

The closest published work on this topic appear to be select portions of The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Document Version 2.2[1], The RISC-V Reader|[2], and Computer
Organization and Design RISC-V Edition: The Hardware Software Interface[3].

There are some terse guides on the Internet that are suitable for those who already know an assembly
language. With all the (deserved) excitement brewing over system organization (and the need to
compress the time out of university courses targeting assembly language programming [4]), it is no
surprise that RISC-V texts for the beginning assembly programmer are not (yet) available.

When I started in computing, I learned how to count in binary in a high school electronics course using
data sheets for integrated circuits such as the 74191[5] and 74154[6] prior to knowing that assembly
language even existed.

I learned assembly language from data sheets and texts, that are still sitting on my shelves today,
such as:

The MCS-85 User’s Manual[7]
e The EDTASM Manual[8]

The MC68000 User’s Manual[9]

Assembler Language With ASSIST][10]

IBM System /370 Principals of Operation[l1]

OS/VS-DOS/VSE-VM/370 Assembler Language[12]

e ... and several others

All of these manuals discuss each CPU instruction in excruciating detail with both a logical and
narrative description. For RISC-V this is also the case for the RISC-V Reader{?] and the Computer
Organization and Design RISC-V Edition[3] books and is also present in this text (I consider that to
be the minimal level of responsibility.)

Where I hope this text will differentiate itself from the existing RISC-V titles is in its attempt to
address the needs of those learning assembly language for the first time. To this end I have primed this
project with some of the curriculum material I created when teaching assembly language programming
in the late '80s.

~/rvalp/book/./rvalp.tex Page iv of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

Chapter 1

Introduction

At its core, a digital computer has at least one Central Processing Unit (CPU). A CPU executes a
continuous stream of instructions called a program. These program instructions are expressed in what
is called machine language. Each machine language instruction is a binary value. In order to provide
a method to simplify the management of machine language programs a symbolic mapping is provided
where a mnemonic can be used to specify each machine instruction and any of its parameters. ..
rather than require that programs be expressed as a series of binary values. A set of mnemonics,
parameters and rules for specifying their use for the purpose of programming a CPU is called an
Assembly Language.

1.1 The Digital Computer

There are different types of computers. A digital computer is the type that most people think of when
they hear the word computer. Other varieties of computers include analog and quantum.

A digital computer is one that processes data represented using numeric values (digits), most com-
monly expressed in binary (ones and zeros) form.

This text focuses on digital computing.

A typical digital computer is composed of storage systems (memory, disc drives, USB drives, etc.),
a CPU (with one or more cores), input peripherals (a keyboard and mouse) and output peripherals
(display, printer or speakers.)

1.1.1 Storage Systems

Computer storage systems are used to hold the data and instructions for the CPU.

Types of computer storage can be classified into two categories: wvolatile and non-volatile.

~/rvalp/book/./intro/chapter.tex Page 1 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

1.1. THE DIGITAL COMPUTER

1.1.1.1 Volatile Storage

Volatile storage is characterized by the fact that it will lose its contents (forget) any time that it is
powered off.

One type of volatile storage is provided inside the CPU itself in small blocks called registers. These
registers are used to hold individual data values that can be manipulated by the instructions that are
executed by the CPU.

Another type of volatile storage is main memory (sometimes called RAM) Main memory is connected
to a computer’s CPU and is used to hold the data and instructions that can not fit into the CPU
registers.

Typically, a CPU’s registers can hold tens of data values while the main memory can contain many
billions of data values.

To keep track of the data values, each register is assigned a number and the main memory is broken
up into small blocks called bytes that each assigned a number called an address (an address is often
referred to as a location.

A CPU can process data in a register at a speed that can be an order of magnitude faster than the
rate that it can process (specifically, transfer data and instructions to and from) the main memory.

Register storage costs an order of magnitude more to manufacture than main memory. While it is
desirable to have many registers, the economics dictate that the vast majority of volatile computer
storage be provided in its main memory. As a result, optimizing the copying of data between the
registers and main memory is a desirable trait of good programs.

1.1.1.2 Non-Volatile Storage

Non-volatile storage is characterized by the fact that it will NOT lose its contents when it is powered
off.

Common types of non-volatile storage are disc drives, ROM flash cards and USB drives. Prices can
vary widely depending on size and transfer speeds.

It is typical for a computer system’s non-volatile storage to operate more slowly than its main memory.

This text will focus on volatile storage.

1.1.2 CPU

The CPU is a collection of registers and circuitry designed to manipulate the register data and to
exchange data and instructions with the main memory. The instructions that are read from the
main memory tell the CPU to perform various mathematical and logical operations on the data in its
registers and where to save the results of those operations.

1.1.2.1 Execution Unit

The part of a CPU that coordinates all aspects of the operations of each instruction is called the
erecution unit. It is what performs the transfers of instructions and data between the CPU and

~/rvalp/book/./intro/chapter.tex Page 2 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

» Fix Me:

Add a block diagram of the
CPU components described
here.

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

1.1. THE DIGITAL COMPUTER

the main memory and tells the registers when they are supposed to either store or recall data being
transferred. The execution unit also controls the ALU (Arithmetic and Logic Unit).

1.1.2.2 Arithmetic and Logic Unit

When an instruction manipulates data by performing things like an addition, subtraction, comparison
or other similar operations , the ALU is what will calculate the sum, difference, and so on... under
the control of the execution unit.

1.1.2.3 Registers

In the RV32 CPU there are 31 general purpose registers that each contain 32 bits (where each bit is
one binary digit value of one or zero) and a number of special-purpose registers. Each of the general
purpose registers is given a name such as x1, x2, ... on up to x31 (general purpose refers to the
fact that the CPU itself does not prescribe any particular function to any of these registers.) Two
important special-purpose registers are x0 and pc.

Register x0 will always represent the value zero or logical false no matter what. If any instruction
tries to change the value in x0 the operation will fail. The need for zero is so common that, other
than the fact that it is hard-wired to zero, the x0 register is made available as if it were otherwise a
general purpose register.

The pc register is called the program counter. The CPU uses it to remember the memory address
where its program instructions are located.

The term XLEN refer to the width of an integer register in bits (either 32, 64, or 128.) The number
of bits in each register is defined by the Instruction Set Architecture (ISA).

1.1.2.4 Harts

Analogous to a core in other types of CPUs, a hart (hardware thread) in a RISC-V CPU refers to the
collection of 32 registers, instruction execution unit and ALU.[1, p. 20]

When more than one hart is present in a CPU, a different stream of instructions can be executed
on each hart all at the same time. Programs that are written to take advantage of this are called
multithreaded.

This text will primarily focus on CPUs that have only one hart.

1.1.3 Peripherals

A peripheral is a device that is not a CPU or main memory. They are typically used to transfer
information/data into and out of the main memory.

This text is not concerned with the peripherals of a computer system other than in sections where
instructions are discussed with the purpose of addressing the needs of a peripheral device. Such
instructions are used to initiate, execute and/or synchronize data transfers.

IHaving a special zero register allows the total set of instructions that the CPU can execute to be simplified. Thus
reducing its complexity, power consumption and cost.

~/rvalp/book/./intro/chapter.tex Page 3 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

213

214

215

216

217

218

219

1.2. INSTRUCTION SET ARCHITECTURE

1.2 Instruction Set Architecture
The catalog of rules that describes the details of the instructions and features that a given CPU
provides is called an Instruction Set Architecture (ISA).

An ISA is typically expressed in terms of the specific meaning of each binary instruction that a CPU
can recognize and how it will process each one.

The RISC-V ISA is defined as a set of modules. The purpose of dividing the ISA into modules is to
allow an implementer to select which features to incorporate into a CPU design.[1, p. 4]

Any given RISC-V implementation must provide one of the base modules and zero or more of the
extension modules.[1, p. 4]

1.2.1 RV Base Modules

The base modules are RV32I (32-bit general purpose), RV32E (32-bit embedded), RV641 (64-bit
general purpose) and RV1281 (128-bit general purpose).[l, p. 4]

These base modules provide the minimal functional set of integer operations needed to execute a
useful application. The differing bit-widths address the needs of different main-memory sizes.

This text primarily focuses on the RV32I base module and how to program it.

1.2.2 Extension Modules

RISC-V extension modules may be included by an implementer interested in optimizing a design for
one or more purposes.[l, p. 4]

Available extension modules include M (integer math), A (atomic), F (32-bit floating point), D (64-bit
floating point), Q (128-bit floating point), C (compressed size instructions) and others.

The extension name G is used to represent the combined set of IMAFD extensions as it is expected
to be a common combination.

1.3 How the CPU Executes a Program

The process of executing a program is continuous repeats of a series of instruction cycles that are each
comprised of a fetch, decode and erecute phase.

The current status of a CPU hart is entirely embodied in the data values that are stored in its registers
at any moment in time. Of particular interest to an executing program is the pc register. The pc
contains the memory address containing the instruction that the CPU is currently executing.?

For this to work, the instructions to be executed must have been previously stored in adjacent main
memory locations and the address of the first instruction placed into the pc register.

2In the RISC-V ISA the pc register points to the current instruction where in most other designs, the pc register
points to the next instruction.

~/rvalp/book/./intro/chapter.tex Page 4 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

220

221

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

242

243

244

245

246

247

248

1.3. HOW THE CPU EXECUTES A PROGRAM

1.3.1 Instruction Fetch

In order to fetch an instruction from the main memory the CPU will update the address in the pc

register and then request that the main memory return the value of the data stored at that address.
3

1.3.2 Instruction Decode

Once an instruction has been fetched, it must be inspected to determine what operation(s) are to
be performed. This means inspecting the portions of the instruction that dictate which registers are
involved and what that, if anything, ALU should do.

1.3.3 Instruction Execute

Typical instructions do things like add a number to the value currently stored in one of the registers
or store the contents of a register into the main memory at some given address.

Part of every instruction is a notion of what should be done next.

Most of the time an instruction will complete by indicating that the CPU should proceed to fetch and
execute the instruction at the next larger main memory address. In these cases the pc is incremented
to point to the memory address after the current instruction.

Any parameters that an instruction requires must either be part of the instruction itself or read from
(or stored into) one or more of the general purpose registers.

Some instructions can specify that the CPU proceed to execute an instruction at an address other
than the one that follows itself. This class of instructions have names like jump and branch and are
available in a variety of different styles.

The RISC-V ISA uses the word jump to refer to an unconditional change in the sequential processing
of instructions and the word branch to refer to a conditional change.

Conditional branch instructions can be used to tell the CPU to do things like:

If the value in x8 is currently less than the value in x24 then proceed to the instruction at
the next main memory address, otherwise branch to an instruction at a different address.

This type of instruction can therefore result in one of two different actions pending the result of the
comparison.*

Once the instruction execution phase has completed, the next instruction cycle will be performed
using the new value in the pc register.

3RV32I instructions are more than one byte in size, but this general description is suitable for now.
4This is the fundamental method used by a CPU to make decisions.

~/rvalp/book/./rvalp.tex Page 5 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

Chapter 2

Numbers and Storage Systems

This chapter discusses how data are represented and stored in a computer.

In the context of computing, boolean refers to a condition that can be either true or false and binary

refers to the use of a base-2 numeric system to represent numbers.

RISC-V assembly language uses binary to represent all values, be they boolean or numeric. It is the
context within which they are used that determines whether they are boolean or numeric.

2.1 Boolean Functions

Boolean functions apply on a per-bit basis. When applied to multi-bit values, each bit position is

operated upon independent of the other bits.

RISC-V assembly language uses zero to represent false and one to represent true. In general, however,
it is useful to relax this and define zero and only zero to be false and anything that is not false is

therefore true.!

The reason for this relaxation is to describe the common case where the CPU processes data, multiple

bits at-a-time.

These groups have names like byte (8 bits), halfword (16 bits) and fullword (32 bits).

2.1.1 NOT

The NOT operator applies to a single operand and represents the opposite of the input.

If the input is 1 then the output is 0. If the input is 0 then the output is 1. In other words, the output

value is not that of the input value.

Expressing the not function in the form of a truth table:

1This is how true and false behave in C, C++, and many other languages as well as the common assembly language

idioms discussed in this text.

~/rvalp/book/./binary/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 6 of 82

» Fix Me:

Add some diagrams here
showing bits, bytes and the
MSB, LSB,... perhaps
relocated from the RV32l
chapter?

» Fix Me:

Need to define unary, binary
and ternary operators
without confusing binary
operators with binary
numbers.

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

203

294

295

296

297

298

299

300

301

302

2.1. BOOLEAN FUNCTIONS

AlA
1
0

A truth table is drawn by indicating all of the possible input values on the left of the vertical bar
with each row displaying the output values that correspond to the input for that row. The column
headings are used to define the illustrated operation expressed using a mathematical notation. The
not operation is indicated by the presence of an overline.

In computer programming languages, things like an overline can not be efficiently expressed using a
standard keyboard. Therefore it is common to use a notation such as that used by the C language
when discussing the NOT operator in symbolic form. Specifically the tilde: <.

It is also uncommon to for programming languages to express boolean operations on single-bit input(s).
A more generalized operation is used that applies to a set of bits all at once. For example, performing
a not operation of eight bits at once can be illustrated as:

11110101 <==

00001010 <== output

In a line of code the above might read like this: output = ~A

2.1.2 AND

The boolean and function has two or more inputs and the output is a single bit. The output is 1 if
and only if all of the input values are 1. Otherwise it is 0.

This function works like it does in spoken language. For example if A is 1 and B is 1 then the output
is 1 (true). Otherwise the output is 0 (false).

In mathematical notion, the and operator is expressed the same way as is multiplication. That is by a
raised dot between, or by juxtaposition of, two variable names. It is also worth noting that, in base-2,
the and operation actually is multiplication!

This text will use the operator used in the C language when discussing the and operator in symbolic
form. Specifically the ampersand: ‘&’.

An eight-bit example:

10010001 <== output

In a line of code the above might read like this: output = A & B

~/rvalp/book/./binary/chapter.tex Page 7 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

303

304

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

2.1. BOOLEAN FUNCTIONS

2.1.3 OR

The boolean or function has two or more inputs and the output is a single bit. The output is 1 if at
least one of the input values are 1.

This function works like it does in spoken language. For example if A is 1 or B is 1 then the output
is 1 (true). Otherwise the output is 0 (false).

In mathematical notion, the or operator is expressed using the plus (+).

| A+B
0
1
1
1

__ 0 o
— o = ol

This text will use the operator used in the C language when discussing the or operator in symbolic
form. Specifically the pipe: ‘|’.

An eight-bit example:

11110111 <== output

In a line of code the above might read like this: output = A | B

214 XOR

The boolean exclusive or function has two or more inputs and the output is a single bit. The output
is 1 if only an odd number of inputs are 1. Otherwise the output will be 0.

Note that when zoris used with two inputs, the output is set to 1 (true) when the inputs have different
values and 0 (false) when the inputs both have the same value.

In mathematical notion, the zor operator is expressed using the plus in a circle (®).

| AoB

==l

B
0
1
0
1

o=~ Oolh

This text will use the operator used in the C language when discussing the zor operator in symbolic
form. Specifically the carrot: ‘.

An eight-bit example:

~/rvalp/book/./binary/chapter.tex Page 8 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

328

329

330

332

333

334

335

336

337

338

339

340

342

2.2. INTEGERS AND COUNTING

Decimal Binary Hex
102 100 100 [[27 [26 [25 [22 [23 [22 [28 [20 || 16T | 167
100 | 10 1 128 1643216 8 | 4| 2|1 16 1

0 0 0 0 oOo|lo0olO0O]O0O|O|O]|O 0 0
0 0 1 0 Ol0|0]0]O0]O0]1 0 1
0 0 2 0 O[O0 0|00 1]0O0 0 2
0 0 3 0 oOolO0|0]O0]O0]1]1 0 3
0 0 4 0 O[O0 |0]0|1]0]0O0 0 4
0 0 5 0 ojojojo|10]1 0 5
0 0 6 0 O[O0 | 0|02]1]0O0 0 6
0 0 7 0 OO0 |00 1T |1]1 0 7
0 0 8 0 ojo0ofoO0O}]1|0|O0]|O 0 8
0 0 9 0 0OlO0|0|]1T]0]O0]1 0 9
0 1 0 0 o|jofo0]1|0|1]0 0 a
0 1 1 0 OO0 |O0O|1T]O0]|1]1 0 b
0 1 2 0 O[O0 | 0] 1T|1]0]0O0 0 ¢
0 1 3 0 OO0 |O0|1T]1]0]1 0 d
0 1 4 0 O[O0 |01 | 1]1]0O0 0 e
0 1 5 0 o001]1}|1]1 0 f
0 1 6 0 OO0 | 1]0|0]O0]0O 1 0
0 1 7 0 OO0 | 1]0]0]0]1 1 1
1 2 5 0 1 1 1 11101 7 d
1 2 6 0 1 1 1 11|10 7 e
1 2 7 0 1 1 1 111]1]1 7 f
1 2 8 1 O[O0 | 0]0|0]O0]0O 8 0

Figure 2.1: Counting in decimal, binary and hexadecimal.

01100110 <== output

In a line of code the above might read like this: output = A ~ B

2.2 Integers and Counting

A binary integer is constructed with only 1s and 0Os in the same manner as decimal numbers are
constructed with values from 0 to 9.

Counting in binary (base-2) uses the same basic rules as decimal (base-10). The difference is when we
consider that there are ten decimal digits and only two binary digits. Therefore, in base-10, we must
carry when adding one to nine (because there is no digit representing a ten) and, in base-2, we must
carry when adding one to one (because there is no digit representing a two.)

Figure 2.1 shows an abridged table of the decimal, binary and hexadecimal values ranging from 019
to 12810.

One way to look at this table is on a per-row basis where each place value is represented by the

~/rvalp/book/./binary/chapter.tex Page 9 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

366

367

368

369

370

371

372

373

2.2. INTEGERS AND COUNTING

base raised to the power of the place value position (shown in the column headings.) For example to
interpret the decimal value on the fourth row:

0% 10% +0 x 10" + 3 x 10° = 34 (2.2.1)

Interpreting the binary value on the fourth row by converting it to decimal:

0x2"4+0x20 +0x2° +0x21+0x22 +0x224+1x2' +1x2% =3 (2.2.2)

Interpreting the hexadecimal value on the fourth row by converting it to decimal:

0 x 16* + 3 x 16" = 34 (2.2.3)

We refer to the place values with the largest exponent (the one furthest to the left for any given base)
as the most significant digit and the place value with the lowest exponent as the least significant
digit. For binary numbers these are the Most Significant Bit (MSB) and Least Significant Bit (LSB)
respectively.?

Another way to look at this table is on a per-column basis. When tasked with drawing such a table by
hand, it might be useful to observe that, just as in decimal, the right-most column will cycle through
all of the values represented in the chosen base then cycle back to zero and repeat. (For example, in
binary this pattern is 0-1-0-1-0-1-0-...) The next column in each base will cycle in the same manner
except each of the values is repeated as many times as is represented by the place value (in the case
of decimal, 10! times, binary 2! times, hex 16' times. Again, the binary numbers for this pattern are
0-0-1-1-0-0-1-1-...) This continues for as many columns as are needed to represent the magnitude of
the desired number.

Another item worth noting is that any even binary number will always have a 0 LSB and odd numbers
will always have a 1 LSB.

As is customary in decimal, leading zeros are sometimes not shown for readability.

The relationship between binary and hex values is also worth taking note. Because 2* = 16, there is
a clean and simple grouping of 4 bits to 1 hit (aka nybble). There is no such relationship between
binary and decimal.

Writing and reading numbers in binary that are longer than 8 bits is cumbersome and prone to error.
The simple conversion between binary and hex makes hex a convenient shorthand for expressing binary
values in many situations.

For example, consider the following value expressed in binary, hexadecimal and decimal (spaced to
show the relationship between binary and hex):

Binary value: 0010 0111 1011 1010 1100 1100 1111 0101
Hex Value: 2 7 B A C C F 5
Decimal Value: 666553589

Empirically we can see that grouping the bits into sets of four allows an easy conversion to hex and

2Changing the value of the MSB will have a more significant impact on the numeric value than changing the value
of the LSB.

~/rvalp/book/./binary/chapter.tex Page 10 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

374

375

376

377

378

379

380

381

382

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

2.2. INTEGERS AND COUNTING

expressing it as such is i as long as in binary while at the same time allowing for easy conversion

back to binary.

The decimal value in this example does not easily convey a sense of the binary value.

In programming languages like the C, its derivatives and RISC-V assembly, numeric values
are interpreted as decimal unless they start with a zero (0). Numbers that start with 0 are
interpreted as octal (base-8), numbers starting with Ox are interpreted as hexadecimal and
numbers that start with Ob are interpreted as binary.

2.2.1 Converting Between Bases
2.2.1.1 From Binary to Decimal

It is occasionally necessary to convert between decimal, binary and/or hex.

To convert from binary to decimal, put the decimal value of the place values ...8, 4, 2, 1 over the
binary digits like this:

Base-2 place values: 128 64 32 16 8 4 2 1
Binary: 0 o0 0 1 1 0 1 1
Decimal: 16 +8 +2 +1 = 27

Now sum the place-values that are expressed in decimal for each bit with the value of 1: 164+8+2-+1.
The integer binary value 000110115 represents the decimal value 271.

2.2.1.2 From Binary to Hexadecimal

Conversion from binary to hex involves grouping the bits into sets of four and then performing the
same summing process as shown above. If there is not a multiple of four bits then extend the binary
to the left with zeros to make it so.

Grouping the bits into sets of four and summing:

Base-2 place values: 8421 8421 8421 8421
Binary: 0110 1101 1010 1110
Decimal: 4+2 =6 8+4+ 1=13 8+ 2 =10 8+4+2 =14

After the summing, convert each decimal value to hex. The decimal values from 0-9 are the same
values in hex. Because we don’t have any more numerals to represent the values from 10-15, we use the
first 6 letters (See the right-most column of Figure 2.1.) Fortunately there are only six hex mappings
involving letters. Thus it is reasonable to memorize them.

Continuing this example:

Decimal: 6 13 10 14
Hex: 6 D A E
~/rvalp/book/./binary/chapter.tex Page 11 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

403

404

406

407

408

409

410

412

413

414

415

416

417

418

419

420

421

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

2.2. INTEGERS AND COUNTING

2.2.1.3 From Hexadecimal to Binary

The four-bit mapping between binary and hex makes this task as straight forward as using a look-up
table to translate each hit (Hex digIT) it to its unique four-bit pattern.

Perform this task either by memorizing each of the 16 patterns or by converting each hit to decimal
first and then converting each four-bit binary value to decimal using the place-value summing method
discussed in section 2.2.1.1.

For example:

Hex: 7 C
Decimal Sum: 4+2+1=7 8+4 =12
Binary: 0111 1100

2.2.1.4 From Decimal to Binary

To convert arbitrary decimal numbers to binary, extend the list of binary place values until it exceeds
the value of the decimal number being converted. Then make successive subtractions of each of the
place values that would yield a non-negative result.

For example, to convert 1234,y to binary:

Base-2 place values: 2048-1024-512-256-128-64-32-16-8-4-2-1

0 2048 (too big)
1 1234 - 1024 = 210

0 512 (too big)
0 256 (too big)
1 210 - 128 = 82

1 82 - 64 = 18

0 32 (too big)
1 18 - 16 =2

0 8 (too big)
0 4 (too big)
1 2 -2 =0

0 1 (too big)

The answer using this notation is listed vertically in the left column with the MSB on the top and
the LSB on the bottom line: 0100110100105.

2.2.1.5 From Decimal to Hex

Conversion from decimal to hex can be done by using the place values for base-16 and the same math
as from decimal to binary or by first converting the decimal value to binary and then from binary to
hex by using the methods discussed above.

Because binary and hex are so closely related, performing a conversion by way of binary is straight
forward.

~/rvalp/book/./binary/chapter.tex Page 12 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

440

441

443

444

445

446

447

448

449

450

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

2.2. INTEGERS AND COUNTING

2.2.2 Addition of Binary Numbers

The addition of binary numbers can be performed long-hand the same way decimal addition is taught
in grade school. In fact binary addition is easier since it only involves adding 0 or 1.

The first thing to note that in any number base 0+0=0,0+1 =1, and 1+ 0 = 1. Since there is no
“two” in binary (just like there is no “ten” decimal) adding 1 + 1 results in a zero with a carry as in:
141=105 and in: 1+ 14 1= 115. Using these five sums, any two binary integers can be added.

This truth table shows what is called a Full Addr. A full addr is a function that can add three input

bits (the two addends and a carry value from a “prior column”) and produce the sum and carry output

values.3

ct a b|co sum
0 0 0O 0
0 0 1(0 1
0 1 0[O0 1
0 1 1]1 0
1 0 0] 0 1
1 0 1]1 0
1 1 0|1 0
1 1 1] 1 1

Adding two unsigned binary numbers using 16 full adders:

111111 1111 <== carries
0110101111001111 <== addend
+ 0000011101100011 <== addend

0111001100110010 <== sum

Note that the carry “into” the LSB is zero.

2.2.3 Signed Numbers

There are multiple methods used to represent signed binary integers. The method used by most
modern computers is called two’s complement.

A two’s complement number is encoded in such a manner as to simplify the hardware used to add,
subtract and compare integers.

A simple method of thinking about two’s complement numbers is to negate the place value of the
MSB. For example, the number one is represented the same as discussed before:

Base-2 place values: -128 64 32 16 2 1
0 1

8 4
Binary: 0 0 0 00 O

The MSB of any negative number in this format will always be 1. For example the value —11¢ is:

3Note that the sum could be expressed in Boolean Algebra as: sum =ci ®a @ b

~/rvalp/book/./binary/chapter.tex Page 13 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

467

468

469

470

471

473

474

475

476

477

478

479

480

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

2.2. INTEGERS AND COUNTING

Base-2 place values:

Binary:

-128 64 32 16 8 4 2 1
1 1 1

1 1

1 1

...because: —128 +64+32+16+8+4+2+1=—1.

This format has the virtue of allowing the same addition logic discussed above to be used to calculate

the sums of signed numbers as unsigned numbers.

Calculating the signed addition: 44+5=9

1 <== carries

000100 <==
+000101 <==

001001 <==

0+0+0+4+0+0
0+0+0+4+0+1

0+0+8+0+0+1

Calculating the signed addition: —4 + —5 = —9

111 <==
111100 <==
+111011 <==

1 110111 <==

carries

-4 =-32+16+8+4+0+0
-5=-32+16+8 + 0+ 2+ 1

-9 (with a truncation) = -32 + 16 + 4 + 2 + 1

Calculating the signed addition: —1+1=20

-128 64 32 16
11 1 1 1

1 1 1 1
+0 0 0 O

1 <==
1 <==
1 <==

In order for this to work, the carry out of the sum of the MSBs must be discarded.

0 <==

place value
carries
addend (-1)
addend (1)

sum (0O with a truncation)

2.2.3.1 Converting between Positive and Negative

Changing the sign on two’s complement numbers can be described as inverting all of the bits (which

is also known as the one’s complement) and then add one.

For example, negating the number four:

8
0

4
1

2
0

1
0 <==

-128 64 32 16
0 0 0 O
1 1 1 1
+0 0 0 O
11 1 1

0 <==

4
carries
one’s complement of 4

plus 1

-4

This can be verified by adding 5 to the result and observe that the sum is 1:

-9

~/rvalp/book/./binary/chapter.tex

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 14 of 82

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

515

516

517

518

519

520

521

523

524

525

526

527

528

529

530

531

532

533

534

535

2.2. INTEGERS AND COUNTING

-128 64 32 16
1 1 1 1 1
1 1 1 1

+0 0 0 O

<==

carries
-4
5

1 (with a truncation)

Note that the changing of the sign using this method is symmetric in that it is identical when converting
from negative to positive and when converting from positive to negative: flip the bits and add 1.

For example, changing the value -4 to 4 to illustrate the reverse of the conversion above:

-128 64 32 16
1 1 1 1
0 0 0 O
+0 0 0 O
0 0 0 O

[EY

-4

carries
one’s complement of -4
plus 1

4

2.2.4 Subtraction of Binary Numbers

Subtraction of binary numbers is performed by first negating the subtrahend and then adding the two
numbers. Due to the nature of two’s complement numbers this method will work for both signed and

unsigned numbers!

Observation: Since we always have a carry-in of zero into the LSB when adding, we can take advantage
of that fact by (ab)using that carry input to perform that adding the extra 1 to the subtrahend as
part of changing its sign in the examples below.

An example showing the subtraction of two signed binary numbers: —4 — 8 = —12
-128 64 32 16 8
11 1 1 1 <== -4 (minuend)
-0 0 0 0 1 == 8 (subtrahend)
1 11 1 11 <== carries
11 1 1 1 == -4
+1 1 1 1 0 == one’s complement of 8
1 11 1 1 0 == -12

2.2.5 Truncation

Discarding the carry bit that can be generated from the MSB is called truncation.

~/rvalp/book/./binary/chapter.tex

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 15 of 82

» Fix Me

This section needs more
examples of subtracting
signed an unsigned numbers
and a discussion on how
signedness is not relevant
until the results are
interpreted. For example
adding —4 + —8 = —12
using two 8-bit numbers is
the same as adding

252 4 248 = 500 and
truncating the result to 244.

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

2.2. INTEGERS AND COUNTING

So far we have been ignoring the carries that can come from the MSBs when adding and subtracting.
We have also been ignoring the potential impact of a carry causing a signed number to change its sign
in an unexpected way.

In the examples above, truncating the results either had 1) no impact on the calculated sums or 2)
was absolutely necessary to correct the sum in cases such as: —4 + 5.

For example, note what happens when we try to subtract 1 from the most negative value that we can
represent in a 4 bit two’s complement number:

1 0 0 0 <== -8 (minuend)
-0 0 0 1<== 1 (subtrahend)

1 1 <== carries
-8
one’s complement of 1

+

=
= O
= O
o

ASEAY
nn
o

-
o
—
—
—
A
1]
]

this SHOULD be -9 but with truncation it is 7

The problem with this example is that we can not represent —91g using a 4-bit two’s complement
number.

Granted, if we would have used 5 bit numbers, then the “answer” would have fit OK. But the same
problem would return when trying to calculate —16 — 1. So simply “making more room” does not
solve this problem.

This is not just a problem when subtracting, nor is it just a problem with signed numbers.

The same situation can happen unsigned numbers. For example:

8 4 2 1
1 1 1 0 O <== carries
1 1 1 0 <== 14 (addend)
+0 0 1 1 <== 3 (addend)

1 0 0 O 1 <== this SHOULD be 17 but with truncation it is 1
How to handle such a truncation depends on whether the original values being added are signed or
unsigned.

The RV ISA refers to the discarding the carry out of the MSB after an add (or subtract) of two
unsigned numbers as an unsigned overflow* and the situation where carries create an incorrect sign in
the result of adding (or subtracting) two signed numbers as a signed overflow. [1, p. 13]

2.2.5.1 Unsigned Overflow

When adding unsigned numbers, an overflow only occurs when there is a carry out of the MSB resulting
in a sum that is truncated to fit into the number of bits allocated to contain the result.

4Most microprocessors refer to unsigned overflow simply as a carry condition.

~/rvalp/book/./binary/chapter.tex Page 16 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

2.2. INTEGERS AND COUNTING

Figure 2.2 illustrates an unsigned overflow during addition:

1 1110000 0 <== carries
11110000 <== 240
+ 00010001 <==17
1 00000001 <==gsum =1

Figure 2.2: 240 + 17 =1 (overflow)

Some times an overflow like this is referred to as a wrap around because of the way that successive
additions will result in a value that increases until it wraps back around to zero and then returns to
increasing in value until it, again, wraps around again.

When adding, unsigned overflow occurs when ever there is a carry out of the most significant
bit.

When subtracting unsigned numbers, an overflow only occurs when the subtrahend is greater than
the minuend (because in those cases the different would have to be negative and there are no negative
values that can be represented with an unsigned binary number.)

Figure 2.3 illustrates an unsigned overflow during subtraction:

A

1 1 <== 3 (minuend)
0 0 <== 4 (subtrahend)

0 00000111 <K== carries
00000011<==3
+11111011<==one’s complement of 4

11111111 <== 255 (overflow)

Figure 2.3: 3 —4 = 255 (overflow)

When subtracting, unsigned overflow occurs when ever there is not a carry out of the most
significant bit (IFF the carry-in on the LSB is used to add the extra 1 to the subtrahend when
changing its sign.)

2.2.5.2 Signed Overflow

When adding signed numbers, an overflow only occurs when the two addends are positive and sum is
negative or the addends are both negative and the sum is positive.

When subtracting signed numbers, an overflow only occurs when the minuend is positive and the
subtrahend is negative and difference is negative or when the minuend is negative and the subtrahend
is positive and the difference is positive.®

51 had to look it up to remember which were which too. .. it is: minuend - subtrahend = difference.[13]

~/rvalp/book/./binary/chapter.tex P%ige 17 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

2.2. INTEGERS AND COUNTING

501 Consider the results of the addition of two signed numbers while looking more closely at the carry
502 values.

100000O0O0 0 <== carries
01000000 <==64
01000000 <==64

10000000 <== sum = -128
Figure 2.4: 64 + 64 = —128 (overflow)

503 Figure 2.4 is an example of signed overflow. As shown, the problem is that the sum of two positive
504 numbers has resulted in an obviously incorrect negative result due to a carry flowing into the sign-bit
505 in the MSB.

596 Granted, if the same values were added using values larger than 8-bits then the sum would have been
507 correct. However, these examples assume that all the operations are performed on (and results stored
508 into) 8-bit values. Given any finite-number of bits, there are values that could be added such that an
599 overflow occurs.
600 Figure 2.5 shows another overflow situation that is caused by the fact that there is nowhere for the
601 carry out of the sign-bit to go. We say that this result has been truncated.
10000000 O <== carries
10000000 <==-128
+ 10000000 <==-128

0000000O0K==3sum =0
Figure 2.5: —128 + —128 = 0 (overflow)

602 Truncation is not necessarily a problem. Consider the truncations in figures 2.6 and 2.7. Figure 2.7
603 demonstrates the importance of discarding the carry from the sum of the MSBs of signed numbers
604 when addends do not have the same sign.
111111110 <== carries
11111101<==-3
+ 11111011K<K==-5
11111000 <== sum = -8
Figure 2.6: -3+ —5= -8
111111100 <== carries
11111110 <K==-2
+ 00001010<==10
00001000 <==sum =8
Figure 2.7: —24+10=238
605 Just like an unsigned number can wrap around as a result of successive additions, a signed number
606 can so the same thing. The only difference is that signed numbers won’t wrap from the maximum
~/rvalp/book/./binary/chapter.tex P%ige 18 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

624

625

2.3. SIGN AND ZERO EXTENSION

value back to zero, instead it will wrap from the most positive to the most negative value as shown
in Figure 2.8.

11111110 <== carries
01111111<==127
00000001 <==

10000000 <== sum = -128
Figure 2.8: 127+ 1 = —128

Formally, a signed overflow occurs when ever the carry into the most significant bit is not the
same as the carry out of the most significant bit.

2.3 Sign and Zero Extension

Due to the nature of the two’s complement encoding scheme, the following numbers all represent the
same value:

1111 <== -1

11111111 <== -1
11111111111111111111 <== -1
1111111111111111111111111111 <== -1

As do these:

01100 <== 12
0000001100 <== 12
00000000000000000000000000000001100 <== 12

The lengthening of these numbers by replicating the digits on the left is what is called sign extension.

Any signed number can have any quantity of additional MSBs added to it, provided that they
repeat the value of the sign bit.

Figure 2.9 illustrates extending the negative sign bit to the left by replicating it. A negative number
will have its MSB (bit 19 in this example) set to 1. Extending this value to the left will set all the
new bits to the left of it to 1 as well.

19
W0100000000000000010

20

31 0

11111111111 1H0100000000000000010

32

Figure 2.9: Sign-extending a negative integer from 20 bits to 32 bits.

~/rvalp/book/./binary/chapter.tex Page 19 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

626

627

628

629

630

632

633

634

635

636

637

638

639

640

641

642

643

644

646

2.4. SHIFTING

Figure 2.10 illustrates extending the sign bit of a positive number to the left by replicating it. A
positive number will have its MSB set to 0. Extending this value to the left will set all the new bits
to the left of it to 0 as well.

19 0

©10000000000000000T10

20

31 0

0000000000001 0000000000000O00O0T1O

32

Figure 2.10: Sign-extending a positive integer from 20 bits to 32 bits.

In a similar vein, any unsigned number also may have any quantity of additional MSBs added to it
provided that they are all zero. This is called zero extension. For example, the following all represent
the same value:

1111 <== 15
01111 <== 15
00000000000000000000000001111 <== 15

[Any unsigned number may be zero extended to any size.]

Figure 2.11 illustrates zero-extending a 20-bit number to the left to form a 32-bit number.

19
W0o000D0OD0D0ODO0D0OD0OD0OD0D00D000T10

20

31 0

000000000000 MHOODODODODOOO0ODO0OD00O000O00T1DO
32

Figure 2.11: Zero-extending an unsigned integer from 20 bits to 32 bits.

2.4 Shifting

We were all taught how to multiply and divide decimal numbers by ten by moving (or shifting) the
decimal point to the right or left respectively. Doing the same in any other base has the same effect
in that it will multiply or divide the number by its base.

Multiplication and division are only two reasons for shifting. There can be other occasions where
doing so is useful.

As implemented by a CPU, shifting applies to the value in a register and the results stored back into
a register of finite size. Therefore a shift result will always be truncated to fit into a register.

Note that when dealing with numeric values, any truncation performed during a right-shift will man-
ifest itself as rounding toward zero.

~/rvalp/book/./binary/chapter.tex Page 20 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

» Fix Me:

Remove the sign-bit boxes
from this figure?

» Fix Me:

Include decimal values in the
shift diagrams.

» Fix Me:

Add some examples showing
the rounding of positive and
negative values.

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

2.5. MAIN MEMORY STORAGE

2.4.1 Logical Shifting

Shifting logically to the left or right is a matter of re-aligning the bits in a register and truncating the
result.

To shift left two positions:

19 0

10111000000000000010

20

19 0

11100000000000001000

20

To shift right one position:

19 0

10111000000000000010

20

19 0

0101110000000000000°1

20

Note that the vacated bit positions are always filled with zero.

2.4.2 Arithmetic Shifting

Some times it is desirable to retain the value of the sign bit when shifting. The RISC-V ISA provides
an arithmetic right shift instruction for this purpose (there is no arithmetic left shift for this ISA.)

When shifting to the right arithmetically, vacated bit positions are filled by replicating the
value of the sign bit.

An arithmetic right shift of a negative number by 4 bit positions:

0

19
W0111000000000000010

20

0

19
W1111011100000000000

20

2.5 Main Memory Storage

As mentioned in section 1.1.1.1, the main memory in a RISC-V system is byte-addressable. For that
reason we will visualize it by displaying ranges of bytes displayed in hex and in ASCII. As will become
obvious, the ASCII part makes it easier to find text messages.’

6Most of the memory dumps in this text are generated by rvddt and are shown on a per-byte basis without any
attempt to reorder their values. Some other applications used to dump memory do not dump the bytes in address-order!
It is important to know how your software tools operate when using them to dump the contents of memory and/or files.

~/rvalp/book/./binary/chapter.tex Page 21 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

» Fix Me:

Redraw these with arrows
tracking the shifted bits and
the truncated values

668

669

670

671
672

690

691

692

693

694

695

696

697

698

699

700

701

703

704

705

706

707

708

709

710

712

© X N o oA W N e

e e e
A W N = O

15
16
17

2.5. MAIN MEMORY STORAGE

2.5.1 Memory Dump
Listing 2.1 shows a memory dump from the rvddt ‘d’ command requesting a dump starting at address
0x00002600 for the default quantity (0x100) of bytes.

Listing 2.1: rvddt_memdump.out
rvddt memory dump

ddt> d 0x00002600

00002600: 93 05 00 00 13 06 00 00 93 06 00 00 13 07 00 00 *................ *
00002610: 93 07 00 00 93 08 dO 05 73 00 00 00 63 54 05 02 *........ s...cT..x*
00002620: 13 01 01 ff 23 24 81 00 13 04 05 00 23 26 11 00 *....#$...... #& . . *
00002630: 33 04 80 40 97 00 00 00 e7 80 40 01 23 20 85 00 *3..@...... Q.# ..x
00002640: 6f 00 00 00 6f 00 00 00 b7 87 00 00 03 ab 07 43 *0...0.......... Cx*
00002650: 67 80 00 00 00 00 00 00 76 61 6¢c 3d 00 00 00 00 *g....... val=....*
00002660: 00 00 00 00 80 84 2e 41 1f 85 45 41 80 40 9a 44 *....... A..EA.Q.D*
00002670: 4f 11 £3 c3 6e 8a 67 41 20 1b 00 00 20 1b 00 00 *0...n.gA*
00002680: 44 1b 00 00 14 1b 00 00 14 1b 00 00 04 1c 00 00 *D............... *
00002690: 44 1b 00 00 14 1b 00 00 04 1c 00 00 14 1b 00 00 *D............... *
000026a0: 44 1b 00 00 10 1b 00 00 10 1b 00 00 10 1b 00 00 *D............... *
000026b0: 04 1c 00 00 54 1f 00 00 54 1f 00 00 d4 1f 00 00 *....T...T....... *
000026c0: 4c 1f 00 00 4c 1f 00 00 34 20 00 00 d4 1f 00 00 *L...L...4 *
000026d0: 4c 1f 00 00 34 20 00 00 4c 1f 00 00 d4 1f 00 00 *L...4 ..L....... *
000026e0: 48 1f 00 00 48 1f 00 00 48 1f 00 00 34 20 00 00 *H...H...H...4 ..x*
000026f0: 00 01 02 02 03 03 03 03 04 04 04 04 04 04 04 04 *......ovvvun... *

£ 1 The rvddt prompt showing the dump command.

¢ 2 From left to right. the dump is presented as the address of the first byte (0x00002600) followed
by a colon, the value of the byte at address 0x00002600 expressed in hex, the next byte (at
address 0x00002601) and so on for 16 bytes. There is a double-space between the 7th and 8th
bytes to help provide a visual reference for the center to make it easy to locate bytes on the right
end. For example, the byte at address 0x0000260c is four bytes to the right of byte number
eight (at the gap) and contains 0x13. To the right of the 16-bytes is an asterisk-enclosed set of
16 columns showing the ASCII characters that each byte represents. If a byte has a value that
corresponds to a printable character code, the character will be displayed. For any illegal /un-
displayable byte values, a dot is shown to make it easier to count the columns.

£ 3-17 More of the same as seen on ¢ 2. The address at the left can be seen to advance by 1619 (or
1046) for each line shown.

2.5.2 Endianness

The choice of which end of a multi-byte value is to be stored at the lowest byte address is referred to as
endianness. For example, if a CPU were to store a halfword into memory, should the byte containing
the Most Significant Bit (MSB) (the big end) go first or does the byte with the Least Significant Bit
(LSB) (the little end) go first?

On the one hand the choice is arbitrary. On the other hand, it is possible that the choice could impact
the performance of the system.”

IBM mainframe CPUs and the 68000 family store their bytes in big-endian order. While the Intel
Pentium and most embedded processors use little-endian order. Some CPUs are even bi-endian in
that they have instructions that can change their order on the fly.

The RISC-V system uses the little-endian byte order.

7See[14] for some history of the big/little-endian “controversy.”

~/rvalp/book/./binary/chapter.tex Page 22 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

713

714

715

716

717

718

719

720

721

723

724

725

726

728

729

730

732

733

734

735

736

737

738

739

740

2.5. MAIN MEMORY STORAGE

2.5.2.1 Big-Endian

Using the contents of Listing 2.1, a big-endian CPU would interpret the contents as follows:

e The 8-bit value read from address 0x00002658 would be 0x76.

e The 8-bit value read from address 0x00002659 would be 0x61.

e The 8-bit value read from address 0x0000265a would be 0x6c.

e The 8-bit value read from address 0x0000265b would be 0x3d.

e The 16-bit value read from address 0x00002658 would be 0x7661.
e The 16-bit value read from address 0x0000265a would be 0x6c3d.

e The 32-bit value read from address 0x00002658 would be 0x76616c3d.

Notice that in a big-endian system, the place values of the bits comprising the 0x76 (located at memory
address 0x00002658) are different depending on the number of bytes representing the value that is
being read.

For example, when a 16-bit value is read from 0x00002658 then the 76 represents the binary place
values: 2'% to 28. When a 32-bit value is read then the 76 represents the binary place values: 23! to
224 In other words the value read from the first memory location (with the lowest address), of the
plurality of addresses containing the complete value being read, is always placed on the left end, into
the Most Significant Bits. One might dare say that the 76 is placed at the end with the big place
values.

More examples:

An 8-bit value read from address 0x00002624 would be 0x23.

e An 8-bit value read from address 0x00002625 would be 0x24.

An 8-bit value read from address 0x00002626 would be 0x81.

An 8-bit value read from address 0x00002627 would be 0x00.

o A 16-bit value read from address 0x00002624 would be 0x2324.

A 16-bit value read from address 0x00002626 would be 0x8100.

A 32-bit value read from address 0x00002624 would be 0x23248100.

Again, notice that the byte from memory address 0x00002624 , regardless of the number of bytes
comprising the complete value being fetched, will always appear on the left/big end of the final value.

On a big-endian system, the bytes in the dump are in the same order as they would be used
by the CPU if it were to read them as a multi-byte value.

~/rvalp/book/./binary/chapter.tex Page 23 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

742

743

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

762

763

764

765

766

767

768

769

770

772

773

2.5. MAIN MEMORY STORAGE

2.5.2.2 Little-Endian

Using the contents of Listing 2.1, a little-endian CPU would interpret the contents as follows:

e An 8-bit value read from address 0x00002658 would be 0x76.
e An 8-bit value read from address 0x00002659 would be 0x61.

e An 8-bit value read from address 0x0000265a would be 0x6¢.

An 8-bit value read from address 0x0000265b would be 0x3d.

A 16-bit value read from address 0x00002658 would be 0x6176.

A 16-bit value read from address 0x0000265a would be 0x3d6c.

o A 32-bit value read from address 0x00002658 would be 0x3d6c6176.

Notice that in a little-endian system, the place values of the bits comprising the 0x76 (located at
memory address 0x00002658) are the same regardless of the the number of bytes representing the
value that is being read.

Unlike the behavior of a big-endian machine, when little-endian machine reads a 16-bit value from
0x00002658 the 76 represents the binary place values from 27 to 2°. When a 32-bit value is read
then the 76 (still) represents the binary place values from 27 to 2°. In other words the value read
from the first memory location (with the lowest address), of the plurality of addresses containing the
complete value being read, is always placed on the right end, into the Least Significant Bits. One
might say that the 76 is placed at the end with the little place values.

Also notice that it is the bytes are what are “reversed” in a little-endian system (not the hex digits.)

More examples:

e The 8-bit value read from address 0x00002624 would be 0x23.

e The 8-bit value read from address 0x00002625 would be 0x24.

e The 8-bit value read from address 0x00002626 would be 0x81.

e The 8-bit value read from address 0x00002627 would be 0x00.

e The 16-bit value read from address 0x00002624 would be 0x2423.
e The 16-bit value read from address 0x00002626 would be 0x0081.

e The 32-bit value read from address 0x00002624 would be 0x00812423.

As above, notice that the byte from memory address 0x00002624 ;| regardless of the number of bytes
comprising the complete value being fetched, will always appear on the right/little end of the final
value.

On a little-endian system, the bytes in the dump are in reverse order as they would be used
by the CPU if it were to read them as a multi-byte value.

In the RISC-V ISA it is noted that

~/rvalp/book/./binary/chapter.tex Page 24 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

774

775

776

777

778

779

780

781

782

783

784

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

2.5. MAIN MEMORY STORAGE

A minor point is that we have also found little-endian memory systems to be more natural
for hardware designers. However, certain application areas, such as IP networking, operate
on big-endian data structures, and so we leave open the possibility of non-standard big-
endian or bi-endian systems.”[1, p. 6]

2.5.3 Arrays and Character Strings

While Endianness defines how single values are stored in memory, the array defines how multiple
values are stored.

An array is a data structure comprised of an ordered set of elements. This text will limit its definition
of array to a plurality of elements that are all of the same type. Where type refers to the size (number
of bytes) and representation (signed, unsigned,...) of each element.

In an array, the elements are stored adjacent to one another such that the address e of any element
z[n] is:

e=a+nx*s (2.5.1)

Where x is the name of the array, n is the element number of interest, e is the address of interest, a
is the address of the first element in the array and s is the size (in bytes) of each element.

Given an array x containing m elements, 2[0] is the first element of the array and xz[m — 1] is the last
element of the array.®

Using this definition, and the memory dump shown in Listing 2.1, and the knowledge that we are
using a little-endian machine and given that a = 0x00002656 and s = 2, the values of the first 8
elements of array x are:

e z[0] is 0x0000 and is stored at 0x00002656.
e x[1] is 0x6176 and is stored at 0x00002658.
e [2] is 0x3d6¢ and is stored at 0x0000265a.
e [3] is 0x0000 and is stored at 0x0000265c.
e x[4] is 0x0000 and is stored at 0x00002660.
e 1[5] is 0x0000 and is stored at 0x00002662.
e 1[6] is 0x8480 and is stored at 0x00002664.

e 1[7] is 0x412e and is stored at 0x00002666.

In general, there is no fixed rule nor notion as to how many elements an array has. It is up to
the programmer to ensure that the starting address and the number of elements in any given
array (its size) are used properly so that data bytes outside an array are not accidentally used
as elements.

8Some computing languages (C, C++, Java, C#, Python, Perl,...) define an array such that the first element is
indexed as z[0]. While others (FORTRAN, MATLAB) define the first element of an array to be z[1].

~/rvalp/book/./binary/chapter.tex Page 25 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

2.5. MAIN MEMORY STORAGE

There is, however, a common convention used for an array of characters that is used to hold a text
message (called a character string or just string).

When an array is used to hold a string the element past the last character in the string is set to zero.
This is because 1) zero is not a valid printable ASCII character and 2) it simplifies software in that
knowing no more than the starting address of a string is all that is needed to processes it. Without
this zero sentinel value (called a null terminator), some knowledge of the number of characters in the
string would have to otherwise be conveyed to any code needing to consume or process the string.

In Listing 2.1, the 5-byte long array starting at address 0x00002658 contains a string whose value can
be expressed as either:

76 61 6¢ 3d 00
or
nyal="

When the double-quoted text form is used, the GNU assembler used in this text differentiates between
ascit and asciiz strings such that an ascii string is not null terminated and an asciiz string is null
terminated.

The value of providing a method to create a string that is not null terminated is that a program may
define a large string by concatenating a number of ascii strings together and following the last with
a byte of zero to null-terminate it.

It is a common mistake to create a string with a missing null terminator. The result of printing such
a string is that the string will be printed as well as whatever random data bytes in memory follow it
until a byte whose value is zero is encountered by chance.

2.5.4 Context is Important!

Data values can be interpreted differently depending on the context in which they are used. Assuming
what a set of bytes is used for based on their contents can be very misleading! For example, there is
a 0x76 at address 0x00002658. This is a ‘v’ is you use it as an ASCII (see Appendix C) character, a
1184 if it is an integer value and TRUE if it is a conditional.

2.5.5 Alignment

With respect to memory and storage, alignment refers to the location of a data element when the
address that it is stored is a precise multiple of a power-of-2.

The primary alignments of concern are typically 2 (a halfword), 4 (a fullword), 8 (a double word) and
16 (a quad-word) bytes.

For example, any data element that is aligned to 2-byte boundary must have an (hex) address that
ends in any of: 0, 2, 4, 6, 8, A, C or E. Any 4-byte aligned element must be located at an address
ending in 0, 4, 8 or C. An 8-byte aligned element at an address ending with 0 or 8, and 16-byte aligned
elements must be located at addresses ending in zero.

Such alignments are important when exchanging data between the CPU and memory because the
hardware implementations are optimized to transfer aligned data. Therefore, aligning data used by

~/rvalp/book/./binary/chapter.tex Page 26 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

» Fix Me:

Include the obligatory
diagram showing the
overlapping data types when
they are all aligned.

839

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

2.5. MAIN MEMORY STORAGE

any program will reap the benefit of running faster.”

An element of data is considered to be aligned to its natural size when its address is an exact multiple
of the number of bytes used to represent the data. Note that the ISA we are concerned with only
operates on elements that have sizes that are powers of two.

For example, a 32-bit integer consumes one full word. If the four bytes are stored in main memory at
an address than is a multiple of 4 then the integer is considered to naturally aligned.

The same would apply to 16-bit, 64-bit, 128-bit and other such values as they fit into 2, 8 and 16 byte
elements respectively.

Some CPUs can deliver four (or more) bytes at the same time while others might only be capable
of delivering one or two bytes at a time. Such differences in hardware typically impact the cost and
performance of a system.'?

2.5.6 Instruction Alignment

The RISC-V ISA requires that all instructions be aligned to their natural boundaries.

Every possible instruction that an RV32I CPU can execute contains exactly 32 bits. Therefore they
are always stored on a full word boundary. Any unaligned instruction is illegal.!!

An attempt to fetch an instruction from an unaligned address will result in an error referred to as
an alignment exception. This and other exceptions cause the CPU to stop executing the current
instruction and start executing a different set of instructions that are prepared to handle the problem.
Often an exception is handled by completely stopping the program in a way that is commonly referred
to as a system or application crash.

9 Alignment of data, while important for efficient performance, is not mandatory for RISC-V systems.[1, p. 19]
10The design and implementation choices that determine how any given system operates are part of what is called a

system’s organization and is beyond the scope of this text. See [3] for more information on computer organization.
HThis rule is relaxed by the C extension to allow an instruction to start at any even address.[l, p. 5]

~/rvalp/book/./rvalp.tex Page 27 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

® N o oA W N e

Chapter 3

The Elements of a Assembly

Language Program

3.1 Assembly Language Statements

Introduce the assembly language grammar.

e Statement = 1 line of text containing an instruction or directive.

e Instruction = label, mnemonic, operands, comment.

e Directive = Used to control the operation of the assembler.

3.2 Memory Layout

Is this a good place to introduce the text, data, bss, heap and stack regions?

Or does that belong in a new section/chapter that discusses addressing modes?

3.3 A Sample Program Source Listing

A simple program that illustrates how this text presents program source code is seen in Listing 3.1.

This program will place a zero in each of the 4 registers named x28, x29, x30 and x31.

Listing 3.1: zero4dregs.S
Setting four registers to zero.

.text

.align 2

.globl _start
_start:

addi x28, x0, O

addi x29, x0, O

addi x30, x0, O

addi x31, x0, O

£:3

H H HH

put this into the text section
align to 272

set register x28 to zero
set register x29 to zero
set register x30 to zero
set register x31 to zero

~/rvalp/book/./elements/chapter.tex

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 28 of 82

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

3.4. RUNNING A PROGRAM WITH RVDDT

This program listing illustrates a number of things:

e Listings are identified by the name of the file within which they are stored. This listing is from
a file named: zero4regs.S.

e The assembly language programs discussed in this text will be saved in files that end with: .S
(Alternately you can use .sx on systems that don’t understand the difference between upper
and lowercase letters.')

e A description of the listing’s purpose appears under the name of the file. The description of
Listing 3.1 is Setting four registers to zero.

e The lines of the listing are numbered on the left margin for easy reference.
e An assembly program consists of lines of plain text.

e The RISC-V ISA does not provide an operation that will simply set a register to a numeric
value. To accomplish our goal this program will add zero to zero and place the sum in in each
of the four registers.

e The lines that start with a dot *.” (on lines 1, 2 and 3) are called assembler directives as they
tell the assembler itself how we want it to translate the following assembly language instructions
into machine language instructions.

e Line 4 shows a label named _start. The colon at the end is the indicator to the assembler that
causes it to recognize the preceding characters as a label.

e Lines 5-8 are the four assembly language instructions that make up the program. Each instruc-
tion in this program consists of four fields. (Different instructions can have a different number
of fields.) The fields on line 5 are:

addi The instruction mnemonic. It indicates the operation that the CPU will perform.

x28 The destination register that will receive the sum when the addi instruction is finished.
The names of the 32 registers are expressed as x0 — x31.

x0 One of the addends of the sum operation. (The x0 register will always contain the value
zero. It can never be changed.)

0 The second addend is the number zero.

set ... Any text anywhere in a RISC-V assembly language program that starts with the pound-
sign is ignored by the assembler. They are used to place a comment in the program to help
the reader better understand the motive of the programmer.

3.4 Running a Program With rvddt

To illustrate what a CPU does when it executes instructions this text will use the rvddt simulator to
display shows sequence of events and the binary values involved. This simulator supports the RV32I
ISA and has a configurable amount of memory.?

Listing 3.2 shows the operation of the four addi instructions from Listing 3.1 when it is executed in
trace-mode.

1The author of this text prefers to avoid using such systems.
2The rvddt simulator was written to generate the listings for this text. It is similar to the fancier spike simulator.
Given the simplicity of the RV32I ISA, rvddt is less than 1700 lines of C++ and was written in one (long) afternoon.

~/rvalp/book/./zerodregs.out Page 29 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

956

957

958

959

960

961

962

963

964

966

967

968

969

970

971

972

© 0 N o G oAe W N e

e e e
A W N o= O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

3.4. RUNNING A PROGRAM WITH RVDDT

Listing 3.2: zero4dregs.out
Running a program with the rvddt simulator

[winans@w510 srcl$./rvddt -f ../examples/loadé4regs.bin
Loading ’../examples/load4regs.bin’ to 0x0
ddt> t4
x0: 00000000 fO0fO0fO0fO0 fOfOfO0f0O fOf0f0f0 fOfO0f0f0 fOf0f0f0 fOfOfO0f0 fOfO0fO0fO
x8: fO0f0f0f0 fOf0f0f0 fOfOfO0f0 fOf0f0f0 fOfO0f0f0 fOfO0f0f0 fOfO0Of0f0 fOfOfO0fO
x16: f0f0f0f0 fOf0f0f0 fOf0f0f0 fO0f0f0f0 fOf0f0f0 fO0fOf0f0 fOfO0f0f0 fO0f0f0fO
x24: f0f0f0f0 fO0f0f0f0 fOfOf0f0O fOf0f0f0 fOfOf0f0 fOfO0f0f0 fOfOf0f0 fOfO0fO0fO
pc: 00000000
00000000: 00000e13 addi x28, x0, O # x28 = 0x00000000 = 0x00000000 + 0x00000000
x0: 00000000 fOfO0f0f0 fOfOfO0f0O fOf0f0f0 fOfO0f0f0 fOfO0f0f0 fOfO0f0f0 fOfOfO0fO
x8: fO0f0f0f0 fO0f0f0f0 fOfOf0f0O fO0f0f0f0 fOfO0Of0f0 fOf0f0f0 fOfO0OfO0f0 fOfO0fO0fO
x16: f0f0f0f0 fOf0f0f0 fOfOf0f0O fOf0f0f0 fOfO0f0f0 fOf0f0f0 fOfO0f0f0 fOfO0fO0fO0
x24: fO0f0f0f0 fO0f0f0f0 fOfOf0f0O fOf0f0f0 00000000 fO0f0f0f0 fOfOf0f0 fOfO0fO0fO0
pc: 00000004
00000004: 00000e93 addi x29, x0, O # x29 = 0x00000000 = 0x00000000 + 0x00000000
x0: 00000000 fOfO0f0fO0 fOfOfO0f0O fOf0f0f0 fOfO0Of0f0 fOf0f0f0 fOfO0Of0f0 fOfO0f0fO
x8: fO0f0f0f0 fOf0f0f0 fOfOf0f0O fOf0f0f0 fOfO0f0f0 fOf0f0f0 fOf0f0f0 fOfO0fO0fO
x16: fO0f0f0f0 fO0f0f0f0 fOfO0f0f0O fOf0f0f0 fOfO0Of0f0 fOf0f0f0 fOfO0OfO0f0 fOfO0f0fO0
x24: f0f0f0f0 fO0f0f0f0 fOfO0f0f0O fOf0f0f0 00000000 00000000 fOfO0f0f0 fOfOfO0fO
pc: 00000008
00000008: 00000f13 addi x30, x0, O # x30 = 0x00000000 = 0x00000000 + 0x00000000
x0: 00000000 fOf0f0f0 fOfOfO0f0O fOf0f0f0 fOfO0Of0f0 fOf0f0f0 fOfOf0f0 fOfO0fO0fO0
x8: fO0f0f0f0 fO0f0f0f0 fOfOf0f0 fO0f0f0f0 fOfO0f0f0 fOf0f0f0 fOfO0f0f0 fOf0f0fO0
x16: f0f0f0f0 fO0f0f0f0 fO0fO0f0f0 fOfO0f0f0 fOf0f0f0 fO0fOfO0f0 fOf0f0f0 fO0fO0f0fO
x24: f0f0f0f0 fO0f0f0f0 fOfOf0f0O fO0f0f0f0 00000000 00000000 00000000 fOfOfO0fO
pc: 0000000c
0000000c: 00000£f93 addi x31, x0, O # x31 = 0x00000000 = 0x00000000 + 0x00000000
ddt> r
x0: 00000000 fOf0fO0f0 fOfOfO0f0O fOf0f0f0 fOfO0f0f0 fOf0f0f0 fOfOfO0f0 fOfO0f0fO0
x8: fO0f0f0f0 fO0f0f0f0 fOfOf0f0O fOf0f0f0 fOfOf0f0 fOfO0f0f0 fOfOf0f0 fOfO0fO0fO
x16: f0f0f0f0 fO0f0f0f0 fO0f0f0f0 fO0f0f0f0 fO0f0f0f0 fO0fO0f0f0 fOf0f0f0 fO0f0f0fO
x24: f0f0f0f0 fO0f0f0f0 fOfOf0f0O fO0f0f0f0O 00000000 00000000 00000000 00000000
pc: 00000010
ddt> x
[winans@w510 srcl$

£ 1 This listing includes the command-line that shows how the simulator was executed to load a file
containing the machine instructions (aka machine code) from the assembler.

£ 2 A message from the simulator indicating that it loaded the machine code into simulated memory
at address 0.

£ 3 This line shows the prompt from the debugger and the command t4 that the user entered to
request that the simulator trace the execution of four instructions.

¢ 4-8 Prior to executing the first instruction, the state of the CPU registers is displayed.

£ 4 The values in registers 0, 1, 2, 3, 4, 5, 6 and 7 are printed from left to right in big-endian,
hexadecimal form. The double-space gap in the middle of the line is a reference to make it
easier to visually navigate across the line without being forced to count the values from the far
left when seeking the value of, say, x5.

£ 5-7 The values of registers 8-31 are printed.

¢ 8 The program counter (pc) register is printed. It contains the address of the instruction that the
CPU will execute. After each instruction, the pc will either advance four bytes ahead or be set
to another value by a branch instruction as discussed above.

£ 9 A four-byte instruction is fetched from memory at the address in the pc register, is decoded and
printed. From left to right the fields shown on this line are:

~/rvalp/book/./elements/chapter.tex P%ige 30 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

973

974

975

976

977

978

979

980

982

983

984

985

986

987

988

989

990

992

993

994

995

996

997

3.4. RUNNING A PROGRAM WITH RVDDT

00000000 The memory address from which the instruction was fetched. This address is displayed in
big-endian, hexadecimal form.

00000e13 The machine code of the instruction displayed in big-endian, hexadecimal form.
addi The mnemonic for the machine instruction.
x28 The rd field of the addi instruction.
x0 The rs1 field of the addi instruction that holds one of the two addends of the operation.

0 The imm field of the addi instruction that holds the second of the two addends of the
operation.

... A simulator-generated comment that explains what the instruction is doing. For this in-
struction it indicates that x28 will have the value zero stored into it as a result of performing
the addition: 0+ 0.

£ 10-14 These lines are printed as the prelude while tracing the second instruction. Lines 7 and 13 show
that x28 has changed from £0£f0£0£0 to 00000000 as a result of executing the first instruction and
lines 8 and 14 show that the pc has advanced from zero (the location of the first instruction) to
four, where the second instruction will be fetched. None of the rest of the registers have changed
values.

£ 15 The second instruction decoded executed and described. This time register x29 will be assigned
a value.

¢ 16-27 The third and fourth instructions are traced.

¢ 28 Tracing has completed. The simulator prints its prompt and the user enters the ‘r’ command
to see the register state after the fourth instruction has completed executing.

£ 29-33 Following the fourth instruction it can be observed that registers x28, x29, x30 and x31 have
been set to zero and that the pc has advanced from zero to four, then eight, then 12 (the hex
value for 12 is ¢) and then to 16 (which, in hex, is 10).

£ 34 The simulator exit command ‘x’ is entered by the user and the terminal displays the shell prompt.

~/rvalp/book/./rvalp.tex Page 31 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

-~ Chapter 4

. Writing RISC-V Programs

1000 This chapter introduces each of the RV32I instructions by developing programs that demonstrate their ® Fix Me:

1001 usefulness. Introduce the ISA register
names and aliases in here?

o« 4.1 Use ebreak to Stop rvddt Execution

1003 It is a good idea to learn how to stop before learning how to go!
1004 The ebreak instruction exists for the sole purpose of transferring control back to a debugging environment.[1,
1005 p. 24]
1006 When rvddt executes an ebreak instruction, it will immediately terminate any executing trace or go
1007 command currently executing and return to the command prompt without advancing the pc register.
1008 The machine language encoding shows that ebreak has no operands.
1009 ebreak

31 20|19 15|14 12|11 7|6 0

funct3 opcode

00000000000 1,0000,0000040000,0(111,001 1] Itype
1010 12 5 3 5 7
1011 Listing 4.2 demonstrates that since rvddt does not advance the pc when it encounters an ebreak
1012 instruction, subsequent trace and/or go commands will re-execute the same ebreak and halt the
1013 simulation again (and again). This feature is intended to help prevent overzealous users from accidently
1014 running past the end of a code fragment.!

Listing 4.1: ebreak/ebreak.S
A one-line ebreak program.

1015

1016 1 .text # put this into the text section
1017 2 .align 2 # align to a multiple of 4
1018 3 .globl _start
1019 4
1020 5 | _start:
6 ebreak

1632

1This was one of the first enhancements I needed for myself :-)

~/rvalp/book/./programs/chapter.tex Page 32 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1023
1024

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

1648

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059
1060

1061

1062

1063

1064

© 0 N o G oAe W N e

e e e
A W N o= O

15
16
17
18
19
20
21
22
23
24
25

4.2. USING THE ADDI INSTRUCTION

Listing 4.2: ebreak/ebreak.out
ebreak stopps rvddt without advancing pc.

$ rvddt -f ebreak.bin
sp initialized to top of memory: 0x0000fffO
Loading ’ebreak.bin’ to 0x0
This is rvddt. Enter ? for help.
ddt> d 0 16
00000000: 73 00 10 00 a5 a5 ab a5 ab ab ab ab ab ab ab ab *s............... *
ddt> r
x0 00000000 fOfO0fO0f0 0000fffO fOfO0f0f0O fOfOf0f0O fOfO0fO0f0 fOfO0f0f0 fOfO0f0fO
x8 fOf0f0f0 fOf0f0f0 fOfOfO0f0 fOfO0f0f0 fOfOfO0f0 fOfOf0f0 fOfO0f0f0 fOfO0fO0fO
x16 fO0f0f0f0 fOf0f0fO fOfO0f0f0O fOfO0f0f0 fOfO0f0f0 fOfOf0f0 fOfOfO0f0 fOfO0f0fO
x24 f0f0f0f0 fOf0f0f0O fOfO0f0f0O fOf0f0f0O fOfO0f0f0 fOfO0fO0fO0 fOfOfO0fO0 fOfO0fO0fO
pc 00000000
ddt> ti 0 1000
00000000: ebreak

ddt> ti
00000000: ebreak
ddt> g 0
00000000: ebreak
ddt> r

x0 00000000 fOfOfOf0 OOOOfff0O fOfOf0f0 fOfOf0Of0 fOfOfO0f0 fOfOfO0f0 fOfOf0fO
x8 fOfOfO0f0O fOfOfOf0 fOfOfOf0 fOfOf0f0O fOfOfO0Of0 fOfOfOf0O fOfOfO0f0 fOfOfOfO
x16 fO0f0f0f0 fO0f0f0f0 fOfO0f0f0 fOfOfO0fO f0f0f0f0 fO0fO0fO0f0O fOfO0f0f0 fOfO0f0fO
x24 fOfO0f0f0 fOfO0fO0f0 fOfOfOf0 fOfOf0f0O fOfOfO0f0 fOfOfOf0 fOfOf0f0 fOfOfOfO
pc 00000000

ddt> x

4.2 Using the addi Instruction

The detailed description of how the addi instruction is executed is that it:

1. Sign-extends the immediate operand.

2. Add the sign-extended immediate operand to the contents of the rsi1 register.

w

. Store the sum in the rd register.

4. Add four to the pc register (point to the next instruction.)

In the following example rs1 = x28, rd = x29 and the immediate operand is -1.

addi x29, x28, -1

31 20|19 15|14 12|11 716 0
imm[11:0] rsl funct3 rd opcode
@1r11,11111111/1110,0[000/1110,1/001,0011]| Itype
12 5 3 5 7

Depending on the values of the fields in this instruction a number of different operations can be
performed. The most obvious is that it can add things. But it can also be used to copy registers, set
a register to zero and even, when you need to, accomplish nothing.

4.2.1 No Operation

It might seem odd but it is sometimes important to be able to execute an instruction that accomplishes
nothing while simply advancing the pc to the next instruction. One reason for this is to fill unused

~/rvalp/book/./programs/chapter.tex Page 33 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

» Fix Me:

Define what constant and
immediate values are
somewhere.

1065

1066
1067

1068

1069

1070

1071

1072

1073

1074
1075
1076

1077

1078
1079

1080
1081
1082
1083
1084
1085
1086

1688

1089
1090

1091
1092
1093
1094

1638

1097
1098

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

© 0 N o A W N e

o ok W N e

4.2. USING THE ADDI INSTRUCTION

memory between two instructions in a program.?

An instruction that accomplishes nothing is called a nop (sometimes systems call these noop). The
name means no operation. The intent of a nop is to execute without having any side effects other
than to advance the pc register.

The addi instruction can serve as a nop by coding it like this:

addi x0, x0, 0
31 20|19 15|14 12|11 7|6 0
imm[11:0] rsl funct3 rd opcode
0000,0000,0000/0000,0000/0000,00010011]| Itype
12 5 3 5 7

The result will be to add zero to zero and discard the result (because you can never store a value into
the x0 register.)

The RISC-V assembler provides a pseudoinstruction specifically for this purpose that you can use
to improve the readability of your code. Note that the addi and nop instructions in Listing 4.3 are
assembled into the exact same binary machine instructions as can be seen by comparing it to objdump
Listing 4.4, and rvddt Listing 4.5 output.

Listing 4.3: nop/nop.S
Demonstrate that addi can be used as a nop.

.text # put this into the text section
.align 2 # align to a multiple of 4
.globl _start

_start:
addi x0, x0, O # these two instructions assemble into the same thing!

nop

ebreak

Listing 4.4: nop/nop.1lst
Using addi to perform a nop

nop: file format elf32-littleriscv
Disassembly of section .text:
00000000 <_start>:

0: 00000013 nop
4: 00000013 nop
8: 00100073 ebreak

Listing 4.5: nop/nop.out
Using addi to perform a nop

$ rvddt -f nop.bin
sp initialized to top of memory: 0x0000fffO
Loading ’nop.bin’ to 0xO0
This is rvddt. Enter 7 for help.
ddt> d 0 16
00000000: 13 00 00 00 13 00 00 00 73 00 10 00 a5 ab ab ab *........ S *
ddt> r
x0 00000000 fOfO0f0fO 0000fffO0 fOfOf0f0O fOfO0fO0f0 fOfO0f0f0 fOfO0f0f0 fOfO0fO0fO
x8 fO0f0f0f0 fOf0f0f0 fOfO0f0f0 fOfO0f0f0 fOfOfO0f0 fOfOf0f0 fOfO0f0f0 fOfOfO0fO
x16 f0f0f0f0 fOf0f0f0 fOf0f0f0O fOf0f0f0 fOf0f0f0 fOfO0fO0f0 fOfOfO0f0 fOfO0f0fO
x24 f0f0f0f0 fOf0f0f0O fOfO0f0f0O fOf0f0f0 fOfO0f0f0 fOfOf0f0 fOfOfO0f0 fOfO0f0fO

2This can happen during the evolution of one portion of code that reduces in size but has to continue to fit into
a system without altering any other code... or sometimes you just need to waste a small amount of time in a device
driver.

~/rvalp/book/./nop/nop.out Page 34 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

13

1122

1123
1124

1125

1126

1127

1128

1129

1130
1131

1132

1133
1134

1135
1136
1137
1138
1139
1140
1141

143

1144
1145

1146
1147
1148
1149

30

12
13
14
15
16
17
18
19
20
21
22
23

© 0 N o U A W N e

o S N

4.2. USING THE ADDI INSTRUCTION

pc 00000000
ddt> ti 0 1000

00000000: 00000013 addi x0, x0, O # x0 = 0x00000000 = 0x00000000 + 0x00000000
00000004: 00000013 addi x0, x0, O # x0 = 0x00000000 = 0x00000000 + 0x00000000
00000008: ebreak

ddt> r

x0 00000000 fOfOfOf0 OOOOfffO fOfOf0f0 fOfOfO0f0 fOfOfO0f0 fOfOfO0f0 fOfO0f0fO
x8 fOfOfO0f0O fOfOfO0f0 fOfOfOf0 fOfOf0f0 fOfOfO0f0 fOfOfO0f0 fOfO0Of0f0 fOfOfO0fO
x16 fO0f0f0f0 fOfO0fO0f0 fOfO0f0f0 fOfO0fOfO f0f0f0f0 fOf0fO0f0O fOfO0f0f0 fO0fO0f0fO
x24 fOf0f0f0 fOfO0fO0f0 fOfOfO0f0 fOfOf0f0 fOfOfO0f0 fOfO0fO0f0 fOfO0f0f0 fOfOf0fO
pc 00000008

ddt> x

4.2.2 Copying the Contents of One Register to Another

By adding zero to one register and storing the sum in another register the addi instruction can be
used to copy the value stored in one register to another register. The following instruction will copy
the contents of t4 into t3.

addi t3, t4, 0
31 20|19 15|14 12|11 716 0
imm[11:0] rsl funct3 rd opcode
0000,00000000f/1110,1{000/1110,0/0010011]| Itype
12 5 3 5 7

This is a commonly required operation. To make your intent clear you may use the mv pseudoinstruc-
tion for this purpose.

Listing 4.6 shows the source of a program that is dumped in Listing 4.7 illustrating that the assembler
has generated the same machine instruction (0x000e8e13 at addresses 0x0 and 0x4) for both of the
instructions.

Listing 4.6: mv/mv.S
Comparing addi to mv

.text # put this into the text section
.align 2 # align to a multiple of 4
.globl _start

_start:
addi t3, t4, O # t3 = t4
mv t3, t4 # t3 = t4
ebreak

Listing 4.7: mv/mv.1lst
An objdump of an addi and mv Instruction.

mv: file format elf32-littleriscv
Disassembly of section .text:
00000000 <_start>:

0: 000e8e13 mv t3,t4
4: 000e8el13 mv t3,t4
8: 00100073 ebreak
~/rvalp/book/./programs/chapter.tex Page 35 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1152

1153

1154

1155

1156

1157

1158
1159

1160
1161
1162
1163
1164
1165

169

1168

1169

1170
1171

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

1383

® N o O A W N e

© 0 N o U A W N e

L I T N O
B QN = O © 0N o ok W R O

25
26
27
28
29

4.2. USING THE ADDI INSTRUCTION

4.2.3 Setting a Register to Zero

Recall that x0 always contains the value zero. Any register can be set to zero by copying the contents
of x0 using mv (aka addi).?

For example, to set t3 to zero:

addi t3, x0, 0
31 20|19 15|14 12|11 7|6 0
imm[11:0] rsl funct3 rd opcode
0000,0000,0000/0000,0000/1110,000010011]| Itype
12 5 3 5 7

Listing 4.8: mvzero/mv.S
Using mv (aka addi) to zero-out a register.

.text # put this into the text section
.align 2 # align to a multiple of 4
.globl _start

_start:
mv t3, x0 # t3

]
o

ebreak

Listing 4.9 traces the execution of the program in Listing 4.8 showing how t3 is changed from
0xf0f0£0£0 (seen on £16) to 0x00000000 (seen on £26.)

Listing 4.9: mvzero/mv.out
Setting t3 to zero.

$ rvddt -f mv.bin
sp initialized to top of memory: 0x0000f£ffO0O
Loading ’mv.bin’ to 0x0
This is rvddt. Enter ? for help.
ddt> a
ddt> d 0 16
00000000: 13 Oe 00 00 73 00 10 00 a5 a5 ab ab ab ab ab ab *....s........... *
ddt> t 0 1000
zero x0 00000000 ra x1 fO0f0f0f0 sp x2 0000fff0 gp x3 f0f0£f0£f0
tp x4 f0f0f0f0 t0O x5 fOfO0f0f0 t1 x6 f0f0f0f0 t2 x7 fO0f0f0f0
s0 x8 fO0f0f0f0 s1 x9 fO0f0f0f0 a0 x10 fOf0f0f0 al x11 fOfO0f0fO0
a2 x12 fO0f0f0f0 a3 x13 fO0f0f0f0 a4 x14 f0f0f0f0 a5 x15 fO0f0f0f0
a6 x16 fO0f0f0f0 a7 x17 fO0f0f0f0 s2 x18 fO0f0f0f0 s3 x19 fO0f0f0f0
s4 x20 fO0f0f0f0 s5 x21 fO0f0f0f0 s6 x22 fO0f0f0f0 s7 x23 fO0f0f0f0
s8 x24 fO0f0f0f0 s9 x25 fOf0f0f0 s10 x26 fO0f0f0f0 si11 x27 fO0f0f0f0
t3 x28 f0f0f0f0 t4 x29 fOfO0f0f0 t5 x30 f0f0f0f0 t6 x31 fO0f0f0f0
pc 00000000
00000000: 00000e13 addi t3, zero, O # t3 = 0x00000000 = 0x00000000 + 0x00000000
zero x0 00000000 ra x1 fOfO0f0f0 sp x2 0000fff0 gp x3 f0f0f0fO0
tp x4 f0f0f0f0 t0O x5 fOfO0f0f0 t1 x6 fO0f0f0f0 t2 x7 fO0f0f0f0
s0 x8 fO0f0f0f0 s1 x9 fO0fO0f0f0 a0 x10 fO0f0f0f0 al x11 fOf0f0fO0
a2 x12 f0f0f0f0 a3 x13 fO0f0f0f0 a4 x14 fO0f0f0f0 a5 x15 fOf0f0f0
a6 x16 fO0f0f0f0 a7 x17 fO0f0f0f0 s2 x18 f0f0f0f0 s3 x19 fO0f0f0f0
s4 x20 fO0f0f0f0 s5 x21 fO0f0f0f0 s6 x22 f0f0f0f0 s7 x23 fO0f0f0f0
s8 x24 fO0f0f0f0 s9 x25 fOf0f0f0 s10 x26 fOf0f0f0 s11 x27 fO0f0f0f0
t3 x28 00000000 t4 x29 fOfO0f0f0 t5 x30 f0f0f0f0 t6 x31 fO0f0f0f0
pc 00000004
00000004: ebreak
ddt> x

3There are other pseudoinstructions (such as 1i) that can also turn into an addi instruction. Objdump might display
‘addi t3,x0,0’ as ‘mv t3,x0’ or ‘1i t3,0’.

~/rvalp/book/./programs/chapter.tex P%ige 36 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

4.3. TODO

4.2.4 Adding a 12-bit Signed Value

addi x1, x7, 4
31 20|19 15|14 12|11 7|6 0
imm[11:0] rsl funct3 rd opcode
@OOOIOOOOIOIO()OOl1.10000000.1001I0011I-type
12 5 3 5 7

addi t0, zero, 4 # t0 =4

addi t1, t1, 100 # tl1 = 104

addi t0, zero, 0x123 # t0 = 0x123

addi t0, t0, Oxfff # t0 = 0x122 (subtract 1)

addi t0, zero, Oxfff # t0 = Oxffffffff (-1) (diagram out the chaining carry)

refer back to the overflow/truncation discussion in binary chapter

addi x0, x0, O # no operation (pseudo: nop)
addi rd, rs, O # copy reg rs to rd (pseudo: mv rd, rs)

4.3 todo

Ideas for the order of introducing instructions.

4.4 Other Instructions With Immediate Operands

andi
ori
xori

slti
sltiu
srai
slli
srli

4.5 Transferring Data Between Registers and Memory

RV is a load-store architecture. This means that the only way that the CPU can interact with the
memory is via the load and store instructions. All other data manipulation must be performed on
register values.

Copying values from memory to a register (first examples using regs set with addi):

1b
1h
1w
1bu
lhu

~/rvalp/book/./programs/chapter.tex Page 37 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1237

1238
1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

4.6. RR OPERATIONS

Copying values from a register to memory:

sb
sh
sW

4.6 RR operations

add
sub

or
sra
srl
sll
x0T
sltu
slt

4.7 Setting registers to large values using lui with addi

addi // useful for values from -2048 to 2047
lui // useful for loading any multiple of 0x1000

Setting a register to any other value must be done using a combo of insns:

auipc // Load an address relative the the current PC (see la pseudo)
addi
lui // Load constant into into bits 31:12 (see 1li pseudo)

addi // add a constant to fill in bits 11:0
if bit 11 is set then need to +1 the lui value to compensate

4.8 Labels and Branching

Start to introduce addressing here?

beq
bne
blt
bge
bltu
bgeu

bgt rs, rt, offset
ble rs, rt, offset
bgtu rs, rt, offset
bleu rs, rt, offset

pseudo
pseudo
pseudo
pseudo

for:
for:
for:
for:

blt rt, rs, offset
bge rt, rs, offset
bltu rt, rs, offset
bgeu rt, rs, offset

(reverse
(reverse
(reverse
(reverse

the
the
the
the

operands)
operands)
operands)
operands)

~/rvalp/book/./programs/chapter.tex

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 38 of 82

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

4.9. JUMPS

beqgz
bnez
blez
bgez
bltz
bgtz

rs,
rs,
rs,
rs,
rs,
rs,

offset
offset
offset
offset
offset
offset

4.9 Jumps

H OH H H H

pseudo for: beq rs, x0, offset
pseudo for: bne rs, x0, offset
pseudo for: bge x0, rs, offset
pseudo for: bge rs, x0, offset
pseudo for: blt rs, x0, offset
pseudo for: blt x0, rs, offset

Introduce and present subroutines but not nesting until introduce stack operations.

jal
jalr

4.10 Pseudoinstructions

1i

la

1{blh|w} rd,label

rd,constant

rd,label

lui
addi

auipc
addi

auipc
1{blhlw}

s{blhlw} rd,label,rt

call

tail

mv

jal
jr
jalr
ret

label

label,rt

rd,rs

label
label

rs

auipc
s{blh|w}

auipc
jalr

auipc
jalr

addi

jal
jal
jalr
jalr
jalr

rd, (constant + 0x00000800) >> 12
rd,rd, (constant & 0x00000fff)

rd, ((1label-.) + 0x00000800) >> 12
rd,rd, ((label-(.-4)) & 0x00000fff)

rd, ((label-.) + 0x00000800) >> 12
rd, ((label-(.-4)) & 0x00000fff) (rd)

rt used as a temp reg for the operation (default=x6)
rt, ((label-.) + 0x00000800) >> 12
rd, ((label-(.-4)) & 0x00000fff) (rt)

x1, ((label-.) + 0x00000800) >> 12
x1, ((label-(.-4)) & 0x00000fff) (x1)

rt used as a temp reg for the operation (default=x6)
rt, ((label-.) + 0x00000800) >> 12
x0, ((label-(.-4)) & 0x00000fff) (rt)

rd,rs,0

x0,label
x1,label
x0,0(rs)
x1,0(rs)
x0,0(x1)

4.10.1 The 1i Pseudoinstruction

Note that the 11 pseudoinstruction includes an (effectively) conditional addition of 1 to the immediate
operand in the lui instruction. This is because the immediate operand in the addi instruction is sign-

~/rvalp/book/./programs/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 39 of 82

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

4.10. PSEUDOINSTRUCTIONS

extended before it is added to rd. If the immediate operand to the addi has its most-significant-bit
set to 1 then it will have the effect of subtracting 1 from the operand in the lui instruction.

Consider the case of putting the value 0x12345800 into register x5:

1i x5,0x12345800

A naive (incorrect) solution might be:

lui x5,0x12345 // x5
addi x5,x5,0x800 // x5

0x12345000
0x12345000 + sx(0x800) = 0x12345000 + Oxfffff800 = 0x12344800

The result of the above code is that an incorrect value has been placed into x5.

To remedy this problem, the value used in the lui instruction can be altered (by adding 1 to its
operand) to compensate for the sign-extention in the addi instruction:

lui x5,0x12346 // x5
addi x5,x5,0x800 // x5

0x12346000 (note: this is 0x12345800 + 0x0800)
0x12346000 + sx(0x800) = 0x12346000 + Oxfffff800 = 0x12345800

Keep in mind that the 1i pseudoinstruction must only increment the operand of the lui instruction
when it is known that the operand of the subsequent addi instruction will be a negative number.

By adding 0x00000800 to the immediate operand of the lui instruction in this example, a carry- ™ Fix Me:

bit into bit-12 will be set to 1 iff the value in bits 11-0 will be treated as a negative value in the Add a ribbon diagram of

his?
subsequent addi instruction. In other words, when bit-11 is set to 1 in the immediate operand of the £
1i pseudoinstruction, the immediate operand of the lui instruction will be incremented by 1.

Consider the case where we wish to put the value 0x12345700 into register x5:

lui x5,0x12345 // x5
addi x5,x5,0x700 // x5

0x12345000 (note that 0x12345700 + 0x0800 = 0x12345f00)
0x12345000 + sx(0x700) = 0x12345000 + 0x00000700 = 0x12345700

The sign-extension in this example performed by the addi instruction will convert the 0x700 to
0x00000700 before the addition.

Observe that 0x12345700+0x0800 = 0x12345f00 and therefore, after shifting to the right, the least
significant 0x£00 is truncated, leaving 0x12345 as the immediate operand of the 1lui instruction. The
addition of 0x0800 in this example has no effect on the immediate operand of the lui instruction
because bit-11 in the original value 0x12345700 is zero.

A general algorithm for implementing the 1i rd,constant pseudoinstruction is:

lui rd, (constant + 0x00000800) >> 12
addi rd,rd, (constant & 0x00000fff) // the 12-bit immediate is sign extended

Note that on RV64 and RV128 systems, the 1ui places the immediate operand into bits 31-12 and ® Fix Me:

then sign-extends the result to XLEN bits. Z;'r}d a proper citation for
IS.

~/rvalp/book/./programs/chapter.tex Page 40 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

4.11. RELOCATION

4.10.2 The la Pseudoinstruction

The 1a (and others that use auipc such as the 1{b|h|w}, s{blh|w}, call, and tail) pseudoinstruc-
tions also compensate for a sign-ended negative number when adding a 12-bit immediate operand.
The only difference is that these use a pc-relative addressing mode.

For example, consider the task of putting an address represented by the label var1l into register x10:

00010040 la x10,varl

00010048 ... # note that the la pseudoinstruction expands into 8 bytes
varl:

00010900 .word 999 # a 32-bit integer constant stored in memory at address varil

The 1a instruction in this example will expand into:

00010040 auipc x10, ((vari-.) + 0x00000800) >> 12
00010044 addi x10,x10, ((vari-(.-4)) & 0x00000fff)

Note that auipc will shift the immediate operand to the left 12 bits and then add that to the pc
register (see Figure 5.3.1.)

The assembler will calculate the value of (vari-.) by subtracting the address represented by the label
varl from the address of the current instruction (which is expressed as ’.”) resulting in the number
of bytes from the current instruction to the target label... which is 0x000008cO.

Therefore the expanded pseudoinstruction example will become:

00010040 auipc x10, ((0x00010900 - 0x00010040) + 0x00000800) >> 12
00010044 addi x10,x10, ((0x00010900 - (0x00010044 - 4)) & 0x00000fff) # note the extra -4 here!

After performing the subtractions, it will reduce to this:

00010040 auipc x10, (0x000008c0 + 0x00000800) >> 12
00010044 addi x10,x10, (0x000008c0 & 0x00000fff)

Continuing to reduce the math operations we get:

00010040 auipc x10,0x00001 # 0x000008cO + 0x00000800 = 0x000010cO
00010044 addi x10,x10,0x8c0

Note that the la pseudoinstruction exhibits the same sort of technique as the 1i in that if/when the
immediate operand of the addi instruction has its most significant bit set then the operand in the
auipc has to be incremented by 1 to compensate.

4.11 Relocation

Because expressions that refer to constants and address labels are common in assembly language
programs, a shorthand notation is available for calculating the pairs of values that are used in the

~/rvalp/book/./programs/chapter.tex Page 41 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

4.11. RELOCATION

1388 implementation of things like the 11 and 1la pseudoinstructions (that have to be written to compensate
1389 for the sign-extension that will take place in the immediate operand that appears in instructions like
1390 addi and,jalr)

1301 4.11.1 Absolute Addresses

1302 To refer to an absolute value, the following operators can be used:
1303 %hi(constant) // becomes: (constant + 0x00000800) >> 12
1304 %lo(constant) // becomes: (constant & 0x00000fff)

1305 Thus, the 1i pseudoinstruction can, therefore, be expressed like this:
1396 1i rd,constant 1lui rd,%hi(constant)

1307 addi rd,rd,%lo(constant)

1308 4.11.2 PC-Relative Addresses

1399 The following can be used for PC-relative addresses:
1400 %pcrel_hi(symbol) // becomes: ((symbol-.) + 0x0800) >> 12
1401 %pcrel_lo(lab) // becomes: ((symbol-lab) & 0x00000fff)

1402 Note the subtlety involved with the 1ab on %pcrel_lo. It is needed to determine the address of the
1403 instruction that contains the corresponding %pcrel_hi. (The label lab MUST be on a line that used

1404 a %pcrel_hi() or get an error from the assembler.)

1405 Thus, the 1a rd,label pseudoinstruction can be expressed like this:

1406 xxx: auipc rd,%pcrel_hi(label)

1407 addi rd,rd,%pcrel_lo(xxx) // the xxx tells pcrel_lo where to find the matching pcrel_hi

1408 Examples of using the auipc & addi together with %pcrel_hi() and %pcrel_lo():

1400 XXX: auipc t1,%pcrel_hi(yyy) // ((yyy-.) + 0x0800) >> 12

1410 addi t1,t1,%pcrel_lo(xxx) // ((yyy-xxx) & 0x00000fff)

1411 o e

1412 yyy: // the address: yyy is saved into tl1 above

1413

1414 Referencing the same %pcrel_hi in multiple subsequent uses of %pcrel_lo is legal:

1415 label: auipc t1,%pcrel_hi(symbol)

1416 addi t2,t1,%pcrel_lo(label) // t2 = symbol

1417 addi t3,t1,%pcrel_lo(label) // t3 = symbol

1418 lw t4,%pcrel_lo(label) (t1) // t4 = fetch value from memory at ’symbol’

1419 addi t4,t4,123 // t4 = t4 + 123

1420 sw t4,%pcrel_lo(label) (t1) // store t4 back into memory at ’symbol’
~/rvalp/book/./programs/chapter.tex Page 42 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

4.12. RELAXATION

ot 4.12 Relaxation

1422 In the simplest of terms, Relazation refers to the ability of the linker (not the compiler!) to determine

1423 if/when the instructions that were generated with the xxx_hi and xxx_lo operators are unneeded

1424 (and thus waste execution time and memory) and can therefore be removed.

1425 However, doing so is not trivial as it will result in moving things around in memory, possibly changing

1426 the values of address labels in the already-assembled program! Therefore, while the motivation for

1427 rexation is obvious, the process of implementing it is non-trivial.

1428 See: https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md
~/rvalp/book/./rvalp.tex Page 43 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

Chapter 5

RV 32 Machine Instructions

5.1 Conventions and Terminology

When discussing instructions, the following abbreviations/notations are used:

5.1.1 XLEN

XLEN represents the bit-length of an x register in the machine architecture. Possible values are 32,
64 and 128.

5.1.2 sx(val)

Sign extend wval to the left.

This is used to convert a signed integer value expressed using some number of bits to a larger number
of bits by adding more bits to the left. In doing so, the sign will be preserved. In this case wval
represents the least MSBs of the value.

For more on sign-extension see section 2.3.

5.1.3 zx(val)

Zero extend wval to the left.

This is used to convert an unsigned integer value expressed using some number of bits to a larger
number of bits by adding more bits to the left. In doing so, the new bits added will all be set to zero.
As is the case with sx(val), val represents the LSBs of the final value.

For more on zero-extension see Figure 2.3.

~/rvalp/book/./rv32/chapter.tex Page 44 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

5.1. CONVENTIONS AND TERMINOLOGY

5.1.4 zr(val)

Zero extend wval to the right.

Some times a binary value is encoded such that a set of bits represented by wval are used to represent
the MSBs of some longer (more bits) value. In this case it is necessary to append zeros to the right
to convert val to the longer value.

Figure 5.1 illustrates converting a 20-bit val to a 32-bit fullword.
19 0

©M1000000000000000010

20

31 0
©1000000000000000010[00OD00O00D0D0O0O0O0LO0UO

32

Figure 5.1: Zero-extending an integer to the right from 20 bits to 32 bits.

5.1.5 Sign Extended Left and Zero Extend Right

Some instructions such as the J-type (see section 5.3.2) include immediate operands that are extended
in both directions.

Figure 5.2 and Figure 5.3 illustrates zero-extending a 20-bit negative number one bit to the right and
sign-extending it 11 bits to the left:

19 0

©1000100011101001001

20

31 0

0000000000001 00010001110100100 1[0

32

Figure 5.2: Sign-extending a positive 20-bit number 11 bits to the left and one bit to the right.

19 0

W100010001110100100°1

20

31 0

M11111111111H100010001110100100 10

32

Figure 5.3: Sign-extending a negative 20-bit number 11 bits to the left and one bit to the right.

5.1.6 m8&(addr)

The contents of an 8-bit value in memory at address addr.

Given the contents of the memory dump shown in Figure 5.4, m8(0x42) refers to the memory location
at address 4214 that currently contains the 8-bit value fcqg.

The m, (addr) notation can be used to refer to memory that is being read or written depending on
the context.

~/rvalp/book/./rv32/chapter.tex Page 45 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

5.1. CONVENTIONS AND TERMINOLOGY

When memory is being written, the following notation is used to indicate that the least significant 8
bis of source will be is written into memory at the address addr:

m8 (addr) < source

When memory is being read, the following notation is used to indicate that the 8 bit value at the
address addr will be read and stored into dest:

dest <+ m8(addr)

Note that source and dest are typically registers.

00000030 2f 20 72 65 61 64 20 61 20 62 69 6e 61 72 79 20
00000040 66 69 fc 65 20 66 69 6¢c 6¢c 65 64 20 77 69 74 68
00000050 20 72 76 33 32 49 20 69 6e 73 74 72 75 63 74 69
00000060 6f 6e 73 20 61 6e 64 20 66 65 65 64 20 74 68 65

Figure 5.4: Sample memory contents.

5.1.7 ml6(addr)

The contents of an 16-bit little-endian value in memory at address addr.

Given the contents of the memory dump shown in Figure 5.4, m16 (0x42) refers to the memory location
at address 4215 that currently contains 65fci4. See also section 5.1.6.

5.1.8 m32(addr)

The contents of an 32-bit little-endian value in memory at address addr.

Given the contents of the memory dump shown in Figure 5.4, m32(0x42) refers to the memory location
at address 42,5 that currently contains 662065fc15. See also section 5.1.6.

5.1.9 m64(addr)

The contents of an 64-bit little-endian value in memory at address addr.

Given the contents of the memory dump shown in Figure 5.4, m64 (0x42) refers to the memory location
at address 4215 that currently contains 656c6c69662065fc 5. See also section 5.1.6.

5.1.10 m128(addr)

The contents of an 128-bit little-endian value in memory at address addr.

Given the contents of the memory dump shown in Figure 5.4, m128(0x42) refers to the memory lo-
cation at address 4214 that currently contains 7220687469772064656c6c69662065fc 5. See also sec-
tion 5.1.6.

~/rvalp/book/./rv32/chapter.tex Page 46 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

5.1. CONVENTIONS AND TERMINOLOGY

5.1.11 .+offset

The address of the current instruction plus a numeric offset.

5.1.12 .-offset

The address of the current instruction minus a numeric offset.

5.1.13 pcrel 13

An address that is within [—4096..4094] [-0x1000. .0x0ffe] of the current instruction location. These
addresses are typically expressed in assembly source code by using labels. See section 5.3.6 for exam-
ples.

5.1.14 pcrel 21

An address that is within [—1048576..1048574] [-0x100000. . 0x0ffffe| of the current instruction loca-
tion. These addresses are typically expressed in assembly source code by using labels. See section 5.3.2
for an example.

5.1.15 pc

The current value of the program counter.

5.1.16 rd

An x-register used to store the result of instruction.

5.1.17 rsl

An x-register value used as a source operand for an instruction.

5.1.18 1rs2

An x-register value used as a source operand for an instruction.

5.1.19 imm

An immediate numeric operand. The word immediate refers to the fact that the operand is stored
within an instruction.

~/rvalp/book/./rv32/chapter.tex Page 47 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

5.2. ADDRESSING MODES

5.1.20 rsN[h:l]

The value of bits from h through [of x-register rsN. For example: rs1[15:0] refers to the contents of
the 16 LSBs of rsl.

5.2 Addressing Modes

immediate, register, base-displacement, pc-relative

5.3 Instruction Encoding Formats

This document concerns itself with the RISC-V instruction formats shown in Figure 5.5.

31 12|11 7 6 0
imm[31:12] rd opcode
@OOOIOOOOIO0OOIOOOOIOOOOOOOOIOOOOIOOOO U-type
20 5 7
31 12|11 7 6 0
imm[20]10:1[11[19:12] rd opcode
@1000.0000.00010;0000.00000000.0000.0000 J-type
20 5 7
31 25|24 20|19 15|14 12|11 7 6 0
funct? rs2 rsl funct3 rd opcode
c0o0o0,0000,00000000,0/000j0000,0[000,0000 R-type
7 5 5 3 5 7
31 20|19 15|14 12|11 7 6 0
imm[11:0] rsl funct3 rd opcode
@OOOIOOOOIO0OOOOOOIOOOOOOOOIOOOOIOOOO I-type
12 5 3 5 7
31 25|24 20|19 15|14 12|11 7 6 0
funct? shamt rsl funct3 rd opcode
0000,000[0,00000000,00000{00O00,0(000,0000| Itype
7 5 5 3 5 7
31 25|24 20|19 15|14 12|11 7 6 0]
imm[11:5] rs2 rsl funct3 | imm[4:0] opcode
@OOOIOOOOIO0OOOOOOIOOOOOOOOIOOOOIOOOO S-type
7 5 5 3 5 7
31 25|24 20|19 15|14 12|11 7 6 0
imm[12]10:5] rs2 rsl funct3 | Imm[4:1]11] opcode
@1000.00OOIO0OOOOOOIOOOOOOOO;OOOOIOOOO B-type
7 5 5 3 5 7

Figure 5.5: RISC-V instruction formats.

The method /format of the instructions has been designed with an eye on the ease of future manufacture
of the machine that will execute them. It is easier to build a machine if it does not have to accommodate
many different ways to perform the same task. The result is that a machine can be built with fewer
gates, consumes less power, and can run faster than if it were built when a priority is on how a user
might prefer to decode the same instructions from a hex dump.

Observe that all instructions have their opcode in bits 0-6 and when they include an rd register it will
be specified in bits 7-11, an rsi register in bits 15-19, an rs2 register in bits 20-24, and so on. This
has a seemingly strange impact on the placement of any immediate operands.

~/rvalp/book/./rv32/chapter.tex Page 48 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

» Fix Me:

Write this section.

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

5.3. INSTRUCTION ENCODING FORMATS

When immediate operands are present in an instruction, they are placed in the remaining unused bits.
However, they are organized such that the sign bit is always in bit 31 and the remaining bits placed
so as to minimize the number of places any given bit is located in different instructions.

For example, consider immediate operand bits 12-19. In the U-type format they are in bit positions
12-19. In the J-type format they are also in positions 12-19. In the J-type format immediate operand
bits 1-10 are in the same instruction bit positions as they are in the I-type format and immediate
operand bits 5-10 are in the same positions as they are in the B-type and S-type formats.

While this is inconvenient for anyone looking at a memory hexdump, it does make sense when consid-
ering the impact of this choice on the number of gates needed to implement circuitry to extract the
immediate operands.

5.3.1 U Type

The U-Type format is used for instructions that use a 20-bit immediate operand and an rd destination
register.

The rd field contains an x register number to be set to a value that depends on the instruction.

If XLEN=32 then the ¢mm value will extracted from the instruction and converted as shown in
Figure 5.6 to form the imm_u value.

31 12|11 7 6 0
Imm[31:12] rd opcode
@bcdefghijklmnopdr s t/0010,1[011011 1| U-type
20 5 7
0
31 12|11 0
abcdlefghlijkllmnopIQrstIOOOOIOOOOIOOOOimm,u
20 | 12

Figure 5.6: Decoding a U-type instruction.

Notice that the 20-bits of the imm field are mapped in the same order and in the same relative position
that they appear in the instruction when they are used to create the value of the immediate operand.
Leaving the imm bits on the left, in the “upper bits” of the imm_u value suggests a rationale for the
name of this format.

e lui rd,imm
Set register rd to the imm_u value as shown in Figure 5.6.

For example: 1ui x23,0x12345 will result in setting register x23 to the value 0x12345000.

e auipc rd,imm

~/rvalp/book/./rv32/chapter.tex Page 49 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

5.3. INSTRUCTION ENCODING FORMATS

Add the address of the instruction to the imm_u value as shown Figure 5.6 and store the result
in register rd.

For example, if the instruction auipc x22,0x10001 is executed from memory address 0x800012f4
then register x22 will be set to 0x900022f4.

If XLEN=64 then the imm_u value in this example will be converted to the same two’s complement
integer value by extending the sign-bit further to the left.

5.3.2 J Type

The J-type instruction format is used to encode the jal instruction with an immediate value that
determines the jump target address. It is similar to the U-type, but the bits in the immediate operand
are arranged in a different order.

Note that the imm_j value is an even 21-bit value in the range of [-1048576..1048574] [-0x100000. . 0x0ffffe]
representing a pc-relative offset to the target address.

If XLEN=32 then the ¢mm value will extracted from the instruction and converted as shown in
Figure 5.7 to form the imm_j value.

31 12|11 7 6 0
imm[20]10:1[11]19:12] rd opcode
@b cdef ghijklmnopdqrst;0011,1/110,111 1| Jtype
20 5 7

0
31 21'20'19 12|11|10 1| 0
aaaalaaaalaaaalmnopIQrstllbcdlefghlijkOimm,j
11 fe1s] 8 le1-f 10 fe1-]

Figure 5.7: Decoding a J-type instruction.

The J-type format is used by the Jump And Link instruction that calculates the target address by
adding imm_j to the current program counter. Since no instruction can be placed at an odd address the
20-bit imm value is zero-extended to the right to represent a 21-bit signed offset capable of expressing
a wider range of target addresses than the 20-bit imm value alone.

e jal rd,pcrel_21

Set register rd to the address of the next instruction that would otherwise be executed (the
address of the jal instruction 4+ 4) and then jump to the address given by the sum of the pc
register and the imm_j value as decoded from the instruction shown in Figure 5.7.

Note that pcrel_21 is expressed in the instruction as a target address or label that is converted
to a 21-bit value representing a pc-relative offset to the target address. For example, consider
the jal instructions in the following code:

~/rvalp/book/./rv32/chapter.tex Page 50 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

5.3. INSTRUCTION ENCODING FORMATS

00000010: 000002ef jal x5,0x10 # jump to self (address 0x10)
00000014: 008002ef jal x5,0x1c # jump to address Oxlc
00000018: 00100073 ebreak

0000001c: 00100073 ebreak

The instruction at address 0x10 has a target address of 0x10 and the imm_j is zero because
offset from the “current instruction” to the target is zero.

The instruction at address 0x14 has a target address of Oxlc and the imm_j is 0x08 because
Oxlc - Ox14 = 0x08.

See also section 5.3.6.

5.3.3 R Type

31

25|24 20|19 15|14 12]11 7|6 0

funct? rs2 rsl funct3 rd opcode

0100000(1,1111,0001,1/00040011,1]01 10011 R-type

7 5 5 3 5 7

The R-type instructions are used for operations that set a destination register rd to the result of an
arithmetic, logical or shift operation applied to source registers rs1 and rs2.

Note that instruction bit 30 (part of the the funct7 field) is used to select between the add and sub
instructions as well as to select between srl and sra.

add rd,rsl,rs2

Set register rd to rs1 + rs2.

Note that the value of funct7 must be zero for this instruction. (The value of funct7 is how
the add instruction is differentiated from the sub instruction.)

and rd,rsl,rs2

Set register rd to the bitwise and of rs1 and rs2.

For example, if x17 = 0x55551111 and x18 = 0xf£00££00 then the instruction and x12,x17,x18
will set x12 to the value 0x55001100.

or rd,rsl,rs2

Set register rd to the bitwise or of rs1 and rs2.

For example, if x17 = 0x55551111 and x18 = 0xff00ff00 then the instruction or x12,x17,x18
will set x12 to the value Oxff55ff11.

sll rd,rsl,rs2

Shift rs1 left by the number of bits specified in the least significant 5 bits of rs2 and store the
result in rd.!

For example, if x17 = 0x12345678 and x18 = 0x08 then the instruction s11 x12,x17,x18 will
set x12 to the value 0x34567800.
slt rd,rsl,rs2

If the signed integer value in rs1 is less than the signed integer value in rs2 then set rd to 1.
Otherwise, set rd to O.

1 When XLEN is 64 or 128, the shift distance will be given by the least-significant 6 or 7 bits of rs2 respectively.

For more information on how shifting works, see section 2.4.

~/rvalp/book/./rv32/chapter.tex Page 51 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

5.3. INSTRUCTION ENCODING FORMATS

For example, if x17 = 0x12345678 and x18 = 0x0000£fff then the instruction s1t x12,x17,x18
will set x12 to the value 0x00000000.

If x17 = 0x82345678 and x18 = 0x0000ffff then the instruction slt x12,x17,x18 will set
x12 to the value 0x00000001.
e sltu rd,rsl,rs2

If the unsigned integer value in rs1 is less than the unsigned integer value in rs2 then set rd to
1. Otherwise, set rd to 0.

For example, if x17 = 0x12345678 and x18 = 0x0000ffff then the instruction sltu x12,x17,x18
will set x12 to the value 0x00000000.

If x17 = 0x12345678 and x18 = 0x8000ffff then the instruction sltu x12,x17,x18 will set
x12 to the value 0x00000001.
e STra rd,rsl,rs2

Arithmetic-shift rsi right by the number of bits given in the least-significant 5 bits of the rs2
register and store the result in rd.!

For example, if x17 = 0x87654321 and x18 = 0x08 then the instruction sra x12,x17,x18 will
set x12 to the value 0xf£f876543.

If x17 = 0x76543210 and x18 = 0x08 then the instruction sra x12,x17,x18 will set x12 to the
value 0x00765432.

Note that the value of funct7 must be zero for this instruction. (The value of funct7 is how
the sra instruction is differentiated from the srl instruction.)
e STl rd,rsl,rs2

Logic-shift rs1 right by the number of bits given in the least-significant 5 bits of the rs2 register
and store the result in rd.!

For example, if x17 = 0x87654321 and x18 = 0x08 then the instruction srl x12,x17,x18 will
set x12 to the value 0x00876543.

If x17 = 0x76543210 and x18 = 0x08 then the instruction srl x12,x17,x18 will set x12 to the
value 0x00765432.

Note that the value of funct7 must be 0b0100000 for this instruction. (The value of funct7 is
how the srl instruction is differentiated from the sra instruction.)

e sub rd,rsl,rs2
Set register rd to rs1 - rs2.
Note that the value of funct7 must be 0b0100000 for this instruction. (The value of funct7 is
how the sub instruction is differentiated from the add instruction.)

e XOT rd,rsl,rs2
Set register rd to the bitwise xor of rs1 and rs2.

For example, if x17 = 0x55551111 and x18 = 0xf£f00££00 then the instruction xor x12,x17,x18
will set x12 to the value Oxaab55eell.

5.3.4 I Type

The I-type instruction format is used to encode instructions with a signed 12-bit immediate operand
with a range of [—2048..2047], an rd register, and an rsi register.

If XLEN=32 then the 12-bit imm value example will extracted from the instruction and converted as
shown in Figure 5.8 to form the imm_i value.

~/rvalp/book/./rv32/chapter.tex Page 52 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1653

1654

1655

1656

1657

1658

1659

1660

1661

5.3. INSTRUCTION ENCODING FORMATS

31 20] 19 15]14 1211 7 6 0
imm[11:0] rsl funct3 rd opcode
@bcdefghijk1,0001,1/000/00111/000,0011] Itype
7
31 12|11 0
aaaalaaaalaaaalaaaalaaaalabcdlefghlijkl imm_i

12

20

Figure 5.8: Decoding an I-type Instruction.

A special case of the I-type is used for shift-immediate instructions where the imm field is used to
represent the number of bit positions to shift as shown in Figure 5.9. In this variation, the least
significant five bits of the imm field are extracted to form the shamt_i value.?

Note also that bit 30 (the imm instruction field bit labeled ‘b’) is used to select between arithmetic

and logical shifting.

I-type

31 20|19 15|14 1211 7|6 0
1mm[1 :0] rsl funct3 rd opcode
@bOOOO hlJk1000110000011100()l0011
5 T

S

srai/srli

eH

0
hiljkl

5

shamt_i

Figure 5.9: Decoding an I-type Shift Instruction.

e addi rd,rsl,imm

Set register rd to rs1 + imm_

e andi rd,rsl,imm

i.

Set register rd to the bitwise and of rs1 and imm_i.

2When XLEN is 64 or 128, the shamt_i field will consist of 6 or 7 bits respectively.

~/rvalp/book/./rv32/chapter.tex

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 53 of 82

5.3. INSTRUCTION ENCODING FORMATS

00002640: 6f 00 00 00 6f 00 00 00O b7 87 00 00 03 ab 07 43 *0...0.....uu... Cx
00002650: 67 80 00 00 00 00 00 OO 76 61 6¢c 3d 00 00 00 00 *g....... val=....*
00002660: 00 00 00 00 80 84 2 41 1f 85 45 41 80 40 9a 44 *....... A..EA.Q.Dx*
00002670: 4f 11 £3 c3 6e 8a 67 41 20 1b 00 00 20 1b 00 00 *0...n.gAx*
00002680: 44 1b 00 00 14 1b 00 00 14 1b 00 00 04 1c 00 00 *D............... *

Figure 5.10: An Example Memory Dump.

1662 For example, if x17 = 0x55551111 then the instruction andi x12,x17,0x0ff will set x12 to
1663 the value 0x00000011.
1664 Recall that imm is sign-extended. Therefore if x17 = 0x55551111 then the instruction andi x12,x17,0x800
1665 will set x12 to the value 0x55551000.
1666 e jalr 1rd,imm(rs1)
1667 Set register rd to the address of the next instruction that would otherwise be executed (the
1668 address of the jalr instruction + 4) and then jump to an address given by the sum of the rsi
1669 register and the imm_i value as decoded from the instruction shown in Figure 5.8.
1670 Note that the pc register can never refer to an odd address. This instruction will explicitly set
1671 the LSB to zero regardless of the value of the value of the calculated target address.
1672 e 1b rd,imm(rs1)
1673 Set register rd to the value of the sign-extended byte fetched from the memory address given
1674 by the sum of rs1 and imm_i.
1675 For example, given the memory contents shown in Figure 5.10, if register x13 = 0x00002650
1676 then the instruction 1b x12,1(x13) will set x12 to the value Oxffff££80.
1677 e lbu rd,imm(rsi)
1678 Set register rd to the value of the zero-extended byte fetched from the memory address given
1679 by the sum of rs1 and imm_i.
1680 For example, given the memory contents shown in Figure 5.10, if register x13 = 0x00002650
1681 then the instruction 1bu x12,1(x13) will set x12 to the value 0x00000080.
1682 e 1h rd,imm(rs1)
1683 Set register rd to the value of the sign-extended 16-bit little-endian half-word value fetched from
1684 the memory address given by the sum of rs1 and imm_i.
1685 For example, given the memory contents shown in Figure 5.10, if register x13 = 0x00002650
1686 then the instruction 1h x12,-2(x13) will set x12 to the value 0x00004307.
1687 If register x13 = 0x00002650 then the instruction 1h x12,-8(x13) will set x12 to the value
1688 Oxff££87b7.
1689 e lhu rd,imm(rsi)
1690 Set register rd to the value of the zero-extended 16-bit little-endian half-word value fetched from
1601 the memory address given by the sum of rs1 and imm_i.
1602 For example, given the memory contents shown in Figure 5.10, if register x13 = 0x00002650
1693 then the instruction lhu x12,-2(x13) will set x12 to the value 0x00004307.
1604 If register x13 = 0x00002650 then the instruction lhu x12,-8(x13) will set x12 to the value
1695 0x000087b7.
1696 o 1w rd,imm(rs1)
1607 Set register rd to the value of the sign-extended 32-bit little-endian word value fetched from the
1608 memory address given by the sum of rs1 and imm_i.

~/rvalp/book/./rv32/chapter.tex P%ige 54 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

5.3. INSTRUCTION ENCODING FORMATS

1609 For example, given the memory contents shown in Figure 5.10, if register x13 = 0x00002650
1700 then the instruction 1w x12,-4(x13) will set x12 to the value 4307a503.

1701 e Ori rd,rsl,imm

1702 Set register rd to the bitwise or of rs1 and imm_i.

1703 For example, if x17 = 0x55551111 then the instruction ori x12,x17,0x0ff will set x12 to the
1704 value 0x555511ff.

1705 Recall that imm is sign-extended. Therefore if x17 = 0x55551111 then the instruction ori x12,x17,0x800
1706 will set x12 to the value Oxfff£f£911.

1707 e s1li rd,rsl,imm

1708 Shift rs1 left by the number of bits specified in shamt_i (as shown in Figure 5.9) and store the
1700 result in rd.?

1710 For example, if x17 = 0x12345678 then the instruction slli x12,x17,4 will set x12 to the
7 value 0x23456780.

1712 e slti rd,rsl,imm

1713 If the signed integer value in rs1 is less than the signed integer value in imm_i then set rd to 1.
1714 Otherwise, set rd to O.

1715 e sltiu rd,rsl,imm

1716 If the unsigned integer value in rs1 is less than the unsigned integer value in imm_i then set rd
1717 to 1. Otherwise, set rd to 0.

1718 Note that imm_i is always created by sign-extending the imm value as shown in Figure 5.8 even
1719 though it is then later used as an unsigned integer for the purposes of comparing its magnitude
1720 to the unsigned value in rsl. Therefore, this instruction provides a method to compare rsi to
1721 a value in the ranges of [0..0x7£f] and [0xfff££800..0xffffffff].

1722 e srai rd,rsl,imm

173 Arithmetic-shift rs1 right by the number of bits specified in shamt_i (as shown in Figure 5.9)
1724 and store the result in rd.?

1725 For example, if x17 = 0x87654321 then the instruction srai x12,x17,4 will set x12 to the
1726 value 0xf8765432.

1727 Note that the value of bit 30 must be 1 for this instruction. (The value of bit 30 is how the srai
1728 instruction is differentiated from the srli instruction.)

1720 e srli rd,rsl,imm

1730 Logic-shift rs1 right by the number of bits specified in shamt_i (as shown in Figure 5.9) and
1731 store the result in rd.?

1732 For example, if x17 = 0x87654321 then the instruction srli x12,x17,4 will set x12 to the
1733 value 0x08765432.

1734 Note that the value of bit 30 must be 0 for this instruction. (The value of bit 30 is how the srli
1735 instruction is differentiated from the srai instruction.)

1736 e xori rd,rsl,imm

1737 Set register rd to the bitwise xor of rs1 and imm_i.

1738 For example, if x17 = 0x55551111 then the instruction xori x12,x17,0x0ff will set x12 to
1739 the value 0x555511ee.

1740 Recall that imm is sign-extended. Therefore if x17 = 0x55551111 then xori x12,x17,0x800
1741 will set x12 to the value Oxaaaae911.

3 When XLEN is 64 or 128, the shift distance will be given by the least-significant 6 or 7 bits of the imm field
respectively. For more information on how shifting works, see section 2.4.

~/rvalp/book/./rv32/chapter.tex Page 55 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

5.3. INSTRUCTION ENCODING FORMATS

5.3.5 S Type

The S-type instruction format is used to encode instructions with a signed 12-bit immediate operand
with a range of [—2048..2047], an rs1 register, and an rs2 register.

If XLEN=32 then the 12-bit imm value example will extracted from the instruction and converted as
shown Figure 5.11 to form the imm_s value.

e sb

Figure 5.11: Decoding an S-type Instruction.

rs2,imm(rsl)

31 25|24 20|19 15|14 12|11 7 6 0
Imm[IT1:5] rs2 rsl funct3 | imm[4:0] opcode
@bcdlefg()lll110001.1000uvwx.y010.0011 S-type
7 5 5 3 5 7
31 0
aaaaaaaaaaaaaaaaaaaaabcdef guvwxy| imms
20 | 7 | 5

Set the byte of memory at the address given by the sum of rs1 and imm_s to the 8 LSBs of rs2.

For example, given the memory contents shown in Figure 5.10, if registers x13 = 0x00002650
and x12 = 0x12345678 then the instruction sb x12,1(x13) will change the memory byte at
address 0x00002651 from 0x80 to 0x78 resulting in:

e sh

00002640
00002650
00002660
00002670
00002680

6f 00 00
67 78 00
00 00 00
4f 11 £3
44 1b 00

00 6f
00 00
00 80
c3 6e
00 14

rs2,imm(rsi)

00 00 00
00 00 00
84 2e 41
8a 67 41
1b 00 00

b7 87 00 00 03 ab
76 61 6¢ 3d 00 00
1f 85 45 41 80 40
20 1b 00 00 20 1b
14 1b 00 00 04 1c

00 00
00 00

¥0...0. ..., Cx
gX. ... val=....
¥ A..EA.Q.D*
*0...n.gAx%
*Doooooooiiiia, *

Set the 16-bit half-word of memory at the address given by the sum of rs1 and imm_s to the 16

LSBs of rs2.

For example, given the memory contents shown in Figure 5.10, if registers x13 = 0x00002650

and x12 = 0x12345678 then the instruction sh x12,2(x13)

at address 0x00002652 from 0x0000 to 0x5678 resulting in:

00002640:
00002650
00002660
00002670
00002680

6f 00 00
67 80 78
00 00 00
4f 11 £3
44 1b 00

00 6f
56 00
00 80
c3 6e
00 14

00 00 00
00 00 00
84 2e 41
8a 67 41
1b 00 00

b7 87 00 00 03
76 61 6¢ 3d 00
1f 85 45 41 80
20 1b 00 00 20
14 1b 00 00 04

ab
00
40
1b
1c

07 43
00 00
9a 44
00 00
00 00

will change the memory half-word

¥0...0. .0t Cx
g.xV....val=....
¥, A..EA.Q.Dx
¥0...n.gh%
*¥Dovve oo *

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 56 of 82

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

5.3. INSTRUCTION ENCODING FORMATS

o SW rs2,imm(rs1)
Store the 32-bit value in rs2 into the memory at the address given by the sum of rs1 and imm_s.

For example, given the memory contents shown in Figure 5.10, if registers x13 = 0x00002650
and x12 = 0x12345678 then the instruction sw x12,0(x13) will change the memory word at
address 0x00002650 from 0x00008067 to 0x12345678 resulting in:

00002640: 6f 00 00 00 6f 00 00O OO0 b7 87 00 00 03 ab 07 43 *0...0.......... Cx
00002650: 78 56 34 12 00 00 00 00 76 61 6¢c 3d 00 00 00 00 *xV4..... val=....*
00002660: 00 00 00 00 80 84 2¢ 41 1f 85 45 41 80 40 9a 44 *....... A..EA.Q.Dx*
00002670: 4f 11 £3 c3 6e 8a 67 41 20 1b 00 00 20 1b 00 00 *0...n.gAx*
00002680: 44 1b 00 00 14 1b 00 00 14 1b 00 00 04 1c 00 00 *D............... *

5.3.6 B Type

The B-type instruction format is used for branch instructions that require an even immediate value
that is used to determine the branch target address as an offset from the current instruction’s address.

If XLEN=32 then the 12-bit imm value example will extracted from the instruction and converted as
shown in Figure 5.12 to form the imm_b value.

31 25|24 20|19 15|14 12|11 7|6 0
imm[12[10:5] rs2 rsl funct3 | imm[4:1]11] opcode
@[bcdlefgolll1IOOOIIIOOOHVWX‘Yll()IOOll B-type
7 5 5 3 5 7

31 13|12|11|10 5 |4 1| 0
aaaalaaaalaaaalaaaalaaaalybcdlefguIVWXO imm_b
19 fe1o]e1-] 6 | 4 fe1-]

Figure 5.12: Decoding a B-type Instruction.

Note that imm_b is expressed in the instruction as a target address that is converted to an even 13-bit
value in the range of [—4096..4094] [-0x1000. .0x0ffe| representing a pc-relative offset to the target
address. For example, consider the branch instructions in the following code:

00000000: 00520063 beq x4 ,x5,0x0 # branches to self (address 0x0)
00000004: 00520463 Dbeq x4 ,x5,0xc # branches to address Oxc
00000008: feb20cel3 beq x4 ,x5,0x0 # branches to address 0x0
0000000c: 00100073 ebreak

The instruction at address 0x0 has a target address of zero and imm_b is zero because the offset from
the “current instruction” to the target is zero.*

4This is in contrast to many other instruction sets with pc-relative addressing modes that express a branch target
offset from the “next instruction.”

~/rvalp/book/./rv32/chapter.tex Page 57 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

5.4. CPU REGISTERS

The instruction at address 0x4 has a target address of Oxc and it has an imm_b of 0x08 because

0x4 + 0x08 = 0xOc.

The instruction at address 0x8 has a target address of zero and imm_b is Oxfffffff8 (-8) because

0x8 + Oxfffffff8 = 0x0.

e beq rsl,rs2,pcrel_13
If rs1 is equal to rs2 then add imm_b to the pc register.

e bge rsl,rs2,pcrel_ 13

If the signed value in rsi is greater than or equal to the signed value in rs2 then add imm_b to

the pc register.

e bgeu rsl,rs2,pcrel 13

If the unsigned value in rs1 is greater than or equal to the unsigned value in rs2 then add imm_b

to the pc register.
e blt rsl,rs2,pcrel_13

If the signed value in rs1 is less than the signed value in rs2 then add imm_b to the pc register.

e bltu rsl,rs2,pcrel_13

If the unsigned value in rsi is less than the unsigned value in rs2 then add imm_b to the pc

register.

e bne rsl,rs2,pcrel_13

If rs1 is not equal to rs2 then add imm_b to the pc register.

5.4 CPU Registers

The registers are names x0 through x31 and have aliases suited to their conventional use. The following

table describes each register.

Note that the calling calling convention specifies that only some of the registers are to be saved by ®» Fix Me:
functions if they alter their contents. The idea being that accessing memory is time-consuming and
that by classifying some registers as “temporary” (not saved by any function that alter its contents)
it is possible to carefully implement a function with less need to store register values on the stack in

order to use them to perform the operations of the function.

The lack of grouping the temporary and saved registers is due to the fact that the C extension provides
access to only the first 16 registers when executing instructions in the compressed format.

~/rvalp/book/./rv32/chapter.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 58 of 82

Need to add a section that
discusses the calling
conventions

5.5. MEMORY

’ Reg \ ABI/Alias \ Description \ Saved ‘

x0 Zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer yes
x3 gp Global pointer
x4 tp Thread pointer

o x5 t0 Temporary/alternate link register
x6-7 t1-2 Temporaries
x8 s0/fp Saved register/frame pointer yes
x9 s1 Saved register yes
x10-11 | a0-1 Function arguments/return value
x12-17 | a2-7 Function arguments
x18-27 | s2-11 Saved registers yes
x28-31 | t3-6 Temporaries

w2 0.0 memory

1823 Note that RISC-V is a little-endian machine.
1824 All instructions must be naturally aligned to their 4-byte boundaries. [1, p. 5]

1825 If a RISC-V processor implements the C (compressed) extension then instructions may be aligned to
1826 2-byte boundaries.[1, p. 68]

1827 Data alignment is not necessary but unaligned data can be inefficient. Accessing unaligned data using
1828 any of the load or store instructions can also prevent a memory access from operating atomically. [1,
1829 p.19] See also ?7.

~/rvalp/book/./rvalp.tex Page 59 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1830

1831

1832

1833

1834

1835

1836

1837

1838
1839
1840

1841
1842

itz

1845

1846

1847

1848

1849
1850

1851

1852

1

Appendix A

Installing a RISC-V Toolchain

All of the software presented in this text was assembled/compiled using the GNU toolchain and
executed using the rvddt simulator on a Linux (Ubuntu 20.04 LTS) operating system.

The installation instructions provided here were last tested on on March 5, 2021.

It is expected that these tools will evolve over time. See the respective documentation web sites for
the latest news and options for installing them.

A.1 The GNU Toolchain

In order to install custom code in a location that will not cause interference with other applications
(and allow for easy hacking and cleanup), these will install the toolchain under a private directory:
“/projects/riscv/install. At any time you can remove everything and start over by executing the
following command:

rm -rf ~/projects/riscv/install

» Fix Me:

It would be good to find
some Mac and Windows
users to write and test
proper variations on this
section to address those
systems. Pull requests,
welcome!

Be very careful how you type the above rm command. If typed incorrectly, it could irreversibly
remove many of your files!

Before building the toolchain, a number of utilities must be present on your system. The following
will install those that are needed:

sudo apt install autoconf automake autotools-dev curl python3 python-dev libmpc-dev \
libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf \
libtool patchutils bc zliblg-dev libexpat-dev

Note that the above apt command is the only operation that should be performed as root. All other
commands should be executed as a regular user. This will eliminate the possibility of clobbering
system files that should not be touched when tinkering with the toolchain applications.

To download, compile and install the toolchain:

~/rvalp/book/./install/chapter.tex Page 60 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

» Fix Me:

Discuss the choice of ilp32
as well as what the other
variations would do.

1853

1854

1855
1856

1838

1859

1860

1861

1862

1863

1864

1865
1866
1867

1868

1870

1871

1872

1873

N

©w N o

[

o«

15

16

A.2. RVDDT

mkdir -p “/projects/riscv

cd “/projects/riscv

git clone https://github.com/riscv/riscv-gnu-toolchain

cd riscv-gnu-toolchain

INS_DIR="/projects/riscv/install/rv32i

./configure --prefix=$INS_DIR \
--with-multilib-generator="rv32i-ilp32--;rv32imafd-ilp32--;rv32ima-ilp32--"

make

After building the toolchain, make it available by putting it into your PATH by adding the following
to the end of your .bashrc file:

export PATH=$PATH:$INS_DIR

For this PATH change to take place, start a new terminal or paste the same export command into
your existing terminal.

A.2 rvddt

Download and install the rvddt simulator by executing the following commands. Building the rvddt
example programs will verify that the GNU toolchain has been built and installed properly.

cd “/projects/riscv

git clone https://github.com/johnwinans/rvddt.git
cd rvddt/src

make world

cd ../examples

make world

After building rvddt, make it available by putting it into your PATH by adding the following to the
end of your .bashrec file:

export PATH=$PATH:"/projects/riscv/rvddt/src

For this PATH change to take place, start a new terminal or paste the same export command into
your existing terminal.

Test the rvddt build by executing one of the examples:

winans@ux410:~/projects/riscv/rvddt/examples$ rvddt -f counter/counter.bin
sp initialized to top of memory: 0x0000fffO

Loading ’counter/counter.bin’ to 0x0

This is rvddt. Enter ? for help.

ddt> ti 0 1000

00000000: 00300293 addi x5, x0, 3 # x5 = 000000003 = 0200000000 + 0x00000003
00000004: 00000313 addi x6, x0, O # 6 = 0xz00000000 = 0200000000 + 0x00000000
00000008: 00130313 addi x6, x6, 1 # x6 = 000000001 = 0200000000 + 0x00000001
0000000c: feb534ee3 Dblt x6, x5, -4 # pc = (0x1 < 0z3) ? 0z8 : 0zl10

00000008: 00130313 addi x6, x6, 1 # xz6 = 000000002 = 0200000001 + 0xz00000001
0000000c: feb534ee3 Dblt x6, x5, -4 # pc = (0z2 < 0z3) ? 0z8 : 0zl10

00000008: 00130313 addi x6, x6, 1 # 6 = 000000003 = 0x200000002 + 0x00000001
0000000c: feb534ee3 Dblt x6, x5, -4 # pc = (023 < 0z3) ? 0z8 : 0xl10

00000010: ebreak

ddt> x

winansQux410:"/projects/riscv/rvddt/examples$

~/rvalp/book/./install/chapter.tex Page 61 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1874

1875

1876

1877

1878

1879

[TS TN SO SR O

A.3. QEMU

A.3 gemu

You can download and install the RV32 gemu simulator by executing the following commands.

At the time of this writing (2021-06) I use release v5.0.0. Release v5.2.0 has issues that confuse GDB
when printing the registers and v6.0.0 has different CPU types that I have had trouble with when
executing privileged instructions.

INS_DIR="/projects/riscv/install/rv32i

cd “/projects/riscv

git clone git@github.com:gemu/qemu.git

cd gemu

git checkout v5.0.0

./configure --target-list=riscv32-softmmu --prefix=${INS_DIR}
make -j4

make install

~/rvalp/book/./rvalp.tex Page 62 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

Appendix B

Floating Point Numbers

B.1 IEEE-754 Floating Point Number Representation

This section provides an overview of the IEEE-754 32-bit binary floating point format.[15]

Recall that the place values for integer binary numbers are:
128 64 32 16 8 4 2 1

We can extend this to the right in binary similar to the way we do for decimal numbers:
128 64 32 16 84 21 . 1/2 1/4 1/8 1/16 1/32 1/64 1/128 ...

The ‘.’ in a binary number is a binary point, not a decimal point.

We use scientific notation as in 2.7 x 10747 to express either small fractions or large numbers
when we are not concerned every last digit needed to represent the entire, exact, value of a
number.

The format of a number in scientific notation is mantissa x basecTrornent

In binary we have mantissa x 26¥ponent

IEEE-754 format requires binary numbers to be normalized to 1.significand x 26%P°mént where
the significand is the portion of the mantissa that is to the right of the binary-point.

— The unnormalized binary value of —2.625 is —10.101
— The normalized value of —2.625 is —1.0101 x 2!

We need not store the ‘1. part because all normalized floating point numbers will start that
way. Thus we can save memory when storing normalized values by inserting a ‘1.” to the left of
significand.

31|30 23|22 0
gign exponent significand

1 000000,0/010,1 000.0000.?000.0000.0000
<1 8 3

—(I+2+E) <222 = —(1+ 3+ Ly x2h) = -2+ 1+ 1) =—(2+.5+.125) = —2.625

~/rvalp/book/./float/chapter.tex Page 63 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

B.1. IEEE-754 FLOATING POINT NUMBER REPRESENTATION

o IEEE-754 formats:

IEEE-754 32-bit IEEE-754 64-bit
sign 1 bit 1 bit
exponent 8 bits (excess-127) | 11 bits (excess-1023)
mantissa 23 bits 52 bits
max exponent | 127 1023
min exponent | -126 -1022

e When the exponent is all ones, the significand is all zeros, and the sign is zero, the number
represents positive infinity.

e When the exponent is all ones, the significand is all zeros, and the sign is one, the number
represents negative infinity.

e Observe that the binary representation of a pair of IEEE-754 numbers (when one or both are
positive) can be compared for magnitude by treating them as if they are two’s complement
signed integers. This is because an IEEE number is stored in signed magnitude format and
therefore positive floating point values will grow upward and downward in the same fashion as
for unsigned integers and that since negative floating point values will have its MSB set, they
will ‘appear* to be less than a positive floating point value.

When comparing two negative IEEE float values by treating them both as two’s complement
signed integers, the order will be reversed because IEEE float values with larger (that is, in-
creasingly negative) magnitudes will appear to decrease in value when interpreted as signed
integers.

This works this way because excess notation is used in the format of the exponent and why the
significand’s sign bit is located on the left of the exponent.!

e Note that zero is a special case number. Recall that a normalized number has an implied 1-bit
to the left of the significand... which means that there is no way to represent zero! Zero is
represented by an exponent of all-zeros and a significand of all-zeros. This definition allows for
a positive and a negative zero if we observe that the sign can be either 1 or 0.

e On the number-line, numbers between zero and the smallest fraction in either direction are in
the underflow areas.

e On the number line, numbers greater than the mantissa of all-ones and the largest exponent
allowed are in the overflow areas.

e Note that numbers have a higher resolution on the number line when the exponent is smaller.

e The largest and smallest possible exponent values are reserved to represent things requiring
special cases. For example, the infinities, values representing “not a number” (such as the result
of dividing by zero), and for a way to represent values that are not normalized. For more
information on special cases see [15].

B.1.1 Floating Point Number Accuracy

Due to the finite number of bits used to store the value of a floating point number, it is not possible to
represent every one of the infinite values on the real number line. The following C programs illustrate
this point.

11 know this is true and was done on purpose because Bill Cody, chairman of IEEE committee P754 that designed
the IEEE-754 standard, told me so personally circa 1991.

~/rvalp/book/./float/chapter.tex Page 64 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

» Fix Me:

Need to add the standard
lecture number-line diagram
showing where the
over/under-flow areas are
and why.

1938

1939

1940

1941
1942

1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962

1962

1965
1966

1967
1968
1969
1970
1971
1972
1973
1974

1878

1977

1978

1979

1980
1981
1982
1983
1984
1985

1986

N

© ® N o «

10

12
13
14
15
16
17
18
19
20
21
22

W N e

© o N o

B.1. IEEE-754 FLOATING POINT NUMBER REPRESENTATION

B.1.1.1 Powers Of Two
Just like the integer numbers, the powers of two that have bits to represent them can be represented
perfectly. .. as can their sums (provided that the significand requires no more than 23 bits.)

Listing B.1: powersoftwo.c
Precise Powers of Two

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

union floatbin

{
unsigned int i
float f;
};
int main ()
{
union floatbin x;
union floatbin vy;
int i;
x.f = 1.0;
while (x.f > 1.0/1024.0)
{
y.f = -x.f;
printf ("%25.10f = J08x %25.10f = %08x\n", x.f, x.i, y.f, y.i);
x.f = x.£/2.0;
}
}

Listing B.2: powersoftwo.out
Output from powersoftwo.c

1.0000000000 = 3£800000 -1.0000000000 = b£f800000
0.5000000000 = 3£000000 -0.5000000000 = b£000000
0.2500000000 = 3e800000 -0.2500000000 = be800000
0.1250000000 = 3e000000 -0.1250000000 = be000000
0.0625000000 = 3d800000 -0.0625000000 = bd800000
0.0312500000 = 34000000 -0.0312500000 = bd000000
0.0156250000 = 3c800000 -0.0156250000 = bc800000
0.0078125000 = 3c000000 -0.0078125000 = bc000000
0.0039062500 = 3b800000 -0.0039062500 = bb800000
0.0019531250 = 3b000000 -0.0019531250 = bb000000

B.1.1.2 Clean Decimal Numbers

When dealing with decimal values, you will find that they don’t map simply into binary floating point
values.

Note how the decimal numbers are not accurately represented as they get larger. The decimal number
on line 10 of Listing B.4 can be perfectly represented in IEEE format. However, a problem arises in
the 11Th loop iteration. It is due to the fact that the binary number can not be represented accurately
in IEEE format. Its least significant bits were truncated in a best-effort attempt at rounding the value
off in order to fit the value into the bits provided. This is an example of low order truncation. Once
this happens, the value of x.f is no longer as precise as it could be given more bits in which to save
its value.

Listing B.3: cleandecimal.c
Print Clean Decimal Numbers

~/rvalp/book/./cleandecimal.c Page 65 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

1987
1988

1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008

389

2011
2012

2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023

3028

2026

2027

2028

2029

2030

2031
2032

2033
2034
2035
2036
2037
2038
2039

© 0 N O A W N e

P T R e ey
O R R T N I TR S

© 0 N o U A W N e

o S S
w N = O

[N T N R S R

B.1. IEEE-754 FLOATING POINT NUMBER REPRESENTATION

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

union floatbin

{
unsigned int i;
float f;
};
int main ()
{
union floatbin x, y;
int i;
x.f = 10;
while (x.f <= 10000000000000.0)
{
y.f = -x.f;
printf ("%25.10f = J08x %25.10f = %08x\n", x.f, x.i, y.f, y.i);
x.f = x.£%x10.0;
}
}
Listing B.4: cleandecimal.out
Output from cleandecimal.c
10.0000000000 = 41200000 -10.0000000000 = c1200000
100.0000000000 = 42c80000 -100.0000000000 = c2c80000
1000.0000000000 = 447a0000 -1000.0000000000 = c47a0000
10000.0000000000 = 461c4000 -10000.0000000000 = c61c4000
100000.0000000000 = 47c35000 -100000.0000000000 = c7c35000
1000000.0000000000 = 49742400 -1000000.0000000000 = c9742400
10000000.0000000000 = 4b189680 -10000000.0000000000 = cb189680
100000000.0000000000 = 4cbebc20 -100000000.0000000000 = ccbebc20
1000000000.0000000000 = 4e6e6b28 -1000000000.0000000000 = ce6e6b28
10000000000.0000000000 = 501502f9 -10000000000.0000000000 = d01502f9
99999997952.0000000000 = 51ba4d43b7 -99999997952.0000000000 = d1bad43b7
999999995904.0000000000 = 5368d4ab -999999995904.0000000000 = d368d4ab
9999999827968.0000000000 = 551184e7 -9999999827968.0000000000 = d51184e7

B.1.1.3 Accumulation of Error

These rounding errors can be exaggerated when the number we multiply the x.f value by is, itself,
something that can not be accurately represented in IEEE form.?

For example, if we multiply our x.f value by % each time, we can never be accurate and we start
accumulating errors immediately.

Listing B.5: erroraccumulation.c
Accumulation of Error

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

union floatbin

{
unsigned int i;
float f;

2 Applications requiring accurate decimal values, such as financial accounting systems, can use a packed-decimal
numeric format to avoid unexpected oddities caused by the use of binary numbers.

Page 66 of 82

~/rvalp/book/./erroraccumulation.c
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

» Fix Me:

In a lecture one would show
that one tenth is a repeating
non-terminating binary
number that gets truncated.
This discussion should be
reproduced here in text form.

2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052

3833

2055
2056

2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073

7%

2076

2077
2078
2079

2080

2081
2082

2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096

10
11
12
13
14
15
16
17
18
19
20
21
22

© 0 N o U R W N e

[o T S S S
© 0 N o U s W N = O

© 0 N o U A W N e

e e e
B W N = O

-
o

B.1. IEEE-754 FLOATING POINT NUMBER REPRESENTATION
};
int main ()
{
union floatbin x, y;
int i;
x.f = .1;
while (x.f <= 2.0)
{
y.f = -x.£f;
printf ("%25.10f = %08x %25.10f = %08x\n", x.f, x.i, y.f, y.1i);
x.f += .1;
}
}
Listing B.6: erroraccumulation.out
Output from erroraccumulation.c
0.1000000015 = 3dcccccd -0.1000000015 = bdcccccd
0.2000000030 = 3e4dccccd -0.2000000030 = bedccccd
0.3000000119 = 3e99999%a -0.3000000119 = be99999a
0.4000000060 = 3ecccccd -0.4000000060 = becccccd
0.5000000000 = 3£f000000 -0.5000000000 = bf000000
0.6000000238 = 3£f19999a -0.6000000238 = bf19999a
0.7000000477 = 3£333334 -0.7000000477 = bf333334
0.8000000715 = 3f4cccce -0.8000000715 = bfédcccce
0.9000000954 = 3f666668 -0.9000000954 = bf666668
1.0000001192 = 3£800001 -1.0000001192 = bf800001
1.1000001431 = 3f8cccce -1.1000001431 = bf8cccce
1.2000001669 = 3£f99999b -1.2000001669 = bf99999b
1.3000001907 = 3fa66668 -1.3000001907 = bfab66668
1.4000002146 = 3fb33335 -1.4000002146 = bfb33335
1.5000002384 = 3£fc00002 -1.5000002384 = bfc00002
1.6000002623 = 3fccccct -1.6000002623 = bfccccct
1.7000002861 = 3£fd9999c -1.7000002861 = bfd9999c
1.8000003099 = 3fe66669 -1.8000003099 = bfeb66669
1.9000003338 = 3f£f33336 -1.9000003338 bf£f33336

B.1.2 Reducing Error Accumulation

In order to use floating point numbers in a program without causing excessive rounding problems an
algorithm can be redesigned such that the accumulation is eliminated. This example is similar to
the previous one, but this time we recalculate the desired value from a known-accurate integer value.
Some rounding errors remain present, but they can not accumulate.

Listing B.7: errorcompensation.c

Accumulation of Error

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

union floatbin

{
unsigned int i;
float f;
};
int main ()
{

union floatbin
int

1;

~/rvalp/book/./errorcompensation.c

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 67 of 82

2097
2098
2099
2100
2101
2102
2103
2104

3188

2107
2108

2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126

33

16
17
18
19
20
21
22
23
24

B.1. IEEE-754 FLOATING POINT NUMBER REPRESENTATION
while (i <= 20)
{
x.f = i/10.0;
y.f = -x.f;
printf ("%25.10f = J08x %25.10f = %08x\n", x.f, x.i, y.f, y.i);
i++;
}
return (0) ;
}
Listing B.8: errorcompensation.out
Output from erroraccumulation.c
0.1000000015 = 3dcccccd -0.1000000015 = bdcccccd
0.2000000030 = 3e4dccccd -0.2000000030 = bedccccd
0.3000000119 = 3e99999a -0.3000000119 = be99999a
0.4000000060 = 3ecccccd -0.4000000060 = becccccd
0.5000000000 = 3£f000000 -0.5000000000 = bf000000
0.6000000238 = 3f19999a -0.6000000238 = bf19999a
0.6999999881 = 3f333333 -0.6999999881 = bf333333
0.8000000119 = 3f4ccccd -0.8000000119 = bf4ccccd
0.8999999762 = 3f666666 -0.8999999762 = bf666666
1.0000000000 = 3£800000 -1.0000000000 = bf800000
1.1000000238 = 3f8ccccd -1.1000000238 = bf8ccccd
1.2000000477 = 3£f99999a -1.2000000477 = bf99999a
1.2999999523 = 3fa66666 -1.2999999523 = bfab66666
1.3999999762 = 3fb33333 -1.3999999762 = bfb33333
1.5000000000 = 3£fc00000 -1.5000000000 = bfc00000
1.6000000238 = 3fcccccd -1.6000000238 = bfcccccd
1.7000000477 = 3£fd9999a -1.7000000477 = bfd9999a
1.7999999523 = 3fe66666 -1.7999999523 = bfe66666
1.8999999762 = 3£f£33333 -1.8999999762 = bff33333
2.0000000000 = 40000000 -2.0000000000 = c0000000

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 68 of 82

- Appendix C

. The ASCII Character Set

2131 A slightly abridged version of the Linux “ASCII” man(1) page.

2132 Col NA.ME

2133 ascii - ASCII character set encoded in octal, decimal, and hexadecimal

x C.2 DESCRIPTION

2135 ASCII is the American Standard Code for Information Interchange. It is a 7-bit code. Many 8-bit
2136 codes (e.g., ISO 8859-1) contain ASCII as their lower half. The international counterpart of ASCII is
2137 known as ISO 646-IRV.

2138 The following table contains the 128 ASCII characters.

2139 C program '\X’ escapes are noted.

2140 Oct Dec Hex Char Oct Dec Hex Char

2

2142 000 O 00 NUL ’\0’ (null character) 100 64 40 @

2143 001 1 01 SOH (start of heading) 101 65 41 A

2144 002 2 02 STX (start of text) 102 66 42 B

2145 003 3 03 ETX (end of text) 103 67 43 C

2146 004 4 04 EOT (end of transmission) 104 68 44 D

2147 005 5 05 ENQ (enquiry) 105 69 45 E

2148 006 6 06 ACK (acknowledge) 106 70 46 F

2149 007 7 o7 BEL ’\a’ (bell) 107 71 a7 G

2150 010 8 08 BS ’\b’ (backspace) 110 72 48 H

2151 011 9 09 HT °\t’ (horizontal tab) 111 73 49 I

2152 012 10 0A LF ’\n’ (new line) 112 74 4A J

2153 013 11 0B VT ’\v’ (vertical tab) 113 75 4B K

2154 014 12 oC FF °\f’ (form feed) 114 76 4C L

2155 015 13 oD CR ’\r’ (carriage ret) 115 7 4D M
~/rvalp/book/./ascii/chapter.tex Page 69 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

C.2. DESCRIPTION

016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
o077

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

S0

ST

DLE
DC1
DC2
DC3
DC4
NAK
SYN

(shift out)

(shift in)

(data link escape)
(device control 1)
(device control 2)
(device control 3)
(device control 4)
(negative ack.)
(synchronous idle)

ETB (end of trans. blk)
CAN (cancel)

EM (end of medium)
SUB (substitute)

ESC (escape)

FS (file separator)
GS (group separator)
RS (record separator)
US (unit separator)
SPACE

!

#

$

A

&

(

)

*

+

/

0

1

2

3

4

5

6

7

8

9

<

>

e

116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
1562
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
TA
7B
7C
7D
TE
TF

;\\;

Y AN M S < OH o vuo=

~

Y — AN XS 9 et R OC OB B HKRGOGEREPR HOD QOO O W

DEL

~/rvalp/book/./ascii/chapter.tex

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 70 of 82

C.3. NOTES

2206 C.2.1 Tables

2007 For convenience, below are more compact tables in hex and decimal.

2208 234567 30 40 50 60 70 80 90 100 110 120

2 TS === ST TTTTTTTTTTTTTTT T T T T T T T T

2210 0: 0@P ‘p 0: (2 F P Z d4d n x

2211 1: 11 AQagq 1:) 3 =G Q [e o vy

212 2: "2BRbr 2: * 4 > HR \ £f p =z

213 3: #3CScs 3:1 + 5 ?2 I 81 g q {

214 4: $4DTdt 4: " 6 @ J T - h r |

2215 5: 5 EUenu 5:# - 7 A K U _ i s T

2216 6: 6 FVEv 6: $ 8BLV‘j t -

217 7:T7TGWgw 7% / 9 C M W a k u DEL

2218 8: (8HXhx 8: & 0 : D N X b 1 v

219 9:)9 IVYiy 9: 7 1 ; E 0 Y ¢c m w

2220 A: x : JZ jz

2221 B: + ; K[k {

2022 C: <L\1|

2223 D: - =M] m }

2204 E: . >N " n "~

2225 F: /7?20 _ o DEL

2226 C-3 NOTES

2227 C.3.1 HiStOI’y

2228 An ascii manual page appeared in Version 7 of AT&T UNIX.

2220 On older terminals, the underscore code is displayed as a left arrow, called backarrow, the caret is
2230 displayed as an up-arrow and the vertical bar has a hole in the middle.

231 Uppercase and lowercase characters differ by just one bit and the ASCII character 2 differs from the
232 double quote by just one bit, too. That made it much easier to encode characters mechanically or
233 with a non-microcontroller-based electronic keyboard and that pairing was found on old teletypes.

234 The ASCII standard was published by the United States of America Standards Institute (USASI) in
235 1968.

= C.4 COLOPHON

237 This page is part of release 4.04 of the Linux man-pages project. A description of the project,

2238 information about reporting bugs, and the latest version of this page, can be found at http://www.
2239 kernel.org/doc/man-pages/.
~/rvalp/book/./rvalp.tex Page 71 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

http://www.kernel.org/doc/man-pages/
http://www.kernel.org/doc/man-pages/
http://www.kernel.org/doc/man-pages/

2240

2241

2242
2243
2244
2245
2246

2247

2248
2249
2250
2251

2252
2253
2254
2255
2256
2257

2258
2259
2260
2261
2262
2263
2264
2265
2266

2267

2268
2269
2270
2271
2272

2273

2274
2275
2276
2277
2278

2279

Appendix D

Attribution 4.0 International

Creative Commons Corporation (”Creative Commons”) is not a law firm and does not provide legal services or legal advice.
Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons
makes its licenses and related information available on an ”as-is” basis. Creative Commons gives no warranties regarding its
licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all
liability for damages resulting from their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may
use to share original works of authorship and other material subject to copyright and certain other rights specified in the public
license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of
our licenses.

Considerations for licensors: Our public licenses are intended for use by those authorized to give the public permission to use
material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read
and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights
necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation
to copyright. More considerations for licensors: http://wiki.creativecommons.org/Considerations_for_licensors

Considerations for the public: By using one of our public licenses, a licensor grants the public permission to use the li-
censed material under specified terms and conditions. If the licensor’s permission is not necessary for any reason-for ex-
ample, because of any applicable exception or limitation to copyright-then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the
licensed material may still be restricted for other reasons, including because others have copyright or other rights in the
material. A licensor may make special requests, such as asking that all changes be marked or described. Although not re-
quired by our licenses, you are encouraged to respect those requests where reasonable. More considerations for the public:
http://wiki.creativecommons.org/Considerations_for_licensees

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this
Creative Commons Attribution 4.0 International Public License (”Public License”). To the extent this Public License may
be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and
conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1. Definitions

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the
Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified
in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this
Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is
always produced where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted

~/rvalp/book/./license/chapter.tex Page 72 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

http://wiki.creativecommons.org/Considerations_for_licensors
http://wiki.creativecommons.org/Considerations_for_licensees

2280

2281
2282
2283
2284

2285
2286
2287

2288
2289

2290
2291

2292
2293
2294

2295

2296
2297
2298
2299

2300
2301
2302

2303
2304

2305

2306

2307
2308
2309

2310
2311

2312
2313

2314

2315
2316
2317
2318
2319
2320

2321

2322
2323
2324

2325
2326
2327

2328
2329
2330

2331

2332
2333
2334
2335

2336

2337
2338
2339

Material in accordance with the terms and conditions of this Public License.

Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without
limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the
rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not
Copyright and Similar Rights.

Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented
under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or
similar international agreements.

Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and
Similar Rights that applies to Your use of the Licensed Material.

Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this
Public License.

Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are
limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has
authority to license.

Licensor means the individual(s) or entity(ies) granting rights under this Public License.

Share means to provide material to the public by any means or process that requires permission under the Licensed
Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or im-
portation, and to make material available to the public including in ways that members of the public may access the
material from a place and at a time individually chosen by them.

Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European
Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as
well as other essentially equivalent rights anywhere in the world.

You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding
meaning.

Section 2. Scope

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-
free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material
to:

a. reproduce and Share the Licensed Material, in whole or in part; and
b. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use,
this Public License does not apply, and You do not need to comply with its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights
in all media and formats whether now known or hereafter created, and to make technical modifications necessary
to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making
technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to
circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications
authorized by this Section 2(a) (4) never produces Adapted Material.

5. Downstream recipients.

a. Offer from the Licensor — Licensed Material. Every recipient of the Licensed Material automatically receives
an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public
License.

b. No downstream restrictions. You may not offer or impose any additional or different terms or conditions on,
or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply
that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted
official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy,
and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties.

~/rvalp/book/./license/chapter.tex Page 73 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

2340

2341

2342

2343

2344

2345
2346

2347
2348
2349
2350
2351

2352
2353

2354
2355
2356

2357
2358

2359
2360

2361

2362

2363
2364

2365
2366
2367

2368
2369

2370
2371

2372

2373
2374
2375
2376
2377
2378
2379
2380

2381
2382
2383
2384
2385
2386
2387

2388
2389

Section 3. License Conditions

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

a. retain the following if it is supplied by the Licensor with the Licensed Material:
i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution,
in any reasonable manner requested by the Licensor (including by pseudonym if designated);
ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
b. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and

c. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or
hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and
context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions
by providing a URI or hyperlink to a resource that includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent
reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not prevent recipients of the
Adapted Material from complying with this Public License.

Section 4. Sui Generis Database Rights

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial
portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database
Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted
Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the
database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where
the Licensed Rights include other Copyright and Similar Rights.

Section 5. Disclaimer of Warranties and Limitation of Liability

a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE EXTENT POSSIBLE, THE
LICENSOR OFFERS THE LICENSED MATERIAL AS-IS AND AS-AVAILABLE, AND MAKES NO REPRESENTA-
TIONS OR WARRANTIES OF ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION, WARRANTIES OF TITLE,
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, ABSENCE OF LA-
TENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR
NOT KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT ALLOWED IN FULL
OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE TO YOU ON ANY LEGAL
THEORY (INCLUDING, WITHOUT LIMITATION, NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPE-
CIAL, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES, COSTS,
EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR USE OF THE LICENSED MATERIAL,
EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES,
OR DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR IN PART, THIS LIMI-
TATION MAY NOT APPLY TO YOU.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the
extent possible, most closely approximates an absolute disclaimer and waiver of all liability.

~/rvalp/book/./license/chapter.tex Page 74 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

2390

2391
2392

2393

2394
2395

2396

2397
2398

2399
2400

2401

2402

2403
2404

2405
2406

2407

2408
2409
2410

2411
2412
2413

2414
2415

2416
2417
2418

2419
2420
2421
2422
2423
2424
2425
2426
2427

2428

Section 6. Term and Termination

a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to
comply with this Public License, then Your rights under this Public License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the
violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your
violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or
stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7. Other Terms and Conditions

a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly
agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from
and independent of the terms and conditions of this Public License.

Section 8. Interpretation

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or
impose conditions on any use of the Licensed Material that could lawfully be made without permission under this
Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed
to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from
this Public License without affecting the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed
to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and
immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances will be considered the Licensor. The text of the Creative
Commons public licenses is dedicated to the public domain under the CCO Public Domain Dedication. Except for the limited
purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the
Creative Commons policies published at http://creativecommons.org/policies, Creative Commons does not authorize the use
of the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior written consent
including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other
arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph
does not form part of the public licenses.

Creative Commons may be contacted at http://creativecommons.org.

~/rvalp/book/./rvalp.tex Page 75 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

http://creativecommons.org/policies
http://creativecommons.org

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

Bibliography

[1]

RISC-V Foundation, The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document
Version 2.2, 5 2017. Editors Andrew Waterman and Krste Asanovié. iv, 3, 4, 16, 25, 27, 32, 59,
82

[2] D. Patterson and A. Waterman, The RISC-V Reader: An Open Architecture Atlas. Strawberry
Canyon, 11 2017. ISBN: 978-0999249116. iv
[3] D. Patterson and J. Hennessy, Computer Organization and Design RISC-V Edition: The Hard-
ware Software Interface. Morgan Kaufmann, 4 2017. ISBN: 978-0128122754. iv, 27
[4] W. F. Decker, “A modern approach to teaching computer organization and assembly language
programming,” SIGCSE Bull., vol. 17, pp. 3844, 12 1985. iv
[5] Texas Instruments, SN54190, SN54191, SN5/LS190, SN54LS191, SN74190, SN74191,
SN74LS190, SN74LS191 Synchronous Up/Down Counters With Down/Up Mode Control, 3 1988.
iv
[6] Texas Instruments, SN5415/, SN7415/ J-line to 16-line Decoders/Demultiplexers, 12 1972. iv
[7] Intel, MCS-85 User’s Manual, 9 1978. iv
[8] Radio Shack, TRS-80 Editor/Assembler Operation and Reference Manual, 1978. iv
[9] Motorola, MC68000 16-bit Microprocessor User’s Manual, 2nd ed., 1 1980. MC68000UM(AD?2).
iv
[10] R. A. Overbeek and W. E. Singletary, Assembler Language With ASSIST. Science Research
Associates, Inc., 2nd ed., 1983. iv
[11] IBM, IBM System/370 Principals of Operation, Tth ed., 3 1980. iv
, - - ssembler Language, 6th ed., . iv
12] IBM, OS/VS-DOS/VSE-VM/370 A bler L 6th ed., 3 1979. i
[13] “Definition of subtrahend.” www.mathsisfun.com/definitions/subtrahend.html. Accessed: 2018-
06-02. 17
[14] D. Cohen, “IEN 137, On Holy Wars and a Plea for Peace,” Apr. 1980. This note discusses the
Big-Endian/Little-Endian byte/bit-order controversy, but did not settle it. A decade later, David
V. James in “Multiplexed Buses: The Endian Wars Continue”, IEEE Micro, 10(3), 9-21 (1990)
continued the discussion. 22
[15] “Teee standard for floating-point arithmetic,” IEEE Std 754-2019 (Revision of IEEE 754-2008),
pp- 1-84, 2019. 63, 64
[16] RISC-V Foundation, The RISC-V Instruction Set Manual, Volume II: Privileged Architecture,
Document Version 1.10, 5 2017. Editors Andrew Waterman and Krste Asanovié.
~/rvalp/book/./rvalp.bbl Page 76 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

https://riscv.org/
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
http://www.ti.com/lit/ds/symlink/sn74ls191.pdf
http://www.ti.com/lit/ds/symlink/sn74ls191.pdf
http://www.ti.com/lit/ds/symlink/sn74ls191.pdf
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=sdls056&fileType=pdf
https://www.mathsisfun.com/definitions/subtrahend.html
http://www.ietf.org/rfc/ien/ien137.txt
https://riscv.org/
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual

BIBLIOGRAPHY

2161 [17] P. Dabbelt, S. O’Rear, K. Cheng, A. Waterman, M. Clark, A. Bradbury, D. Horner, M. Nordlund,

2062 and K. Merker, RISC-V ELF psABI specification, 2017.

2163 [18] R. M. Stallman and the GCC Developer Community, Using the GNU Compiler Collection (For
2464 GCC wversion 7.3.0). Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2465 02110-1301 USA: GNU PI‘QSS, 2017.

2466 [19] National Semiconductor Coprporation, Series 32000 Databook, 1986.

2467

~/rvalp/book/./rvalp.tex Page 77 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

Glossary

address A numeric value used to uniquely identify each byte of main memory. 2, 77

alignment Refers to a range of numeric values that begin at a multiple of some number. Primarily
used when referring to a memory address. For example an alignment of two refers to one or
more addresses starting at even address and continuing onto subsequent adjacent, increasing
memory addresses. 26, 77

ASCII American Standard Code for Information Interchange. See Appendix C. 21, 77

big-endian A number format where the most significant values are printed to the left of the lesser
significant values. This is the method that everyone uses to write decimal numbers every day.
23, 30, 31, 77, 79

binary Something that has two parts or states. In computing these two states are represented by
the numbers one and zero or by the conditions true and false and can be stored in one bit. 1, 3,
77, 78,79

bit One binary digit. 3, 6, 10, 77, 78, 79
byte A binary value represented by 8 bits. 2, 6, 77, 78, 79
CPU Central Processing Unit. 1, 2, 77

doubleword A binary value represented by 64 bits. 77

exception An error encountered by the CPU while executing an instruction that can not be com-
pleted. 27, 77

fullword A binary value represented by 32 bits. 6, 77

halfword A binary value represented by 16 bits. 6, 22, 77
hart Hardware Thread. 3, 77

hexadecimal A base-16 numbering system whose digits are 0123456789abcdef. The hex digits (hits)
are not case-sensitive. 30, 31, 77, 78

high order bits Some number of MSBs. 77
hit One hexadecimal digit. 10, 12, 77, 78, 79

ISA Instruction Set Architecture. 3, 4, 77

LaTeX Is a mark up language specially suited for scientific documents. 77

~/rvalp/book/./rvalp.tex Page 78 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

Glossary

little-endian A number format where the least significant values are printed to the left of the more
significant values. This is the opposite ordering that everyone learns in grade school when
learning how to count. For example, the big-endian number written as “1234” would be written
in little endian form as “4321”. 24, 77

low order bits Some number of LSBs. 77

LSB Least Significant Bit. 10, 12, 22, 44, 48, 54, 56, 77, 79

machine language The instructions that are executed by a CPU that are expressed in the form of
binary values. 1, 77

mnemonic A method used to remember something. In the case of assembly language, each machine
instruction is given a name so the programmer need not memorize the binary values of each
machine instruction. 1, 77

MSB Most Significant Bit. 10, 12, 13, 19, 20, 22, 44, 45, 77, 78
nybble Half of a byte is a nybble (sometimes spelled nibble.) Another word for hit. 10, 77

overflow The situation where the result of an addition or subtraction operation is approaching pos-
itive or negative infinity and exceeds the number of bits allotted to contain the result. This is
typically caused by high-order truncation. 64, 77

place value the numerical value that a digit has as a result of its position within a number. For
example, the digit 2 in the decimal number 123 is in the ten’s place and its place value is 20. 9,
10, 11, 23, 24, 77

program A ordered list of one or more instructions. 1, 77
quadword A binary value represented by 128 bits. 77

RAM Random Access Memory. 2, 77

register A unit of storage inside a CPU with the capacity of XLEN bits. 2, 77, 79
ROM Read Only Memory. 2, 77

RV 32 Short for RISC-V 32. The number 32 refers to the XLEN. 77

RV64 Short for RISC-V 64. The number 64 refers to the XLEN. 77

rvddt A RV32I simulator and debugging tool inspired by the simplicity of the Dynamic Debugging
Tool (ddt) that was part of the CP/M operating system. 21, 29, 77

thread An stream of instructions. When plural, it is used to refer to the ability of a CPU to execute
multiple instruction streams at the same time. 3, 77

underflow The situation where the result of an addition or subtraction operation is approaching
zero and exceeds the number of bits allotted to contain the result. This is typically caused by
low-order truncation. 64, 77

XLEN The number of bits a RISC-V x integer register (such as x0). For RV32 XLEN=32, RV64
XLEN=64 and so on. 49, 50, 52, 56, 57, 77, 79

~/rvalp/book/./rvalp.ind Page 79 of 82
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Index

2531 A 2570 signed, 17
2532 ALU, 3 2571 unsigned, 16
2533 ASCII, 26, 69
2534 ASCIIZ, 26 2572 R

2573 register, 2, 3
2535 B 2574 RV32, 44
2536 big—endian, 23 2575 RV32A, 4

2576 RV32C, 4
wr C w7 RV32D, 4
2538 carry, 15 2578 RV32F, 4
= CPU, 2 =0 RV32G, 4

2580 RV32I, 4
2581 RV32M, 4
2582 RV32Q), 4

2540 F
2541 Full Adder, 13

2oz H 2583 rvddt, 29

2543 hart, 3 253 S

- I 2585 shamt_i, 53

- imm_b, 57 2586 sign extension, 19
2546 imm i, 53 er T

zz:; 1221 ’ 55% 2588 truncation, 15, 18
2549 imm,u, 49

2550 Instruction

2551 addi, 33

2552 ebreak, 32

2553 mv, 35

2554 nop, 33

2555 instruction cycle, 4

2556 instruction decode, 5

2557 instruction execute, 5

2558 instruction fetch, 5

2559 ISA, 4

2560 L

2561 Least significant bit, 10
2562 little-endian, 24
2563 LSB, see Least significant bit

2564 M
2565 Most significant bit, 10
2566 MSB, see Most significant bit

2567 O
2568 objdump, 34
2569 overflow, 15
~/rvalp/book/./rvalp.ind Page 80 of 82

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

2589

2590

2591

RV 321 Reference Card

Usage Template

‘ Type ‘ Description

Detailed Description

add rd, rsl, rs2 R Add rd < rsl + rs2, pc ¢ pc+d

addi rd, rsl, imm I Add Immediate rd < rsl + imm i, pc + pc+4

and rd, rsl, rs2 R And rd < rsl & rs2, pc < pct+d

andi rd, rsl, imm I And Immediate rd < rsl & imm i, pc < pct+4d

auipc rd, imm U Add Upper Immediate to PC rd < pc + immu, pc < pc+d

beq rsl, rs2, pcrel 13 B Branch Equal pc < pc + ((rsl==rs2) 7 immb : 4)

bge rsl, rs2, pcrel_13 B Branch Greater or Equal pc < pc + ((rsi>=rs2) 7 immb : 4)
bgeu rsl, rs2, pcrel_13 B Branch Greater or Equal Unsigned | pc <« pc + ((rsi>=rs2) 7 immb : 4)

blt rsl, rs2, pcrel 13 B Branch Less Than pc < pc + ((rsi<rs2) ? immb : 4)

bltu rsl, rs2, pcrel_13 B Branch Less Than Unsigned pc < pc + ((rsi<rs2) ? immb : 4)

bne rsl, rs2, pcrel 13 B Branch Not Equal pc < pc + ((rsil=rs2) 7 immb : 4)

jal rd, pcrel 21 J Jump And Link rd < pc+4, pc < pc+imm_j

jalr rd, imm(rs1) I Jump And Link Register rd < pc+4, pc < (rsi+imm i)&~1

Ib rd, imm(rsl) I Load Byte rd < sx(m8(rsi+imm_i)), pc ¢ pc+d

Ibu rd, imm(rsl) I Load Byte Unsigned rd + zx(m8(rsi+imm_i)), pc <« pc+d

lh rd, imm(rsl) I Load Halfword rd < sx(mi6(rsi+imm i)), pc < pc+4d
lhu rd, imm(rs1) I Load Halfword Unsigned rd + zx(m16(rsi+imm i)), pc < pc+d

Tui rd, imm U Load Upper Immediate rd < immu, pc ¢ pc+d

lw rd, imm(rsl) I Load Word rd < sx(m32(rsi+imm i)), pc < pc+4d

or rd, rsl, rs2 R Or rd < rsl | rs2, pc < pct+d

ori rd, rsl, imm I Or Immediate rd < rsl | imm i, pc + pc+4

sb rs2, imm(rsl) S Store Byte m8(rsi+imm _s) < rs2[7:0], pc < pc+4
sh rs2, imm(rsl) S Store Halfword m16(rsi+imm_s) < rs2[15:0], pc < pc+d
sll rd, rsl, rs2 R Shift Left Logical rd < rsl << (rs2YXLEN), pc < pc+4

slli rd, rs1, shamt I Shift Left Logical Immediate rd < rsl << shamt_ i, pc ¢+ pc+4

slt rd, rsl, rs2 R Set Less Than rd < (rs1 <rs2) ? 1 : 0, pc ¢ pctd
slti rd, rsl, imm I Set Less Than Immediate rd < (rsl < immi) ? 1 : 0, pc ¢ pct+d
sltiu rd, rsl, imm I Set Less Than Immediate Unsigned | rd < (rsl < imm i) ? 1 : 0, pc < pct+4
sltu rd, rsl, rs2 R Set Less Than Unsigned rd < (rs1 <rs2) ? 1 : 0, pc ¢ pctd
sra rd, rsl, rs2 R Shift Right Arithmetic rd < rsl >> (rs2)XLEN), pc < pc+4
srai rd, rs1, shamt I Shift Right Arithmetic Immediate rd < rsl >> shamt i, pc < pc+4

srl rd, rsl, rs2 R Shift Right Logical rd < rsl >> (rs2/XLEN), pc < pc+4

srli rd, rs1, shamt I Shift Right Logical Immediate rd < rsl >> shamt_i, pc < pc+4

sub rd, rsl, rs2 R Subtract rd < rsl - rs2, pc < pc+d

SW rs2, imm(rsl) S Store Word m32(rsi+imm_s) < rs2[31:0], pc ¢ pc+d
xor rd, rsl, rs2 R Exclusive Or rd < rsl " rs2, pc < pctd

xori rd, rsl, imm I Exclusive Or Immediate rd < rsl °~ immi, pc < pc+4

~/rvalp/book/./refcard/chapter.tex

v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 81 of 82

2592

2593

RV32I Base Instruction Set Encoding [1, p. 104]

31

25|24

20|19

15|14

12

11 7

6 0

imm[31:12] rd 0110111

imm[31:12] rd 0010111
imm([20]10:1]11[19:12] rd 1101111

,imm[11:0] l s1 |000 d |1100111
imm[12]10:5] rs2 rsl 0 0 0| imm[4:1]11] {1 1 0 0 0 1 1
imm[12]10:5] rs2 rsl 0 0 1|imm[4:1j11] {1 1 0 0 0 1 1
imm[12]10:5] rs2 rsl 10 0fimm[4:1j11] |1 1 0 0 0 1 1
imm[12]10:5] rs2 rsl 10 1|imm[4:1]11]|1 1 00 0 1 1
imm[12]10:5] rs2 rsl 11 0fimm[4:1j11] |1 1 0 0 0 1 1
imm[12]10:5] , 182 rsl |11 1}imm[41]11]]1 1000 11
imm([11:0] rsl 000 rd 0000O011
imm[11:0] rsl 001 rd 0000011
imm][11:0] sl 010 rd 0000011
imm([11:0] rsl 100 rd 0000011
,imm[11:0] sl 101 d |0000011
imm([11:5] rs2 rsl 0 00| imm40 (0100011
imm[11:5] rs2 rsl 00 1| imm#40 (0100011
imm([11:5] , 182 rsl [0 1 0] imm[40, |010001]1
imm[11:0] rsl 000 rd 0010011
imm([11:0] rsl 010 rd 0010011
imm[11:0] rsl 011 rd 0010011
imm[11:0] rsl 100 rd 0010011
imm([11:0] rsl 110 rd 0010011
,imm[11:0] sl |1 11 d 00100171
000000O0O shamt rsl 001 rd 0010011
000000O0O shamt rsl 101 rd 0010011
0100,000] | shamt sl 101 d |0010011
000000O00O rs2 rsl 000 rd 0110011
0100000 rs2 rsl 000 rd 0110011
000000O0O rs2 rsl 001 rd 0110011
000000O0O rs2 rsl 010 rd 0110011
000000O0O rs2 rsl 011 rd 0110011
000000O0O rs2 rsl 100 rd 0110011
000000O0O rs2 rsl 101 rd 0110011
0100000 rs2 rsl 101 rd 0110011
000000O0O rs2 rsl 110 rd 0110011
0000,000] rs2 sl |1 11 rd |0110011
00000000OOOOOOO0O0O0O|0OO0O0(0OOO0OO0OO|1 110011
0000,0000000100000000/0000,0]1110011
csr[11:0] rsl 001 rd 1110011

csr[11:0] rsl 010 rd 1110011

csr11:0] rsl 011 rd 1110011

csr[11:0] zimm([4:0) |1 0 1 rd 1110011

csr[11:0] zimm[4:0] |1 1 0 rd 1110011

, csr[11:0] zimm[4:0] |1 1 1 d 1110011

U-type
U-type
J-type
I-type
B-type
B-type
B-type
B-type
B-type
B-type
I-type
I-type
I-type
I-type
I-type
S-type
S-type
S-type
I-type
I-type
I-type
I-type
I-type
I-type
I-type
I-type
I-type
R-type
R-type
R-type
R-type
R-type
R-type
R-type
R-type
R-type
R-type

I-type
I-type
I-type
I-type
I-type
I-type

lui
auipc
jal
jalr
beq
bne
blt
bge
bltu
bgeu
1b
1h
1w
1bu
lhu
sb
sh
sw

addi
slti
sltiu
xori
ori
andi
slli
srli
srai
add
sub
sll
slt
sltu
Xor
srl
sra
or
and

ecall

ebreak

CSIrrw
CSIrrs
csrrc

rd,imm

rd,imm
rd,pcrel_21
rd,imm(rs1)
rsl,rs2,pcrel_13
rsl,rs2,pcrel_13
rsl,rs2,pcrel_13
rsl,rs2,pcrel_13
rsl,rs2,pcrel_13
rsl,rs2,pcrel_13

rd,imm(rs1)
rd,imm(rs1)
rd,imm(rs1)
rd,imm(rsi)
rd,imm(rs1)
rs2,imm(rsi1)
rs2,imm(rsi1)
rs2,imm(rsi1)
rd,rsl,imm
rd,rsl,imm
rd,rsl,imm
rd,rsl,imm
rd,rsl,imm
rd,rsl,imm
rd,rsl,shamt
rd,rsl,shamt
rd,rsl,shamt
rd,rsl,rs2
rd,rsl,rs2
rd,rsl,rs2
rd,rsl,rs2
rd,rsl,rs2
rd,rsl,rs2
rd,rsl,rs2
rd,rsl,rs2
rd,rsl,rs2
rd,rsl,rs2

rd,csr,rsi
rd,csr,rsi
rd,csr,rsi

csrrwi rd,csr,zimm

csrrsird,csr,zimm

csrrci rd,csr,zimm

~/rvalp/book/./rvalp.tex
v0.17-0-g8eeb353 2022-10-07 06:11:59 -0500

Page 82 of 82

	Preface
	Introduction
	The Digital Computer
	Instruction Set Architecture
	How the CPU Executes a Program

	Numbers and Storage Systems
	Boolean Functions
	Integers and Counting
	Sign and Zero Extension
	Shifting
	Main Memory Storage

	The Elements of a Assembly Language Program
	Assembly Language Statements
	Memory Layout
	A Sample Program Source Listing
	Running a Program With rvddt

	Writing RISC-V Programs
	Use ebreak to Stop rvddt Execution
	Using the addi Instruction
	todo
	Other Instructions With Immediate Operands
	Transferring Data Between Registers and Memory
	RR operations
	Setting registers to large values using lui with addi
	Labels and Branching
	Jumps
	Pseudoinstructions
	Relocation
	Relaxation

	RV32 Machine Instructions
	Conventions and Terminology
	Addressing Modes
	Instruction Encoding Formats
	CPU Registers
	memory

	Installing a RISC-V Toolchain
	The GNU Toolchain
	rvddt
	qemu

	Floating Point Numbers
	IEEE-754 Floating Point Number Representation

	The ASCII Character Set
	NAME
	DESCRIPTION
	NOTES
	COLOPHON

	Attribution 4.0 International
	Bibliography
	Glossary
	Index
	RV32I Reference Card

